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Recently, certain Distributed Traffic Monitoring schemes, DATAL-

ITE, Proportional Union Method (Pu) and Quasi-Likelihood 

Approach (QMLE) have been proposed to support general Traf-

fic Measurement and Analysis (TMA) functions for large scale, 

high-speed packet-switched networks. In these schemes, all traf-

fic flows passing through a link are mapped into a single Traf-

fic Digest (TD) for monitoring and analysis purpose. It has 

been observed that the relative estimation error caused by such 

single-TD-per-link approach can be significant for tiny traffic 

flows (mice) when they are sharing a link with other large vol-

ume flows (elephants) as commonly observed in practice. 

In this thesis, we propose to enhance these distributed traffic 



digest schemes by taking an optimal traffic digest splitting strat-

egy: flows sharing the same link are partitioned and mapped 

into different sub-TDs according to their previously estimated 

flow volume. By avoiding the mixing of "mice" and "elephant" 

flows in a single TD, we can significantly reduce the "noise-to-

signal" ratio experienced by the former. Moreover, it can be 

shown that the reduction in such “noise-to-signal，，ratio is more 

than enough to offset the negative effect caused by reduction 

in TD memory size for each sub-group (since the total mem-

ory size required across all sub-TDs is kept to be the same as 

that of the single-TD approach without splitting). We have de-

rived analytical expressions of the optimal splitting threshold by 

minimizing the resultant root-mean-square (r.m.s.) (as well as 

maximum) relative error of the flows sharing a link under vari-

ous traffic distributions. The extent of estimation improvement 

of TD-splitting depends on the estimation error characteristics 

of the TMA scheme and the flow-volume distribution. In most 

cases, the estimation error can be reduced. In particular, the 

r.m.s. estimation error of DATALITE can be reduced on average 

around 50% using single-level TD-splitting and it can be reduced 

by 80% using 2-level recursive TD-splitting which outperforms 

the non-splitting version of Quasi-Likelihood Approach by more 
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than 20% in terms of r.m.s. relative estimation error. For Pu 

and QMLE, the r.m.s. relative estimation error can be reduced 

by 30% using 2-level recursive TD-splitting. Equivalently, the 

memory size requirement of the TDs of these two schemes can 

be halved while keeping the same estimation error. 
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摘要 

最近，分佈式流量測量計劃，例如DATALITE, P R O P O R -

TIONAL UNION METHOD ( P U ) and QUASI- LIKELIHOOD A P -

PROACH (QMLE)均提出於大型及髙速信息包交換網絡中支援 

一般流量測量和分析（TMA)功能。在這些計劃中，所有流 

量均通過單一流量摘要（TVaffic Digest)以達到監測和分析的 

目的。我們觀察到當流量小之信息流跟其他流量大之信息流混 

合的時候，以單一流量摘要測量的話，會造成很大的測量誤 

差。 

在本論文，我們建議以最佳流量摘要分割方法來提髙這些 

分佈式流量測量計劃之測量準確度，如將流量摘要分割，並根 

據原先估計流量，將共享相同鏈接的信息流分開並將其分派到 

不同之次流量摘要（sub-TD)。從而避免在單一流量摘要之 

nn 司時混合大和小之信息流，大大減少“噪信”比。此外，有證 

據表明，減少“噪信”比能夠超過並足以抵消因減少每個次流量 

摘要内存大小所造成的負面影響（因為次流量摘要之總内存大 

小與單一流量摘要内存大小一樣）。我們以鏈接中所有流動之 

最少相對誤差之均方根（RMS)或最大值作目標，為不同流 

量之分佈得出最佳分割值的方程式。流量摘要分割後對測量準 

確度之改進主要是由於該測量計劃之誤差特性及鏈接中之流量 

分佈而有不同效果。在大多數情況下，測量誤差均得以減少。 

特別，在DATALITE使用最佳分割方法將單一流量摘要分成 
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兩個次流量摘要時，其相對誤差均方根值平均可以減少約百分 

之五十，而使用最佳分割方法分成四個次流量摘要時其相對誤 

差均方根值更可減少百分之八十。此外，後者之測量誤差更 

沒有進行分割之Q M L E低百分之 而 P U 及 Q M L E 

在使用最佳分割方法分成四個次流量摘要時，其誤差均方根 

值均相對減少了百分之三 相對地，以保持同樣的測量誤 

差，這兩個測量方法所需之流量摘要所需之内存大小可減少百 

分之五• 
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Chapter 

Introduction 

1.1 Motivation 

With the rapid expansion of high-speed data networks and the 

proliferation of new protocols and network services, the abil-

ity to provide real-time network traffic pattern monitoring and 

analysis becomes increasingly critical yet challenging. On one 

hand, there is an urgent demand on monitoring and analyzing 

the spatial and temporal behavior of traffic flow pattern in such 

networks. On the other hand, tracking the large number of 

traffic flows and the huge packet volume in such networks is a 

daunting task due to the stringent real-time wire-speed compu-

tation and large memory requirements. Towards this end, many 

streaming cardinality estimation algorithms have been proposed 

recently [7, 8, 10，15, 16, 20]. They all suggested using Traf-
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fic Digest (TD) (or a "sketch") to summarize and track rele-

vant streams of packets and applying probabilistic counting al-

gorithm to estimate the cardinality of individual traffic streams. 

One of such scheme is DATALITE [20], a Distributed Architec-

ture for Traffic Analysis via Light-weight Traffic digEst, which 

performs Traffic Measurement and Analysis functions for large-

scale, 10Gbps+ packet-switched networks. Its applications in-

clude: Traffic flow pattern/route monitoring, diagnosis and net-

work forensic, Origination-to-Destination (OD) traffic load ma-

trix estimation as well as trace-back on the origin(s) of attacking 

packets in a distributed denial of service (DDoS) attacks. More-

over, there are two other schemes, Proportional Union Method 

(Pu) [8] and Quasi-Likelihood Approach (QMLE) [7] in stream 

cardinality. Pu applied simple proportional estimation while 

QMLE applied Maximum Likelihood approach to perform traffic 

measurement, and both schemes provide more accurate results 

comparing to DATALITE. 

In these schemes, as well as many other existing TD-based 

TMA schemes [9, 11, 24, 25], all traffic flows passing through 

a link (or a monitoring point) are mapped into a single TD for 

monitoring and analysis purpose. It has been observed that the 

relative estimation error caused by such single-TD-per-link ap-
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proach can be significant for tiny traffic flows (mice) when they 

are sharing a link with other large volume flows (elephants). 

This is because interfering flows sharing the same TD behave 

like "noise" when one tries to measure the volume of a specific 

target flow. Unfortunately, the mixing of mice and elephant 

flows within a high-speed network is quite common given the 

heavy-tail distribution of traffic flow volumes observed in prac-

tice. 

In this thesis, we propose to enhance the distributed traf-

fic digest monitoring scheme by taking an optimal TD split-

ting strategy: flows sharing the same link are partitioned and 

mapped into different sub-TDs according to their previously es-

timated flow volumes. By avoiding the mixing of "mice" and 

"elephant" flows in a single TD, we can significantly reduce the 

"noise-to-signal" ratio experienced by the former. Moreover, it 

can be shown that the reduction in such "noise-to-signal" ratio 

is more than enough to offset the negative effect on estimation 

error caused by reduction in TD memory size for each sub-group 

(given the total memory size required across all sub-TDs is kept 

to be the same as that of the single-TD approach without split-

ting). 

In the later part of this thesis, we demonstrate how we can 
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apply our TD-splitting scheme in network-wide traffic measure-

ments in practice. We also apply the common membership 

queries data structure, Bloom filter [4, 5], to store the map-

ping of the OD-pairs to the corresponding TDs. It has been 

shown that our proposed TD-splitting scheme can significantly 

reduce the estimation error of these TD-based TMA schemes to 

measure the network-wide traffic volume. 

1.2 Organization 

The thesis is organized as follows. In Chapter 2，we review sev-

eral recent related works and TD-based TMA schemes which 

we are going to study in the thesis, including DATALITE [20], 

PU[8] and QMLE[7]. We first describe the traffic digest genera-

tion procedure and then describe the estimating procedure for 

each estimator. 

In Chapter 3, we characterize the relationship of the esti-

mation error and the NSR experienced by the target flow at 

different nodes and link for cardinality estimation of the 2-sets 

and 3-sets intersection case. Such characterization motivates us 

to suppress the estimation error by reducing the NSR. 

Our TD-splitting scheme is described in Chapter 4. To make 

the problem analytically tractable, surrogate optimization ob-
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jective functions are introduced based on the estimation error 

characterized in Chapter 3 and the local "bottleneck" assump-

tion. We then derive analytical expressions of the optimal split-

ting threshold (for traffic flow volume) by minimizing the resul-

tant root-mean-square (r.m.s.) (as well as maximum) relative 

error of the flows sharing a link under various traffic flow vol-

ume distributions. Recursive TD-splitting is discussed in the 

later section of this chapter. 

We demonstrate how our scheme can be realized to support 

network-wide traffic measurement in Chapter 5. For network-

wide traffic measurement, we distribute TDs to other nodes/links 

for flow-volume estimation. After splitting TDs into several sub-

TDs, we need to choose the appropriate sub-TD for estimation. 

Therefore, we propose to apply Bloom filter to track the map-

ping between OD-pairs and their corresponding sub-TDs. 

In Chapter 6, the performance of the proposed TD-splitting 

scheme is evaluated via comparison to the original DATALITE 

scheme as well as the Pu [8] and QMLE [7] schemes. We also 

realize our TD-splitting scheme for network measurement in the 

Abilene Network. 

Finally, Chapter 7 discusses the conclusions of our work. 

In summary, the contributions of this thesis include: 
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1. We study the estimation error of several TD-based TMA 

schemes including DATALITE, P U and QMLE and derive 

the upper bound of the estimation errors of the OD-flow 

per link packet count estimation under those schemes. This 

motivates us to split the traffic digest to provide better es-

timation. We also extend QMLE to support the cardinality 

estimation of 3-sets intersection. 

2. We propose a TD-splitting algorithm to reduce the estima-

tion error of various TD-based TMA schemes. In particu-

lar, we propose an optimal splitting threshold for separating 

the flows according to the traffic volume and map them into 

different digests to reduce overall estimation errors. We de-

fine two different objectives, (1) minimizing the maximum 

estimation error; and (2) minimizing the r.m.s. estimation 

error across all the participating flows. We also realize the 

TD-splitting scheme for real network by applying Bloom 

filter [5] for sub-TD membership tracking. 

• End of chapter. 



Chapter 2 

Related Works and Background 

2.1 Related Works 

Much research has been focused on the problem of using traffic 

measurement to extract a spatial and temporal view of the traf-

fic flow or routing pattern within a high-speed network [17, 19 . 

Specific applications include measuring the OD-flow packet (or 

byte) count to reconstruct a traffic matrix, or measuring the 

summaries of the network traffic and estimating individual flow 

volume by different stream cardinality estimator [8，10，12]. Ken 

Keys et al in [17] proposed a robust system to measure the net-

work summary in terms of ports, IP addresses, etc. Abhishek K. 

et al in [18, 19] introduced a stream algorithm to estimate the 

flow size distribution with high estimation accuracy. Recently, 

measurement on the entropy of OD-flows was proposed in [23 



CHAPTER 2. RELATED WORKS AND BACKGROUND 8 

The advantages of the entropy-based approach include the re-

duction of CPU/memory resource consumption. The entropy of 

OD-flows also gives significant insight into network traffic dy-

namics which can serve as a more reliable and effective metric 

for anomaly detection and network diagnosis. However, most 

of the existing approaches are limited to estimate the OD-flow 

traffic matrix information, e.g., [8]. Direct extensions of their ap-

proaches to measure the OD-flow per link for every link within 

a network will lead to substantial increase in estimation errors 

due to various error aggregation and amplification problems to 

be illustrated in the next chapter. Nevertheless, much progress 

has been made for reducing the statistical variance of stream 

cardinality estimators under stringent memory constraints. In 

6]，Cai M. et al improved the 0{loglog Nmax) estimator [10] to 

provide more accurate estimation for small traffic flows within 

the network. The QMLE approach in [8] is extended to support 

per OD-pair byte-counting in [7]. Hyper-Loglog count [13] fur-

ther improves the accuracy of the original FM Sketch [10] by 

computing the harmonic mean (instead of the geometric one) 

across an ensemble of estimates. By focusing on the reduction 

of the noise-to-signal ratio in each TD via TD-splitting (instead 

of variance reduction of the cardinality estimator), our approach 
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is complementary to, and can be readily combined with, some 

of the variance-reduction techniques mentioned above, e.g., [13], 

to further reduce the overall traffic estimation error. 

2.2 Background 

In this thesis, our focus would be on studying the enhancement 

of several TD-based TMA schemes. In this section, we focus 

on reviewing these schemes, including DATALITE [20], Propor-

tional Union Method (Pu) [8] and Quasi-Likelihood Approach 

(QMLE) [7]. We first give a brief introduction for each scheme 

and then we describe how the traffic digest (or called "sketch") 

is generated. And finally, we explain how the scheme be used 

for network-wide traffic measurement. 

2 . 2 . 1 DATALITE 

DATALITE [20], a Distributed Architecture for Traffic Analysis 

via Light-weight Traffic digEst, is a set of distributed algorithms 

and protocols to support general Traffic Measurement and Anal-

ysis (TMA) functions for large scale packet-switched networks. 

