
Design and Evaluation
Balancing Algorithms

Streaming

WANG, Yongzhi

of Load
in P2P

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Master of Philosophy
in

Information Engineering

The Chinese University of Hong Kong
August 2009

Abstract of thesis entitled:
Design and Evaluation of Load Balancing Algorithms in P2P

Streaming
Submitted by WANG, Yongzhi
for the degree of Master of Philosophy
at The Chinese University of Hong Kong in August 2009

In this thesis, we consider a central problem in P2P content dis-
tr ibution: given a set of neighboring peers connected to each
other to exchange content, how they can optimally negotiate
the rate in helping each other so as to achieve maximum overall
throughput and minimize the content server's load. We call this
the "load balancing problem" of a P2P system. By providing an
abstract formulation of the optimization problem, we contrast
this problem wi th the network congestion control problem, both
in terms of parallels and differences. We then proceed to study
several versions and aspects of this problem systematically: (a)
request allocation, (b) neighbor selection, and (c) server load
minimization. We have proposed and evaluated several prac-
tical algorithms that are discrete (window-based), distributed
(without needing global information), and adaptive.

文摘要

在这篇论文中，我们研究了分布式对等网络中的一个核心问题：

给定一些可用的邻居节点后，各个节点之间如何协商互相之间的下载

速率，使得节点的上行带宽的利用率达到最高，并且使得服务器提供

的带宽最小。我们称这个问题为，分布式对等网络中的负载均衡问题

首先，利用最优化理论，我们建立了该问题的数学模型。然后，我们

分析了该问题和网络中的拥塞控制问题的相同点和不同点。最后，我

们系统性的研究了负载均衡问题的三个子问题：（1)请求分配问题，

(2)邻居节点选择问题，（3)服务器的负载最小化问题。我们设计并且

评估了一系列实用的分布式自适应性算法，来解决负载均衡问题。这

些算法都可以直接应用于实际的分布式对等网络中，而且不会在网络

由产生额外的信令幵销。

Acknowledgement

First of all, I would like to thank my supervisor, Prof. Chiu
Dah Ming, for his encouragement of free thinking and valuable
guidance during my whole research period. I have learnt so much
from the supervision of Prof. Chiu and I would like to thank
him for his support and trust in the past two years.

Secondly, I would like to thank Prof. John, C. S. Lui. From
his courses, I have learnt the fundamental knowledge of modeling
and analysis in the computer networking area. Regular meetings
wi th Prof. Lui also provides valuable advice on my research.

Thirdly, I would like to thank all my friends in CUHK, es-
pecially Fu Zhengjia, who gave me help and support. W i t h you
around, my life in CUHK is wonderful.

As always, I would like to thank my girl friend and family for
their endless love, understanding, support and encouragement
through the whole process.

Contents

Abstract i

Acknowledgement ii

1 Introduction 1

2 Abstract Model 7
2.1 Request allocation problem 7
2.2 Neighbor selection problem 11

3 Simulation Model 14

4 Load Balancing Algorithms 18
4.1 Request allocation 18
4.2 Neighbor selection algorithms 24

4.2.1 What to measure? 24
4.2.2 Timeout-based neighbor selection algorithms 25
4.2.3 Periodic neighbor selection algorithms . . 33
4.2.4 Comparison: Timeout-based versus Peri-

odical neighbor selection algorithms 39
4.3 Further experiments 41

4.3.1 Request window size 41
4.3.2 Impact of K 42
4.3.3 Adaptive adjustment of the neighbor se-

lection period 43
4.3.4 Performance wi th adequate bandwidth . . 45

111

5 Minimizing Server's Load 49

6 Background Study 56
6.1 P2P content distribution system 56

6.1.1 P2P File sharing system 56
6.1.2 P2P streaming system 59
6.1.3 P2P Video on Demand system 61

6.2 Congestion control 62

7 Conclusion 67

Bibliography 68

IV

List of Figures

2.1 Load balancing problem 8
2.2 Mapping to congestion control problem 10

3.1 Flow chart of the simulation model 16

4.1 Download time of any request 20
4.2 Average cumulative download rate of the request

size control algorithm 22
4.3 Performance gap between discrete model and fluid

model 23
4.4 Flow chart of the simple neighbor selection algo-

r i thm 26
4.5 The performance comparison between the best

neighbor and weighted random strategies 28
4.6 Average queue length of the best neighbor algo-

r i thm 29
4.7 The performance of strategies wi th timeout mech-

anism 32
4.8 Performance under different network settings . . . 33
4.9 The performance of the periodical neighbor selec-

t ion algorithms in homogeneous network 36
4.10 The performance of the periodical neighbor selec-

t ion algorithms under different network settings . 37
4.11 The oscillation of one peer's degree under differ-

ent strategies 38

4.12 Performance comparison: Timeout-based versus
Periodical neighbor selection algorithm 39

4.13 The performance under different W in the homo-
geneous network 43

4.14 The performance under different W in the het-
erogeneous network A 44

4.15 The performance under different W in the het-
erogeneous network B 45

4.16 The performance under different K in the homo-
geneous network 45

4.17 The performance under different K in the het-
erogenous network A 46

4.18 The performance under different K in the hetero-
geneous network B 46

4.19 The average cumulative download rate of three
algorithms wi th /wi thout the adjustment of the
neighbor selection period 47

4.20 The performance under networks wi th adequate
bandwidth 48

5.1 The performance and server load under different a 52
5.2 The dynamic evolution of a, server load and av-

erage cumulative download rate 55

VI

List of Tables

4.1 Notations 19
4.2 The retry ratio of different algorithms under dif-

ferent network settings 32

5.1 Notations 49

Vll

Chapter 1

Introduction

A Peer-to-Peer (P2P) content distribution system, whether stream-
ing or file downloading, relies on using multiple distr ibution trees
(not necessarily built explicitly) from the source to all peers si-
multaneously, to maximize throughput. These distr ibution trees
are logical (overlay) trees tracing out which peers are helping the
source to forward content to which other peers, and they share
the same physical network. I t is therefore necessary to adjust the
data rates in these distribution trees to maximize throughput,
by increasing the rate in those trees that have free (physical)
capacity, and controlling the rate in those trees that are satu-
rated. How to achieve this by distributed algorithms executed
by peers is the topic of this thesis.

The difference between streaming and downloading is that
the former needs to achieve a given playback rate whereas the
latter means best-effort. In steaming, the content has deadlines
to meet, so the delivery system needs to take them into consid-
eration. Other than that, streaming is an easier problem than
downloading when the total bandwidth capacity of the multiple
distr ibution trees is abundant (or at least adequate) compared to
the playback rate. In this thesis, we focus on the P2P streaming
problem.

Broadly speaking, there are two types of P2P systems: struc-
tured versus unstructured, referring to two very different ap-

CHAPTER 1. INTRODUCTION 2

proaches of building and maintaining the multiple distribution
trees from the source to all the peers. In the structured ap-
proach, the trees are built explicitly - each peer knows its role
(or position) in each tree that i t belongs to. Since peers come
and go, maintaining these trees becomes complicated. In the
unstructured approach, trees are created on-demand, based on
availability of content for exchange by neighboring peers. Each
peer keeps track of a subset of other peers as neighbors. At any
moment, each peer tries to stream a chunk of content from a
subset of neighbors that have this chunk. The local peer can
request different pieces of the chunk from different neighbors
at the same time. Thus, each piece travels through potentially
a different tree to reach all peers. While building distribution
trees in this manner seems rather chaotic, i t works incredulously
well, as demonstrated by many practical and deployed systems
(such as BitTorrent [1] and PPLive [26]).

The throughput l imit of such multiple-tree P2P content dis-
tr ibut ion systems can be analytically derived, under two as-
sumptions: (a) content is divided into very small pieces which
flow through the trees as fluid, and (b) only uplinks in the physi-
cal network can be bottlenecks. By making the fluid approxima-
t ion (a), each peer is essentially doing cut-through forwarding so
there is no wastage of any bandwidth in the process. Assump-
tion (b) is not unrealistic in practical network settings. For net-
works satisfying this assumption, the analysis is dramatically
simplified. Mundinger coined the term uplink sharing model to
refer to such networks [25]. Under these assumptions, i t can be
shown that the throughput l imit Rmax is bounded by

N JJ.
Rmax < min([/o, E T7) (1.1)

i=0 丄、

where Uq is the uplink bandwidth of the source, and Ui,i > 0, is
the uplink bandwidth of each peer respectively [25, 13]. When
there are constraints to the distribution trees, e.g. when the

CHAPTER 1. INTRODUCTION 3

peers do not form a ful l mesh, or when there are degree bounds
to each node of the tree, the corresponding problem is addressed
in [17, 21].

In practice, the performance of a multiple-tree P2P content
distr ibut ion system depends on the algorithms used to imple-
ment tree construction and transmission scheduling. Such algo-
ri thms are distributed, involving the following subalgorithms at
each peer:

1. find a set of neighbors, typically w i th the help of a tracker
server and some randomization

2. determine a chunk to download, typically based on knowl-
edge of neighbors' content and what is missing locally

3. request one or more neighbors for different pieces of the
selected chunk

These algorithms have already been engineered in various P2P
systems (such as BT, PPLive and others) through repeated ex-
perimentation and tuning. The question is, can we bui ld rea-
sonably simple models of these algorithms to help understand
why they work and how to optimize them and make them more
robust.

In the unstructured setting, the maximum throughput can be
achieved, intuit ively, if these two invariants can be maintained:

a) A peer's neighbors always have chunks the local peer needs

b) A peer's neighbors always have enough upl ink bandwidth
to satisfy the local peer's playback rate

Roughly speaking, the first invariant is achieved by chunk selec-
tion] whereas the second invariant achieved by load balancing.

The chunk selection algorithm has been studied in [1, 40，29 .
The key insight is to give sufficient pr ior i ty to distr ibute the
rare chunks which are those that have not propagated far along

CHAPTER 1. INTRODUCTION 4

the multiple trees yet. In the streaming case, chunks also have
urgency, so the priority should take both rarity and urgency into
consideration [40 .

The objective of this thesis is to systematically study practi-
cal load balancing algorithms, that are decentralized, efficient,
and easy to implement in real-life P2P systems. The load bal-
ancing problem has two special cases:

1. If all the neighbors can be used simultaneously, how to
balance the load among neighbors to achieve the maximum
uti l ization of their uplink capacity. This is called the request
allocation problem, which is studied in Chapter 4.1.

2. I f each peer is only allowed to select a small number of
neighbors from its neighbor set to download simultaneously,
which is usually the case in real system, how to find the
best neighbors (with the most available uplink bandwidth)
to help. This is referred as the neighbor selection problem.
This case is studied in Chapter 4.2.

Shrewd readers wi l l notice the similarity of our load balancing
problem to that of mult i-path congestion control. This is indeed
the case, and we wi l l draw the parallels and borrow ideas, as we
discuss it in Chapter 2. There are, however, some important
special features to our problem:

1. We are primari ly interested in a streaming problem, where
the objective is for all peers to achieve a throughput equal
to a playback rate, R. The P2P file downloading case,
where each peer tries to achieve the highest rate possible,
is closer to the mult i-path congestion control problem.

2. In our problem, a server is there to make up for any short-
age of download rate, and the goal is to minimize the use of
the server bandwidth. Theoretically, the server can offer its

CHAPTER 1. INTRODUCTION 5

service as a last resort. That is, when the load balancing al-
gorithms can fully utilize peers' bandwidth, the bandwidth
provided by the server is also minimized. However, this is
easier said than done in a distributed environment where
the use of server is determined by peers. How to make
peers rely on the server only when necessary is discussed in
Chapter 5.

3. In mult i-path congestion control (and some rate control
schemes e.g. [4]), i t is important to consider fairness, which
makes sure no host can dominate all the bandwidth. How-
ever, in our load balancing problem, we are only concerned
wi th achieving maximum available throughput. Because
peers who get lower bandwidth from others can directly ask
help from the central server to fill in the gap, between their
download rate and the playback rate, there is no need to
require each peer shares the same downloading bandwidth.

Another distinction wi th the mostly theoretical study of mult i-
path congestion control is that we focus on practical algorithms,
where discretization (removal of fluid assumption), and the loca-
t ion the controls are implemented (receiver rather than sender)
must also be considered in the design.

The organization of the thesis is as follows: We first describe
the abstract version of our problem in Chapter 2, to allow us to
see what we are trying to achieve under idealized situations (cen-
tralized, fluid etc). Then we consider a number of distributed
algorithms for the load balancing problem and study them us-
ing event-driven simulation, as described in Chapter 3 and 4.
In Chapter 5, we consider the remaining challenge of how to
adaptively minimize the server load, without harming peers'
throughput. After a brief account for related works, we con-
clude in Chapter 7. By presenting them together, we hope to
illustrate the insights we gained.

CHAPTER 1. INTRODUCTION 16

• End of chapter.

