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A B S T R A C T 

In accelerated life-testing (ALT) experiment, step-stress model is the most com-

mon model for exploring the relationship between lifetimes and stress levels of the 

products with large mean failure times under normal operating conditions. In this 

thesis, by assuming log-linear relation between the model parameters and stress 

levels, we consider a simple step-stress model under cumulative exposure assump-

tion with Weibull distributed lifetimes in the present of Type-I censored data. 

Maximum likelihood estimators (MLEs) are used to estimate the model parame-

ters. Expected Fisher information matrix is derived and used to find asymptotic 

variance-covariance matrix of MLEs. Some numerical techniques for step-stress 

model are introduced. The optimal allocation schemes for the simple step-stress 

model are determined based on different optimal criteria by using line graphs 

and nomographs. Sensitivity analysis on optimal allocation proportions against 

parameters is provided. 
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摘要 

加速壽命測試實驗模型之目的，為尋求在正常情況下而又很長壽命的産品與應 

力水平之間關係，其中最常用的是逐步應力模型。在這篇論文中，首先在以下 

假設中介紹簡易逐步應力模型：模型參數與應力水平之間存在對數線性關係、 

産命壽命跟隨累積暴露假設以及韋伯分佈、以及數據集當中存在著第一類刪失 

數據。利用最大似然估計法可估計模型參數。然後計算其費雪資訊矩陣，可得 

出近似漸近協方差矩陣。一些應用在逐步應力模型的數值技巧進行了介紹。然 

後，我們透過不同最優化準則，以線圖和諾模圖表達簡易逐步應力模型的最佳 

分配方案。最後，我們利用錯誤估計引申的比例，隨著參數變化，對不同的準 

則下的最佳分配比例進行敏感度分析。 
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Chapter 1 

Introduction 

1.1 Background 

Most industrial experiments are used to test the reliability of products. How-

ever, under normal conditions, the mean failure times of products are too large 

to wait for all the failures of products. Therefore, it is almost impossible to get 

enough information about the lifetime distribution and its unknown parameters 

in a reasonable experimental time. To overcome this problem, the products are 

tested under condition with higher stress than normal. Such testing technique is 

called Accelerated Life Testing (ALT). The accelerated test can be under higher 

constant stress or linearly increasing stress levels such as, for example, tempera-

ture, pressure, load, vibration, etc. Thus, the main purpose of ALT is to speed 

up the failure at more extreme conditions and the lifetimes of products in normal 

condition can be estimated by extrapolation with an appropriate model. 

Nelson (1980) pointed out that step-stress testing is a special case of acceler-

ated testing that allows testing stress level Xi changing to another level xi+1 at a 
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given time 丁“ for i = 1,...，k, where T\ < r2 < . . . < rfc, or upon the occurrence 

of a specified number of failures ri{. They are called time-step-stress testing and 

failure-step-stress testing, respectively, where the former is considered in this the-

sis. Both cases can reduce test time obviously and ensure enough failures occuring 

within a short period of time. For further explanation and examples, see Miller 

and Nelson (1983) and Gouno and Balakrishnan (2001). 

The simplest step-stress model is called simple step-stress models, involving 

two stress levels X1,X2 and one changing time T\ only during the whole test time. 

Since Nelson and Kielpinski (1976), using intuitive argument, showed that the 

optimal allocation about lognormal model uses only two stress levels, which are 

the lowest and highest, for their optimality criteria, simple step-stress models are 

applied with exponential distributions and their generalizations, Weibull distribu-

tions in many statistical literatures in recent decades. Bai, Kim and Lee (1989), 

Bai and Kim (1993) proposed the optimal changing time T\ with Type-I censoring 

data under exponential distributions and Weibull distributions respectively; Bal-

akrishnan, Kundu, Ng and Kannan (2007) and Kateri and Balakrishnan (2008) 

discussed the interval estimation of parameters based on the maximum likelihood 

estimators (MLE) with Type-II censoring data under exponential distributions 

and Weibull distributions, respectively. Gouno, Sen and Balakrishnan (2004) 

determined D-optimal and V-optimal T\ with progressive Type-I censoring data 

under exponential distributions. 

However, in Bai, Kim and Lee (1989) and Bai and Kim (1993), they did not 

consider the case when no failures are observed under some stress levels such 

that some parameters are inestimable. In this thesis, besides considering a sim-
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ple step-stress model under assumptions with Weibull distributed lifetimes in the 

presence of Type-I censored data, we aim to analyze the likelihood under differ-

ent situations and to study the characteristics of MLE, such as their asymptotic 

variance-covariance matrices. 

1.2 Scope of the thesis 

The scope of this thesis is the following. In Chapter 2y the model and its assump-

tions are introduced, and the simple step-stress model is described. In Chapter 

3, the likelihood function is given under different cases, and parameters are esti-

mated by MLE. The Fisher information matrix of the MLE is derived and used 

to determine the asymptotic variance-covariance matrix. After that, numerical 

improvement strategies for step-stress models are suggested for solving MLE. In 

Chapter 4, optimal criteria are given and the optimal design with different criteria 

and quantities are determined and shown by line graphs and nomographs. The 

sensitivity of proportions of optimal designs against parameters are discussed. 

Finally, in Chapter 5，we draw conclusions and raise some further research prob-

lems. 
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Chapter 2 

Lifetime Model 

2.1 Introduction 

In this chapter, we introduce our lifetime model in detail. Starting feom pre-

senting the basic definitions of Weibull distributions in Section 2.2, we state the 

lifetime model with two important assumptions: the linear assumption of mean 

log-lifetime, and the cumulative exposure assumption in Section 2.3. Then the 

lifetime model is shown explicitly. Graphs are sketched for a better understand-

ing the model of step-stress tests. Additionally, the Type-I censoring scheme is 

introduced at the end of this chapter. 

2.2 Weibull Distribution 

Weibull distribution is one of the most common distributions to model the lifetime 

data. Its cumulative density function (c.d.f.) is given by 

F(t) 二 l — e—G)� t > 0; 6,P> 0 
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its probability density function (p.d.f.) is given by 

m = 》 - 、 - 、 （ t > 0 ; e,(3>Q 

and its hazard function is given by 

h(t) = ^ / - \ t > 0 ; 9,p>0 

where 6 is the scale parameter and ^ is the shape parameter. It is easy to see 

that the hazard function is an increasing function of t when P > 1 and decreasing 

when (5 < 1. It is a constant when P = 1. Therefore it reduces to an exponential 

distribution when f3 = 1. 

2.3 Step-Stress Experiment 

In reliability experiments, the experimenters are always interested in the relation-

ship between lifetimes and some operating conditions such as voltages, loads and 

temperatures. These are known as factors or covariates. It is called a constant 

stress experiment if the test is run under a specified level of factor x0 and then 

the times to failure of items are observed. In the Weibull setup, the most common 

linkage between the lifetime and the factor x is through the following relationship: 

(see, for example, Lawless (2003)) 

log^ — a 0 + OL\X (2.1) 
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Therefore, the c.d.f. of the lifetime distribution under this model is given by 

F(t',x) = i — e - ( m ” 

In these days, the products are so reliable and it may take a long time to fail. 

In order to accelerate the failure, step-stress tests have been proposed (Nelson 

(1980)). 

The step-stress experiment is set up as follows. At the beginning of the ex-

periment, the stress is set to x\ until a pre-specified time r\. After ri, the stress 

will change from x\ to ic2. The experiment continues until another pre-fixed time 

T2. After T2, the stress will change from X2 to $3，and so on. It is known as a 

progressive step-stress test if there is more than one change of stress levels in the 

experiment. It is termed as simple step-stress test if only one change is made in it. 

In this thesis, we are going to study the optimal design of the simple step-stress 

test when the lifetime is Weibull distributed. 

A common assumption in the literature of step-stress test is called cumulative 

exposure assumption. Based on this assumption, the remaining lifetime of a test 

unit only depends on the current cumulative fraction failed and the current stress. 

