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Abstract 

In this thesis, we intend to give a survey on some recent results on the use of sum 

of epigraphs of conjugate functions in the duality theory of semi-infinite convex 

optimization. The thesis is divided into two parts. In the first part, we study the 

sum of epigraphs constraint qualification (the SECQ). We explain its relationship 

with other known constraint qualifications in convex optimization theory, for 

example, the strong conical hull intersection property (the strong CHIP) and 

the linear regularity. We give an overview of some sufficient conditions for the 

SECQ. In the second part, we establish the connection between the weakly* 

sum of epigraphs of conjugate functions and the Fenchel duality in the setting of 

semi-infinite optimization theory. We explain an extension of the Fenchel Duality 

Theorem which is applicable in this setting. 
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摘 要 

本文介紹一些涉及共軛函數的上圖和（sum of epigraphs)於半無窮凸優化對 

偶理論之結果。我們的討論分為兩部分。第一部分是關於上圖和約束規範（the 

sum of epigraphs constraint qualification, abbrev. the SECQ) ° 我們將解釋它與 

凸優化理論中一些已知約束規範之間的關係，例如强CHIP (the Strong CHIP) 

和線性正則性（the linear regularity)�我們也介紹一些SE.CQ的充分條件。第 

二部分是討論共軛函數的上圖弱星和（weakly* sum of epigraphs)與Fendiel對 

偶在半無窮優化理論中的聯繁。其中，我們解釋F e n c h e l對偶定理的一個推 

廣。 
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Chapter 

Introduction 

In [9], under the setting of Banach space, Burachik and Jeyakumar utilized the 

epigraphs to give a sufficient condition for the strong conical hull intersection 

property (the strong CHIP) of two closed convex sets. They also gave some 

examples to show that this sufficient condition is weaker than some classical 

interior-point type conditions which are essential for the validity of the strong 

CHIP. Since the strong CHIP is crucial for some duality results (such as the 

dual formulation of best approximation problems, see [12，13，14])，the result of 

Jeyakumar et. al. established its own importance in the duality theory of convex 

optimization. In [17, 18], Li and Ng defined the notion of strong CHIP for an 

infinite system of closed convex sets in the setting of general normed linear space, 

and made extensive investigation on this property. In particular, they utilized 

this property in the study of general systems of infinite convex inequalities. This 

gave an application of the strong CHIP in the semi-infinite optimization theory. 

In view of the result of Jeyakumar et. al. in [9] that we have mentioned, it is 

both useful and interesting to see whether their work can be extended to cover 

the case when an infinite system of closed convex sets is considered, under some 

more general spaces. In [19], Li, Ng and Pong defined a new type of constraint 

qualification, known as the sum of epigraphs constraint qualification (the SECQ), 
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for an arbitrary system of closed convex sets under the setting of normed lin-

ear space. It turns out that the SECQ is a generalization of the property that 

Jeyakumar et. al. considered, while it allows the discussion for an infinite system 

of closed convex sets. Moreover, they proved that this property still serve as a 

sufficient condition for the strong CHIP (for arbitrary system of closed convex 

sets). As a result, this links up the SECQ and semi-infinite optimization theory. 

On the other hand, in [10], Jeyakumar et. al. utilized a more general version 

of the property of epigraphs than they studied in [9]，to give a sufficient condition 

for the "Fenchel duality" for two functions on a Banach space. Recall that, 

the celebrated Fenchel Duality Theorem, states that, under some interior-point 

type conditions, one can transform a primal minimization problem into its dual 

maximization problem, and an optimal solution can be obtained in the dual 

problem. This special type of transformation between two optimization problems 

is called the Fenchel duality. Due to the fact that there are minimization problems 

in which its dual problem is easier to be handled (see [11, Example 25.2] for 

example), the Fenchel Duality Theorem is an important and useful result in the 

duality theory. Jeyakumar et. al. showed that the property of epigraphs that 

they considered in [10] is weaker than some classical interior-point type conditions 

for Fenchel duality. Since the property that they studied is not of interior-point 

type, their result gives further insight into the Fenchel duality. Using similar 

techniques that were used in [10], their result can be generalized to cover the 

case when finitely many functions are considered. From both theoretical and 

application points of view, it is meaningful to extend the above mentioned results 

to cover the case when infinitely many functions are in consideration. However, 

it turns out that such extension is non-trivial. Indeed, in [20], Li and Ng used 

the notion of weakly* sum of epigraphs to give a generalization for the mentioned 

result of Jeyakumar et. al. Their result showed that it is still possible to talk 

about Fenchel duality under the setting of semi-infinite optimization problems. 
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In this thesis, we intend to give a survey on the development of the uses of 

sum of epigraphs in the semi-infinite optimization theory, which are mainly from 

19] and [20]. The outline of this thesis is shown as follows: 

In Chapter 2，necessary notations and tools which are needed in our analysis 

will be given. Most of them are mainly concerned with convex analysis and set-

valued analysis. Especially in the last section, the weakly* sum of sets in dual 

space will be discussed. In particular, a version of subdifferential sum rule of 

infinitely many proper convex continuous functions will be shown, which serves 

as a generalization of the well-known subdifferential sum rule of finitely many 

continuous functions. This is the result by Ng and Zheng in [32]. 

In Chapter 3，we will collect the work of Li, Ng and Pong in [19]. First, we give 

the definition of the SECQ and show some of its basic but useful properties. After 

that, as an extension of the result by Jeyakumar et. al. in [9], we will show that 

the SECQ is a sufficient condition for the strong CHIP. Also, since the converse 

implication holds under certain assumptions, some sufficient conditions for these 

assumptions will be given. Other than the strong CHIP, the relationship between 

the SECQ and the linear regularity will be studied. A new characterization of the 

linear regularity will be proved. In the last section, we discuss some interior-point 

type conditions for the SECQ. 

The extension of the Fenchel Duality Theorem to the case for infinitely many 

proper convex lower-semicontinuous functions will be the main subject of Chapter 

4，in which we show the results by Li and Ng in [20]. Using the weakly* sum of 

epigraphs of conjugate functions, we first prove a characterization of a property 

that is stronger than the Fenchel duality. This in turn gives a condition to 

ensure the Fenchel duality for an infinite system of functions. Next, we restrict 

our attention to two special classes of functions: continuous functions and non-

negative functions. Sufficient conditions for the extended Fenchel duality of these 

two classes of functions will be provided. 



Chapter 2 

Notations and Preliminaries 

2.1 Introduction 

In this chapter, we introduce some notations and tools that will be used in this 

thesis. Most of them come from convex analysis and set-valued analysis. 

2.2 Basic notations 

Throughout this chapter, let X be a real normed linear space, unless otherwise 

stated. Let X* denote the continuous dual of X, that is, the set of all continuous 

linear functional on X, equipped with the sup-norm. For any x* € X*, we will 

use the notation {x*,x) to denote the value 

Let R be the set of all real numbers and E+ be the set of all non-negative real 

numbers. The extended real line will be denoted by R u {±00} . Let B{x,r) and 

Bx denote the closed ball with center x and radius r and the closed unit ball, 

respectively. Recall that the weakly* topology (T{X*,X) on X* is the weakest 

topology on X* such that for any x e X, the linear functional x* {X*,X) is 

continuous. Given a set A in X, the interior (resp. closure) of A, under the norm 

topology, is denoted by int^ (resp. ^4). In the case when A is a subset of X*, let 
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stand for the closure of A under the weakly* topology on X*. 

The following definitions are important. 

Definition 2.2.1. Let A be a subset of X. Then, 

(i) we say that A is convex if 

Aa: + (1 — X)y G A for any x,y £ A and A G [0,1]. 

(ii) we say that A is a cone if 

aA = A for any a G M+. 

Remark 2.2.1. In the literature, there are some authors who defined the term 

"cone" as the convex cone in our sense. We remark that the convexity is not 

included in our definition of cone. 

Let A C X. The linear hull (resp. affine hull, convex hull, convex conical hull) 

of A, denoted by span A (resp. aff A, coA, cone A), is defined as the smallest 

linear subspace (resp. affine set, convex set, convex cone) in X which contains A 

as a subset. The relative interior of A is defined by 

rint^ := {x G X : > 0 s.t. B(:c，J) n aff g vl}. 

Given another set D C X. The relative interior of A with respect to D is defined 

by 

rintD ^ {x G X ： > 0 s.t. B(x, n aff D g A} . 

When aff jD = X , rintp A = int A. Also, if aff D = aff A, then unto A = rint A. 

Given a convex set C C A" and x eC. The dimension of C, denoted as dimC, 

is defined by 

dimC dim (aff (C - rr)), 

which is equal to the dimension of the subspace parallel to the affine hull of C. We 

remark that the choice of x does not affect the dimension of C (see [31，Page 3]). 
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Let f be an extended real-valued function on X. The epigraph of f is defined 

by 

epi / eX X R : f{x) < a}, 

and the strict epigraph of f is defined by 

epi, f:={{x,a)eXxR: f{x) < a}, 

while the graph of f is defined by 

gph / ：= { (x ,a ) G X x R : f{x) = a}. 

The domain of /，denoted by dom f , is the set of all a: G X such that f{x) + +00, 

that is 

dom / \= {x eX \ f{x) < +oo} . 

The function f is said to be proper if dom / — 0 and / > —00 on X. 

Another important definition is stated as follows. 

Definition 2.2.2. Let / : X — E U {+00}. The function f is said to be convex 

if 

f{Xx + (1 - X)y) < Xf{x) + (1 - X)f{y) for any x,y e X and X e [0，1]. 

Following [31], we define the following sets: 

r ( X ) := {all proper convex lower semicontinuous functions on X}; 

r{X*) := {all proper convex weakly* lower semicontinuous functions on X*}. 

Also, we define the following subsets of T{X): 

rc(A") := { / G T{X) : / is real-valued and continuous on X}, 

r+(X) := { / G r(X) : f is nonnegative-valued on X}. 

Here, an extended real-valued function f is said to be nonnegative-valued if 

f[X) C [0, +00] (so we allow that / takes the value +00). 
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Given f : X RU { ±oo } . It is well known that f is convex (resp. lower 

semicontinuous) if and only epi / is a convex set (resp. lower semicontinuous). 

Moreover, if X is replaced by X*^ then f is weakly* lower semicontinuous if 

and only if epi / is weakly* closed. See [31] for the proof. Further, the lower 

semicontinuous regularization of the function / on X, denoted by f , is defined 

as the function which satisfies the following: 

epi(7) - ep i / 

(when X* is considered in place to X, then we write instead of / and consider 

the weakly* closure in the last set equality. The function is called the weakly* 

lower semicontinuous regularization of / ) . Also, we use c o / to denote the convex 

regularization of /，which is defined as the function such that 

epi (CO f) = CO (epi / ) . 

The lower semicontinuous convex regularization of f is then denoted by co f. 

Next, we introduce the notion of conjugate function, which plays an impor-

tant role in establishing duality results in convex optimization (as we will see in 

Chapter 3 and 4). Given f : X RU { ±oo } . The conjugate function of / , 

denoted by /*, is a function on X* defined by 

r(x*) := svip{(x\z) - f(z) :zeX} for any x* G X*. 

Similarly, for a function g : X* R\J { ± o o } , the conjugate function of ^ is a 

function on X defined by 

g*{x) := sup{(2;*,a:> - g{z*) : G X*} for any a: G X 

Below we give one simple but important example of conjugate function. Recall 

that given a set A C X , one defines the indicator function and support function 
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of A, denoted by 6a and cr ,̂ respectively, in the following way: 

0, i i x e A , 

+00 otherwise, 

aA{x*) := sup(a:*, a) for any x* e X" 

It is easy to verify by definitions that 

6*A(x*) = £ 7 � * ) for any G ；T (2.2.1) 

To end this section, we state the following equivalences. Let f,g 6 r(X). 

Then, 

f<9 分 9* < r 分 e p i r C e p i / , (2.2.2) 

where the backward implication of the first equivalence follows from the assump-

tion that f,g G r ( X ) (see [31，Theorems 2.3.1(iii) and 2.3.3])’ and the remaining 

implications follow easily from definitions. 

2.3 On the properties of subdifFerentials 

In this section, we will state some properties of subdifferential of a convex func-

tion. Firstly, let us recall the following definition: 

Definition 2.3.1 (cf. [25, 31]). Let f •. X — R U { + o o } be a proper function and 

X £ X. Then, the subdifferential of f at x, denoted by df{x), is defined by 

df{x):= 
{x* e X* : f{y) - fix) - {x%y- x) > 0, My e X) \ix G dom/ , 

0 otherwise. 

In fact, one has the following generalization of the concept of subdifferential, 

known as the e-subdifferential: 
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Definition 2.3.2 (cf. [31]). Let f : X RU {+00} be a proper function and 

X £ X. Fix e > 0. Then, the £-subdifferential of f at x, is defined by 

df{x) 
{x* e X* : f{y) - fix) + e-{x\y-x)>0, Vt/G X } ifrredom/， 

0 otherwise. 

It is clear that df{x) 二 达 / � if e — 0. So, one can regard the term “£-

subdifferential" as a generalization of subdifferential of a function. Among many 

useful and beautiful properties of subdifferential, we collect some of them which 

are helpful towards our analysis. Recall that given a function / : X —> E U { + o o } 

and X, h G X, the directional derivative of / at a: in the direction h is defined by 

d^f(x)ih) := lim /(工 + 叫 - / W . 
t—0+ t 

Proposition 2.3.1 (cf. [28，Theorem 4.1.3 and Proposition 4.1.6]). Let f : X — 

R U {+00} be a proper convex function. Then, the following statements hold. 

(i) If xo e d o m / , then 

dfixo) = {x* e X* : {x\z) < d+f{xo){z), V2 € X}. (2.3.1) 

(ii) Suppose that XQ G intdom/ and f is continuous at XQ. Then, df{x) is a 

nonempty weakly* compact convex set, and it holds that 

d+f{xo){z) = m&x{(x\ z) :x* e df{xo)} for any z e X. (2.3.2) 

Moreover, d+f{xo){-) is a continuous sublinear real-valued function on X. 

2.4 On the properties of normal cones 

First, we state the definition of normal cone, which is well-known in the literature 

(see [25, 28]). 
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Definition 2.4.1. Let C be a subset of X and x £ X. Then, the normal cone of 

C at X, denoted by Nc{x), is defined as 

Nc{x):= 
{x* e X* ： {x*,c-x) < 0, V c e C } ifxeC, 

0 otherwise. 

The following proposition shows a relation between normal cone and indicator 

function of a set A in X. 

Proposition 2.4.1. Let A be a subset of X. Then, dSA(x) 二 for any 

X e X. 

Proof. First, we observe that when x ^ A, 6A{X) = +oo. Thus, it follows from 

the definitions that DSA(X) = 0 = NA{OC). On the other hand, fix x G A. For any 

X* G X*, one has the following equivalences: 

V z g z , W之)• —SA{OC) - { x \ z -

V Z G Z , 6A(Z) • -{x\z 

WZEA, SA{Z) -{x\z 

YZEA, {x\z -X)<\ 0 

X* E NA[X). 

So, the result readily follows. • 
Given a set J C X, let | J| denote the cardinality of J. Recall that for any 

finite collection of non-empty sets {Ai : i e 1} in X, the Minkowski sum of A ’ s 

is defined by 

i£l 

V z G / } , if / ^ 0; 

{0 } if / = 0. 

We next state a kind of definition for a sum of arbitrary (possibly infinite) 

collection of sets. Such definition was used in [18’ 19] to make studies on problems 

in semi-infinite optimization, as we will see in Chapter 3. 
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Definition 2.4.2. Let {Ai : i e 1} be a collection of sets in X with 0 E Die/ -^i-

Then, 

•
t
 

X
7
 

iei 

: e Z,\J\ < +oo} , 

{0} 

Remark 2.4.1. Given a collection of sets {Ai : i e 1} with 0 G Cliei^i- It is 

easy to see that when I is a finite set, the Minkowski sum and the arbitrary sum 

defined in Definition 2.4-2 of {Ai : i e 1} are the same. By abuse of notation, 

we use the same notation for these two kinds of sum. In case it is a must to 

distinguish them explicitly, we will clarify it. 

With the use of Definition 2.4.2, one can get the following set inclusion, which 

follows easily from definitions. 

Proposition 2.4.2. Let {Ai : i G 1} be a collection of subsets of X with A := 

n^e/ A + 0. Then, J^tei � i � ^ �� for each x e A. 

We will state a characterization of elements in e-subdifferential. Before we do 

so, let us mention a well-known inequality. Let / : X —> R U {+00} be a proper 

function on X . By the definition of conjugate function, the following inequality 

is immediate: 

fix*) + fix) > {x\x) for any X G X and rc* G (2.4.1) 

The above inequality is known as Young's inequality. The converse of this in-

equality is a special case of the following equivalences: 

Proposition 2.4.3. Let f e r(X). Then, for any £ >0 and x G dom/, 

工 * G dj[x) ^ fix*) + f(x) < {x\x) - fix) +e) G epi 广 

(2.4.2) 

In particular, it holds that 

X* e df(x) ^ + fix) = {x\x) ^ {x\ (x\x) - fix)) e e p i r - (2.4.3) 
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Moreover, one has that for any nonempty dosed convex sets AC X and x E A, 

X* E NA{X) ^ = {x*,x) {x*, {x*,x)) E epiaA. (2.4.4) 

Proof. Note that (2.4.3) follows from (2.4.1) and (2.4.2) by taking e = 0. To 

prove (2.4.2), let £ > 0 and x G d o m / . Then, for any x" G X*, 

X* e dsf(x) ^ \fzex, f{z) - f(x) + e - {x\ z-x)>0 

^ V2GX, {x\x) - f{x) +e>{x\z)- f{z) 

^ {x\x)-f{x) + e>r{x*) 

^ (x\ {x\x) - f{x) + £) e epi f*. 

So, (2.4.2) holds. 

Next, let A C X be a nonempty closed convex set and x e A. Then, 5a G 

r ( X ) . Noting that it always holds that (Ja(X*) > {x*,x) and d6A{x) = Na{X) 

(by Proposition 2.4.1), (2.4.4) can be obtained by applying (2.4.3) to the case 

when / = 6a- • 

We remark that the equality in (2.4.3) is known as the Young's equality. 

Given a subspace Z of a normed linear space X and x* G X*. The restriction 

of X* on Z is denoted by Note that x*\z G Z*. 

Definition 2.4.3. Let Z be a subspace of X and A C X*. Then, 

Alz ：= {x*\z:x* eA}. 

The following result follows easily from definitions and the Hahn-Banach the-

orem. 

