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for the degree of Master of Philosophy 
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Face recognition (verification) with 2-D images is a traditional 

and important computer vision problem. It is the key component 

of many applications, such as bio-information security system, In­

ternet face image search, and electronic photo-album management. 

Two main steps are involved in a face recognition system, represent­

ing the face image with certain image descriptor and then defining 

a distance (similarity) measure between two face image descriptors. 

Early stage research work concatenate the image pixels into a vec­

tor as the face representation. Recently, some novel face descriptors 

based on the image micro-structure encoding have been proposed. 

Most of these micro-structure encoding methods are manually de­

signed, which makes them far from optimal. 

In this thesis, we present a novel face image descriptor to ad­

dress the representation issue in 2-D face recognition (verification). 

Firstly, our approach encodes the micro-structures of the face by a 

new learning-based encoding method. Unlike many previous manu­

ally designed encoding methods, we use unsupervised learning tech­

niques to learn an encoder from the training examples, which can au-
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tomatically achieve very good tradeoff between discriminative power 

and invariance. Then we apply a (unsupervised) dimension reduc­

tion technique, PCA, to get a compact face descriptor. While the 

previous usage of PCA technique is hindered by performance degra­

dation, we find a simple normalization mechanism after PCA can 

reverse the degradation and significantly improve the discriminative 

ability. The resulting face representation, learning-based (LE) de­

scriptor, is compact, highly discriminative, and easy-to-extract/compare. 

The proposed novel descriptor is tested on several2-D face recog­

nition benchmark to demonstrate its good recognition performance. 

With training on one dataset and testing on the other mode, our 

method is proven to have excellent generalization ability across dif­

ferent datasets. 
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摘要

基於二維圖像的人臉識別(認證)是一個計算機視覺中的傳統重要問題。它是很

多實際應用系統的關鍵部分 比如生物信息安全系統，因特網的人臉圖片搜索以

及電子照片管理系統。 一個人臉識別系統中包含兩個主要部分: 一是用某種人

臉描述子(特徵)來表示人臉圖片; 二是定義兩個人臉描迷子之間的距離(相似

度)。早期的研究工作一般把人臉圖片的像素拉成一個向量作為表示。最近的研

究工作提出了一些基於人臉圖片微結構編碼的新穎的描述子，其中大部分使用了

手工設計的微結構編碼方法，這導致它們遠遠不是最優的描迷子。

在本論文中，我們提出了一種新的人臉描述子來解決二維人臉圖像的表示問題。

首先，我們的方法用一種基於學習得到的編碼方法來編碼人臉圖片的微結構。與

之前提出的手工設計的編碼方法相比，我們使用了一種無監督學習方法從訓練集

中得到了編碼方法，從而能夠自動地在描述予的鑑別能力和不變性之間取得與一

個良好的平衡。隨後我們使用了一種無監督的維數降低算法，主分量分析，來得

到一種緊緻的人臉描述子。之前很多研究工作中主分量分方法的使用往往會帶來

性能的損失，我們在研究中發現一個簡單的後歸一化處理卻能夠避兔性能的降低，

並且大幅度提高鑑別力。最終獲得的人臉描迷于，稱之為 LE 描迷子，不僅具有

緊緻的特性，而且擁有很高的鑑別力，也容易抽取和比較計算。

本論文提出的這種新的描述子在幾個二維人臉識別的標準庫上進行了實驗，結果

表明確實具有很好的鑑別力 o 通過在一個數據集上訓練而在另一個數據集上測試，

實驗還表明了我們提出方法具有很好的推廣性。
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Chapter 1 

Introduction and related work 

Face recognition for 2-D images is an extensively studied, yet chal­

lenging vision task. Various face recognition systems have been suc­

cessfully applied in recognition task under the controlled conditions. 

There are two main kinds of face recognition tasks: face identifica­

tion (who is who in a probe face set, given a gallery face set) and 

face verification (same or not, given two faces). In this thesis, we 

focus on the verification task, which is more widely applicable and 

is also the foundation of the identification task. For convenience, a 

pair of face images belong to the same person (different persons) is 

termed as intra-person (extra-person) pair. 