That means if different test units have distinct exposure histories but the same 

age, then they share the same remaining life distribution. Therefore, lifetime T 
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can be described in terms of the c.d.f.: 

( 

GAt) =Fi(t) 0 < t < ri 
G(t) = 1 

[G2(t) = F2(s +1 — n) ri < t < 00 

where Fi{t) is the c.d.f. under stress level Xi, i = 1,2, and s is the solution of the 

following equation: 

F2(s) = F^n) 

Accordingly, if lifetime T is assumed to be Weibull distributed with c.d.f.: 

F,{t-x,) = l - e - ( t e " a o _ a i X i ) ' 0 < t < o o 

under the constant stress level Xi, i = 1,2, then the lifetime T under the simple 

step-stress set up with cumulative exposure assumption has c.d.f. and p.d.f., 

respectively, as follows: 
( 

G,(t) ^ l - e - ^ 0 ' ^ 1 ) 0 0 < t < n 
G(t) = 「， 、 ， , (2-2) 

G2(t) 二 1 — e-[(^-—-) +(t-n)e™2] n < t < � 、 ( 

9l(t) = p e - ^ ^ H ^ e - ( ^ ' ^ y 0 < t < n 

g{t) ^ < g2(t) 二 加 一 一 + 邮 2 ) ( g o a ( m ) + 1 — 乃 广 1 (2.3) 

-\(Tle-ao-aixi Y+(t-Ti)e-ao~aix2]P . , 乂 
xe Lv ) � “ J 丁± < t < 0 0 

、 

Figure 2.1a shows the c.d.f.'s of Weibull constant stress models, where the up-

per curve has a smaller scale parameter Qi. Therefore, when the stress increases, 

the parameter 6\ of the Weibull distribution decreases to 62. Figure 2.1b shows 
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(a) (b) (c) 

Figure 2.1: c.d.f. of Weibull simple step-stress model 

the relationship between the constant stress models and the simple step-stress 

model. The arrow represents when the stress changes, the units following the 

distribution under stress x\ jump to the distribution under stress x^ and restart 

to follow it from the fraction failed at x\. Therefore the darkline in Figure 2.1c, 

which is the lifetime c.d.f. of our model, consists of two segments. 

The simulation can be done by finding the inverse of the c.d,f. G{t) and the 

algorithm is addressed in the Appendix A. 

8 



Chapter 3 

Maximum Likelihood Estimation 

of Model Parameters 

3.1 Introduction 

To investigate the relationship between the lifetime T and the stress x“ unknown 

parameters a0 , a i 5 f3 of the model are necessary to be estimated. Maximum likeli-

hood estimation is used to estimate the parameters. In Section 3.2, the likelihood 

is given for different situations and the score functions for a 0 , oci,fi are derived 

in order to obtain the MLEs. Then, the asymptotic variance-covariance matrix 

is obtained by inverting the expected Fisher information matrix in Section 3.3. 

Finally, some numerical techniques for solving MLEs in step-stress models are 

studied in Section 3.4. 
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3.2 Maximum Likelihood Estimation 

Let n1,n2 be the numbers of failures occured before T\ and between r\ and 丁2 

respectively, and nc = N — n\ — n2 be the number of remaining units after ex-

periment, where all n's are random. Then, the likelihood of the observed failure 

times 0 < T1:N < ... < Tni:N < n < Tni+1:N < . •. < Tni+n2:N < r2 is given by 

(1 - G(r2))N (n! = n2 = 0) 

n^i 9i(Tj:N)(l — G(T2))N~^ (n! > 0, n2 二 0) 
L(ao,ai,f3)= < 

n^i 92(Tni+j:N)(l - G(r2))N-^ (Th = 0, n2 > 0) 

^ n ; i i ^ i W : i v ) n ? : i ^ ( T n i + i : i v ) ( l — G ( r 2 ) ) N ^ - ^ (na > 0,n2 > 0) 

where G{-) and 识(.),i = 1,2 are given in (2.2) and (2.3), respectively. Since 

the likelihood has no information about gi for rii — 0 and g2 for n2 = 0, it is 

evident that MLEs of c% oti do not exist under these two conditions. Moreover, 

MLEs also do not exist if the number of observed failure is less than the number 

of parameters. Therefore, MLEs of all parameters are estimable when n\ > 0, 

n2 > 0 and n\ + n2 > 3 only. Besides, since nc = N ^ n\ — n2 and nc > 0，the 

MLEs are only defined on 
f 

Ax 二 {1 < ni < N - 1} 

yA2 二 {max(l, 3 — u\) < n2 < N — n：} 
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Therefore, we can only obtain MLEs and their variance-covariance matrix under 

the constraints Ai,A2 . Under these constraints the log-likelihood is given by: 

logL(a0 , Oix,f3) = (ni + n2) logj3 — Pni(a0 + aiXi) - 0n2(ao + a1X2) 
n\ n2 

HP — 1) Y?ogTj:N + (P — l)^log { T l e a ^ ^ + Tni+j:N — n) 
j=i j=i 

ni n2 
_e-P(ao+alXl) J2 T f N 一 e - 风 — ^ ( T l e ^ ^ - . i ) + T n i + j : N — Tiy 

j=l j=l 
_e-fi(a0^alX2)^N —觀—叱）^a,{x2-xr) + • _ ^ 

Then the score functions are derived by partial differentiating log L with respect 

to each parameter ; 

^ i ^ ^ -P(m + n2) + P e - ^ ^ H ^ P ) + pe-^^(H2(au f3) + H ^ f 5 ) ) 
oaQ 

^ ^ = -f3(nlXl + n2x2) + Px1e-^ao+a^)H1(p) 
OOL\ 

^f3x2e-^^(H2(auP) + H3(aup)) + {f3 — l ) e ^ ' ^ n ( x 2 — ̂ )¾(^, —1) 

- p T l e ^ + a ^ + x ^ l ) ] \ x 2 - Xl)(H2(auP- 1) + Hs(^,P- 1)) 

^1^^ = n i t n 2 — ao(^i + n2) - oci{n^ + n2x2) 
df3 P 

ni ri2 
+ ^logT^ + 5^1og (Tie«+m) + Tni+j:N — n) 

i=i 片 

+ e , - i ) [ ( a o + a1x1)H1(P) — H[(0)} 

+ 已 一 踟 。 + _
2 )

[ ( 0 ： 0 + a^2){H2{a^P) + 丑 3 ( 礼 历 ） 一 (H'^,P) + Hf
3(a1:P))] 

11 



where for any z 

ni 
糊 = W : N (

3
.

1
) 

j=l 

n m = d^-f:nNlogT,N (3.2) 
i=i 

n2 
H2(auz) = J2(ne^-^^-T^..N-nY (3.3) 

j'=i 
dH2(auz) 

2
(

a i
，）

=
 ~ ~ ~ d z ~ ~ 

U2 
二 £ ( n e ^ - ^ + Tni+j:N — n ) ' l o g ( T i e

a i ( m i ) + Tni+j:N — n ) 
j==i 

(3.4) 

H3{auz) = {N - m - n2) { T l e ^ - ^ + r2 - n)z (3.5) 
dH3(auz) 

丑3(昀，之）= ^ ^ 

={N - m — n2) (Tleai^-X^ + n 一 ri)^log ( T i e
a “ m ) + r2 - n) 

(3.6) 

Then the MLEs of a0 , a i , P can be found by solving the likelihood equations 

(dbgLX 
dao 

d ^ L = 0 (3.7) 
da\ 

d\ogL 
Y ^ r ) 

simultaneously. Since the solution cannot be found as analytical form, numer-

ical methods such as Newton's method and Fisher scoring method will be used 

for solving the MLEs. We discuss these numerical methods in detail in Section 3.4. 
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3.3 Fisher Information Matrix 

To assess the precision of the MLEs, we obtain the asymptotic variance-covariance 

matrix of the MLEs of a0 , a i , ^ , which is the inverse of the expected Fisher infor-

mation matrix J^(ao, o^i,P). 