Proposition 2.4.4. Let Z be a subspace of X and C C Z be a closed convex set. 

Then, for each x G C’ 

Nc{x)\z = NS{X), 

where N§{x) := {z* e Z* : {z*,c-x) < 0, for any c e C}. 
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2.5 Some computation rules for conjugate func-

tions 

We will compute the conjugates of some special functions in this section. Before 

we do that, let us recall the notion of infimal convolution. 

Definition 2.5.1 (cf. [30’ 31]). Let fi,... Jm ： X ^ RU {+00} be finitely 

many proper functions. Then, the infimal convolution of fi,…，fm，denoted by 

fiD • • • Dfm, is a function on X defined by 
m m 

( / iD •. • nfm){oo) ：= in f {y^ fi(xi) : ^ Xi = X and Xt e X for all i } , Va: G X. 

i=\ i=\ 

Moreover, the infimal convolution /iD • • • D/^ is said to be exact at x ^ X if 

(/iD • • • •/m)(a;) G M and the infirnum is attained, that is, there exist some 

xi,... ,Xm G X with Xi = X such that 

i=l 

The infimal convolution /iD • • • D/m is said to be exact if it is exact at any x ^ X 

with {fin'--nfm){x) GE. 

The next two theorems are for computing the conjugate of infimal convolution 

of functions and that of the norm function. 

Theorem 2.5.1. Let / i , . . . , : X —M U {+00} be finitely many proper func-

tions. Then, (/i口.. • DfrnY = Eti f： on X\ 
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Proof. Let a:"̂  G Then, 

(/L口 • . . NFMR(X*) = SUP((X*, Z) - ( / I D . . . UFM){Z)) 
ZEX 

=sup((x*,2> -mi{Y^fi{Zi) : 2i’...，2；饥 e ；(：，二2；‘ = z}) 
似 7=1 i=l 

m m 
=sup Zi) - fi{Zi)) : Zi, . . .，Z饥 e ; c，L = 2；} 

似 i=l i=l 
m 

=sup{^((x*, Zi) - fi(Zi)) ： Zi,...,Zm e X} 
i=l • 

m 
=Z(sup{�:r*, Zi) - fi(zi) : Zi e X}) 

i=l 
m 

i=l 

• 
Theorem 2.5.2. Let || . || : X — R the norm function on X. Then, || . ||* = 

W -

Proof. Let rr* G X*. Then, || . \\*{x*) = sup^^xii^^^) — \\4)- Suppose that 

X* e Bx*. It follows that (x*,z) < \\z\\ for each z e X. Hence, 

0 = (a:%0)-||0|| <sup((a:*,z)-||2||)<0, 
zex 

which implies that || . = sup^g；^((x*,z) — \\z\\) = 0. 

On the other hand, we turn to consider the case x* 朱 Bx*. Then, there exists 

some ZQ E X such that {x*, ZQ) > HzqII- Thus, given any A�0，one has 

s u p ( � : r V � - \\z\\) > {x\Xzo) - llAzoll = X{{x\zo) - Poll). 
zGX 

By taking limit as A — +oo, it follows that || . = sup托义(〈冗*，力-\\z\\)= 

+00. • 

As an application of the two theorems that we have just proved, we consider 

the following example: 
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Example 2.5.1. Let A C X. Recall that the distance function c^ from the set 

A is defined by 

dA(x) := inf \\x — a|| for any x e X. 
aSA 

We will calculate the conjugate function of CIA- TO do this, we first note that for 

any x e X, 

dA{x) = inf{||a: - a \ \ : a e A } = inf{||:r - a|| + 胁）：a G X } = (|| •丨丨0^ 

Then, by (2.2.1)，and Theorems 2.5.1 and 2.5.2, we get . 

d\ = ((̂ ^Dll . Iir = G + II • ir = Q + 知X. on X*. (2.5.1) 

2.6 On the properties of epigraphs 

The epigraph is crucial throughout our analysis. We will prove some of its im-

portant properties in this section. The first one is a result by Jeyakumar in [15 . 

It reveals a useful relationship between epi f* and def. 

Proposition 2.6.1 ([15, Lemma 2.1]). Let f e T{X) and x e dom/. Then, 

e p i r = [j{{x\{x\x) - f(x) + e) : G dj{x)}. (2.6.1) 
£>0 

Proof. Fix 0： G dom/ . Let {z\a) e epi/*. Then, f*{z*) < a. Take e := 

a - {z*,x) + f(x). Thus, for any z e X, 

{z\x) - fix) ^e = a> r{z*) > {z\ z) - f{z), 

which implies that 

f{z)-f{x)^e-{z\z-x)>0. 

Hence, e > 0 and 2* G def{x), and so {z*,a) is in the RHS of (2.6.1). 

Conversely, let {z*, a) be in the RHS of (2.6.1). Then, there exists some e > 0 

such that z* e def (x) and a = {z*,x) - f(x) + e. So, by (2.4.2)，it follows that 

{z\a) e epi f*. Therefore, (2.6.1) holds. • 
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The following proposition is about the epigraph of infimal convolution of func-

tions. 

Proposition 2.6.2 (cf. [30，Theorem 2.2]). Let fi,... JrnX ^ R\J {+00} be 

finitely many proper functions. Then, 

(i) epi (/i口 •.. D/m) = epiJi + ----\- epi, fm-

(ii) epi(fiO. • -Ofm) 5 epifi H + epifm- Moreover, the set equality holds 

if and only if the infimal convolution /id.. • D/m is exact. 

Proof. By definitions it is straight forward to check (i) and the first assertion in 

(ii). Thus, we only need to prove the second assertion in (ii). Suppose 

epi (/i口 •.. D/m) Cepi/i + .-- epi fm. (2.6.2) 

Lei X e X be such that ( / i d . . . • /爪）(:r ) G R. Then, (rr，（/id... •/爪)(:r)) G 

epi ( / i d . •. Dfm) and it follows from (2.6.2) that 
m 

(工,（/1口...口/爪)(：1：)) = ；̂(0：“《《） 

1=1 

for some (xj, ai) G epi ft (where i e {1，...，m}). Hence, 
m m m 

E fi � s 叫=(/1口 • • • •/-)(工）̂  E 
t=l i=l i=l 

which implies ( / i D . •. Dfm)(x) = Xllli /i(工)，that is, / i口 . . . •/爪 is exact at x. 

So, we have proved that / i • … D / m is exact. 

Conversely, suppose that / i口 •. • Dfm is exact. We have to show (2.6.2). Let 

{x, a) e epi ( / i D . . . D/m)- Consider the case when {x, a) G epi^ ( / i口 . . • D/m), it 

follows from (i) that 

epi^ ( / i口 . •. n / m ) = epi, / i + . . • + epi^ /m ^ epi / i + • • • + epi fm, 

and so (x, a) G epi f i H hepi fm- For the case when (a:, a)朱 epi^ ( /丄口 … • / 爪 ) ， 

one has (fiD • • •Dfm)(oc) = OL. Thus, by the exactness, ( / i D • • • nfm){x)= 
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ZlHi f i � for some xi,... ,Xjn G X with 二i Xi = x. Hence, 
m 

(工，a) = (x, ( / i口 . . . == (工“ /i(工i)) G epi / i + • • • + epi /爪• 

i=l 

Therefore, combining the two cases, one can see that (2.6.2) holds. This completes 

the proof. • 

The next two theorems concern about the epigraph of infimal convolution of 

conjugate functions and that of the conjugate of sum function. 

Theorem 2.6.3. Let /i,...，/m be finitely many proper functions on X. Then, 

e p i ( / i * • … .•/；；广= e p i f； . (2.6.3) 

1=1 

Proof. By Proposition 2.6.2(ii), we have epi ( / f D . . • •/；；) D J^Ili epi /* , which 

implies that 
— w' 

m e p i ( / r n 3 e p i/； . 
i=l 

In order to prove the converse set inclusion, it suffices to show that 

e p i ( / r n - - - D / ; ) C ^ e p i / * . (2.6.4) 
1=1 

Noting that, it is easy to verify (from definitions) that 
m 

(/；• •. • ^ r j i x * ) = mi {p 印 i /；} for any G X*. (2.6.5) 
1=1 

Also, it is straight forward to check that 

{{z\0 mi{P e E : {z\(3) G X^epi/；}} C ^ e p i /； . (2.6.6) 
i=l i=l 

This together with (2.6.5) show that (2.6.4) holds. • 

Theorem 2.6.4. Let / i , . •., /m e r(X). Then, 
m 

= � * (2.6.7) 
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and 
m 

e p i ( E f^y = e p i ( / r n - . (2.6.8) 

i=l 

Proof. By [31，Theorem 2.3.3] and the assumption that each fi e we have 

f** = fi for all i e I. Then, using Theorem 2.5.1’ one has 

(/i*•…•/二 广 = ( J T + . . . + / 二 ） = / i + .••十 / m . 

Taking conjugation on both sides, we get 

( / l + … + /m)* = ( / r • … 广 

=(CO (介口 ••••/；；) 

where the second equality follows from [31，Theorem 2.3.1(iv)]，the third equality 

comes from [31，Theorem 2.3.3], and the last equality is by the convexity of 

/1*口...•/；；； (see [31，Theorem 2.3.1(ix)]). Therefore, This shows (2.6.7). In 
w* 

particular, (2.6.7) and the definition of / f • . . • •/；；； imply that 

epi(/i + . . - + / m r = epi (/1*口 •..•/;；). 

So, (2.6.8) holds. This completes the proof. • 

Combining Theorems 2.6.3 and 2.6.4，we get the following theorem: 

Theorem 2.6.5. Let /i,...，/爪 € rpC). Then, 

e p i ( X > r = I > P i / r • (2.6.9) 
t=l i=l 

Proof. It immediately follows from (2.6.3) and (2.6.8). • 
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2.7 Set-valued analysis 

We collect some results from set-valued analysis in this section. First, recall the 

following definition of lower semicontinuity of a set-valued mapping. 

Definition 2.7.1 (cf. [2, 26]). Let Q and Y be metric spaces. Let F : Q 

2^\{0} be a set-valued mapping and to G Q. Then， 

(i) The set-valued mapping F is said to be lower semicontinuous at to if for 

any yo e F(to) and e > 0, there exists some open neighborhood U(to) of to 

in Q such that for any t e U(to), F(t) n B[yo,e) + 0. 

(ii) The set-valued mapping F is said to be lower semicontinuous on Q if it is 

lower semicontinuous at any t E Q. 

(iii) The limit inferior of F at to, denoted by liminft—t�F(J:)，is defined by 

liminf � ： = { z G : Vw e Q，3知 G F{w) s.t lim z切= z } . 
to W-^to 

(iv) Let {Cn ： n G N} be a sequence of nonempty subsets of X. Then, 

liminfCn •= {z eY :\fn e N,3cn G Cn s.t. lim Cn = z}. 
n—»oo n—>oo 

Remark 2.7.1. Given a set-valued mapping F : Q — 2^\{0} and to e Q. It 

is direct from definitions that for any sequence {tn}neN in Q with tn ~>• to as 

n ——>• 00, one has 

liminfF(t) CliminfF(t„). 

t—*to n—*oo 

The next theorem states an equivalent formulation of the lower semicontinuity 

of a set-valued mapping at a point. 

Theorem 2.7.1 (cf. [18, Proposition 3.1]). Let Q and Y be metric spaces. Let 

F : Q ^ 2^\{0} be a set-valued mapping and to G Q. Then, the following 

statements are equivalent. 
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(i) F is lower semicontinuous at to, 

(ii) _ F ( i o ) g i i m i n “ o F � . 

(iii) For any yo G F{to), limt—t�ĉ F(t)(2/o) = 0. 

Proof. We first prove (i) (ii). Suppose that F is lower semicontinuous at to. 

Let yo G F(to). Given any n G N, it follows from the lower semicontinuity of F 

at to that there exists some open neighborhood Unito) of to such that 

Bipo, -) n F(t) + 0 for any t G Un{to). n 

Since Q is a metric space, one can assume that Un(to) D Un+i{to) for any n eN, 

and 门二 1 Un(to) = {^o}- Now, we construct yt G F{t) according to the following 

selection: 

yt e F(t), ift^Uiito), 

yt e B{yo, —) n F(t), if t e Un{to)\Un+i{to), 
77» 

yt = yo, iit = to. 

Then, limt—to Vt = Vo- So, yo G liminft—to F{t). 

Now we turn to prove (ii) (iii). Fix yo G F{to). By (ii), one can pick some 

{yt}t€Q such that yt G F(t) and limt—to Vt = Vo- Note that 

0 < dF{t)(yo) < d{yo,yt). 

As limt—to yt = yo, one has limt—t�dF{t){yo) = 0. 
Finally, we prove the implication (iii) (i). Let yo e F{to) and e > 0. By 

(iii), there exists some open neighborhood U {to) of to such that for any t eU (to), 

dF{t)(yo) < It is clear that dF{t)iyo) < ^ implies B{yo,e) n f\t) + 0. Thus, F 

is lower semicontinuous at to and so (i) holds. This completes the proof. • 

The following proposition is about set-valued mapping that is convex-valued. 
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Proposition 2.7.2. Let Q be a metric space and X be a finite dimensional 

normed linear space. Let F : Q ^ \ {0} be a set-valued mapping such that 

F{t) is convex for every t e Q. Fix to € Q and let D C Y be a nonempty 

compact subset ofY such that D C int (liminft—尤。F{t)). Then, there exists some 

neighborhood of to, denoted by U{to), such that D C int F{t) for any t G U{to). 

Proof. Suppose to the contrary that for any neighborhood U{to) of to, there exists 

some tu e U{to) such that D ^ mi F{tu). Then, one can pick a sequence {^n}n€N 

in X such that 

tn e B(to, l/n) and D g int F{tn) for each n G N. (2.7.1) 

Then, lim„一oo 力n = to, which implies that lim inff^to F(t) C lim inf„_^oo 

thanks to Remark 2.7.1. Hence, 

D C int (liminfF(t)) C int (liminf F(^n)). (2.7.2) 
t—»to n-*oo 

Now, by [26’ Proposition 4.15], (2.7.2) implies that there exists some No £ N such 

that for any n E N with n > NQ, D C intF(t„), which contradicts to (2.7.1). • 

2.8 Weakly* sum of sets in dual spaces 

In this section, we summarize some properties of the weakly* sum of a collection 

of sets in X* (see definitions below), which is in general different from the sum 

that was defined in Definition 2.4.2. 

Let I be an arbitrary index set. Let be the collection of all finite subsets 

of I. Then, under the set inclusion relation, becomes a directed set. Given a 

collection of extended real-valued numbers {aj : i G / } in R u { + o o } , one defines 

the sum of a '̂s, denoted by (H, as the limit of the net {J2j€j ̂ j} J&Hi)^ that 

di = lim 
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provided that the limit on the right-hand side exists as a (extended real-valued) 

number in E U {+00}. For convenience, we define Yljej = 0 for J = 0. Note 

that ^ ai coincides with the ordinary sum of a,i's if / is a finite set. Also, it 

is easy to see that for any collection {ai : i G 1} C [0,00], one has that Yliei 

exists in EU {+00} and 

flj = sup CLj. (2.8.1) 
tl 柳 ) S 

Below we state some remarks concerning about the properties of Yliei that we 

have just defined, which follows from direct checking of definitions: 

Remark 2.8.1. Let {a^ : z G / } C E U {+00}. Suppose that Yliei exists in E. 

Then G E for all i £ I. Also, given any J G (k exists in R and 

= - ^ a j . (2.8.2) 
i€l\J i€l jeJ 

Remark 2.8.2. Let bi,Ci : i E 1} CM. be such that a^ <bi < Ci for all i ^ I. 

If both of Yliei ai and Yliei Q exist in M, then it follows that X^+e/ ~ exists in R. 

(In fact, by the assumption on {aj, q : i e I}, we have 

0 < bi - tti < Ci - ai for all i e I. 

Then, it follows from (2.8.1) and the existence of Y^-^j a^ and Yliei^ in R that 

T^i^iibi - ai) exists in M. Therefore, bi (= Ete/ + 一 ^i)) exists 

in R.) 

Let {fi : i e 1} be a collection of functions on X with values in M U {+00}. 

Let Df '.= {x e X : J2iei G IR U {+oo } } . Then, we can define the sum 

function / of f iS on Df by 

f(x) ：= fi{x) for any x G Df. 
i€l 

In particular, when {fi ： i £ 1} Q r+ (X) , one sees that Df = X and 

f{x) = sup Y " fj{x) for any x G X, (2.8.3) 
JQi, 
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thanks to (2.8.1). 

We are ready to give the definition of weakly* sum of elements in X*. Let 

X* € X* and { x p i G / } be a collection of elements in X*. Then, we say that x* 

is the weakly* sum of if 

(x*, x) = for any x £ X. 
i€l 

In this case, we write x* = Yliei^l- Next，let {Ai : 2 G / } be a collection of 

subsets in X*. We define the weakly* sum of Ai's by “ 

:= {x* e X* : 3{x*}ie/ ^ s.t. X* e A Vie I, and = 
iel i€/ 

Moreover, the collection {Ai : i G / } is said to be weakly* summable if for any 

a* e Ai {i e / ) , there exists some a* G X* such that a* = Yl*iei ( 

Remark 2.8.3. It is straight forward to check that Yl*iei = Yliei 讨 I is 

finite. Also, the set YA^J Ai is convex if each Ai is convex. 

The next proposition gives a sufficient condition for the weakly* closedness of 

the weakly* sum of sets in X*. It is originated from the proof of [32，Proposi-

tion 2.3]. We give the statement in a more general form and provide a proof. 

Proposition 2.8.1. Let X be a real normed linear space. Let {Ai : i G N} be a 

collection of weaklff compact set in X*. Suppose that there exist some collection 

of real-valued functions {gi ： i £ N} and {hi \ i e N} on X such that for any 

xeX and x； e Ai (i e N), 

E ffi(x) and exist in R (2.8.4) 
T€N IEN 

and 

gi(x)<{xlx) <hi{x). (2.8.5) 

Then, is weaklif closed. 



