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Abstract 

Liver biopsy is a gold standard for detecting liver fibrosis. However, it is 

invasive and subject to sampling error. Non-invasive predictors are therefore urgently 

needed. Surface-enhanced laser desorption/ionization (SELDI) Proteinchip technology 

is a useful tool for biomarker discovery. Nevertheless, the main drawback is its 

incapability of obtaining protein identity of a biomarker. The aims of the study were to 

establish an automated magnetic bead-based proteomic profiling technology, and to 

identify proteomic markers for detecting liver fibrosis in patients with chronic.hepatitis 

B virus (HBV) infection using the established technology. 

We successfully established an automated magnetic bead-based technology for 

high-throughput quantitative serum profiling, which can greatly reduce batch to batch 

variation and increase reproducibility. The intra-assay and inter-assay coefficients of 

variation (CV) of the quantitative proteomic profiling assay were evaluated to be less 

than 30%. It allowed simultaneous analytic profiling and obtaining preparative 

proteome fractions for subsequent protein identification experiments. 

In the 2nd of the study, the established automated proteomic profiling 

technology was applied to analyze 214 treatment-naive and post treatment chronic HBV 

infected patients with different degrees of liver fibrosis (Ishak score 0-6). Quantitative 

proteomic profiling was obtained by using CI8 hydrophobic magnetic beads and strong anion 

exchange (SAX) beads and analyzed by Matrix-Assisted Laser Desorption/ionization 

Time-of-Flight Mass Spectrometry (MALDI-TOF MS). Linear regression method (forward 

stepwise) was used to develop a diagnostic model for predicting the degrees of liver fibrosis 

from the serum proteomic profiles, clinical data, serological data, and biochemical data. 

Pre-treatment samples were used to develop diagnostic model. 4 proteomic features, platelet 

count, HBV DNA, bilirubin and prothrombin time were found to be associated with the degrees 

of liver fibrosis. By linear regression method (forward stepwise), two proteomic features {m/z 
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9，165 and m/z 12,443) and prothrombin time was included in the diagnostic model. Post-

treatment samples were used for independent validation. In the independent validation, the 

AUROC curve was 0.750 (76% sensitivity, 79% specificity), m/z 9,165 proteomic feature was 

identified as apolipoprotein C-III. 

In conclusion, serum proteomic fingerprint is a good non-invasive method to 

supplement liver biopsy for assessment of liver fibrosis, regardless of treatment status. 
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摘要 

肝臟切片檢查是偵查肝臟纖維化的標準方法。然而，它是侵入性的和其準 

確性受抽樣誤差所影響，因此非侵入性的檢查方法有迫切性的需求。表面增强激 

光解吸附電離起飛行時間質譜技術（SELDI-TOF-MS)能幫助尋找標誌蛋白，其主 

要缺點是無法直接鑒定標誌蛋白的身份。硏究目的是建立自動化磁珠蛋白指紋圖 

譜技術作血清學分析，並應用此技術尋找標誌蛋白來偵查慢性乙型肝炎患者肝臟 

纖維化。 

我們成功建立自動化磁珠蛋白指紋圖譜技術作大量快速飾選。大量快速舗 

選的好處是減少逐批質量差異和增加可重複性。同日與異日之變異係數少於 

30%。這種磁珠技術允許同時分析血清蛋白及獲得蛋白樣本爲蛋白標誌作證明實 

驗。 

我們利用磁珠技術分析214個來自未接受治療及已治療慢性乙型肝炎肝臟 

纖維化患者的血清樣本，透過使用C18磁珠及基質輔助激光解吸附電離起飛行時 

間質儀(MALDI-TOF MS)獲得定量蛋白表達圖譜。首先利用未接受治療的血清樣 

本尋找標誌蛋白，之後利用線性迴歸(linear regression)順向逐步方式(forward 

stepwise)分析標誌蛋白、臨床、血清的生物化學數據，從而建立診斷模型來預測 

肝臟纖維化。 

硏究結果發現 ’ 4個標誌蛋白、血小板計數、HBV脫氧核糖核酸、膽紅素 

和凝血酶原時間的變化均與肝臟纖維化有關。經過線性迴歸(linear regression)順 

向逐步方式(forward stepwise)分析’診斷模型包括2個標誌蛋白（m/z 9，165和历/2 

12,443)和凝血酶原時間。以診斷模型評估已治療的血清樣本，接受器運作指標曲 

線下面積是0.750 (76%敏感性，79%特異性）°蛋白質鑑定的結果顯示其中1個標 

誌蛋白爲載脂蛋白cm (ApolipoproteinCIII)。 

總括而言，建基於磁珠血清蛋白指紋圖譜技術是一項能有效評估肝臟纖維 

化的非侵入性方法。 
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Overview of liver fibrosis 