Since face verification is a binary classification problem on an 

input face pair, there are two major components of a verification ap­

proach: face representation and face matching. The extracted feature 

(descriptor) is required to be not only discriminative but also invari­

ant to apparent changes and noise. The matching should be robust 

to variations from pose, expression, and occlusion, as shown in Fig­

ure 1.1. These requirements render face verification a challenging 

problem. 
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CHAPTER 1. INTRODUCTION AND RELATED WORK 2 

Figure 1.1: Images from the same person may look quite different due to pose (up­

per left), expression (upper right), illumination (lower left), and occlusion (lower 

right). 

Traditional methods concatenate the image pixels into a vector 

as the face representation, and then apply different vector subspace 

analysis (learning) algorithms, e.g., Eigen-face [28], Fisher-face [22], 

Laplacian-face [13], to extract a discriminative holistic face descrip­

tor. Though achieving success under certain well-controlled sce­

nario, these methods used a holistic face representation, which could 

not utilize the abundant information included in the image micro­

structures. A research direction is designing (proposing) effective 

face representation to encode more face micro-structure informa­

tion. 

Recently, this direction has attracted much research effort [12], 

[30], [31], [14], [15], [17], [24], [25], [36], [38] due to the pro­

gresses of local face descriptors [7], [20], [21], [27], [33], [34], 

[35], [36] and increasing demands of real-world applications, such 
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as face tagging on the desktop [6] or the Intemet1. Currently, these 

descriptor-based approaches [14], [25], [37] have been proven to be 

effective face representations producing best performance [11], [23], 

[16]. Ahonen et al. [1] proposed to use the histogram of Local Bi­

nary Pattern (LBP) [21] to describe the micro-structures of the face. 

LBP encodes the relative intensity magnitude between each pixel 

and its neighboring pixels. It is invariant to monotonic photomet­

ric change and can be efficiently extracted. Since LBP is encoded 

by a handcrafted design, many LBP varieties [26], [36], [40] have 

been proposed to improve the original LBP. SIFT [20] or Histogram 

of Oriented Gradients (HOG) [7] are other kinds of effective de­

scriptors using handcrafted encoding. The atomic element in these 

descriptors can be viewed as the quantized code of the image gradi­

ents. Essentially, different encoding methods and descriptors have to 

balance between the discriminant power and the robustness against 

data variance. 

However, existing handcrafted encoding methods suffer two draw­

backs. On one hand, manually getting an optimal encoding method 

is difficult. Usually, using more contextual pixels (higher dimension 

vector) can generate a more discriminative code. But it is non-trivial 

to manually design an encoding method and determine the code book 

size to achieve reasonable tradeoff between discrimination and ro­

bustness in a high dimension space. In addition, handcrafted codes 

are usually unevenly distributed as shown in Figure 1.2. Some codes 

may rarely appear in real-life face images. It means that the resulting 

code histogram will be less informative and less compact, degrading 

the discriminant ability of the descriptor. 
1 Picasa Web Albums, http://picasaweb.google.com/ 
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LBP code emergence frequency histogram 
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HOG code emergence frequency histogram 
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LE code emergence frequency histogram 
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Figure 1.2: The code uniformity comparison of LBP, HOG, and the proposed LE 

code. We computed the distribution of code emergence frequency for LBP (59 

uniform codes), HOG (32 orientation bins) and LE (64 codes) in 1000 face im­

ages. Clearly, the histogram distribution is uneven for LBP and HOG while our 

LE code is close uniform. 
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In this thesis, to tackle the aforementioned difficulties, we present 

a learning-based encoding method, which uses unsupervised learn­

ing methods to encode the local micro-structures of the face into a 

set of discrete codes. The learned codes are more uniformly dis­

tributed (as shown in Figure 1.2) and the resulting code histogram 

can achieve much better discriminative power and robustness trade­

off than existing handcrafted encoding methods. Furthermore, to 

pursue the compactness, we apply the dimension reduction tech­

nique, PCA, to the code histogram. And we find a proper normal­

ization mechanism after PCA can improve the discriminative abil­

ity of the code histogram. Using two simple unsupervised learning 

methods, we obtain a highly discriminative and compact face repre­

sentation, the learning-based (LE) descriptor. 