Chapter 2

Abstract Model

In order to focus on the load balancing problem, let us assume
each peer has all the content that any other peer may ever want
(the first invariant already met). Both the request allocation
problem and neighbor selection problem can be formula ted ab-
stractly as optimization problems in resource allocation.

2.1 Request allocation problem

As in Fig 2.1, let there be N peers, each acting as an uploader
wi th an uplink capacity of Uk, k = l , . . . , i V . Each peer, k,
also acts as a downloader and seeks service from a randomly
selected set of uploaders (other peers), Sk. Sk is referred to as the
neighbor set of peer k, randomly assigned by a tracker. Denote
the download rate obtained by peer k from the j t h neighbor by
rkj. The goal for each peer is to make sure ZjeSk n j = R where
R is the playback rate.

The source serves as a back-up server (indexed by 0), assumed
to have infinite capacity, Uq = oo. If a peer k cannot receive
sufficient service rate from its neighbors Sk, then the back-up
server steps in to fill in the gap. Denote the back-up server's
service rate for peer k by rko. Combining this w i th the above

CHAPTER 2. ABSTRACT MODEL 18

Uploaders
Ui U2 U3 • • • Uk UN

Dow 门 loaders

Figure 2.1: Load balancing problem

yield
no + E n j = R V/c

jeSk
The objective is to select the service rates for each peer's neigh-
bor set to minimize the total service rate of the back-up server,

厂0 = E^fco
k

and the optimal solution is denoted as r^. This is a standard
linear programming p rob lem.

By substituting Vko w i th R — T^jeSk『kj, i t is easy to transform
this problem into the following LP (2.3), which maximizes the
sum of upload rate from peers. Theoretically, we assume that
the central server can always fill in this rate gap,i? — T,jeSk『kj,
exactly. However, in Chapter 5, i t wi l l be shown that i t is non-
tr iv ial to design an algorithm that produces the rate from the
server.

N
max E nj

k=l jeSk

CHAPTER 2. ABSTRACT MODEL 19

S.t. nj < R y k (2 . 1)
jeSk

E nj < Uj V j
k-.jeSk
Tkj > 0 E Sk

Since this is a standard linear programming problem, we
know there exists a solution, and there are standard procedures
for obtaining the solution (although it may take some time).
Furthermore, we know that the optimal solution is bounded by
the rate l imit given by equation (1.1).

mm

s.t.

N

E no
k=l

E Tkj + rfco = fi v/c •
j&Sk

E nj < Uj V j
k:jeSk
Tkj > 0, r/,0 > 0 V/c, j G Sk

(2.2)

N
max

s.t.

E E n j
k=ijeSk

(2.3) E rkj < R ^k
jeSk

E n j < Uj \ / j
k:jeSk
Tkj > 0 ^ k j € Sk

Prom a practical point of view, our interest is in designing a
distributed algorithm to find the optimal allocation, w i th good
convergence time. In this respect, we can borrow many ideas
from the congestion control literature where a variety of dis-
tr ibuted algorithms (primal or dual) for solving similar resource
allocation optimization problems have been studied. In simple
terms, these algorithms can all be described by increase-decrease
algorithms as in [2

R
R

Virtual
R downloader

link

R

〇

〇

R

Ui
U2

© U3

® Uk

® Un

Virtual
uploader

link

Figure 2.2: Mapping to congestion control problem

More formally, to map our problem to a classic congestion
control framework, each overlay connection between peer k and
its jth neighbor, j G Sk, can be treated as a path that traverses
two links, "vir tual uploader l ink" wi th capacity Uj and "vir-
tual downloader l ink" w i th capacity R. In Fig 2.2, we show an
example of such mapping when peer k,s neighbor set is {1 ,2} .

Then the question is how to adjust the rate rkj on path (/c, j)
to maximize the sum of all the rates without violating any ca-
pacity constraint on each vir tual link. Let

咖 = E n,it)
jeSk

m) 二 E 〜 ⑷
k:jeSk

be the total traffic on the downlink of peer k and uplink of

CHAPTER 2. ABSTRACT MODEL 10

0
©
©

〇

〇

CHAPTER 2. ABSTRACT MODEL 11

peer j , and p^(-) and p^(-) be the price(s) (or penalty functions)
charged by the corresponding links. [11] showed that the rate
adjustment algorithm given by the following differential equa-
t ion would converge to a stable solution (that is the optimal
solution of LP 2.3):

J ^ j i t) = c (l - p U R i i t)) — p J (R j m (2.4)

where c is some constant step size.
However, the rate control algorithm in this form can not be

directly implemented in practical P2P streaming systems. This
is because in congestion control, each sender directly controls the
sending rate Vkj on the j t h path whereas in a pull-based P2P
streaming system, each peer can not directly control the down-
load rate from neighbors. This download rate is determined by
the neighbor's uplink capacity and current load, which is usually
unknown by the requesting peer. Instead of the rate, what peers
can adjust is the number of pieces requested wi th in one request
message sent to neighbors. Such adjustments only affect the
download rate from each neighbor indirectly. Therefore, rather
than implement the rate control algorithm directly, we propose
a request size adjustment algorithm to achieve load balancing
for P2P streaming systems. The details wi l l be discussed in
Chapter 4.1.

2.2 Neighbor selection problem

Now, assume that peer k can only choose Wk, Wk < \Sk\, target
neighbors from its neighbor set Sk and download from them
simultaneously. This is quite likely the case in practice since
peers cannot manage communication w i th too many neighbors
at the same time. The question is how peer k should choose
the Wk neighbors and adjust the rate at the same time. We

CHAPTER 2. ABSTRACT MODEL 12

can extend the original problem definition as follows. Let Xkj
be a variable to indicate whether the j t h neighbor is chosen by
peer k. Then the optimization problem, including both request
allocation and neighbor selection, becomes:

N
max E XkjTkj

k=ljeSk
S-t. XkjTkj < R ^k

jeSk

E XkjTkj < Uj V j (2.5)
k-.jeSk
E hj = 购

jeSk
Tkj > 0 \/k,j G Sk
Xkj = 0 or 1 \/kJ e Sk

This is now a mixed integer programming problem. I t is simi-
lar to the mult i -path congestion control problem w i th dynamic
routing, which is known to be more difficult to design a dis-
tr ibuted algori thm for. [12] investigates the path selection algo-
r i thm of mul t i -path congestion control when only a few paths
can be used simultaneously, which is similar to our case. They
prove that if peers/users always change to a new path set w i th a
higher sending rate, then such iterative path selection (without
wrong moves) leads to the opt imal path selection eventually. In
practice, i t is diff icult to implement this algorithm because the
performance of the new path set is unpredictable and there is
no guarantee for a positive increment after each move.、To sup-
port their algorithm, global information such as the available
bandwidth and current loading at each neighbor needs to be
available to avoid wrong decisions and synchronization among
peers is also necessary to avoid oscillation, which is unlikely to
be cost effective.

In Chapter 4.2, we propose and evaluate two kinds of heuris-
tics that only depend on local information and are hence easy

CHAPTER 2. ABSTRACT MODEL 13

to implement in real P2P streaming systems.

• End of chapter.

Chapter 3

Simulation Model

The purpose of describing our problem at the abstract level, in
the last chapter, is to first get a high level understanding of the
problems we are t ry ing to solve, and some generic algorithms
under given assumptions, such as rate adjustment congestion
control algorithms under fluid assumption. Our goal, however,
is to develop some general algorithms without the f luid assump-
tion, that are easy to implement in practical systems. In order to
evaluate these practical algorithms, we develop a discrete-event
simulation model that captures more details of a real system
than the abstract model. Here, we first contrast our simula-
t ion w i th the Network Simulator 2 (NS2), which is a widely
used discrete-event simulation platform targeted at networking
research. After that, we focus on discussing the similari ty and
difference between the simulation model and the abstract model.
The flow chart of this event driven simulation is shown in Fig
3.1.

Compared w i th the Network Simulator 2, our simulation model
is simplified by three assumptions:

• In NS2，each layer of the networking architecture is sim-
ulated in detail. In contrast, our simulation model only
focuses on the application layer behavior and the behav-
iors of lower layers are not taken into consideration, such

14

CHAPTER 3. SIMULATION MODEL 15

as routing dynamics, packet loss or congestion control.

• Our simulation model sti l l follows the "uplink sharing"
model, in which the network and peers' downlink can not
be the bottleneck.

• In contrast to NS2, where it is possible to simulate the
T C P / U D P packet transmission behavior, in our simulation
model, only the chunk/piece level transmission behavior is
considered.

Some basic assumptions are common to both the simulation
and abstract models. The peer population is fixed at N , and
each peer is randomly assigned a constant number of L neighbors
by a tracker. A l l peers jo in the system at same time, but peers
may have different uplink bandwidths. Each peer requests ser-
vice from other peers as well as provides service when requested.
How to request service and how to select appropriate peers are
discussed in the next chapter. Each peer is assumed to have
the content to serve any request. And finally, only the peers'
uplinks can be the bottlenecks, which means the network can
not be the bottleneck as in the uplink sharing model.

A major difference is to replace the rate-based control in the
abstract model w i th something more like window-based control.
Each chunk of video is divided into M pieces, and piece is the
minimum unit of a request. When multiple requests arrive, they
are queued and a peer serves them according to the FCFS princi-
ple as in standard queueing systems. The response time depends
on the uplink bandwidth (service time) and the current queue
length of the servicing peer (waiting time). Each requesting
peer maintains a request window VK, where 1 < W < L. The
request window is the maximum number of neighbors a peer can
download from simultaneously. After all pieces requested in one
request are downloaded, a peer can issue another request. In-
tuitively, larger M and W tend to help load balancing, making

CHAPTER 3. SIMULATION MODEL 16

Simulation start

Initialization

initialization^

Each peer

I T

threacli；^ assign a target.
T”figighti)jSj^:t(^:辟(j}. thread

Each Thread

Ser̂HQut the request message to pQ
'cjhosfnmrggt neighbor
•"•Hawdw “ ‘ j- t^w * '«j*- • " ' _ .Susppn̂ ^̂ until begin to receive data

3m the target neighbor

No [Suspend until the
、serŷ C creates a

new chunk

Figure 3.1: Flow chart of the simulation model

CHAPTER 3. SIMULATION MODEL 17

the discrete model closer to the abstract model wi th fluid ap-
proximation. In practice, M cannot be too large due to request
overheads; and W is l imited as it tends to increase error and
loss rate at the receiver.^

We assume the playback rate is one chunk per unit time (e.g.
one second). For streaming, we assume each peer does not make
requests so that the cumulative download rate exceeds the play-
back rate. One reason for this can be because the content is
made available by the source at the playback rate. The per-
formance metric is the average cumulative download rate at all
peers, and the speed at which this rate converges towards the
playback rate over time.

Given this model, we know that a pre-condition for achiev-
ing (close to) playback rate throughput is for the total uplink
bandwidth of all peers to meet the total demand, NR., namely
all peers achieve the playback rate. When the total bandwidth
supply is abundant compared to the demand, it is easy for many
algorithms to perform well, which wil l be shown later. That is
why we choose to study a tight regime where the supply equals
demand, that is EjfLi Uk ~ NR.

Again, temporally, we exclude the source (back-up) server in
the simulation model and mainly focus on balancing the load
among peers to achieve the maximum throughput. The central
server wi l l be revisited in Chapter 5.

To compare different algorithms in the following chapters,
we use the following parameter values in the simulation model:
N = 1000, L 二 30, M = 10, VI/ = 6 ， = 1; unless specified
otherwise.

• End of chapter.
iTo deal with excessive incoming burst rate, we assume there is some lower layer pacing

and error correcting/recovery mechanism.

Chapter 4

Load Balancing Algorithms

In this chapter, we study the load balancing problem as two
subproblems: request allocation and neighbor selection. The
first one tries to achieve optimal load balancing when each peer's
W target neighbors are given, while the second tries to select W
target neighbors from L available neighbors to form an optimal
target neighbor set. In Chapter 5, we extend our algorithms to
implement the back-up function by the central server. Notations
used in this chapter are summarized in Table 4.1.