Liver fibrosis is a scarring process caused by chronic liver injury. This wound-

healing response leads to the accumulation of fibrillar extracellular matrix (ECM) 

components which causes the progressive distortion of the hepatic architecture and 

eventually loss of hepatic function. [1] Liver fibrosis can be induced by different 

etiologies such as hepatitis B or C viral infection, alcoholic and nonalcoholic 

steatohepatitis (NASH). [2] It is a step-by-step process starting from minimal fibrosis 

which is usually undetectable, followed by liver cirrhosis and ultimately ending in liver 

cancer. Hepatitis B and C, two major causes of chronic liver diseases (CLD), are 

endemic in worldwide with 350 million and 170 million people live with chronic 

infection respectively. [3] Hepatitis C remains the most common cause of CLD in 

western countries such as the United States and European countries while it is not 

common in Asia. On the contrary, hepatitis B is common in Asia especially in China. 

The prevalence of chronic hepatitis B is also high in Asia relative to Europe. 75% of the 

chronically infected population is in Asia while less than 1% of the chronic population is 

found in Western Europe and North America. Fung et ai reported that the prevalence of 

severe fibrosis in chronic hepatitis B was 34% in an Asian cohort, they also showed that 

hepatitis B was a leading cause of liver fibrosis, cirrhosis and liver cancer. [4] Other 

factors such as antioxidants, hepatic iron stores, age, HIV coinfection and obesity are 

considered to enhance hepatic injury [5][6] and thus increase the progression of liver 

fibrosis. 
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Pathophysiology of liver fibrosis 

Fibrosis is a dynamic process and evidences show that it is reversible even in 

advanced fibrosis. [7] It is governed by the turnover rate of ECM which include 

glycoproteins, collagens and proteoglycans. ECM can be synthesized by hepatocytes, 

bile duct epithelial cells and endothelial cells but is mainly made by fibroblastic cell 

population. [8] Once these cells are injured, the composition of hepatic ECM changes 

and the liver becomes fibrotic. 

Historically hepatic stellate cell (HSC) has been considered as the key 

contributor for the abnormal deposition of fibrillar ECM. [9] It is also known as lipocyte, 

ito cell or perisinusoidal cell which stores vitamin A. Upon hepatic injury, ‘‘quiescent” 

stellate cell will become "activated", changing from vitamin A-storing cell to 

myofibroblast-like cell with morphological and functional changes. [10] Morphological 

changes include loss of vitamin A and increase in rough endoplasmic reticulum while 

functional changes consist of increase in collagens, fibronectin, laminin and 

proteoglycans secretion. [11] Following HSC activation, gene expression pattern also 

changes; for example, a remarkable increase in types I and III collagens and expression 

of HSP47, a collagen-binding stress proteins reported as a collagen-specific molecular 

chaperone during collagen biosynthesis. [12] In addition, HSC activation can be 

mediated by induction of signaling cascades. Several signaling cascades, transforming 

growth factor beta (TGF-P), connective tissue growth factor (CTGF) and platelet-

derived growth factor (PDGF) can control the induction of gene expression and 

fibrogenic response of HSC during liver fibrosis. [13-15] 
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The synthesis and degradation of ECM must be maintained in a critical balance 

and is tightly regulated by matrix metalloproteinases (MMPs)-mediated turnover of 

ECM proteins. [16] MMPs can destroy ECM by cleaving native collagen through the 

helical proportion of the molecule. On the contrary, natural inhibitors, tissue inhibitors 

of metalloproteinases (TIMPs) block and control the ECM turnover by interacting with 

the active sites of MMPS in non-covalent manner. Therefore, the occurrence of fibrosis 

is due to the decreased activity of MMPs made by the overexpression of TIMPs. [17] 

In addition, Kupffer cells, specialized leukocytes present in the liver, can also cooperate 

with cytokines released by infected liver cells to stimulate stellate cell to produce 

collagen fibers. [18] 

Fibrosis in chronic viral hepatitis patients is a dynamic process that occurs 

throughout one or two decades to reach cirrhosis and even longer for liver cancer. 

Initially, it is limited to the portal tracts which cause portal hypertension to the patients, 

followed by extensive fibrosis septa occurring in the liver parenchyma and ended by 

septum formation and rings of scars surrounding nodules of hepatocytes. [19] 

Histological classification of liver fibrosis 

As liver fibrosis takes years or decades to develop, it is essential to monitor the 

status of liver fibrosis so that clinicians can make good use of this important parameter 

to assess the risk of disease and make therapy decision. It is particularly valuable for 

patients who are in compensated state since therapy at right time is critical for the 

reversal of fibrotic state in the liver. 
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Liver biopsy is the gold standard for staging liver fibrosis. It allows direct 

histological examination of liver for diagnosis and prognosis. With new insights of liver 

fibrosis under different etiologies, grading of liver fibrosis aims to confirm clinical 

diagnosis, describe and quantify necroinflammation and fibrosis, evaluate possible risk 

of disease and assess the treatment progress. [20] Several semiquantative scoring 

systems have been used recently, namely histological activity index (HAI), Ishak's score 

and METAVIR scoring system. 