As mentioned in the previous section, we can only find variance-covariance ma-

trix under constraint Ai,A2. However, since inestimable cases are rare when N 

is large enough, 

P(AUA2) 二 I - P(ni = 0) - F{m 二 ilm 二 綱％ 二 i ) 
N-l 

- J 2 P ( n 2 二 _ i = h)P(m = h) - P(ni 二 N) 
fc1=1 

一 ^ _ -(rie-"0-"l^l)^iV 

_iV(iV — 1)(1 — e - (T i e" a o _ a i I 1 )")( l — e ( n m n ) " - ^ ) e - ( - m f - c A i v - 2 ) 

_(1 — ^ ( r i e - o - ^ i f + e - u ^ N + & - ^ N (3.8) 

^ 1 as N ~> oo 

where u = T l e- a °- a i X 1 + (r2 — T l)e- a°- a i X 2 and 

ni � B i n (iV, 1 - e - — ™ r ) n2|ni � B i n � N - n1? 1 - e — ™ ) ^ ) 

(3.9) 

and the detail derivations are presented in Appendix C, the inestimable cases are 

neglected and the Fisher information matrix, can be used to obtain the asymp-

totic variance-covariance matrix. This technique is very common in analysis of 

censored data. Interested readers can refer to the case of exponential distributions 
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in Lawless (2003). 

The Fisher information matrix is defined as the negative expectation of the Hes-

sian matrix of the log-likelihood (Lawless (2003)), i.e.: 

f E ( ^ ) E ( p f ^ ) E ( ^ ) \ 
\ da^ J ydaodai J \ daodft J 

^ a ^ ) = - E { ^ ) E { ^ ) E { ^ ) (3.10) 

U ( s ) 丑 陶 ^(^r)； 

where the second derivatives of log-likelihood functions are: 

婴二 -毕-0»、 
oaQ daQ 

P ^ = - f 3 ^ ^ - P\niX! + n2^2) + f3(P - l ) e ^ ^ - ^ ) n ( ^ - x1)H2(a1, - 1 ) 
oaooai oai 

5 ^ = i ^ ^ ^ - ^e-^-)[(ao + alXl)HM ^ H[(P)] 
daQop p da0 

-Pe-^^[(ao + 0 ^ 2 ) ( 丑 2 ( 叫 灼 + Hs(a^P)) 

- m M i + m m , m i 
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^ J ^ = - ^ e - ^ + ^ f f ! ^ ) - ^2x2
2e-^ao+a^\H2(a1:p) + H ^ f 3 ) ) 

HP — l ) e ^ - ^ n ( x 2 — ^ ) 2 ¾ ( ^ , - 1 ) 

-(f3 - l)e2a^~x^T2(x2 - x1)2H2(a1, —2) 

+P[Xl + (2f3 - l)x2]e-{ao/3+ai[:El+CC2(/3-1)]}ri(x2 — xx) 

(H2(a^p-1) + Hs(at^-1)) 

-P{P 一 i)e-{^+a1[2x1+,2(^-2)]}r2(x2 — X l f ^ a i ^ _ 2) + Hs(^,f]- 2))) 

^ ¾ = i [ ^ + e - ( - ^ ( x , - ^ ( ^ , - l ) l 
oa\op p _ oa\ _ 

-pXle-^+a^[(a0 + a1x1)H1(P) — H[(P)} 

_ _ • _ , l{m + mmW2M} + M^,0)) — {H'^P) + H'^P))} 

^-{aoP^i+x,(P-l))}^ — X i ) | % + _ � _ a i J _ 1) + Hs{a^p- 1)) 
- m M - n + ^ M - m 

^ ¾ ^ = - ¾ ^ — e-如。+—) [(ao + a , x , f H , { P ) — 2 ( a � + a ^ H ' M + H ^ ) ] 
op2, pz 

_e-^(ao+aix2) [(a。+ aiX2fH2(aup) 一 2(a0 + alX2)H^^P) + H^(aup)] 

_e-0(aQ+a1X2) [(ao + a ^ 2 f H ^ P ) - 2(ao + a 1 x 1 ) H ^ P ) + ^ ( ^ 1 ^ ) ] 

where 

H ' m = d^^ = Y , n N { \ o g T , N f (3.11) 
i=l 

d � 2 M ) 
^2(^1,P) = — ^ — 

U Z z^p 
n 2 

= £ ( n e — 十 Tni+j:N — n f N (巧广 1 —十 Tni+j:N - n)] 
i=l 

(3.12) 
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炉丑3(沟，卢) 
丑 3 ( 測 ， 卢 ） = ^ ^ “ ^ —卢 

=(N — m — n2) (Tlea^X2-Xl>> + r2 — r±f [log (乃一灼—町）+ r2 — n)]2 

(3.13) 

It is noted that all second derivatives only contain random variables a i°^L ,ni , n2, 

iTs in (3.1)脚(3.6), (3.11) - (3.13). To find the expectation of the second deriva-

tives of log-likelihood, the following facts can be used: 

• The asymptotic properties about the score functions: 

K^)=K^)-m-
• By (3.9) and the law of total expectation, the expectations of n1,n2 are: 

E(n,) - N [l — e - ( n e ™ ) " ] E { n 2 )麵 N 卜 ― - ™ < — e -�— 

(3.14) 

• The formulae of expectations of F's are located in Appendix B. They all are 

multiples of N, i.e., in the form of N multiplied by a function independent 

to N. 

• Since C's are multiples of (N - n j — n2), by (3.14), their expectations: 

E(C) - Ne-�x a constant 

also are multiples of N. 
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The expected Fisher information matrix can be computed by obtaining the values 

of E(n1),E(n2), E(FYs and E(Cys and hence the asymptotic variance-covariance 

matrix. After that, the Newton's method, and the Fisher scoring method can be 

used to find MLEs accurately. Besides this, the optimal experimental schemes 

can be determined under different stresses Xî X2, different censoring times r2 and 

different values of parameters in Chapter 4. Moreover, since the expected Fisher 

information matrix is a multiple of N, the optimal experimental schemes will be 

the same for any N given other quantities are the same. 

3.4 Numerical Methods improving Newton's method 

As we cannot get the analytical form for solving the system of likelihood equations 

(3.7), some numerical techniques are needed to obtain the solution. The Newton-

Raphson method, or Newton's method, is one of the most common methods for 

solving nonlinear equations. It uses Taylor series expansion to approximate the 

equations to first order so that its updating formulae: 

/^logLV1 dlogL 
0(new) — (̂old) 一 [ ^ ^ T ) QQ ^ 

\ 7 (̂old) &(old) 

where 0 二 ( a 0 , a i , p ) T . (See, for example, Burden and Faires (1993) and Demi， 

denko (2004)) One of the advantages of Newton's method is the quadratic con-

vergence of the solution, which means the number of accurate digits of the roots 

doubles in each step. However, algorithm usually fails to obtain the solution, 

especially when datasets from step-stress model are considered. To overcome the 

problem of convergence, the following improvements are suggested. 
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3.4.1 Initial values 

The choice of initial values of the algorithm is an important issue for the algorithm 

to converge. Kateri and Balakrishnan (2008) introduces some methods for the 

step-stress model with Type-II censoring, which is also useful in our situation 

with Type-I censoring: 

• Starting from the exponential step-stress model, i.e., set the initial values 

to be (Bai, Kim and Lee (1989)): 

! /Egi(Tn,+j:iV-ri)+(r2-n)(iV-m-n2)^ , /E-ii^:iV+(iV-m)rA 

—妁
 lo§ H—1 ^ ) + _ n 叼 ) 

an u x2 — Xi 
l o g /Eg!(Tn!+j:iV-ri)+(r2-Tx)(iV-ni-n2)^ _ 細 ^ E ^ i ^ + ( ^ - m ) n ^ 

a5 = — 1^^—^- : ~^^^"^ " — 
丄 $2 — xi 

f3^ 口 1 

This initial guess is very useful for the convergence of the Newton's method 

if the true value of p is less than 2. However, if we have no idea about P 

and the dataset seems to be far away from exponential distribution, usually 

the algorithm fails to converge. Then we have the following: 

• Starting from the Simple Weibull Type-I censoring model, we treat the data 

after ri as the censored data and find the MLE of P and 6>i first (Lawless 

(2003)): 

,(0) • 二 … ^ 1 € 細 7 ^ + … - W 1 0 仍 1 ^ l Q g r ^ ^ n 
3 • S o l v e K L h 4 r ^ ^ 

,(0) 二 ^ U T ^ H N - n ^ r j 
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th 

then df 1 can be estimated by solving for the ( ^ ¾ ^ ) quantile, i.e., solving 

G(Tni+n2:N]ef\e^\p^) = ^ , and the solution is: 

"(0) — Tni+n2:N — Ti 

2
 一 [ - l 0 g ( l - ^ ) ] ^ - ^ y 

finally a ^ and c^0) can be obtained by solving 

log^ = a0 + OL\Xi 

for i = 1，2 simultaneously. 