E 啦 
i€N\J 

e 
<3-
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Proof. To prove the weakly* closedness of XlIeN 成，it suffices to show that 

Z Ai Q Y . A . (2-8.6) 

Let G Ylien . Then, there exist some directed set D and {a* }aeD Q 

Ai such that a* ~ ~ z * . For each a G D, write a* = JẐ Jgn 工7 ’ a，where 

^ia ^ ^ Since {a î,a}aGD ^ Ai, it follows from the weakly* compactness 

of Ai that there exist some directed set Di C D and subnet {工工’丄任！̂  of {a î̂ l̂acD 

such that 
rp* l̂y*，* 

for some z^ G Ai. Noting that {3:2,a}a6Pi ^ A2，the weakly* compactness of A2 

implies that we can find some directed set D2 C D^ and subnet {a:$’ci}aeD2 of 

{4a}aGDi SUCh that 

丄 2’a ^ 

for some Z2 G A2. Inductively, one can find a sequence of nets (where 

i G N) such that the following statements hold: 

(a) The net is a subnet of {:rT’a}aeD. 

(b) For each i e N, {<’a}aeDi+i is a subnet of {<’a}aeDi. 

(c) For each i G N, is weaklyconvergent to some z* e Ai. 

We next show that 

么 * = X T : : . (2.8.7) 
i€N 

Let X eX. By (c), (2.8.4), (2.8.5) and Remark 2.8.2，one sees that 

exists in R. Now, fix £ > 0. Again, by (2.8.4), there exist some JQ C N with 

I Jo I < 00 such that for any J C N with \ J\ < 00 and JO Q J such that 

and 
t
o
 I

 3
 

V
 

"办 ) 
V 
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Combining the two inequalities above with Remark 2.8.2 and (2.8.5) (as x -^ G Ai 

for any i eN and a G D), it follows that for any a G D, exists in 

R and 

Thus, 

-|< E ^ E�<«,工〉^ E 响 < I 
i6N\J i€N\J 3 � 

< - for any a E D. E � < � 
ieN\J 

Fix J C N with |J| < oo and JQ C J. Let ] := max{j : j G' J}. By 

and the fact that the net {X]i6N^i,a}aGD is weakly* convergent to 2*’ 

that is weakly* convergent to 2*. Also, for any j G J. 

{^j,a}aeiDj is weakly* convergent to Zj. Hence, one can pick some a G 

that 

X^〈<5，⑷-〈2*，工〉 
£
 I

 3
 

V
 

and 

{xl^-z^x) < 3(|J| + 1) for any j e J. 

(2.8.8) 

(a), (b) 

one has 

the net 

such 

(2.8.9) 

(2.8.10) 

Combining (2.8.8)，(2.8.9) and (2.8.10), one has 

< 

jeJ 

， 工 〉 - E k � 
jeJ i€N 

+ E〈工〔①功-〈之*，工〉 

工〉+ El〈工;’厂之•7*,工〉I + 
jeJ 

+ 3(|J| + 1) 3 

Since e > 0 is arbitrarily chosen, we have proved that J^ieni^h^) = So, 

(2.8.7) holds, which in turn implies that z* € Ai, thanks to (c). Therefore, 

(2.8.6) is seen to hold. • 

IGN\J 

< 

1
0

 1
3
 

V
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The next theorem will be useful in Chapter 4. Moreover, the theorem itself 

is an important result: It generalizes the well-known subdifferential sum rule for 

finitely many continuous convex functions to the case when infinitely many of 

them are considered. For the finite case, one may consult [31] or Theorem 3.4.3 

in Chapter 3 for more details. 

Theorem 2.8.2 ([32’ Proposition 2.3]). Let { / , / » : i G / } C FcpC) be such that 

f{x) = Y,fi{x) for any x e X. .. (2.8.11) 
iei 

Then, for any x £ X, the collection {dfi{x) : z G / } is weakly* summable and 

df(x) = Y.狀⑷. (2.8.12) 
iei 

Moreover, if assume in addition that I is countable，then, for each x E. X, 

jyi^i^fii^) is weakly* closed and so 

df(x) = Y^Om (2.8.13) 
i€l 

Proof. Let x,h e X. Then, by [28，Theorem 4.1.3(a)], it follows that, for each 

i e / , the function t i~>• M'^+^^yM^) jg increasing on R\{0} and hence the 

directional derivative d+fi{x)(h) exists, which satisfies the following inequalities: 

fi{x) - fi{x-h)< d^Mx){h) = inf ( 协 + , ) - 姻 ) < f,{x + /O - fiix). 

(2.8.14) 

Thus, by (2.8.11) and Remark 2.8.2, J^iei d+fi(x){h) exists in R. Also, we remark 

that 

11>•从工 + ？ i s non-negative and increasing on (0，+oo). 

(2.8.15) 

We now show that 

cUf{x)(h) = j y + M x ) ( h ) . (2.8.16) 



f{x-\-th)-f(x) 
F I ( M ) 

(2.8.17) 

iei 

7 办 + 姻 — 々 则 ⑷ 

This and (2.8.15) implies that for any t G (0 ,to], 

E ( 射 力 ？ - 则 - 華 ) 
i€/\/o \ ‘ 

where the first equality follows (2.8.15), while (2.8.11) gives the second equality. 

So, for any t > 0，the sum — d+fi{x){h)) exists in R. Let e > 0 

and fix some to > 0. Since [祐,(/“_:。)-/‘⑷ 一 d+fi{x){h)) exists in M, one can 

find some IQ Q I with |/o| < +oo such that 

i€l\Io 

On the other hand, since |/o| < +oo and d+fi(xXh) = inft>�(,�z+�_,*(T))，one 

can pick some S e (0,to) such that 

E (Mx + th)-M:c)—々胁)�)< £ for any t G M ) . (2.8.18) 

Using (2.8.17) and (2.8.18)，we have, for any t e 

八工 +力 t ) —制 _ E似“柳 ) 
iei 

iei 

= E (协午，-抛-测⑷）+ E (协士 T〜)一制-嚷⑷ 
ielo ^ Z ig/\/o 
£ e < - + -
2 2 

= £ . 
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Note that for any t > 0, we have 

E 知 

£
 I

 2
 

V
 

i
 



for each z e X. 

It is clear that x* is linear. Also, by (2.8.20), one has 

\x*(z)\ = < max{\d^f(x){z)l\d^fix){-z)\} for any z G X. 
iei 

(2.8.21) 

By the assumption that f G 1\；(乂）and Propositon 2.3.1(ii), one can see that 

d+f{x){') is a continuous sublinear functional on X. Thus, x* is continuous on X, 

thanks to (2.8.21) and the linearity of x*. Hence, x* e X*, and so x* = YlUi^i-

Therefore, we have shown that {dfi{x) : z G / } is weakly* summable. 

We turn to prove that (2.8.12) holds. Let G Xlle/ dfi{x). Then, by (2.8.20), 

we see that (z*,z) < d+f(x){z) for any z e X. Hence, it follows from (2.3.1) 

that z* e df{x). Thus, the set inclusion ^ df{x) holds. Since the 

set df(x) is weakly* closed (see Proposition 2.3.1(ii)), one has 
; If* 

Z 视工）C df{x). 
iei 
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Since e > 0 is arbitrarily chosen, we have proved that lirrif—o+ � = 

d+fi{x){h), that is, (2.8.16) holds for any x,h e X. 

We next show that the collection {dfi{x) : z G / } is weakly* summable. By 

the continuity of fi and Proposition 2.3.l(i)，we see that dfi(x) + 0 for each 

i e I. Now, for each z G / , let x* G dfi(x). It follows from (2.3.1) that 

-d+fiix)(-z) < {xl z) < d+fi{x)(z) for any 2： € X (2.8.19) 

By (2.8.16) (applied to the case when h = z oi h = —z) and Remark 2.8.2，it 

follows that exists in R and 

-d^f{x){-z) < J2{xlz) < Y,d+fi{x){z) = d^f{x){z). 
iel i€l iel 

(2.8.20) 

Define the function x* : X —> R by 

*
 i
 

、 >
 

I

I
 

*
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It remains to show the set inclusion 

df{x) C dfiix) . (2.8.22) 
iei 

Suppose to the contrary that there exists some Xq G X* such that Xq G df{x) 

but â o 朱 Y^iei ^ / i W • Since YA^idfi{x) is weakly* closed and convex (by 

Remark 2.8.3)，one can use the the separation theorem to find some yo E X such 

that 

sup{(y*,2/o> - f ^ Y l 舰 ） } < (̂ ；'2/o). (2.8.23) 
iG/ 

Noting that, since each fi is continuous, it follows from (2.3.2) that there exists 

some z* e dfi{x) such that {z*,yo) = d+fi{x){yo). Let a* := Y^a (such a* is 

well-defined, thanks to the weakly* summability of the collection {dfi{x) : i E I}, 

which we have just proved). Thus, a* e Y^*^! dfi{x). Using (2.8.16), we get 

{a\yo) = ^{zlvo) 二 = d+f{x){yo). 
iei iei 

Consequently, 

{xo,yo} < d+f{x){yo) 

=((i\yo) 

iG/ 

where the first inequality follows from (2.3.1) and the fact that Xq G df{x). 

This contradicts (2.8.23). Now, this contradiction shows us that (2.8.22) holds. 

Therefore, (2.8.12) is established. 

Finally, assume in addition that I is countable. We will show that (2.8.13) 

holds. Without loss of generality, assume that / = N. Fix x e X. By the result 

that we have just proved, we have 

df(x) = 
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Thus, it suffices for us to show that XIIgn ^/i(^) is weakly* closed. Note that, 

for each i e I, dfi{x) is weakly* compact, thanks to Proposition 2.3.1(ii) and 

the continuity of fi. Then, it follows from Proposition 2.8.1 (applied to the case 

when Ai := dfi{x),访(•) := -d+fi{x){- •) and hi{-) := d+fi{x)(-) for all i e I) 

that Yliei ^fii^) is weakly* closed. Since x £ X is arbitrary, we have proved that 

(2.8.13) is valid. This completes the proof. • 



Chapter 3 

Sum of Epigraph Constraint 

Qualification (SECQ) 

3.1 Introduction 

In [9], Burachik and Jeyakumar utilized the epigraphs of support functions to 

provide a new sufficient condition for the strong conical hull intersection propery 

(the strong CHIP) of two closed convex sets in a Banach space. Their result is 

stated as follows: 

Theorem 3.1.1 ([9]). Let X be a Banach space. Let C, D be two closed convex 

sets in X with C n D •边.Suppose that 

epi acnD = epicrc + epi CTD- (3.1.1) 

Then C and D satisfies the strong CHIP. 

In their paper, they also provided some examples to show that the condition 

(3.1.1) is weaker than some classical interior-point type conditions which are 

essential for the validity of the strong CHIP. Since the strong CHIP is crucial for 

some duality results such as the dual formulation of best approximation problems 

(see [12，13，14] for more details), the importance of the condition (3.1.1) in the 

31 
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duality theory of convex optimization is shown by Theorem 3.1.1. In [17, 18], 

under the setting of general normed linear space, Li and Ng extended the concept 

of strong CHIP to cover the case when an arbitrary system of closed convex sets is 

considered. The properties and consequences of this generalized notion of strong 

CHIP were investigated. In particular, they utilized the strong CHIP to study 

some general systems of infinite convex inequalities. This shows that the strong 

CHIP is useful in semi-infinite convex optimization theory. Concerning the result 

of Theorem 3.1.1 by Jeyakumar et. al. and the extended notion of strong CHIP 

by Li and Ng, it is natural to ask whether we can extend the condition (3.1.1) to 

be defined for arbitrary system of closed convex sets, under the setting of normed 

linear spaces. 

In [19], Li, Ng and Pong defined a new type of constraint qualification, known 

as the sum of epigraphs constraint qualification (the SECQ), for an arbitrary 

system of closed convex sets under the setting of normed linear space. According 

to the definition of the SECQ (which we will see in the next section), it reduces to 

(3.1.1) when the system consists of two closed convex sets. They proved that the 

SECQ still serve as sufficient condition for the strong CHIP, which generalized 

Theorem 3.1.1. In view of the application in semi-infinite optimization theory, 

it is useful to study the properties of the SECQ and its relationship with other 

types of constraint qualification. 

In the chapter, we give a survey on the result by Li, Ng and Pong in [19], which 

mainly concerns the SECQ. In the next section, we will first give the definition 

of the SECQ and prove some of its simple but useful properties. After that, the 

relationship between the SECQ and the strong CHIP will be investigated. We will 

show that the SECQ serves as a sufficient condition for the strong CHIP. While 

the converse implication holds under some additional assumptions, we also study 

conditions which can ensure these assumptions. Next, we study the relationship 

between the SECQ and the linear regularity. In particular, by considering the 
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epigraph of conjugate of distance function, a new characterization of the linear 

regularity will be given. In the last section, some interior-point type sufficient 

conditions for the SECQ will be shown. 

3.2 Definition of the SECQ and its basic prop-

erties 

Throughout this chapter, unless otherwise stated, let X be a real normed linear 

space. We will study the basic properties of a constraint qualification, known as 

the sum of epigraph constraint qualification (the SECQ). To begin with, let us 

state the definition of the SECQ. Here, the definition of infinite sum of sets is 

given in Definition 2.4.2. 

Definition 3.2.1. Let X be a normed linear space. Let {Ci : z G / } 6e a collection 

of sets in X with Ci + 0. Then, we say that {Ci : i G /} satisfies the sum 

of epigraph constraint qualification (SECQ) if 

印i 印 = 叱i . (3.2.1) 
i€/ 

As we can see, given a collection of convex sets {Q : i e / } , the SECQ con-

cerns about the decompostion of epigraph of cr门…a into a sum of each epigraph 

of £7(7.. Historically, such property was first studied by Burachik and Jeyakumar 

in [9] for the case when |/| = 2. After that, in [19], Li, Ng and Pong stated the 

definition above, where |/| is allowed to be greater than two, or infinite. 

Below we give an example of a system of closed convex sets which satisfies the 

SECQ. 

Example 3.2.1. Let X = R. Let C := [0,1] and D [-1，0]. Then, C n D = 
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{0}. By direct computation, one gets the following set equalities: 

epicTc = {(a;, a) e X xR: max{a:, 0} < a } , 

epiao = {(a:, a) 6 X x R : max{—x,0} < a } , 

epi<JcnD = IK X [0，+oo). 

Hence, 

epi cTcnD = epi ac + epi od. 

So, {C, D) satisfies the SECQ. 

We aim at giving some useful equivalent formulation of the SECQ. In order 

to do that, we have to do some preparatory works. First, we prove the following 

lemma (see [19’ Lemma 2.2]), which is about taking conjugation of the poiritwise 

supremum of a collection of functions in r ( X ) . 

Lemma 3.2.1. Let { / i : z E /} be a family of functions in T{X). Assume that 

there exists some XQ e X such that sup祐,/i(工o) < +oo. Then, for each x* e X*, 

one has (sup祐j fiYi^c*) = co(infig7 f*) (x*). 

Proof. Since fi G r{X), one has / 广 = f i for each i G I (see [31’ Theorem 2.3.3]). 

Next, we note that, for each x e X, 

{inf f:r(x) = snp{(x\x)-mU:{x*)} 
ze/ X'ex* 

= s u p sup{(x*,x) - f*(x*)} 
X*€X* iel 

= sup sup {(x\x) - f*(x*)} 
iel x*ex* 

= snp(f:y{x) 

= supf**{x) 
iei 

=sup fi{x). 
iel 
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Hence, by [31，Theorem 2.3.1] one has 

^o(inf/*) 

and so 

co(inf /r) 

inf/； = s u p / i 
、玄 e/ J iei 

sup/i 

(3.2.2) 

Thus it remains to show that • = where 0 co(infig/ f^) . By [31， 

Theorem 2.3.3], it suffices to show that </> € Since it is obvious that (f) is of 

weakly* closed convex graph, it remains to show the properness of 0. By (3.2.2) 

and the assumption, there exists some Xq e X such that (f)*(xo) < +oo. Also, 

by the properness of fi, we have that </>* = sup^ /̂ fi > -oo on X. Hence, (jf is 

proper. This in turn implies that 0 is proper (which is direct from definition of 

conjugate function). The proof is completed. • 

Using the previous lemma, we can get an explicit form of epigraph of (sup祐 j fi)* 

in terms of the epigraphs of /j 's, which was proved in [19，Lemma 2.3] by Ng et. 

al. The following lemma is an intermediate step in their proof. We isolate it and 

give a proof for the sake of completeness. 

Lemma 3.2.2. Let {fi ： i £ 1} be a collection of extended real-valued functions 

on X. Then, 

Uepi f： [ epi(inf / ; ) C c o U e p i f： . (3.2.3) i£l 
i€l iel 

In particular, it holds that co(epi (infig/ /•*)) = co (J.̂ ^ epi fi . 

Proof. The last assertion follows from (3.2.3) by considering weakly* closed con-

vex regularizations. Also, The first inclusion in (3.2.3) holds because f* > 

infig/ f* and so epi f* C epi (infig/ f*) for each j e I. 

We now turn to prove the second inclusion in (3.2.3). Suppose on the contrary 

that there exists some CKQ) G X* X R such that 

(xh ao) e epi (inf fn\co[j epi f： . (3.2.4) 
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This implies in particular that /^(XO) > QIQ for each i. It follows that 

( i n f / ; ) K ) > a o t€l 

and so the equality holds thanks to the fact that (XQ, ao) € epi (infjg/ /*) . Conse-

quently, one can find a sequence {jn}neN Q I such that lim„^oo /二 (切=Q：。and 

fl{x*o) e R for all n G N. Hence, ~^切* K , a o ) as n ^ oo. Noting 

for each n G N, 

iei 

it follows by passing to limits that (XO,Q;O) G CO (Jig/ epi f* ，which clearly con-

tradicts (3.2.4). Therefore the second inclusion in (3.2.3) holds. • 

Here is the result that we have just mentioned. 

Lemma 3.2.3 ([19，Lemma 2.3]). Let {ft ： i E /} be a family of functions in 

T{X). Assume that there exists some XQ ^ X such that (sup^^j fi)i^o) < +oo. 

Then, 

epi (sup fiY = CO U epi f* . (3.2.5) 
托 J i€l 

Proof. Since supj^； fi{oco) < +oo for some Xq G X , we can use Lemma 3.2.1 to 

conclude that (supj^/ ft)* = co{mii^i f^) . Therefore, one has 

epi (supie/ fiY = epi (co(infie/ ft) ) = co(epi (infie/ /；)) = co (Jig/ epi /；， 

where the second equality comes from the definition of weakly* lower semicon-

tinuous convex regularization of a function and the last equality follows from 

Lemma 3.2.2. This completes the proof. • 

The proof of the following lemma is elementary. 

Lemma 3.2.4. Let Ai C X be a convex cone for each i e I. Then, co [ J A i = 

Jliei^i-
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With the use of Lemma 3.2.3 and 3.2.4，we get the following important propo-

sition. For the case when I is finite, this proposition is a special case of Theorem 

2.6.5 (by letting fi := 6c, for all i 6 I). 