HAI 

HAI scoring system was developed in 1981 by Knodell and colleagues. [21] It is 

a combined score classified into four categories: periportal necrosis (1-10); parenchymal 

damage (0-4); portal inflammation (0-4) and fibrosis (0-6). The score for each category 

is discontinuous and with weighting. Periportal necrosis has the greatest weighting 

among others because of its greatest influence in determining the activity and severe of 

chronic aggressive (active) hepatitis (CAH). [22] 

HAI was the first reproducible histological scoring system in assessing liver 

biopsy. With a total score of 22，it provides a broad range of scores which can 

differentiate small differences between biopsies. However, the main frequently cited 

criticism is the combination of necro-inflammation (grading) and fibrosis (staging) in 

the existing system should be separately assessed due to their differences in nature. [23] 

Ishak score 

Due to the inappropriate combination of necrosis and fibrosis, a modified HAI 

grading and staging was developed. It allows separate assessment in grading and staging. 

Grading is used to describe the intensity of inflammation while staging refers to the 
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amount of fibrosis detected by liver biopsy. [24] Another modification upon traditional 

HAI is that it has continuous range in nature. In modified HAI grading, there are four 

categories with the maximum possible grading score of 18. 

In staging, fibrosis, architectural disturbance and cirrhosis are important features 

needed to consider. Staging ranges from no fibrosis to definite cirrhosis (Ishak score 0-

6). An Ishak score > 2 indicates the presence of significant fibrosis and an Ishak score > 

4 indicates the presence of liver cirrhosis. [25] 

METAVIR scoring system 

METAVIR scoring system was developed specifically for patients with hepatitis 

C. It also assesses grading and staging separately. The grading score ranges from 0 (no 

activity) to 3 (severe activity) and the fibrosis score (staging) is a 5-point scale from 0 

(no fibrosis, no scarring) to 4 (cirrhosis, advanced scarring). [26] 

Gold standard for fibrosis assessment - Liver biopsy 

Liver biopsy has long considered as the gold standard to diagnose the presence 

of fibrosis and stage the disease. It is a direct method for assessing liver injury, 

providing information on fibrosis, inflammation, necrosis, steatosis and hepatic iron load. 

[19] In addition, it allows the identification of suspected and unexpected cofactors as 

well as comorbidities. However, there are several limitations that hinder the use of liver 

biopsy. Researchers started to focus on the development of non-invasive methods to 

assess liver fibrosis. Liver biopsy is an invasive method and may cause patients 

suffering from pain and complications, especially for patients with prolonged 

prothrombin time and low platelet count as excess bleeding may occur after tissue 
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collection. Cadranel et al. reported that 20% and 0.57% of the patients in the study 

group suffered from pain and severe complication respectively. [27] The other criticism 

is sampling error. As only 1/50,000 of the whole liver is examined, the biopsy result 

may not reflect the full picture of the entire liver. Reports showed that discordance of 

fibrosis stages occurs in left and right lobes of liver for the same patient. [28] [29] In 

addition, the size of the tissue greatly affects the diagnostic accuracy of liver biopsy. 

Colloredo et al reported that smaller sample might give milder stage and thus staging 

will be significantly underscored. [30] Another well-known drawback is inter-observer 

variability among pathologists which gives uncertainty on the accuracy of liver biopsy. 

[29] 

On the other hand, its invasive nature also gains reluctance from patients. 

Because of this, it is not able to monitor treatment progression which is definitely 

important for antifibrotic therapies. It is costly as patients require hospitalization for 6-

18 hours and consumes manpower issues. [19] Because of the sampling error, observer 

variation and invasive nature in examining liver biopsy, new noninvasive tests for 

detecting liver fibrosis are likely to have a role in the future. 

Biomarker in blood - noninvasive method for assessing diseases 

Human blood contains huge amount of proteins and is thought to be a reservoir 

of biomarkers. Liotta et al pointed out that every cell would leave a record of its 

physiological state by producing a product that shed to the blood. Their relative cellular 

abundance, together with cleaved or modified form, can reflect the ongoing 

physiological and pathological events. [31] More publications showed that the 
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peptidome (peptides less than 50,000 Da) might contain rich unstudied disease-specific 

diagnostic biomarkers. [32] 

By Food and Drug Administration (FDA) definition, "diagnostic" includes 

determining the disease risk, screening for diseases and confirming the suspected 

diseases. It covers determining prognosis or staging the diseases as well as monitoring 

treatment response. [33] A good biomarker should have properties including good 

sensitivity, specificity and strong association with the diseases. Furthermore, it should 

be useful in the majority of the population and have strong diagnostic, prognostic and 

predictive significance. [34] 