Many recent researches also apply learning approaches in face 

recognition, such as subspace learning [30], [31], metric learning [12], 

high-level trait learning [17], discriminant model learning [25], [36], 

[37], but few of these works focus on the issue of local feature en­

coding [18], [29] and the study of descriptor compactness. Though 

Ahonen et al. [2] tried K-means cluster to build local filter response 

codebook, they argued manual thresholding is faster and more ro­

bust. 

Besides the representation, the matching also plays an impor­

tant role. In most practices, the face is aligned by a similarity or 

affine transformation using detected face landmarks. Such 2D holis­

tic alignment is not sufficient to handle large pose deviations from 

the frontal pose. Further, the large localization error of any landmark 

will result in misalignment of the whole face. 3D alignment [3] 

is more principled but error-prone and computationally intensive. 
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Wright et al. [38] recently encoded the geometric information into 

descriptors and used an implicit matching algorithm to deal with the 

misalignment and pose problem. Gang [14] demonstrated that a sim­

ple elastic and partial matching metric can also handle pose change 

and clutter background. 

To explicitly handle large pose-variance, we propose a pose-adaptive 

matching method. We found that a specific face component con­

tributes differently when the pose combinations of input face pairs 

are different. Based on this observation, we train a set of pose­

specific classifiers, each for one specific pose combination, to make 

the final decision. 

Combining a powerful learning-based descriptor and a pose-adaptive 

matching scheme, our system achieves the leading performance on 

both the LFW [16] and the Multi-PIE [11] benchmarks. We will 

describe our methods in detail in Chapter 2. Experiments will be 

presented in Chapter 3. We will conclude the thesis and discuss sev­

eral possible future work in Chapter 4. 

D End of chapter. 



Chapter 2 

Learning-based descriptor for face 

recognition 

2.1 Overview of framework 

Pipeline overview. Our system is a two-level pipeline: the upper­

level is the learning-based descriptor pipeline while the bottom-level 

is the pose-adaptive face matching pipeline. 

As shown in Figure 2.1, we first use a standard fiducial point 

detector [19] to extract face landmarks. Nine different components 

(e.g., nose, mouth) are aligned separately based on detected land­

marks. The resulting component images are fed into a DoG filter 

(with a 1 == 2.0 and CJ2 == 4.0) [14] to remove both low-frequency 

and high-frequency illumination variations. In each component im­

age, a low-level feature vector is obtained at each pixel and encoded 

by our learning-based encoder. The final component representation 

is a compact descriptor (LE descriptor) generated by the concate­

nated patch histogram of the encoded features after PCA reduction 

and normalization. The component similarity is measured by L2 

distance between corresponding LE descriptors of the face pair. The 
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Figure 2.1: The proposed LE descriptor pipeline and the pose-adaptive face 

matching framework. 
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resulting 9 component similarity scores are fed into a pose-adaptive 

classifier, consisting of a set of pose-specific classifiers. The pose­

specific classifier optimized to the pose combination of the matching 

pair gives the final decision. 

Experiment overview. We mainly use the LFW benchmark [16] 

in our experiments and follow their protocol. The LFW standard 

test set consists of ten subsets and each subset contains 300 intra­

personal/extra-personal pairs. The recognition algorithm needs to 

run ten times for formal evaluation purpose. At each time, one sub­

set is chosen for testing and the other nine are used for training. The 

final average recognition performance serves as the evaluation crite­

rion. 

2.2 Learning-based descriptor extraction 

In this section, we describe the critical steps in the learning-based 

(LE) descriptor extraction. In order to study the LE descriptor's 

power precisely, all the experiments in this section are conducted 

in holistic face level, without using component-level pose adaptive 

matching. 