Proposition 3.2.5 ([19, Proposition 2.4]). Let {Ci : i G / } 6e a collection of 

closed convex sets in X with C :—门祐,Ci ^ 0. Then, 

epi (Jc = [ epi (jQ . (3.2.6) 
iei 

Proof. Since Ci is a non-empty closed convex set, 6ci G r ( X ) for each i G I. Also, 

one can check by the definition that Sc = sup^^j Sc^ on X. By the assumption, 

take xq E C and it follows that (sup^^j ScJixo) = 0 < +oo. Then, by applying 

Lemma 3.2.3 to the family of functions {5ci : i G / } , we see that 

epi CTc = epi (sup (̂ Q)* = co U epi Ĉi = co ( J epicr î = ^ epi ac^ 
^^^ iel iel i€l 

where the last equality follows from Lemma 3.2.4 and the fact that each epi ac^ 

is a convex cone. • 

The next corollary is what we want, which gives some equivalent conditions 

for the SECQ. 

Corollary 3.2.6 ([19, Corollary 2.5]). Let {Q : i e 1} be a collection of closed 

convex sets in X. Assume that C := f)祐j Ci ^ 0. Then, the following statements 

are equivalent: 

(i) {Ci-.ie 1} satisfies the SECQ. 

(ii) epi(TCi is weakly* closed. 

(iii) epicrc d^ie/epiJCi. 

Proof. The equivalence ( i )分 ( i i ) follows readily from (3.2.6) and the definition 

of SECQ. Moreover, since it is trivial that epiac 3 Ylieî V '̂̂ Ci： we have (i) 

(iii)- • 
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In view of Corollary 3.2.6’ we see that the SECQ (for a system of closed convex 

sets with non-empty intersection) is closely related to the weakly* closedness of 

the sum of epigraphs. Moreover, in order to check the SECQ, it suffices to check 

one-sided set inclusion for the set equality as was required in the definition. We 

will use this corollary several times throughout our analysis. 

Before we end this section, we show the following proposition, which was 

proved in [19，Proposition 2.6]. It states the important fact that SECQ is trans-

lational invariant. .. 

Proposition 3.2.7. Let {Ci : i £ 1} be a collection of closed convex sets in X 

with C := Ci 0. Then, the following statements are equivalent: 

(i) {Ci-.ie / } satisfies the SECQ. 

(ii) For each x e X, the collection {Ci - x : i e 1} satisfies the SECQ. 

Proof. The implication (ii) => (i) can be seen by taking x = 0 in (ii). We now 

turn to prove the implication (i) (ii). Suppose that {Ci : z G / } satisfies the 

SECQ and fix rr e X . We have to show that epi ac-x = Xlie/^Pi^Q-i- Let 

(a:*, a) e X* xR. Note that we have the following equivalences: 

(:E*，a) G epi ac-x cyc-x{oc*) < a 

sup (a:*, 2 — x) < a 
zee 

sup(x%z) < a + {x*,x) 
z£C 

(Jc{x*) < a + 

+ {x ' .x ) ) G epi(7c 

Using the same argument as shown above, one can prove that 

ia 
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By the equivalences above and (3.2.1), it follows that if (i) is assumed, then the 

following equivalences hold: 

(x*,a) e epi ac- {x*,a + {x*,x)) e epi(Jc 

iei 

tt) e X l epi ctq-
i€l 

Therefore, epi ac-x = Zlie/epi (^Q-I and the proof is completed. • 

3.3 Relationship between the SECQ and other 

constraint qualifications 

This section is devoted to study the relationship between the SECQ and other 

types of constraint qualifications. 

3.3.1 The SECQ and the strong CHIP 

We first recall the following definition of the strong conical hull intersection prop-

erty (the strong CHIP). It was first given by Deustch et. al. in [13] under the 

Hilbert space setting, for the case when I is finite. Later, in [17，18], Li and Ng 

extended the definition to the case when I is allowed to be infinite and under the 

setting of a normed linear space. 

Definition 3.3.1. Let X be a normed linear space. Let {Ci : z G / } 6e a collection 

of convex sets in X with 门；它,Ci ̂  0. 

(i) The collection {Ci : i G / } is said to have strong conical hull intersection 

property (strong CHIP) at x e Hia^i = Eiei^cA^)-

(ii) The collection {Ci : i Q 1} is said to have strong conical hull intersection 

property if {Ci : z G / } has strong CHIP at x, for each x e 门拓,Ci. 
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The strong CHIP was originally proposed for establishing dual formulation 

of constrained best approximation problems in the setting of Hilbert space, see 

[12，13, 14，16’ 17]. After that, some authors also studied its relation with other 

concepts in optimization like the basic constraint qualification, bounded linear 

regularity and Jameson's (G) property, etc., see [7, 16，17] for examples. Due to 

its importance in convex optimization theory, sufficient conditions for the strong 

CHIP were extensively studied in the literature. In particular, in [19], Li and Ng 

gave some interior-point type conditions to ensure the strong CHIP for an infinite 

system of closed convex sets in normed linear spaces. 

As we have mentioned in the introduction, Jeyakumar et. al. showed that the 

SECQ is a sufficient condition for the strong CHIP of two closed convex sets (see 

9，Theorem 3.1]). A natural question that comes to mind is whether the same 

implication is preserved under the setting of arbitrary system of closed convex 

sets. The answer is affirmative. Before we show this result, let us prove the 

following theorem, which gives an equivalent condition for the strong CHIP. One 

may take a note for its similarity with Corollary 3.2.6. 

Theorem 3.3.1. Suppose that {Ci : i ^ 1} is a collection of closed convex sets 

in X with C := Die/ Ci + 0. Let x £ C. Then, the following statements are 

equivalent. 

(i) {Ci-.ie 1} has strong CHIP at x. 

(ii) NC{X)CZ,^JNC,{X). 

Proof. The result immediately follows from Proposition 2.4.2 and the definition 

of strong CHIP. • 

The next theorem shows that the SECQ implies the strong CHIP. Also, under 

some additional assumption, these two properties become equivalent. 
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Theorem 3.3.2 ([19, Theorem 3.1]). Let {Ci i e I] he a collection of closed 

convex sets in X with C :=门拓,Ci 0. If {Ci : i E 1} satisfies SECQ, then it 

has the strong CHIP; if, in addition, assume that dom crc C Im d6c, that is 

dom ac Q |J Nc{x), (3.3.1) 
x€C 

then the converse implication holds. 

Proof. Suppose that [Ci : i 6 1} satisfies the SECQ. In view of Theorem 3.3.1’ 

it suffices to show that 

Nc(x) C ^ Nc^(x) for any x E C. 
i€l 

Fixx e C and let x* e Nc{x). Then by (2.4.4), it follows that (工*，�:r*’:r�) G 

epicTc- Thus, by (3.2.1), there exist some finite subset J C / and (x*,aj) G 

epi (Tcj for each j e J such that 

In particular, one has (x*,x> = = Y^j^jOtj. Noting 

(JCj{x]) < otj {d& X e C) for each j e J, it follows that each {x* 

that is X* e Nc^ix), thanks to (2.4.4). Therefore, x* = Ej.e•/工3 ^ E i e / ^ ^ W 

and so Nc{x) C J ]如 Nc^ (oc) is shown for each x eC. Thus, {Q : i e 1} has the 

strong CHIP. 

Next, we assume that (3.3.1) holds and {Ci : i G / } has the strong CHIP. 

To show that {Ci \ i e 1} satisfies the SECQ, by Corollary 3.2.6, it suffices 

to show that epi^c C 堪/epicrQ. Let {x*,a) G epictc. Then, (TC{X*) < a, 

which implies that x* € dom crc- So, by (3.3.1), there exists some x e C such 

that X* G Nc{x). Since {Ci : i e 1} has the strong CHIP, there exist some 

finite subset J C I and x* G N�人x) for each j e J such that x* = "^j^jX*. 

Hence, J^jeji^h^^ =〈工*，$〉< Also, by ( 2 . 4 . 4 ) ， = crcjixj) for each 

j G J. Now, define c := |̂ (Q： - (> 0) and aj (x*,x) + c, where 

〈工;，工〉< 

x) = a-i. 
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I J| denotes the cardinality of J. Then, for each j G J, (xj, aj) G epi acj and 

XljgJ aj = a. So, (x*,a) = Yljeji^p^j) ^ Zlie/epi叱 i . Therefore, the set 

inclusion epi ac C Yl^^j epi CTC. holds as was required to show. • 

The result of Theorem 3.3.2 provides a way to check that a collection of closed 

convex sets does not satisfy the SECQ. We give an example for illustration. 

Example 3.3.1 ([29, Example 11.1]). Let X := E^ and XQ ：= (1,0) € Define 

C :=Xo- B x and D :=Bx- Xq. Then, C n = {0} . Note that 

iVc(O) 二（-00,0] X {0} and ND(0) = [0，+oo) x {0} ’ 

and 

Hence, 

NcnoiO) = iV{o}(0) = 

Ncnn = ^ M X {0} = Nc{0) + ND{0). 

So, {C, D} does not satisfy the strong CHIP. This and Theorem 3.3.2 imply that 

{C, D} does not satisfy the SECQ. 

Remark 3.3.1. In [29, Example 11.2], Burachik and Simons show in details that 

epicTc + epi ao is not closed in by finding the explicit form o /epidc + epi ao, 

where C and D are the sets as defined in Example 3.3.1. Since epi (TCOD is closed， 

it follows that 

epi (JcnD + epi gq + epi a^-

So, {C,D} does not satisfy the SECQ. This provides a more direct way to show 

that {C, D} does not satisfy the SECQ, in the sense that we do not have to consult 

Theorem 3.3.2. However, as shown in [29, Example 11.2], it may not be easy to 

find the explicit form of epi GQ + Therefore, the method that we have used 

in Example 3.3.1 may be easier to work with, if it is not difficult to check that the 

strong CHIP does not hold. 
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In view of Theorem 3.3.2, it is meaningful to give some sufficient conditions 

which can ensure that (3.3.1) holds. The following theorem is of this type, which is 

from [19，Proposition 3.2]. Recall that for a proper extended real-valued function 

/ on X* and x^ G X*, the continuity of / at x^ means that for any a > 0，there 

exists some neighborhood VQ (in the norm topology) of XQ such that f(x*) > a 

for any x* G VQ. 

Theorem 3.3.3 ([19，Proposition 3.2]). Let C be a non-empty, closed and convex 

subset of X. Then, (3.3.1) holds if at least one of the following conditions holds: 

(i) The set C can be expressed in the form C = D + K for some weakly compact 

convex set D and closed convex cone K in X. 

(ii) dim (7 < +00，Im dSc is convex and adspanc continuous on (span C)*\{0}. 

Proof. We first prove that the condition (i) implies (3.3.1). Thus, suppose C = 

D + K as in (i). To prove (3.3.1)，let x* G domCTC- Then, 

s\ip{x*,d) + sup (a:*, k) 二 sup {x*, d + k) = sup(x*, a) = adx*) < +oo. 
deD keK deD,keK aec 

Thus, we must have (7k{X*) = k) < +00. Since K is a cone and 

0 e K/it follows that (7尺(工*) = 0. Hence, aoioc*) = (7c{x*) G R. Pick a sequence 

{ĉ n}nGN from D such that oo�:c�<i„> = uoix*). Since D is weakly compact, 

one can, without loss of generality, assume that dn 一切 do for some do e D. 

Hence, do e D + K = C and (JC{x*) = an(x*) = = (x*,do). By 

(2.4.4), we see that x* e Nc{do) and so x* e \Jx£C^c{x). Since x* e dom ac is 

arbitrarily chosen, we have proved that (3.3.1) holds. 

We now turn to prove that the condition (ii) implies (3.3.1). Consider the 

following three cases: 

Case 1: C is bounded in X. 

Note that C is closed and spanC is of finite dimension by (ii). Hence, C 

is (norm-) compact and so C is weakly compact in X. Since C is convex, the 
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condition (i) holds and so does (3.3.1) with D = C and K = {0}. Thus, the 

result follows. 

Case 2: C is a subspace of X. 

Let X* e dom ac- Then, siiPcec�T*’ c � = (Tcix*) < +oo. By the assumption in 

this case, this implies that supcec〈广 c � = 0 and so x* € Nc{0) C [J^^c 

Since x* is arbitrarily chosen, we have proved that (3.3.1) holds for this case. 

Case 3: C is unbounded and is not a subspace of X. 

In this case, (7 is a proper subset of span (7. Let 6c denote the indicator 

function of C in span C, and dc the support function of C in (span (7)*. Then, 

(8cY = oc = <7c|spanc on (span C)*. Since C C spanC, one can easily show by 

virtue of the Hahn-Banach theorem that 

dom ac = {z* G JT : z*lspanc G dom 础 (3.3.2) 

We show next that 

ImdSc = {z* e X* : z*lspanc G ImdSc}. (3.3.3) 

Let y* e Im d6c. Then, there exists some Cq G C such that y* e d6c{cQ), that is 

y* e Nc{co) by Proposition 2.4.1. Noting that 

iVc(co)|spanC = A ^ r ^ ^ ^ M = d 6 c { c o ) Q I m d 6 c ^ 

where the first equality follows from Proposition 2.4.4 (by applying to span (7 

in place of Z), we have ？/*|spanc € ImdSc- So, ImdSc C {z* e X* : 2;*|spanC G 

Im dSc}- The converse set inclusion follows from direct checking of definition and 

the fact that C C spanC. Thus, (3.3.3) holds. This together with (3.3.2) and 

the Hahn-Banach extension theorem imply that 

dom ac Ispan c = dom ac and Im dSc |span c = Im dSc • (3.3.4) 

We claim further that 
A 

dom<Jc C Im dSc- (3.3.5) 
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By applying [3，Proposition 2.4.3] to the non-empty, proper, closed, convex and 

unbounded subset C in the finite dimensional normed linear space span C, we get 

dom ac\{0} = int(dom ac) + 0. (3.3.6) 

A 

Also, Im dbc is convex, thanks to (3.3.4) and the convexity assumption of Im 况 c 

in (ii). (Indeed, let a*,b* G Im(9知 and A G [0,1]. Then, by (3.3.4)，take a*, 

F G Im dSc such that a*|spanc = a* and V |spanc = b*. By the convexity of Im dSc, 

we have Xa* + (1 - X)V G Im dSc- So, Xa* + (1 - A )6G Im ̂ (̂ clspanc = Im dSc by 

(3.3.4).) Thus, we can conclude by [31, Proposition 1.2.1(ii) and Corollary 1.3.4] 

that 
int(Ima(5c) = int(Ima(5c)- (3.3.7) 

Furthermore, since ac = (fe)*, one can apply [31’ Theorem 3.1.2] to get 

dom {ac) = dom (60)* C ImO^c- (3.3.8) 

Combining (3.3.6)，(3.3.7) and (3.3.8)，it follows that 

dom (Jc\{0} = int(dom(7c) C int(Im dSc) = int(Im d6c) C Im dSc-

Finally, it is obvious that 0 G Im dbc, so our claimed (3.3.5) follows. This proves 

our claim. 

Let a:* G domcrc. By (3.3.4) and (3.3.5), it follows that x*|spanc ^ Imddc. So, 

X* e Im dSc, thanks to (3.3.3). Thus, there exists x eC such that x* G d6c{x), 

and so x* € Nc{x) by Proposition 2.4.1. Therefore, (3.3.1) holds for the present 

case. 

Prom these three cases, we see that (3.3.1) holds in any case provided that 

(ii) holds. The proof is completed. • 

Combining Theorems 3.3.2 and 3.3.3, we arrive at: 

Corollary 3.3.4. Let {Ci : i G / } 6e a collection of closed convex sets in X with 

C := pl^g^ Ci 寺迅 such that at least one of the following conditions is satisfied. 



Sum of epigraphs of conjugate functions in semi-infinite convex optimization iii 

(i) There exist some weakly compact convex set D C X and closed convex cone 

K such that C = D + K. 

(ii) dimC < +00，Imddc is convex and crdspanc is continuous on (spanC)*\{0}. 

Then, {Ci \i £ 1} satisfies SECQ if and only if it has strong CHIP. 

3.3.2 The SECQ and the linear regularity 

We now turn to study the relationship between the SECQ and another concept, 

known as the linear regularity. The definition is shown as follows, see [4, 5, 6] for 

the case when I is finite, and [19] for I being allowed to be infinite. 

Definition 3.3.2. Let X be a normed linear space. Let {Ci : i £ 1} be a collection 

of closed convex sets inX with C ：-—门祐,Ci + 0. Then, the collection {Ci : i e l } 

is said to be linearly regular if there exists some r > 0 such that 

dc{x) < r sup dci{x) for all x e X; (3.3.9) 
iei 

The notion of linear regularity was used to give some norm convergence re-

sults for projection algorithms, which is useful in solving the convex feasibility 

problems. Please refer to [4，5，6] and the reference therein for details. 

Following [19], we first give a characterization of linear regularity via the use 

of epigraphs. In order to get that, we need the following lemma, which concerns 

about the conjugate function of a (positive) scalar multiple of distance function. 

In the remainder of this subsection, let A* := Bx* x E and Â j. ：— Bx* x R+. 

Lemma 3.3.5 ([19, Lemma 4.3]). Let S be a non-empty, closed and convex subset 

of X and let 7 > 0. Then, ('yds)* = (^^Bx* + ^s on X* and 

epi {^dsY = epias 0 7A*. (3.3.10) 

If 0 e S in addition, then 

epi {jdsY = epi as n 7A：；. (3.3.11) 
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Proof. Let x* e X*. By Example 2.5.1，we have 

Then, by [31，Theorem 2.3.1(v)] (applied to get the first and third equality), it 

follows that 

(jdsYix*) = jd^si^x*) = ^asi^x*) + ( ^ Z ) = + 7^BX. 工 *). 

Since 7^BX* ( 7 ^ * ) — � B X - ( t ” (by direct checking of definitions), one gets 

Next, we prove that (3.3.10) holds. To do this, we first let (x*, a) G epi <75 07A*. 

Then, as{x*) < a and (̂ B̂X* (工*) = 0. Hence, (7^5)*(x*) = (7s{x*) + S^B^, {X*) < 

a. So, {x*,a) e epi {jds)*. Conversely, let (x*,a) G epi {'yds)*. Then, as{x*) + 

= ildsYix*) < a. In particular, it follows that (^"BX. = 0. Hence, 

X* e 7BX* and as{x*) < a. Thus, G epiasAiA*. Therefore, we conclude 

that (3.3.10) holds. 