The authors formulate the network-wide TMA problem as a 

series of set-cardinality determination problems. By applying 

the probabilistic distinct sample counting technique [10] for set-
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cardinality, the network-wide traffic measurement can be com-

puted in a distributed manner via the exchange of light-weight 

traffic digests (TDs) amongst all the nodes and links. In the fol-

lowing section, we give a brief introduction on how DATALITE 

supports network-wide measurement. 

Network-wide traffic measurement and analysis as Set-Cardinality-

Determination 

Q 

Figure 2.1: Estimating the number of packets originating from node s and 

terminating at node d passing through link (z, j ) 

Consider the network shown in Figure 2.1 as an example. 

Denote the sets of packets originated in node s and destined to 

node d by S and D respectively. Let L be the set of packets 

passing through link (i,j) and k = (s, d) be the commodity 

index which indicates the OD-pair of a set of packets of interest. 
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Define F-^j as the set of distinct packets of commodity k, passing 

though link (z, j ) . The volume (in terms of packet count) for the 

traffic commodity k, passing through link (z, j ) is given by: 

F 门 门 (2.1) 

where \X\ represents the cardinality (number of distinct ele-

ment) of set X. 

Based on elementary set theory, can be expressed as 

Fl S1 + |L)| + |L|- (2.2) 

- |L>UL| - I ^ U L 

+ \SUDUL 

In general, the cardinality of the intersection of multiple sets 

tSi, S2, ..., Sjj can also be computed based on the following ex-

pression: 

V 

i=l 
Si U Sj U Sk 

(2.3) 

Here, 0{Loglog N) distinct sample technique [10] is used to 

determine the cardinality of each of the union-terms in RHS of 

Equation 2.2. 
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Traffic Digest Generation for DATALITE 

Consider a stream of packets, denoted by packet set 5，where 

each packet s E S has a time-invariant, unique identifier PIDg. 

When the packet passes through a monitoring point p (which can 

be a link or a node), we use PIDg as input to a uniform hash 

function h{') and store the hash output in an array of m buckets 

which serves as the traffic digest TDp for this monitoring point. 

Specifically, we use the first I {I = log2m) bits of h(PIDs) as 

the bucket key, and then count the index of the first occurrence 

of 1 in h[PIDs�start ing from the (/ + l)-th bit in h{PIDs) and 

store the value to the corresponding bucket. Each bucket stores 

the maximum value of the index of the first occurrence of 1. 

At the beginning of each measurement interval, we initialize a 

hash array Y with m buckets and set all the bucket value to 

zero. Each of them remains at 0 if no packet is hashed to it. 

Algorithm 1 summarizes this TD generation process. 

The cardinality of the TD, i.e., |TD|, is calculated by: 

TD\ = ^ = ^̂  (2.4) 

where am is some correction factor derived in [10] and the error 

fcr) of this estimator for each TD, defined as the normalized root 
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Algorithm 1 Online traffic digest generation algorithm 

1： Initialize a hash array Y of size m with values 0; 

2: for each incoming packet s do 

3： generate a uniform hash value h{PIDs) with the packet unique iden-

tifier, PIDs 

4: pick I bits as the bucket index (idx) for selecting the buckets from 

h{PIDs) j where I = l o g � m 

5： count the index, i, of first occurrence of 1 in the remaining bits without 

overlapping the I bits (i.e., counting the number of consecutive zero + 

1) 
6： update Y[idx] = max[Y[idx]^ 

7： end for 

mean square relative error (RMSRE), is given by, 

\JVar�i) 1.30 
cr = (2.5) 

0 y/m 

where • are the estimated and true value of the corresponding 

packet count respectively. 

In addition, the cardinalities of the union-sets or R.H.S. in 

Equation 2.2 can be estimated by max-merging the correspond-

ing TDs by setting Y[i] 二 macCpQP Yp[i] where p is the location 

which we are interested in and estimate the value by Equa-

tion 2.4. For more details about 0{loglog Nmax) distinct sample 

counting, please refer to [10 . 

Via periodic broadcast of the TDs collected at each link (or 
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node) within a network, a node can reconstruct the network-

wide view of traffic flow and routing patterns by computing the 

estimates of locally. 

2.2.2 Proportional Union Method 

Aiyou Chen et al have proposed Pu in [8], which is an efficient 

simple estimator for the cardinalities based on a continuous vari-

ant of Flajolet-Martin sketches [14]. Their estimator has been 

shown to have almost the same statistical efficiency as the Max-

imum Likelihood Estimator (MLE), which is known to be opti-

mal in the sense of Cramer-Rao lower bounds [3] under regular 

conditions. For details, please refer to [8 . 

Traffic Digest Generation for Pu 

The difference of the traffic digest generation between the ap-

proach of Pu [8] and DATALITE [20] is the value stored in the 

TD. At the beginning, we initialize a hash array Y with m buck-

ets with value equal to 1. Consider a stream of packets, denoted 

by packet set for each incoming packets 5 G we hash the 

packet with the packet identifier PIDg using a uniform hash 

function h{') from 1 to m and use the output of h{PIDs) as 

the bucket index. We then store the output of u[PIDs) in that 
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bucket, where u{PIDs) is an uniform random variable between 

0,1] using PIDs as its seed. For each bucket, we store the 

minimum value of u{PIDs) for each packet s hashed to the cor-

responding bucket. Each of them remains at 1 if no packet is 

hashed to it. The online TD generation algorithm for Pu is 

presented in Algorithm 2. 

Algorithm 2 Online traffic digest generation algorithm for Pu 
1： Initialize a hash array Y of size m with values 1; 

2： for each incoming packet s do 

3： generate a uniform hash value idx = h{PIDs) with the packet unique 

identifier using a uniform hash function h{-) from 1 to m 

4: generate a random number u{PIDs) uniformly on the interval [0, 

update Y[idx] = min[y[icb]，u{PIDs) 

end for. 

Estimation of the cardinality of a single stream 

For a single stream of packets, denoted by a packet set we let 

fji = \S\/m be the average number of packets per bucket for the 

stream. According to the Lemma 1 in [8], the distribution of 

Y[i] can be approximated to exponential distribution with rate 

fi, i.e., 

for y e [0,1] and P{Y[i] = 1) ^ e—" 
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Since the correlation of each bucket can be neglected when jll 

is large, the likelihood functions of (i can be written as 

L � = 二聊]=1) Y[ 一 ⑷ 

where /(•) is the indicator function. Thus, the estimated average 

number of packets per bucket jl and the estimated cardinality 

of the set of packets <S, i.e., |<S|, is given by 

M = 
i < 1 ) 

Tt.y i 

S\ = mjl (2.6) 

Estimation of per OD flow packet count 

Suppose there are 2 sets of packets S and D at node s and 

d respectively and there is a set of packets S originating from 

node s and terminating at node d. Each packet set also contains 

other packet stream. Let Yi and ¥2 be the hash array used for 

node s and node d to capture the packet information. Let N 

be the number of packets of S U D, i.e., N = \S U D\ and let 

Y\j be the hash array used for 5 U D which can be obtained by 

min-merging the TD at node s and node d, i.e., 

YIJH = mm(yi[z], for i = 1,…,m 
A 

and the estimated value TV of TV can be obtained using Equa-

tion 2.6. The cardinality of S n D , i.e., |Ŝ nL)|，can be estimated 
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by 
^ (PU) . . 

A 

where P represents the empirical probabilities based on the ob-
•^^-{PU) 

served traffic digests Yi and ¥2 and \X\ represents the esti-

mated cardinality of packet set X using Pu estimator. 

Estimation of OD flow per-link packet count 

For estimating the cardinality of 3-sets intersection, we let Yi 

� and >3[z], for i = 1 , m , be the TDs of packet set 5, D 

and L respectively, where packet set S, D and L are the same 

as those described in Section 2.2.1 for DATALITE. We also let 

N be the estimated cardinality of the union-set U L) U L|’ 
/N 

i.e., N = |S' U D U L|, and let Fy be the hash array used for 

5 U JD U L which can be obtained by min-merging the TDs at 

corresponding nodes, i.e., 

KJH = min{Yi [2], Y2[i], V3[2]), for z = 1 m 

And, the cardinality of \S H D H L\ can be estimated by 

\s n3n L|(户…=NP{Yi = ¥2 = ¥3) 

where F represents the empirical probabilities based on the ob-

served traffic digest Yi, Y^ and Y .̂ 
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According to Theorem 3 in [8], the estimation error of this 

estimator � i s given by, 

V ^ ^ 1 [ n , � 7 � 
(2.7) 

A 

where 0 are the estimated and true value of the corresponding 

packet count respectively and m is the number of buckets in the 

hash array. 

2.2.3 Quasi-Likelihood Approach 

Jin Cao et al have proposed a streaming algorithm for measuring 

the byte count of a packet stream in [7]. It provides accurate es-

timation on both packet and byte counting by Quasi-Likelihood 

Approach (QMLE). In the following, we describe the TD gen-

eration procedure and the OD packet count estimation using 

QMLE. 

Traffic Digest Generation for QMLE 

Unlike Pu, in QMLE, we set the initial bucket value to oo and 

store the value of g{JPIDs)/v, where v is the number of bytes 

in the packet, g(.) is an exponential random variable with mean 

equal to 1 and PIDs is the packet identifier. Since we focus on 

estimating the packet count, we simply set v equal to 1 for each 
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incoming packet. Each of the bucket value remains oo when 

there is no packet hashed to it. Algorithm 3 shows the details 

of the T D generation procedure for QMLE. 

Algorithm 3 Online traffic digest generation algorithm for QMLE 
1： Initialize a hash array Y of size m with values oo; 

2: for each incoming packet s do 

3： generate a uniform hash value idx = h[PIDs) with the packet unique 

identifier using a uniform hash function h{-) from 1 to m 

4: generate an exponential random number g{PIDs) of mean 1 using 

exponential random generator g[-) 

5： update Y[idx] = minfK[iob]，g{JPIDg)Iv], where v is the number of 

bytes in the packet 

6： end for 

Estimation of the cardinality of a single stream 

Suppose there is a single stream of packets, denoted by packet 

set <S, we hash the packets to a TD Y according to Algorithm 

3. By the Lemma 1 in [7], Y[i] can be approximated by a Gen-

eralized Pareto distribution as, 

P { Y \ i ] > y ) ^ { l + py) - ' ' (2.8) 

where fi = ajS is the average number of packets per bucket. 

In the following, we omit [i] when we refer to the traffic digest 

Y[i] for simplicity. The quasi-density function, PQ{Y = y) can 
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be written as: 

Define Y* = YI{Y < oo), where I is the indicator function. 

Let /qi (/i, P) be the logarithmic quasi-likelihood function oiY[i 

for i = 1，...，m, divided by m, i.e., 

二 -丄 小-(…)） 
TTlf 

= - l o g i f ^ ) + 坑 + log(i + py*[i]) (2.9) 

The estimation fiQ�can be obtained by optimizing the likeli-

hood function IqJjx, p), i.e., 

= (2.10) 

The problem can be solved by standard Newton-Raphson 

type algorithm [21]. Since the model in Equation 2.8 may not 

be the true model, such method is called Quasi Maximum Like-

lihood Estimation (Quasi-MLE) [22 . 

Estimation for per OD flow packet count 

Suppose there is a stream of packets, denoted by packet set S 

originating from node s and terminating at node d. Let S and 

D be the set of packets at node s and d respectively. 

m 
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Figure 2.2: Set expression of 2 sets intersection 

We let Yi � ’ 1̂ 2[幻’ for i = 1，…，m, be a pair of hash arrays that 

store the information of the incoming packet stream at node a 

and node b using Algorithm 3. Let Ai, A2 and ji be the average 

number of packet/byte count per bucket of the TDs of packet 

set 5, D and 门 D respectively, where 八1,八2 can be obtained 

by Equation 2.10 using TD Yi and ¥2. We let X\i], Xi\i], X2 

for i = 1 ， m , be the unobserved traffic digests, which are also 

generated by Algorithm 3, of the packet set 门 Z)，S\D and 

S\D respectively as illustrated in Figure 2.2. To simplify the 

presentation, we omit [z] when we refer the traffic digests Y\ 

⑷ ， X i [z] and 义2[幻.We can see that 

Yj = mm{X,Xj),3 = 1,2 (2.11) 

According to Lemma 1 in [7], each of X , X2 can be approx-
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imated by Pareto Distribution, i.e., 

X ^ Pareto[a, p), Xj ^ Pareto{aj,p) (2.12) 

where a = � a n d Qj = for j = 1,2. 

The quasi-probability function {PQ) can be written as 

2/1,12 >2/2) 

= > max{yi,y2),Xi > yl,X2 > 2/2) 

= ( 1 + Pmax{yuy2))-''{1 + pyi 广[1 + 

And hence, the quasi-density function, PQ{YI = yi, I2 = 2/2) 

can be derived as 

Case 1 (2/1 < y2)： a i {a + + ft/i)—(“丄+” 

+ 奸叱+1) 

Case 2 (yi > 2/2)： 0̂ 2(0： + + /5y2)-(�2+i) 

(1 + /32/1)—
(
时叫+1」 

Case 3 {yi = ys)： + (以+“丄十购+1) 

Define Y^* = YjliYj < 00)’ for j = 1,2, where I is the indi-

cator function. Let l3) be the logarithmic quasi-likelihood 

function of (Fifz], I2H) for i = 1,..., m, divided by m, i.e., 
1 m 

咖 , P ) = — 一 2 ^ i o g { P Q { y m = yi,uy2[^] = y24)) 
771 . 1=1 

where yî i and y2�i are the empirical value of the z-th bucket of 

the hash array Y^ and Y2 respectively. 
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Optimizing the quasi-log-likelihood IQ(JJL, JS), we obtain the 

QMLE estimate [IQ of FI, i.e., 

A 

ih^pQ) = arg md.xlQ{fi,p) (2.13) 

for fi < Ai，八2 and > 0. 