4.1 Request allocation

In this case, we assume that each peer randomly selects W target
neighbors from L neighbors and sticks wi th this target neighbor
set during the simulation. Each peer k adjusts its download rate
from the j t h neighbor by adjusting the number of pieces, Skj,
i t requests the j t h neighbor to upload. We use Tkj to denote
the newest roundtrip time of the j t h neighbor, that is, the total
t ime to download requested pieces from this neighbor, including
the propagation delay, transmission time as well as the queueing
delay, shown in Fig 4.1. The average download rate of peer k in
the previous second is Rk. As mentioned before, different from
the congestion control problem where each sender can directly

18

CHAPTER 4. LOAD BALANCING ALGORITHMS 19

Notation Explanation

Skj Number of pieces requested by peer k from its jth neighbor
c Constant step size to increase Skj

Tkj Download time of peer k from its jth neighbor

Rk Peer k,s average download rate in previous second

fkj Peer /c's download rate from its jth neighbor

Qkj Queuing time of peer k from its jth neighbor

Tkj Exponentially smoothed queuing time of peer k from its
jth neighbor
Variability of the queuing time of peer k from its jth neigh-
bor

Dkj Timeout threshold when peer k sends request to its jth
neighbor

P Retry ratio caused by timeout events
K Number of neighbors replaced in one round
W Request window size
R Download rate threshold used in section 4.3.3

Rk Peer /c's average download rate in previous neighbor selec-
tion period

Table 4.1: Notations

CHAPTER 4. LOAD BALANCING ALGORITHMS 20

Thejth neighbor
Propagation. Queuing Transmission

delay Time Time

‘Pieces
Request

Time

Data trans. Data trans.
/ stsrts 、、、、、、、、、、 ends

Peer k O/cy
1 Peer k

』 Tki

1 Peer k 1 Time

Figure 4.1: Download time of any request

control the send rate on each path, here peer k controls the
number of requested pieces Skj instead, which only affects the
download rate indirectly. Following the rate control algori thm in
Eq (2.4), we use the following rule to adjust Skj in the (n + l) t h
iteration:

Skj[n + 1] = [skj[n] + c (l - pf[n] - p n + (4.1)

where n _ iRk\n]/R-l+er 们u — , Pi n = a n d 6 > 0. Our
request size control algorithm runs in the following way:

1. In the n t h iteration, for peer k, if its j t h neighbor is not
overloaded, which means the service queue length of the j t h
neighbor, including peer k,s request, is smaller than Uj * Is ,
then the roundtr ip t ime to finish peer /c's request should be

n > Therefore, TV n smaller than Is. Otherwise Tkj
which is easy to measure locally, can be used as the feed-
back, indicating whether the j t h neighbor is overloaded. I f
Tkj[n\ > 1, the feedback induces peer k to reduce the num-
ber of pieces requested in the (n + l) t h request message,
sent to the same neighbor.

CHAPTER 4. LOAD BALANCING ALGORITHMS 21

2. Similarly, whenever Rk [n], the average download rate in
the last second, exceeds the playback rate, pf [n] is positive.
This causes peer k to decrease Skj as well. In this situation,
peer k already receive a large enough download rate, so it
must not be in the way to prevent other peers achieving
their playback rate.

3. I f neither of the above two constraints are violated, Skj is
increased by c, a constant step size, in order to produce a
larger download rate.

Here, e is a small positive scalar which affects the convergence
speed and the local stability of the algorithm. More detailed
analysis of this factor can be found in [11] and [33]. Because the
minimum requesting unit is a single piece, we also need to apply
the randomization scheme to round Skj to an integer number.

The obvious advantages of this algorithm include:

1. I t only requires information that can be measured locally
without incurring any extra information exchange in the
network.

2. I t runs in a total ly asynchronous way. Not only is i t unnec-
essary for peers to synchronize wi th each other, but for a
particular peer, the request size to different neighbors can
be adjusted asynchronously.

In our experiments, each peer init ial ly sets Skj to be 1 for all
its neighbors. A t the completion of each request, Skj is updated
according to the feedback Tkj and Rk and the algorithm (4.1).
The default setting for c and e is : c = 0.1 piece and e = 0.1.

In the first experiment, we assume a homogeneous network,
by setting the uplink bandwidth of all peers to equal the play-
back rate. Meanwhile, one scheme is used as a benchmark, in
which peers do not change the number of pieces requested, but

lOptima丨 ratel • 一 一 " • 一 广 一 —

••••• [Request control |

r

[No request control|

一 卜 No request control
— •—Reques t control
—貪一 Optimal rate

「Optimal ratel

•••“ — f — “
• I Request control |

^ I No request control |

No request control
Request control

• Optimal rate

100 2 0 0 ^ . 300 400 500
Time

(a) Homogeneous network

0 100 200 300 400 500
Time

(b) Heterogeneous network

Figure 4.2: Average cumulative download rate of the request size control
algorithm

From the figure, it can be observed that there exists a gap
between the optimal rate and the rate achieved by our algorithm.
Such a gap is unavoidable when we remove the fluid assumption,
and when the algorithm runs in an asynchronous way. As shown
in Fig 4.3, this gap decreases rapidly as the piece size becomes
smaller, when the system gets closer to the fluid model.

We now motivate the importance of the neighbor selection
algorithm. Without neighbor selection, each peer just randomly
selects W target neighbors and sticks to them. Let us define the
degree of peer k as the number of peers that choose peer k as
the target neighbor, and show that such simple random scheme
does not always work well because:

CHAPTER 4. LOAD BALANCING ALGORITHMS 22

just stick to 1 piece per request. The optimal rate in this topol-
ogy is obtained by solving the LP (2.3) in Mat lab. The perfor-
mance of the request size control algorithm, measured in average
cumulative download rate, is shown in Fig 4.2(a). Obviously, the
request size control algorithm performs better than the bench-
mark scheme, achieving an average download rate closer to the
optimal rate. Even under asynchronous control, the conver-
gence speed of this algorithm is acceptable, taking less than 25s
to achieve 95% of its peak rate.

1 0 . 1

隱。」
•D
1 0 . 1

ro

30.1
E
3 o . 0) O)
roo.

I
^ 0

C
T
U
I
P
e
o
l
u
M
O
P
 9
>
-
l
e
一
n
E
n
o

 9
6
e
J
9
>
v

0.10 0.15
Piece Size

Figure 4.3: Performance gap between discrete model and fluid model

1. According to the analysis of the classic ball-and-bin model
in [24], the probability that this simple randomization scheme
wi l l generate several peers w i th extremely high degree is
almost 100% when the scale of the system increases. The
uneven degrees make i t hard to achieve load balancing.

2. In practice, the uplink capacity of peers can vary quite a lot,
between ADSL versus Ethernet based access technologies.
This randomization scheme also cannot guarantee that the
degree of each peer is proportional to its uplink capacity.
20] provides a solid explanation of the reason.

To demonstrate the drawback of this static random neighbor
scheme clearly, we construct a heterogeneous network, Hetero.A
for short, in which there are equal number of three types of peers,
w i th uplink bandwidths of (0.2,0.6,2.2) respectively, relative to
the playback rate. In this setting, the result of the simple ran-
dom scheme is shown in Fig 4.2(b). Unsurprisingly, compared
to Fig 4.2(a), the performance deteriorates dramatically due to
the heterogeneous setting and i t is clear that such simple ran-
dom scheme is incapable in the heterogeneous network setting.
Two kinds of neighbor selection algorithms are studied in the

CHAPTER 4. LOAD BALANCING ALGORITHMS 23

① 1.000

" t o

O 0.990 c
•§ 0.985 <D >
TO 0.980
"5
E
3 0.975
<D D)
2 0.970 0) >
<

0.965

CHAPTER 4. LOAD BALANCING ALGORITHMS 24

following sections.

4.2 Neighbor selection algorithms

Now, we allow peers to reselect their target neighbors and pro-
pose two kinds of algorithms: timeout-based neighbor selection
algorithms and periodic neighbor selection algorithms. Both of
them are easy to implement in practical P2P streaming systems
by using the multi-thread programming technology.

Before introducing these two types of neighbor selection algo-
rithms, the first issue is to identify an appropriate performance
metric, used to evaluate neighbors' performance accurately and
determine which one can provide better service.‘

4.2.1 What to measure?

In order to evaluate neighbors' performance accurately and cost
effectively, a number of measurement options have been consid-
ered. For example, the uploader can indicate its queue length at
the conclusion of uploading pieces of content. This information
needs to be combined wi th the uplink bandwidth of this peer for
it to reflect the load, but a peer does not automatically know
its own uplink bandwidth. Alternatively, a central service can
be used to request peers to query current load information or
current available bandwidth. A l l these schemes seem to have
their own problems; the major issue being the timeliness of the
information versus the overhead of acquiring such information.

Without incurring extra information exchange, the scheme
we pick for this study is based on measuring the download rate
from the requesting peer. This scheme is relatively low cost
and robust. For peer k, we use f k j j = 1 , . . . , L , to denote the
download rate from the j t h neighbor. Each peer init ial ly sets
fk j to be a large scalar for all neighbors, to make sure every

CHAPTER 4. LOAD BALANCING ALGORITHMS 25

neighbor has the chance to be selected. After the completion of
each request, the download rate from the jth neighbor is reset
to the most recent measured value, namely the request size Skj
divided by the download time Tkj. Using fk j , peers are able to
choose the suitable neighbor to download from.

4.2.2 Timeout-based neighbor selection algorithms

In this section, we introduce a simple neighbor selection algo-
r i thm of which the performance is not very good at first, arid
then add the timeout and retry mechanism to assist this kind of
algorithm to achieve a better performance.

A simple neighbor selection algorithm

At the completion of each request, peers are allowed to choose
the next target neighbor from the whole neighbor set, where the
new request wi l l be sent, rather than just keep using the init ial
target neighbor as in Section 4.1. More precisely, pG6r Ai, /c —
1, 2, ...N, maintains W threads, each of which is in charge of one
request independently. As illustrated in Fig 4.4, the algorithm
executes as follows:

• Step 0: Initially, each thread of peer k is randomly assigned
a target neighbor. Assume the target peer of the zth thread
is the jth neighbor.

• Step 1: The zth thread generates a request and the number
of pieces within this request is determined by Algori thm
(4.1). Then, this request is sent to the j t h neighbor and
joins its service queue. Afterward, the zth thread enters the
"PENDING" state, and waits to get the service.

• Step 2: When all the other requests ahead of this request
are served, the j t h neighbor starts to upload pieces to peer
k and the state of the zth thread becomes "RECEIVING".

CHAPTER 4. LOAD BALANCING ALGORITHMS 26

Each thread

nutnbor of pieces

『the target

R^^ive y^^ata from itie
；二麵

RECEIVING

1
After getting all the
pieceŝ update Iho
• -s 帥 s k s _

Figure 4.4: Flow chart of the simple neighbor selection algorithm

Step 3: Once all the requested pieces are downloaded, the
thread is in the "FINISHED" state and updates the down-
load rate from the j t h neighbor and other relevant statis-
tics.

CHAPTER 4. LOAD BALANCING ALGORITHMS 27

• Step 4' Based on the measured download rate of each neigh-
bor, the zth thread selects a new target neighbor using some
algorithms and goes to Step 1 again. This state is "SE-
LECTING" .

In Step there are many possible algorithms one can con-
sider on how to chooses the new target neighbor from the whole
neighbor set. We consider the following two algorithms:

1. Performance dependent algorithm {Best Neighbor algorithm):
the zth thread directly chooses the neighbor w i th the high-
est download rate, which is the most straightforward
method one can consider.

2. Randomizat ion-based a l go r i t hm (Weigh ted random algorithm)
Instead of picking the best neighbors, each neighbor now
has a probability to be chosen. Specifically, the probability
that the jth neighbor is selected is given below i:

= (4.2)

The intuit ive meaning of Eq (4.2) is to choose neighbors
wi th high download rate wi th a higher probability; thus
balancing the load by downloading more pieces from the
less busy neighbors. Besides, those neighbors w i th small
download rate wi l l sti l l be selected wi th a lower probability.

Note here, each thread makes its decision independently, with-
out communicating wi th other threads.

We test their performance in the homogeneous network. How-
ever, as shown in Fig 4.5, these two algorithms do not work very
well even in the homogeneous network, especially the best neigh-
bor algorithm, achieving only 75% of the playback rate.

^The weight of the download rate from each neighbor is essential to deal with the
heterogeneous case when peers have different uplink bandwidths. Purely choosing random
neighbors for each request only yields worse performance.

90-

I Best Neighbor! IWeighted Randoml

45-

40 -

35-

30-

25-

—•— Best Neighbor
—•—Weighted Random

100 200 j j ^ g 300 400 500

Figure 4.5: The performance comparison between the best neighbor and
weighted random strategies

Without searching too hard, we find the problem of the best
neighbor strategy. There is severe oscillation in the best neigh-
bor algorithm, as is often the case wi th such simple-minded load
balancing algorithms. There are two typical kinds of peers. For
the first type, its incoming request queue length (load) oscillates
wildly w i th time, in term of chunks, as il lustrated in Fig 4.6(a).
For the second type, its incoming request queue drops to zero af-
ter a while, as shown in Fig 4.6(b). In the latter case, the request
queue has a sharp jump before dropping to zero, indicating the
small download rate reached instantaneously is causing these
type of peers to be abandoned by requesting peers. Roughly
25% of the peers are of the second type, explaining why only
about 75% of the best possible throughput is achieved.