It remains to show (3.3.11). In view of the (3.3.10), it is sufficient to show 

that 

epi {'ydsY C epi(7507A；. 

Let (:r*，Q；) G epi (^ds)*. Since 0 G 5, a six*) > 0. Further, by (3.3.10)，（:r*，a) G 

epi as and so (7s{x*) < Q：. Therefore, one can see that 0 < as{x*) < a and 

X* E 7BX* (by (3.3.10)). So, {x*, a) e epi 0-507A：；.. This completes the proof. • 

Theorem 3.3.6 ([19，Theorem 4.4]). Let {Q : i e 1} be a collection of closed 

convex sets in X with C := pl-^j Ci + 0. Let 7 > 0. Consider the following 

statements: 

(i) For any x e X, dc(x) < ^sup^^j dci(x). 

；ii) epi cJc n A* g co UiG/(epi crCi H 7八 
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(iii) gphcrc n A* g CO Uie/(epi (Jq n • 

；ii*) epi(Jc n A：； g CO Uie/(epio-Q n 

(iii*) gph (7(7 n A：； g CO UiG/(epi (JCi 门 7八^ . 

Then, the following assertions hold. 

(a) (i) (ii)分(iii). 

(b) IfOeS, then (i) ^ (ii)分(iii) ^ (ii*) ^ (iii*). 

Proof. We first prove (a). Note that, by (2.2.2), one sees that 

(i) epifi^Cepi { j snp̂ ĵ dc,)*. 

Now, by using (3.2.5) and (3.3.10), one has 

epi (7sup dciY = epi (sup jddY = c o j j epi = co |J(epi a^ 门 7 A * ) . 
祐了 iei ia 

Similarly, (3.3.10) also entails epirf^ = epi CTC门 A*. So, the equivalence of (i) and 

(ii) follows. 

Since gphcr^ C epiCTC, it is obvious that (ii) (iii). Conversely, suppose 

that (iii) holds. Then, 

epi cTc n A* g gph (7c n A* + {0} x R+ 

^ CO |J(epi (7c, n 7A*) + {0} X R. 

=coU(epicrCi 门7八*)， 
iei 

where the last equality follows from the fact that each epi CTQ + {0} xR+ = epi aci 

and direct checking of definitions. So, (ii) holds. 

Finally, we assume that 0 e S. Then, the equivalences in (b) can be seen by 

following the same argument that was used to prove (a) with the use of (3.3.11) 

in place of (3.3.10). The proof is completed. • 
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The next theorem is an application of the previous theorem. It gives another 

important characterization of the linear regularity in Banach space. For the case 

when finitely many sets are considered, it reduces to [23’ Theorem 4.2] by Ng and 

Yang. 

Theorem 3.3.7 ([19，Theorem 4.5]). Let X be a Banach space. Let {Ci : i e 1} 

be a collection of closed convex sets with C :=门龙日,Ci ^^ and 7 > 0. Consider 

the following statements. 

(i) For each x G X, dc{x) < ^sup^^j dci{x). 

(ii) For each xeC, Nc{x) fl Bx. C n iBxO . 

(iii) For each xeC, Nc{x) H Bx. C co\J^^j{Nc,{x) n 7BX.). 

(iv) For each xeC, Nc{x) =•- Y^iei ̂ cAoc) and 

fe^^iW) n B x . CcoU( iVc , ( x )n7BxO-
\ iel J i€/ 

Then, (ii) => (i). If assume in addition that I is a compact metric space and the 

set-valued map i Ci is lower semicontinuous，then (%) (ii). Furthermore, 

if I is finite, then (i)分(ii) ^ (iii)分(iv). 

Proof. We first prove the implication (ii) (i). Suppose that (ii) holds. In 

order to prove (i), it suffices to show by Theorem 3.3.6 that 

gphcrcn A* C CO 门7八*) . (3.3.12) 
iei 

To do this, let {z\ac{z*)) e gphdc f l A*. Then, ？ G Bx*. A l s o , ( 知 = 

(Jc{z*) e R and so G 

Consider the special case when z* e Im d6c. So, there exists x e C such that 

(see (2.4.4) and Proposition 2.4.1) 

G d6cix) = Ncix) and {z\x) = ac{z*). (3.3.13) 
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Thus, 2* G Nc(cc) n Bx*. By (ii), there exists some directed set D and some net 

{X}U€B in c o U i e J ( 斤 n i B x * ) such that ~ a n d for each 1/ € D, 

乏 : = E 納 
jeJu 

for some finite 人 C I, Xj e [0，1], Aj = 1, and each x* £ Ncj{x) fl 7Bx-. 

Note, as in (3.3.13)，{x*, {x*,x)) e epiacj and so (xJ, (x^x)) e epicJc).门7八*. On 

the other hand, since ^ ~ 2 * ， o n e can see that〈巧’工〉~>• {z*,x). Note, by 

(3.3.13), that • 

iz^aciz*)) = {z\ {z\x)) = = w*-]im J] 
" “ j e J ^ 

Therefore, 

{z\ac{z*)) e coU(ep iac ,n7A*) . (3.3.14) 
iei 

We remark that (3.3.14) holds for G and ||2*|| < 1. 

Next, we turn to consider the general case. Since X is a Banach space and 

2；* G dom one can apply [31，Theorem 3.1.4] to obtain a sequence {(z^ , ；2*)}n6N 

from gph d6c (which implies that z* G Im d6c) such that 2* converges to in 

the norm (and so also in the weakly* topology) and cFc{Zn) converges to crc{z*) 

in R. Noting that for each n eN, z^e Nc{zn), we have o - c « ) = « , 2„> as in 

(3.3.13). We first restrict our attention to the case when ||z;i;|| < 1 for infinitely 

many n G N. Then, by considering subsequence if necessary, one can assume that 

II4II < 1 for all n G N. So, for each n G N, (3.3.14) holds for Zn in place of 2；*, 

that is 

(<，^cK)) G CO |J(epi oci n 7A*) . (3.3.15) 
i€/ 

By taking limit on the left hand side of (3.3.15), one sees that (3.3.14) holds. 

Finally, we consider the case when there are only finitely many n G N such that 

II2;* II < 1. Without loss of generality, one can assume that ||2*|| > 1 for all n G N. 

So, by the condition that ||2*|| ~>• \\z*\\ and 2* e Bx*, we must have 丨丨2*|| = 1. 
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Since Im dSc is a cone, we see that G Im dSc- Hence, for each n G N, one 

can apply (3.3.14) to in place of 2*. So, 

( 赢 叱 ( 1 & ) ⑷ (3.3.16) 

Again, (3.3.14) holds by taking limit on the left hand side of (3.3.16). Therefore, 

we conclude that (3.3.12) holds in any case, which implies that (i) holds. 

Now, assume in addition that / is a compact metric space and the set-valued 

map i Ci is lower semicontinuous on I. We will prove the implication (i) 

(ii). Fix a e C. By [2，Corollary 1.4.17] and the lower semicontinuity of z C,, 

one sees that for any z £ X, the function i 1—»• dci{z) is upper semicontinuous 

on I. So, by [31，Theorem 2.4.18], we have d{sup^^j dci)(a) = co\J-^j ddci{a) • 

Since (i) holds and dc{a) = 0 = 7supjg/ dciia), it follows from the definition 

of subdifferential that ddc{a) C ^(7 sup^^j dci)(a). Furthermore, we recall that 

ddc(a) = Nc(a) D Bx* and each ddc人a) = Nc人a) n Bx* (see [31, Theorem 

3.8.3]). Hence, 

Nc{a) n Bx* - ddc(a) 

^ ^(7 s\ipdc,){a) 
ia 

= jd(sup dc,){a) 
iei 

ly. 

二 ^co[jddc,{a) 
iei 

iei 

iei 

Since a G C is arbitrary, we see that (ii) holds. 

We next consider the special case when I is finite and prove that ( i )分(i i) 

(iii) (iv). Write I = {1,2, . . . ,m} for some m G N. The equivalence (i) ^ (ii) 

is true by what we have just shown together with the fact that I is compact with 
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respect to the discrete metric. Also, noting that the set co U^i (-^Ci(c) A i B x - ) 

is weakly* closed, it is clear that the equivalence (ii) (iii) holds. It remains 

to show that (iii) (iv) (as the converse implication is obvious). Suppose that 

(iii) holds. By Theorem 3.3.1，it suffices to show that 
m 

Nc{x) C Y^ Nc人x) for eachrr G C. (3.3.17) 
i=l 

Fix X E C and let x* G Nc{x). Note that 0 G Nciipc) and so we assume 

that X* + 0. Since N c � x ) is a cone, one sees that ^ ^ G Nc{x)门 Bx*. By (iii), 

it follows that 

for some C [0,1] with 入 � = 1 and x* G Afe(rr) ft Bx* for all i. Thus, 

X* = Xlili T'^ilk^lki- By the fact that Nc人oc) is a cone for all i, one concludes 

that X* e Z X i Nci(oc). So, (3.3.17) is established and the proof is completed. • 

The following theorem is from [19, Theorem 4.6], which reveals the fact that 

together with an additional assumption, linear regularity becomes a sufficient 

condition for the SECQ. 

Theorem 3.3.8 ([19, Theorem 4.6]). Let {Ci : i e 1} be a collection of closed 

convex sets in X with C := Hie/ + 0- Suppose that {Ci : i e 1} is linearly 

regular and that 

co|J(epiac,nA*) C ^^^epiac,. (3.3.18) 
iei i€l 

Then，{Q : i e 1} satisfies the SECQ. 

Proof. Since each epi crc. is a convex cone, (3.3.18) implies that 

CO |J(epi aci 门 7八*) C ^ epi ctq for all 7 > 0. 
iel i€l 

Hence, thanks to the regularity assumption, the implication (i) (ii) of Theo-

rem 3.3.6 entails that epiac A A * � J2iei ^Ci • Therefore, by Corollary 3.2.6, 

we see that {Ci : i £ 1} satisfies the SECQ. • 
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We have to give some sufficient conditions for (3.3.18). The following proposi-

tion will be helpful for its proof. It states that (3.3.18) is translational invariant, 

in the sense that the set equality will be preserved even if we translate the whole 

collection {Q : i e I}. 

Proposition 3.3.9. Let {Ci : i G / } be a collection of closed convex sets in X. 

Then, the following statements are equivalent. 

(i) CO Uie/(epi (^Ci A A*) C J2iei epi crĉ  

(ii) For each xeX, qo Uie/(epi oCi-x n A*) ^ Die/ 印i 叱i-工. 

Proof. Following the same argument as that was shown in the proof of Proposition 

3.2.7, one can show that, for each z e X and (z*, jS) e X* xR, we have 

e P + {z\ z)) e X^^picrQ, 
iei iei 

{Z%P) E co|J(epi 叱 广 A * ) (z\l3+{z\z)) E 

i£l iei 

To finish the proof, it suffices to prove that (i) (ii) because the im-

plication (ii) (i) is trivial. Suppose that (i) holds and fix x G X. Let 

{x*,a) G coUieJ(epi JCi-z n A*) • Then, one can find a directed set D and 

a net Q coU.gj(epia^-x 门八*) such that ~ ( ; r *， a ) . 

Note that for each u e D, one has (x*,^^, + G coU.g;(epiaci A A*). 

Since {xl.a^ + {^l.x)) ~ + (x*,rc)), it follows from (i) that (x*,a -f 

{x*,x)) G Xlie/^Pi^c-i, which in turn implies that G ^Zig/^Pi^Ci-x- So, 

(ii) holds. • 

The following technical lemma will be used in the next theorem and Section 

3.4. 

Lemma 3.3.10 ([19, Lemma 4.7]). Let X be a normed linear space and I be a 

metric space. Let {Ci : Z G / } be a collection of closed convex sets in X. Assume 



Sum of epigraphs of conjugate functions in semi-infinite convex optimization iii 

that the set-valued map�Z 门（7玄 is lower semicontinuous on I. Suppose that 

there exist a directed set D, a net {iu}v&) ^ I, (x* ,̂ ĉ î ) G epi ad^, iq G I, 

{xq, AO) G X* X E and a sub space Z of X such that ——>• io, ai^ ——>• AO, 

x*Jz XQ\Z and {xl\z}ueB IS bounded. Then, {XQ, QO) € epi (JznCi^. 

Proof. We have to show that ( T z n C i � ^ To do this, it suffices to show 

that for each 2; e ZnC î。，î ô )̂ < <̂ 0. Fix 2 G Z n C ^ Since i ZnC"! is lower 

semicontinuous at ZQ, it follows from Theorem 2.7.1 that for each j 6 / , there 

exists some 2；) G Z n Cj such that Zj ——>• z as j io- In particular, G Z 门 Ci" 

for any G ID), and Zi^ —>• z (thanks to iy ——z'o). Note that 

�2.;，2；〉= {xl-xl, z)^xl, z-ZiJ)+{xl, > < {xl-xl,z)+\\xl\z\\z\\z-za-^ai^. 

(3.3.19) 

By passing to limits in (3.3.19), we obtain (a:̂ , z) < ao- • 

We are ready to give the promised sufficient condition for (3.3.18). This is 

from [19, Theorem 4.8 . 

Theorem 3.3.11 ([19, Theorem 4.8]). Let {Cj : i e 1} be a collection of closed 

convex sets in X with C := pl-^j Q 0. Suppose that I is a compact metric space 

and the set-valued map i i-h> Ci is lower semicontinuous on I. Then, (3.3.18) holds 

if at least one of the following conditions holds. 

(i) I is finite. 

(ii) There exists some io E I such that Ci�is of finite dimension. 

Proof. In view of the result of Proposition 3.3.9, we can assume (by translating 

the sets if necessary) that 0 G 门似 Ci. Then, for any i e I, Od is a non-negative 

real-valued function on X*. Then, it readily follows that 

epi aci 门 A* = epi CTQ A for each i e I. 
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So, (3.3.18) is equivalent to 

(epi AC, N A ; ) C ^ epi CTC, (3.3.20) 
i€l iel 

Thus, the proof will be completed if we can show (3.3.20) for each of the cases 

(i) and (ii). 

For (i): Let I be finite, say I = {1,2，...，m}，where m G N. Let e 

CO Uili (epi (TCi n A:l|_) . Then, there exist a directed set D and a net {(巧, 

in coUIli(epii7Ci n A；) such that ~ F o r each G D, there 

exist some (么；；；’龙，a"’i) 6 epi aci 门 A ^ ， G [0，1] with = 1 such that 

m 

= (3.3.21) 
i=l 

By passing to subnet if necessary, one can assume that 0 < fi for any i/ E D, 

where :—a + l. Note that for any iv G D and i G {1，…，m}, 

0 < 

Also, since Xu,i G [0，1] and epi aCi is a cone, we have 

e epi(jQ n A: 

(3.3.22) 

(3.3.23) 

By the weakly* compactness of Bx* (which follows from Banach-Alaoglu Theo-

rem, see [21，Theorem 2.6.18]), (3.3.22) and (3.3.23), one can assume, without 

loss of generality, that for each i G { 1 , . . . , m} , there exist some y* 6 Bx* and 

A G [0，fj] such that 

Xu，iZ:，i ^切.y* and ~ ^ 

In particular, it follows that ~^切* (2/7’ A ) . By the weakly* 

closedness of epi ac^ and (3.3.23), one sees that [y;, /3i) e epi ad- So, by taking 

limits in (3.3.21), we obtain 

m m m 

i=l 1=1 1=1 
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Since {z*,a) G c o H A!j.) is arbitrary, we have proved that the set 

inclusion (3.3.20) holds for the case (i). 

Next, we turn to consider the case (ii): there exists some io e I such that Ci� 

is of finite dimension. Define V := span Cio(= aff Qo) and let m be the dimension 

of r. We will show that (3.3.20) holds. Let (T,a) G c o l J i e / (印门八；） . 

Then there exist a directed set D and a net {(z*, C co ^ 

such that ~^也* Note that coUie/(epi(7Q fl A;)|yxR CY* xR 

and y* X M is of dimension m + 1. Hence, by the virtue of Caratheodory Theorem 

[25，Corollary 17.1.1], one can express each (J:|y，石as a convex combination 

of m + 2 elements from (J.g^(epictq A So, for each G D, there exist 

何 }巧2 C /’ c [0，1] with 入"’j = 1，and 

{zlj，�’ j ) G epi ac^^ n A ; for each j = 1 , . . . ’ m + 2 

such that 
m+2 

(3.3.24) 

(3.3.25) 
j=i 

In particular, since epicTj is a cone for all z G / , (3.3.24) implies that 

G epi(7c^u for eachi/ G P and j = 1 ’ . . . ’ m + 2. (3.3.26) 

Since a,y ~>• a, one can assume without loss of generality that 0 < < // for 

all G P, where // := a + 1. Hence, for each j 二 1，…，m + 2，one has 

^ Bx- and {X^ja^j}^^^ C [0,/u]. (3.3.27) 

By the weakly* compactness of Bx* and passing to subsets if necessary, one can 

assume that there exist some { ？ C Bx* and C [0,/x] such that 

~^切* y* and KJOLU^J ~ f t - for each j = 1’ •..，m + 2. (3.3.28) 

Furthermore, by the compactness of /，one can assume that there exist C 

I such that 

î j ~ i j for each j = 1，…，m + 2. (3.3.29) 
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In view of (3.3.26), (3.3.27), (3.3.28) and (3.3.29), we can apply Lemma 3.3.10 

(to X in place of Z) to see that 

(ypPj) G epi acj for eachj = 1’ … ’ m + 2. (3.3.30) 

Now, by taking limits in (3.3.25)，we obtain 

m+2 
(3.3.31) 

Take d* := T-jy^^i Vj- Then, = 0 and hence (cT,0) eY-^xR+. Note that 

y丄 X IR+ g epi aci^, thanks to the fact that 0 G Cip C Y. So, (cf ’0) G epidQ� . 

Since = (cr，0) + E 7 = f fe^ft) (by (3.3.31))’ it follows from (3.3.30) that 

m+2 
G epi acio + epi。％ ^ ^ epi (JQ . 

Therefore, (3.3.20) follows. This completes the proof. • 

The following corollary is an immediate consequence of Theorems 3.3.8 and 

3.3.11. 

Corollary 3.3.12. Let {Ci : i E 1} be a collection of closed convex sets in X with 

C := Hie/ + 0- Suppose that I is a compact metric space and the set-valued 

map i Ci is lower semicontinuous on I. Assume that [Ci : i £ I) is linearly 

regular. Then, {Ci : i £ 1} satisfies the SECQ if at least one of the following 

conditions holds. 