3.4.2 Fisher-Scoring method 

If Newton's algorithm fails to converge, Demidenko (2004) recommends using 

Fisher scoring method instead of Newton's method to solve general MLE prob-

lems. The Fisher information matrix ^ shown in (3.10) is the expected negative 

Hessian, therefore it is reasonable to modify the Newton's method by replacing 

the negative Fisher information matrix 一夕(0(0昀)instead of the Hessian matrix 

in (3.15) of the solving function. Fisher scoring method is the suitable numerical 

method for solving the MLE problem based on the following three reasons: 

1. The Fisher information matrix is the inverse of the asymptotic covariance 

matrix of the MLE, which is always positive definite. Therefore, for any 

dataset, we can obtain the solution by Fisher scoring algorithm. 

2. The Fisher information matrix at the final iteration leads to a better esti-

mate of asymptotic covariance matrix of the MLE than the sample covari-

ance matrix. 
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3. Use of the Fisher information matrix simplifies the formation of different 

versions of likelihood maximization algorithm, such as EM algorithm. 

However, the number of iterations of Fisher scoring method is usually larger than 

the Newton's method since Fisher scoring method is linear convergent, which the 

convergence rate is lower (Demidenko (2004)), Thus, for the cases which estimates 

cannot be found by Newton's algorithm, Fisher-scoring algorithm is used. 
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Chapter 4 

Optimal Experimental Design 

4.1 Introduction 

The main purpose of step-stress test is to investigate the relationship between life-

times and stress levels. Therefore, we need to estimate the parameters a 0 , a i , ^ 

in the model introduced in Chapter 2. Moreover, the accuracy of estimates is 

an important issue so we must discuss how to get the best estimates we want. 

Besides the sample size, the design of experiment is one of the most important 

factors affecting the accuracy of the MLEs. Therefore, after introducing different 

optimal criteria in Section 4.2, we find the optimal experimental schemes, or the 

optimal value r/ = ^ , of the simple step-stress model under different criteria and 

different values of parameters and initial settings in Section 4.3 with aid of line 

graphs and nomographs. In Section 4.4, sensitivity analysis is provided to study 

the effect due to incorrect guesses of parameters. 
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4.2 Optimal Criteria 

To achieve different goals in estimating parameters, we need different optimality 

criteria to have the best performance of estimation. In this section, we introduce 

three different optimality criteria: (i) determinant-optimality, or D-optimality, 

(ii) minimum-variance of slope parameter a i , or V-optimality, and (iii) trace-

optimality, or A-optimality . Besides, predicting quantile of log-lifetime distribu-

tions is also important in reliability studies so the criterion of minimizing variance 

of MLE of quantile of the lifetime distribution is used in some literatures. See 

Bai and Kim (1993), Gouno and Balakrishnan (2001) and Ng, Balakrishnan and 

Chan (2007) for detail. 

Criterion 1. determinant-optimality (D-optimality) 

Under this criterion, we choose the allocation scheme which maximizes the 

determinant of expected Fisher information matrix J^(a0 , oii,P) given in 

(3.10). Note that the determinant of J is the reciprocal of the asymptotic 

variance-covariance matrix of MLEs. Maximizing it is equivalent to mini-

mizing the determinant of variance-covariance matrix of MLEs, and hence 

the volume of the Wald-type joint confidence region of (a0, Oii,P). There-

fore, D-optimality is a natural way to optimize the accuracy of estimates. 

Criterion 2. minimum-variance of MLE of slope parameter ai (V-optimality) 

Under this criterion, we choose the allocation scheme which minimizes the 

variance of MLE of slope parameter a\ . Many literatures about optimal 
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allocation such as Ng, Balakrishnan and Chan (2006) state that the vari-

ance of di is related with the determinant of variance-covariance matrix. 

Moreover, the slope parameter is especially important in regression analysis 

so concerning the estimation of a \ and minimizing its variance is one of the 

criteria considered. 

Criterion 3. trace-optimality (A-optimality) 

Under this criterion, we choose the allocation scheme which minimizes the 

trace of J^ _ 1 ( ao , a i , ^ ) , which is the sum of variances of parameter es-

timates. A-optimality uses variances, which is a kind of marginal varia-

tion measures, to conclude the overall variability of estimates. Therefore it 

can be compared with different allocation schemes without using the whole 

variance-covariance matrix. 

4.3 Optimal Stress-changing-time Proportion 

To find the optimal testing plan, the definition of “optimal，’ should be clearly 

stated. Bai, Kim and Lee (1989) and Gouno, Sen and Balakrishnan (2004) aim 

to search the optimal stress-changing-time proportion 

Tl 
V =— r2 

which is a common technique to determine optimal experimental schemes in step-

stress testing. In this section, we search the optimal rj by determining Fisher 
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information matrices and hence the asymptotic variance-covariance matrices for 

different pre-fixed values of r2, x\, X2 and the parameters o;o, ̂ i,f3. 

It is well known that the Fisher information matrix is a multiple of N so the 

results of optimal experimental scheme among different N are the same. Thus, in 

this section, we find the optimal 77 by considering: 

• different P given ao, <̂ 1,̂ "2, ^1,^2-

• different ao, OL\ given ^, r2, Xi, x2. 

• different X\ given ao, <^i,^, ^2, X2. 

• different r2 given 购，ai, f3, xi, x^-

4.3.1 Optimal rj versus the shape parameter f3 

Figure 4.1 shows the curves of optimal r) against P under different optimal crite-

ria for (a 0 ,« i ) = (-0.1123, -0.5615), (0.3306, -1.0045), (1.1436, -1.8175) , with 

fixed xi = 0’ x2 = 1, r2 = 0.7. In this figure, the following are observed: 

• Optimal rj increases with f3 when P is small but it drops down when P is 

larger than certain values. After that it decreases with increasing p. If a i 

is more negative, the drop appears at a smaller p. The drop takes place 

because the optimums of 7y-curve against f3 are swapped for different p. 

For example, we consider the curve for V-optimality in Figure 4.1c. The 

variances of a i against r| under three particular values of f5 — 2, 2.9,4, re-

spectively, representing the cases of higher optimal 77, when optimal 77 is 
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Figure 4.1: Line graph for optimal r] against P 
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jumping, and lower optimal rj, are plotted in Figure 4.2. When the distribu-

tions under two different stresses are not too far away from each other, i.e., 

_ is not too negative or 0 is small, say p = 2, according to Figure 4.2a, the 

minimum of the variance attains at r] close to 1, i.e., scheduling large propor-

tion of time under X\ is preferred. When the distributions are significantly 

different, say for example by Figure 4.2b, when P passes through a certain 

value 2.9, another minimum appears at small r) and gradually replaces the 

previous minimum. In Figure 4.2c, when the distributions differ extremely, 

optimal r] close to 0 suggests that large proportion of time should put under 

stress X2-
• Moreover, when P is small, the optimal rj under V-optimality always smaller 

than the one under A-optimality and the one under D-optimality is the 

smallest among three. However, when P is as large as beyond the jumps, 

the order of V-optimality and A-optimality is swapped and D-optimality 

remains at the smallest position. 
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4.3.2 Optimal rj versus the parameters c% ai 

To show optimal 77 versus two parameters, nomographs, which are two-dimensional 

graphical calculating devices to allow the approximate graphical computation of 

optimal rj under specific values of parameters, are suggested in many literatures 

of optimal design problems such as Bai, Kim and Lee (1989), and Bai and Kim 

(1993). 