With an enormous diversity of proteins in blood which is readily accessible from 

patients with minimal pain, it is the best source for detecting diseases. However, its 

complexity gives researchers a great challenge in biomarker discovery. Lack of 

sensitivity and specificity are still the major obstacles for current biomarkers. Only few 

biomarker assays have been submitted to FDA for approval though an overwhelming 

interest in biomarkers discovery rose in the past decades. [33] To get approved from 

FDA, the new assay should be able to establish adequate analytical (accuracy and 

precision) and clinical (sensitivity, specificity and some indication of clinical utility) 

performance. Several successful examples include prostate-specific antigen (PSA) for 

prostate cancer and alpha-fetoprotein (AFP) for liver cancer. Failure in fulfilling the 

requirements can be explained by heterogeneity among patients. The severity of diseases 

and epidemiological heterogeneity including age, sex, ethic and genetic background can 

reduce the specificity of biomarkers. 
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Despite of these challenges, there is a growing interest in biomarker discovery 

field. With more advanced technologies and increasing knowledge of the 

pathophysiology of diseases, more good quality biomarkers can be discovered and 

accepted by FDA for clinical use. 

Significance of non-invasive markers of liver fibrosis 

Due to the invasive nature and limitations of liver biopsy, serum markers offer 

an attractive alternative to liver biopsy. There has been considerable interest in non-

invasive tests for accurate assessment of liver fibrosis. The main merits of serum 

markers are non-invasive and readily accessible from patients. It is cost effective and 

less manpower is needed compared with liver biopsy. Liver biopsy needs to be obtained 

by hepatologists or radiologists [35] while nurses or skilled medical workers can help 

patients taking blood for assessment and no hospitalization is required. Minimal pain in 

blood taking makes it more versatile and easily accepted by patients. Also, severe 

complication is unlikely to occur during blood taking. This enables the evaluation of the 

efficacy of treatment regimens as patients are pleased to back to clinics for continuous 

assessment. 

Yet, no true serum marker has been validated to date and acted as a surrogate 

marker of liver fibrosis. [1] Limitations of current non-invasive serum markers include 

inadequate reproducibility, sensitivity and specificity of the marker, giving at least 20% 

expected rate of misdiagnosis for non-invasive models. [19] Moreover, most non-

invasive markers reported in literatures can classify well for severe cases like cirrhosis 

[36] but are lack of reliable identification and classification of the early stage cases. 
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In order for non-invasive markers to be implemented in clinical practices, some 

requirements should be fulfilled. Sebastiani et al proposed that an ideal non-invasive 

marker for liver fibrosis should be liver specific, easy to perform and able to provide 

information on fibrosis stage and fibrogenesis activity. It is even better if the half-life 

and excretion route is known and independent of comorbidities. More importantly, the 

biomarker should be sensitive enough to discriminate between different fibrosis stages 

and reproducible across different centers. [19] 

Biomarkers of liver fibrosis 

Serum markers of liver fibrosis can be classified into two categories, direct and 

indirect markers. [1][34] Direct markers are those reflect the ECM turnover which are 

thought to be closely related with deposition of ECM in liver. They may be the 

structural elements of fibrogenesis or key mediators involved in degradation of fibrosis. 

Indirect markers reflect perturbations in liver function. They have potential to directly 

reflect morphological, functional, and metabolic changes of the liver, monitoring the 

progression of liver diseases. 

Direct markers 

With clearer insight into the mechanism of liver fibrosis, researchers start to 

investigate the components involved in the ECM biosynthesis and degradation, 

searching for potential markers particularly govern the ECM turnover and correlate with 

the stages of liver fibrosis. Potential markers include compounds from collagen 

synthesis or degradation, enzymes in matrix biosynthesis or degradation, ECM 
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glycoproteins and proteoglycans. The mechanism of liver fibrosis is independent of the 

etiologies of the liver injury, as no obvious difference is found in the progression of 

fibrosis. Therefore, it is believed that direct markers can be implemented to all liver 

fibrosis patients with different etiologies. However, the costs of checking those direct 

markers are so high that it is not routinely available in most clinical setting. There are 

some currently available direct biomarkers, namely hyaluronic acid (HA),丨aminin， 

YKL-40 (Chondrex), type I and IV collagens and cytokines. [37] HA is a 

glycosaminoglycan found in virtually all connective tissues and in liver fibrosis. It is a 

component of ECM synthesized by HSC. HA is increased particularly in cirrhosis 

patients and gives better sensitivity and specificity to cirrhosis than fibrosis. [38] It can 

be concluded that HA may be a good marker in excluding cirrhosis but not for fibrosis. 

