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In this thesis, we consider a central problem in P2P content dis-
tr ibution: given a set of neighboring peers connected to each 
other to exchange content, how they can optimally negotiate 
the rate in helping each other so as to achieve maximum overall 
throughput and minimize the content server's load. We call this 
the "load balancing problem" of a P2P system. By providing an 
abstract formulation of the optimization problem, we contrast 
this problem wi th the network congestion control problem, both 
in terms of parallels and differences. We then proceed to study 
several versions and aspects of this problem systematically: (a) 
request allocation, (b) neighbor selection, and (c) server load 
minimization. We have proposed and evaluated several prac-
tical algorithms that are discrete (window-based), distributed 
(without needing global information), and adaptive. 



文摘要 

在这篇论文中，我们研究了分布式对等网络中的一个核心问题： 

给定一些可用的邻居节点后，各个节点之间如何协商互相之间的下载 

速率，使得节点的上行带宽的利用率达到最高，并且使得服务器提供 

的带宽最小。我们称这个问题为，分布式对等网络中的负载均衡问题 

首先，利用最优化理论，我们建立了该问题的数学模型。然后，我们 

分析了该问题和网络中的拥塞控制问题的相同点和不同点。最后，我 

们系统性的研究了负载均衡问题的三个子问题：（1)请求分配问题， 

(2)邻居节点选择问题，（3)服务器的负载最小化问题。我们设计并且 

评估了一系列实用的分布式自适应性算法，来解决负载均衡问题。这 

些算法都可以直接应用于实际的分布式对等网络中，而且不会在网络 

由产生额外的信令幵销。 
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Chapter 1 

Introduction 

A Peer-to-Peer (P2P) content distribution system, whether stream-
ing or file downloading, relies on using multiple distr ibution trees 
(not necessarily built explicitly) from the source to all peers si-
multaneously, to maximize throughput. These distr ibution trees 
are logical (overlay) trees tracing out which peers are helping the 
source to forward content to which other peers, and they share 
the same physical network. I t is therefore necessary to adjust the 
data rates in these distribution trees to maximize throughput, 
by increasing the rate in those trees that have free (physical) 
capacity, and controlling the rate in those trees that are satu-
rated. How to achieve this by distributed algorithms executed 
by peers is the topic of this thesis. 

The difference between streaming and downloading is that 
the former needs to achieve a given playback rate whereas the 
latter means best-effort. In steaming, the content has deadlines 
to meet, so the delivery system needs to take them into consid-
eration. Other than that, streaming is an easier problem than 
downloading when the total bandwidth capacity of the multiple 
distr ibution trees is abundant (or at least adequate) compared to 
the playback rate. In this thesis, we focus on the P2P streaming 
problem. 

Broadly speaking, there are two types of P2P systems: struc-
tured versus unstructured, referring to two very different ap-
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proaches of building and maintaining the multiple distribution 
trees from the source to all the peers. In the structured ap-
proach, the trees are built explicitly - each peer knows its role 
(or position) in each tree that i t belongs to. Since peers come 
and go, maintaining these trees becomes complicated. In the 
unstructured approach, trees are created on-demand, based on 
availability of content for exchange by neighboring peers. Each 
peer keeps track of a subset of other peers as neighbors. At any 
moment, each peer tries to stream a chunk of content from a 
subset of neighbors that have this chunk. The local peer can 
request different pieces of the chunk from different neighbors 
at the same time. Thus, each piece travels through potentially 
a different tree to reach all peers. While building distribution 
trees in this manner seems rather chaotic, i t works incredulously 
well, as demonstrated by many practical and deployed systems 
(such as BitTorrent [1] and PPLive [26]). 

The throughput l imit of such multiple-tree P2P content dis-
tr ibut ion systems can be analytically derived, under two as-
sumptions: (a) content is divided into very small pieces which 
flow through the trees as fluid, and (b) only uplinks in the physi-
cal network can be bottlenecks. By making the fluid approxima-
t ion (a), each peer is essentially doing cut-through forwarding so 
there is no wastage of any bandwidth in the process. Assump-
tion (b) is not unrealistic in practical network settings. For net-
works satisfying this assumption, the analysis is dramatically 
simplified. Mundinger coined the term uplink sharing model to 
refer to such networks [25]. Under these assumptions, i t can be 
shown that the throughput l imit Rmax is bounded by 

N JJ. 
Rmax < min([/o, E T7) (1.1) 

i=0 丄、 

where Uq is the uplink bandwidth of the source, and Ui,i > 0, is 
the uplink bandwidth of each peer respectively [25, 13]. When 
there are constraints to the distribution trees, e.g. when the 
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peers do not form a ful l mesh, or when there are degree bounds 
to each node of the tree, the corresponding problem is addressed 
in [17, 21]. 

In practice, the performance of a multiple-tree P2P content 
distr ibut ion system depends on the algorithms used to imple-
ment tree construction and transmission scheduling. Such algo-
ri thms are distributed, involving the following subalgorithms at 
each peer: 

1. find a set of neighbors, typically w i th the help of a tracker 
server and some randomization 

2. determine a chunk to download, typically based on knowl-
edge of neighbors' content and what is missing locally 

3. request one or more neighbors for different pieces of the 
selected chunk 

These algorithms have already been engineered in various P2P 
systems (such as BT, PPLive and others) through repeated ex-
perimentation and tuning. The question is, can we bui ld rea-
sonably simple models of these algorithms to help understand 
why they work and how to optimize them and make them more 
robust. 

In the unstructured setting, the maximum throughput can be 
achieved, intuit ively, if these two invariants can be maintained: 

a) A peer's neighbors always have chunks the local peer needs 

b) A peer's neighbors always have enough upl ink bandwidth 
to satisfy the local peer's playback rate 

Roughly speaking, the first invariant is achieved by chunk selec-
tion] whereas the second invariant achieved by load balancing. 

The chunk selection algorithm has been studied in [1, 40，29 . 
The key insight is to give sufficient pr ior i ty to distr ibute the 
rare chunks which are those that have not propagated far along 
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the multiple trees yet. In the streaming case, chunks also have 
urgency, so the priority should take both rarity and urgency into 
consideration [40 . 

The objective of this thesis is to systematically study practi-
cal load balancing algorithms, that are decentralized, efficient, 
and easy to implement in real-life P2P systems. The load bal-
ancing problem has two special cases: 

1. If all the neighbors can be used simultaneously, how to 
balance the load among neighbors to achieve the maximum 
uti l ization of their uplink capacity. This is called the request 
allocation problem, which is studied in Chapter 4.1. 

2. I f each peer is only allowed to select a small number of 
neighbors from its neighbor set to download simultaneously, 
which is usually the case in real system, how to find the 
best neighbors (with the most available uplink bandwidth) 
to help. This is referred as the neighbor selection problem. 
This case is studied in Chapter 4.2. 

Shrewd readers wi l l notice the similarity of our load balancing 
problem to that of mult i-path congestion control. This is indeed 
the case, and we wi l l draw the parallels and borrow ideas, as we 
discuss it in Chapter 2. There are, however, some important 
special features to our problem: 

1. We are primari ly interested in a streaming problem, where 
the objective is for all peers to achieve a throughput equal 
to a playback rate, R. The P2P file downloading case, 
where each peer tries to achieve the highest rate possible, 
is closer to the mult i-path congestion control problem. 

2. In our problem, a server is there to make up for any short-
age of download rate, and the goal is to minimize the use of 
the server bandwidth. Theoretically, the server can offer its 



CHAPTER 1. INTRODUCTION 5 

service as a last resort. That is, when the load balancing al-
gorithms can fully utilize peers' bandwidth, the bandwidth 
provided by the server is also minimized. However, this is 
easier said than done in a distributed environment where 
the use of server is determined by peers. How to make 
peers rely on the server only when necessary is discussed in 
Chapter 5. 

3. In mult i-path congestion control (and some rate control 
schemes e.g. [4]), i t is important to consider fairness, which 
makes sure no host can dominate all the bandwidth. How-
ever, in our load balancing problem, we are only concerned 
wi th achieving maximum available throughput. Because 
peers who get lower bandwidth from others can directly ask 
help from the central server to fill in the gap, between their 
download rate and the playback rate, there is no need to 
require each peer shares the same downloading bandwidth. 

Another distinction wi th the mostly theoretical study of mult i-
path congestion control is that we focus on practical algorithms, 
where discretization (removal of fluid assumption), and the loca-
t ion the controls are implemented (receiver rather than sender) 
must also be considered in the design. 

The organization of the thesis is as follows: We first describe 
the abstract version of our problem in Chapter 2, to allow us to 
see what we are trying to achieve under idealized situations (cen-
tralized, fluid etc). Then we consider a number of distributed 
algorithms for the load balancing problem and study them us-
ing event-driven simulation, as described in Chapter 3 and 4. 
In Chapter 5, we consider the remaining challenge of how to 
adaptively minimize the server load, without harming peers' 
throughput. After a brief account for related works, we con-
clude in Chapter 7. By presenting them together, we hope to 
illustrate the insights we gained. 
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• End of chapter. 



Chapter 2 

Abstract Model 

In order to focus on the load balancing problem, let us assume 
each peer has all the content that any other peer may ever want 
(the first invariant already met). Both the request allocation 
problem and neighbor selection problem can be formula ted ab-
stractly as optimization problems in resource allocation. 

2.1 Request allocation problem 

As in Fig 2.1, let there be N peers, each acting as an uploader 
wi th an uplink capacity of Uk, k = l , . . . , i V . Each peer, k, 
also acts as a downloader and seeks service from a randomly 
selected set of uploaders (other peers), Sk. Sk is referred to as the 
neighbor set of peer k, randomly assigned by a tracker. Denote 
the download rate obtained by peer k from the j t h neighbor by 
rkj. The goal for each peer is to make sure ZjeSk n j = R where 
R is the playback rate. 

The source serves as a back-up server (indexed by 0), assumed 
to have infinite capacity, Uq = oo. If a peer k cannot receive 
sufficient service rate from its neighbors Sk, then the back-up 
server steps in to fill in the gap. Denote the back-up server's 
service rate for peer k by rko. Combining this w i th the above 
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Uploaders 
Ui U2 U3 • • • Uk UN 

Dow 门 loaders 

Figure 2.1: Load balancing problem 

yield 
no + E n j = R V/c 

jeSk 
The objective is to select the service rates for each peer's neigh-
bor set to minimize the total service rate of the back-up server, 

厂0 = E^fco 
k 

and the optimal solution is denoted as r^. This is a standard 
linear programming p rob lem. 