This optimization can be solved by the standard Newton-

Raphson type algorithm [21 . 

According to [7], the standard estimation error of QMLE for 

cardinality estimation of 2-sets intersection for packet set S and 

D, denoted by (7释E、is 0{JN}口、NSRs + NSRD - 2)^/^), i.e., 

^QMLE OC 
^NSRs^NSRn-2 ( 2 . 1 4 ) 

where NSRs and NSRD are the noise-to-signal ratio of packet 

sets S and D described before, i.e., and j J ^ respectively 

and m is the number of buckets of the hash array. Refer [7] for 

details. 

We also extend the scheme for cardinality estimation of 3-sets 

intersection, e.g., to support OD-flow per-link packet count on 

individual intermediate links as described for DATALITE (and 

Pu) in Section 2.2.1 (and 2.2.2). Refer to Appendix A for the 

detail derivation. 

• End of chapter. 



Chapter 3 

Estimation Error of Existing 
TD-based TMA schemes 

We can see that the TD captures all the packets including both 

relevant and irrelevant packets. Via simulations, we found that 

the relative standard error of the estimator would be associated 

with the ratio of these two kinds of packets hashed in a TD. 

Define ( J Z { X ) to be the standard error of cardinality estimation 

for packet set X using TD-based TMA scheme z, where z = DL, 

for DATALITE，Z 二 PU for PU and z = QMLE for QMLE. In 

the following, we analyze the estimation error of the existing 

TD-based TMA schemes. 

24 
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3.1 Error Accumulation and Amplification of 

Existing Schemes 

Below we first discuss the effect of estimation error amplifica-

tion of these three schemes for cardinality estimation of 2-sets 

intersection. 

3. Pu 

According to Equation 2.7, the standard error � o f the Pu 

estimator for the intersection of the sets is directly proportional 

to the square root of the union-to-intersection ratio. 

Suppose there are 2 sets of packets S and D. We are inter-

ested in the cardinality of the common packets of these 2 sets, 

i.e., n The standard error of Pu estimator for the car-

dinality estimation OI S R\ D, denoted by (TP^J{S n D), is given 

by: 

S\^D 
S^D 

1 1 
s + D — SR\D 

y/m Y 

yjm VNSRS + NSRD — 1 (3 .1 ) 

where NSRs and NSRD are defined as the noise-to-signal ratio 

of 5 n D in set S and D, i.e., and respectively. 
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3 . 1 . 2 Q M L E 

Jin Cao et al have also analyzed the estimation error of QMLE 

in 7]. According to [7], the standard relative error of QMLE for 

the cardinality estimation of 2-sets intersection for packet set S 

and D is i.e. 

cJq 應�S nD)^ • VNSRS + NSRn - 2 (3.2) 

where NSRs and NSRD are the same as described in Equa-

tion 3.1. (JQMLE�S n D) is also similar to (Jp^{S D D) as shown 

in Equation 3.1 when the noise-to-signal ratio of the 2 adjacent 

nodes are large. 

3 . 1 . 3 DATALITE 

According to Equation 2.2, the estimation errors associated with 

F^j I is the aggregated error of the cardinality estimators for each 

union-set on the R.H.S. of Equation 2.2. In general, the more 

number of stages of set-intersection, the greater the estimation 

error due to the increase in the number of union terms in the 

R.H.S. of Equation 2.3. Worse still, since the estimation error 

a given in Equation 2.5 is a relative error with respect to each 

of the union-set cardinalities in the R.H.S. of Equation 2.3, the 

corresponding relative estimation error, i.e., percentage-wise, for 
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the intersection set on the L.H.S. of Equation 2.3 can get "am-

plified" when the cardinality of the intersection set in the L.H.S. 

of Equation 2.3 is much smaller than that of the union-set terms 

on the R.H.S. of the equation. 

Consider the intersection between packet sets S and D as an 

example. Denote the relative estimation error for 门 and 

by a^^iSnD) and respectively. Here, 

D) corresponds to the relative error specified in Equation 2.5 

resulted from the union-set cardinality estimation as proposed 

in [10]. Since = + - |5UD|, even if we know the 

true values of l^l and |Z)|, i.e., zero estimation error associated 

with those terms, we still have: 

. 门 = a^^iSuD) - \S U D 

And thus, 

cTodSnD) = a^.iSUD) 
SUD 

1.30 

s + D — SnD 
SnD 

y/m 
{NSRs + NSRD — 1) (3.3) 

where NSRs and NSRD are the noise-to-signal ratio of packet 

set A and B, i.e., {NSRs = ] ^， N S R d = 

The situation is particularly problematic when NSRs, NSRd 
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or both are large, which, unfortunately, is quite typical in the 

context of network-wide OD-flow-per-link monitoring. 

Based on the above observations, we can see that the stan-

dard error of the cardinality estimation for 2-sets intersection 

is positively correlated to the noise-to-signal ratio of the corre-

sponding nodes. In the next section, we will analyze the esti-

mation error and derive the corresponding upper bound of the 

estimation error for cardinality estimation of 3-sets intersection. 

3.2 Estimation Error of 3-sets intersection cases 

In this section, we discuss the estimation error of cardinality 

estimation of 3-sets intersection, i.e., to support OD-flow per 

link packet count, of the TD-based TMA schemes. Unlike the 

cardinality estimation of 2-sets intersection, we can only derive 

the upper bound of the estimation error. 

3.2.1 Pu 

According to the standard error of the Pu estimator derived in 

8] as shown in Equation 2.7, the upper bound of the estimation 

error of Pu for the cardinality estimation of 3-sets intersection 

is derived as follows: 

Suppose there is a target OD-flow S with volume S (in 
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unit of packets per unit time) which originates from node a, 

terminates at node c and passes through a link b along its path. 

Denote the sets of packets observed at nodes s, d and link I by 

S, D and L respectively. In general, 5, D and L can contain 

packets from other traffic flows besides the ones belonging to 

S. We use NSRi to represent the noise-to-signal ratio of S in 

each of these packet sets, i.e., NSRi = 畏 for i = S，D，I/. The 

standard error of the Pu estimator for the cardinality estimation 

of 3-sets intersection, denoted by o-p^{S 门 n L), is given by: 

N 

(3.4) 

m S 

SUDUL 
m • 5 

S + D + L - -DDL — SnL + SDDnL 
m S 

Using the union-bound argument > > \S 

and \B n C\ > |«S|)，we have: 

< 1 S + D + L — S — s — s + 5 
y/m Y S 

y/m 
= a ^ ^ i S n D n L ) 

Y/NSRs + NSRD + NSRL — 2 

(3.5) 
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where NSRS, NSRd and NSRl are defined as the noise-to-

M signal ratio of S in packet set 5, D and L respectively, i.e. ~ 

罾 and In special case, when = 5*门1/ = D H L 

S\, we have CTP^JIS H D H L) ^ ^PUI^ A 门！/) according to 

Equation 3.5. 

We let be the empirical (actual) error in estimating the 

OD-flow per link packet count using Pu. To demonstrate the 

relationship between H D H L) and E^u, we apply Pu to 

estimate the OD-flow per link packet count using different TD 

size 60，240，960] KBytes in different NSR [10,20,50,80,100] sit 

nation. Here, we simulate the special case described above, i.e., 

门 = n = n = |<S| and A fl Ẑ ) 

(1 D CI L), Figure 3.1 shows the strong linear relationship 

of the standard relative error, i.e., (5py 门 f l ! / ) and the corre-

sponding empirical root mean square relative error (RMSRE), 

i.e., e…in all cases. 

3 . 2 . 2 DATALITE 

We consider the 3 sets of packets S, D and L for OD-flow per 

link packet count estimation using DATALITE mentioned in Sec-

tion 3.2.1. We are interested in the cardinality estimation of the 

common packet set S of these 3 packet sets, i.e., S = SflD门L 
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Empirical Error (e 

Figure 3.1: RMS Empirical Result vs the Predicted Upper Bound of Standard 

Estimation Error for Pu. 

If we know the true value of 5, D and L, the estimate of S, i.e., 

A n L)门 can be derived as follows: 

门D门i： 

51 + + \L\ - I^LTDI — |5m| - + is'umjL 

where \X\ is the estimated value of packet set X using Equa-

tion 2.4. We defined A|X| to be the absolute estimation er-

ror of the cardinality estimation of packet set X , and thus, 

= + A|X|. The absolute relative error of \S H D n L 

n 门 1/ , would be: 

A 门 ẑ  

=-AISUD -ADUL -ASUL -\-A\SuDuL 
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However, when there are outliersi in the hash array of S' U 

D, they may also exist in the hash array of S U D U L. The 

estimation errors of the terms in the R.H.S. of Equation 3.6 

are positively correlated due to the max-merge property of the 

estimator described in [10]. (Similarly, A\D U L\ and A|5 U L 

are also positively correlated to A|5 U D U L| correspondingly). 

As these positively correlated terms do carry opposite signs, 

as shown in Equation 3.6，the estimation errors associated with 

these individual terms tend to cancel each other when compared 

to the case with independent assumption. 

Therefore, by assuming the independence of the estimation 

errors for individual terms in the R.H.S. of Equation 3.6，the 

standard error of cardinality estimation of 3-sets intersection 

using DATALITE (CR饥(S" n Z) n L)), would be: 

< 
A S ' U D + A DDL + A 5 U L + A 5 U D U L 

门 L M L 
(J . S\JD + 0-- DDL SUL + cr. SUDUL 

SnDnL 

= ( J 
( SUD + DUL + SUL + SUDUL ) (3.6) 

where a is the common standard relative error for estimating 

1八 large number of consecutive zeros generated by the uniform hash function as de-

scribed in Section 2.2.1 
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S U \D U L|, \S U L\ and \S U D U L\ under the same TD 

memory size m as given in Equation 2.5. 

Using union-bound arguments, i.e., X U Y\ < X\ + \Y 

( J D I X S 门 门 Z/) can be upper further bounded by: 

< (J 
S\ + |D|) + {\D\ + \L\) + (|5| + |L|) + (|5| + + \L 

3.9 
y/m 

SnDnL 

{NSRs + NSRD + NSRL) 

(3.7) 

Let Cdl be the actual (empirical) relative error in estimating 

S\ using DATALITE. The key observation from Equation 3.7 is 

that we can suppress 门 L)门！/)，therefore e^ ,̂ by reduc-

ing the noise-to-signal ratio associated with the corresponding 

packet sets (and their TDs). 

To demonstrate the relationship between and 

e见，we apply DATALITE to estimate the OD-flow per link packet 

count using different TD size [40，160,640] KBytes in different 

NSR [10,20,50,80,100] situation. As shown in Figure 3.2, while 

the upper bound on the estimation error seems to be quite loose, 

there is a strong linear relationship between the upper bound of 

the standard relative error, i.e., 门 门 Z/) and the corre-

sponding empirical root mean square relative error (RMSRE) 



0.1 0.15 0.2 0.25 

Empirical Error {e^^) 
0.35 0.4 

Figure 3.2: RMS Empirical Result vs the Predicted Upper Bound of Standard 

Estimation Error for DATA LITE. 

in all cases. Figure 3.2 plots the upper-bound of the standard 

relative error D D D L)) for the cardinality estimation 

of 3-sets intersection against the empirical estimation error e饥 

achieved by DATALITE for different TD sizes (m). 

Based on the observation of two schemes, the standard esti-

mation error can be suppressed by reducing the noise-to-signal 

ratio (NSR) of the flows on different nodes/links, and thus, the 

actual error ê ^ and ep�Therefore , we propose to separate the 

flows into groups and hash them into different TDs in order to 

reduce the total number of packets in one TD, and thus, re-

duce the noise-to-signal ratio. In the next chapter, we are going 
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to propose a TD-splitting algorithm such that the flows can be 

separated according to their flow-volume in order to reduce the 

estimation error by keeping the same total traffic digest size. 

• End of chapter. 



Chapter 4 

Error Reduction Via Traffic 
Digest Splitting 

4.1 Motivation 

Our proposed Traffic Digest Splitting approach is motivated by 

the following 2 key observations: (i) Based on the estimation 

error characteristics derived in Equations 3.1 and 3.3，we can 

suppress estimation errors by reducing the noise-to-signal ratio 

associated with the corresponding TDs. (Similarly for the esti-

mation errors of cardinality estimation for 3-sets intersection as 

shown in Equations 3.5 and 3.7) and (ii) The relative estimation 

error of the estimator used by TD-based TMA schemes only re-

duce at a rate of where m is proportional to the memory 

size allocated for the TD. In other words, by halving the mem-

36 
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ory size allocated for a particular TD, the relative estimation 

error of the traffic flows sharing the TD will only increase by a 

factor of \/2. 

Based on these two observations, it becomes viable to split 

a TD at each monitoring point into separate sub-TDs, e.g., one 

for the mice flows and the other for the elephant ones while 

keeping the total amount of memory consumed by all sub-TDs 

unchanged. By doing so, the decrease of estimation error due to 

the reduction of noise-to-signal ratio (as shown in Equations 3.1 

and 3.3) can outweigh the increase in estimation error due to a 

smaller memory-size of each sub-TD as pointed out in (ii). 