Another reason for the poor performance is that the esti-
mated record of download rate may be outdated. Wi thout in-
curring additional overhead in the network, is only updated
when a download request sent to the j t h neighbor is completed.
Therefore, if the jth neighbor performs so poorly that peer k
would never select this neighbor again, there is no chance fk j
wi l l be updated anymore. Even if the service queue of the j t h

CHAPTER 4. LOAD BALANCING ALGORITHMS 28

6
u
!
|
D
e
0
|
U
M
0
|
D
 9
>
!
l
e
l
n
u
j
n
3

 ①
叫
e
J
9
>
\
/

—* — First type peer

m B i i R i

2。。Time 3。°

(a) A first type peer

400 500 100 200 ，. 300 400 500
Time

(b) A second type peer

Figure 4.6: Average queue length of the best neighbor algorithm

neighbor is sometime empty sometime, this may not be noticed
by peer k due to outdated load information. The second type
of peer in Fig 4.6(b), abandoned by others, is exactly the case.

Compared wi th the best neighbor algorithm, the weighted
random algorithm achieves better performance. The random-
ization scheme helps to some extent to avoid large oscillation,
because not every peer directly selects the neighbor w i th the
highest download rate. More importantly, neighbors w i th poor
record sti l l have a probability to be selected. This helps peers to
discover those neighbors that are less loaded now, but performed
poorly and were abandoned before. These two reasons explain
why the weighted random strategy works better than the best
neighbor strategy.

To further improve performance, one possible method is to
require each peer periodically broadcast its load information to
its neighbors. However, as we discussed before, such a method
definitely increases the overhead and consumes some bandwidth
in the network, which is not desired. Instead, we investigate a
timeout and retry mechanism and combine i t w i th our original
algorithms together.

CHAPTER 4. LOAD BALANCING ALGORITHMS 29

(
s
>
l
u
n
L
P
)
 q
i
6
u
9
|

 e
n
①
n
b

 ①
o
l
A
J
e
s

(
s
>
l
u
n
L
P
)
 £
6
u
①
I

 ①
n
s
n
b
 ①
Q
!
A
J
①
g

CHAPTER 4. LOAD BALANCING ALGORITHMS 30

Timeout and retry mechanism

Originally, a t imeout mechanism is bui l t in to all algorithms to
ensure we don't wait indefinitely for departed, or for extremely
overloaded peers. Through more careful tuning of the t imeout
value, i t is also possible to use this mechanism to avoid large
oscillation and even directly shift load by retries.

The main idea is to estimate the queuing t ime for a request
at each neighbor, assuming the system reaches steady state, and
set a t imer accordingly. I f i t takes significantly longer than the
normal queueing time, one should give up and t ry sending the
request to a different neighbor, because this indicates that the
rate estimate for this target neighbor is outdated or the target
neighbor is currently overloaded by many peers. Such a retry
can effectively avoid large oscillation. Optionally, one can send
a message to Cancel the original request. Otherwise, peers may
receive duplicate data from mult iple neighbors.

The queuing t ime at the j t h neighbor, Qkj, can be measured
as the amount of t ime between when peer k sends out a request
to the j t h neighbor and when peer k receives the first data
byte from that neighbor, shown in Fig 4.1 and updated at the
beginning of Step 2. The exponentially smoothed version of the
queueing t ime can be tracked as below:

Tkj 二 e * Tkj + (1 - … * Qkj, 0<0<1,J = 1,2,…L (4.3)

where Qkj denotes the newest measured value and t^j the expo-
nentially average queueing time.

In addit ion to tracking the average of Qkj, i t is also necessary
to keep track of the variabil i ty of Qkj, Vkj. I t is computed as
follows:

Vkj 二 " * Vkj + (1 - * \Tk3 - Qkjl 0 < / i < 1 (4.4)

When a request is sent to the jth neighbor, a t imeout threshold,

CHAPTER 4. LOAD BALANCING ALGORITHMS 31

Dkj, is set to:

Dkj=rkj+C^Vkj, C>0 (4.5)

The later term is used to deal w i th the possible variabi l i ty of
the queuing t ime as is done in transport protocols such as TCP.

Once the t imeout mechanism detects longer than expected
queueing delay, i t considers this to be due to oscillation (r ightly
or wrongly), and retries the request w i th another peer. This
comes at a cost - the requester sends two addit ional messages:
one to cancel the original request, and the other to init iate the
new request. The retry ratio，p, is defined as the number of
t imeout events divided by the total number of finished requests
and measures the overhead of the timeout and retry mechanism.

When a t imeout event occurs, besides canceling the request
and selecting another neighbor for a new request, the local peer
k also needs to update the download rate fkj and queueing t ime
Tkj, because the old values are apparently inaccurate. Let C i
and C2 be the "penalty" factors and peer k updates fkj and Tkj
in the following way:

nj = rkj/Ci

Tkj = Tkj * C2

In our experiments, the default value we use are: 0 = 7/8, fi =
3 / 4 , C = 2 ,C i = 1.5,C2 = 2.

We add this t imeout and retry mechanism to two strate-
gies introduced previously: the best neighbor strategy and the
weighted random strategy. The average cumulative download
rate and the retry ratio p are shown in the Fig 4.7 and Table 4.2
respectively.

Obviously, compared w i th Fig 4.5, in steady state, the time-
out and retry mechanism is able to improve the performance
of the two strategies, while keeping the retry cost below 5%.

Figure 4.7: The performance of strategies with timeout mechanism

Table 4.2: The retry ratio of different algorithms under different network
settings

Retry ratio: p

Homogeneous Hetero_A Hetero_B
Best Neighbor 0.0413 0.0508 0.0482

Weighted Random 0.0474 0.0472 0.0476

This validates our expectation. In addition, the weighted ran-
dom strategy beats the best neighbor strategy again, achieving
a larger average cumulative download rate, smaller retry ratio,
and shorter convergence time, which is similar to the result with-
out the timeout and retry mechanism.

In order to investigate the robustness of this timeout mech-
anism, we construct another heterogeneous network, Hetero.B,
where the three types of peers have uplink bandwidths of (0.5, 1,
1.5). Because the shape of the curves for the different networks
are similar as in Fig 4.7, we just show the peak value of the aver-
age cumulative download rate in Fig 4.8(a) and the convergence
time, when the cumulative download rate achieved 95% of the

CHAPTER 4. LOAD BALANCING ALGORITHMS 32

. 00

.95

.90

.85

. 8 0

.75

.70

.65

.60

.55

1 • 1 • I _ 1 • •， ••• ••

•

¥
/
来

1
来

5K —* — Best Neighbor 一

• - Weighted Random _

200 Time 800 1000

1

0

0

0

0

0

0

0

0

0

9
1
6
」
6
u
!
p
e
0
|
U
M
0
|
D
 ①
A
l
l
e
l
n
u
j
n
o

 9
6
e
J
8
>
<

M W B e s t N e i g h b o r
^ ^ W e i g h t e d R a n d o m

Homogeneous
Network setting

— » B e s t N e i g h b o r
^ ^ W e i g h t e d R a n d o m

Homogeneous
Network setting

(a) Average cumulative download rate (b) Convergence time

Figure 4.8: Performance under different network settings

peak rate, in Fig 4.8(b). According to Fig 4.8(a), we observe
that the best neighbor algorithm performs worse in the hetero-
geneous networks, which is because the peers wi th small uplink
bandwidth are more likely to be abandoned by requesting peers.
The weighted random algorithm works relatively stable in the
different networks, higher than 90% playback rate. However,
shown in Fig 4.8(b), the convergence time of the weighted ran-
dom algorithm increases significantly in heterogeneous networks,
which makes the weighted random algorithm less competitive if
dynamic networks are considered.

4.2.3 Periodic neighbor selection algorithms

In this section, we propose another neighbor selection algorithm:
Periodic Neighbor Selection algorithm, which is inspired by the
periodic Tit-for-Tat neighbor selection algorithm used in Bit-
Torrent. However, there are two important differences between
BT and our problem:

• In BitTorrent, the T F T neighbor selection algorithm is im-
plemented at the uploaders and allows an uploader to un-
choke neighbors that contribute most. The downloader can

CHAPTER 4. LOAD BALANCING ALGORITHMS 33

•
m

o
 o

 o

 o

 o

5
 o

 5

 o

 5

2
 2

1

1

(
s
)

 Q

 J
 S
U
9
6
J
9
A
U
0
0

龙 1.000

2 0.975 O)
c 0.950

g 0.925

I 0.900

- g 0.875

I 0.850

！2 0.825
E 0.800

^ 0.775

罗 0.750

妄 0.725

0.700

CHAPTER 4. LOAD BALANCING ALGORITHMS 34

only download from neighbors that unchoke them. There-
fore, from the view of downloaders, this can be treated as
passive neighbor selection, because they do not have the
power to select peers they want to download from. On the
contrary, in most P2P streaming systems, i t is assumed
that peers do not l imi t their upload rate and are wi l l ing to
serve requests from any peer. Therefore, in P2P stream-
ing, our neighbor selection algorithm seems to be an active
neighbor selection algorithm for the downloaders, allowing
downloaders to actively select neighbors w i th high band-
wid th to download.

• As addressed in [4]，the T F T algorithm focuses on providing
incentive to encourage peers to upload more, in order to be
unchoked more times by others and download more. This
is also referred to the fairness. Whereas, in P2P streaming,
the most important thing is to guarantee peers' download
rate, equal to the playback rate, rather than the fairness.
How to provide the incentive to P2P streaming wi thout
harming system performance is sti l l an open question. The
major difficulty is how to encourage users w i th high uplink
bandwidth to contribute more if their maximum download
rate is only the playback rate as same as the rate at which
the source generates the newest content.

Here, the timeout mechanism is only used as a lower layer
mechanism to handle peers' leave and is not used by the periodic
neighbor selection algorithm.

We allow peers to reselect their target neighbors periodically
and the period is set to be 10s. Similarly, we st i l l use the down-
load rate, to determine which neighbor can provide better
performance.

The basic idea of the periodic neighbor selection algori thm is
that: A t each decision moment, peer k sorts his current W target

CHAPTER 4. LOAD BALANCING ALGORITHMS 35

neighbors according to their performance fkj- Then K^l < K <
W, target neighbors wi th the worst performance are abandoned,
and peer k chooses K new neighbors from the L — W non-
target neighbors, t ry ing to get a better performance. Wi th in
each decision interval, our request size control algorithm (4.1) is
used to fully utilize the uplink capacity of the target neighbors.
The flow chart of this algorithm is similar to that in Fig 4.4
and the major difference is that, now each thread communicates
wi th other threads and re-selects target neighbors periodically,
rather than choosing a new target neighbor at the end of every
request.

We propose three algorithms to choose K new neighbors from
those non-target neighbors:

1. Periodic Best Neighbor algorithm, (P .B .N for shor t) : peer
k chooses the K neighbors wi th the highest download rate
according to the rate fk j

2. Periodic Random algorithm, (P.R.D for short): since the
number of neighbors L is more than the number of out-
standing requests allowed, peer k randomly selects K new
target neighbors without considering the past performance

3. Periodic Weighted Random algorithm, (P . W . R for shor t) :
Instead of selecting the best neighbors, each neighbor is
chosen probabilistically . Specifically, the probabil ity that
the jth neighbor is selected is:

= (4.6)
〜s: Tkj

where S ; is the set of non-target neighbors.

The rationale behind these algorithms is that, searching for
good neighbors increases the chance that some neighbors w i th

Figure 4.9: The performance of the periodical neighbor selection algorithms
in homogeneous network

First, we test our algorithms in the Homogeneous network,
and the average cumulative download rate is shown in Fig 4.9. I t
is noticed that all three algorithms perform very well, producing
98% of playback rate, which coincides w i th our expectation and
the difference between them is not significant. One step further,
to investigate the robustness of the periodical neighbor selec-
t ion algorithms, we do the experiments in all three scenarios,
Homogeneous, Hetero—A and Hetero.B. Their average cumula-
tive download rate and convergence t ime is shown in Fig 4.10.
The default setting of K is 2.

These three algorithms seem to have different strengths, and
work reasonably well in different scenarios. For average cumula-

CHAPTER 4. LOAD BALANCING ALGORITHMS 36

high uplink capacity, which were previously ignored are now se-
lected. I t is unavoidable that sometimes a peer makes a wrong
decision; however i t st i l l keep W - K neighbors w i th the best
performance from the previous round and the loss in perfor-
mance wi l l not be a disaster. In the long run, the performance
loss caused by poor decisions is expected to be minor compared
to the potential gain from selecting better neighbors. The fol-
lowing experiment results validate our expectation.

|P.R.D|.