By substituting Vko w i th R — T^jeSk『kj, i t is easy to transform 
this problem into the following LP (2.3), which maximizes the 
sum of upload rate from peers. Theoretically, we assume that 
the central server can always fill in this rate gap,i? — T,jeSk『kj, 
exactly. However, in Chapter 5, i t wi l l be shown that i t is non-
tr iv ial to design an algorithm that produces the rate from the 
server. 

N 
max E nj 

k=l jeSk 
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S.t. nj < R y k ( 2 . 1 ) 
jeSk 

E nj < Uj V j 
k-.jeSk 
Tkj > 0 E Sk 

Since this is a standard linear programming problem, we 
know there exists a solution, and there are standard procedures 
for obtaining the solution (although it may take some time). 
Furthermore, we know that the optimal solution is bounded by 
the rate l imit given by equation (1.1). 

mm 

s.t. 

N 

E no 
k=l 

E Tkj + rfco = fi v/c • 
j&Sk 

E nj < Uj V j 
k:jeSk 
Tkj > 0, r/,0 > 0 V/c, j G Sk 

(2.2) 

N 
max 

s.t. 

E E n j 
k=ijeSk 

(2.3) E rkj < R ^k 
jeSk 

E n j < Uj \ / j 
k:jeSk 
Tkj > 0 ^ k j € Sk 

Prom a practical point of view, our interest is in designing a 
distributed algorithm to find the optimal allocation, w i th good 
convergence time. In this respect, we can borrow many ideas 
from the congestion control literature where a variety of dis-
tr ibuted algorithms (primal or dual) for solving similar resource 
allocation optimization problems have been studied. In simple 
terms, these algorithms can all be described by increase-decrease 
algorithms as in [2 
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Figure 2.2: Mapping to congestion control problem 

More formally, to map our problem to a classic congestion 
control framework, each overlay connection between peer k and 
its jth neighbor, j G Sk, can be treated as a path that traverses 
two links, "vir tual uploader l ink" wi th capacity Uj and "vir-
tual downloader l ink" w i th capacity R. In Fig 2.2, we show an 
example of such mapping when peer k,s neighbor set is {1 ,2} . 

Then the question is how to adjust the rate rkj on path (/c, j ) 
to maximize the sum of all the rates without violating any ca-
pacity constraint on each vir tual link. Let 

咖 = E n,it) 
jeSk 

m ) 二 E 〜 ⑷ 
k:jeSk 

be the total traffic on the downlink of peer k and uplink of 
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peer j , and p^(-) and p^(-) be the price(s) (or penalty functions) 
charged by the corresponding links. [11] showed that the rate 
adjustment algorithm given by the following differential equa-
t ion would converge to a stable solution (that is the optimal 
solution of LP 2.3): 

J ^ j i t ) = c ( l - p U R i i t ) ) — p J ( R j m (2.4) 

where c is some constant step size. 
However, the rate control algorithm in this form can not be 

directly implemented in practical P2P streaming systems. This 
is because in congestion control, each sender directly controls the 
sending rate Vkj on the j t h path whereas in a pull-based P2P 
streaming system, each peer can not directly control the down-
load rate from neighbors. This download rate is determined by 
the neighbor's uplink capacity and current load, which is usually 
unknown by the requesting peer. Instead of the rate, what peers 
can adjust is the number of pieces requested wi th in one request 
message sent to neighbors. Such adjustments only affect the 
download rate from each neighbor indirectly. Therefore, rather 
than implement the rate control algorithm directly, we propose 
a request size adjustment algorithm to achieve load balancing 
for P2P streaming systems. The details wi l l be discussed in 
Chapter 4.1. 

2.2 Neighbor selection problem 

Now, assume that peer k can only choose Wk, Wk < \Sk\, target 
neighbors from its neighbor set Sk and download from them 
simultaneously. This is quite likely the case in practice since 
peers cannot manage communication w i th too many neighbors 
at the same time. The question is how peer k should choose 
the Wk neighbors and adjust the rate at the same time. We 
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can extend the original problem definition as follows. Let Xkj 
be a variable to indicate whether the j t h neighbor is chosen by 
peer k. Then the optimization problem, including both request 
allocation and neighbor selection, becomes: 

N 
max E XkjTkj 

k=ljeSk 
S-t. XkjTkj < R ^k 

jeSk 

E XkjTkj < Uj V j (2.5) 
k-.jeSk 
E hj = 购 

jeSk 
Tkj > 0 \/k,j G Sk 
Xkj = 0 or 1 \/kJ e Sk 

This is now a mixed integer programming problem. I t is simi-
lar to the mult i -path congestion control problem w i th dynamic 
routing, which is known to be more difficult to design a dis-
tr ibuted algori thm for. [12] investigates the path selection algo-
r i thm of mul t i -path congestion control when only a few paths 
can be used simultaneously, which is similar to our case. They 
prove that if peers/users always change to a new path set w i th a 
higher sending rate, then such iterative path selection (without 
wrong moves) leads to the opt imal path selection eventually. In 
practice, i t is diff icult to implement this algorithm because the 
performance of the new path set is unpredictable and there is 
no guarantee for a positive increment after each move.、To sup-
port their algorithm, global information such as the available 
bandwidth and current loading at each neighbor needs to be 
available to avoid wrong decisions and synchronization among 
peers is also necessary to avoid oscillation, which is unlikely to 
be cost effective. 

In Chapter 4.2, we propose and evaluate two kinds of heuris-
tics that only depend on local information and are hence easy 
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to implement in real P2P streaming systems. 

• End of chapter. 



Chapter 3 

Simulation Model 

The purpose of describing our problem at the abstract level, in 
the last chapter, is to first get a high level understanding of the 
problems we are t ry ing to solve, and some generic algorithms 
under given assumptions, such as rate adjustment congestion 
control algorithms under fluid assumption. Our goal, however, 
is to develop some general algorithms without the f luid assump-
tion, that are easy to implement in practical systems. In order to 
evaluate these practical algorithms, we develop a discrete-event 
simulation model that captures more details of a real system 
than the abstract model. Here, we first contrast our simula-
t ion w i th the Network Simulator 2 (NS2), which is a widely 
used discrete-event simulation platform targeted at networking 
research. After that, we focus on discussing the similari ty and 
difference between the simulation model and the abstract model. 
The flow chart of this event driven simulation is shown in Fig 
3.1. 

Compared w i th the Network Simulator 2, our simulation model 
is simplified by three assumptions: 

• In NS2，each layer of the networking architecture is sim-
ulated in detail. In contrast, our simulation model only 
focuses on the application layer behavior and the behav-
iors of lower layers are not taken into consideration, such 

14 
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as routing dynamics, packet loss or congestion control. 

• Our simulation model sti l l follows the "uplink sharing" 
model, in which the network and peers' downlink can not 
be the bottleneck. 

• In contrast to NS2, where it is possible to simulate the 
T C P / U D P packet transmission behavior, in our simulation 
model, only the chunk/piece level transmission behavior is 
considered. 

Some basic assumptions are common to both the simulation 
and abstract models. The peer population is fixed at N , and 
each peer is randomly assigned a constant number of L neighbors 
by a tracker. A l l peers jo in the system at same time, but peers 
may have different uplink bandwidths. Each peer requests ser-
vice from other peers as well as provides service when requested. 
How to request service and how to select appropriate peers are 
discussed in the next chapter. Each peer is assumed to have 
the content to serve any request. And finally, only the peers' 
uplinks can be the bottlenecks, which means the network can 
not be the bottleneck as in the uplink sharing model. 

A major difference is to replace the rate-based control in the 
abstract model w i th something more like window-based control. 
Each chunk of video is divided into M pieces, and piece is the 
minimum unit of a request. When multiple requests arrive, they 
are queued and a peer serves them according to the FCFS princi-
ple as in standard queueing systems. The response time depends 
on the uplink bandwidth (service time) and the current queue 
length of the servicing peer (waiting time). Each requesting 
peer maintains a request window VK, where 1 < W < L. The 
request window is the maximum number of neighbors a peer can 
download from simultaneously. After all pieces requested in one 
request are downloaded, a peer can issue another request. In-
tuitively, larger M and W tend to help load balancing, making 
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Figure 3.1: Flow chart of the simulation model 



CHAPTER 3. SIMULATION MODEL 17 

the discrete model closer to the abstract model wi th fluid ap-
proximation. In practice, M cannot be too large due to request 
overheads; and W is l imited as it tends to increase error and 
loss rate at the receiver.^ 

We assume the playback rate is one chunk per unit time (e.g. 
one second). For streaming, we assume each peer does not make 
requests so that the cumulative download rate exceeds the play-
back rate. One reason for this can be because the content is 
made available by the source at the playback rate. The per-
formance metric is the average cumulative download rate at all 
peers, and the speed at which this rate converges towards the 
playback rate over time. 

Given this model, we know that a pre-condition for achiev-
ing (close to) playback rate throughput is for the total uplink 
bandwidth of all peers to meet the total demand, NR., namely 
all peers achieve the playback rate. When the total bandwidth 
supply is abundant compared to the demand, it is easy for many 
algorithms to perform well, which wil l be shown later. That is 
why we choose to study a tight regime where the supply equals 
demand, that is EjfLi Uk ~ NR. 

Again, temporally, we exclude the source (back-up) server in 
the simulation model and mainly focus on balancing the load 
among peers to achieve the maximum throughput. The central 
server wi l l be revisited in Chapter 5. 

To compare different algorithms in the following chapters, 
we use the following parameter values in the simulation model: 
N = 1000, L 二 30, M = 10, VI/ = 6 ， = 1; unless specified 
otherwise. 

• End of chapter. 
iTo deal with excessive incoming burst rate, we assume there is some lower layer pacing 

and error correcting/recovery mechanism. 



Chapter 4 

Load Balancing Algorithms 

In this chapter, we study the load balancing problem as two 
subproblems: request allocation and neighbor selection. The 
first one tries to achieve optimal load balancing when each peer's 
W target neighbors are given, while the second tries to select W 
target neighbors from L available neighbors to form an optimal 
target neighbor set. In Chapter 5, we extend our algorithms to 
implement the back-up function by the central server. Notations 
used in this chapter are summarized in Table 4.1. 