In general, the mapping of individual flows into different sub-

TDs along their end-to-end paths will interact with each other 

and impact the resultant estimation errors for flows sharing one 

or more sub-TDs. This implies that a globally optimal TD-

splitting strategy would require tight coordination across many 

different monitoring points, which may not be feasible in prac-

tice. To avoid explicit network-wide coordination, we will focus 

on a local strategy by applying "optimal" TD-splitting within 

each individual monitoring point regardless of the TD-splitting 

decisions elsewhere during the current measurement interval. 

We also assume the local link to be the “bottleneck，，which ere-
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ates the dominant NSR for the passing flows, more details are 

discussed in Section 4.4.2. 

Under this localized approach, the performance of a given 

TD-splitting strategy still depends on various factors includ-

ing: the distribution of the flow volumes associated with the 

original TD; the splitting threshold (in terms of flow-volume)； 

the amount of memory available for each sub-TD; the resul-

tant noise-to-signal ratio experienced by individual traffic flows 

in their assigned sub-TD and the choice of the optimization 

objective, e.g., minimizing the maximum percentage error of 

any participating flows vs. minimizing the r.m.s. percentage 

error across all of the participating flows. To derive the opti-

mal TD-splitting strategy, we have formulated the problem as 

a mathematical programme through which the optimal flow-to-

sub-TD assignment (based on simple volume-based threshold) 

can be determined under various traffic flow distributions and 

optimization objectives. Furthermore, the TD-splitting strat-

egy can be applied recursively as long as the number of packets 

assigned to each sub-TD is large enough to provide statistically 

valid measurements. Via simulation in Chapter 6, we compare 

the performance of TD-splitting scheme with that of the orig-

inal non-splitting scheme and the preliminary results are quite 
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promising. 

4.2 Objective Functions for Optimal TD-splitting 

Given the total amount of memory available for all sub-TDs of 

a target link (i,j), our local TD-splitting scheme maps the com-

modity flows on the link to different sub-TDs while minimizing 

the maximum (or alternatively, the root mean square) estima-

tion error (of flow-volume) among all the participating flow com-

modities. In particular, the objective for this optimization can 

be expressed as the minimization of the following functions: 

(1) Maximum estimation error across all the participating flows 

max e j i (4.1) 

or 

(2) Root mean square estimation error across all the participat-

ing flows 

必2 (4.2) 

where n is the number of flow commodities (noted as 1 OD-pair) 

passing through link (z, j ) , and ej^j, is the actual relative estima-

tion error of commodity k on link {i,j) using different schemes 
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where z — {DL, P/7} for DATALITE and Pu respectively. How-

ever, since there is no closed-form expression for eJl̂ j in general, 

we resort to leveraging the strong linear relationship observed 

from Figures 3.2 and 3.1 between e饥 and &DIXS D D N L) (as 

well as and D D PI L)) and use the expression of the 

latter (given in Equation 3.7 and 3.5) to establish the surrogate 

objective functions for the optimization. Due to the local nature 

of our approach, our optimization only needs to deal with each 

target link individually. Also, our objective functions can be ap-

plied to all TD-based TMA schemes with the same formulation 

for cardinality estimation of both 2-sets and 3-sets intersection. 

We therefore drop the per-link subscripts the TD-based 

TMA scheme subscripts z = {DL, PU} and the packet set pa-

rameter X from now on and replace the objective functions in 

Equations 4.1 and 4.2 by their respective surrogates: 

o-max = m a x a ^ ( 4 . 3 ) 
fceM 

and 

CTrms = 〜 ^ (斤〒/几 (4-4) 

\ k=l 

where, for symbol consistency, a^ is defined to be equal to 

in Equations 3.1 and 3.3 for cardinality estimation of 2-sets in-

tersection using DATALITE and Pu respectively. For cardinality 
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estimation of 3-sets intersection, a^ is the upper bound of the 

standard estimation error for commodity k on the target link as 

defined in Equations 3.5 and 3.7. 

4.3 Problem Formulation of Threshold-based 

Splitting 

In general, there are many different ways to split the available 

memory amongst different sub-TDs and map different groups of 

commodity flows to each sub-TD. In this thesis, we only consider 

the flow-volume threshold-based mapping strategy. Further-

more, in order to facilitate the distributed merging of sub-TDs 

across different links in a network (max-merging for DATALITE 

and min-merging for Pu and QMLE) while avoiding additional 

inter-link coordination, we will focus on the recursive binary 

splitting of the overall memory pool available for a link into 

equal-sized s u b - T D s � I n the most basic form of such binary 

splitting approach, two equal-sized sub-TDs are introduced for 

each link, one for the small flows and the other for the large 

ones. Each flow on a link is classified as either a small or large 

flow by comparing its traffic volume, as estimated during the 

l it is not straightforward to merge sub-TDs of different sizes generated at different 

monitoring points. This is left as a future work. 
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previous measurement interval, to a splitting threshold fs and 

then mapped to the corresponding sub-TD. By separating small 

flows from large ones, we can reduce the noise-to-signal ratio of 

all the flows which is particularly important for reducing esti-

mation errors for small flow volumes. 

4.3.1 Minimizing Maximum Estimation Error 

Under the "local-bottleneck" assumption, to minimize the max-

imum estimation error across all flows, i.e., c w c as defined in 

Equation 4.3, we can substitute the expression of a from Equa-

tions 3.1 and 3.3 into Equation 4.3 to determine the "optimal" 
A 

splitting threshold fs as follows: 

A 

fs = arg{mmamax} (4.5) 
fs 

=arg{mm max a^} 
fs /eG[l,n] 

=arg{mm max NSR{rk, fs)} 
fs /c€[l,n] 

where n is the number of commodity flows on the target link. 

NSR{rk^ fs) is defined as the noise-to-signal ratio experienced 

by our target flow within its corresponding sub-TD of the target 

link when the splitting threshold is set to fg. Such noise-to-signal 
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ratio is given by: 

NSR(r,, f s ) = 尺 < /,) + 风fs,r—� > /,) 
n Tk 

(4.6) 

where I is the Indicator function ； 

尺(/,動 fup)=广 r . g{r)dr . pw 二 ) 办 (4") 
J low Jrmin y� 乂 

is the total flow-volume in the sub-TD due to flows with volume 

between fiow and fup. g{r) is the p.d.f. of the flow volume 

carried by the link with range between [rmin, T^max] and IZ is the 

total flow volume passing through the link or originating from 

(terminating at) the node. 

Since the smallest flow in each of the "Small" and "Large" 

sub-TD always gives the largest noise-to-signal ratio, when the 

objective is to minimize the maximum noise-to-signal ratio en-

countered by any flow on the link, the optimization associated 

with Equation 4.5 can be solved by choosing fs such that 

NSR{rminJs) = NSR{fsJs) (4.8) 

where Tmin and fs are the respective volume of the smallest flow 

in the "Small" and "Large" sub-TD of the link. 

NSRiVmin, fs) = Ti{rmvn, /s)/”， 

and 

NSR{fsJs)=n{fs,rmax)/fs 

mm 
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are the corresponding noise-to-signal ratio experienced by these 

two flows in their corresponding sub-TD. As a result, the optimal 

splitting threshold fs in this case can be derived by solving the 

following equation: 

兄(Tmin, fs) 尺(/s， r̂ max J 
'^min fs 

Substituting Equation 4.7 into this, we have: 
r f s prmax A 

/ r • g{r)dr/rniin = I r • g{r)dr/fs 
^^Tmin J fs 

(4.9) 

(4.10) 

Optimal Splitting Threshold Under Different Individual Flow-volume 

Distributions 

In practice, ^(r), Tmin and Vmax can be estimated based on his-

torical measurements. As we will show via our simulation results 

in the later chapter, the value of the optimal splitting threshold 
A 

fs derived from Equation 4.9 is quite robust with respect to the 

exact details of g{r) as long as the overall shape of the distri-

bution is captured. This observation motivates us to derive the 

analytical expressions for fs by considering some common types 

of flow-volume distributions for g{r). In the following, we derive 

the analytical expression for the optimal splitting threshold fs 

for different types of flow-volume distribution including the Uni-

form, Gamma and Pareto distributions. In general, our scheme 

can be applied to any distributions. 
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(i) g{r) N Uniform Distribution 

Consider g{r) to follow a uniform distribution with range = 

^mini'^max By substituting g{r) into Equation 4.10, we have: 

{fs — '^min)^ _ (�max - A )尺 

(̂ max - rLJrmin — ( r ^ — J A 

And thus, fs should satisfy the following cubic equation: 
A 3 A 2 

fs + Tminfs — '^minfs — '^max^'rnin — • (4.11) 

The optimal splitting threshold is given by the only real-valued 

positive root of Equation 4.11. 

(ii) g{r)�Gamma Distribution 

When the volume of individual flows on a target link follows a 

Gamma distribution g{r) with the shape parameter k and scale 

parameter 6. By setting k = 1 (For demonstrating the equation 

clearly. In general, k can be any value.) and substitute g{r) 

into Equation 4.10 followed by some algebraic manipulation, the 

optimal splitting threshold fs can be obtained by numerically 

solving the following equation: 

e _寺 / / - e - ^ ( r m i n + 约 A + e—•(没 + 

+扣mine-4 - rmine'^^irmax + 6>) = 0 (4.12) 

(in) g{r)�Pareto Distribution 
I F^ 

For Pareto flow-volume distribution, g{r) = where k is the 
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shape parameter and Tmin is the scale parameter corresponding 

to the minimum volume of an individual flow commodity. By 

setting k = 2 (For demonstrating the closed-form expression 

of the optimal splitting threshold. In general, k can be any 

value.) and substitute g{r) into Equation 4.10 and solve the 

corresponding equation while considering the only real, positive 

root, we have: 

J _ '^max'^min — ^mm + + '^rnin ~ '^'^rnax'^^min (4 13) 

^'^max 

4.3.2 Minimizing R.M.S. Estimation Error 

Instead of minimizing the maximum estimation error across all 

commodity flows on a target link, an alternative is to minimize 

the corresponding surrogate root mean square error as defined 

by Equation 4.4. For Pu, according to the relationship between 

the estimation error and the noise-to-signal ratio as shown in 

Equation 3.5，under the "local-bottleneck" assumption, the op-
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timal TD-splitting problem can be formulated as: 

A 

fs = arp{min cirms} 
is 

=arg{mm 
fs 

=arg{mm 
fs 

> � M 
k=l 

NSR(r,,f,)/n} 

=arg{mm ^ NSR{rk, fs) (4.14) 

where NSR{rk, fs) is the same noise-to-signal ratio expression 

defined in Equation 4.6. 

Given the flow-volume distribution g{r) on the target link, 

NSR{rk, fs) can again be determined via Equation 4.6 and Equa-
/V 

tion 4.7. The corresponding optimal splitting threshold fs can 

then be expressed as: 

fs = arg{mmy^NSR{nJs)} 
fs 

k=] 

(4.15) 

r . � ffs l^iTmini fs) / � j , f 舰工"^(/s? '^max) / � j "M 
=arg{ mm / -g[r)dr + / -g[r)dr | 

了s Jrmin T J fs ^ 

where /2) are the same as those specified in Equation 4.7. 

For DATALITE, under the aforementioned "local-bottleneck" 
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assumption, the problem can be formulated as: 

A 

fs = arg{mm arms} (4.16) 
Js 

=arg{mm}_^NSR{nJsy} 

r . ffs l^iTmini fs)"^ / � j , f "^{fs^ '^max)'^ / � j 11 =cirg[ mm / ^ g[r)dr + / ^ g{r)dr } 
fs Jrmin r J f s ^ 

Unlike the case of minimizing maximum estimation error 

where the optimization problem can be transformed to a simple 

equation specified in Equation 4.10, there is no counterpart for 

Equation 4.10 in the case of minimizing rms estimation error. As 

a result, we often have to solve Equations 4.15 and 4.16 numer-

ically using line-search to determine the corresponding optimal 
A 

splitting threshold value fs even under typical distributions of 

4.4 Analysis of Estimation Error Reduction 

Via Single-Level TD-splitting 

In Equations 3.1 (Equation 3.2), we have already discussed that 

the standard error of Pu (as well as QMLE) is linearly propor-

tional to the square root of the noise-to-signal ratio of the flow 

while that of DATALITE is proportional to the square root of the 

noise-to-signal ratio as shown in Equation 3.3 . With the same 
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splitting threshold, the estimation error reduction would be dif-

ferent across different schemes. In the following, we first describe 

the reduction of the noise-to-signal ratio of various flow-volume 

distributions for cardinality estimation of 2-sets intersection and 

then analyze the error reduction via single-level TD-splitting. 

4.4.1 Noise-to-signal Ratio Reduction 

Suppose our monitoring point is located at node s, and we are 

interested in estimating the volume of flows originating from 

node d and terminating at node d. The corresponding noise-to-

signal ratio of the OD-flow at node s and node d for flows with 

flow-volume rk would be defined as: 

N S R s i n ) = — and NSRoiXk) = ^ 
n n 

where S and D are the set of packets originating from node s 

and terminating at node d respectively, r^ is the volume of the 

k-th flow of node s. We define the optimal splitting threshold at 

node s and node d as / f and f f , which are estimated by Equa-

tions 4.10 or 4.16 (4.15), respectively. The new noise-to-signal 

ratio of the flows at node s and node d after TD-splitting, de-

noted by NSB!sirkJs) and N w o u l d be obtained 
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by substituting ff and f^ to Equation 4.6，i.e. 