(i) I is finite. 

(ii) There exists some IO G / such that Ci^ is of finite dimension. 

Below we give an example to show that the linear regularity of {Ci : i G / } 

may not imply the SECQ, when I is infinite. 
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Example 3.3.2 ([19, Example 4.1]). Let X and I N. For each i e N, 

define 

Ci := {xeR^: ||x|| < -}. 

Then, C 门ieNCi = {0}. Note that 

d(x, Ci) = max{0, ||a;|| - for any x G and z G N. 

Then, 

d{x, C) = d{x,0) = ||a:|| = s\ipd{x,Ci) for any x G R^ 
I€N 

So, {Ci : i £ 1} is linearly regular. On the other hand, one has that 

NciO) - A^{o}(0) = E^ and N c M = {0} for any i e N. 

Hence, 

iei 
So, {Ci : i e N} does not satisfy the strong CHIP. This implies that {Ci : i e / } 

does not satisfy the SECQ, thanks to Theorem 3.3.2. 

3.4 Interior-point conditions for the SECQ 

As we have seen in Theorem 3.3.2, the SECQ serves as a sufficient condition for 

the strong CHIP. Since sufficient conditions for strong CHIP were extensively 

studied in the literature, it is natural to compare the SECQ with some known 

sufficient conditions for the strong CHIP, while most of them are interior-point 

type conditions. In this section, we will study the relationship between the SECQ 

and some interior-point type conditions. It turns out that the SECQ is weaker 

than that. Our analysis will be divided into two parts, the first part will be 

devoted to study the case when I is finite, and the case when I is allowed to be 

infinite will be discussed in the second part. 
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3.4.1 I is finite 

Given a collection of closed convex sets {Ci : z € / } in X , we assume that I is 

finite throughout this subsection. First, we prove the following theorem, which is 

more general than what we need at this stage. It gives a formula for computing 

the conjugate of the sum of two functions under some additional assumptions. 

Indeed, this theorem will be further elaborated in Chapter 4. Recall that given 

a set A in X, core A := {a e A-."ix e X, 36 > 0 s.t. VA G [0,6), x + Xa e A}. 

Theorem 3.4.1. Let f,g£ r(X) be such that with dom/Adomg • 0. Suppose 

that at least one of the following conditions hold: 

(i) There exists some XQ G dom / A dom g such that g is continuous at XQ 

(ii) X is a Banach space and dom f A int (dom g) ^ 0. 

(iii) X is a Banach space and 0 € int (dom / - dom g). 

(iv) X is a Banach space and 0 G core (dom / — dom g). 

(v) X is a Banach space and |JA>oA(dom/ — dom^f) is a closed suhspace of 

X. 

Then, (f + g)* 二 /*口9̂ * with exact infimal convolution. Moreover, one has 

epi ( / + W* = e p i r + e p i p * . (3.4.1) 

Proof. It is easy to check that (ii) implies (iii). By [31’ Theorem 2.8.7], one sees 

that any of (i) and (iii)-(v) implies that ( / + g)* = with exact infimal 

convolution, and so does (ii). Further, (3.4.1) follows from the first assertion and 

Proposition 2.6.2(ii). • 

Using the previous theorem, the following result follows, which discusses the 

SECQ for two sets. It is the result by Jeyakumar et. al. (see [9, Proposition 3.1]). 
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Theorem 3.4.2 ([9, Proposition 3.1]). Let Ci,C2 C X be two closed convex sets 

with n C2 Suppose that at least one of the following conditions hold: 

(i) CinintC2 7^0. 

(ii) X is a Banach space and 0 G core(Ci — C2). 

(iii) X is a Banach space and L J A > O — C2) is a closed sub space of X. 

Then, {Ci,C2} satisfies the SECQ. 

Proof. This follows from Theorem 3.4.1 (applied to the case when f = Sci and 

g = Scs) and the fact that (Sc^ + Sc^)* = (̂ CinCa = ^CinCi on X*. • 

Below we give an example of a system of two sets which satisfies the SECQ 

(and so as the strong CHIP, by Theorem 3.3.2)，while it does not satisfy the 

conditions (i)-(iii) in Theorem 3.4.2. In view of the result of Theorem 3.3.2 and 

3.4.2, we see that for a system of two sets, the SECQ is the weakest sufficient 

condition for the strong CHIP when compare with conditions (i)-(iii). 

Example 3.4.1. Recall the setting of Example 3.2.1: Let X := R. Let C := [0,1] 

and D := [-1,0]. Then, C n D = {0}. We have seen that {C,D) satisfies the 

SECQ. Now, note that 

AWO) = ( -00，0]， JVD(O) = [0,+oo), NCNNIO) = E. 

Hence, 

NcnniO) = R = Nc(0) + ND(0). 

So, {C, Bj has the strong CHIP. On the other hand, note that 

Also, core (C-D) = (0’ 2), and thus 0 ^ core (C-D). Moreover, UA>O A ( C - D ) = 

0，+00), which is not a subspace. Therefore, we see that {C, BJ does not satisfy 

the conditions (i)-(iii). 



with exact infimal convolution. 

Moreover, one has 
m m 

= (3.4.2) 
i=l i=l 

Theorem 3.4.4. Let {Ci : z 6 / } 6e a finite collection of closed convex sets 

in X with Ci ^ 0. Suppose that there exists some zq G / such that Ci�D 

int (r\iei\{io} Ci) + 0. Then，{Qiie 1} satisfies the SECQ. 

3.4.2 I is infinite 

In this subsection, we suppose that the index set / is a compact metric space, 

while I is allowed to be infinite. In [18], Li and Ng gave some interior-point type 

conditions for the strong CHIP of infinite system of closed convex sets in a general 
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For the case when |/| > 2，we give the following theorem, which follows easily 

from part of Theorem 3.4.1 and the fact that for any m € N and / i , … , f m G 

nx) with r C i ( d o m / , ) ¥ 0， 

( / i • … . d / ^ ^ - i p / m = (/i•….ID/m)’ 

where the exactness of either one side will imply that of the other side. 

Theorem 3.4.3. Let I { 1 , . . . ,m} for some m G N. Let {/^ : z G / } C 

r(X) be such that plie/ldom fi) ^ 0. Suppose that at least one of the following 

conditions hold. 

(i) There exists some io e I and XQ e X such that all functions in {fi : 

i G / \ { i o } } are continuous at a^o-

(ii) X is a Banach space and there exists some io € I such that dom/io n 

int (ni6 /\{io}(dom/0) 

Then, 
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normed linear space. By considering similar type of conditions, in [19], they gave 

sufficient conditions for the SECQ when I is allowed to be infinite. Here, we will 

show their results and we begin with the following two definitions. 

Definition 3.4.1 ([18，19]). Let D C X be a closed convex set and {Ci : i e 1} 

be a collection of closed convex sets in X. Then, the collection {D,Ci : z G /} is 

said to be a closed convex set system with base set D (abbreviated as CCS-system 

with base set D) if Dn 门对 Q + 0. 

Definition 3.4.2 (see [19]). Let {D,Ci : i e 1} be a CCS-system with base set D 

in X and m € N. The CCS-system is said to satisfy m-D-interior point condition 

if 

D n …rintD C^j ^ 0 for any J Q I with \J\ < m. 

Suppose that we are now given a CCS-system {D, Ci : i G / } with base set 

D. We will show some sufficient conditions for the SECQ of this CCS-system. 

In order to simplify the proofs that we are going to show, we assume that 0 G 

D n 门对 Ci (we are allowed to do so as the SECQ and the sufficient conditions 

that we consider are all translational invariant). Now, we first prove the following 

technical lemma. Recall that given a set ^ C X , the orthogonal complement of 

A is defined by 

A 丄 { x * G : a) = 0 ， V a G A}. 

Lemma 3.4.5 ([19, Lemma 5.2]). Let {D,Ci : i e 1} be a CCS-system with base 

set D such that 0 € D 门 门 C i . Let m G N and Z := spanD. Suppose that the 

following conditions are satisfied. 

(i) Z is finite dimensional. 

(ii) The set-valued map S •Z 门 i s lower semicontinuous on I. 

(iii) The CCS-system {D,Ci : i E 1} satisfies the m-D-interior point condition. 
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Furthermore, let {x*,^) G X* x E and a sequence 

epi be such that 

0 4 k , “ ) 一丨丨.“(工*丨』， 

where each can be expressed in the form 

m 

J=1 ‘ 

with 

{v*k e epi gd and {w*k, Tt̂ ) G epi ac.^ 

for some if,..., zj^ G /. Then, 

Q epi GD + 

(3.4.3) 

(3.4.4) 

(3.4.5) 

(工*,0 G epi^D + E 印ic^zncr 
iei 

Proof. By the compactness of /，one can (by passing to subsequences if necessary) 

assume that for each j G {l，...，m}，there exists some ij G I such that ij ——>• ij 

as k >• 00. By the assumption (iii), there exists some ZQ e Dn flJLj rint^Cî .. 

Hence, one can find some > 0 such that B{zo,6')门 Z Q Ĉ j) for any j G 

{1，…，m}. In particular, this implies that 

B{zo,S)nZ C rintz {B{zo,6')nZ) C rintz {QpZ) C CijClZ for any j G {l，...，m}, 

(3.4.6) 

where 5 := 6' 12. Since B(zo, (5) A Z is a closed and bounded set in the finite 

dimensional space Z, we see that B{zo,6)门 Z is compact. Thus, by (3.4.6), (ii) 

and Proposition 2.7.2 (applied to the space Z in place of X), there exists some 

K o e N such that 

B(zo, (5) n Z g n Z for any fc G N with k > KQ. (3.4.7) 

Now, we show that for each j G {l ’ . . .，m}’ the sequence {w*fc|z}fc€N is 

bounded in Z*. To show this, we first note that, for each j € {1，…,m} and 
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k > KQ, one can apply (3.4.5) and (3.4.7) to get 

> > C T z n c . f c = sup {w*k,z) 
J 3 J zeznc.k ] 

> sup {w*k,z) 
z€ZnB{zo,S) ^ 

={w*k ’ 2 0 � + sup {'W*k ’ z) 
J zeznBx* J 

={w*k,Zo) -\-6\\w*k\z\\z, 

and so 

- {w*k,zo) > 6\\w*k\z\\z-
J 3 J 

Since {vl,(3k) ^ epicr^ and so Pk > > (Vk,zo), it follows from (3.4.4) that 

for any k E N with k > KQ, 

7 = 1 

Combining with the fact that 一 <2̂ o�}fceN is bounded (thanks to (3.4.3)), 

we can conclude that {'w*k\z}keN is a bounded sequence in Z* for each j G 

{1,…，m}. 

Note that is bounded in Z* by (3.4.3). So, it follows from (3.4.4) 

and the boundedness of the sequence {tî JclzjfceN that the sequence {I'^lzlfceN is 

bounded in Z*. By considering subsequences if necessary, one assume hence-

forth that there exist some . . . , w)̂  G Z* such that vl\z v*, and 

w*k\z ~ y j j for all j G {1 , . . . ,m} . Moreover, observe that Pk > (^oivl) > 0 

and 7jfc > ac,,{w*k) > 0. Thus, by the boundedness of the sequence it 

follows from (3.4.4) that the sequences (jdkjkeN and {li^JiteN (for j e { 1 , . . m } ) 

are bounded. Without loss of generality, we can assume further that there exist 

/? > 0 and 7 i , . . . , 7m > 0 such that (3k ——and 7jfc ——^ 7j for all j € { 1 , . . . , m } . 
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By Hahn-Banach extension theorem, let v* e X* be an extension of v* from Z 

to X, and for each ji G {1，...，m}，Wj G X* be an extension of w* from Z to X. 

So it follows from (3.4.4) that 
m m 

= + and € = + 厂 （3.4.8) 

j=i j=i 

It is an easy consequence from the Hahn-Banach extension theorem that 

epi (JD\ZXR = epi ^D , 

where ^d is the support function of D in the space Z. Since Pk)}keN ^ epi ctd 

and (vl\z,l3k) one has 

/ n\ ^ 7 ： 71 ll'lUxK —~ll'IkxR • A 
(?Mz，/?) G (epiCTD)lzxR = epi(JD =epi(7D. 

So, {v*,l3) e e p i t h a n k s to the fact that D C Z. Also, one can make use 

of (3.4.5) and apply Lemma 3.3.10 to see that G epi (TznCi. for each 

i G { 1 , . . . , m}. Define d* := x* - v* - 巧.Then , (d\ 0) € Z丄 x {0} by 

(3.4.8). Thus, 
m 

{x\0 = ( f ’0) + + EK，7_7) e Z丄 X {0} + e p i叩 + X^PiJz门Ci. 

j=i ie/ 

It is direct from definition that Z丄 x {0 } C epi ao- Therefore, with the set 

inclusion Z丄 x {0} + epi (Td C epi (JD, we see that (x*,^) e epi cro+^i^j epi aznCi-

This completes the proof. • 

The following theorem is the main result in this subsection, this is from [19, 

Theorem 5.3 . 

Theorem 3.4.6 ([19，Theorem 5.3]). Let {D^Q : i e 1} be a CCS-system with 

base set D such that 0 G D A 门 ^ Ci. Let m G N and Z := spanD. Consider the 

following conditions: 

(i) Z is of finite dimension m. 
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(ii) The set-valued map i Z A is lower semicontinuous on I. 

ii) {D,Ci :iel} satisfies the (m + 1)-D-interior point condition. 

v) For each i ^ I, {D, Q } satisfies the SECQ. 

I {_D, Ci : i ^ 1} satisfies the m-D-interior point condition. 

I For any J C I with \J\ = mm{m + 1，|/|}，{D,Cj : j e J} satisfies the 

SECQ. 

Then the following statements hold. 

(a) If (i)，(ii), (Hi) and (iv) hold, then {D,Ci : i e 1} satisfies the SECQ. 

(b) Suppose that (i), (ii), (Hi*) and (iv*) hold. Assume in addition that D 

is bounded. Then, {D, Cj : i e. 1} satisfies the SECQ. 

Proof. We first prove (a). To begin with, we will show the set inclusion 
w* 

epi (JD + ^ epi o a Q epi gd + ^ epi aznCi • (3.4.9) 
i£l iel 

Let (x*,^) G epi(j£) + Yliei ^Ci . Note that 

( e p i + ^ e p i A C , )\ZXR Q (epi^D + ^ e p i d c J U x R 
iel iG/ 

； INIzxR 

=(ep ia^ + ^ e p i a c J U x R ， 

iei 

where the set inclusion follows from direct checking of definition, and the set 

equality holds by the finite dimensionality of Z. Thus, one can pick a sequence 

Q epi (Id + T^iei ^Ci such that 

{xllz.^k) — ( 3 . 4 . 1 0 ) 

On the other hand, it is easy to see that epi aci = cone (Uie/ ^pi^cj- Ob-

serve that the set cone (Uie/ epi is a convex cone generated by the collec-

tion {(epi (TCi)\zxR ： i ^ 1} of subcones in the m+1-dimensional space Z* x E. By 
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the Caratheodory Theorem [25, Corollary 17.1.2], it follows that for each A; G N, 
m+l 

(xllzAk) = {vl\z,Pk) + X (̂<�|z，7i》） （3.4.11) 
j二 1 ‘ 

with 

K , M e epi GD and (W;》，G epi AC.^ for some i f , . . . ’ i^+i € I. 

(3.4.12) 
Hence, thanks to the assumption (i), (ii), (iii) and Lemma 3.4.5 (applied to 

m + 1 in place of m), one has (X*,^) e epi CJD + JZie/ epicrznCj- So, (3.4.9) holds. 

In particular, it follows from Proposition 3.2.5 that 

epi ĉ DnHig/ Ci = epi C7D + J Z ^Ci Q epi (Td + ^ epi (JznCi. (3.4.13) 
iG/ i€l 

Since D C Z and thanks to the assumption (iv), it follows that 

epi (JDnfiie/ Ci ^ epi + ^ epi GznCi ^ epi <Jd + JZ 印i 
i€l iel 

=epi (TD + y^(epi (JD + epi CTQ) 
i€l 

=epi GD + y^epiacj-
i€l 

Therefore, by Corollary 3.2.6, we conclude that {D,Ci : i e 1} satisfies the 

SECQ. 

We now turn to prove (b). Suppose that the conditions stated in (b) hold. In 

view of (iv*), one assumes without loss of generality that |/| > m + l. We claim 

that (3.4.9) holds in this case. Let {X*,^) e epiCTD + epi (^CI . By following 

the same procedure as shown in the proof of (a), pick {(̂ 'fc5î fe)}fc€N 

and for j G {l，...，m + l } such that (3.4.10), (3.4.11) and (3.4.12) 

holds. 

Fix keN. Note that for a.ny zeDn f l^V Ĉ fc, 

m+l m+l m+l 

^k=i3k+Yl ^i) ̂  吓 ( < ) + H w p > ( � � + X I W f ' ^ ) =�4，办 
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which implies that 

^k > sup (xl, z) = c.k 04) . 

Since 
is compact {as DO Ĉ fc is a closed and bounded set in 

the finite dimensional space Z), there exists 2；0 G •D n D二 i C'jfc such that 
^k > (̂ fc) = 勿〉. （3.4.14) 

Thus, xl e Â /̂ nnvL+ii c “ : o ) by (2.4.4). Thanks to assumption (iv*), one knows 

that {D,Cjfc : j = 1，•.. ’ m + 1} satsifies the SECQ and so the strong CHIP by 

Theorem 3.3.2: 

m+l / m + 1 \ 

(卻)=^d (zo ) + Y , Nc�o) = Nd{zo) + cone [ J N c ^ z o ) ， 
� 3=1 ‘ \ j = l ‘ / 

and it follows that 
, m + l \ 

e ND(ZO)\Z + cone [ J NA,(ZO)\Z J . 