It is included in some non-invasive models such as Hepascore and FibroSpect score. [39] 

[40] Laminin is a major noncollagenous glycoprotein synthesized by HSC. [41] It 

increases during fibrosis due to alcohol consumption and viral hepatitis and shows 

reasonable performance with greater than 80% accuracy. [42] It is deposited around the 

vessels, in the perisinusoidal spaces and portal tracts. [34] YKL-40 is a glycoprotein in 

chitinase family. It is a relatively new marker of liver fibrosis. The cellular source is 

supposed to be activated HSC. [43] Although its physiological function is unknown, it is 

believed that YKL-40 may be a growth factor for fibroblasts, chondrocytes, and 

synovial cells. It is also a migration factor for endothelial cells. 
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Indirect markers 

Indirect markers can be further classified to routine serum tests markers and 

imaging test. Based on readily available biochemical parameters from routine blood 

tests, researchers found a number of them that were correlated with the severity of liver 

fibrosis and could be served as an indication of liver function. The use of those indirect 

markers is cheaper compared with direct markers and liver biopsy. Several non-invasive 

models were constructed for detection of liver fibrosis and their corresponding 

diagnostic accuracies were summarized in Table I. Nevertheless, these models were 

greatly limited by lacking external validation and therefore further extensive 

investigation was needed. Naveau et al. reported that FibroTest was the best models of 

liver fibrosis among all non-invasive models [49] while other studies show it only gave 

moderate performance like other non-invasive models. Further validation is needed to 

confirm its clinical significance. Moreover, some models contain markers (i.e. GGT and 

apolipoprotein A l ) that are not included in routine blood test parameters, extra test 

needs to be done and it will increase the test cost, making it less versatile to the public. 

Despite many new non-invasive models were developed and seemed to be 

clinically useful, discrepancies between centers made them inappropriate for clinical 

practice. Diagnostic models using inexpensive biochemical parameters related to liver 

function indeed have its clinical value, more inter-laboratories validation and systematic 

reviews together with standardization of laboratory procedures should be done so that 

these models can be launched for diagnosis. 

Different from direct markers, indirect markers are measures of liver function, 

evaluating the extent of liver injury. Therefore, liver injuries caused by different 
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diseases may perform differently in the same models. Currently available models are 

mainly constructed based on HCV patients. It is necessary to check if the models are 

applicable to other etiologies and evaluate their differences in performance. Some 

publications concerned about the possibility of applying HCV-based models to CHB 

patients as their clinical courses and viral pathologies were different. [50] Patients with 

HBV often have increased ALT level and fluctuated liver enzyme levels while for HCV 

patients, disease progression is slow and silent without fluctuation of liver enzymes. 

Some publications even reported that CHB patients have a greater disease progression 

rate to cirrhosis than CHC patients. [50] It is believed that more evaluation is needed 

before directly applying HCV-based model to HBV studies. 
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Other non-invasive method is imaging. Imaging methods include transient 

elastography (Fibroscan), magnetic resonance imaging (MRI) and contrast 

ultrasonography. [53] Recently, Fibroscan has been evaluated and implemented for the 

assessment of liver fibrosis in many countries. [54] It assesses the presence of liver 

fibrosis by measuring the stiffness of the liver. An ultrasound transducer probe is 

mounted on the axis of a vibrator. The mild amplitudes with low frequency vibrations 

are transmitted by the transducer, inducing elastic shear waves that propagate through 

the tissue. Pulse-echo ultrasound acquisitions can follow the propagation of the shear 

wave and measure its velocity. The velocity is directly related to tissue stiffness; fibrotic 

liver generates higher FibroScan measurement signals measured in kilopascals (kPa). 

Measurements are taken in the right lobe of the liver through the intercoastal spaces. 

This painless and rapid (less than 5 minutes assessing time) method has other 

advantages including immediate result with good reproducibility and more 

representative as sample volume is greater than liver biopsy by at least 100 times. Many 

studies have evaluated the clinical performance of FibroScan with different etiologies of 

CLDs and found that Fibroscan can give fairly stable performance among different 

etiologies. [55] A meta-analysis of Fibroscan showed that it has excellent utility for the 

identification of cirrhosis but large variation of AUROC was found in different liver 

diseases. [56] In France, FibroScan is recommended to be the initial assessment for 

treatment naive CHC patients or patients with no concomitant disorders. [57] Yet, 

Sandrin et al reported that FibroScan was limited to patients with ascites, obese and 

narrow intercoastal space. [58] Liver stiffness measurements are also influenced by ALT 

flares. Chan et al reported that patients with the same fibrosis staging but higher ALT 
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levels are more likely to have higher liver stiffness measurement (LSM). The 

performance of FibroScan is also seriously affected for those patients with low fibrosis 

stage and elevated ALT. Different cut-offs and algorithms were used for definite 

patients groups. [59] Careful evaluation should be done to define a standardized cut-offs 

and algorithms for clinical use. 

Why Proteomics? 