NSR's(rkjJ) (4.17) 

^max 
n 

� … � . • ) 办 . f j r r . g{r)dr^ if n > / f 

and 

' . 推 , i f r , < / f 
�min 

5P-tn-si0-nfll rpf.in rpHiiptinn fn^fnr I 

(4.18) 

rvj；‘ 
”min 

And hence, the noise-to-signal ratio reduction factor for flow 

with flow volume rk at node a, denoted by (r/^)，would be 

defined as 
NSRsin) 

7s{rk)= 
NSR'sivkjy) 

(4.19) 

=Ir：： r . 9{r)dr//£ T . g{T)dT, if n < / f 

1 IrZ 丫 • 9{r)dr/ f j r r . g{r)dr, if n > / f 

Similar to the noise-to-signal ratio reduction factor of node d, 

denoted by 加(jk), we can obtain a similar result. 

Based on Equation 4.19, we can see that the noise-to-signal 

ratio reduction factor only depends on the flow-volume distribu-

tion, minimum and maximum flow volume. Since it is difficult 

to express 75(r^) in closed-form, we compare the reduction fac-

tor numerically using various flow volume distributions, namely 
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NSR Reduction Factor 
Flow Volume Distribution 

n < fs Tk > fs 
Uniform 7.35 1.16 

Gamma (k = 4,0 = 3.5 > < 105) 4.95 1.25 

Pareto (k = 2’ rmin = 5 > < 105) 2.59 1.63 

Table 4.1: NSR reduction factor of various flow-volume distributions 

with Uniform, Gamma and Pareto distribution, which are used 

for performance evaluation in Chapter 6. Table 4.1 shows the 

noise-to-signal ratio reduction factor for the various cases at a 
八 

TD, where fs is the optimal splitting threshold. 

The single-level TD-splitting gives the greatest noise-to-signal 

ratio reduction factor with Uniform distributed flow-volume while 

it gives the least reduction factor with Pareto distributed flow-

volume for flows with flow volume less than the optimal splitting 

threshold. It gives the least noise-to-signal ratio reduction factor 

with Uniform distributed flow-volume while it gives the greatest 

reduction factor with Pareto distributed flow-volume for flows 

with flow volume less than the optimal splitting threshold. 

Here, we can see that the noise-to-signal ratio reduction fac-

tors are different across different flow volume distributions. In 

the next section, we will analyze the changing ratio of the es-

timation error across different TD-based TMA schemes after 
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TD-splitting is applied. 

4.4.2 Estimation Error Reduction 

Suppose the noise-to-signal ratio reduction factor for flows with 

flow volume less than the optimal splitting threshold in the local 

TD (at node s) and the remote TD (at node d) are 75(r^) and 

respectively, as shown in Equation 4.19. Since all the 

flows in the same sub-TD suffer the same noise-to-signal ratio 

reduction factor and splitting threshold, we drop the rk and / f 

(as well as F^) when we are referring NSRs and NSR'g {NSRD 

and NSR'jj) as well as 75 { jd ) in the following. According to 

our locally-optimal strategy stated in Section 4.1, we treat the 

noise-to-signal ratio at the remote node b before (NSRD) and 

after TD-splitting (NSR'j^) being constant and 7d = ^ f f g for 

some constant ^D-

Let ^p ,̂ ‘ M L E and《沉 be the changing ratio of the esti-

mation error after TD-splitting for cardinality estimation of 2-

sets intersection. We let az{S fl D) and cf'人S H D)’ for 2 ; = 

{PU, QMLE, DL}, be the standard estimation error of Pu, 

Q M L E and DATALITE before and after splitting respectively. Ac-
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c o r d i n g t o E q u a t i o n s 3.1, 3.2 and 3.3, w e have 

“ (4 .20) 

— 

= • ^ I . ^ N S R 丨s + NSR 丨D-1 

= 夫 • NSRD - 1 

— V 2 . yjNSR's + NSB!D — 1 

— V ^ S E s + NSRD - 1 _ 

= V ? ， i f NSRS » NSRD and NSR's » NSR'D 

= V?，IF NSRS « NSRD and NSR's « NSR'D 

= \/5，IF NSRS ^ NSRD a n d NSR's - NSR'D 

QMLE 
(4 .21) 

遍 ) 

� n D) 

_ \/2 . Y/NSR's + NSR'D - 2 

y/NSRs + NSRD — 2 

= V ? ， i f NSRS » NSRD and NSR's » NSH'D 

^ V I S ^ 二 V ? , IF NSRS « NSRD and NSR's « NSR 

々 乂 2 : 均 = i f NSRS ^ NSRD and NSR's - NSR 

D 

D 
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U (4.22) 
= 心 ( 如 巧 

—〜(如巧 

= 嘴 + 膽 w ) 
= ^ . [NSRs + NSRD — 1) 
— v ^ • {NSR!s + NSR'D - 1) 
= N S R s + NSRD - 1 ~ 

‘ 々 冗 : = 爱 ， i f NSRs » NSRD and NSR'g » NSR!d 

々 冗 ， i f NSRs « NSRD and NSR'S « NSR'D 

1 二 ， i f NSRs ~ NSRD and NSR'G ^ NSRD 

Prom the above equations, we can see that when the NSR 

of the remote node dominates that of the local node, the esti-

mation error reduction only depends on the NSR reduction of 

the remote node which is consistent to our local "bottleneck" 

assumption. Moreover, the relationship between the estimation 

error changing ratio and the NSR reduction ratio is as follow: 

V^ /2 
D̂L - � U , Q̂MLE - y - (4.23) 

for 7 either equal to 75 or JD which depends on the situations 

stated above. Similar to the flows with flow-volume larger than 

optimal splitting threshold, we can obtain the same results. 

From Equation 4.23, we can observe that the reduction in the 

estimation error of DATALITE after TD-splitting is greater than 

that of Pu and QMLE given the same NSR reduction factor 7 
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Estimation Error Changing Ratio 

Flow volume 
Distribution 

7 = NSR 
NSR' I^DL I^PU， ̂QMLB) 

N < Is Tk > fa Tk < fs n > fs n < fs n > fs 
Uniform 7.35 1.16 0.19 1.22 0.52 1.31 

Gamma 4.95 1.25 0.29 1.13 0.64 1.26 

Pareto 2.59 1.63 0.55 0.87 0.88 1.11 

Table 4.2: The changing ratio of the estimation error before and after split-

ting of various flow-volume distributions. (The distribution parameters of 

Gamma are /c = 4,0 = 3.5 x 10̂  and Pareto are k = 2, Tmin = 5 x 10 .̂) 

(using the optimal splitting threshold obtained by Equation 4.9) 

due to the characteristic of the estimation scheme. The estima-

tion error would only be reduced when the NSR reduction factor 

is larger than 2 for Pu and QMLE, i.e., 7 > 2 while the min-

imum NSR reduction factor of DATALITE for estimation error 

reduction is \J% i.e., 7 > \/2. Therefore, we can conclude that 

DATALITE takes greater benefit in estimation error reduction 

by applying TD-splitting scheme than Pu and QMLE under the 

same TD-splitting strategy. 

The comparison of the changing ratio? of the estimation er-
A 

ror before and after splitting with splitting threshold fs using 
2In general, the estimation errors of flows with flow volume greater than fg are just 

few percents and thus, the estimation errors are still small even though they are slightly 

increased. While the estimation errors of flows with flow volume smaller than fs are very 

large for DATALITE, they are greatly reduced. 
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various schemes is shown in Table 4.2. We can observe that 

the estimation errors can be reduced for flows with volume less 

than the optimal splitting threshold (i.e., < 1， 
A 

for Tk < fs) and the estimation error reduction of DATAL-

ITE using TD-splitting is greater than that of Pu (as well as 

QMLE). The estimation errors are increased for flows with vol-

ume greater than or equal to the optimal splitting threshold 
A 

(i.e., iDL,^PU,iQMLE > 1，for Tk > fs), except Pareto dis-

tributed flow-volume for DATALITE. Such increase in estimation 

errors, due to the dominated effect of the TD size reduction, for 

DATALITE is less than Pu (and QMLE). In conclusion, the esti-

mation error improvement for DATALITE is better than for Pu 

and QMLE which will be validated via simulations in Chapter 6. 

4.5 Recursive Splitting 

In Section 4.3，we have discussed the single-level TD-splitting 

scheme which reduces the noise-to-signal ratio by partitioning 

the flows according to the flow volume and map them into cor-

responding sub-TDs. However, in some cases, there are large 

numbers of tiny flows in a link/node and the noise-to-signal ra-

tios of the flows are still large even though the large and small 

flows are separated into two different sub-TDs. This motivates 
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us to recursively split the TD into even more equal-sized sub-

TDs, so that the flows are further separated into smaller groups. 

This is to further reduce the noise-to-signal ratio experienced by 

those mice flows. 

4.5.1 Minimizing Maximum Estimation Error 

By fixing the total memory size of the traffic digests on a par-

ticular link (node), we split a TD into 4 small pieces with equal 

memory size and the flows are assigned to 4 different sub-TDs 

according to 3 splitting thresholds. Similar to the formulation of 

single-level TD-splitting discussed in Section 4.3.1, we assume 

uniform loading of the node and links. And therefore, accord-

ing to Equation 4.8，we are going to minimize the NSR of the 

smallest flow in each sub-TD after splitting. 

We define 7Z as the total traffic volume passing through the 

link (node) and 7l{fiow, fup) be the total traffic volume of each 

sub-TD, as shown in Equation 4.7. The noise-to-signal ratio of 

the /c-th flow, NSR{rk, / i , /2，/a), are defined as, 

NSR、N,H,H,H~) (4.24) 

= 尺 ( � “ ) / ( r & < / i ) + ^ ^ / ( / i < r , < h ) 
n rk 

I 尺(•/2，/3) T( r ^ ^ ^ f \ 尺 ( / 3 , r m a a O Tf f z … z … \ 
H I{j2 <rk < h) H nj3 <rk< Tmax) 

Tk Tk 
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where [rmin̂  ^max]? gir) are the range and the distribution of the 

traffic volume of the participating flows respectively. I is the in-

dicator function; rk is the flow volume of the k-th flows, [fiow^ fup 

are the flow volume range of the flows which are mapped to the 

corresponding sub-TD. 

According to Equation 4.8 in Section 4.3, the NSR of the 

smallest flows in the 4 sub-TDs are minimized when their NSRs 

become equal. And so, the problem can be formulated as follows: 

NSR{rminJij2j3) = NSR^hAMs) 

N S R { r m i n J i j 2 j 3 ) = N S R � h J i , f2, (4.25) 

NSR{rminJij2j3) = NSRU3J1J2, fs) � 

where NSR{r^ / i , /2, /s) is defined in Equation 4.24，for r G 

'^min)�max. 

By re-arranging the terms, we have, 

= 0 

= 0 (4.26) 

= 0 
/N A 八 

By solving the above equations, the solutions ( / i , /2, fs) gives 

the optimal splitting thresholds which minimized the maximum 

estimation error of all the participating flows. 

T^irminJl) nfij2) 
'^min h 

T^irminJl) nh.h) 
m̂in /2 

T^{rminJl) 
'^min h 
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4.5.2 Minimizing R.M.S. Estimation Error 

Similar to the single-level TD-splitting algorithm, instead of 

minimizing the maximum upper bound of the estimation error, 

we also formulate our problem as minimizing the r.m.s. upper 

bound of the estimation error by varying different thresholds. 

To determine the optimal TD-splitting thresholds for Pu, 

similar to Equation 4.14, the problem can be formulated as: 
n 

min V7V5i?(r fc , / i , /2 , /3) (4.27) 
/l’/2’/3 

Given the flow-volume distribution g{r) on the link, the cor-
A A A 

responding optimal splitting thresholds ( / i , /2, /s) can be ex-

pressed as: 

ifuhJs) (4.28) 
n 

=arg{ min T NSR{rkJu f2j3)} 
/l，/2’/3 h i 

r . 「广1 njrminJl)(..丄厂力尺(/l,/2)(,, =arg{ mm / g{r)dr + / -———g{r)dr 
/l，/2,/3 Jrmin ^ J f l ^ 

+ 广 尺 ( / 3 ’ W ) ] } 

Jf2 r Jf^ r 

Similar to the formulation of single-level TD-splitting for 

DATALITE as shown in Equation 4.16, we assume the nodes 

and the links are uniformly loaded, the corresponding optimal 
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八 A 八 
splitting thresholds ( / i , /2, /S) of DATALITE can be expressed as: 

八 A A 

(/l,/2，/3) (4.29) 

=arg{ min > /i, A,/a)'} 
/l’/2，/3 ,“―： 

=arg{ min 
/l，/2，/3 

’ 阶 足 g 州 r 午 广 师 r 

‘y3 7^(/2，/3)2 

厂2 I 厂 2 

nin J Jl 

9{r)dr +广叫而歸⑷办]} 
Jf2 ” ‘ "3 广 

As a result, we can solve Equations 4.29 and 4.29 numerically 

using line-search [21] to obtain the optimal splitting thresholds 

by given any distribution g{r). 

• End of chapter. 



Chapter 5 

Realization of TD-splitting for 
Network Traffic Measurement 

In the previous chapter, we study how to determine optimal 

TD-splitting threshold for each traffic digest (of a link). In this 

chapter, we discuss how to realize the proposed TD-splitting 

scheme for network-wide traffic measurement and monitoring. 