4.1 Request allocation 

In this case, we assume that each peer randomly selects W target 
neighbors from L neighbors and sticks wi th this target neighbor 
set during the simulation. Each peer k adjusts its download rate 
from the j t h neighbor by adjusting the number of pieces, Skj, 
i t requests the j t h neighbor to upload. We use Tkj to denote 
the newest roundtrip time of the j t h neighbor, that is, the total 
t ime to download requested pieces from this neighbor, including 
the propagation delay, transmission time as well as the queueing 
delay, shown in Fig 4.1. The average download rate of peer k in 
the previous second is Rk. As mentioned before, different from 
the congestion control problem where each sender can directly 

18 
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Notation Explanation 

Skj Number of pieces requested by peer k from its jth neighbor 
c Constant step size to increase Skj 

Tkj Download time of peer k from its jth neighbor 

Rk Peer k,s average download rate in previous second 

fkj Peer /c's download rate from its jth neighbor 

Qkj Queuing time of peer k from its jth neighbor 

Tkj Exponentially smoothed queuing time of peer k from its 
jth neighbor 
Variability of the queuing time of peer k from its jth neigh-
bor 

Dkj Timeout threshold when peer k sends request to its jth 
neighbor 

P Retry ratio caused by timeout events 
K Number of neighbors replaced in one round 
W Request window size 
R Download rate threshold used in section 4.3.3 

Rk Peer /c's average download rate in previous neighbor selec-
tion period 

Table 4.1: Notations 
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Figure 4.1: Download time of any request 

control the send rate on each path, here peer k controls the 
number of requested pieces Skj instead, which only affects the 
download rate indirectly. Following the rate control algori thm in 
Eq (2.4), we use the following rule to adjust Skj in the (n + l ) t h 
iteration: 

Skj[n + 1] = [skj[n] + c ( l - pf[n] - p n + (4.1) 

where n _ iRk\n]/R-l+er 们u — , Pi n = a n d 6 > 0. Our 
request size control algorithm runs in the following way: 

1. In the n t h iteration, for peer k, if its j t h neighbor is not 
overloaded, which means the service queue length of the j t h 
neighbor, including peer k,s request, is smaller than Uj * Is , 
then the roundtr ip t ime to finish peer /c's request should be 

n > Therefore, TV n smaller than Is. Otherwise Tkj 
which is easy to measure locally, can be used as the feed-
back, indicating whether the j t h neighbor is overloaded. I f 
Tkj[n\ > 1, the feedback induces peer k to reduce the num-
ber of pieces requested in the (n + l ) t h request message, 
sent to the same neighbor. 
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2. Similarly, whenever Rk [n], the average download rate in 
the last second, exceeds the playback rate, pf [n] is positive. 
This causes peer k to decrease Skj as well. In this situation, 
peer k already receive a large enough download rate, so it 
must not be in the way to prevent other peers achieving 
their playback rate. 

3. I f neither of the above two constraints are violated, Skj is 
increased by c, a constant step size, in order to produce a 
larger download rate. 

Here, e is a small positive scalar which affects the convergence 
speed and the local stability of the algorithm. More detailed 
analysis of this factor can be found in [11] and [33]. Because the 
minimum requesting unit is a single piece, we also need to apply 
the randomization scheme to round Skj to an integer number. 

The obvious advantages of this algorithm include: 

1. I t only requires information that can be measured locally 
without incurring any extra information exchange in the 
network. 

2. I t runs in a total ly asynchronous way. Not only is i t unnec-
essary for peers to synchronize wi th each other, but for a 
particular peer, the request size to different neighbors can 
be adjusted asynchronously. 

In our experiments, each peer init ial ly sets Skj to be 1 for all 
its neighbors. A t the completion of each request, Skj is updated 
according to the feedback Tkj and Rk and the algorithm (4.1). 
The default setting for c and e is : c = 0.1 piece and e = 0.1. 

In the first experiment, we assume a homogeneous network, 
by setting the uplink bandwidth of all peers to equal the play-
back rate. Meanwhile, one scheme is used as a benchmark, in 
which peers do not change the number of pieces requested, but 



lOptima丨 ratel • 一 一 " • 一 广 一 — 

••••• [ Request control | 

r
 

[No request control| 

一 卜 No request control 
— •—Reques t control 
—貪一 Optimal rate 

「Optimal ratel 

•••“ — f — “ 
• I Request control | 

^ I No request control | 

No request control 
Request control 

• Optimal rate 

100 2 0 0 ^ . 300 400 500 
Time 

(a) Homogeneous network 

0 100 200 300 400 500 
Time 

(b) Heterogeneous network 

Figure 4.2: Average cumulative download rate of the request size control 
algorithm 

From the figure, it can be observed that there exists a gap 
between the optimal rate and the rate achieved by our algorithm. 
Such a gap is unavoidable when we remove the fluid assumption, 
and when the algorithm runs in an asynchronous way. As shown 
in Fig 4.3, this gap decreases rapidly as the piece size becomes 
smaller, when the system gets closer to the fluid model. 

We now motivate the importance of the neighbor selection 
algorithm. Without neighbor selection, each peer just randomly 
selects W target neighbors and sticks to them. Let us define the 
degree of peer k as the number of peers that choose peer k as 
the target neighbor, and show that such simple random scheme 
does not always work well because: 
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just stick to 1 piece per request. The optimal rate in this topol-
ogy is obtained by solving the LP (2.3) in Mat lab. The perfor-
mance of the request size control algorithm, measured in average 
cumulative download rate, is shown in Fig 4.2(a). Obviously, the 
request size control algorithm performs better than the bench-
mark scheme, achieving an average download rate closer to the 
optimal rate. Even under asynchronous control, the conver-
gence speed of this algorithm is acceptable, taking less than 25s 
to achieve 95% of its peak rate. 
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Figure 4.3: Performance gap between discrete model and fluid model 

1. According to the analysis of the classic ball-and-bin model 
in [24], the probability that this simple randomization scheme 
wi l l generate several peers w i th extremely high degree is 
almost 100% when the scale of the system increases. The 
uneven degrees make i t hard to achieve load balancing. 

2. In practice, the uplink capacity of peers can vary quite a lot, 
between ADSL versus Ethernet based access technologies. 
This randomization scheme also cannot guarantee that the 
degree of each peer is proportional to its uplink capacity. 
20] provides a solid explanation of the reason. 

To demonstrate the drawback of this static random neighbor 
scheme clearly, we construct a heterogeneous network, Hetero.A 
for short, in which there are equal number of three types of peers, 
w i th uplink bandwidths of (0.2,0.6,2.2) respectively, relative to 
the playback rate. In this setting, the result of the simple ran-
dom scheme is shown in Fig 4.2(b). Unsurprisingly, compared 
to Fig 4.2(a), the performance deteriorates dramatically due to 
the heterogeneous setting and i t is clear that such simple ran-
dom scheme is incapable in the heterogeneous network setting. 
Two kinds of neighbor selection algorithms are studied in the 

CHAPTER 4. LOAD BALANCING ALGORITHMS 23 

① 1.000 

" t o 

O 0.990 c 
•§ 0.985 <D > 
TO 0.980 
"5 
E 
3 0.975 
<D D) 
2 0.970 0) > 
< 

0.965 



CHAPTER 4. LOAD BALANCING ALGORITHMS 24 

following sections. 

4.2 Neighbor selection algorithms 

Now, we allow peers to reselect their target neighbors and pro-
pose two kinds of algorithms: timeout-based neighbor selection 
algorithms and periodic neighbor selection algorithms. Both of 
them are easy to implement in practical P2P streaming systems 
by using the multi-thread programming technology. 

Before introducing these two types of neighbor selection algo-
rithms, the first issue is to identify an appropriate performance 
metric, used to evaluate neighbors' performance accurately and 
determine which one can provide better service.‘ 

4.2.1 What to measure? 

In order to evaluate neighbors' performance accurately and cost 
effectively, a number of measurement options have been consid-
ered. For example, the uploader can indicate its queue length at 
the conclusion of uploading pieces of content. This information 
needs to be combined wi th the uplink bandwidth of this peer for 
it to reflect the load, but a peer does not automatically know 
its own uplink bandwidth. Alternatively, a central service can 
be used to request peers to query current load information or 
current available bandwidth. A l l these schemes seem to have 
their own problems; the major issue being the timeliness of the 
information versus the overhead of acquiring such information. 

Without incurring extra information exchange, the scheme 
we pick for this study is based on measuring the download rate 
from the requesting peer. This scheme is relatively low cost 
and robust. For peer k, we use f k j j = 1 , . . . , L , to denote the 
download rate from the j t h neighbor. Each peer init ial ly sets 
fk j to be a large scalar for all neighbors, to make sure every 
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neighbor has the chance to be selected. After the completion of 
each request, the download rate from the jth neighbor is reset 
to the most recent measured value, namely the request size Skj 
divided by the download time Tkj. Using fk j , peers are able to 
choose the suitable neighbor to download from. 

4.2.2 Timeout-based neighbor selection algorithms 

In this section, we introduce a simple neighbor selection algo-
r i thm of which the performance is not very good at first, arid 
then add the timeout and retry mechanism to assist this kind of 
algorithm to achieve a better performance. 

A simple neighbor selection algorithm 

At the completion of each request, peers are allowed to choose 
the next target neighbor from the whole neighbor set, where the 
new request wi l l be sent, rather than just keep using the init ial 
target neighbor as in Section 4.1. More precisely, pG6r Ai, /c — 
1, 2, ...N, maintains W threads, each of which is in charge of one 
request independently. As illustrated in Fig 4.4, the algorithm 
executes as follows: 

• Step 0: Initially, each thread of peer k is randomly assigned 
a target neighbor. Assume the target peer of the zth thread 
is the jth neighbor. 

• Step 1: The zth thread generates a request and the number 
of pieces within this request is determined by Algori thm 
(4.1). Then, this request is sent to the j t h neighbor and 
joins its service queue. Afterward, the zth thread enters the 
"PENDING" state, and waits to get the service. 