Moreover, since the ranges of possible a。，ai are too large, Bai, Kim and Lee 

( 1 9 8 9 ) suggested showing the optimal 77 by nomographs with p“ for i = 1 , 2 , which 

are the probabilities that a test unit fails before r2 while testing only at stress X{, 

i.e.: 

Pi = 1 — exp [— ( r 2 e — o - « i ^ ^ j (4.1) 

Then, a 0 , a\ can be written in terms of pi and p2 as: 

, x1 l o g ( - l o g ( l - p 2 ) ) - ^ 2 l o g ( - l o g ( l - p 1 ) ) 
a0 = logr2 W ^ ) 

— log(— log(l - P2)) 二 log(- log(l 二 P l ) ) 
1 P(x1 — x2) 

Thus, when we know T2,Xi,x2 and parameters p1,p2,P, the optimal plan can be 

found. 

The optimal experimental schemes for the ordered pair (p1,p2) G {(0,1) x 

(0,1) : pi < p2} are considered with choices of r2 = 0.7, x\ 二 0’工2 = 1，々= 

0.5,1,1.5. The optimal r] for each (p1,p2) are calculated and presented as nomo-

graphs presented in Figure 4.3-4.5 by different optimal criteria. For example, if the 
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test-situation is given as above and the values of ao, a i , ^ are —0.1123, —0.5616,1.5 

respectively, then by (4.1)，pi ^ 0.5，p2 ^ 0.8. Hence according to Figure 4.3c, 

under D-optimality, the optimal rj is approximately 0.655 so that the optimal 

stress-changing time T\ — rjr2 = 0.7 x 0.655 = 0.4585. 

The summary of findings of these nomographs is as follows: 

• Each graph has a critical line from the left bottom corner to the ceiling. By 

the explanation of the first phenomenon stated in the previous subsection, 

left side of the line represents significant differences between pi and p2, which 

have optimal rj close to 0. On the other side, V\ differs p2 not too much, so 

we have optimal rj close to 1. Therefore in each nomograph, the critical line 

separates two different areas which have different levels of optimal r]. 

• The critical line moves left when j3 increases. Moreover, optimal r] raises 

and drops, respectively, in the right and left side with increasing p. This 

matches the second phenomenon stated in the previous subsection. 
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4.3.3 Optimal rj versus the initial stress level x\ 

Note that when x^ is set to be 1, x\ can be seen as extrapolation amount of stress 

from normal conditions. Formally, X\ is called the standardized stress. For normal 

conditions, Xi = 0. This approach is frequently used in literatures such as Bai, 

Kim and Lee (1989) and Bai and Kim (1993). Moreover, engineers usually set 

the initial stress level higher than or same as normal stress, i.e., 0 < xx < x2-

Therefore, 0 < Xi < 1 with x2 — 1 is considered in the sensitivity analysis. 

Figure 4.6 shows the curves of optimal rj versus different X\ under different opti-

mal criteria for a 0 ~ -0.1123, a t 二 —0.5615,0 = 1.5,x2 = l , r 2 = 0.7. All curves 

decrease gently for 0 < x\ < 1. When x\ approaches 1, optimal r| under different 

criteria converges to the same value. 
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4.3.4 Optimal rj versus the censoring t ime r2 

Figure 4.7 shows the curves of optimal rj against different r2 under different opti-

mal criteria for a 0 = -0.1123,c^ = ^0.5615,^ = 1.5,a;i 口 0,x2 = 1. When r2 is 

large, the optimal rj under D-optimality is as same as the one under V-optimality. 

In general the result of D-optimality is different from V-optimality under Type-I 

censoring (see, for example, see Gunno, Sen and Balakrishnan (2004)). However, 

when the censoring time continues to increase, the optimal scheme becomes the 

case of complete data and the results. 

It is interesting to note that the decreasing trend of optimal r] . That means 

if we have extra time to conduct experiment, we are willing to put more time to 

observe failures in higher stress. 
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4.4 Sensitivity Analysis 

Since incorrect guesses of parameters may give a non-optimal experimental plan 

which can worsen the precision of parameter estimations. Therefore it is important 

in validating the optimal experimental schemes. Sensitivity analysis is a useful 

technique for systematically changing parameters in a model to determine the 

effects of such changes. In this section we investigate the effects by determining 

the ratios of the quantities under different criteria such as determinant, variance 

and trace of the optimal model, or the optimal 77, due to incorrect guesses of the 

parameters. 

4.4.1 Effects of the shape parameter p 

The determinant ratios under D-optimality, the variance ratios under V-optimality 

and the trace ratios under A-optimality due to the incorrect guess of P are, re-

spectively, computed and tabulated in Table 4.1, 4.2 and 4.3, where the true 

values of f3 = 0.5，1,1.5, and the given values xx = 0, x2 二 1, r2 = 0.7, parameters 

a 0 二 -0.1123,cei 二 -0.5615. 

From these tables, the errors due to incorrect guesses are small if the guesses 

are not too far away from the true P. For example, if true P = 1,5 but it is 

wrongly set as 1, by Table 4,1, the model determinant is 96.83% of the optimal 

determinant. Moreover, by Table 4.2 and 4.3, the variance of MLE of c^ and the 

model trace only inflate 4.88% and 4.74% respectively. 

However, the optimal experimental scheme is sensitive when f3 is severely 

under-guessed. To make clear how the ratios change with respect to 卢，the line 
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Table 4.1: Determinant Ratios due to incorrect guess of P 

Guess of True Tme True Guess of True TVue True 
f3 P = O.h f3 = l 0^1.b P 0二0.5 fi=l ^=1.5 

^ 0 l 0 ^ 3 6 8 ~ ~ 0 W I ~ ~ 0 ^ 8 7 8 H 0.9368~~0.9985~~0.9812 
0.2 0.9339 0.7343 0.6045 1.2 0.9222 0.9946 0.9900 
0.3 0.9771 0.8223 0.6830 1.3 0.9079 0.9889 0.9959 
0.4 0.9954 0.8858 0.7510 1.4 0.8935 0.9818 0.9991 
0.5 1.0000 0.9297 0.8087 1.5 0.8796 0.9739 1.0000 
0.6 0.9968 0.9600 0.8571 1.6 0.8659 0.9652 0.9992 
0.7 0.9887 0.9800 0.8959 1.7 0.8526 0.9559 0.9970 
0.8 0.9777 0.9920 0.9266 1.8 0.8388 0.9457 0.9937 

0.9 0.9651 0.9982 0.9504 1.9 0.8255 0.9354 0.9892 

1 0.9511. 1.0000 0.9683 2 0.8144 0.9264 0.9841 

Table 4.2: Variance Ratios due to incorrect guess of P 

Guess of True True True Guess of True True True 
f3 P = 0.h f3 = l 卢二1 . 5 P 3 二 0 . 5 f3 = l ^ = 1.5 

^ “ 0 l L 2 5 2 5 “ “ 2 ^ 3 2 7 ^ 3 J ^ 0 9 O 1.0924 1.0021~~1.0281 
0.2 1.0914 1.5490 2.2676 1.2 1.1161 1.0075 1.0148 
0.3 1.0304 1.3146 1.8295 1.3 1.1410 1.0156 1.0060 
0.4 1.0061 1.1833 1.5552 1.4 1.1683 1.0264 1.0014 
0.5 1.0000 1.1047 1.3788 1.5 1.1945 1.0383 1.0000 
0.6 1.0043 1.0571 1.2594 1.6 1.2219 1.0517 1.0013 
0.7 1.0152 1.0279 1.1769 1.7 1.2493 1.0661 1.0046 
0.8 1.0306 1.0110 1.1188 1.8 1.2806 1.0834 1.0095 

0.9 1.0489 1.0025 1.0778 1.9 1.3090 1.0998 1.0167 

1 1.Q697 1.0000 1.0488 2 1.3405 1.1184 1.0238 

Table 4.3: Trace Ratios due to incorrect guess of 0 

Guess of ~~True True True~~ Guess of ~~True True T rue~ 
p p = 0.5 —1 �=1.5 P �=0.5 j3 = l �=1.5 

~ ~ 0 l L0756~~L4043~~L9m O 1.0600~~1.0019~~1.0295 
0.2 1.0333 1.2519 1.6377 1.2 1.0784 1.0070 1.0161 
0.3 1.0124 1.1618 L4625 1.3 1.1011 1.0160 1.0068 
0.4 1.0027 1.1037 1.3427 1.4 1.1257 1.0278 1.0017 
0.5 1.0000 1.0646 1.2554 1.5 1.1533 1.0429 1.0000 
0.6 1.0022 1.0379 1.1904 1.6 1.1844 1.0615 1.0016 
0.7 1.0080 1.0198 1.1401 1.7 1.2191 1.0837 1.0065 
0.8 1.0170 1.0082 1.1021 1.8 1.2549 1.1076 1.0154 

0.9 1.0285 1.0020 1.0713 1.9 1.2931 1.1341 1.0259 

1 1,0431 1.0000 1.0474 2 1.3343 1.1635 1.0367 
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graphs of ratios against 0 < f3 < 2 are plotted in Figure 4.8. We can easily observe 

that the error of under-guessed P is much larger than the one of over-guessed 0. 