As discussed in Chapter 4, Section 4.1, we take a loosely-

coupled, decentralized approach where the TD-splitting thresh-

old is determined on a per-digest (i.e., per-link) basis. In partic-

ular, the TD-splitting threshold value for a target link is updated 

periodically at the end of each measurement period, T, say ,= 

60 seconds, according to the estimated per-flow volume as well 

as overall traffic flow distribution on this link during the past 

measurement period. 
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Consider the case where a flow is defined by its origin and 

destination node-pair (OD-pair). Figure 5.1 depicts the pro-

cedure for applying TD-splitting on practical network. We can 

determine the mapping between OD-pairs and different sub-TDs 

associated with the target link according to the volume of each 

OD-pair and the TD-splitting threshold value based on the past 

measurement period (Step 1-2). After that, we use a Bloom fil-

ter (BFspiit) to remember the mapping (Step 3). In particular, 

BFsplit is described in Section 5.1.2. When a new measurement 

period begins, the TDs are split into different sub-TDs and the 

OD-pair of each incoming packet will be used to check against 

this flow-to-sub-TD mapping with BFgpHt to determine the sub-

TD that the packet should be hashed into (Step 4-5). After 

TD-splitting is applied, we also need to remember this flow-to-

sub-TD mapping by another B 议 to enable correct estimation 

of individual traffic volume at the end of the measurement pe-

riod (Step 6-7). 

In the following sections, we describe how to maintain the 

sub-TD membership mapping of individual flows using the Bloom 

filter [4, 5] data structure. We will also describe the overall 

procedure to apply the TD-splitting scheme for network traffic 

measurement in detail. 
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4. Split TDs into sub-TDs 
5. Hash packets into appropriate sub-TDs by 
checking BFsput 

6. Construct another BF�i让 to remember the new 
mapping 

7. Check the new BF^^m to select the 
appropriate sub-TDs for estimation 

1st Measurement Period 2nd Measurement Period 3rd Measurement Period 

1. After estimation, we obtain the flow-volume of different OD-pairs at the 
link, including g{r), rmin and r^ax 

2. Estimatie fs 
3. Construct BFsput to remember mapping between OD-pairs and sub-TDs 

Figure 5.1: Procedure for applying TD-splitting on practical network. 
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5.1 Tracking Sub-TD Membership 

5.1.1 Controlling the Noise due to Non-Existent Flows 

on a Target Link 

First, even though there is no packet passing through a target 

link for a particular OD-flow during a measurement period, the 

estimation of the intersection of the corresponding packet sets 

may still be non-zero due to the estimation error. Such small by 

non-zero noisy measurements are particularly problematic when 

we want to use the measurement results to determine network-

wide routing pattern of individual flows. To address this prob-

lem, we construct a Bloom filter (BFmon) to represent the set of 

OD-pairs hashed to the TD/sub-TD. For each incoming packet, 

we treat the OD-pair as an element of a set and add it to BFmon 

during the measurement period. At the end of the measurement 

period, BFmon will be broadcasted with the TDs to other nodes. 

We can then check the existence of the OD-pair in a TD before 

estimation. If the OD-pair exists in the TD, we do estimation; 

otherwise, we return zero for that OD-flow per link count. Since 

Bloom filter allows false positive, the non-zero link will still re-

turn estimation value. By applying this membership queries, 

we do not need to estimate all the combinations of the OD-pairs 
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and links, and hence, the estimation time is shortened. 

5.1.2 Sub-TD Membership Tracking for Single-level TD-

splitting 

Consider the single-level TD-splitting case where the TD of the 

target link is split into 2 sub-TDs and the packets are hashed 

to different sub-TDs according to their flow volume and the 

splitting thresholds obtained in the previous measurement pe-

riod. We construct a Bloom filter {BFsput) to represent the set 

of OD-pairs which are mapped to the large sub-TD and use 

the source and destination address of the incoming packets as 

the key for BFspiu to remember the set of the OD-pairs hashed 

to the large sub-TD in the current measurement period. Even 

though a Bloom filter may have false positive errors, i.e., OD-

pairs with small flow-volume got mapped by mistake to the large 

sub-TD, the noise-to-signal ratio (and thus, the flow-volume es-

timation error) of other flows in the large sub-TD would only 

be increased slightly. This also explains why we use the Bloom 

filter to track the membership of the large sub-TD rather than 

that of the small sub-TD: in the latter alternative, false positives 

due to Bloom filter will lead to the incorrect mapping of a large 

flow into the small sub-TD, resulting in significant increase of 
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estimation errors of the mice flows. 

5.1.3 Sub-TD Membership Tracking under Recursive 

Splitting 

For recursive TD-splitting, we further divide the flows into smaller 

groups and split the TDs into smaller sub-TDs. Therefore, more 

Bloom filters are needed. We construct num-Of subtd/2 Bloom 

filters to capture the membership information. For example, 

we split the TD into 4 sub-TDs and we only use 2 Bloom fil-

ters {BFA , BFB} to remember the mapping of the OD-pairs of 

the corresponding sub-TDs { T A , T Z ^ s , T D 4 } which are 

ordered by the flow volume, (i.e., the flow volume of the OD-

pair mapped to TDi are smaller than those in T D : and those 

in TD2 are smaller than those in TD^, and so on). The OD-

pairs existence results are shown in Table 5.1. If the OD-pair 

exists in both Bloom filter, the OD-pair belongs to TD4； if the 

OD-pair exists in BFA but not in BFB, it belongs to TD3； if the 

OD-pair exists in BFB but not in BFA, it belongs to TD2] other-

wise, it belongs to TDi. With this mapping scheme, only small 

flows are mapped to those sub-TDs with flow-volume larger than 

themselves due to the false positive error. For example, the OD-

pairs belongs to TDi may wrongly be mapped to TD<2, TD^ and 
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TD4 while the OD-pairs belongs to TD^ may only wrongly be 

mapped to TD4, etc. 

BFA BFb 
TDi Does Not Exist Does Not Exist 

TD2 Does Not Exist Exists 

TD, Exists Does Not Exist 

TD^ Exists Exists 

Table 5.1: Mapping of Bloom filters and the corresponding sub-TDs for 2-

level recursive TD-splitting 

Once the Bloom filters are defined for a link as described 

above, we can use them to track the OD-flows hashed to each TD 

and sub-TD as illustrated. In the next section, we describe the 

complete procedure of applying our TD-splitting with TD-based 

TMA scheme to provide network-wide traffic measurement. 

5.2 Overall Operations to support TD-splitting 

for Network-wide Traffic Measurements 

Figure 5.2 depicts the flowchart of applying TD-splitting to a 

TD-based TMA scheme to support network-wide traffic mea-

surement. In practice, we construct 2 TDs on each link for 

packets passing through in both directions and construct 2 TDs 

on each node for packets originating from and terminating at 



chapter 5. realization of td-splitting for network...68 

the node at the beginning of the measurement interval. During 

the first measurement period, since we do not have the mea-

surement history and the prior splitting threshold, we apply the 

original (non-TD-split) TMA scheme as described in Chapter 1 

and hash all incoming packets to a single TD and BFmon in order 

to capture the OD-pair members of the local TD. At the end of 

the measurement period, we distribute the TDs and BFmon to 

other nodes to obtain an initial estimation. For every measure-

ment period, we can then obtain the network-wide OD-flow per 

link count based on the cardinality estimation of the intersection 

sets using the TDs. 

With the network-wide traffic aggregates, we can estimate the 

distribution, minimum and maximum value of the flow volume 

for each TD and hence, the splitting thresholds can be calculated 

by the surrogate methods introduced in Chapter 4. Based on 

the splitting thresholds, we split the TD and construct BF'̂ i让 

to remember the OD-pair membership of each sub-TD (For re-

cursive splitting of TD into 4 pieces, = {BF'^^BF'^} as 

described above). 

Starting from the second measurement period, we hash the 

packets to the corresponding sub-TD by checking the member-

ship of BF'gpi-̂ . Since some of the OD-pairs may not exist in this 
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measurement period, we construct another Bloom filter, BFgput 

to remember the actual OD-pairs membership of the sub-TDs in 

order to reduce the false positive rate during estimation. At the 

end of the measurement period, we select the appropriate sub-

TD for estimation by checking the membership through BFmon 

and BFsplit. With the new traffic aggregates, we estimate the 

new splitting thresholds and re-initialize BF'̂ î-̂  for the next 

measurement period. 

5.2.1 Computation Time for TD-splitting 

At the end of each measurement period, the computation time 

needed for TD-splitting would be consisting of three different 

processes: (i) the time used for the single parameter line search 

21] for the optimal splitting threshold estimation; (ii) the time 

used for checking the existence of an OD-pair at the link or node 

for each OD-pair; and (iii) the time used for the sub-TD mem-

bership checking for the OD-pairs existed at the link/node. For a 

given precision requirement, the single-parameter line-search in 

(i) can be completed in constant time. To keep the false positive 

probability of the Bloom filters to be less than p = 0.6185—， 

the time-complexity of (ii) and (iii) are both dominated by the 

evaluation oi k = mlog 2/n hashes where m is the number of 
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Figure 5.2: Overall Procedure to apply TD-splitting scheme in practice 
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bits in the Bloom filter and n is the number of distinct OD-pairs 

present. In practice, k is typically chosen to be a small constant, 

e.g., < 10, by provisioning m with respect to n. 

• End of chapter. 



Chapter 6 

Performance Evaluation 

In this chapter, we present the simulation study of the proposed 

TD-splitting scheme for both generic and practical networks. 

We first demonstrate the validity and the superior estimation er-

ror performance of the proposed TD-splitting scheme. We then 

apply the proposed scheme on real traffic traces and topology of 

the Abilene Network [1 

6.1 Applying TD-splitting on Generic Net-

work Topology 

In this section, we construct a generic network with different 

flow-volume distributions to demonstrate the validity of our sur-

rogate optimization objectives introduced in Equation 4.3 and 

Equation 4.4 via simulation. We then compare the estimation 

72 
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error performance of optimal TD-splitting to that of the original 

DATALITE scheme, the Proportional Union Method proposed in 

8] and the Quasi-Likelihood Approach introduced in [7] by ex-

tending the latter to support OD-flows-per-link cardinality esti-

mation as described in Appendix A. 

6.1.1 Simulation Settings 

Consider a set of OD-commodity flows where commodity k orig-

inates from source node Sk�terminates at different destination 

node Dk, and passes through link L with flow volume rk, for 

k G [l,n], as illustrated in Figure 6.1. Each node (or link) 

also contains cross-traffic of other commodities (shown as dashed 

lines in Figure 6.1) with same traffic volume distribution as link 

L such that the total flow volume of each node/link is the same. 

This also results in the same noise-to-signal ratio for each com-

modity as it passes through different nodes. In the experiment, 

we estimate the traffic volume of the flow which passes through 

link L within each measurement period using different estima-

tion schemes. To demonstrate the compatibility of our surrogate 

methods to different distributions, we evaluate the performance 

of TD-splitting under Uniform, Gamma and Pareto flow vol-

ume distributions. To ensure the loading of each traffic digest 
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Figure 6.1: Flow pattern configuration for simulations 

to be sufficiently high [6], we generate the total traffic volume 

of nodes/links to be around 8.2 x 10̂  (packets per measurement 

interval) with individual flow volume ranges between [1 x 10 ,̂ 

4 X 1 0 % [2 X 105，4.1 X 106] and [5 x lO^, 1 x 10^] packets per 

measurement interval for Uniform Distribution, Gamma Distri-

bution with k = 4 and 6 = 3.5 x 10̂  and Pareto Distribution with 

k = 2 respectively. In the following, we first show the validity of 

the proposed surrogate objective functions and then we show the 

estimation error across different flow-volume distribution under 

Single-level and 2-level recursive splitting. 

We use m = buckets and allocate 5 bits per bucket for 

DATALITE, and thus the memory size would be 640 KBytes, 
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which is sufficient to measure upto packets per observation 

interval. Following the guidelines in [8], we set m = buckets 

and allocate 15 bits per bucket, and thus the memory size would 

be 960 KBytes for the Pu and QMLE to yield comparable total 

memory requirement among all the schemes. 

For any given set of parameters (i.e., estimation scheme, ob-

jective function and flow-volume distribution), we repeat the 

simulation experiment for 10 times with different seeds and com-

pute the root mean square relative error of flow volume estimate 

for each flow across the 10 experiments as follows: 

RMS RE = 
10 

10 

^ {percentage.errort)' 
t=i 

where percentage .err or t is defined as the percentage error of the 

estimation during the t-th trial. 