•赛赛赛MO業•業集彙索棄案棄秦秦秦菜赛*秦ikxIxX̂ Ê*

[WBJi]
IP.W.RI

— P e r i o d i c a l Best Neighbor
Periodical Weighted Random

—*— Periodical Random

o攝

2 0.99
O)

•-5 0.98
ro
-I 0.97

0 0.96

1 0,95

1 0.94

E
3 0.93

8)0 .92

2
^ 0.91

<

M W a Per iod ica l Best Ne ighbor
r m m Per iod ica l W e i g h t e d R a n d o m

Per iod ica l R a n d o m

Network setting

The average cumulative download rate

H ® Periodical Best Neighbor
rTTTTH Periodical We igh ted Random

odical Random

Network setting

(b) The convergence time

Figure 4.10: The performance of the periodical neighbor selection algorithms
under different network settings

tive download rate, all three algorithms perform well in different
scenarios, especially the random algorithm and the weighted
random algorithm. Even though the best neighbor algorithm
fluctuates the most, the different of its performance in different
scenarios is sti l l w i th in 2% of the playback rate. This shows that
they all achieve good robustness to deal w i th different network
settings. However, a heterogeneous setting does have a strong
effect on convergence time, especially for the random strategy.
The reason is that i t is harder to find those peers who sti l l have
available uplink bandwidth purely by random selection.

The random algorithm achieves the best average cumulative
download rate while the best neighbor algorithm is the worst in
all scenarios. The reason is evident when we randomly select
one peer and record its degree change over time, for-different
algorithms using hetero.A (where the performance gap between
different algorithms is the biggest), as shown in Fig 4.11. Sim-
ilar to the timeout-based best neighbor strategy introduced in
Section 4.2.2，there exists obvious oscillation when the periodic
best neighbor strategy is used. One peer w i th a high uplink ca-
pacity may be noticed and chosen by many peers, then a large
number of requests immediately overload this peer and each re-

CHAPTER 4. LOAD BALANCING ALGORITHMS 37

5

0

5

0

5

0

5

0

5

5

5

4

4

3

3

2

2

1

(
s
)

 3
0
U
①
功
J
9
>
U
0
0

I

1

o

o

o

o

o

o

o

o

d

c

i

 a

9
J
e
」
6
u
!
p
e
o
l
i
o
刀
 9
>
!
l
e
一
n
i
o

 9
6
e
J
9
9
>
<

 (

I Periodical Random]

100 200 300 400
Time

Figure 4.11: The oscillation of one peer's degree under different strategies

questing peer can only share a very small fraction of the uplink
bandwidth. As a result, in the next round this peer wi l l be
eliminated by most of the neighbors and the degree of this peer
drops sharply. Such oscillation occur repeatedly. Combining Fig
4.10(a) and Fig 4.11 together, i t is clear that such oscillation has
a critical impact on performance.

However, the performance and robustness of the random al-
gorithm comes wi th a price, i t has the largest convergence time.
On the contrary, the best neighbor strategy can find and use
peers w i th high uplink capacity immediately and this is the in-
trinsic advantage of load-dependent algorithms. Finally, as the
combination of best neighbor strategy and random strategy, the
weighted random strategy is always more moderate, achieving
an acceptable average cumulative download rate and conver-
gence speed.

CHAPTER 4. LOAD BALANCING ALGORITHMS 38

24

20

4
 o
 6
 2
 8

2
 2

 1
1

9
9
j
6
9
a

4
 o

 6

 2
 <

2
 2

 1
1

①
①
」
6
9
0

Network settings

(b) The convergence time
Network setting

.)The average cumulative download rate

Figure 4.12: Performance comparison: Timeout-based versus Periodical
neighbor selection algorithm

Implementation cost: First we compare these two algo-
rithms from the view of implementation cost.

- A s introduced before, the timeout-based algorithm is
convenient to implement using the multi-thread pro-
gramming technology. Each thread is in dmrge of a
single download request, as shown in Fig 4.4. In ad-
dition, each thread is independent of the others and
whenever a thread re-selects a target neighbor, the de-
cision can be made only according to the local record,
without communicating wi th other threads.

- O n the other hand, to implement the periodical algo-
r i thm, the W threads need to communicate wi th each

CHAPTER 4. LOAD BALANCING ALGORITHMS 39

4.2.4 Comparison: Timeout-based versus Periodical
neighbor selection algorithms

In this section, we compare these two types of neighbor selection
algorithm from three aspects, implementation cost, overhead,
and performance. To be distinguishable, we add the prefix "P."
to the periodic algorithms and "T." to the timeout-based algo-
rithm.

275

250

2225
0)
£ 200

O
C 150
Q)
P125
(1)
> 100

O 75

6
u
!
p
s
i
u
w
o
i
d

 J
e
l
i
3
 9
6
e
J
9
>
<

(a

CHAPTER 4. LOAD BALANCING ALGORITHMS 40

other and work cooperatively. Such communication
and cooperation help them to determine which threads
keep the target neighbor unchanged and which threads
eliminate the current target neighbors and choose new
ones. In our simulation, to attain such cooperation,
we add one extra "control" thread for each peer, which
runs the neighbor selection algorithm periodically and
informs the other W threads that which neighbor they
should ask for pieces. Of course, there are other ways
to implement the inter-thread communication, but this
is beyond the scope of this thesis.

Therefore, without the inter-thread communication, the timeout-
based algorithms is easier to implement in the software.

• Overhead: Only the timeout-based algorithm incurs extra
message overhead wi th in the network, because once a time-
out event occurs, the peer needs to send out a Cancel mes-
sage to the original target neighbor and then a new request
to the new target neighbor.

• Performance: The comparison of the performance of these
two kinds of algorithms is shown in Fig 4.12(a) and Fig
4.12(b). I t is clear that the periodic algorithms achieve
higher average cumulative download rate and shorter con-
vergence time than the timeout-based algorithm. This is
because of the intrinsic drawbacks of the timeout-based al-
gorithm.

1. Due to the lack of communication among W threads
belonging to the same peer, multiple threads may select
the same target neighbor to download and this actually
decreases the size of the request window, which has a
positive impact to the algorithms' performance. On the
other hand, the periodic algorithm can always maintain

CHAPTER 4. LOAD BALANCING ALGORITHMS 41

constant window size.

2. In addition, the periodic algorithm requires peers to
maintain the W—K target neighbors that provide high-
est download rate during last neighbor selection period
unchanged. This reduces the impact of a poor deci-
sion. However, in the timeout-based algorithm, there
is no such protection and each thread keeps selecting
the new target neighbors. Therefore, wrong decisions
wi l l incur a big deterioration on the performance.

Accordingly, this provides a solid explanation why the timeout-
based algorithm is beaten by the periodical algorithm.

In summary, the only advantage of the timeout-based algorithm
is that it takes less effort to implement, but i t is worse than
the periodical algorithm in the other two aspects. Therefore,
from now on, we only focus on the more competitive algorithm,
the periodical algorithm, and try to tune it to get better perfor-
mance by further experiments.

4.3 Further experiments

To understand these three periodic algorithms better and help
to tune them to their best performance, we explore the impact
of several parameters by further experiments. Besides, because
of the robustness of our algorithms, results under different net-
work settings are similar. Without confusion, we omit the word
"Periodical" for short.

4.3.1 Request window size

The first important parameter is the request window size W.
Increasing the request window size has at least the following
two effects:

CHAPTER 4. LOAD BALANCING ALGORITHMS 42

a) increasing the load in the network

b) increasing the number of neighbors serving each peer

The first effect can be controlled - we can decrease the size of
a piece at the same rate of increasing W so outstanding load
does not increase. This way of maintaining a constant load is
at the expense of some additional overheads. The second effect
(of increasing W) has clear implication for load balancing.

As we increase W from 3 to 9, there is a noticeable improve-
ment for all three algorithms, both in terms of average cumula-
tive download rate and convergence speed, as shown in Fig 4.13,
Fig 4.14 and Fig 4.15. By distributing load to more neighbors, a
larger request window size tends to equalize the average uplink
bandwidth of the neighbors requested by a peer, hence produc-
ing a more balanced load. The importance of the window size
seems to be considered in the design of commercial P2P sys-
tem. As mentioned in [9], the request window size is a critical
parameter for performance; and in the PPLive VoD system, a
relatively large window size is used to deal wi th the highly het-
erogeneous peer uplink bandwidth distribution. For a playback
rate of around 500Kbps, they claim that 8-20 was the sweet spot
and more than this number could stil l improve the achieved rate,
but at the expense of heavy packet duplication rate. As shown
in Fig 4.13, Fig 4.14 and Fig 4.15, this rule is also applicable in
our P2P streaming model: a larger request window size is always
preferable, unless the extra expense outweighs the performance
gain.

4.3.2 Impact of K

The parameter K determines the number of neighbors to be re-
placed in each round. For a performance dependent algorithm,
a larger K can reduce the convergence time because more po-
tential neighbors wi th high uplink capacity can be selected in

一卜 Best Neighbor
Random

—• — Weighted Random

R.D

5 6 7
Request Window size

3 4 5 6 7 8
Request window size

(a) The average cumulative download rate (b) The convergence time

Figure 4.13: The performance under different W in the homogeneous network

one round of replacement. On the other hand, i t also increases
the possibility of oscillation, which plays a critical role in per-
formance. Besides, wi th a large K , the impact of one wrong
move may be significant because fewer neighbors wi th good per-
formance used in last round are kept. The average cumula-
tive download rate and convergence time under different K are
shown in Fig 4.16, Fig 4.17 and Fig 4.18.

Performance of the random and weighted random strategies,
they are unaffected by the value of K , because of the random-
ization. However, the convergence time of the best neighbor
algorithm is negatively related to K . Since there is no way to
resist oscillation, the average cumulative download rate also de-
teriorates wi th increasing K .

4.3.3 Adaptive adjustment of the neighbor selection
period

The default setting of the neighbor selection period is 10s. How-
ever, we suspect that if this period can be adjusted intelligently,
it is possible to improve the performance further. The reason is
that if the download rate of one peer is already very close to the

CHAPTER 4. LOAD BALANCING ALGORITHMS 43

o
 5

 o

5

 o

 c.

4

3

3

2

2

1

(
s
)

 9

 J
 S
U
9
6
J
9
A
U
0
0

5

0

5

0

5

0

5

0

5

8

8

7

7

6

6

5

5

5

9

 9

 9

 9

 9
 9
 9

 9

 &

&
j
!
|
D
e
0
|
U
M
0
f
D
 9
>
!
J
e
l
n
u
J
n
u

 9
6
e
J
9
>
<

—*— Best Neighbor
—•—Weighted Random
— R a n d o m

J.au • 3 4 5 6 7
Request window size

5 6 7
Request window size

(a) The average cumulative download rate (b) The convergence time

Figure 4.14: The performance under different W in the heterogeneous net-
work A

playback rate, then there is already no significant room left for
improvement. By continuing to run the neighbor selection algo-
r i thm, this peer risks making a poor decision, which can harm
performance. We therefore propose an adaptive method to deal
wi th this problem. The basic idea is to decide whether to select
new neighbors according to the average download rate during
the previous neighbor selection period.

A A

First, peers set a threshold R in advance and R = 0.9R in the
following experiments. I f the average download rate of peer k

A

in previous period, denoted as Rk, does not exceed R, then this
peer just runs the neighbor selection algorithm as usual. Once
'Rj. > R, our adaptive algorithm steps into and a probabil i ty
p is calculated as p 二 . W i t h probabil ity p, peer k just
sticks to the current target neighbors without any change and
wi th probability 1 — p, the peer executes the neighbor selection
algorithm. This prolongs the neighbor selection period of peers
who already get high download rate.

We evaluate this algorithm for all three neighbor selection al-
gorithms, shown in Fig 4.19. As expected, such a simple adap-
tive algorithm does provide an improvement in performance.

CHAPTER 4. LOAD BALANCING ALGORITHMS 44

0

5

0

5

0

5

0

5

6

5

5

4

4

3

3

2

(
s
)

 i
!
J
.