• Step 2: When all the other requests ahead of this request 
are served, the j t h neighbor starts to upload pieces to peer 
k and the state of the zth thread becomes "RECEIVING". 
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Figure 4.4: Flow chart of the simple neighbor selection algorithm 

Step 3: Once all the requested pieces are downloaded, the 
thread is in the "FINISHED" state and updates the down-
load rate from the j t h neighbor and other relevant statis-
tics. 
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• Step 4' Based on the measured download rate of each neigh-
bor, the zth thread selects a new target neighbor using some 
algorithms and goes to Step 1 again. This state is "SE-
LECTING" . 

In Step there are many possible algorithms one can con-
sider on how to chooses the new target neighbor from the whole 
neighbor set. We consider the following two algorithms: 

1. Performance dependent algorithm {Best Neighbor algorithm): 
the zth thread directly chooses the neighbor w i th the high-
est download rate, which is the most straightforward 
method one can consider. 

2. Randomizat ion-based a l go r i t hm (Weigh ted random algorithm) 
Instead of picking the best neighbors, each neighbor now 
has a probability to be chosen. Specifically, the probability 
that the jth neighbor is selected is given below i: 

= (4.2) 

The intuit ive meaning of Eq (4.2) is to choose neighbors 
wi th high download rate wi th a higher probability; thus 
balancing the load by downloading more pieces from the 
less busy neighbors. Besides, those neighbors w i th small 
download rate wi l l sti l l be selected wi th a lower probability. 

Note here, each thread makes its decision independently, with-
out communicating wi th other threads. 

We test their performance in the homogeneous network. How-
ever, as shown in Fig 4.5, these two algorithms do not work very 
well even in the homogeneous network, especially the best neigh-
bor algorithm, achieving only 75% of the playback rate. 

^The weight of the download rate from each neighbor is essential to deal with the 
heterogeneous case when peers have different uplink bandwidths. Purely choosing random 
neighbors for each request only yields worse performance. 
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Figure 4.5: The performance comparison between the best neighbor and 
weighted random strategies 

Without searching too hard, we find the problem of the best 
neighbor strategy. There is severe oscillation in the best neigh-
bor algorithm, as is often the case wi th such simple-minded load 
balancing algorithms. There are two typical kinds of peers. For 
the first type, its incoming request queue length (load) oscillates 
wildly w i th time, in term of chunks, as il lustrated in Fig 4.6(a). 
For the second type, its incoming request queue drops to zero af-
ter a while, as shown in Fig 4.6(b). In the latter case, the request 
queue has a sharp jump before dropping to zero, indicating the 
small download rate reached instantaneously is causing these 
type of peers to be abandoned by requesting peers. Roughly 
25% of the peers are of the second type, explaining why only 
about 75% of the best possible throughput is achieved. 

Another reason for the poor performance is that the esti-
mated record of download rate may be outdated. Wi thout in-
curring additional overhead in the network, is only updated 
when a download request sent to the j t h neighbor is completed. 
Therefore, if the jth neighbor performs so poorly that peer k 
would never select this neighbor again, there is no chance fk j 
wi l l be updated anymore. Even if the service queue of the j t h 
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Figure 4.6: Average queue length of the best neighbor algorithm 

neighbor is sometime empty sometime, this may not be noticed 
by peer k due to outdated load information. The second type 
of peer in Fig 4.6(b), abandoned by others, is exactly the case. 

Compared wi th the best neighbor algorithm, the weighted 
random algorithm achieves better performance. The random-
ization scheme helps to some extent to avoid large oscillation, 
because not every peer directly selects the neighbor w i th the 
highest download rate. More importantly, neighbors w i th poor 
record sti l l have a probability to be selected. This helps peers to 
discover those neighbors that are less loaded now, but performed 
poorly and were abandoned before. These two reasons explain 
why the weighted random strategy works better than the best 
neighbor strategy. 

To further improve performance, one possible method is to 
require each peer periodically broadcast its load information to 
its neighbors. However, as we discussed before, such a method 
definitely increases the overhead and consumes some bandwidth 
in the network, which is not desired. Instead, we investigate a 
timeout and retry mechanism and combine i t w i th our original 
algorithms together. 
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Timeout and retry mechanism 

Originally, a t imeout mechanism is bui l t in to all algorithms to 
ensure we don't wait indefinitely for departed, or for extremely 
overloaded peers. Through more careful tuning of the t imeout 
value, i t is also possible to use this mechanism to avoid large 
oscillation and even directly shift load by retries. 

The main idea is to estimate the queuing t ime for a request 
at each neighbor, assuming the system reaches steady state, and 
set a t imer accordingly. I f i t takes significantly longer than the 
normal queueing time, one should give up and t ry sending the 
request to a different neighbor, because this indicates that the 
rate estimate for this target neighbor is outdated or the target 
neighbor is currently overloaded by many peers. Such a retry 
can effectively avoid large oscillation. Optionally, one can send 
a message to Cancel the original request. Otherwise, peers may 
receive duplicate data from mult iple neighbors. 

The queuing t ime at the j t h neighbor, Qkj, can be measured 
as the amount of t ime between when peer k sends out a request 
to the j t h neighbor and when peer k receives the first data 
byte from that neighbor, shown in Fig 4.1 and updated at the 
beginning of Step 2. The exponentially smoothed version of the 
queueing t ime can be tracked as below: 

Tkj 二 e * Tkj + (1 - … * Qkj, 0<0<1,J = 1,2,…L (4.3) 

where Qkj denotes the newest measured value and t^j the expo-
nentially average queueing time. 

In addit ion to tracking the average of Qkj, i t is also necessary 
to keep track of the variabil i ty of Qkj, Vkj. I t is computed as 
follows: 

Vkj 二 " * Vkj + (1 - * \Tk3 - Qkjl 0 < / i < 1 (4.4) 

When a request is sent to the jth neighbor, a t imeout threshold, 
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Dkj, is set to: 

Dkj=rkj+C^Vkj, C>0 (4.5) 

The later term is used to deal w i th the possible variabi l i ty of 
the queuing t ime as is done in transport protocols such as TCP. 

Once the t imeout mechanism detects longer than expected 
queueing delay, i t considers this to be due to oscillation (r ightly 
or wrongly), and retries the request w i th another peer. This 
comes at a cost - the requester sends two addit ional messages: 
one to cancel the original request, and the other to init iate the 
new request. The retry ratio，p, is defined as the number of 
t imeout events divided by the total number of finished requests 
and measures the overhead of the timeout and retry mechanism. 

When a t imeout event occurs, besides canceling the request 
and selecting another neighbor for a new request, the local peer 
k also needs to update the download rate fkj and queueing t ime 
Tkj, because the old values are apparently inaccurate. Let C i 
and C2 be the "penalty" factors and peer k updates fkj and Tkj 
in the following way: 

nj = rkj/Ci 

Tkj = Tkj * C2 

In our experiments, the default value we use are: 0 = 7/8, fi = 
3 / 4 , C = 2 ,C i = 1.5,C2 = 2. 

We add this t imeout and retry mechanism to two strate-
gies introduced previously: the best neighbor strategy and the 
weighted random strategy. The average cumulative download 
rate and the retry ratio p are shown in the Fig 4.7 and Table 4.2 
respectively. 

Obviously, compared w i th Fig 4.5, in steady state, the time-
out and retry mechanism is able to improve the performance 
of the two strategies, while keeping the retry cost below 5%. 



Figure 4.7: The performance of strategies with timeout mechanism 

Table 4.2: The retry ratio of different algorithms under different network 
settings 

Retry ratio: p 

Homogeneous Hetero_A Hetero_B 
Best Neighbor 0.0413 0.0508 0.0482 

Weighted Random 0.0474 0.0472 0.0476 

This validates our expectation. In addition, the weighted ran-
dom strategy beats the best neighbor strategy again, achieving 
a larger average cumulative download rate, smaller retry ratio, 
and shorter convergence time, which is similar to the result with-
out the timeout and retry mechanism. 

In order to investigate the robustness of this timeout mech-
anism, we construct another heterogeneous network, Hetero.B, 
where the three types of peers have uplink bandwidths of (0.5, 1, 
1.5). Because the shape of the curves for the different networks 
are similar as in Fig 4.7, we just show the peak value of the aver-
age cumulative download rate in Fig 4.8(a) and the convergence 
time, when the cumulative download rate achieved 95% of the 

CHAPTER 4. LOAD BALANCING ALGORITHMS 32 

. 00 

.95 

.90 

.85 

. 8 0 

.75 

.70 

.65 

.60 

.55 

1 • 1 • I _ 1 • •， ••• •• 

• 

¥ 
/ 
来 

1 
来 

5K —* — Best Neighbor 一 

• - Weighted Random _ 

200 Time 800 1000 

1

0

0

0

0

0

0

0

0

0
 

9
1
6
」
6
u
!
p
e
0
|
U
M
0
|
D
 ①
A
l
l
e
l
n
u
j
n
o

 9
6
e
J
8
>
<
 



M W B e s t N e i g h b o r 
^ ^ W e i g h t e d R a n d o m 

Homogeneous 
Network setting 

— » B e s t N e i g h b o r 
^ ^ W e i g h t e d R a n d o m 

Homogeneous 
Network setting 

(a) Average cumulative download rate (b) Convergence time 

Figure 4.8: Performance under different network settings 

peak rate, in Fig 4.8(b). According to Fig 4.8(a), we observe 
that the best neighbor algorithm performs worse in the hetero-
geneous networks, which is because the peers wi th small uplink 
bandwidth are more likely to be abandoned by requesting peers. 
The weighted random algorithm works relatively stable in the 
different networks, higher than 90% playback rate. However, 
shown in Fig 4.8(b), the convergence time of the weighted ran-
dom algorithm increases significantly in heterogeneous networks, 
which makes the weighted random algorithm less competitive if 
dynamic networks are considered. 

4.2.3 Periodic neighbor selection algorithms 

In this section, we propose another neighbor selection algorithm: 
Periodic Neighbor Selection algorithm, which is inspired by the 
periodic Tit-for-Tat neighbor selection algorithm used in Bit-
Torrent. However, there are two important differences between 
BT and our problem: 

• In BitTorrent, the T F T neighbor selection algorithm is im-
plemented at the uploaders and allows an uploader to un-
choke neighbors that contribute most. The downloader can 
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only download from neighbors that unchoke them. There-
fore, from the view of downloaders, this can be treated as 
passive neighbor selection, because they do not have the 
power to select peers they want to download from. On the 
contrary, in most P2P streaming systems, i t is assumed 
that peers do not l imi t their upload rate and are wi l l ing to 
serve requests from any peer. Therefore, in P2P stream-
ing, our neighbor selection algorithm seems to be an active 
neighbor selection algorithm for the downloaders, allowing 
downloaders to actively select neighbors w i th high band-
wid th to download. 