6.1.2 Validity of the Proposed Surrogate Objective Func-

tions 

In this section, we demonstrate the validity of our surrogate opti-

mization objectives introduced in Equation 4.3 and Equation 4.4 

via simulation. By varying the value of splitting threshold, the 3 

panels of Figure 6.2 plot the corresponding value of Gmax {cFrms) 

computed from Equation 4.3 (4.4) and compare it to its em-
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pirical RMSRE counterpart under the same splitting threshold 

value for the cases of Uniform, Gamma and Pareto flow-volume 

distributions. In particular, Figure 6.2 shows that the optimal 

splitting threshold value obtained via the minimization of these 

two surrogate objective functions also minimize the maximum 

(as well as r.m.s.) empirical RMSRE {smax and Crms) across all 

the participating flows under various flow-volume distributions 

for DATALITE. For example, with Uniform flow-volume distri-

bution in Figure 6.2a, the minimum value of both of the com-

puted and empirical maximum (as well as r.m.s.) error curves 

is achieved by setting fs to 1.2 x 10® and 1.5 x 10® (packets per 

measurement interval) respectively. For Gamma flow-volume 

distribution, Figure 6.2b shows that a value of fs = 10® (pack-

ets per measurement interval) can minimize both the computed 

and empirical maximum errors while fs = 1.2 X 10^ (packets 

per measurement interval) would minimize both the computed 

and empirical r.m.s. errors. For Pareto flow-volume distribution 

in Figure 6.2c, the minimum value of computed and empirical 

maximum (as well as r.m.s.) error curves is achieved by set-

ting fs to 7.9 X 106 (9 X 106) (packets per measurement inter-

val). Note also that the optimal splitting threshold values under 

Uniform and Gamma flow distributions are very close to each 
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other, which suggests that a rough estimation of g(r) would al-

ready serve well for the purpose of determining a near-optimal 

splitting threshold value. 

The figures also demonstrate that the splitting threshold is 

insensitive to the estimation error. By varying the splitting 

threshold, the maximum (as well as r.m.s.) estimation error 

of all the participating flows is increased slightly for Uniform 

and Gamma distributed flow-volume. Therefore, it also sug-

gests that a rough estimation of g(r) can help us to determine 

a near-optimal splitting threshold value. 

6.1.3 Performance of Single-level TD-splitting 

In this section, we compare the estimation error of different flow-

volume estimation schemes including the original DATALITE, 

Pu and QMLE schemes and a basic single-level TD-splitting for 

all schemes (i.e., 2 equal-sized sub-TDs per monitoring point). 

Since the memory size of Pu (as well as QMLE) is 器 = 1 . 5 

times of DATALITE, due to the different of the bucket size, we 

scale the estimation error of DATALITE by ^ 0.8165 in 

order to provide a fair comparison between the schemes. Fig-

ure 6.3 and 6.4 shows the empirical error (of Pu) and scaled 

empirical RMSRE (of DATALITE) of different flows at a link 
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Figure 6.2: Comparison between the calculated cJmax {^rms) and the empirical 

estimation error. (Cont'd) 

with different traffic volume distribution. The optimal splitting 

thresholds are obtained by minimizing arms which are 1.6 x 10 ,̂ 

1.3 X 106 and 7.9 x 10̂  (1.5 x 106’ 10̂  and 7.9 x 10^) (packets 

per measurement interval) for Uniform, Gamma and Pareto dis-

tributed flow-volume using Pu (DATALITE) respectively. The 

figure shows the substantial improvement in estimation error of 

the flows with small flow-volume for both Pu and DATALITE 

after single-level TD-splitting (dot-dashed line) and the estima-

tion errors of flows with large flow-volume are close to or slightly 

larger than the estimation error of original scheme. 
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Figure 6.5 compares the estimation error of DATALITE using 

single-level TD-splitting to the original Pu and QMLE schemes. 

Since the estimation error curves of single-level TD-splitting 

of Pu and QMLE are closely clutter with that of the original 

scheme, we exclude them from the figure for clarity. Refer to 

Table 6.1 for the estimation results. 

The figure shows that Pu (dashed line) and QMLE (thin solid 

line) are very close to each other and always achieve smaller 

estimation error than the original DATALITE. The single-level 

TD-splitting scheme for DATALITE performs better than QMLE 

for small traffic flows and vice versa for large flows. 

This is due to the significant reduction of the noise-to-signal 

ratios for small flows while the corresponding noise-to-signal re-

duction of large flows cannot outweigh the impact of reduction 

of memory size for the large-flow sub-TD as described in Sec-

tion 4.4.2. Table 6.1 compares the r.m.s. error across all the par-

ticipating flows under various estimation schemes. The single-

level TD-splitting scheme reduce the r.m.s. estimation error of 

the original DATALITE by about 40-60% while Pu and QMLE are 

only reduced by 10-20%. However, QMLE still gives the smallest 

r.m.s. estimation error comparing to all other schemes. 
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Figure 6.3: Performance comparison between different TD-splitting for Pu. 
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Figure 6.3: Performance comparison between different TD-splitting for Pu. 
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Figure 6.4: Performance comparison between different TD-splitting for 

DATALITE. 
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Figure 6.4: Performance comparison between different TD-splitting for Pu. 
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Figure 6.5: RMS RE of different estimation schemes under various flow vol-

ume distributions with traffic digests size 960 KBytes. 
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Traffic Volume 
Distribution 

R.M.S. Estimation Error 

Original Single-level Split 2-level Split 

Uniform 8.99% 2.72% 1.56% 

Gamma 5.80% 3.37% 2.57% 

Pareto 7.98% 3.91% 2.42% 

( a ) DATALITE 

Traffic Volume R.M.S. Estimation Error 
Distribution Original Single-level Split 2-level Split 

Uniform 2.29% 1.63% 1.60% 

Gamma 2.12% 2.11% 2.27% 

Pareto 2.40% 2.14% 2.06% 

(b) Pu 

Traffic Volume R.M.S. Estimation Error 
Distribution Original Single-level Split 2-level Split 

Uniform 1.93% 1.61% 1.39% 

Gamma 1.87% 2.04% 1.95% 

Pareto 2.12% 1.86% 1.62% 

( c ) Q M L E 

Table 6.1: Comparison of empirical root-mean-square relative error across 

all the participating flows by applying TD-splitting (using minimizing r.m.s. 

estimation error objective) to different TD-based TMA scheme. 
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6.1.4 Performance of Recursive TD-splitting 

To further improve the performance of estimation, we perform 

recursive splitting of the overall TD memory pool into equal-

sized sub-TDs. For the case of 2-level recursive TD-splitting, it 

results in 4 equal-sized sub-TDs where the number of buckets per 

sub-TD becomes m = for DATALITE and m = for Pu and 

QMLE. We can then partition the flows by calculating the cor-

responding optimal splitting thresholds recursively. Figures 6.3 

and 6.4 show that the estimation errors of flows with small flow-

volume (solid line) are further reduced for both Pu and DATAL-

ITE. Figure 6.6 compares the error performance of the 2-level 

recursive TD-splitting (using minimization of r.m.s. error as the 

objective function) with Pu and the QMLE scheme. As shown in 

the figure, the estimation error for large flows are very close un-

der 2-level recursive TD-splitting of DATALITE (thick solid line) 

or Pu (dashed line) (as well as QMLE (thin solid line)) while the 

former achieves much smaller estimation errors for small flows 

under Uniform Distribution. 

The r.m.s. estimation error across all the participating flows 

are shown in Table 6.1. The r.m.s. estimation error of DATALITE 

is reduced by 80% after using 2-level recursive TD-splitting for 

Uniform distributed flow-volume. In other words, the 2-level re-
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cursive TD-splitting of DATALITE outperforms the state-of-the-

art QMLE scheme [7] by about 20% in terms of r.m.s. relative 

estimation error in this case. The 2-level recursive TD-splitting 

also reduce the r.m.s. estimation of DATALITE by 55% and 70% 

for Gamma and Pareto distributed flow volume. 

For Pu and QMLE, the improvement in r.m.s. estimation 

error seems to be less significant. In particular, the 2-level re-

cursive TD-splitting only reduces the r.m.s. estimation error of 

Pu by 27% and 14% for Uniform and Pareto distributed flow-

volume while it reduces the r.m.s. estimation error of QMLE by 

28% and 31% for Uniform and Pareto distributed flow-volume 

respectively. Although the estimation error reduction seems to 

be less significant, this can be translated to substantial decrease 

in memory by keeping the same relative estimation error. In 

particular, according to Equations 2.7 and 2.14，by keeping the 

same estimation error, the memory size of the TD can be re-

duced to (1 — 0.27)2 0.53 (53%) and (1 - 0.14)2 _ o.74 (74%) 

of the original memory size for Pu with Uniform and Pareto dis-

tributed flow-volume; and for QMLE, the memory requirement 

of the TD can be reduced to 52% and 48% of the original require-

ment for Uniform and Pareto distributed flow-volume which is 

approximately half of the original memory. However, in Gamma 
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distributed flow-volume situation, the r.m.s. estimation errors 

of both schemes are slightly increased. 

In practice, we are more concerned about the large estima-

tion errors across all the participating flows rather than the 

average one. We compare the 95-th percentile of the estima-

tion error across all the participating flows in different cases as 

shown in Table 6.2. Similar to the r.m.s. estimation error, the 

TD-splitting scheme results in the largest benefit for DATAL-

ITE. The 2-level recursive splitting reduces the 95-th percentile 

estimation error of DATALITE by 86%, 53% and 59% for Uni-

form, Gamma and Pareto distributed flow-volume respectively. 

For Pu (and QMLE), the 95-th percentile estimation error is 

reduced by 58% (40%) and 17% (25%) for Uniform and Pareto 

distributed flow-volume respectively. It validates our analysis in 

Section 4.4.2 that the TD-splitting gives better estimation er-

ror improvement for DATALITE than Pu and QMLE due to the 

estimation error characteristics of the scheme. 

Table 6.3 shows the root-mean-square and 95-th percentile 

estimation error across all the participating flows in different 

flow-volume distribution using minimizing amax be the objective 

for optimal splitting threshold estimation. The single-level TD-

splitting reduces the r.m.s. estimation error of DATALITE about 
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Traffic Volume 95-th Percentile Estimation Error 
Distribution Original Single-level Split 2-level Split 

Uniform 15.61% 4.16% 2.17% 

Gamma 8.36% 4.83% 3.97% 

Pareto 11.02% 6.39% 4.55% 

( a ) DATALITE 

Traffic Volume 95-th Percentile Estimation Error 
Distribution 

Original Single-level Split 2-level Split 

Uniform 3.86% 2.24% 2.17% 

Gamma 2.69% 3.10% 2.41% 

Pareto 3.69% 2.84% 2.71% 

(b) Pu 

Traffic Volume 
Distribution 

95-th Percentile Estimation Error 

Original Single-level Split 2-level Split 

Uniform 3.67% 2.19% 2.21% 

Gamma 2.75% 2.89% 2.99% 

Pareto 3.00% 2.67% 2.26% 

( c ) Q M L E 

Table 6.2: Comparison of empirical 95-th percentile relative error across all 

the participating flows by applying TD-splitting (using minimizing r.m.s. 

estimation error objective) to different TD-based TMA scheme. 
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40-70% while the 2-level TD-splitting reduces the r.m.s. esti-

mation error of DATALITE 57-80% . For Pu, the r.m.s. estima-

tion errors are reduced by 11-25% using single-level TD-splitting 

while the 2-level TD-splitting reduces the r.m.s. estimation error 

about 16-27%. The estimation error reduction across different 

schemes are similar to those using minimizing r.m.s. objectives 

for optimal splitting threshold estimation. 

Traffic Volume 
Distribution 

Uniform 

Gamma 

R.M.S. [95-th Percentile] Estimation Error 

Original Single-level Split 2-level Split 

8.99% [15.61%! 2.83% [5.63%] 1.63% [2.65% 

5.80% [8.36%1 3.58% 

Pareto 7.98% [11.02%] 3.91% 

(a ) DATALITE 

5.55%1 2.47% [3.60% 

6.39%1 2.43% [3.67% 

Traffic Volume R.M.S. [95-th Percentile] Estimation Error 
Distribution Original Single-level Split 2-level Split 

Uniform 2 . 2 9 % [5.31%； 1 .71% [2.35%； 1.69% [2.49%] 

Gamma 2 . 0 2 % [3.04%； 2.14% [3.10%: 1 .92% [2.85%； 

Pareto 2.42% [3.25% 2.15% [2.84%] 2.01% [2.71%] 

(b) Pu 

Table 6.3: Comparison of empirical root-mean-square and 95-th percentile 

relative error across all the participating flows by applying TD-splitting (us-

ing minimize maximum estimation error objective) to different TD-based 

TMA scheme. 
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6.1.5 Heterogeneous NSR Loading 

In this section, we demonstrate the estimation error performance 

of different schemes under heterogeneous NSR loading, which 

the flow-volume distribution at the link/nodes are different, and 

thus the total flow-volumes are also different for different nodes 

and link. Therefore, the NSRs experienced by the flows at dif-

ferent nodes or link are different. 

Figure 6.7 compares the error performance of the single-level 

TD-splitting (using minimization of r.m.s. error as the objec-

tive function) with Pu scheme for heterogeneous NSR loading 

network. In Figure 6.7, the estimation error for small flows 

are greatly reduced under single-level TD-splitting of DATALITE 

(thick solid line) or Pu (dashed line) while the former achieves 

much smaller estimation errors for small flows under Uniform 

Distribution. 

The r.m.s. and the 95-th percentile estimation error across 

all the participating flows are shown in Table 6.4. The r.m.s. es-

timation error of DATALITE is reduced by 72%, 62%, 65% after 

using single-level TD-splitting for Uniform, Gamma and Pareto 

distributed flow-volume respectively. For Pu, the reduction in 

r.m.s. estimation error is about 40%, 47% and 49%. The 95-th 

percentile estimation error of DATALITE is reduced from 62% to 



chapter 6. performance evaluation 96 

77% while that of Pu is reduced from 40% to 48% across dif-

ferent distributions. We show that our TD-splitting can reduce 

the estimation error of different flows in a heterogeneous NSR 

loading topology from 40% to 72% using different estimation 

schemes under single-level TD-splitting. 