With the completion of human genome project in 2003, surprisingly, it was 

discovered that human had barely more genes than much simpler organisms such as 

roundworm and fly. Human complexity is therefore thought to be contributed by gene 

functions and the way gene products interact, putting a new insight on protein study. [60] 

Considering the biological flow, from DMA to RNA to protein, genome only represents 

the first step of understanding biological functions. It has already an idea that one gene 

to one protein is not hold; there are about 500,000 proteins in human proteome while 

only 40,000 genes are present in human genome, showing that there would be more 

complicated in protein level. [61] In genomics, a moderate correlation was found 

(r=0.61) between protein abundance and mRNA level, indicating that there is a gap 

between the genome sequence and cellular behaviour. It is obvious that genomics cannot 

provide a full answer for biological questions. A new level of gene regulation, 

microRNA (miRNA), was first introduced in 2001，[62] and proteomics may become 

supplement of current work on genomics. More effort should be passed from genomics 

to miRNA and proteomic studies. 
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"Proteomics" is the study of all proteins in a biological system. It provides a 

more realistic view of biological status and therefore is more useful than genomics for 

evaluating diseases. Poor correlation between gene and protein can be explained by the 

differences in the synthesis rate and half-life of mRNA as well as the protein encoded. 

[60] In addition, there are some distinguish advantages on proteomics. Proteomics 

describes dynamic cellular process. It provides information about post-translational 

modifications (PTM) such as glycosylation and phosphorylation which may be essential 

for protein function and activity. The contribution of proteomics is fundamental in 

understanding factors which can alter gene expression but cannot be determined by 

DNA sequence. [63] 

In conclusion, proteins are the core of cellular functions. Study of proteins offers 

researchers the possibility of identifying disease-associated biomarkers for diagnosis, 

prognosis or drug development. 

Clinical values of proteomics in biomarker discovery 

Clinical proteomics aims to discover diagnostic, prognostic and predictive 

biological markers (clinical application) as well as to detect and validate novel drug 

targets (pharmaceutical application). In this regard, proteomics can be classified into 

expression proteomics, functional proteomics and structural proteomics. [64] 

Expression proteomics is the large-scale study of variations in protein expression. 

[60] It is the most popular and expensive proteomics strategy which is analogous to 

differential gene expression. [60] It involves in cataloging proteins expressed in serum, 
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cell or tissue to identify alternations between control and disease samples. Furthermore, 

characterization of the biomarkers has potential to improve patient outcomes. 

Functional proteomics, a specialized form of proteomics, aims to characterize 

protein activities, protein-protein or protein-DNA/RNA interactions and signaling 

pathways. Human genes produce huge amount of proteins via PTMs and mutations 

which can be the sources for examining diseases. Also, a detailed description of the 

cellular signaling pathways can help the elucidation of protein-protein interaction in 

vivo. [65] Unlike expression proteomics, specialized proteins or subproteome are 

isolated for characterization by using affinity chromatography rather than obtaining a 

protein profile to search for differential proteins. More biological functions of proteins 

can be known by understanding the rapid and transient association within large proteins 

complex. 

Structural proteomics aims to elucidate structure-function relationships of 

uncharacterized gene products based on 3D protein structure. It is the deduction of 

biological function from the predicted protein structure. [66] Protein structure can be 

identified by using X-ray crystallography, NMR spectrometry and computational 

method such as comparative and de novo structure prediction. The structural 

information derived from structural proteomics is important in drug development in the 

pharmaceutical industry. 

Challenges in proteomics 

Thousands of proteins per study can be identified in typical mammalian cell but 

it cannot apply to human plasma because of complexity. Much less proteins can be 
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identified in human plasma or serum due to the presence of high abundance proteins. In 

human plasma, the 20 most abundance proteins contribute 99% of the total protein and 

mask the remaining 1% of low abundance proteins which are usually potential 

biomarkers. Large dynamic range of at least 9-10 orders of magnitude in serum 

proteome is the major challenge in clinical proteomics, from the most abundance protein, 

albumin with concentration of 45mg/mL, to low abundance proteins with 1-lOpg/mL. 

[67] Currently there is no publication proposing a proteomics method that can withstand 

a dynamic range of 10 .̂ Most of the proteomics technologies have the dynamic range 

limit of 10^. In combination with other advanced separation techniques, the limit can be 

increased to lO* or 10^ Even with the most advanced LC-FTICR technology, the limit is 

still at <10^ which is far from lO'^ showing that current technologies cannot fully 

penetrate into the deep proteome. Many researchers keen to find ways to reduce the 

dynamic range of proteins and the most common way is to deplete those high abundance 

proteins. However, depletion of high abundance proteins may cause reduction of protein 

signals and loss of potential proteins of interest. Liotta et al pointed out that low 

molecular weight (LMW) proteins could stay in blood circulation by binding to large 

carrier proteins. If it is true, existing depletion methods will discard the high abundance 

proteins together with potential biomarkers and fail to capture this valuable resource. [31] 

Many studies used plasma or serum as the starting material. Systematic 

evaluation done by HUPO Plasma Proteome Project (HUPO PPP) showed that about 

40% of all detected signals were unique in serum and cannot be found in plasma. These 

proteins include intracellular, coagulation dependent and enzymatic activity-derived 

peptides. [68] Moreover, it is well known that proteomics is easily subject to sample 
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bias. Proteomic patterns can be changed upon sample collection, processing, storage and 

number of freeze-thaw cycles. HUPO PPP reported that multiple peak differences were 

found in samples stored at freezing, refrigerated (4°C) and room temperature conditions 

for 2 months. [68] Baumann et al also pointed out that unfrozen serum showed great 

variations in protein profiling, giving poor reproducibility. In addition, freeze-thawing 

markedly decreased protein intensities especially in low mass range (m/z 1500-3300). 