• As addressed in [4]，the T F T algorithm focuses on providing 
incentive to encourage peers to upload more, in order to be 
unchoked more times by others and download more. This 
is also referred to the fairness. Whereas, in P2P streaming, 
the most important thing is to guarantee peers' download 
rate, equal to the playback rate, rather than the fairness. 
How to provide the incentive to P2P streaming wi thout 
harming system performance is sti l l an open question. The 
major difficulty is how to encourage users w i th high uplink 
bandwidth to contribute more if their maximum download 
rate is only the playback rate as same as the rate at which 
the source generates the newest content. 

Here, the timeout mechanism is only used as a lower layer 
mechanism to handle peers' leave and is not used by the periodic 
neighbor selection algorithm. 

We allow peers to reselect their target neighbors periodically 
and the period is set to be 10s. Similarly, we st i l l use the down-
load rate, to determine which neighbor can provide better 
performance. 

The basic idea of the periodic neighbor selection algori thm is 
that: A t each decision moment, peer k sorts his current W target 
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neighbors according to their performance fkj- Then K^l < K < 
W, target neighbors wi th the worst performance are abandoned, 
and peer k chooses K new neighbors from the L — W non-
target neighbors, t ry ing to get a better performance. Wi th in 
each decision interval, our request size control algorithm (4.1) is 
used to fully utilize the uplink capacity of the target neighbors. 
The flow chart of this algorithm is similar to that in Fig 4.4 
and the major difference is that, now each thread communicates 
wi th other threads and re-selects target neighbors periodically, 
rather than choosing a new target neighbor at the end of every 
request. 

We propose three algorithms to choose K new neighbors from 
those non-target neighbors: 

1. Periodic Best Neighbor algorithm, (P .B .N for shor t ) : peer 
k chooses the K neighbors wi th the highest download rate 
according to the rate fk j 

2. Periodic Random algorithm, (P.R.D for short): since the 
number of neighbors L is more than the number of out-
standing requests allowed, peer k randomly selects K new 
target neighbors without considering the past performance 

3. Periodic Weighted Random algorithm, ( P . W . R for shor t ) : 
Instead of selecting the best neighbors, each neighbor is 
chosen probabilistically . Specifically, the probabil ity that 
the jth neighbor is selected is: 

= (4.6) 
〜s: Tkj 

where S ; is the set of non-target neighbors. 

The rationale behind these algorithms is that, searching for 
good neighbors increases the chance that some neighbors w i th 



Figure 4.9: The performance of the periodical neighbor selection algorithms 
in homogeneous network 

First, we test our algorithms in the Homogeneous network, 
and the average cumulative download rate is shown in Fig 4.9. I t 
is noticed that all three algorithms perform very well, producing 
98% of playback rate, which coincides w i th our expectation and 
the difference between them is not significant. One step further, 
to investigate the robustness of the periodical neighbor selec-
t ion algorithms, we do the experiments in all three scenarios, 
Homogeneous, Hetero—A and Hetero.B. Their average cumula-
tive download rate and convergence t ime is shown in Fig 4.10. 
The default setting of K is 2. 

These three algorithms seem to have different strengths, and 
work reasonably well in different scenarios. For average cumula-
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high uplink capacity, which were previously ignored are now se-
lected. I t is unavoidable that sometimes a peer makes a wrong 
decision; however i t st i l l keep W - K neighbors w i th the best 
performance from the previous round and the loss in perfor-
mance wi l l not be a disaster. In the long run, the performance 
loss caused by poor decisions is expected to be minor compared 
to the potential gain from selecting better neighbors. The fol-
lowing experiment results validate our expectation. 
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Figure 4.10: The performance of the periodical neighbor selection algorithms 
under different network settings 

tive download rate, all three algorithms perform well in different 
scenarios, especially the random algorithm and the weighted 
random algorithm. Even though the best neighbor algorithm 
fluctuates the most, the different of its performance in different 
scenarios is sti l l w i th in 2% of the playback rate. This shows that 
they all achieve good robustness to deal w i th different network 
settings. However, a heterogeneous setting does have a strong 
effect on convergence time, especially for the random strategy. 
The reason is that i t is harder to find those peers who sti l l have 
available uplink bandwidth purely by random selection. 

The random algorithm achieves the best average cumulative 
download rate while the best neighbor algorithm is the worst in 
all scenarios. The reason is evident when we randomly select 
one peer and record its degree change over time, for-different 
algorithms using hetero.A (where the performance gap between 
different algorithms is the biggest), as shown in Fig 4.11. Sim-
ilar to the timeout-based best neighbor strategy introduced in 
Section 4.2.2，there exists obvious oscillation when the periodic 
best neighbor strategy is used. One peer w i th a high uplink ca-
pacity may be noticed and chosen by many peers, then a large 
number of requests immediately overload this peer and each re-
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Figure 4.11: The oscillation of one peer's degree under different strategies 

questing peer can only share a very small fraction of the uplink 
bandwidth. As a result, in the next round this peer wi l l be 
eliminated by most of the neighbors and the degree of this peer 
drops sharply. Such oscillation occur repeatedly. Combining Fig 
4.10(a) and Fig 4.11 together, i t is clear that such oscillation has 
a critical impact on performance. 

However, the performance and robustness of the random al-
gorithm comes wi th a price, i t has the largest convergence time. 
On the contrary, the best neighbor strategy can find and use 
peers w i th high uplink capacity immediately and this is the in-
trinsic advantage of load-dependent algorithms. Finally, as the 
combination of best neighbor strategy and random strategy, the 
weighted random strategy is always more moderate, achieving 
an acceptable average cumulative download rate and conver-
gence speed. 
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Figure 4.12: Performance comparison: Timeout-based versus Periodical 
neighbor selection algorithm 

Implementation cost: First we compare these two algo-
rithms from the view of implementation cost. 

- A s introduced before, the timeout-based algorithm is 
convenient to implement using the multi-thread pro-
gramming technology. Each thread is in dmrge of a 
single download request, as shown in Fig 4.4. In ad-
dition, each thread is independent of the others and 
whenever a thread re-selects a target neighbor, the de-
cision can be made only according to the local record, 
without communicating wi th other threads. 

- O n the other hand, to implement the periodical algo-
r i thm, the W threads need to communicate wi th each 

CHAPTER 4. LOAD BALANCING ALGORITHMS 39 

4.2.4 Comparison: Timeout-based versus Periodical 
neighbor selection algorithms 

In this section, we compare these two types of neighbor selection 
algorithm from three aspects, implementation cost, overhead, 
and performance. To be distinguishable, we add the prefix "P." 
to the periodic algorithms and "T." to the timeout-based algo-
rithm. 
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other and work cooperatively. Such communication 
and cooperation help them to determine which threads 
keep the target neighbor unchanged and which threads 
eliminate the current target neighbors and choose new 
ones. In our simulation, to attain such cooperation, 
we add one extra "control" thread for each peer, which 
runs the neighbor selection algorithm periodically and 
informs the other W threads that which neighbor they 
should ask for pieces. Of course, there are other ways 
to implement the inter-thread communication, but this 
is beyond the scope of this thesis. 

Therefore, without the inter-thread communication, the timeout-
based algorithms is easier to implement in the software. 

• Overhead: Only the timeout-based algorithm incurs extra 
message overhead wi th in the network, because once a time-
out event occurs, the peer needs to send out a Cancel mes-
sage to the original target neighbor and then a new request 
to the new target neighbor. 

• Performance: The comparison of the performance of these 
two kinds of algorithms is shown in Fig 4.12(a) and Fig 
4.12(b). I t is clear that the periodic algorithms achieve 
higher average cumulative download rate and shorter con-
vergence time than the timeout-based algorithm. This is 
because of the intrinsic drawbacks of the timeout-based al-
gorithm. 

1. Due to the lack of communication among W threads 
belonging to the same peer, multiple threads may select 
the same target neighbor to download and this actually 
decreases the size of the request window, which has a 
positive impact to the algorithms' performance. On the 
other hand, the periodic algorithm can always maintain 
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constant window size. 

2. In addition, the periodic algorithm requires peers to 
maintain the W—K target neighbors that provide high-
est download rate during last neighbor selection period 
unchanged. This reduces the impact of a poor deci-
sion. However, in the timeout-based algorithm, there 
is no such protection and each thread keeps selecting 
the new target neighbors. Therefore, wrong decisions 
wi l l incur a big deterioration on the performance. 

Accordingly, this provides a solid explanation why the timeout-
based algorithm is beaten by the periodical algorithm. 

In summary, the only advantage of the timeout-based algorithm 
is that it takes less effort to implement, but i t is worse than 
the periodical algorithm in the other two aspects. Therefore, 
from now on, we only focus on the more competitive algorithm, 
the periodical algorithm, and try to tune it to get better perfor-
mance by further experiments. 

4.3 Further experiments 

To understand these three periodic algorithms better and help 
to tune them to their best performance, we explore the impact 
of several parameters by further experiments. Besides, because 
of the robustness of our algorithms, results under different net-
work settings are similar. Without confusion, we omit the word 
"Periodical" for short. 

4.3.1 Request window size 

The first important parameter is the request window size W. 
Increasing the request window size has at least the following 
two effects: 
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a) increasing the load in the network 

b) increasing the number of neighbors serving each peer 

The first effect can be controlled - we can decrease the size of 
a piece at the same rate of increasing W so outstanding load 
does not increase. This way of maintaining a constant load is 
at the expense of some additional overheads. The second effect 
(of increasing W) has clear implication for load balancing. 