Therefore, when we have several possible choices of f3, choose the highest one to 

prevent high estimation variance. 

4.4.2 Effects of the parameters ao,c^i 

We consider the parameterization in terms of pi and p2 instead of a0 and o^. The 

determinant ratios under D-optimality, the variance ratios under V-optimality 

and the trace ratios under A-optimality due to the incorrect guesses of p u p 2 are 

computed and tabulated in Table 4.4, 4.5，4.6 respectively, where the true values 

of p1 = 0.5,½ 二 0.8, and the given values xx = 0, x2 = 1’乃 二 0.7，and parameter 

— 1 . 5 . 

The effect of incorrect guesses is small if the guesses are not too far away from 

the true parameters. For example, if parameters pi ,p2 are wrongly estimated as 

0.35 and 0.75 respectively, the model determinant is 99.9484% of the optimal de-

terminant, and the variance of a^ and the model trace only inflate 2.1855% and 

2.0865% from the optimum, respectively. 

In conclusion of the tables, the result of sensitivity analysis for o;0,«i is different 

from the one for p. Under D-optimality, if the error of guess of pi is within 0.2, 

1.e.，0.3 < guess of pi < 0.7，its model determinant is at least 68% of the optimal 

one. On the other hand, under V-optimality and A-optimality, the variance of di 

and the model trace inflates not more than 17% and 12%，respectively. 
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Table 4.4: Determinant ratios due to incorrect guesses of p1,p2 (True pi = 
0.5,½ = 0.8) 

~~ guess of pi 一 
p 2 0 . 3 0 .35 0 .4 0 .45 0 .5 0 .55 0 .6 0 .65 0.7 

0 .35 0 . 9 8 9 9 8 7 - - - - - _ " -
0 .4 0 . 9 9 1 8 9 9 0 . 9 9 2 6 9 3 - - - - - " ” 

0 .45 0 . 9 9 4 4 6 5 0 . 9 9 3 7 7 3 0 . 9 9 4 3 8 2 - - - - - " 
0.5 0 . 9 9 6 5 7 5 0 . 9 9 5 5 9 6 0 . 9 9 6 1 9 9 0 . 9 9 6 9 6 6 - - - - 一 

0.55 0 . 9 9 8 3 0 4 0 . 9 9 6 5 2 2 0 . 9 9 7 0 5 1 0 .997926 0 . 9 9 8 8 9 9 - - - " 
0 .6 0 . 9 9 9 2 2 9 0 . 9 9 8 4 9 2 0 . 9 9 7 6 8 2 0 .998178 0 .999268 0 .999871 - - -

0 .65 0 . 9 9 9 9 9 8 0 . 9 9 9 3 8 6 0 .998846 0 . 9 9 9 0 9 4 0 . 9 9 9 5 1 0 0 .999945 0 . 9 9 9 7 4 7 ” -
0 .7 0 . 9 9 8 2 0 7 0 . 9 9 9 9 9 6 0 . 9 9 9 5 4 4 0 . 9 9 9 4 6 4 0 . 9 9 9 6 7 8 0 .999993 0 .999636 0 .997870 -

0 .75 0 . 9 8 9 9 2 0 0 . 9 9 9 4 8 4 0 .999995 0 . 9 9 9 8 2 2 0 .999936 0 .999982 0 .999509 0 .997718 0 . 9 9 3 7 5 7 
0 .8 0 . 7 5 5 3 7 9 0 .996356 0 . 9 9 9 7 2 8 0 . 9 9 9 9 9 7 1 . 0 0 0 0 0 0 0 .999920 0 . 9 9 9 3 9 4 0 . 9 9 7 6 6 7 0 .993881 

0 .85 0 . 6 8 8 9 5 5 0 .981958 0 .998029 0 . 9 9 9 6 7 7 0 .999894 0 .999830 0 .999316 0 .997619 0 .993900 
0 .9 0 . 6 8 5 7 2 3 0 . 7 9 0 7 4 6 0 . 9 9 0 2 1 6 0 .998150 0 . 9 9 9 5 5 3 0 .999584 0 .999178 0 .997935 0 .994328 

0 .95 0 . 7 0 0 7 2 6 0 .739515 0 . 9 4 6 4 2 6 0.992789 0 .998215 0 .999298 0 -999102 0 .998225 0 .995652 

Table 4.5: Variance ratios due to incorrect guesses of pi,p2 (True pi = 0.5,p2 = 
0.8) 

guess of pi 
p2 0 .3 0 .35 0 .4 0 .45 0.5 0 .55 0 .6 0 .65 0.7 

0.35 1 .004494 - - - - ” " " — 
0.4 1 . 0 0 0 8 6 5 1 . 0 0 7 9 2 8 - - - - 一 " ~ 

0.45 1 .000123 1 .003245 1 .013544 - - - - ~ " 
0.5 1 . 0 0 1 9 7 6 1 . 0 0 0 4 8 0 1 . 0 0 5 9 2 2 1 . 0 1 8 7 9 4 - ， - " 一 

0.55 1 . 0 0 5 4 6 2 1 . 0 0 0 1 8 4 1 . 0 0 1 9 2 2 1 . 0 1 0 6 4 9 1 . 0 2 5 8 9 2 - - " 一 

0.6 1 .011326 1 .002346 1 .000160 1 .005843 1 .018272 1 .035995 - - -
0 65 1 .020520 1 .006686 1 .000387 1 .001694 1 .009859 1 .024925 1 .048095 - -
0 7 1 031575 1 .013165 1 .002636 1 .000107 1 .004722 1 .016210 1 .035456 1 .064181 -

0 75 1 0 4 4 7 6 6 1 .021855 1.00670T 1 .000564 1 .001134 1 .009130 1 .024736 1 .049661 1 .083700 
0 8 1 062687 1 .036001 1 .014795 1 .003662 1 . 0 0 0 0 0 0 1 .003713 1 .015364 1 .034902 1 .067240 

0 85 1 0 8 5 3 4 0 1 .050395 1 .026071 1 .009602 1 .001510 1 .000474 1 .007669 1 .022775 1 .049661 
0 9 1 118250 1 .075762 1 ,043725 1 .021726 1 .007230 1 .000475 1 .001638 1 .011677 1 .032465 

0 .95 1 .179258 1 .117535 1 .075659 1 .044608 1 .022685 1 .007287 1-000394 1 .002566 1 .015639 

Table 4.6: Trace ratios due to incorrect guesses of jh,p2 (True pi 口 0.5,p2 ^ 0.8) 

guess of pi 
P 2 o .3 0 .35 0 .4 0.45 0.5 0 .55 0 .6 0.65 0-7 

0.35 1 .000027 - - - - - ‘ “ " 
0 .4 1 .000778 1 .001075 - - " " — " ' 

0 .45 1 .003075 1 .000016 1 .004172 - - - - - " 
0 .5 1 .006730 1 .000539 1 .001127 1 .008843 - - " " " 

0 .55 1 .010160 1 .001548 1 .000100 1 .004445 1 .015876 - " " " 
0.6 1 .015462 1 .004503 1 .000194 1 .001894 1 .010073 1 .024479 _ - -

0 .65 1 .025301 1 .008833 1 .001553 1 .000429 1 .006002 1 .018381 1 .037171 - -
0 7 1 031720 1 .015279 1 .003981 1 .000029 1 .002776 1 .011832 1 .028206 1 .052668 -

0 75 1 .041965 1 .020865 1 .008145 1 .000710 1 .000753 1 .007229 1 .020392 1 .042412 1 .073359 
0 8 1 057203 1 .030595 1 .013227 1 .003617 1 . 0 0 0 0 0 0 1 .003300 1 .013608 1 .031738 1 .058782 

0 85 1 070903 1 .044403 1 .021436 1 .007508 1 .000877 1 .000771 1 .007430 1 .022186 1 .046642 
0 9 1 092645 1 .058055 1 .033338 1 .015667 1 .004503 1 .000068 1 .002757 1 .013687 1.032638 

0 .95 i . i 2 8 7 9 6 1 .085417 1 .052580 1 .030623 1 .013258 1 .003211 1 .000008 1 .004353 1 .018252 
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Chapter 5 

Conclusion Remarks and Further 

Research 

In recent years, many literatures, not only about step-stress test but also the other 

fields in reliability, usually ignore inestimable cases and large sample assumptions 

on MLE to build theories of reliability models. Ignorance of these cases may incur 

serious problems. This thesis acts as a remainder. 