2.2.1 Sampling and normalization 

At each pixel, we sample its neighboring pixels in the ring-based 

pattern to form a low-level feature vector. We sampler * 8 pixels at 

even intervals on the ring of radius r. Figure 2.2 shows four effective 

sampling patterns we found in an empirical manner. We extensively 

varied the parameters (e.g., ring number, ring radius, sampling num-
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(3) 

Figure 2.2: Four typical sampling methods used in our experiments: (1) R1 = 1, 

with center; (2) R 1 = 1, R2 = 2, with center; (3) R1 = 3, no center; (4) R1 = 

4, R2 = 7, no center. (The sampling dots on the green-square labeled arcs are 

omitted for better visuality). 

ber of each ring) but found the differences among good patterns are 

not significant - no more than 1% on the LFW benchmark. The 2 nd 

pattern in Figure 2.2 is our best single pattern and we use it as our 

default sampling method. 

Although the performances of single patterns are similar, com­

bining them together may give us a chance to exploit the comple­

mentary information captured by different sampling methods. We 

will discuss the use of multiple patterns later in this section. 

After the sampling, we normalize the sampled feature vector into 

unit length. Such normalization combined with DoG preprocess­

ing makes the feature vector invariant to local photometric affine 

change. 
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2.2.2 Learning-based encoding and histogram representation 

Next, an encoding method is applied to encode the normalized fea­

ture vector into discrete codes. Unlike many handcrafted encoders, 

in our approach, the encoder is specifically trained for the face in an 

unsupervised manner from a set of training face images. We have 

tried three unsupervised learning methods: K-means, PCA tree [8], 

and random-projection tree [8]. While K-means is commonly used 

to discover data clusters, random-projection tree and PCA tree are 

recently proved effective for vector quantization. In our implemen­

tation, random-projection tree and PCA tree recursively split the 

data based on uniform criterion, which means each leaf of the tree is 

hit by the same number of vectors. In other words, all the quantized 

codes have a similar emergence frequency in the vector space (as 

shown in Figure 1.2). 

After the encoding, the input image is turned into a "code" image 

(Figure 2.1). Following the method described in Ahone et al.'s work 

[ 1], the encoded image is divided into a grid of patches ( 5 x 7 patches 

for the holistic face (84 x 96) used in this section). A histogram of 

the LE codes is computed in each patch and the patch histogram is 

concatenated to form the descriptor of the whole face image. 

The choice of the learning method and the code number are im­

portant for our learning-based encoding. Figure 2.3 shows the per­

formance comparison of the three learning methods under different 

code number setting. We select 1,000 images from the LFW training 

set to train our learning-based encoders. On each image, a number 

of 8,064 (=84 x 96) feature vectors are sampled as training exam­

ples. We varied the code number from 4 to 131 ,072 (=217) and plot-
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ted the recognition rate (we stopped testing K-means after reaching 

29 codes since the computation becomes intractable). Notice that 

random-projection tree slightly outperforms the other two and thus 

is adopted in the following as default. We compare our LE descrip­

tor with LBP (59-bin), HOG (8-bin), and Gabor [35] on the LFW. 

Our LE descriptors start to beat existing descriptors (LBP 72.35%, 

HOG 71.25%, and Gabor 68.53%) when the code number reaches 

32. And our LE descriptor achieves 77.78% rate when the code 

number reaches 215 . 

2.2.3 PCA dimension reduction 

If we use the concatenated histogram directly as the final descrip­

tor, the resulting face feature may be too large (e.g., 256 codes x 

35 patch = 8,960 dimension). A large feature not only limits the 

number of faces which can be loaded into memory, but also slows 

down the recognition speed. This is very important for the appli­

cations that need to handle a large number of faces, for example, 

recognizing all face photos on a desktop. To reduce the feature size, 

we apply Principle Component Analysis (PCA) [28] to compress the 

concatenated histogram, and call the compressed descriptor as our 

final learning-based (LE) descriptor. 

Surprisingly, we found that PCA compression substantially im­

proves the performance if a simple normalization is applied after the 

compression. Figure 2.4 shows the recognition rates of LE descrip­

tors with different normalization methods. Without the normaliza­

tion, the compressed feature is inferior to the uncompressed one by 

6% points. But with L1 or L2 normalization, the PCA version can be 
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Figure 2.3: Performance comparison vs. learning method. We studied the recog­

nition performance of the LE descriptors using three learning methods (random 

projection tree, PCA-tree, and K-means) under different code number settings. 