[69] Another important issue is the presence of protease in blood samples. No review 

concerning about the origin of proteins or peptides present in blood,- whether they are 

generated in vivo or ex vivo. Marshall et al. illustrated that there were differences in 

proteomic pattern between plasma samples with and without serine-centered protease 

inhibitor, phenylmethylsulphonyl fluoride (PMSF). Serum sample treated with ImM 

PMSF produced an obvious reduction in the high mass range and more peaks were 

observed in the low mass range. Marshall et al concluded that the action of serine 

centered protease contributed to the proteomic profiling pattern ex vivo. [70] However, 

Ayache et al illustrated that the dramatic changes in proteomic pattern is independent of 

protease inhibitor. They demonstrated that protein distribution was altered by the 

processing temperature instead. Remarkable variation of proteins was observed in 

samples left at room temperature for 2 hours and was due to cytokine production and/or 

released by leukocytes and platelets. [71] 

Comparative proteomics is the common strategy used in biomarker discovery. It 

was done by comparing proteomic pattern between disease and control groups. However, 

it is difficult to find a normal applicable to patients with different ages, genders, ethnic 

and menstrual cycles. The "normal" sample is very important in comparative study; it 
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directly influences the interpretation of the proteomics patterns between control and 

disease groups. 

Other challenge is patient heterogeneity, including gender, age, menstrual cycles 

and medications. It is well known that they all contribute changes in proteome patterns 

but no extensive and systematic evaluation was carried out to illustrate how much they 

really affect the proteome content in different patients. This uncertainty hinders the 

development of biomarker discovery. 

Current proteomics technologies in biomarker discovery 

Current proteomics technologies used in biomarker discovery can be classified 

into two categories, gel based and gel-free based approaches. 

Gel based 

Though many chromatographic and electrophoresis-based technologies are 

available for protein separation, two-dimensional polyacrylamide gel electrophoresis (2-

D PAGE), first introduced in 1975, is still the benchmark and routinely used in 

proteomics. [72] The principle of 2-D PAGE is to separate protein mixtures on a gel in 

two dimensions, charges and masses. Proteins are first separated according to their 

isoelectric points (pi) using isoelectric focusing (lEF) and then by their molecular 

weights using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). 

Separated protein spots are visualized by staining the gels with coomassie blue, sliver or 

fluorescent dye such as SYPRO Ruby and Flamingo, depending on the abundance of 

proteins on the gels. [73] The detection limit of different dyes ranges from 0.5 ng to 25 
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ng. SYPRO Ruby and Flamingo show a linear dynamic range over three orders of 

magnitude and have higher sensitivity than others but they need expensive laser-based 

excitation scanner systems for gel visualization whereas coomassie blue has the least 

sensitivity and poor dynamic range. [74] The differential protein spots are then excised, 

destained and performed in-gel digestion with trypsin. After extraction, the peptide 

mixtures are spotted on the target plate and analyzed by Matrix Assisted Laser 

Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF-MS). With the 

use of peptide mass fingerprinting (PMF) and tandem MS technology, the protein 

identity of the protein spot can be obtained with high accuracy. Wang et al used 2-DE 

to investigate the global proteome responses of liver-derived cells to HBV infection and 

treatment response. By comparing two cell lines before and after interferon alpha 

treatment, 6 down-regulated and 11 up-regulated protein spots were identified. 

Identified proteins include vinculin, calumenin and prohibitin. [75] Spano et al. reported 

that 46 differentially expressed proteins were identified in HBV transgenic and 

nontransgenic livers at the early stage of liver fibrosis by 2-D DICE. [76] 

The major merit of 2-D PAGE is that it is capable of separating thousands of 

proteins simultaneously which cannot be achieved by other methods effectively. In the 

first dimension, proteins can be separated in different ranges of pH (i.e. pH 3-10, 3-

lONL, 4-12, 5-8). To increase the resolution in particular pH, narrow pH range or zoom 

lEF can be used. Narrow pH range in lEF is important for avoiding or minimizing spot 

overlapping on the gels, a well-known problem in 2-D PAGE. Large gels using in 

dimension can also increase the resolution dramatically as reported by Wildgruber et al 

[77] However, it is a time-consuming procedure and requires high technical expertise to 
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carry out the separation. In addition, this low-throughput method also greatly suffers 

from gel-to-gel variation, making it unsuitable for comparative proteomics analysis. A 

modified technology, 2-D differential gel electrophoresis (2-D DIGE), was developed to 

increase reproducibility, speed and sensitivity of 2-D PAGE. 2-D DIGE is based on 

measuring three samples on one gel, labeling with different cyanine dyes (Cy2, Cy3 and 

Cy5). By measuring specific wavelength using fluorescent scanner, each labeled 

proteins can be visualized and compared with the other two. It greatly increases 

reproducibility; yet, 2-D DIGE and 2-D PAGE also share limitations that they are not 

applicable for hydrophobic proteins which are insoluble for protein separation. 