After that, the accuracy of MLEs, asymptotic variance-covariance matrix can 

be obtained by inverting their Fisher information matrix, which is derived in Sec-

tion 3.3 and Appendix B. Finally, numerical techniques for step-stress models by 

previous literatures are presented in Section 3.4. 

Optimal experimental schemes under different optimal criteria, parameters and 

settings of models are found in Section 4.3 by searching the optimal stress-

changing-time proportion r]. The results are presented in line graphs and nomo-

graphs which are very useful for determining optimal rj. Finally, by observing the 
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ratios of determinants, variances, or traces, the sensitivity analysis tells the effect 

due to incorrect guesses of a 0 , OLi is small but the large error occurs when 0 is 

under-guessed. 

For further research, other lifetime distributions such as Pareto distributions and 

Birnbaum-Saunders distributions, and censoring schemes such as progressive and 

hybrid censoring can be considered and compared. 

However, occurrence of inestimable dataset is possible while time-step-stress test-

ing plan is used. To avoid the appearance of inestimable dataset, a change of 

testing plan is necessary. A good suggestion is the failure-step-stress testing plan, 

which changes testing stresses according to the number of failure happened. This 

can force the minimum number of failures happened under each stress to make 

sure that every datasets are estimable. 
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Appendix A 

Simulation Algorithm for a 

Weibull Type-I Censored Simple 

Step-Stress Model 

1. Simulate and sort by ascending order for a sample size N from the uniform 

distribution ^7(0,1)，labelled as U1:N, U2:N,..., UN:N 

2. For j = 1，. •.，N, set Tj:N = §_他歡[—log(l — Uj:N)]K 

3. I fT j : N > n , set Tj:N 二 …+華 2 h log(l 一 % # - 零 - 一 — 怖 ^ ^ 胸 � . 

4. If Tj:N > r2, set Tj:N = r2 

Finally, Tj:N is the j t h ordered lifetime experiencing in the experiment. 
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Appendix B 

Expected values of Fisher 

Information Matrix 

In this section, E(Hx(P)Ys and E ( H 2 { a u z ) y s are derived for determining Fisher 

information matrix in (3.10), where i7i(^)'s and iJ2(a1,2;)'s are located at (3.1) 

-（3.4)，（3.11)，(3.12). Firstly, E(iJi(^)) 's, which involving the failure failed un-

der the first stress, are considered. Since F i (^ ) ' s only depends on ni only, the 

expected i7i(^)'s can be obtained by the law of total expectation: 

E ( H M ) = E n , ( E r ( ^ m m ) ) (B.1) 

By Balakrishnan, Kundu, Ng, Kannan (2007), considering the order statistics 

Ti:Ar, • •. ’ TN:N of any random sample with p.d.f. G(t), the conditional joint p.d.f. 

of 7Viv,... , Tkl-.N given ri\ 二 h is identical to the joint p.d.f. of all order statistics 

from the random sample of size h from the right-truncated density function: 

" � for 0 < t < T! (B.2) 
G(n) 
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A proof of this result may refer to Arnold, Balakrishnan and Nagaraja (1992, 

P.23-24). Therefore, 

E(H,mni) = E ^ T ^ j 

711 fTl pe-^o+oc^)^-l^{te-^^y 
= ^ ^ I t^ 0 dt 

p , h 1 _ ^ ( n e - o ^ y 

( /^g-ao-aiXi^ - (ne-0- ix i )^X 
= - ^ K + d , i ) ！ — iZ^ L£ 

乂 ！ _ 6 - { ^ 0 - ^ )
0 ) 

Similarly E{H[(P)) and E{H'{{P)) can be evaluated by (B.1) and their conditional 

expectations given n\ shown below: 

_ ( { -aQ-alXlf g - (ne -o - i ^ )^X 
E(H[mni) = nie—々—）K + ^ ) | l - ^ ~ ~ “ _ “ — „ < ^ I 

1 / l Ane-o-^Y _ y 
^ — / w log we dw 

1 _ e-(^e~ao_aia:i) \P Jo J 
� ( ( ^ao-mx! f g-(rxe-o-i-i f \ 

E ( H ' ; m n i ) 二 ¥一彻。+购）(ao + ^ o ; 0 2 | l - - ~ n — “ — 一 , ~ ~ j 

1
 ^ ( 一 + — 严 ™ , — ^ -

l_e-(rie_ao~a:LX1) V P Jo 
工 JTle-ao-^if _ y 

+^ J w(\ogw)2e-wdwj 
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where the above improper integrals can be simplified by integration by parts and 

taking limits: 

JTle-ao~aixiY f ( n e n ® i ) � 
/ w(\ogw)e~wdw = \im / w(logw)e~wdw 

Jo x^° Jx 
=—e—(neny h + ^ e - ^ i x ^ P l Q g ( n e n n , 

, ( n e H M ) " 
+ lim e"® (1 + x log x) + lim / e~w (log w) dw x^0 cc—0 Jx 

=1 — e—(ne„W 卜 + [Tle-^-a^f\og (ne-^-^Y] + M1 ((rie-o-i-i)^ 

f(Tle-aO-^i)P Jrie-^o-^iY 
/ w;(log^)2e~^-lim / w(\ogw)2e~wdw 

Jo x—0 Jx 
te _g-(r ie-0-l^i)^ L + ^ie-ao-aiXiy [細(乃厂吻—对对,]

2
} 

^(ne-"o-"i^i)^ 
+ lime"^(l + cc(logx)2) + lim / eTw ((log—2 + 21og— dw 

®^o ”o Jx 

=1 — e-(Tie_ao_aia:i)/3 [1 + (ne-^-^flog (ne-^-^Y 

+M2 ( ( n e ^ - ^ ) ^ ) + 2 M ! ( ( n e , m f ) 

where the M's can be determined by formulae in the handbooks by Abromowitz 

and Stegun (1965) and Mathai (1993): 

rx 
Mi(x) = / e~w log wdw 

Jo 
= ^ 7 一 e~x log x - Ei (x) 

n<J^ 
M2(x) = / e"^(log^)2^ 

Jo 
=logx{-2Et(x) 一 loga; — e^x\ogx — 27) + 2cc .3 F3(1,1,1;2,2,2; -x) 
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where 7 二 0.577215665... is the Euler constant, Ex(x) is the exponential integral, 

i.e.: 

roo g—ty 

Ei(x) = / dw 
Jx ^ 

and 3F3 ( l , 1,1; 2 ， 2 , 2 ; -x) is a generalized hypergeometric function, which can be 

expanded as the following series: 

_ f (1. 2 . ... • rf {-x)r 

3 F 3 ( l , l , l ; 2 , 2 , 2 ; - x ) - Z ^ ( 2 . 3 - . . . - ( r + l ) ) 3 r! 

= - ( ― 坏 
一乙（ r + 1) 3 . r\ 

r~0 V ' 

It is noted that although double precision is used in computer programs, calcu-

lating M2{x) for large x is inaccurate . Instead, M2(x) = 1.978111991 for x > 25 

is suggested since it converges to 1.978111991 when x is large. 