By the virtue of Caratheodory Theorem [25，Corollary 17.1.2] (applied to the 

m-dimensional space Z) , there exists some Lk C {i，： j = 1,...，m + 1} with 

\Lk\ = m, sli E Nciizo) (so (si’" ZQ) = ac风丨)by (2.4.4)) for each I e Lk, and 

yl E ND{ZO) (SO (yl Zo) = aoivl) by (2.4.4)) such that = VIIZ + EI^L, 4 , / U -

Then, as ZQ E Z, 

Cfc > (^l^o) = (yl Zo) + ^ { s l p Z o ) = (Joiyl) + (7^(5；,/). 
leLk leLk 

Hence, (YL乂K 一 E/eLfc ^ epi (JD- Noting that, 

l€Lk leLk 

we can then use Lemma 3.4.5 to conclude that (a:*,^) G epi GD + Yhi^I epi cznci• 

So, (3.4.9) holds. 
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Finally, noting that for each i G I, one can find some J Q I with 7 G J such 

that \ J\ =772 + 1 (such J must exist because |/| > m + 1). Thus, by (iv*), 

epi aznCi Q epi (TDnnj^jCj = epi cr£, + ^ epi (7c,•. (3.4.15) 
jeJ 

Therefore, by Proposition 3.2.6，(3.4.9) and (3.4.15)，one gets 

epi cTDnfiie/ Ch = epi ^̂ d + E epi ac‘ C epi + ^ epi aznc, 
i€l i€l 

c epi (Tp + y ] epi ac^. 
i€l 

So, {B, Ci : i e 1} satisfies the SECQ, thanks to Corollary 3.2.6. This completes 

the proof of (b). • 



Chapter 4 

Duality theory of semi-infinite 

optimization via weakly* sum of 

epigraph of conjugate functions 

4.1 Introduction 

In the last chapter, we have studied the sum of epigraphs constraint qualification 

(SECQ) of a collection of closed convex sets, in which the epigraphs of support 

functions are considered. Note that, as seen in Proposition 2.4.1, one has = CTA 

for any non-empty set A in a real normed linear space X. So, given a collection 

of closed convex sets {Ci : z G / } with C 门《召,Q + 0, we can reformulate the 

definition of SECQ for { C i : i e / } (see (3.2.1)) as follows: 

= (4.1.1) 
i£l 

where 5 � = Yliei ^Ci- Recall that 6a is a proper lower semicontinuous convex 

function on X if A is a nonempty closed convex set. Motivated by (4.1.1) as 

was shown above, it is natural to ask the following questions: Given a collection 

of functions {fi : i 6 1} in r ( X ) and let / := Yl^^j fi on X. When does it 

70 
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hold that epi f* = X^.^^epi/*? Moreover, what are the consequences if such 

set equality holds? Based on these two questions, we will study the "sum" of 

epigraphs of conjugate functions and see how is it related to optimization theory 

in this chapter. (Here, we remark that the term "sum" that is used in this chapter 

is different from the one that was studied in Chapter 3, as will be seen later.) 

To begin with, let us state the following form of the famous Fenchel Duality 

Theorem (cf. [25, Theorem 31.1]): 

T h e o r e m 4 . 1 . 1 . Let X be a finite dimensional space. Let f,g : X — E U { + 0 0 } 

be two proper convex functions. Suppose that rint (dom / ) A rint (dom g) 0. 

Then, 

ini{f{x) + g{x) : x e X} = max{-r(x*) - : x* G X*}. (4.1.2) 

The Fenchel Duality Theorem enables ones to transform a primal minimiza-

tion problem to its dual maximization problem, and an optimal solution can be 

found for the dual problem. The critiria stated in the theorem for such transfor-

mation is an interior-point type condition. Since there are minimization problems 

in which their dual maximization problems are easier to be handled (see [11，Ex-

ample 25.2] for example), the Fenchel Duality Theorem is proved to be useful in 

the optimization theory. Note that, in the language of conjugate function and 

infimal convolution, the equality (4.1.2) can be written as follows: 

if + p)'(O) = -(/*口 / ) ( 0 ) with exact infimal convolution. 

So, it is immediate for us to see that (4.1.2) is closely related to the following 

statement: 

For any x* G X*, {f -\-gy{x*) = -(/*口/)(3：*) with exact infimal convolution. 

(4.1.3) 

In the literature, many researchers were interested in generalizing the Fenchel 

Duality Theorem. More precisely, they seek weaker sufficient conditions for 
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(4.1.2)，or more generally, for (4.1.3), under the setting of some more general 

spaces. See [1, 8, 22，24, 27] for some of those successful generalizations. In fact, 

in Theorem 3.4.1，we have stated some sufficient conditions for (4.1.3). Moreover, 

generalization of (4.1.3) to the setting of finitely many functions was discussed in 

Theorem 3.4.3. However, among many of those generalized sufficient conditions 

for the Fenchel duality, most of them are still interior-point type conditions. In 

[10], Burachik and Jeyakumar provided a characterization of (4.1.3) in terms of 

the sum of the epigraphs of the conjugate functions of f and g, and that theorem 

is stated as follows: 

Theorem 4.1.2. [10, Theorem 1] Let X he a Banach space. Let /，分 G r(X) be 

such that d o m / n domg* + 0. Then, the following statements are equivalent: 

(i) ( / + g)* = f*Og* with exact infimal convolution. 

(ii) epi f* + epi g* is weakly* closed. 

(iii) For each £： > 0 and x e dom f n dom g, 

deif + 9)(x) = \J{deJ{x) + deA^) ： £1,^2 >0,^1 +£2= s}. 

The merit of this theorem is that it avoids the classical interior-point type con-

ditions and gives a complete characterization of (4.1.3). Moreover, Jeyakumar 

et. al. gave examples in [10] to show that the condition (ii) in Theorem 4.1.2 

is weaker than some classical interior-point type conditions. So, their result of-

fers further insight to the Fenchel Duality Theorem. Inspired by consideration 

of semi-infinite optimization problems, it is interesting to extend Theorem 4.1.2， 

make it applicable in the setting of a (possibly infinite) collection of {fi ： i ^ 1} 

in r ( X ) , where X is a. normed linear space. It turns out that such generalization 

is non-trivial. In [20]，Li and Ng used the notion of weakly* sum of sets to study 

the Fenchel duality for an infinite collection of proper convex lower semicontinu-

ous functions in normed linear space, and they gave a complete generalization of 
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Theorem 4.1.2. Their result shows that the Fenchel duality can still be discussed 

in the setting of semi-infinite convex optimization theory. 

In this chapter, we give an overview of the work that was done by Li and 

Ng in [20]. First, we define the Fenchel duality for an infinite system of proper 

extended real-valued functions. Then, we study a generalization of Theorem 

4.1.2, which utilized the notion of weakly* sum of epigraphs of conjugate functions 

and e-subdifferentials. After that, we consider two special classes of functions: 

continuous functions and non-negative functions. Sufficient conditions for the 

generalized Fenchel duality of these two classes of functions will be studied. 

4.2 Fenchel duality in semi-infinite convex opti-

mization 

Unless otherwise stated, let X be a real normed linear space in the rest of this 

chapter. In this section, the main theorem is the generalization of Theorem 4.1.2 

for a system of functions {fi : i e 1} in r (X ) , where |/| is allowed to be infinite. 

Before we show this, we first state the following definition of Fenchel duality for 

an arbitrary system of proper extended real-valued functions. 

Definition 4.2.1. Let {f,fi : i e 1} be a collection of proper extended real-valued 

functions on X such that 

= •工 e l 
iei 

Then, this collection of functions is said to satisfy the Fenchel duality if the 

following equality holds: 

inf {fix) : x e X } = m a x { - ^ ^ : = 0}. 
iei iei 

Remark 4.2.1. It is easy to see that (4.2.1) is equivalent to 

i€l iel 

(4.2.1) 
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Consider the following equality: 

N^N = niin{J2 f ； ⑷ : = 工 * } ， • 工 * ^ 义*’ （4.2.2) 
i€l i€l 

which is obviously equivalent to 

inf{/(a:) - (x\x) :xeX} = f*{x；) : = x*}, ^x* e X\ 
i£l iel 

Using Young's inequality, one can show that the following inequality always hold: 

r i x * ) < i n f { ^ f:{x：) : = ? }，V T * G ； r . (4.2.3) 
iei iei 

So, it follows that (4.2.2) holds if and only if 

r { x * ) = Y^ f:{x；) for some {x*} ia C ； T with = 广 (4.2.4) 
i€l i£l 

In order to generalize Theorem 4.1.2, we will study some equivalent formu-

lations of (4.2.2) in terms of weakly* sum of epigraphs and e-subdifferentials, 

which in turns gives new sufficient conditions for Fenchel duality for infinite sys-

tem of functions in r ( X ) . We need the following proposition, which is from [20, 

Lemma 3.1]. 

Proposition 4.2.1. Let {/, fi : i e 1} C r(X) be such that f = fi on X, 

that is, 

fix) = 制 for any x e X. (4.2.5) 
iei 

Then, 

epi/； Cepi /*. 
iei 

Proof. By the weakly* closedness of epi /* , it suffices to show that 

^ * e p i / ; C e p i r . (4.2.6) 
iei 
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Let e X* xR he such that {x\(x) e Then, for each i G / , 

there exists some (a:*, a^) G epi f* such that 

a = and {x*,z) = ^ for any z e X. (4.2.7) 
iei iei 

Fix z 6 dom / . By the Young's inequality (see (2.4.1)) and the fact that G 

epi f*, one gets 

(工;,z) - fi{z) < /； « ) < ai for any i G I. (4.2.8) 

With the use of (4.2.5), (4.2.7) and (4.2.8), it follows from Remark 2.8.2 that 

E i e i f i i ^ l ) exists in M and 

〈工*，。— f(z) = -Y^MZ) S X^ai 二 a. 
iei iei i€i iei 

By taking suprenium over all z G dom /，we have 

作 * ) = sup {{x%z)-f{z))<a, 
zGdom/ 

Thus, G epi f* and so (4.2.6) holds. • 

Here is the main theorem that we mentioned. Noting that Theorem 4.1.2 was 

proved in [10] under the setting of Banach space, we remark that such assumption 

is not necessary, as it can be observed in the following theorem. 

Theorem 4.2.2 ([20, Theorem 3.2]). Let {f,fi : i e 1} be defined as that in 

Proposition 4-2.1. Then, the following statements are equivalent. 

(i) For any x e X and £ >0, 

def(x) C = e}. (4.2.9) 
i&I iei 

(ii) For any x G dom f and £ >0, 

defix) = :ei>0,Y^s, = e}. (4.2.10) 
iei iei 



(4.2.14) 

mUf(x)-{x\x)) = max{-
xGX 

Noting that, for each i e I, one has 

i^lx)-ei< f:(x;) + Mx)-e, < (x:,2：), (4.2.15) 

where the first inequality is by the Young's inequality, and the second inequality 

follows from (2.4.2) and the fact that x* E d^Ji{x). Since ZlieJ〈工T，工〉=〈工*，力 € 

M and 一 ^i) =〈$*，力-£ e R (thanks to (4.2.14)), it follows from 

(4.2.12) 

Moreover, any of the statements (i) to (iv) imply that 

(V) The collection of functions {/，fi : i e 1} satisfies the Fenchel duality: 

i n f { / W ： x e X } = : E ^ r : = 0}. 
t€/ iei 

Proof. It is clear that (iv) implies (v), by taking af = 0 in (4.2.12). We now 

prove the equivalences. First, we will prove that (i) =>• (ii). Suppose that (i) 

holds. Let x e dom/ and £ > 0. In order to show (4.2.10), it suffices for us to 

show that 

def(x) D Si = e}. (4.2.13) 
i€/ te/ 

Let X* be in the RHS of (4.2.13). Then, for each i G / , there exist some > 0 

and xl e deji(x) such that 
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(iii) epif* = J2Ujepif*. 

(iv) For any x* G X*, 

n ^ l = minlY^ftix：) : = ：!：*}. (4.2.11) 
iei iei 

That is. 

s
 

I
-^

 

r

 /
 

>
 .
托
 

and 

iei 
E 版 
i€l 
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(4.2.15) and Remark 2.8.2 that E i G / ( / i ' « ) + / i W — ^i) exists in R (and so 

Zlie/ f i i^ i ) exists in R) and 

E fi{x：) + fix) - e = Y^iftix；) + Mx) - Si) < J2(xlx) = {x\x). (4.2.16) 
i€l i€l iel 

Now, for any z G dom f , the Young's inequality implies that 

(xhz) - Mz) < f:{x；) for any i G I. (4.2.17) 

Summing over alH G / in (4.2.17) gives 

— fiz) = Y^iixlz) - fi{z)) < Y^nix：). (4.2.18) 
iei iei 

By taking supremum in (4.2.18) over all 2 G dom/ , we get 

广(工*)= sup {(x\z)-f{z))<Y,f:{^：)- (4-2.19) 
zedomf 

Thus, (4.2.16) and (4.2.19) imply that 

r{xn + f(x)-e<{x\x). 

Hence, by (2.4.2), we see that x* G 达/(工)• So, (4.2.13) holds. This completes 

the proof of ( i )�（ i i ) . 

Next, we prove the implication (ii)冷（iii). Assume that (ii) holds. We have 

to show that epi f* = epi f*. In view of Proposition 4.2.1，it suffices to show 

that 

e p i r C (4.2.20) 
iei 

Let (x*,Q：) e epi f*. Take x 6 dom / . Then, define e a-{• f{x) - {x*,x). It 

follows that 

{x\ {x\x) - f{x)+e) = {x\a) e epi/*. 

So, by (2.4.2), x* e dsf{x). Using (ii), one can find some > 0 and x* G deji(x) 

{i e I) such that 

X* = and e = (4.2.21) 
iei iei 
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Thus, (4.2.5), (4.2.21) and the definition of e give 

= {x;,x) - fi{x)+ei). 
iei 

Hence, (a:*,Q；) € Yliei P̂̂  fi^ thanks to (2.4.2) and the fact that x* G dej i (x) for 

each i e I. So, (4.2.20) holds as was required to show. 

We now turn to prove (iii) (iv). Let x* G X*. We have to show that 

(4.2.11) holds. When f*{x*) = +oo, (4.2.3) gives the desired result. We now 

consider the case when f*(x*) < +oo. It suffices for us to show that (4.2.4) 

holds. Since f G r ( X ) , it follows from [31，Corollary 2.3.2] that f* G 

Thus, f*(x*) e R. Hence, {x*J*(x*)) G epi f\ It then follows from (iii) that 

for each z G / , there exists some {x*, a^) E epi /* such that 

= (4.2.22) 
iei 

Observe that for each i £ I, one can use the Young's inequality and (a:,*,Qt) G 

epi fl to see that for any z G dom /， 

{ x l z ) - f i { z ) < f : { x : ) < a i . (4.2.23) 

Since X ； 祐 , = f*(x*) e R and Eie/(〈<，之、"/iW) ^ ^ (thanks to (4.2.1) and 

(4.2.22))，it follows from (4.2.23) and Remark 2.8.2 that Y^iei f i i^ i ) ^ ® and 

〈工*’么〉—f{z) = Y^iixlz) — Mz)) <'£f:(x：) = r{xl-

iei iei iei 

Taking supremum over all z G dom f gives 

i€/ 

that is, t { x * ) = So, (4.2.4) holds. The proof of (iii) (iv) is 

complete. 

It remains to show the implication (iv) (i). Suppose that (iv) holds. Let 

X e X and e > 0. We have to show (4.2.9). Since def{x) = 0 when x ^ d o m / , 



This together with (4.2.5) and the Young's inequality that 

已 > r(xl + f(x) — = + f,{x) - {xlx)). 
iei 

Now, pick some Si > 0 {i e I) such that 

£ = and Si > f:{x：) + Ux) - {xl x). 
i£l 

Then, it follows from (2.4.2) that x* G deji(x) for each i G /，and so x* = 

Y^l^j X* e d£ji{x). Therefore, x* is in the RHS of (4.2.9) as was required 

to show. This finishes the proof. • 

4.3 Sufficient conditions for Fenchel duality in 

semi-infinite convex optimization 

Throughout this section, we let { / ’ fi ： i ^ 1} Q r ( X ) be such that 

fix) = ^ fi{x) for any x G X. (4.3.1) 

As we have just shown in Theorem 4.2.2, one of the sufficient conditions for the 

Fenchel duality of { / , f i i i e l } is the following set equality: 

i€l 

In this section, we will study the sufficient conditions of this set equality for two 

special classes of functions: continuous real-valued functions and non-negative 

functions. 

(4.2.24) 
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it suffices to consider the case when x e dom / . Let x* G def{x). By (4.2.11)， 

there exists some collection {x* € X* : i G / } such that 

f
 V
-

 /
 

I

I
 and E 



for some x* G df(x). (4.3.4) 

Note, by (2.4.3), that 

r(x*) 二�2：*，x) - f[x) G M and fl{x*) = {x*,x) - fi(x) G R for each i G 

Thus, thanks to (4.3.1) and (4.3.4), 

r � =〈工•>〉— m 二 - / 办 ) ） = ( 工 *). 
iei iei 
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4.3.1 Continuous real-valued functions 

Recall that rc (X) = { / G r ( X ) : / is a real-valued continuous function on X } . 

In this subsection, we assume that 

{ f J i : i e i } c r , { X ) . (4.3.2) 

The following theorem is an analog of Theorem 2.6.5. Note that the completeness 

of X is used in the following proof. 

Theorem 4.3.1 ([20, Theorem 4.1]). Let X be a Banach space. Assume that 

(4.3.1) and (4.3.2) hold. Then, 

epi/* = epi / f • 
i€l 

Proof. In view of Proposition 4.2.1, it suffices for us to show that 

e p i r C ^ epi/； . (4.3.3) 
i€l 

It is clear that the set Yl*i€i epi ft is weakly* closed. Also, by Remark 2.8.3， 

Jliei fi is convex (as the weakly* closure of a convex set is still convex). 
w' 

We now show that Ya€I epi ft ^ 0- Let x e X. Since each fi is continuous at 

X e X,hy Proposition 2.3.1(ii), we see that dfi{x) + 0. Take x* G dfi{x) for 

each i 6 I. By Theorem 2.8.2’ we have that 
I

I
 

本
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So, 

i€l iel 

which implies that Yliei epi ft + 0-

Suppose that (4.3.3) does not hold. Then, there exists some (XQ, ao) € 

epi fi • Since Yllei P̂̂  ft is non-empty, convex and weakly* closed, 

one can use the separation theorem to find some (20,70) ^ X xR such that 

snp{{y\zo)+(3jo ： {Y%P) G Y^ epi/； } < (x；,ZQ) + ao7o- (4.3.5) 
iei 

We consider the following cases: 

Case 1: 7o > 0. 

In this case, one can take some G YA^J epi f* and consider large 

positive value of /?, then (4.3.5) would lead to contradiction. 

Case 2: 70 = 0. 

By (4.3.5)，one has 

sup{{y\zo) ： G epi/； } < {x*o,zo). (4.3.6) 
iei 

Since (rr̂ o；。）G epi /* , we have 

x j G dom / ' (4.3.7) 

By the virtue of Br0ndsted-Rockafellar Theorem (cf. [31, Theorem 3.1.2]) and 

the assumption that X is a Banach space, we have 

dom/* C Imdf. 