As we increase W from 3 to 9, there is a noticeable improve-
ment for all three algorithms, both in terms of average cumula-
tive download rate and convergence speed, as shown in Fig 4.13, 
Fig 4.14 and Fig 4.15. By distributing load to more neighbors, a 
larger request window size tends to equalize the average uplink 
bandwidth of the neighbors requested by a peer, hence produc-
ing a more balanced load. The importance of the window size 
seems to be considered in the design of commercial P2P sys-
tem. As mentioned in [9], the request window size is a critical 
parameter for performance; and in the PPLive VoD system, a 
relatively large window size is used to deal wi th the highly het-
erogeneous peer uplink bandwidth distribution. For a playback 
rate of around 500Kbps, they claim that 8-20 was the sweet spot 
and more than this number could stil l improve the achieved rate, 
but at the expense of heavy packet duplication rate. As shown 
in Fig 4.13, Fig 4.14 and Fig 4.15, this rule is also applicable in 
our P2P streaming model: a larger request window size is always 
preferable, unless the extra expense outweighs the performance 
gain. 

4.3.2 Impact of K 

The parameter K determines the number of neighbors to be re-
placed in each round. For a performance dependent algorithm, 
a larger K can reduce the convergence time because more po-
tential neighbors wi th high uplink capacity can be selected in 
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(a) The average cumulative download rate (b) The convergence time 

Figure 4.13: The performance under different W in the homogeneous network 

one round of replacement. On the other hand, i t also increases 
the possibility of oscillation, which plays a critical role in per-
formance. Besides, wi th a large K , the impact of one wrong 
move may be significant because fewer neighbors wi th good per-
formance used in last round are kept. The average cumula-
tive download rate and convergence time under different K are 
shown in Fig 4.16, Fig 4.17 and Fig 4.18. 

Performance of the random and weighted random strategies, 
they are unaffected by the value of K , because of the random-
ization. However, the convergence time of the best neighbor 
algorithm is negatively related to K . Since there is no way to 
resist oscillation, the average cumulative download rate also de-
teriorates wi th increasing K . 

4.3.3 Adaptive adjustment of the neighbor selection 
period 

The default setting of the neighbor selection period is 10s. How-
ever, we suspect that if this period can be adjusted intelligently, 
it is possible to improve the performance further. The reason is 
that if the download rate of one peer is already very close to the 
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Figure 4.14: The performance under different W in the heterogeneous net-
work A 

playback rate, then there is already no significant room left for 
improvement. By continuing to run the neighbor selection algo-
r i thm, this peer risks making a poor decision, which can harm 
performance. We therefore propose an adaptive method to deal 
wi th this problem. The basic idea is to decide whether to select 
new neighbors according to the average download rate during 
the previous neighbor selection period. 

A A 

First, peers set a threshold R in advance and R = 0.9R in the 
following experiments. I f the average download rate of peer k 

A 

in previous period, denoted as Rk, does not exceed R, then this 
peer just runs the neighbor selection algorithm as usual. Once 
'Rj. > R, our adaptive algorithm steps into and a probabil i ty 
p is calculated as p 二 . W i t h probabil ity p, peer k just 
sticks to the current target neighbors without any change and 
wi th probability 1 — p, the peer executes the neighbor selection 
algorithm. This prolongs the neighbor selection period of peers 
who already get high download rate. 

We evaluate this algorithm for all three neighbor selection al-
gorithms, shown in Fig 4.19. As expected, such a simple adap-
tive algorithm does provide an improvement in performance. 
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Figure 4.16: The performance under different K in the homogeneous network 

4.3.4 Performance with adequate bandwidth 

In all the experiments so far, we considered only cases where the 
average uplink capacity equal the playback rate. This is delib-
erate to see how different algorithms fare under rather stressful 
situations. If the operator of the P2P network is wil l ing to set 
the playback rate to a level below the average uplink capacity, we 
would expect all robust algorithms to achieve the playback rate 
on a cumulative basis. For the homogeneous network, we set the 
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Figure 4.15: The performance under different W in the heterogeneous net-
work B 
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Figure 4.18: The performance under different K in the heterogeneous net-
work B 

uplink capacity (of each peer) to I.IR; in the heterogeneous case 
A, we set the uplink capacity of the three types of peers to be 
{0.22R,0MR,2A2R) respectively (wi th an average of I.IR as 
well). In the heterogeneous case B, the uplink bandwidth of the 
three types of peers is changed to (0.55i^, I.IR, 1.65R) respec-
tively. As shown in Fig 4.20，the average cumulative download 
rate of all algorithms is very close to the playback rate and the 
convergence t ime is below 30s. Besides, the difference between 
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Figure 4.19: The average cumulative download rate of three algorithms 
with/without the adjustment of the neighbor selection period 

different algorithms is very small. Therefore, if the system op-
erates in the over-supply regime, all of the algorithms are quite 
competitive. 

• End of chapter. 

I Without adjusting the period 
I Adjusting the period 

WR WR 
Neighbor selection algorithms 

(b) The heterogenous network A 
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Figure 4.20: The performance under networks with adequate bandwidth 
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Chapter 5 

Minimizing Server's Load 

In the previous chapter, we simply assume that the content 
server can magically fill in any gap between peers' download 
rate and the playback rate. More precisely, the download rate 
of peer k from the server is r^o = R-J2jeSk『kj. According to this 
assumption, once our load balancing algorithm fully utilizes the 
uplink bandwidth of neighbors and maximizes EjeSk '^kj, 
the total upload rate of the server is also minimized. However, 
in real systems, the questions of when to send a request to server, 
how many pieces to request, and how the server should response 
to all the incoming requests are non-trivial. Simply put, the 
central server faces the dilemma that, on one hand, the server 
can be so helpful that all peers' requests are always satisfied by 

Notation Explanation 

a/c Peer /c's server load factor 

R Threshold used in algorithm 1 

Ak Step size to adjust a 

P Additive increase factor of 

7 Multiplicative decrease fa.ctor of A^ 

Rk Peer /c's average download rate in previous a adjustment 
period 

Table 5.1: Notations 

49 
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the server and thus peers wi l l always download from the server 
and the uplink bandwidths of the peers become under-utilized, 
and on the other hand, the server tries to minimize its load and 
fails to provide sufficient guarantee for good peer playback per-
formance. In this section, we study how the peers and the server 
can interact so that both parties are happy. The notations used 
in this chapter are listed in Table 5.1. 

First, we assume the server responds to any peer request as 
follows: upon receiving a request from a peer, the server controls 
its upload rate and makes sure it takes exactly Is to upload the 
requested pieces. If a peer requests too many pieces (e.g. larger 
than one chunk), the server simply uploads at the playback rate 
R. This constrain that the maximum upload rate from the server 
to each peer is R and guarantees that the server is only a back-up 
role^ 

Second, peers are only allowed to send requests to the server 
periodically. This is because if peers can send requests to the 
server at any time, i t is very easy to overwhelm the server. In 
our experiments, the period is set to Is. Besides, to make sure 
the server is only treated as a back-up server, at the beginning 
of each second, peer k is allowed to ask for help from the server 
if and only if its download rate in the last second, denoted as Rk 
(that is the same as in the request size control algorithm (4.1), 
is less than the playback rate. 

Given these constraints, as we show below, i t is sti l l challeng-
ing to determine how many pieces to request from the server. 
From the view point of peers, asking for more pieces is definitely 
a good choice, because the server is more stable than regular 
peers and can guarantee the Quality-of-Service (playback rate 
R). However, this places heavy load on the server and decreases 
the uti l ization of peers' uplink capacity. 

ilf the dynamic system is considered, then it is possible that the server uploads content 
to the new arrival peers in a much higher rate, to minimize their start-up delay. This 
scheme is beyond the scope of this thesis. 
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We use a parameter a, 0 < a < 1, to help control the rate 
each peer can get from the server, as follows. I f peer k asks the 
server for help (only when Rk < R), the number of pieces to be 
requested from the server is set tohe — R^) * Is, which is 
a fraction of the missing part downloaded in the last second. A 
randomization method is used to round any non-integral pieces. 
Intuit ively, a large a increases the server load and guarantees 
a peer's download rate. However, a small a forces peers to t r y 
to get more from neighbors. Once their neighbors can provide 
more, the small a wi l l not cause an obvious deterioration on the 
download rate but i t decreases the server load. 

To investigate the impact of a on peers' performance, the fol-
lowing experiments are carried out in the homogeneous network. 
Here peers are assumed to use the periodic weighted random 
strategy for neighbor selection. Similar result are also found 
when we consider other network settings and other neighbor 
selection algorithms. We first explore the impact of a under 
different uplink capacity setting exhaustively. The peers' per-
formance and the average server load when the upl ink capacity 
of each peer, [ / , is 0.9R, I.IR and R are shown in Fig 5.1. 

In all scenarios, a larger a produces heavier server load, which 
is intui t ively obvious. However, to the average cumulative down-
load rate, the effect of a on the average cumulative download 
rate is total ly different depending on which operating regime the 
system is in: 

1. In the under-supply regime {U = 0.9R), a larger a increase 
the server load and also improves a peer's download rate 
significantly. This is because peers do not have enough up-
l ink capacity to support the playback rate and the server 
must provide certain bandwidth. Therefore, in this regime, 
a should be close to 1 in consideration of peers' perfor-
mance. 
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Alpha 

(a) U二0.9R 
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Alpha 

• Averge server load 
• Average cumulative downloading rate 

[Server load] 

Figure 5.1: The performance and server load under different a 

2. In the over-supply regime {U = l . l i ? ) , behavior is are to-
tal ly different. A larger a does not bring significant im-
provement to peers' performance but only incurs heavier 
load on the server. Given a larger a, peers send more re-
quests to the server rather than to neighbors that actu-
ally have adequate uplink bandwidth, and this decreases 
the uti l ization of peers' bandwidth. Therefore, for this 
regime where peers' uplink capacity is abundant, a small 
a is preferable to reduce the server load. 

3. In the t ight regime {U = i^), a moderate value of a is suit-
able because when a is too large, the gain on performance is 
relatively small, compared wi th the increasing server load, 
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similar to the over-supply regime. Meanwhile, peers' down-
load rate under small a are not quite competitive. I t seems 
the suitable range is a G (0.6, 0.8). 

From this analysis, i t is clear that a controls the tradeoff between 
peers' performance and the server load. At the same time, there 
is a t ight relationship between a and peers' uplink capacity. 
An interesting question is whether there is any algorithm to 
adaptively adjust the value of a to suit different scenarios. 