Therefore, E(i7i(^))'s can be obtained by expecting ni with formulae (3.14): 

E(^(p)) 二 i Y e ^ — + _ 0 [1 - e-(rie-o-^f — ^e-aQ-axXiye-{rxe-^^Y-

E{H[{p)) = A^e-^+^{(^o + ^ i ) 

x h _ e - ( n e - " 0 - i - i ) ^ _ (T i e-«o-aiXi^ g-(rie-"0-"i-i)^" 

1 Ane-^-^iY 一 1 
^~— / wlogwe~wdw > 

PJo j 
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E{H';{f3)) = Ne-^+^{(ao^a^)2 

！ _ , 如 „ 嗜 _ ^ r i e - « o - a 1 x 1 ^ e - ( r i e - o - i - i ) / 3 " 

2(a0 + a^x) f (ne-o-^Y 
_)__^ ^J± / w log we aw 

P Jo 
1 r(ne-^o-^iY _ 飞 

+示 J w{\ogw)2e~wdw I 

Now the conditional expectation of iJ2(^i, ^)'s, which involving failures under the 

stress X2, are considered. Using the law of total expectation again, the conditional 

expectations of i ^ ( o ^ 2 ^ s can be found with the following formulae: 

E{H2(auz)) 二 E^(En,{ET(Fn^ri2)lrn)) (B.3) 

Due to (B.2), it is clear that the conditional joint p.d.f. of T^+v.N, • •., Tkl+k2:N 

given ni 二 h,n2 = k2 is identical to the joint p.d.f. of all order statistics from 

the random sample of size k2 from the truncated density function: 

g(t) £ I 
"v ' , � for Ti < t < r2 

G(r2) - G(n) 
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Therefore for any z, 

E(H2(au z)|n2) = E ^¾ ( T l ^ ( m ) + Tni+j:N — rx)Z n2j 

n2 � 2 0Q-p(ao+a!X2) (^x{x2-xi)^ + f — n ) ^ ' 1 

= y / ( e ^ ^ - ^ n + t - T i ) - — ^ 
t i J n V ) e - ( n e m ) ^ e ^ 

x e-(rie-«0-«i-i+(t-ri)e-«0-«i-2)^^ 

^^P-Z{OLO+OL!X2) C^ z 
= ^ / w^e~wdw 

g-(ne-"0-"i^i) _ e^P 7(rie-"0-"i^i)^ 

= ( _ T ) [ r ( i + 1 ’ ( n e - ^ r ) — r ( i + 1 ^ ) 1 ^(rie-"0-i^i)^ _ e _ ^ L V P J \ “ / J 

where uj = 巧 厂 帥 - 街 町 + (T2 _ Tiy-aQ-aiX2 a n d T(s,x) is the incomplete gamma 

function, i.e.: 

roo 
T(s,x) 二 / t^e^dt 

J X 

Similarly E { H ^ f 3 - 1))，E(H^{aup)) and E{H^(a^fi)) can be evaluated by 

(B.3) and their conditional expectations given n2 are the following: 

ne-z(ao+aix2) 

E(H'2(auP-l)\n2) = _ { ^ _ „ ^ _ ^_^ {(^o + ^i^) 

x r ( 2 一 i « 。 — _ ) 々 ) 一 r ( 2 — 參 , ^ ) 

+ i [ U w ^ h o g w e ^ d w l (B.4) 
P 7(Tie^"0^"i^i)^ J 

糊,一2(«0+«13?2) 
E ( K ( a i , ^ ) | n 2 ) = — ^ {(o;o + a - 2 ) 

、八 i,"/i ) e-(rie-«o-«i^i)P _ ^u0 

X [r (2, ( ne - Q O - a i X 1 ) ^ — r ( 2 , ^ ) 

1 r p _ 1 
H•— / w log we~wdw > (B.5) 

P 7(ne-^o-i-i)^ J 
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g-2(ao+ai^2) 
E{H'^aup)\n2) = 一 ^ ^ {(⑷ + 斯狗)

2 

e-(rie-«o-«i^i)P _ e _ ^ 

r (2, (ne-^-^1)0^ — r (2,J) 

+
 2 ( � 0 + 邮 2 ) 广 w\ogwe-wdw 

P J(T1e-ao-aixiY 

+ 4 r ^ ( l o g ^ ) V ^ l (B.6) 
p2 J{ne-o-^if J 

where the proper integrals (B.5) and (B.6) can be simplified by integration by 

parts and taking limits: 
^ 

/ wlogwe—wdw = -e'^ (l + Jlogc^) 
J^Tie-ao~aixiy 

+e-(rie-o-^if ^ + (Tle-ao-aiXlY\og (ne-^-^Y 

+M!(^)-Mi ( ( n e - — 1 3 ^ ) 
fU}0 
/ w(\ogw)2e~wdw = -e-^o;^(log^)2 

J(Tie-ao-aixiY 
\ \ 2 

^-{ne-o-^if^-ao-a^Y ( l o g (乃^。-…”々) 

+ M 2 ( ^ ) - M 2 ( ( n e - ^ - ^ ) 0 

+2Mi(o/3) — 2Mi ((ne^0-011^)^ 

However, the remaining integral (B.4) cannot be solved in analytical form so we 

should use numerical integration to approximate them by computers. The most 

frequently used called Simpson's composite rule is suggested (see Burden and 

Faires (1993)). 
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Therefore, E { H 2 ( ^ , z ) y s can be obtained by expecting n2 with formulae (3.14): 

E{H2{auz)) = iVe-咖+一）r ^1 + | , {ne-^-^)^j - F ^1 + ^ u ^ j 

E{H'2{au f3 — 1)) = Ne<P-^o+a1X2)[(御 + aiX2) 

x ( r ( 2 — * ， ( n e - — f ) — r ( 2 — | j ) ) 

1 fu^ 1 
+— j w ~^ \ogwe~wdw 

P J(rie^^O-^iY 
E { H ' ^ P ) ) = iYe-一+对对）[(ao + a ^ 2 ) ( r ( 2 ， ( n e - ^ ) ^ r ( 2 , ^ ) ) 

1 r 0 —,,, 
H"— / w log we dw 

P J ( n e n m ) " 
E(H'^au P)) = N e - ^ a ^ [(a0 + alX2f ( r (2,(如—帅—邮

1
,) - r (2，^)) 

+ 2(a0 + ^ 2 ) 广 w\ogwe-dw 
P J(Tie~ao-aixiy 

1 f ^ 0 
H~~- I w(\ogw)2e~wdw 

P 7(rie-°:o-aia:i)/3 
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Appendix C 

Derivation of P(A\^ A2) 

Since m � B i n (iV, 1 — 6-—_—”) and n2 |n2 � B i n (iV — m, 1 一
 6

— _ ™ , - , ) ， 

P { n i = 0) 二 e - ( - ™ ) � (C.1) 
「 / ^ \PiN 

P(ni - N) 二 [l — e + - — 1 ) ] (C.2) 

F(^=:l|r,^l)F(n^l) 二 N(N^1) [l^e"(--™)^ 卜 如 - ™ ) 〜 : 

xe-(ne-o-i-i)^-^(iV-2) (C.3) 

and 

J2P(n, = 0]n, = h)P^ = h) = ^ > ( ( - — ™ ) ^ , - ’ ( … ^ ) 
fci=l fci=0 

- e i ^ - " ' y ^ P ( n , 二 0) — P(n, • N) 

_ J (ne-"om)"-o^] iV^ (e[(Tle—ao-�i)�-t^](—ni)) 

g[(ne""0-"i^i Y-uj^ Ne-^Tie-ao-aixi )PN 
「 { ^0iN 

— 1 _e-(rie-«o-«i-i)p 
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By the moment generating function of n\, 

E ( e [ ( n e n q , - ^ ] ( - m ) ) 二 { e - ( n n - i ) " + ^ — g - ( n e - o - i ^ i ) ^ ^ ^ e - o - i - i ) ^ + ^ | ^ 

Therefore, 

iV—l g 1 N 

乙 八 叱 ^ ^ 广 ⑷ 巧 附 二 ⑷ - [ l - e - ( — - ^ 1 ) + e - ^ ] - 一 
fci=i 

r , �0]N 
— ! _ e - ( ^ - " 0 " ^ 1 ) (C.4) 

Finally by subtracting (C.1) - (C.4) from 1, P(AUA2) can be obtained and the 

result follows. 
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