We also gave several existing descriptors' results for comparison. 
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5% higher. This result reveals the angle difference between features 

is most essential for the recognition in the compressed space. To 

confirm this key observation, we also tried to apply PCA compres­

sion to LBP. We repeated the same compression and normalization 

operations and also found simple normalization can boost uncom­

pressed LBP's performance 3% points while skipping such step will 

detract it 5% points. 

To obtain the optimal setting for the LE descriptor, we exten­

sively studied the parameter combination of code number and PCA 

dimension. For large code number shows little performance advan­

tage after PCA compression, we choose 256 code and 400 PeA­

dimension as our default setting in the following experiments. 

Our default LE descriptor achieves recognition rate as high as 

81.22%, which significantly outperforms previous descriptors, us­

ing only 400-dimension feature vector for the holistic face, about 

20% the size of the 59-code LBP descriptor. This demonstrated 

that our descriptor extraction pipeline (pre-processing, sampling and 

normalizing, learning-based encoding, and dimension reduction) is 

very effective for producing a compact and highly discriminative de­

scriptor. 

2.2.4 Multiple LE descriptors 

As discussed in Section 2.2.1, our flexible sampling method enables 

us to generate a class of complementary LE descriptors, and the 

combination of multiple LE descriptors may achieve better perfor­

mance. In this thesis, we take a simple approach by training a linear 

SVM [5] to combine the similarity scores generated by different LE 
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Figure 2.4: Investigate the effects of the PCA dimension with different normal­

ization methods. After applying PCA compression to the concatenated patch 

histogram vector, we normalize the resulting vector with different normalization 

methods and then compute the similarity score with L2 distance. 
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Figure 2.5: ROC curve comparison between our LE descriptors and existing de­

scriptors. 

descriptors . Generally, the combination can always achieve better 

result. In our experiments, the combination of four LE descriptors 

(shown in Figure 2.2) obtained the best performance on the LFW. 

Figure 2.5 gives the comparison curves of different descriptors. 

2.3 Pose-adaptive matching 

In the previous section, we use 2D holistic alignment and matching 

for the comparison purpose. In this section, we will show that a 
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pose-adaptive matching at the component-level can effectively han­

dle large pose variation and further boost the recognition accuracy. 

2.3.1 Component-level face alignment 

Instead of using a 2D holistic (similarity) alignment on the whole 

face, we align 9 face components (shown in Figure 2.6) separately 

using similarity transform. For each component, two landmarks 

are selected from the five detected fiducial landmarks (eyes, nose, 

and mouth corners) to determine the similarity transformation (de­

tails in Table 2.1). Compared with the 2D holistic alignment, the 

component-level alignment presents advantages in large pose-variant 

case. The component-level approach can more accurately align each 

component without balancing across the whole face. And the nega­

tive effect of landmark error will also be reduced. Figure 2.6 shows 

aligned components and Table 2.2 compares the performance of dif­

ferent alignment methods. 

2.3.2 Pose-adaptive matching 

Using the component-level alignment, the face similarity score is the 

sum of similarities between corresponding components. We found 

that each component contributes differently for the recognition when 

the pose combination of the matching pair is different. For example, 

the left eye is less effective when we match a frontal face and a 

left-turned face. Based on this observation, we take a simple pose­

adaptive matching method. 

Firstly, we categorize the pose of the input face to one of three 

poses (frontal (F), left (L), and right (R)). To handle this pose cate-
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Forehead 

Brows 

Eyes 

Cheeks 

Nose 

Mouth 

Figure 2.6: Fiducial points and component alignment. 

Component Selected landmarks 

Forehead left eye + right eye 

Left eyebrow left eye + right eye 

Right eyebrow left eye + right eye 

Left eye left eye + right eye 

Right eye left eye + right eye 

Nose nose tip + nose pedal* 

Left cheek left eye + nose tip 

Right cheek right eye + nose tip 

Mouth two mouth comers 

Table 2.1: Landmark selection for component alignment. (* means the pedal of 

the nose tip on the eye line.) 
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Alignment mode Recog. rate 

2-Point holistic 79.85% ± 0.42% 

5-Point holistic 81.22% ± 0.53% 

Component 82.73% ± 0.43% 

Table 2.2: Recognition rate vs. alignment mode. 

gory, three images are selected from the Multi-PIE dataset, one im­

age for each pose, and the other factors in these three images, such 

as person identity, illumination, expression remain the same. After 

measuring the similarity between these three gallery images and the 

probe face, the pose label of the most alike gallery image is assigned 

to the probe face. 