Traffic Volume R.M.S. [95-th percentile] Estimation Error 
Distribution 

Original Single-level Split 

Uniform 8 .85% [13.36%； 2.51% [3.05%: 

Gamma 5.32% [8.25%； 2 .01% [3.17%； 

Pareto 7.01% [10.93%] 

( a ) DATALITE 

2.42% [3.55% 

Traffic Volume R.M.S. [95-th percentile] Estimation Error 
Distribution Original Single-level Split 

Uniform 3.78% [4.90%] 2 .27% [3.36%； 

Gamma 3.07% [4.53% 1.64% [1.97%] 

Pareto 3.46% [5.14%； 

(b) Pu 

1.77% [2.92% 

Table 6.4: Comparison of empirical r.m.s. and 95-th percentile relative error 

across all the participating flows by applying single-level TD-splitting to dif-

ferent TD-based TMA scheme under Heterogeneous NSR Loading Topology. 
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DATALITE 
PU 
DATALITE - Split 
PU - Split 

2 4 6 8 10 
Traffic Volume of the flow (packet/measurement period) 

(b) Gamma Distribution 

12 
10" 

Figure 6.7: RMS RE of the participating flows under various flow volume 

distributions in Heterogeneous NSR Loading using DATALITE and Pu with 

traffic digests size 960 KBytes. 
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Figure 6.7: RMSRE of the participating flows under various flow volume 

distributions in Heterogeneous NSR Loading using DATALITE and Pu with 

traffic digests size 960 KBytes. (Cont'd) 
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6.2 Internet Trace Evaluation 

We also evaluate our proposed scheme using a traffic matrix col-

lected from the core network of the Abilene Network [1]，which 

we obtained from [2]. In the network, there are 12 nodes and 

30 links. For each commodity (noted as 1 OD-pair), there is 

only one single path from the source node to the destination 

node without looping. There are, in total, 620 OD-flow per link 

counts which are non-zero, and their traffic volume are follows 

a heavy-tail distribution and span a wide range = [10 ,̂ 2 x 10̂ " 

packets per measurement interval. The traffic volume of each 

flow varies across different measurement period, and hence, the 

NSR of each flow changes for different measurement period. 

The data includes the traffic volume in bytes of each OD-pair 

for every 5 minutes. Based on this information, we derive the 

traffic volume (packet count) by assuming all the packets in the 

same length and scaling up the value such that the loading factor 

of the estimator is enough for unbiased estimation [6], which we 

use as ground truth. 

Since there is no flow or packet level information from the 

data as the input content to our algorithms, therefore we use 

the output of a uniform random number generator as the packet 

identifier. For each OD-pair, we assign the packets to the TDs 



chapter 6. performance evaluation 100 

according to its path until the total number of packets for that 

OD-pair reached the corresponding value obtained from the traf-

fic matrix. 

6.2.1 Simulation Results 

To measure the OD-flow per link count of the Abilene Network, 

we setup 40 KBytes memory (array size of m = for DATAL-

ITE and setup 60 KBytes memory (array size of m = for 

Pu and QMLE to store the traffic digests and measure the traffic 

from mid-night to 1 a.m. on Match, 2004 for every 5 min-

utes. At time = 0, we use the original scheme to take an initial 

measurement for the OD-flow per link count and estimate the 

optimal splitting threshold based on this measurement. To pro-

vide fair comparison, we scale the estimation error of DATALITE 

by 1 / y ^ ~ ^ ^ 0.8165 to compensate for the larger memory 

advantage of Pu (and QMLE). Figure 6.8 shows how the esti-

mation errors of each measurement interval varies during this 1 

hour period. TD-splitting is applied starting from the second 

measurement period (at 12:05 a.m.). (Since there are marginal 

improvement for Pu and QMLE after applying TD-splitting, we 

exclude the curves from the figure.) After applying TD-splitting, 

the r.m.s. estimation error of DATALITE (thick solid line) across 
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all flows is reduced to around 30% of the non-splitting version. 

The resultant estimation errors are close to the non-splitting ver-

sion of Pu and also QMLE. Figure 6.9 compares the quantiles 

of the relative estimation errors of different schemes at the sec-

ond measurement period: the three vertical lines are the 75%, 

90% and 99% quantiles of the estimation. The 75% and 90% 

quantiles for the relative errors of the original DATALITE is 9% 

(0.09) and 25% (0.25) respectively while those of single-level 

TD-splitting for DATALITE is dropped to 5% (0.05) and 9% 

(0.09) which is slightly less than the estimation errors of the 

original Pu and QMLE schemes. This demonstrates the esti-

mation for each measurement interval of applying the proposed 

TD-splitting scheme to practical network. 

Table 6.5 shows the r.m.s. estimation error across all the mea-

surement over all the measurement period (excluding the first 

measurement period). The r.m.s. estimation error of DATAL-

ITE is reduced by 76% while that of Pu and QMLE are re-

duced by 29% and 8% respectively after applying single-level 

TD-splitting. The 95-th percentile estimation error of DATAL-

ITE also reduced by 80% while there is just slightly reduction 

for Pu and QMLE which is around 30% and 20%. 
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DATALITE 
- - P U 

QMLE 
DATALITE - Split 

12:00 12:10 12:20 12:30 12:40 
Time (a.m.) 

12:50 :00 

Figure 6.8: R.M.S. estimation error across all the flows in Abilene Network 

using various measurement schemes at different time 

TMA Scheme 

R.M.S. 

Orî  

95-th percentile] Estimation Error 

?inal Single-level Split 

DATALITE 29.38% 72.12% 6 .93% [13.09%； 

Pu 7.85% 16.93% 5.57% [11.60%] 

QMLE 7.01% 14.62%； 6.43% [11.66%] 

Table 6.5: Comparison of the estimation error after applying single-level 

TD-splitting to different TD-based TMA scheme in Abilene Network 
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Figure 6.9: Error distributions amongst different measurement schemes at 

12:05 a.m.. The vertical lines represents the 75%, 90% and 99% quantiles of 

the relative estimation error and the horizontal lines represent the relative 

estimation errors equal 0.05，0.09, 0.26 and 0.33 
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• End of chapter. 



Chapter 

Conclusion 

In this thesis, we have proposed a traffic digest splitting ap-

proach to enhance TD-based TMA schemes by partitioning the 

flows carried by a link into different sub-TDs. By avoiding the 

mixing of "mice" and "elephant" flows in a single traffic digest, 

we can significantly reduce the “noise-to-signal，，ratio experi-

enced by the smaller flows. Such reduction in "noise-to-signal" 

ratio is more than enough to offset the negative effect on estima-

tion error caused by reduction in TD memory size for each sub-

group. Based on this TD-splitting approach, we have derived 

analytical expressions for the optimal splitting threshold which 

minimizes the resultant maximum (or r.m.s.) relative error of 

the flows sharing a link under various flow volume distributions. 

Our analysis shows that the estimation error improvement de-

pends on the estimation error characteristics of the specific TMA 

105 



chapter 7. conclusion 106 

scheme and the traffic flow-volume distribution. Simulation re-

sults show that our proposed scheme can significantly reduce the 

estimation error in most cases. 

In particular, 2-level recursive TD-splitting of DATALITE re-

duces the r.m.s. estimation error by on average 80% which also 

outperforms the QMLE scheme by 20%. Although the benefits 

of applying the 2-level recursive TD-splitting to Pu and QMLE 

seem to be less significant, due to the small estimation errors of 

these two schemes, we can still halve the memory size require-

ment of the TDs while keeping the same estimation error after 

applying 2-level recursive TD-splitting. 

• End of chapter. 



Appendix A 

Extension of QMLE for 
Cardinality Estimation of 3-sets 
Intersection 

To provide network-wide OD-flows per link count estimation, we 

further extend QMLE by deriving the set expressions over three 

packet sets as follows. We let Yi, for z = 1,2,3 to represent the 

traffic digests of 3 sets of packets, 5, D and L, where packet set 

S, D and L are the same as those described in Section 2.2.1 for 

DATALITE. Let 八丄，八2,八3, Ai2, A23,八31 and fx be the average 

number of packets/bye count per bucket of the traffic digests for 

packet set 5, D, L, 5 n D, D n L, 5 n L, 5 n D n L. Ai, A2, 

八3’ Ai2, A23, and 八31 can be estimated using Equations 2 .10 and 

2.13, by estimating the cardinality of the corresponding packet 

107 
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sets divided by m. 

Here, we further let X, X i , X2, X3, X12, X23, X31, be the un-

observed traffic digests of the packet sets SHDHL, S\{D U L), 

D\{S U L), L\{S U D), {S n Dy\L, {D fl L)\S and (S n L)\L>， 

generated by Algorithm 3, as illustrated in Figure A.l. And 

then, we have 

Yi = min(X,义“ Xij^Xu) 

where i = 1,2,3 and ij, li G {12，23,31}. 

L 

(A.l) 

-X 

D 
Figure A.l : Set expression of 3 sets intersection 

According to Lemma 1 in [7], X , X i ， A 2 , 而 ， ^ 2 3 , 知 can 
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be approximated by Pareto distribution, i.e., 

X = Pareto(a,P), Xi = Pareto{ai,P) 

Xij = Pareto(aij^f5) 

where ajS, a ip , a?/?, as/?, a^P, OL2ZP and OL^IP are the average 

number of packets/byte count per bucket of packet set 5 n D n L , 

S\{D U L), D\{S U L), L\[S U D), (5 n D)\L, {D n L)\S and 

{S n L)\D respectively, i.e., 

^ ⑦ 一 八 i - A i 广 八 + " and a -=八。.““ p) — ^ anci aij — � 

for i = 1,2,3, ij, li e {12，23，31}，where ij + li. 

And thus, the quasi-probability function PQ{YI > > 

2/2,̂ 3̂ > 2/3) can be obtained by the following: 

PqiYi > yuy2 > y2.y3 > y^) 

=PQ{X > MAX{YI,Y2,Y3),XI2 > MAA:(YI,2/2), 

•X23 > rnax{y2,y3),Xsi > ma工iVhrn), 

> yi,X<2 > y2,X3 > yz) 

= ( 1 + Pmax{yuy2, + pmax{yuy2))"" ' ' 

(1 + Pmax{y2,y3)y ' ' ' ' { l + pmaxiyuys)) ' ' ' ' ' 

( 1 + / 3 2 / 1 ) - " 1 ( 1 + / 3 2 / 2 )一"2( 1 + / ?奶) -《 3 

The quasi-density function, PQ{YI 二 YI,^! 二 " 2 , = 奶 ) : 
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can be derived into 13 cases as follows: 

Case 1 (yi > 7/2 > 2/3)： 

(a + ai + ai2 + a3i)(a2 + a23)a3j3^(l + («^"�i2+a3i+ai+i) 

(1 + + + 购+ 1) 

Case 2 (y^ > > 7/2)： 

0 + ai + ai2 + Q3l)(a3 + «23)0；2/5̂ (1 + 
(1 + (购+1)(1 + 一 (购+吻+1) 

Case 3 (2/2 > Pi > y^): 

(a + a2 + ai2 + Q;23)(ai + + 购+幻 i+i) 

(1 + 一 (时釣+吻+吻+i)(l + 一 (""3+1) 

Case 4 (7/2 > 2/3 > 2/1)： 

(a + a2 + ai2 + + a3i)ai 沪(1 + 

(1 + 一(时"2+0：12+0：23 + 1)(1 + + 

Case 5 {y^ > > y^): 

(Q̂  + a3 + a23 + a3i)(ai + ^12)^2/^^(1 + /?2/i)-(�i+叫 2+1) 

(1 + ( � 2 + i ) ( l + 

Case 6 (奶 > y2 > m): 

(a + a3 + a23 + asi){a2 + ai2)aiP^l + A / i )—(�+” 
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Case 7 (yi > y2 = m): 

(a + ai + ai2 + a3i)Q:23/?^(l + 

(1 + 一 (奶 

Case 8 (2/2 > ys = yi): 

(a + a2 + ai2 + 0:23)0̂ 31/̂ 2(1 + 

(1 + + 

Case 9 (2/3 > Vi = 2/2): 

(a + 0:3 + ^23 + ^31)^12/32(1 + 

( 1 + / ^ 2 / 2 ) 一 ( 以 + " 3 + " 2 3 + 0 ； 3 1 + 1 ) 

Case 10 {yi = V2 = Vs)' 

Case 11 {yi = 2/2 > 2/3): 

Case 12 (2/2 = Vs > Vi)'-
(a + a23)ai"2(l + + 奶)++灼 

Case 13 (ya = Vi > WiY. 

(a + + 购+i)(l + /^y�)—(奸“1+均+叱+咖+如 

Define F / = y}/(Yj‘ < 00)，for j = 1 , 2 , 3 , where I is the 

indicator function. Let Lq丄fi, /3�be the quasi-log-likelihood of 

(iU, p) for (yi,y2, Y3) and it is expressed as 

= -ii:T=ilog{PQ{Y{[i] = = = 2/3,i)} 

where yi�i, y2’i and 取i are the empirical value of the 2-th bucket 
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of TD Yi*, ¥2* and Ŷ * respectively. 

The QMLE estimate juq^ of fi can be obtained by the solution 

of the following optimization problem 

(MQ3，/̂Q3) = argm^LQ3(/i,^) (A.2) 

for II > h^ij + 八zi - hi and [i < Ajj, for 二 1,2,3, ij, U = 

{12,23,31}, i^j^l, ij + li and p � 0 . 

• End of chapter. 
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