This together with (4.3.6) and (4.3.7) imply that there exist ae X and a* e df{a) 

such that 

sup{fe/*，2o�： {y%p) e X^^epi/； } < {a\zo). 
iei 
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Moreover, by Theorem 2.8.2，we have that df(a) = YlUi ^M^) ，and so we can 

find some a* G YA^J dfi{a) such that 

： {y\f3) e ^pi/r } <〈石Vo�. (4.3.8) 
iei 

Write W — a* for some a* G dfi{a). For each i £ I, define := (a -, a)— 

fi(a) (G R). Then, by (2.4.3), one has n = fl(a；) (and so «,RI) G epi/；) for all 

i e I. Also, (4.3.1) implies that r := � i 二〈互*，a�_ /i(a) € R. Hence, 

So, we get 
iei iei 

^ w 

{a\zo) < sup{{y\zo) ： iy\P) e epi/； }, 

which contradicts (4.3.8). 

i€l 

Case 3: 7。< 0. 

Without loss of generality, we assume that 70 = —1. Thus, (4.3.5) becomes 

sup{OAzo> — 卢 ： G Yl^e^ift } < { x ^ z ^ ) - ao. (4.3.9) 

By the Young's inequality and the fact that (工3，《0) € epi/*, one has 

〈工5’ 勿 〉 - f ( z Q ) < r { x l ) < ao, 

and so 

i^hzo) -ao< f{zo). 

Now, pick y* G dfi{zo) for each i e 1. Then, by (2.4.3), we have 

f : {y : ) = {yhzo ) - f i { zo ) for all i G / . 

(4.3.10) 

(4.3.11) 

In particular, /；(?/*) G R (and so {y*J*{y*)) G epi/；) for all i G I. Further, 

using Theorem 2.8.2, take some c* G df(zQ) such that c* = Yll^jVl- Hence, 

(4.3.1) and (4.3.11) imply that 

{C\z,) 一 f{zo) = Y.M.ZO) 一 U{z,)) = 
i€l iei 
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Thus, 

(c*，(c*,zo> - f(zo)) = Y^{yhf:m e Y^^epif：. 

So, it follows from (4.3.9) that 
iei iei 

f{zo) = (c\zo)-{{c\zo)-f(zo)) 

i€l 

< ZO) - AO, 

and this contradicts (4.3.10). 

Combining the consequences of Case 1, 2 and 3，we can conclude that (4.3.5) 

leads to contradiction. Therefore, (4.3.3) is valid. This finishes the proof. • 

The next theorem is from [20, Theorem 4.2], which gives a sufficient condition 

for the weakly" closedness of YH^J epi /* under the setting of (4.3.2). 

Theorem 4.3.2. Let X be a Banoch space. Assume that (4.3.1) and (4.3.2) 

hold. Suppose in addition that I is countable and 

dom广 Clmdf. (4.3.12) 

Then, 

iei 

Proof. By Theorem 4.3.1，it suffices for us to show that 

We first prove that 

epi r Q 

g p h r Cj^^epi/；. 

i€l 

(4.3.13) 

(4.3.14) 

Let G gph/*. Then, E dom f\ By (4.3.12), one has G df(a) 

for some a e X. Since I is countable, it then follows from Theorem 2.8.2 that 
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df{a) = Thus, = T^l^i^i for some x； G df人a), where i G I. 

With the use of (2.4.3)，we have/*(a:*) = {x\a)-f {a) &nd f*{x*) = {xla)-fi{a) 

for all i e I. Hence, f*(x*) = Yliei J7(幻,and so, 

i€l i€l 

Therefore, (4.3.14) holds. 

With (4.3.14), we get 

e p i r = g p h r + {0} X [0,oo) C ^ ' e p i /； + {0} x [0;oo) = J^'epi/； 
iei iei 

where the last equality follows from the fact that epi f* + {0} x [0, oo) = epi f* 

for each i G I. So, (4.3.13) is established. • 

Below is an immediate consequence of Theorems 4.2.2 and 4.3.2. 

Theorem 4.3.3. Let X be a Banach space. Assume that (4.3.1) and (4.3.2) 

hold. Suppose in addition that I is countable and dom f* Clmdf. Then, for any 

X* ex\ 

in 
x€X 

\
J
 

*
 

X
 

I

I
 

本
i
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iei iei 

In particular, the collection { / , : i G / } satisfies the Fenchel duality: 

inf{ /(x) : x e X } = m a x { - ； ^ f ； • � : = 0}. 
i€l i€l 

4.3.2 Nonnegative-valued functions 

Throughout this subsection, we assume that 

{f,fi:iei}cr^(X). 

Note that, in this case, it follows from (2.8.3) that 

f(x) = sup y^ fj{x) for any x e X. 
irj ^ ‘ 

(4.3.15) 

(4.3.16) 
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Similar to the case for continuous real-valued functions, one can prove the follow-

ing set equality in the present case. In fact, we get a bit more. 

Theorem 4.3.4 ([20, Theorem 4.3]). Suppose that (4.3.1) and (4.3.15) hold. 

Then, 
Uj* yj* 

e p i r = U 5 ]ep i/； = Y , e p i f： . (4.3.17) 
Jc/, jeJ iei 

\J\<oo 

Proof. Since each epi /* contains the origin (thanks to (4.3.15)), one has that 

U E印i/;《印i广 
JCI, jeJ i€i 

\J\<oo 

Then, it follows from Proposition 4.2.1 that 

U I>Pi // epi f： ^ epi 广 （4 . 3 . 1 8 ) 
JCI, j£j iei 

\J\<oo 

For each JCI with \ J\ < oo, let gj := Y^j^j fj on X. Then, (4.3.16) becomes 

f(x) = sup gj(x) for any x e X. 
\J\<oo 

By applying Lemma 3.2.3 to the collection of functions {gj : J C I and \ J\ < oo}, 

we get 

epi r = epi ( sup gj)* = co I J epi g*j 
JCI, ^ JCI, 

Note that epi C epi g)^ if Ji C J2 (In fact, if Ji C J2, then gj^ 

so the set inclusion follows from (2.2.2)). In particular, this and 

each epi g*j imply that the set Ujc/,|j|<oo epi 9j is convex. Thus, 

that 

epi/* = U e p i " 》 = ( J J^epi/； 

JQi, JCI, jeJ 
|J1<oo |J|<oo 

(4.3.19) 

< gj2 on X, and 

the convexity of 

(4.3.19) gives us 

(4.3.20) 
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where the last set equality follows from Theorem 2.6.5. Now, observe that for 

any JQ Q I with 丨 Jo| < 00， 

Ê pi/；^ U Ê pi/；' 
jeJo J c i , j€J 

\J\<oo 

and so 

Eepi/; ^ U !> / ; 
jeJo J C I , j€J 

\J\<oo 

Hence, one has 

U Z 咖 f; ^ U E-pi/； 
. / c / , j€J J C I , jeJ 

|J|<CX3 |./|<00 

(4.3.21) 

Combining (4.3.18), (4.3.20) and (4.3.21), one sees that (4.3.17) holds. The 

proof is completed. • 

The next theorem is from [20, Theorem 4.4], which shows a sufficient condition 

for the set epi fi being weakly* closed. Recall that for a set A C X, the 

diameter of A, denoted by diam A, is defined as 

diamyl sup{||:r - y\\ : x - y e A}. 

Also, the negative polar of A is defined by 

{x^ e X* : {x\a) < 0 VaG A}. 

(For a set ^ C X*, its negative polar is defined as 

•={xeX : {a\x) < 0 W e A}.) 

Furthermore, let J be a finite set and { K j } j ^ j be a collection of closed convex 

cones in X* xR. Let Hhea subspace of X and Z HxR. We define J) 

by 

J) ：= inf{|| [ (工 ; | / /， ^ ^》 | | ： [ = 1，each ( x ； , ^ , ) G KJ}. 

jeJ jeJ 



](dlh)\< DM\h\\. (4.3.24) 

Define 1 :X -^R by 

7{x) := for any x e X. 
ieN 

It is clear that d* is linear. This and (4.3.24) imply that d* is continuous on X. 

Hence, d* G X* and so'X = YlieN^h which proves our claim. Therefore, by 

(4.3.22) and the definition of one has 

i€N 

as was required to show. • 
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Remark 4.3.1. Let C,D C X. It is direct from definition of negative polar that 

if C CD, then D° Q C°. The same result holds for C ,D C X*. 

We first show the following lemma. 

Lemma 4.3.5. Let Z be a sub space of X, Let {Di : i e N} be a collection 

of subsets in X* with 0 G PlieN Suppose that Jllig^ diam Di < +oo. Then, 

E:eniDi\z) = {Z:enDi)\z-

Proof. It is straight forward to check that (ZlieN A)|z Q Con-

versely, let d* e E*€N(A|Z). Write 

d* = for some d* e D“i e N). (4.3.22) 

iGN 

We claim that d\ exists in X*. To do this, let h ^ X. By the assumption 

that 0 G HieN A , we have that || < diam Di for all i eN. Thus, for any i e I, 

- (d iamA)W < —IKIIWI < {dhh) < ||<||||/i|| < ( d i a m ( 4 . 3 . 2 3 ) 

Since ^•gj^(diamZ)j) exists in E, it follows from (4.3.23) and Remark 2.8.2 that 

^ieni^h exists in R and 

i
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Theorem 4.3.6 ([20, Theorem 4.4]). Suppose that (4.3.1) and (4.3.15) hold and 

I is a compact metric space. Assume that the following conditions hold. 

(i) For each i e I, there exist some weakly* compact convex set Di with 0 G Dj 

and some weakly* closed convex cone Ki in X* xR such that 

epif* = Di + Ki. (4.3.25) 

(ii) X]祐jdiamZ^i < oo. 

(iii) There exist some IQ £ I and finite dimensional space H C X such that 

K° C Z := H X R. (Denote the dimension of Z by m) 

(iv) For any J C I with \ J\ = m, y{Kj\z； J) > 0. 

(v) The set-valued map i H Ki\z is upper semicontinuous on I. That is，for 

each i £ I， 

]\msMKi\z)CK.\z, 
i—i 

where 

lims_up(K,|z) ：= {z* e Z, :3{Un€N C I and {kl}neN Q X" 
i—i 

with in ~> i and k*^ e Ki^ Vn G N 

such that k*Jz ~ z * as n >• oo}. 

Then, the set Yllei epi fi is weakly* closed. Moreover, one has 

= (4.3.26) 
iei 

Proof. In view of Theorem 4.3.4, one sees that (4.3.26) follows from the weakly* 

closedness of YA^J epi f*. In order to show that Yliei fi is weakly* closed, it 

suffices to show that 
[ e p i y ? c ^ epi/；. (4.3.27) 
i€l 
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For convenience, let Ai := epi/* for each i e I. Let a* G . Note that 

)U = (U E � U E 揚 
JCI, jej 

|J|<oo 
Jci, jeJ 

|J|<oo 

^ U E (缺） 

-ll-IU 
JQi, jeJ 
|J|<oo 

二 U E (仙； 
JCI, jeJ 

\J\<oo 

where the first set equality follows from Theorem 4.3.4，the first and second set 

inclusions are direct from definitions, and the finite dimensionality of Z gives us 

the last set equality. Hence, for each /c G N, there exist some 4 C / with |4| < oo 

and G Ai for each i € h such that 

一ll.llz a s k — ^ o o . (4.3.28) 
ie/fc 

Write ul \= X îe/fc for each k eN. Then, by (i), one has that ul G Z îe/fc A + 

Ei€/fc Ki. Observe that 

= = cone [ j ^ z ) C Z � 

ie/fc i&Ik i^h 

where Z is of finite dimension m (by (iii)). Thus, by the virtue of Caratheodory 

Theorem [25, Corollary 17.1.2], we see that for each fc G N, 
m 

for some c/*̂  e Di {i e 4 ) , 0'i’)fc，... “m’fc} C I and G Ki., for each j G 

{1，... ’ m}. Let I' := UfceN -̂ fc- Then, I' is countable. Also, for each k eN and 

i G I'\h, let = 0. Without loss of generality, one can assume that I' = N. 

For each k e N, since \Ik\ < 00 and d * = 0 for any i e it follows that 

EieN^fc exists in and 

= o n X (4.3.30) 
I€N ielk 



k j n i i n  a s  k  

S u m  o f  e p i g m p h s  o f  c o n j u g a t e  f u n c t i o n s  i n  s e m i - i n R n i t e  c o n v e x  o p t i m i z a t i o n  9 0  

S o ,  f o r  e a c h  €  N ,  ( 4 3 . 2 9 )  b e c o m e s  

m  

i € 2  j = l  

N o w ,  w e  w i l l  s h o w  t ^ h a t :  

{ Z J * .  I Z K m N  i s  a  b o u n d e d  s e q u e n c e  o n  Z  f o r  e a c h  j  €  { 1 , .  :  ,  m } .  ( 4 . 3 . 3 2 )  

T o  d o  t ; h i s ,  s u p > p > o s e  o n  t ; h e  c o n t r a r y  t : h a t  t ; h e r e  e x i s t s  s o m e  j o  m  { 1 ,  •  :  ,  m }  s u c h  

t h a t  i s  u n b o u n d e d .  T h e n ,  b y  p a s s i n g  t o  s u b s e q u e n c e  i f  n e c e s s a r y ,  

o n e  c a n  a s s u m e  t h a t  

、 为 』 “ I I M  力 』 A  M I K 』̂  M l p  A  8 ,  

i e i k  s k  i e J  

a n d  

m  
M - A V -  ̂v o  f o r  a n y  A :  m N .  

1 = 1  -

D i v i d i n g  b o t h  s i d e s  o f  ( 4 . 3 . 3 1 )  b y  M l i l  = 4  J z | | z ,  w e  g e t  t h a t ,  f o r  e a c h  A ;  G  N ,  

1 3  I r *  I 」 l  .  广 必 」  

I X I I I A J Z I I Z  I x l l K k l z  

S i n c e  — i N  a s  Z c  — ^  8  ( s e e  ( 4 . 3 . 2 8 ) ) ， o n e  k n o w s  t h a t  i s  

b o u n d e d  o n  z .  T h u s ,  
- 1  “ t f  _  - I  - N  1 0  a s / d o o ,  

I v r l  I f  I z l l z  

w h i d i  i m p > l i e s  t h a t  

#  

• 〒 一 一 N  0  ( 4 . 3 . 3 4 )  

E I l i  I K J Z I - Z  

N o t i n g  t : h a t  | |  ̂  d i a m  p  f o r  a n y  i  m  I  a n d  d *  m  p ,  t : h a n k s  t o  1 : h e  a s s u m p > t i o n  

t ; h a t  e a c h  D i  c o n t a i n s  t h e  o r i g i n -  T h i s  t ; O O T e i ; h e r  w i t h  ( i i )  e i n d  ( 俗 . 3 . 3 0 )  M l l o w  t : h a - t ;  
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and so it follows that 

—丨丨z 0 as fc — CO. (4.3.35) 

Combining (4.3.33), (4.3.34) and (4.3.35), we get that 

Z* Iz 
On the other hand, it is clear that for each k eN, 丨丨 广 jfzV IzllJIz =丄 and 

zr iz ‘ 
Z r \z\\z ^ Kij’k for all j e {1’ . . .，m} (as Ki is a cone for all i G I). Hence, 

^{Kj\z； {1,...，m}) = 0，which contradicts (iv). So, (4.3.32) is seen to hold. 

By the compactness of / , we can assume that for each j G { 1 , . . . , m} , —^ 

ij for some ij G I. Also, by (4.3.32) and the fact that Z is of finite dimension, one 

assumes (by passing to subsequence if necessary) that for each j G { 1 , … , m } , 

Zi-Jz ~~^丨丨Zj\z diS k ~>• oo for some习 G X*. Then, it follows from the upper 

semicontinuity of the set-valued map i Ki\z at ij (see (v)) that 

Hence, there exists some wj G K-̂ . such that uJjJ^ = zj. Thus, by replacing Tj 

with Wj if necessary, we assume that zj G Kj. for each j G {1,...，m}. 

Next, we prove that 

(4.3.36) 
j=i ieN 

Indeed, by (ii), one sees that 

y ^ d i a m ( D i l z ) < ^ diam A < ^ d i a m A < oo. 
i€N I€N iel 

Also, for any i G N, t;* G A|z and x G Z, we have 

-(diam(A|z))||:r||z < {v\x) < (diam(A 



Sum of epigraphs of conjugate functions in semi-infinite convex optimization iii 

Thus, it follows from (i) (which implies that Di\z is weakly* compact for all 

i e N) and Proposition 2.8.1 (applied to the space Z in place of X with gi{-):= 

-diam(AU)|| . || and hi{-) = diam(AU)|| . 11 for each i G N) that 

Hence, 

E ( A i z ) = E ( A U ) 
ii-ih 

(4.3.37) 

thanks to the finite dimensionality of Z. Moreover, by Lemma 4.3.5，one has 

(4.3.38) 

Furthermore, since (ul — J2T=i < J|z 一"“名{a* - ET=i^j)\z as k o o , and 

e (EIEN A ) U for all k e N , one has from (4.3.31) that 

-IMU 
(4.3.39) 

So, by (4.3.37), (4.3.38) and (4.3.39)，we see that 

m 

j=l IEN 

that is, (4.3.36) holds. 

Noting that (4.3.36) implies 

m 

Since Z is a subspace, we have that = Z丄.Also, by (iii) and Remark 4.3.1， 

g Thus, by applying the bipolar theorem [31, Theorem 1.1.9] to the 

closed convex cone /Q。，it follows that 

Z 丄 = g = K切. 
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Then, 

m m 

E � + E � + 2 丄 g E � + E S + K i o 

zeN j=l i€N j-l 

iel i€l 

i£l 

i6/ .. 

where the second set inclusion follows from the fact that 0 G A 门 f o r each 

i e l , and the last set equality comes from (i). Therefore, a* G Yl*iei So, 

(4.3.27) is established. The proof is complete. • 

Similar to the case for continuous functions, we have the following theorem 

for nonnegative functions, which follows from Theorems 4.2.2 and 4.3.6. 

Theorem 4.3.7. Suppose that (4.3.1) and (4.3.15) hold and I is a compact metric 

space. Assume in addition that the conditions (i)-(v) stated in Theorem 4-3.6 

hold. Then, for any x* G X*, 

In particular，the collection {/, fi i ^ 1} satisfies the Fenchel duality: 

i n f { / ( x ) = max{-f;⑷:^^x： = 0} . 

i€l i€l 
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