 8
S
6
J
9
A
U
O
0

ctU.此
c
云 0.98 ro
考 0.97

O0.96

1 0.95

•50.94
E
go.93

0)0.92

2 $0.91 <

I w . r I

s
—*— Best Neighbor
—• — Random
—T—Weighted Random

, , K。 - "

The average cumulative download rate

•• T ‘ 1 ‘ 1 ‘ 1 _ 1

； ：

：义 r r ^ i Z 工::
V W.K

： \ 、
m -

—^― Best Neighbor
Random

‘ W e i g h t e d Ranom 、-
(b) The convergence time

Figure 4.16: The performance under different K in the homogeneous network

4.3.4 Performance with adequate bandwidth

In all the experiments so far, we considered only cases where the
average uplink capacity equal the playback rate. This is delib-
erate to see how different algorithms fare under rather stressful
situations. If the operator of the P2P network is wil l ing to set
the playback rate to a level below the average uplink capacity, we
would expect all robust algorithms to achieve the playback rate
on a cumulative basis. For the homogeneous network, we set the

CHAPTER 4. LOAD BALANCING ALGORITHMS 45

5 6 7
Request window size

(a) The average cumulative download rate

Request window size

(b) The convergence time

Figure 4.15: The performance under different W in the heterogeneous net-
work B

一 * 一 Best Neighbor
—A—Weighted Random
— R a n d o m

—^― Best Neighbor
—•—Weighted Random
— R a n d o m

2 0.990
O)

S 0.985 T3 (n
0 0.980
c
1 0.975 >970

•-I 0.965

I 0.960

O 0.955
0)
0)0.950 5 ^ 0.945

<
r\ Qyin

1

0

9

8

7

6

5

4

3

2

1

2

2

1

1

1

1

1

1

1

1

1

(
s
)

 9
E
!
i

 8
S
6
J
①
>
u
o
o

5

0

5

0

5

0

5

0

5

5

4

4

3

3

2

2

{
«
)

 9
U
J
!
卜
①
Q
u
①
6
J
e
>
u
o
:
3

0

9

8

7

6

5

4

0

0

9

9

9

9

9

9

C

L

c

i

d

d

d

c

i

o

 c

9
1
e
」
6
u
!
F
>
e
0
|
U
M
0
F
i
 9
>
!
i
e
l
n
u
J
n
o

 ①
6
e
J
9
>
\
/

The average cumulative download rate (b) The convergence time

Figure 4.18: The performance under different K in the heterogeneous net-
work B

uplink capacity (of each peer) to I.IR; in the heterogeneous case
A, we set the uplink capacity of the three types of peers to be
{0.22R,0MR,2A2R) respectively (wi th an average of I.IR as
well). In the heterogeneous case B, the uplink bandwidth of the
three types of peers is changed to (0.55i^, I.IR, 1.65R) respec-
tively. As shown in Fig 4.20，the average cumulative download
rate of all algorithms is very close to the playback rate and the
convergence t ime is below 30s. Besides, the difference between

—X— Best Neighbor
—•—Weighted Random
— •—Random

6
u
!
p
>
e
o
|

9 8 0 - Oj A
E

1.970 -

>.965 -

>.960 •

>.955 -

1.950 -

§35-
P , •

；25-

O

(a) The average cumulative download rate (b) The convergence time

Figure 4.17: The performance under different K in the heterogenous network
A

3 5 -

I w . r I

—>*—Best Neighbor
—•—Weighted Random
-••--*— Random

CHAPTER 4. LOAD BALANCING ALGORITHMS 46

6 0 -

K

o
 5

 o

 5

 o

3
 2

 2

 1

 1

(
s
)

 9

 J
 a
o
s
6
J
9
>
U
O
Q

K

5

0

5

0

5

0

5

0

5

0

5

n

8

8

7

7

6

6

5

5

4

4

3

Q

.

9
 &

9

9

9

9

d

9

9

Q

^

Q

W

Q

B
u
l
p
e
o
l
u
M
O
P
 9
>
!
l
e
l
n
£
n
3

 9
6
e
J
3
>
v

• W i t h o u r ad just ing the per iod
• Ad jus t ing the per iod

BN W R WR
Neighbor select ion algor i thm

WR WR
Neighbor selection algorithms

(a) The homogeneous network

(c) The heterogenous network B

Figure 4.19: The average cumulative download rate of three algorithms
with/without the adjustment of the neighbor selection period

different algorithms is very small. Therefore, if the system op-
erates in the over-supply regime, all of the algorithms are quite
competitive.

• End of chapter.

I Without adjusting the period
I Adjusting the period

WR WR
Neighbor selection algorithms

(b) The heterogenous network A

CHAPTER 4. LOAD BALANCING ALGORITHMS 47

I
k

？5 %

5

9

5

8

5

7

5

6

5

9

9

8

9

7

9

6

9

5

Q

-

a

Q

-

a

Q

-

a

Q

-

a

Q

-

B
u
l
p
e
o
l
i
o
p

 J
e
l
i
n
o

 a
6
e
」
9
>
v

5
 9

 5

 8

 5

 7

 5

9
 9

 8
 9

 7

 9

 6

Q
-

 a

 Q
-

 a

 Q
-

 a

 Q
-

山
l
e
」
6
u
!
f
D
e
o
|
u
/
w
o
f
：
}
 9
>
!
l
B
l
n
u
J
n
o

 3
6
e
」
3
>
<

9
 8

 7
 6

 5

 4

 3

9
 9

 9

 9

 9

 9

n
-

 o
-

 n
^

 n
^

 n
^

 n
^

 n
^

9
j
e
j

 6
s
p
e
o
l
u
M
O
F
>

 9
>
n
e
l
n
E
n
o

 9
6
e
J
9
>
v

i
i _
_

淡：森線...

薩

终攀麥：丨:

::簿藝黎

_

|1
夕‘/

Homogeneous
Network settings

(b) The convergence time

Homogeneous
Network settings

(a) The average cumulative download rate

Figure 4.20: The performance under networks with adequate bandwidth

CHAPTER 4. LOAD BALANCING ALGORITHMS 48

5
 o

 5

 o

2
 2

1

1

(
s
)

 9

 J
 8
U
9
6
J
9
A
U
0
0

i

Chapter 5

Minimizing Server's Load

In the previous chapter, we simply assume that the content
server can magically fill in any gap between peers' download
rate and the playback rate. More precisely, the download rate
of peer k from the server is r^o = R-J2jeSk『kj. According to this
assumption, once our load balancing algorithm fully utilizes the
uplink bandwidth of neighbors and maximizes EjeSk '^kj,
the total upload rate of the server is also minimized. However,
in real systems, the questions of when to send a request to server,
how many pieces to request, and how the server should response
to all the incoming requests are non-trivial. Simply put, the
central server faces the dilemma that, on one hand, the server
can be so helpful that all peers' requests are always satisfied by

Notation Explanation

a/c Peer /c's server load factor

R Threshold used in algorithm 1

Ak Step size to adjust a

P Additive increase factor of

7 Multiplicative decrease fa.ctor of A^

Rk Peer /c's average download rate in previous a adjustment
period

Table 5.1: Notations

49

CHAPTER 5. MINIMIZING SERVER'S LOAD 50

the server and thus peers wi l l always download from the server
and the uplink bandwidths of the peers become under-utilized,
and on the other hand, the server tries to minimize its load and
fails to provide sufficient guarantee for good peer playback per-
formance. In this section, we study how the peers and the server
can interact so that both parties are happy. The notations used
in this chapter are listed in Table 5.1.

First, we assume the server responds to any peer request as
follows: upon receiving a request from a peer, the server controls
its upload rate and makes sure it takes exactly Is to upload the
requested pieces. If a peer requests too many pieces (e.g. larger
than one chunk), the server simply uploads at the playback rate
R. This constrain that the maximum upload rate from the server
to each peer is R and guarantees that the server is only a back-up
role^

Second, peers are only allowed to send requests to the server
periodically. This is because if peers can send requests to the
server at any time, i t is very easy to overwhelm the server. In
our experiments, the period is set to Is. Besides, to make sure
the server is only treated as a back-up server, at the beginning
of each second, peer k is allowed to ask for help from the server
if and only if its download rate in the last second, denoted as Rk
(that is the same as in the request size control algorithm (4.1),
is less than the playback rate.

Given these constraints, as we show below, i t is sti l l challeng-
ing to determine how many pieces to request from the server.
From the view point of peers, asking for more pieces is definitely
a good choice, because the server is more stable than regular
peers and can guarantee the Quality-of-Service (playback rate
R). However, this places heavy load on the server and decreases
the uti l ization of peers' uplink capacity.

ilf the dynamic system is considered, then it is possible that the server uploads content
to the new arrival peers in a much higher rate, to minimize their start-up delay. This
scheme is beyond the scope of this thesis.

CHAPTER 5. MINIMIZING SERVER'S LOAD 51

We use a parameter a, 0 < a < 1, to help control the rate
each peer can get from the server, as follows. I f peer k asks the
server for help (only when Rk < R), the number of pieces to be
requested from the server is set tohe — R^) * Is, which is
a fraction of the missing part downloaded in the last second. A
randomization method is used to round any non-integral pieces.
Intuit ively, a large a increases the server load and guarantees
a peer's download rate. However, a small a forces peers to t r y
to get more from neighbors. Once their neighbors can provide
more, the small a wi l l not cause an obvious deterioration on the
download rate but i t decreases the server load.

To investigate the impact of a on peers' performance, the fol-
lowing experiments are carried out in the homogeneous network.
Here peers are assumed to use the periodic weighted random
strategy for neighbor selection. Similar result are also found
when we consider other network settings and other neighbor
selection algorithms. We first explore the impact of a under
different uplink capacity setting exhaustively. The peers' per-
formance and the average server load when the upl ink capacity
of each peer, [/ , is 0.9R, I.IR and R are shown in Fig 5.1.

In all scenarios, a larger a produces heavier server load, which
is intui t ively obvious. However, to the average cumulative down-
load rate, the effect of a on the average cumulative download
rate is total ly different depending on which operating regime the
system is in:

1. In the under-supply regime {U = 0.9R), a larger a increase
the server load and also improves a peer's download rate
significantly. This is because peers do not have enough up-
l ink capacity to support the playback rate and the server
must provide certain bandwidth. Therefore, in this regime,
a should be close to 1 in consideration of peers' perfor-
mance.

。4 Alpha (

(c) U=R

Alpha

(a) U二0.9R

.4

(b) U=

0.4 . (
Alpha

• Averge server load
• Average cumulative downloading rate

[Server load]

Figure 5.1: The performance and server load under different a

2. In the over-supply regime {U = l . l i ?) , behavior is are to-
tal ly different. A larger a does not bring significant im-
provement to peers' performance but only incurs heavier
load on the server. Given a larger a, peers send more re-
quests to the server rather than to neighbors that actu-
ally have adequate uplink bandwidth, and this decreases
the uti l ization of peers' bandwidth. Therefore, for this
regime where peers' uplink capacity is abundant, a small
a is preferable to reduce the server load.

3. In the t ight regime {U = i^), a moderate value of a is suit-
able because when a is too large, the gain on performance is
relatively small, compared wi th the increasing server load,

CHAPTER 5. MINIMIZING SERVER'S LOAD 52

1
 1

 p
y
o
l

 J
^
A
J

①
S

 9
6
e

」
9
>
<

A
v
e
r
a
g
e
 c
u
m
u
l
a
t
i
v
e

 d
o
w
n
l
o
a
d
i
n
g

 r

8

7

6

5

4

3

2

1

9

9
 &

9

0

^

9

9

9

(
y
)

 p
s
o
l

 J
①
A
J
9
S

 ①
③
B
」
9
>
\
/

A
v
e
r
a
g
e
 c
u
m
u
l
a
t
i
v
e

 d
o
w
n
l
o
a
d
i
n
g

o
 8

 6

 4

 2

 o

 8

§

的

的

妳

的

的

冊

A
v
e
r
a
g
e
 c
u
m
u
l
a
t
i
v
e

 d
o
w
n
l
o
a
d
i
n
g

o
 9

 C
O

 7

 6

o
 9

 9

 9

 9

CHAPTER 5. MINIMIZING SERVER'S LOAD 53

similar to the over-supply regime. Meanwhile, peers' down-
load rate under small a are not quite competitive. I t seems
the suitable range is a G (0.6, 0.8).

From this analysis, i t is clear that a controls the tradeoff between
peers' performance and the server load. At the same time, there
is a t ight relationship between a and peers' uplink capacity.
An interesting question is whether there is any algorithm to
adaptively adjust the value of a to suit different scenarios.

If the average uplink capacity of peers is known beforehand,
maybe we can manually set a according to some mapping rules.
But if we consider the dynamics of the system, such method
can not follow the change of network conditions. Alternatively,
we propose an adaptive, decentralized algorithm to adjust a
periodically to a suitable value, which also takes the dynamics
of peers' uplink bandwidth into consideration.

We use a threshold of the download rate, R, to prevent any
serious deterioration of peers' download rate caused by the de-
crease of a. For peer k, Rk[n] is the average download rate
during the n th adjustment period. A^ is the step size used to
decrease or increase a/^, peer k,s a. We used (3 and 7 as the ad-
ditive increase factor and multiplicative decrease factor of A^,
respectively. Besides, q is the upper bound threshold of the frac-
tional performance difference after decreasing ak. Our adaptive
adjustment algorithm for peer k is shown in Algor i thm 1.

In line 2 and 3, once peer /c's average download rate is below
k, a is increased immediately to get more help from the server.
After each decrement of ak, peer k requests fewer pieces from the
server and tries to shift the load to neighbors to get equivalent
download rate. I f such decrement does not result in a relatively
large drop on the download rate, larger than q, as in line 5,
the step size is increased additively and ak is decreased again,
shown in line 6. Otherwise, ak is reset to the previous value
and the step size is reduced multiplicatively, as in line 8. The

CHAPTER 5. MINIMIZING SERVER'S LOAD 54

Algorithm 1 Adaptive adjustment algorithm of a
Require: After the first adjustment period, record Rk[l] and then A^ =

Ao, Qfc = (cvfc — Wait until the second adjustment moment.
1： for the nth adjustment moment, n>2 do
2: if Rk [n] < R then
3: afc = min(l’afc + Afc)
4: else
5： if 叫几-1 卜 < q then
6： Ak = Ak+P^ Ao, ak = {ak - A0+
7： else

8: Qit = min(l,afc + Afc), Afc = Afc/7
9： end if

10： end if

11： Wait until the n + 1 adjustment moment
12: end for

method to adjust the step size is inspired by the A I M D algorithm
used in TCP congestion control. In the following experiment,
R = 0.95, Ao 二 0.1, g = 3%,/3 = 0.1,7 = 4/3 and the length of
adjustment period is lOs.