Given the estimated pose of each face, the pose combinations of 

a face pair could be {FF, LL, RR, LR (RL), LF (FL), RF (FR)}. 

Our final pose-adaptive classifier consists of a set of linear SVM 

classifiers, each trained by a subset of training pairs with a spe­

cific pose combination. The "best-fit" classifier having the same 

pose combination with the input matching pair makes the final de­

cision. Through pose-adaptive matching, we explicitly handle the 

large pose variation by this "divide-and-conquer" method. 

2.3.3 Evaluations of pose-adaptive matching 

To best evaluate the ability of pose change handling, we constructed 

a new test set from the LFW dataset by randomly sampling 3,000 

intra-personal/extra-personal pairs for each pose combination. The 

total pair number in our new test set is 3, 000 x 6 == 18, 000. Note 

that this new test set is more challenging than the standard test data 
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Component Image size Patch division 

Forehead 76 X 24 7x2 

Left eyebrow 46 X 34 4x3 

Right eyebrow 46 X 34 4x3 

Left eye 36 X 24 3x2 

Right eye 36 X 24 3x2 

nose 24 X 76 2 X 7 

Left cheek 34 X 46 3x4 

Right cheek 34 X 46 3x4 

Mouth 76 X 24 7x2 

Table 2.3: Patch division for face components. 

in the LFW due to the larger pose difference between the matching 

pair. We use half of them as the training set and the rest as the 

test set. Subjects are mutually exclusive in these two sets. And 

the patch division in component-level setting is shown in Table 2.3. 

Recognition performances were compared before (76.20% ± 0.41 %) 

and after (78.30%±0.42%) pose-adaptive matching was adopted and 

results showed that the proposed technique is useful in such large 

pose-variant case. 

D End of chapter. 



Chapter 3 

Experiment 

In this section, we report our final face recognition performance on 

the LFW benchmark systematically and then validate the excellent 

generalization ability of our system across different datasets. 

3.1 Results on the LFW benchmark 

We present our recognition results on the LFW benchmark in the 

form of ROC curves. Figure 3.1 shows comparison results for the 

validation of our proposed individual techniques. In Figure 3.1, "sin­

gle LE + holistic" means that we only use the single best LE to 

represent the holistic face, and it is the baseline to show the power 

of LE without other techniques. "single LE + comp" indicates the 

application of component-level, pose-adaptive matching to the base­

line single LE. Multiple LE descriptors are combined to form "mul­

tiple LE + holistic". And "multiple LE + comp" is our best per­

former. The accuracies for these four methods are 81.22% ± 0.53%, 

82.72% ± 0.43%, 83.43% ± 0.55%, and 84.45% ± 0.46%. Despite 

the strong discriminant ability of the LE descriptor itself, the pose-

21 
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Figure 3.1: Demonstrate the effects of our proposed techniques on the LFW 

benchmark. Here, "holistic" means using holistic face representation while 

"comp" means component-level, pose-adaptive matching. 
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Figure 3.2: Face recognition comparison on the LFW benchmark in restrict pro­

tocol. 
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adaptive matching and multiple descriptor combination further en­

hance the recognition performance of our system. 

Our best ROC curve is comparable with previous state-of-the­

art methods, as shown in Figure 3.2. On the LFW benchmark, two 

new algorithms show the leading performance. Wolf et al.'s work 

[37] adopts the background learning by using the identity informa­

tion within the training set. Kumar et al. [17] used the supervised 

learning to train high-level classifications through a huge volume 

of training images outside of the LFW dataset. These two meth­

ods [17, 37] both use additional information outside the LFW test 

protocol. So the comparison with other methods (including ours) in 

Figure 3.2 is not really fair. Additional training data or information 

may also improve other approaches. 