If the average uplink capacity of peers is known beforehand, 
maybe we can manually set a according to some mapping rules. 
But if we consider the dynamics of the system, such method 
can not follow the change of network conditions. Alternatively, 
we propose an adaptive, decentralized algorithm to adjust a 
periodically to a suitable value, which also takes the dynamics 
of peers' uplink bandwidth into consideration. 

We use a threshold of the download rate, R, to prevent any 
serious deterioration of peers' download rate caused by the de-
crease of a. For peer k, Rk[n] is the average download rate 
during the n th adjustment period. A^ is the step size used to 
decrease or increase a/^, peer k,s a. We used (3 and 7 as the ad-
ditive increase factor and multiplicative decrease factor of A^, 
respectively. Besides, q is the upper bound threshold of the frac-
tional performance difference after decreasing ak. Our adaptive 
adjustment algorithm for peer k is shown in Algor i thm 1. 

In line 2 and 3, once peer /c's average download rate is below 
k, a is increased immediately to get more help from the server. 
After each decrement of ak, peer k requests fewer pieces from the 
server and tries to shift the load to neighbors to get equivalent 
download rate. I f such decrement does not result in a relatively 
large drop on the download rate, larger than q, as in line 5, 
the step size is increased additively and ak is decreased again, 
shown in line 6. Otherwise, ak is reset to the previous value 
and the step size is reduced multiplicatively, as in line 8. The 
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Algorithm 1 Adaptive adjustment algorithm of a 
Require: After the first adjustment period, record Rk[l] and then A^ = 

Ao, Qfc = (cvfc — Wait until the second adjustment moment. 
1： for the nth adjustment moment, n>2 do 
2: if Rk [n] < R then 
3: afc = min(l’afc + Afc) 
4: else 
5： if 叫几-1 卜 < q then 
6： Ak = Ak+P^ Ao, ak = {ak - A0+ 
7： else 

8: Qit = min(l,afc + Afc), Afc = Afc/7 
9： end if 

10： end if 

11： Wait until the n + 1 adjustment moment 
12: end for 

method to adjust the step size is inspired by the A I M D algorithm 
used in TCP congestion control. In the following experiment, 
R = 0.95, Ao 二 0.1, g = 3%,/3 = 0.1,7 = 4/3 and the length of 
adjustment period is lOs. 

To evaluate our adaptive algorithm, we take the dynamics of 
peers' uplink bandwidth into consideration. Init ially, the uplink 
capacity of each peer is I . IR . Then after 5005, i t is changed to 

After another 5005, the uplink capacity is changed to R. 
The init ial value of a is set to 1, which gives peers' performance 
the first priority. 

The evolution of peers' average a, server load and the average 
cumulative download rate is shown in Fig 5.2. Prom Os to 5005, 
the system runs in the over-supply regime and our algorithm 
adaptively decreases a and the server load, without harming 
the performance because peers are able to find neighbors wi th 
enough bandwidth. From 500s to 1000s, due to the decrease of 
uplink capacity, peers can not support each other and increase 
a immediately. The server steps in, and its load increases ac-
cordingly. a is decreased again after lOOOs, and more uplink 
bandwidth from peers are utilized and this immediately allevi-
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500 
Time 

Figure 5.2: The dynamic evolution of a, server load and average cumulative 
download rate 

ates the server loading. This shows that our adaptive algorithm 
can automatically sense the dynamics of network conditions and 
adjust Q； to a suitable value. 

• End of chapter, 
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Chapter 6 

Background Study 

6.1 P2P content distribution system 

There is considerable interest in P2P content distribution sys-
tem. In many ways, systems work seems to lead the way as there 
are many good examples of successfully deployed systems, such 
as [1, 39, 26, 27, 30，31, 32], including the file sharing, streaming 
and Video-on-Demand systems. In trying to understand these 
experimental and commercial systems, there are considerable 
progress in theoretical analysis and measurement study. 

6.1.1 P2P File sharing system 

BitTorrent is the first widely deployed P2P file sharing sys-
tem and attracts great interests from many researchers. In 
25]，based on the uplink sharing model, Mundinger et al pro-

posed a deterministic scheduling algorithm to achieve a mini-
mum makespan to download a file. [28] builds a simple deter-
ministic fluid model to analyze BT's performance when the sys-
tem is in the steady state. They show that such BT-like system 
has good stability and efficiency in the steady state. [23] extents 
this work by taking the stochastic behaviors into account and 
provides a detailed probabilistic model to analyze the stability 
and effectiveness of a P2P file swarming system. Meanwhile, 

56 



CHAPTER 6. BACKGROUND STUDY 57 

they also prove that the whole system throughout is asymptot-
ically optimal by using the "random chunk selection" strategy. 
One step further, in [18], considering the uplink l imit of each 
peer, they improve the result in [23] and derive a tighter perfor-
mance bound. The last chunk problem, that i t takes the longest 
time to download the last missing chunk, is also discussed in 
this paper. A l l these modeling papers give us a high-level un-
derstanding of why the BT-like system is scalable and effective. 
There are also several papers targeted at analyzing the special 
algorithms used in BT, such as chunk selection algorithm and 
peer selection algorithm. 

The chunk selection strategy in BitTorrent is named rarest 
first strategy. Using this strategy, B T clients always prefer to 
download chunks which are the fewest of their own neighbor have 
first. As introduced in [3], this algorithms has two advantages: 

• I t efficiently increases the diversity of peers' available con-
tent. Such diversity makes sure peers have some chunks 
that others are interested in and leads a higher chance that 
peers can help each other. 

• This also improves the availability of the whole file. In 
practice, peers may stop uploading at any time and this 
leads to a serious risk that some chunks are not available 
any more from all other peers. By focusing on the rarest 
chunks, such risk is reduced significantly. 

Assuming a homogeneous closed network and random neigh-
bor selection, Sujay et al [29] provide a simple model to analyze 
the performance of several chunk selection algorithms in the P2P 
file downloading system. The main result is that, any single side 
pull or push strategy is not optimal in disseminating all pieces to 
all users. Further more, a hybrid push and pull strategy is pro-
posed and proved that i t can achieve the near optimal download 
time. 
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On the other hand, the neighbor selection algorithm is also 
used in Bi t Torrent, referred as the Tit-for-Tat algorithm. Ac-
cording to the T F T algorithm, peers periodically unchoke four 
neighbors from which the download rate during last period is 
the highest. Besides, each peer also randomly selects one neigh-
bor and is wil l ing to upload to this neighbor, which is used 
to discover unnoticed neighbors wi th high uplink bandwidth. 
In [4]，they provide an optimization framework to analyze the 
peer selection strategy and they claim that such T F T peer selec-
t ion algorithm focuses on providing incentive to encourage peers 
to upload and eventually maximizing the fairness among peers. 
Quite differently, in P2P streaming system, peers usually can 
not manually l imit their own upload rate and there is a t ight 
playback rate constraint to satisfy. Assuming peers work coop-
eratively and do not l imit the upload rate, our work focuses on 
the efficient peer selection algorithm which fully utilizes peers' 
uplink bandwidth and helps peers to catch up w i th the stream-
ing constraint rather than providing fairness among peers. 

There are also some experiment-based studies of BitTorrent 
systems. [15] validates three properties, which are proposed in 
theoretical study but have not been demonstrated clearly by ex-
periments, including the clustering of similar-bandwidth peers, 
the effectiveness of BT's incentive mechanism and the high uti-
lization of peers' uplink capacity. The behavior of the seeder is 
also first experimentally studied in this paper. In [14], a new 
uplink allocation algorithm is proposed to improve the perfor-
mance of BT. The main idea is that, the uplink bandwidth of 
a peer should not be divided equally to several peers, because 
a chunk can not be downloaded under such low download rate. 
Their algorithm selects the unchoking neighbors by solving a 
fractional knapsack problem, and allocate the maximum upload 
rate to those neighbors. Through simulations, their new band-
width allocation algorithm is validated to efficiently reduce the 
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download time by a factor of 2, compared with the original Bit-
Torrent protocol. 

6.1.2 P2P streaming system 

The major difference between the streaming and file sharing is 
that the former has a playback rate requirement to satisfy, while 
the latter means best effort. In streaming, once the download 
rate is equal to the playback rate, the user experience is al-
ready very good. The higher download rate can not provide a 
significant improvement on user experience. On the contrary, 
in file downloading, the higher download rate is always pre-
ferred because the download time wil l be shorter. Therefore, 
different performance metrics are used to evaluate the perfor-
mance of P2P streaming and file sharing systems. In streaming, 
the system performance is decided by whether most of peers 
can achieve the playback rate and watch the video continuously 
without glitches, whereas in file sharing system, in spite of the 
download rate of peers, the fairness is also a critical metric to 
make sure there is no free riders and everyone contributes to the 
whole system. 

CoolStreaming [39] first designed a robust and efficient archi-
tecture for the P2P streaming system. The idea is similar wi th 
BitTorrent that every peer periodically exchanges data avail-
ability wi th several neighbors, and gets missing content from 
others or uploads content to others. Through experiments on 
the PlanetLab and Internet, it is shown that such simple data-
driven architecture can successfully provide the streaming ser-
vice to a large number of peers simultaneously and also achieve 
quite good video quality. In [16], they redesign the architecture 
to improve the performance further. The sub-stream technol-
ogy is used in the new CoolStreaming and the chunk selection 
algorithms is modified to combine the pull and push strategy 
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together, which coincides wi th the analysis in [29 . 
Different from CoolStreaming, which designs the whole P2P 

streaming system from scratch, Bitos [34] implements the P2P 
streaming from BitTorrent protocol by minimum modifications. 
A video player is added into the BitTorrent software and the 
chunk selection strategy is altered to take both of the rari ty and 
playback emergence into consideration. Theoretically, Zhou et al 
'40] established a probabilistic model of P2P streaming to eval-
uate and compare different chunk selection algorithms. Their 
analysis provided a solid explanation that why such mixed chunk 
selection strategy performs better in P2P streaming systems. 