To evaluate our adaptive algorithm, we take the dynamics of
peers' uplink bandwidth into consideration. Init ially, the uplink
capacity of each peer is I . IR . Then after 5005, i t is changed to

After another 5005, the uplink capacity is changed to R.
The init ial value of a is set to 1, which gives peers' performance
the first priority.

The evolution of peers' average a, server load and the average
cumulative download rate is shown in Fig 5.2. Prom Os to 5005,
the system runs in the over-supply regime and our algorithm
adaptively decreases a and the server load, without harming
the performance because peers are able to find neighbors wi th
enough bandwidth. From 500s to 1000s, due to the decrease of
uplink capacity, peers can not support each other and increase
a immediately. The server steps in, and its load increases ac-
cordingly. a is decreased again after lOOOs, and more uplink
bandwidth from peers are utilized and this immediately allevi-

94

500
Time

Figure 5.2: The dynamic evolution of a, server load and average cumulative
download rate

ates the server loading. This shows that our adaptive algorithm
can automatically sense the dynamics of network conditions and
adjust Q； to a suitable value.

• End of chapter,

CHAPTER 5. MINIMIZING SERVER'S LOAD 55

o
o
o
o
o
o
o
o

s
s
 6
u
!
p
e
0
|
U
M
0
F
i

J
e
l
i
n
o
 9
6
2
①
>
v

5
0
0
0
0
0
0
0
0
0

6
9
8
7
6
5
4
3
2
1

(
y
)
 I
D
e
o
l

 J
a
A
J
O
S

Chapter 6

Background Study

6.1 P2P content distribution system

There is considerable interest in P2P content distribution sys-
tem. In many ways, systems work seems to lead the way as there
are many good examples of successfully deployed systems, such
as [1, 39, 26, 27, 30，31, 32], including the file sharing, streaming
and Video-on-Demand systems. In trying to understand these
experimental and commercial systems, there are considerable
progress in theoretical analysis and measurement study.

6.1.1 P2P File sharing system

BitTorrent is the first widely deployed P2P file sharing sys-
tem and attracts great interests from many researchers. In
25]，based on the uplink sharing model, Mundinger et al pro-

posed a deterministic scheduling algorithm to achieve a mini-
mum makespan to download a file. [28] builds a simple deter-
ministic fluid model to analyze BT's performance when the sys-
tem is in the steady state. They show that such BT-like system
has good stability and efficiency in the steady state. [23] extents
this work by taking the stochastic behaviors into account and
provides a detailed probabilistic model to analyze the stability
and effectiveness of a P2P file swarming system. Meanwhile,

56

CHAPTER 6. BACKGROUND STUDY 57

they also prove that the whole system throughout is asymptot-
ically optimal by using the "random chunk selection" strategy.
One step further, in [18], considering the uplink l imit of each
peer, they improve the result in [23] and derive a tighter perfor-
mance bound. The last chunk problem, that i t takes the longest
time to download the last missing chunk, is also discussed in
this paper. A l l these modeling papers give us a high-level un-
derstanding of why the BT-like system is scalable and effective.
There are also several papers targeted at analyzing the special
algorithms used in BT, such as chunk selection algorithm and
peer selection algorithm.

The chunk selection strategy in BitTorrent is named rarest
first strategy. Using this strategy, B T clients always prefer to
download chunks which are the fewest of their own neighbor have
first. As introduced in [3], this algorithms has two advantages:

• I t efficiently increases the diversity of peers' available con-
tent. Such diversity makes sure peers have some chunks
that others are interested in and leads a higher chance that
peers can help each other.

• This also improves the availability of the whole file. In
practice, peers may stop uploading at any time and this
leads to a serious risk that some chunks are not available
any more from all other peers. By focusing on the rarest
chunks, such risk is reduced significantly.

Assuming a homogeneous closed network and random neigh-
bor selection, Sujay et al [29] provide a simple model to analyze
the performance of several chunk selection algorithms in the P2P
file downloading system. The main result is that, any single side
pull or push strategy is not optimal in disseminating all pieces to
all users. Further more, a hybrid push and pull strategy is pro-
posed and proved that i t can achieve the near optimal download
time.

CHAPTER 6. BACKGROUND STUDY 58

On the other hand, the neighbor selection algorithm is also
used in Bi t Torrent, referred as the Tit-for-Tat algorithm. Ac-
cording to the T F T algorithm, peers periodically unchoke four
neighbors from which the download rate during last period is
the highest. Besides, each peer also randomly selects one neigh-
bor and is wil l ing to upload to this neighbor, which is used
to discover unnoticed neighbors wi th high uplink bandwidth.
In [4]，they provide an optimization framework to analyze the
peer selection strategy and they claim that such T F T peer selec-
t ion algorithm focuses on providing incentive to encourage peers
to upload and eventually maximizing the fairness among peers.
Quite differently, in P2P streaming system, peers usually can
not manually l imit their own upload rate and there is a t ight
playback rate constraint to satisfy. Assuming peers work coop-
eratively and do not l imit the upload rate, our work focuses on
the efficient peer selection algorithm which fully utilizes peers'
uplink bandwidth and helps peers to catch up w i th the stream-
ing constraint rather than providing fairness among peers.

There are also some experiment-based studies of BitTorrent
systems. [15] validates three properties, which are proposed in
theoretical study but have not been demonstrated clearly by ex-
periments, including the clustering of similar-bandwidth peers,
the effectiveness of BT's incentive mechanism and the high uti-
lization of peers' uplink capacity. The behavior of the seeder is
also first experimentally studied in this paper. In [14], a new
uplink allocation algorithm is proposed to improve the perfor-
mance of BT. The main idea is that, the uplink bandwidth of
a peer should not be divided equally to several peers, because
a chunk can not be downloaded under such low download rate.
Their algorithm selects the unchoking neighbors by solving a
fractional knapsack problem, and allocate the maximum upload
rate to those neighbors. Through simulations, their new band-
width allocation algorithm is validated to efficiently reduce the

CHAPTER 6. BACKGROUND STUDY 59

download time by a factor of 2, compared with the original Bit-
Torrent protocol.

6.1.2 P2P streaming system

The major difference between the streaming and file sharing is
that the former has a playback rate requirement to satisfy, while
the latter means best effort. In streaming, once the download
rate is equal to the playback rate, the user experience is al-
ready very good. The higher download rate can not provide a
significant improvement on user experience. On the contrary,
in file downloading, the higher download rate is always pre-
ferred because the download time wil l be shorter. Therefore,
different performance metrics are used to evaluate the perfor-
mance of P2P streaming and file sharing systems. In streaming,
the system performance is decided by whether most of peers
can achieve the playback rate and watch the video continuously
without glitches, whereas in file sharing system, in spite of the
download rate of peers, the fairness is also a critical metric to
make sure there is no free riders and everyone contributes to the
whole system.

CoolStreaming [39] first designed a robust and efficient archi-
tecture for the P2P streaming system. The idea is similar wi th
BitTorrent that every peer periodically exchanges data avail-
ability wi th several neighbors, and gets missing content from
others or uploads content to others. Through experiments on
the PlanetLab and Internet, it is shown that such simple data-
driven architecture can successfully provide the streaming ser-
vice to a large number of peers simultaneously and also achieve
quite good video quality. In [16], they redesign the architecture
to improve the performance further. The sub-stream technol-
ogy is used in the new CoolStreaming and the chunk selection
algorithms is modified to combine the pull and push strategy

CHAPTER 6. BACKGROUND STUDY 60

together, which coincides wi th the analysis in [29 .
Different from CoolStreaming, which designs the whole P2P

streaming system from scratch, Bitos [34] implements the P2P
streaming from BitTorrent protocol by minimum modifications.
A video player is added into the BitTorrent software and the
chunk selection strategy is altered to take both of the rari ty and
playback emergence into consideration. Theoretically, Zhou et al
'40] established a probabilistic model of P2P streaming to eval-
uate and compare different chunk selection algorithms. Their
analysis provided a solid explanation that why such mixed chunk
selection strategy performs better in P2P streaming systems.

There are also considerable progress in developing theoretical
model for the P2P streaming system. Based on the uplink shar-
ing model, [13] established a stochastic fluid model for the full
mesh network and analyzed the performance bound of the P2P
streaming system. If peers does not form a full mesh or peers'
uplink capacity is heterogenous, [21] and [20] derived the tight
performance bound of the system. The key insight is that, if the
degree of each peer is proportional to their uplink bandwidth,
the system can sti l l achieve the same theoretical performance
bound as in a homogeneous network. However, the algorithms
they proposed to achieve such bound is centralized, unscalable
and can not be deployed in the real P2P streaming system. Dif-
ferent from their work, our work tries to design decentralized,
scalable and implement able algorithms to actually improve the
performance of real P2P streaming systems.

Measurement study of the commercial P2P streaming sys-
tem also helps us to understand the system better. In [36], by
analyzing the trace file of PPLive, the authors first are able to
show that in real P2P streaming systems, there are some stable
peers, which affect the performance of the overall system sub-
stantially. Secondly, they also proposed how to find those stable
peers and organize them into an upper layer backbone network

CHAPTER 6. BACKGROUND STUDY 61

to serve other normal peers. Hei et al [6] explores how to design
a crawler and deploy passive sniffing nodes to collect the buffer
bitmap of PPLive. Further more, they demonstrate that there
is a tight correlation between the bitmap and peer's viewing-
continuity and then the collected bitmaps can be exploited to
monitor network-wide quality.

Based on data collected at the server side, Wu et al [37] have
shown that the contribution of server stil l has a very important
effect on the user experience and they proposed an online algo-
rithms to adjust the server upload bandwidth among multiple
channels to match the different forecast demand. Our thesis
systematically addresses another important and generic compo-
nent of a P2P streaming system: how peers adjust the rate they
exchange content wi th each other (and the content server) to
achieve load balance, to save content server load in P2P stream-
ing.

6.1.3 P2P Video on Demand system

Recently, how to use the peer-to-peer technology to support
video-on-demand systems is a new challenge in P2P area. Com-
pared wi th streaming systems, peers in VoD system have less
synchrony, which reduces the number of available content peers
can exchange. Therefore, it is more difficult to alleviate the
server load and maintain the user experience at the same time.
To handle this, in the P2P VoD system, a small disk storage is
contributed by every peer, usually 1 GB. This storage is used
to replicate the viewed movie and in this way, peers can up-
load content viewed before to others, rather than just exchange
current viewing data like in the P2P streaming system. This
effectively increases the util ization of peers' uplink bandwidth
and decreases the server load. How to efficiently replicate movies
according to the system demand is also an interesting problem,

CHAPTER 6. BACKGROUND STUDY 62

referred as the replication problem. [38] provides a preliminary
study on this topic.

The feasibility and profit of the P2P VoD system is first dis-
cussed in [8] and [7]. Through modeling and simulation, they
demonstrated that the P2P technology could dramatically re-
duce server bandwidth cost, especially if peers could actively
pre-fetch content when there are spare bandwidth in the net-
work. To avoid large amount of the inter-ISP traffic caused by
the P2P architecture, some ISP-friendly strategies are proposed
to localize the traffic wi th the ISPs.

PPLive and PPStream have already buil t and deployed the
real P2P VoD system and millions of user have been served.
Huang et al [9] conduct an in-depth study of the large-scale
PPLive VoD system. Several important design issues and algo-
rithms are introduced in that paper, such as content discovery,
piece selection strategy, replication strategy and transmission
strategy. Through the movie viewing record (MVR), they have
demonstrated and analyzed several important properties of their
system, e.g. user behavior, health index of movie, user satisfac-
t ion index and the server load.

6.2 Congestion control

As mentioned in the introduction, our load balancing problem
has some similarity to the congestion control problem, as they
both can be formulated as resource allocation optimization prob-
lems. Furthermore, there are important ideas from the con-
gestion control literature about how to design distributed algo-
rithms to solve such resource allocation problems. In the process
of developing our algorithms, we discuss the parallels between
these problems, use the relevant ideas from congestion control as
a theoretical basis. Therefore, it is essential to provide a short
summary on what progress have already been done in this area.

CHAPTER 6. BACKGROUND STUDY 63

But more importantly, as discussed in this thesis before, we point
out the differences between our problem and congestion control,
and also carry the study further in studying discrete algorithms
that can be easily implemented in real life systems.