Our system achieves the best performance when the standard test 

protocol is strictly respected [16]. More importantly, our work fo­

cuses on low-level face representation, which can be easily com­

bined with previous algorithms to produce better performance. 

3.2 Results on Multi-PIE 

We also perform extensive experiments on the Multi-PIE dataset to 

verify the generalization ability of our approach. The Multi-PIE 

dataset contains face images from 337 subjects, imaged under 15 

view points and 19 illumination conditions in 4 recording sessions. 

Large differences exist between LFW and Multi-PIE, considering 

the pose compositions, illumination variance, and resolution. More­

over, Multi-PIE is collected under a controlled setting systematically 

simulating the effects of pose, illumination, and expression. On the 
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Descriptor Recog. rate on Multi-PIE 

59-code LBP 84.30% ± 0.89% 

8-bin HOG 84.02% ± 0.66% 

Gabor 86.42% ± 0.85% 

single LE + holistic 91 .58% ± 0.50% 

single LE + comp 92.12% ± 0.52% 

multiple LE +holistic 92.20% ± 0.49% 

multiple LE + comp 95.19% ± 0.46% 

Table 3.1: Recognition performance on the Multi-PIE dataset. 

other hand, the LFW is more close to the real-life setting since its 

faces are selected from news images. For these reasons, training 

on one dataset and testing on the other can better demonstrate the 

generalization ability of a recognition system. 

Similar to the LFW benchmark, we randomly generate 10 subsets 

of face images with Multi-PIE, each has 300 intra-personal and 300 

extra-personal image pairs. The identities of subjects are mutually 

exclusive among these 10 subsets, and cross-validation mode similar 

to LFW is applied. The default "single LE" descriptor and "multiple 

LE" descriptors trained on the LFW benchmark are adopted in the 

experiments. 

As shown in Table 3.1, the single LE with holistic face repre­

sentation outperforms the commonly used descriptors more than 5 

points, and pose-specific classifiers trained on the LFW dataset also 

perform well on the Multi-PIE dataset. All these results demon­

strated the excellent generalization ability of our system. 
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D End of chapter. 
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Chapter 4 

Conclusion and future work 

4.1 Conclusion 

We have introduced a new approach for 2-D face recognition us­

ing learning-based (LE) descriptor and pose-adaptive matching. Our 

whole system (algorithm) involves the following main steps: 

• Locate the fiducial points of the face image with a detector 

and then align its nine components separately with the detected 

landmarks. 

• Process the aligned components with a DoG filter and then en­

code each pixel of the component images with a learned en­

coder. Each component image is converted into a code image. 

• Extract each component code image's concatenated patch his­

togram and apply the PCA to get a more compact LE descrip­

tor. 

• Given a pair of face images, their corresponding component 

similarity scores (with angle distance metric) are fed into a 

27 
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pose-adaptive classifier to get the final similarity measure be­

tween them. 

We validated our recognition system on the LFW benchmark and 

demonstrated its excellent generalization ability on Multi-PIE. 

4.2 Future work 

Although good results have been obtained, there are still some prob­

lems and interesting directions that have not been explored. 

• In this work, the face micro-pattern encoding is learned but 

the pattern sampling is still manually designed. Automating 

this step with learning techniques [33] may produce a more 

powerful descriptor for face recognition. 

• We apply unsupervised algorithm to learn the encoding. A 

heuristic code emergence criterion is used. Since our ultimate 

purpose is the recognition performance, it is more suitable to 

adopt a supervised learning algorithm to tune the encoding step 

to make the final system more discriminative in differentiating 

persons. 

• In this work, Principal Component Analysis (PCA) is used to 

obtain a compact form LE descriptor. Though simple and easy 

to implement, unsupervised dimension reduction techniques 

are generally inferior to supervised ones in boosting the recog­

nition performance. Given various supervised dimension re­

duction algorithms available [39], [10], [32], it is quite promis­

ing to apply them into the descriptor compression. 
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• Combining multiple LE descriptors is not fully studied in our 

work. A probable better algorithm is treating different LE de­

scriptors and different feature and then formulate the combin­

ing as an ensemble learning [4] [9] problem to solve. 

D End of chapter. 
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