There are also considerable progress in developing theoretical 
model for the P2P streaming system. Based on the uplink shar-
ing model, [13] established a stochastic fluid model for the full 
mesh network and analyzed the performance bound of the P2P 
streaming system. If peers does not form a full mesh or peers' 
uplink capacity is heterogenous, [21] and [20] derived the tight 
performance bound of the system. The key insight is that, if the 
degree of each peer is proportional to their uplink bandwidth, 
the system can sti l l achieve the same theoretical performance 
bound as in a homogeneous network. However, the algorithms 
they proposed to achieve such bound is centralized, unscalable 
and can not be deployed in the real P2P streaming system. Dif-
ferent from their work, our work tries to design decentralized, 
scalable and implement able algorithms to actually improve the 
performance of real P2P streaming systems. 

Measurement study of the commercial P2P streaming sys-
tem also helps us to understand the system better. In [36], by 
analyzing the trace file of PPLive, the authors first are able to 
show that in real P2P streaming systems, there are some stable 
peers, which affect the performance of the overall system sub-
stantially. Secondly, they also proposed how to find those stable 
peers and organize them into an upper layer backbone network 
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to serve other normal peers. Hei et al [6] explores how to design 
a crawler and deploy passive sniffing nodes to collect the buffer 
bitmap of PPLive. Further more, they demonstrate that there 
is a tight correlation between the bitmap and peer's viewing-
continuity and then the collected bitmaps can be exploited to 
monitor network-wide quality. 

Based on data collected at the server side, Wu et al [37] have 
shown that the contribution of server stil l has a very important 
effect on the user experience and they proposed an online algo-
rithms to adjust the server upload bandwidth among multiple 
channels to match the different forecast demand. Our thesis 
systematically addresses another important and generic compo-
nent of a P2P streaming system: how peers adjust the rate they 
exchange content wi th each other (and the content server) to 
achieve load balance, to save content server load in P2P stream-
ing. 

6.1.3 P2P Video on Demand system 

Recently, how to use the peer-to-peer technology to support 
video-on-demand systems is a new challenge in P2P area. Com-
pared wi th streaming systems, peers in VoD system have less 
synchrony, which reduces the number of available content peers 
can exchange. Therefore, it is more difficult to alleviate the 
server load and maintain the user experience at the same time. 
To handle this, in the P2P VoD system, a small disk storage is 
contributed by every peer, usually 1 GB. This storage is used 
to replicate the viewed movie and in this way, peers can up-
load content viewed before to others, rather than just exchange 
current viewing data like in the P2P streaming system. This 
effectively increases the util ization of peers' uplink bandwidth 
and decreases the server load. How to efficiently replicate movies 
according to the system demand is also an interesting problem, 
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referred as the replication problem. [38] provides a preliminary 
study on this topic. 

The feasibility and profit of the P2P VoD system is first dis-
cussed in [8] and [7]. Through modeling and simulation, they 
demonstrated that the P2P technology could dramatically re-
duce server bandwidth cost, especially if peers could actively 
pre-fetch content when there are spare bandwidth in the net-
work. To avoid large amount of the inter-ISP traffic caused by 
the P2P architecture, some ISP-friendly strategies are proposed 
to localize the traffic wi th the ISPs. 

PPLive and PPStream have already buil t and deployed the 
real P2P VoD system and millions of user have been served. 
Huang et al [9] conduct an in-depth study of the large-scale 
PPLive VoD system. Several important design issues and algo-
rithms are introduced in that paper, such as content discovery, 
piece selection strategy, replication strategy and transmission 
strategy. Through the movie viewing record (MVR), they have 
demonstrated and analyzed several important properties of their 
system, e.g. user behavior, health index of movie, user satisfac-
t ion index and the server load. 

6.2 Congestion control 

As mentioned in the introduction, our load balancing problem 
has some similarity to the congestion control problem, as they 
both can be formulated as resource allocation optimization prob-
lems. Furthermore, there are important ideas from the con-
gestion control literature about how to design distributed algo-
rithms to solve such resource allocation problems. In the process 
of developing our algorithms, we discuss the parallels between 
these problems, use the relevant ideas from congestion control as 
a theoretical basis. Therefore, it is essential to provide a short 
summary on what progress have already been done in this area. 
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But more importantly, as discussed in this thesis before, we point 
out the differences between our problem and congestion control, 
and also carry the study further in studying discrete algorithms 
that can be easily implemented in real life systems. 

The modern optimization framework of the congestion con-
trol is proposed by Kelly et al [11] and they formulate the conges-
t ion control problem as a ut i l i ty maximization problem, shown 
in (6.1): 

N 
max Ui{xi) 

i二 1 

s.t. E < Ci, V/ (6.1) 

Xi>0 

where Ui{-) is the ut i l i ty function on the ith path. This problem 
tries to maximize the sum of ut i l i ty among all paths without 
violating any capacity constraint of each link. By constructing 
a Lyapunov function, they claim that the maximum solution of 
this function is arbitrari ly close to the optimal solution of (6.1). 
Further more, two kinds of decentralized algorithms, primal al-
gorithm and dual algorithm, are proposed and their optimali ty 
and global stability is guaranteed in the absence of the propa-
gation delay. The intui t ion behind their algorithms is that the 
sending rate should always keep increasing, but whenever there 
is congestion on any paths, the sending rate should be mult i-
plicatively decreased to avoid serious congestion.-

When the propagation delay can not be neglected, the al-
gorithms may not always converge to the optimal solution. In 
33], the authors investigated the decentralized sufficient condi-

t ion to make sure the primal algorithm proposed in [11] can sti l l 
converge. 

In [22], the stabil ity of the dual algorithm is analyzed. Rather 
than solve the problem (6.1) approximately, they claim that they 
can get the exact optimal solution of (6.1) by solving the dual 
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problem, shown in (6.2): 

N 
m i n D{p) 二 max Y^ Ui{xi) - - Q) (6-2) 

i=l I idei 
S.t. Pi > 0, V/ 

The advantage of solving the dual problem is that now the prob-
lem is seperatable on each path. According to the projection the-
ory, they designed a decentralized gradient projection method 
to solve problem (6.2) exactly. Meanwhile, they show that if the 
propagation delay on each path is bounded and the step size is 
extremely small, then the global stability of their algorithm sti l l 
holds even when the propagation delay is not neglect able. 

In [11], they already consider a more general optimization 
problem - mult i-path congestion control, in which each end user 
can use several paths simultaneously, shown in (6.3) 

N 
max Y M E ^s) 

i=l seR{i) 

s.t. E E < C/, VZ (6.3) 
i=l seR{i):les 

Xs>0 

where R{i) is the path/route set of user i. Both in [5] and 
11], a primal algorithm is proposed, similar as the primal al-

gorithm for the single path congestion control. Wi thout the 
propagation delay, the global stability is guaranteed. However, 
as addressed in [5], when the propagation delay is considered, 
the sufficient condition, derived in [33] for the single path case, 
does not hold in the mult i-path scenario anymore and one step 
further, the new sufficient condition for the mult i -path case is 
derived. More importantly, they show that using mult i -path 
controller can achieve a higher ut i l i ty regime than that of using 
the single path controller. 
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Another interesting primal algorithm is designed and ana-
lyzed in [10]. Their main idea is that each link sends a binary 
feedback message to the users, indicating whether this link is 
congested. Users adjust the sending rate according to the num-
ber of congested links on each path, rather than the packet loss 
rate used in [5]. Given additional constraints on the step size 
and ut i l i ty function, they get a stronger result than [5], that 
such adjust scheme can exactly converge to one of the optimal 
solutions, rather than an approximate solution. 

The major difficulty of designing decentralized dual algo-
rithms for the mult i-path congestion control problem is that 
the ut i l i ty function Ui{EseR{i) ^s) is not strictly concave. Conse-
quently, the prime problem may have multiple optimal solutions 
and the dual problem may be non-differentiable. Besides, the 
dual algorithms also possibly causes severe oscillation in the net-
work. Therefore, i t is harder to solve the dual problem and avoid 
the oscillation. 

There are two ways to handle this, proximal method and sub-
gradient method. To deal wi th the lack of strict concavity, in [19], 
Lin et al add a quadratic term to the prime function, keeping the 
optimal solution unchanged. After this, they follow the standard 
proximal optimization algorithm to solve the modified problem 
and also construct the online algorithms which is much easier to 
implement. The convergence of their algorithms wi th /w i thout 
measurement noise is also addressed in this paper. Based on 
the analysis in [35], when there is no propagation delay, i t is 
proved that the sub-gradient method can solve the dual problem 
efficiently. However, if the propagation delay can not be ignored, 
they demonstrate that the sub-gradient method sti l l causes the 
oscillation problem when the primal variables are recovered from 
the dual variables. 

One important extension is the mult i-path congestion control 
w i th dynamic routing, in which users have an available path set 



CHAPTER 6. BACKGROUND STUDY 66 

but only can use several paths simultaneously. [12] is a pioneer 
in this area. Based on the classic ball and bin model, first they 
show that even in the worst case, the coordinated controller can 
achieve better performance than the uncoordinated controller. 
Afterwards, they show that, for both of the coordinated con-
troller and uncoordinated controller, if users can always change 
to a new path set wi th higher sending rate, such iterative path 
selection wi l l lead to the maximum social welfare eventually. 
This result provides a solid theoretical guideline when we de-
sign practical path selection algorithms. However, as discussed 
before, such path selection algorithm can not be directly im-
plemented in the real applications, because the sending rate on 
the new path set is totally unpredictable. On the contrary, our 
neighbor selection algorithms can be directly deployed in the 
real P2P streaming systems. 

• End of chapter. 



Chapter 7 

Conclusion 

The load balancing problem - how peers use distributed algo-
rithms to simultaneously use multiple neighbors to help they 
achieve their downloading needs and minimize the content server's 
support - is an important and generic problem in P2P content 
distribution systems. I t is the equivalent of the congestion con-
trol problem in the network and transport layers. In this thesis, 
we systematically analyzed the problem, pointed the important 
issues and studied a number of practical algorithms. In par-
ticular, we first studied how peers adjust their request sizes to 
meet their downloading needs; then considered how to adjust 
their neighbor set to optimize the system level performance for 
heterogeneous networks. Finally, we also studied how to use an 
adaptive algorithm to minimize the use of the content server. 

There are many interesting directions for future studies. In 
this thesis, we focused on the P2P streaming case. In contrast, 
the P2P file downloading case may require some different algo-
rithms since it tries to maximize throughput rather than min-
imizing server load. This is of great interest since i t is needed 
for P2P VoD systems. Another angle is to extend this work for 
the dynamic population case. 
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