The modern optimization framework of the congestion con-
trol is proposed by Kelly et al [11] and they formulate the conges-
t ion control problem as a ut i l i ty maximization problem, shown
in (6.1):

N
max Ui{xi)

i二 1

s.t. E < Ci, V/ (6.1)

Xi>0

where Ui{-) is the ut i l i ty function on the ith path. This problem
tries to maximize the sum of ut i l i ty among all paths without
violating any capacity constraint of each link. By constructing
a Lyapunov function, they claim that the maximum solution of
this function is arbitrari ly close to the optimal solution of (6.1).
Further more, two kinds of decentralized algorithms, primal al-
gorithm and dual algorithm, are proposed and their optimali ty
and global stability is guaranteed in the absence of the propa-
gation delay. The intui t ion behind their algorithms is that the
sending rate should always keep increasing, but whenever there
is congestion on any paths, the sending rate should be mult i-
plicatively decreased to avoid serious congestion.-

When the propagation delay can not be neglected, the al-
gorithms may not always converge to the optimal solution. In
33], the authors investigated the decentralized sufficient condi-

t ion to make sure the primal algorithm proposed in [11] can sti l l
converge.

In [22], the stabil ity of the dual algorithm is analyzed. Rather
than solve the problem (6.1) approximately, they claim that they
can get the exact optimal solution of (6.1) by solving the dual

CHAPTER 6. BACKGROUND STUDY 64

problem, shown in (6.2):

N
m i n D{p) 二 max Y^ Ui{xi) - - Q) (6-2)

i=l I idei
S.t. Pi > 0, V/

The advantage of solving the dual problem is that now the prob-
lem is seperatable on each path. According to the projection the-
ory, they designed a decentralized gradient projection method
to solve problem (6.2) exactly. Meanwhile, they show that if the
propagation delay on each path is bounded and the step size is
extremely small, then the global stability of their algorithm sti l l
holds even when the propagation delay is not neglect able.

In [11], they already consider a more general optimization
problem - mult i-path congestion control, in which each end user
can use several paths simultaneously, shown in (6.3)

N
max Y M E ^s)

i=l seR{i)

s.t. E E < C/, VZ (6.3)
i=l seR{i):les

Xs>0

where R{i) is the path/route set of user i. Both in [5] and
11], a primal algorithm is proposed, similar as the primal al-

gorithm for the single path congestion control. Wi thout the
propagation delay, the global stability is guaranteed. However,
as addressed in [5], when the propagation delay is considered,
the sufficient condition, derived in [33] for the single path case,
does not hold in the mult i-path scenario anymore and one step
further, the new sufficient condition for the mult i -path case is
derived. More importantly, they show that using mult i -path
controller can achieve a higher ut i l i ty regime than that of using
the single path controller.

CHAPTER 6. BACKGROUND STUDY 65

Another interesting primal algorithm is designed and ana-
lyzed in [10]. Their main idea is that each link sends a binary
feedback message to the users, indicating whether this link is
congested. Users adjust the sending rate according to the num-
ber of congested links on each path, rather than the packet loss
rate used in [5]. Given additional constraints on the step size
and ut i l i ty function, they get a stronger result than [5], that
such adjust scheme can exactly converge to one of the optimal
solutions, rather than an approximate solution.

The major difficulty of designing decentralized dual algo-
rithms for the mult i-path congestion control problem is that
the ut i l i ty function Ui{EseR{i) ^s) is not strictly concave. Conse-
quently, the prime problem may have multiple optimal solutions
and the dual problem may be non-differentiable. Besides, the
dual algorithms also possibly causes severe oscillation in the net-
work. Therefore, i t is harder to solve the dual problem and avoid
the oscillation.

There are two ways to handle this, proximal method and sub-
gradient method. To deal wi th the lack of strict concavity, in [19],
Lin et al add a quadratic term to the prime function, keeping the
optimal solution unchanged. After this, they follow the standard
proximal optimization algorithm to solve the modified problem
and also construct the online algorithms which is much easier to
implement. The convergence of their algorithms wi th /w i thout
measurement noise is also addressed in this paper. Based on
the analysis in [35], when there is no propagation delay, i t is
proved that the sub-gradient method can solve the dual problem
efficiently. However, if the propagation delay can not be ignored,
they demonstrate that the sub-gradient method sti l l causes the
oscillation problem when the primal variables are recovered from
the dual variables.

One important extension is the mult i-path congestion control
w i th dynamic routing, in which users have an available path set

CHAPTER 6. BACKGROUND STUDY 66

but only can use several paths simultaneously. [12] is a pioneer
in this area. Based on the classic ball and bin model, first they
show that even in the worst case, the coordinated controller can
achieve better performance than the uncoordinated controller.
Afterwards, they show that, for both of the coordinated con-
troller and uncoordinated controller, if users can always change
to a new path set wi th higher sending rate, such iterative path
selection wi l l lead to the maximum social welfare eventually.
This result provides a solid theoretical guideline when we de-
sign practical path selection algorithms. However, as discussed
before, such path selection algorithm can not be directly im-
plemented in the real applications, because the sending rate on
the new path set is totally unpredictable. On the contrary, our
neighbor selection algorithms can be directly deployed in the
real P2P streaming systems.

• End of chapter.

Chapter 7

Conclusion

The load balancing problem - how peers use distributed algo-
rithms to simultaneously use multiple neighbors to help they
achieve their downloading needs and minimize the content server's
support - is an important and generic problem in P2P content
distribution systems. I t is the equivalent of the congestion con-
trol problem in the network and transport layers. In this thesis,
we systematically analyzed the problem, pointed the important
issues and studied a number of practical algorithms. In par-
ticular, we first studied how peers adjust their request sizes to
meet their downloading needs; then considered how to adjust
their neighbor set to optimize the system level performance for
heterogeneous networks. Finally, we also studied how to use an
adaptive algorithm to minimize the use of the content server.

There are many interesting directions for future studies. In
this thesis, we focused on the P2P streaming case. In contrast,
the P2P file downloading case may require some different algo-
rithms since it tries to maximize throughput rather than min-
imizing server load. This is of great interest since i t is needed
for P2P VoD systems. Another angle is to extend this work for
the dynamic population case.

67

Bibliography

1] BitTorrent. http://www.bittorrent.com/protocol.html.

2] D. Chil l and R. Jain. Analysis of the increase and decrease
algorithms for congestion avoidance in computer networks.
Computer Networks and ISDN Systems, 17, 1989.

3

4

B. Cohen. Incentives build robustness in bittorrent. In
Proceedings of the 1st Workshop on Economics of Peer-to-
Peer Systems, 2003.

B. Fan, D. Chiu, and J. Lui. The delicate tradeoffs in
bittorrerit-like file sharing protocol design. In Proc. IEEE
ICNP、2006.

5] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and
D. Towsley. Overlay tcp for mult i-path routing and conges-
t ion control. In ENS-INRIA ARC-TCP Workshop, 2004.

6] X. Hei, Y. Liu, and K. W. Ross. Inferring network-wide
quality in p2p live streaming systems. IEEE Journal on
Selected Areas in Communications, 25(9), Dec. 2007.

7] C. Huang, J. Li, and K. W. Ross. Can internet video-on-
demand be profitable? In Proc. ACM SIGCOMM, Aug.
2007.

'8] C. Huang, J. Li, and K. W. Ross. Peer-assisted vod: Making
internet video distr ibution cheap. In IP TPS, Feb. 2007.

68

http://www.bittorrent.com/protocol.html

BIBLIOGRAPHY 69

9] Y. Huang, T. Fu, D. Chiu, J. Lui, and C. Huang. Chal-
lenges, design and analysis of a large-scale p2p vod system.
I n Proc. ACM SIGCOMM, Aug . 2008.

10] K. Kar, S. Sarkar, and L. Tassiulas. Optimization based
rate control for mult ipath session. In Technical Report, TR
2001-1, CSHCN, 2001.

11] F. P. Kelly, A. Maulloo, and D. Tan. Rate control for com-
munication networks: shadow prices, proportional fairness,
and s tab i l i ty . Journal of the Operationl Research Society,
1998.

[12] P. Key, L. Massoulie, and D. Towsley. Path selection and
mult ipath congestion control. In Proc. IEEE INFO COM,
2007.

13

14

17

R. Kumar, Y. Liu, and K. Ross. Stochastic fluid theory for
p2p s t reaming systems. I n Proc. of IEEE INFO COM, M a y
2007.

N. Laoutaris, D. Carra, and P. Michiardi. Uplink allocation
beyond choke/unchoke or how to divide and conquer best.
I n Proc. ACM CoNEXT, 2008.

15] A. Legout, N. Liogkas, E. Kohler, and L. Zhang. Clustering
and sharing incentives in bittorrent systems. In Proc. ACM
SIGMETRICS, pages 301-312, 2007. -

16] B. Li, S. Xie, Y. Qu, G. Keung, C. Lin, J. Liu, and
X. Zhang. Inside the new coolstreaming: Principles, mea-
surements and performance implications. In Proc. of IEEE
INFOCOM, 2008.

J. Li, P. A. Chou, and C. Zhang. Mutualcast: An efficient
mechanism for content distribution in a peer-to-peer (p2p)

BIBLIOGRAPHY 70

network. I n Proceedings of ACM SIGCOMM Asia Work-
shop, Apr. 2005.

18] M. Lin, B. Fan, J. Lui, and D. Chiu. Stochastic analysis of
file swarming systems. Performance Evaluation (Elsevier),
64:856-875，2007.

19] X. L in and N. B. Shroff. Ut i l i ty maximization for commu-
nication networks w i th mult i -path routing. IEEE Transac-
tions on Automatic Control, 51, May 2006.

20

22

S. Liu, M. Chiang, S. Sengupta, J. Li , and P. Chou. Stream-
ing capacity for heterogeneous users w i th degree bounds. In
Allerton Conference, 2008.

21] S. Liu, R. Zhang-Shen, W. Jiang, J. Rexford, and M. Chi-
ang. Performance bounds for peer-assisted live streaming.
I n Proc. ACM SIGMETRICS、2008.

S. Low and D. E. Lapsley. Optimizat ion flow control-1:
basic algorithm and convergence. IEEE/ACM Transaction
on Networking, 6.

23] L. Massoulie and M. Vojnovic. Coupon replication systems.
In Proc. ACM SIGMETRICS, pages 2-13, 2005.

24] M. Mitzenmacher. The power of two choices in random-
ized load balancing. IEEE Transactions on Parallel and
Distributed Systems, 12, Oct. 2001.

25] J. Mundinger, R. Weber, and G. Weiss. Analysis of peer-
to-peer file dissemination amongst users of different upload
capacities. I n ACM SIGMETRICS Performance Evaluation
Review, volume 34, pages 5-6，2006.

26] PPLive. http://www.pplive.com/.

'27] PPStream. http://www.ppstream.com/.

http://www.pplive.com/
http://www.ppstream.com/

BIBLIOGRAPHY 71

28] D. Qiu and R. Srikant. Modeling and performance analy-
sis of bittorrent-like peer-to-peer networks. In Proc. ACM
SIGCOMM, pages 367-378, 2004.

29

30

31

32

33

34

35

36

17

S. Sanghavi, B. Hajek, and L. Massoulie. Gossiping wi th
mul t i p l e messages. IEEE Transactions on Information The-
ory, 53:4640-4654, Dec. 2007.

Sopcast. http://www.sopcast.com/.

TVants. http: / /www.tvants.com/.

UUSee. http://www.uusee.com/.

G. Vinnicombe. On the stability of networks operating tcp-
like congestion control. In Proc. 15 th IF AC World Congr.
Automatic Control, July 2002.

A. Vlavianos, M. Iliofotou, and M. Faloutsos. Bitos: En-
hancing bittorrent for supporting streaming applications.
I n INFOCOM 2006. 25th IEEE International Conference
on Computer Communications. Proceedings, 2006.

T. Voice. Stability of mult i-path dual congestion control
algor i thms. ACM International Conference Proceeding of
the 1st international conference on Performance evaluation
methodolgies and tools, 180, 2006.

F. Wang, J. Liu, and Y. Xiong. Stable peers: -Existence, im-
portance, and application in peer-to-peer live video stream-
ing. I n Proc. IEEE INFOCOM, 2008.

37] C. Wu, B. Li, and S. Zhao. Multi-channel live p2p stream-
ing: refocusing on servers. In Proc. INFOCOM, 2008.

J. Wu and B. Li. Keep cache replacement simple in peer-
assisted vod systems. In Proc. INFOCOM, 2009.

http://www.sopcast.com/
http://www.tvants.com/
http://www.uusee.com/

BIBLIOGRAPHY 72

39] X. Zhang, J. Liu, B. Li, and T. S. P. Yum. Coolstream-
ing/donet: A data-driven overlay network for efficient live
media streaming. In Proc. INFOCOM, pages 2102-2111,
Mar. 2005.

40] Y. Zhou, D. Chill, and J. Lui. A simple model for analyzing
p2p streming protocols. In Proc. IEEE ICNP, 2007.

^

 J

4

r .

C U H K L i b r a r i e s

0 0 4 6 6 0 3 0 7