Furthermore, proteins with molecular weight less than 5,000 Da cannot be analyzed and 

identified. Due to its low throughput and manually operated nature, gel-free approaches 

have been developed to examine the whole proteome thoroughly and effectively. [78] 

[79] 

Gel free approach - MS based 

Upon 2-D PAGE, mass spectrometry (MS) has gained the popularity and 

become an indispensable tool for proteomics. With the combination of chromatography 

columns and MS, MS based gel free approach can detect many low abundance proteins 

which are usually masked by numbers of high abundant proteins. The primary 

applications of MS to proteomics are cataloging protein expression, defining protein 

interactions and identifying protein interaction sites. [80] Mass spectrometer consists of 

an ion source to ionize the analyte molecules, mass analyzer to separate ionized analytes 

on the basis of mass to charge ratio (m/z) and a mass detector to count the ions at 
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particular m/z value. Currently, two soft ionization techniques, MALDI and electrospray 

ionization (ESI), are widely used for analyzing peptides and proteins. With the use of 

these two ionization techniques, affinity based technologies such as Surface Enhanced 

Laser Desorption/ Ionization (SELDI) and liquid chromatography (LC) become major 

tools in clinical proteomics. 

SELDI-TOF MS 

Surface Enhanced Laser Desorption/ Ionization Time-of-Flight Mass 

Spectrometry (SELDI-TOF-MS) technology was developed by Hutchens and Yip. [81] 

The principle of SELDI technology is similar to classical adsorption-desorption 

mechanism in column chromatography. It is an affinity-based MS technology, 

selectively capturing subset of proteins based on surface chemistries (i.e. hydrophobic, 

ion exchange, metal chelate) or antibodies. [82] This technology enables the analysis of 

small proteins and peptides with mass between 1,000 Da and 20 kDa. It allows direct 

mass spectrometric analysis of the retained proteins/peptides on the array [83] by 

MALDI-TOF MS. Besides capturing low mass of proteins, its non-invasiveness and 

high-throughput manner make it possible for fast screening for novel biomarkers. [84-86] 

It is capable of analyzing wide range of samples such as serum, plasma, cell lysate, 

cerebrospinal fluid [87] and urine. [88] It is an easy, effective and sensitive approach of 

protein profiling for identifying biomarkers especially from crude samples. Its 

sensitivity can be up to femtomolar range. [83] On the other hand, SELDI technology is 

capable of detecting protein variants. A study of renal cancer patients found multiple 

variants of serum amyloid alpha in patient serum but not in healthy control. [89] 
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Jayanthi et al reported that 3 apolipoprotein C-III isoforms were found by SELDI 

ProteinChip and was upregulated in heavy marijuana users. [90] 

As each protein has a unique m/z value and physicochemical properties, they can 

be detected precisely and quantified in patients' fluids using specific ProteinChip arrays 

without knowing their protein identities. However, further characterization of cancer- or 

disease-associated proteomic features not only enables us to understand the disease 

pathology, but also allows us to develop a simple immunoassay to measure potential 

biomarkers. [91] However, the main drawback of ProteinChip SELDI technology is the 

interested protein or potential biomarkers cannot be recovered from the ProteinChip. 

Hence, independent experiment is needed to carry out for protein identification which 

makes the procedures tedious and time-consuming. Protein identification is usually the 

bottle-neck in most of the biomarker studies employing the ProteinChip SELDI 

technology. 

Another drawback, reproducibility, has been controversial in ProteinChip SELDI 

technology. [85] Because sample binding steps in this technology is usually operated 

manually and the serum profiling is sensitive to small changes in the operating 

procedure, large variation between batches or different centers makes this technology 

less reliable. Diamandis pointed out that different patterns and biomarkers were 

identified by various research groups using the same types of biological specimens and 

the same analytical platform. [92] Moreover, hindrance effect occurs during the binding 

reaction as small, information rich proteins needs to compete with large, high abundance 

proteins such as albumin on a small binding surface. Yet this hindrance problem cannot 

be solved by depletion of high abundance proteins. The overall peak intensities were 
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decreased after albumin depletion as reported by Cheng et al. [84] It is believed that 

some albumin-binding proteins were also depleted out with albumin. [93] 

Ward et al showed that two SELDI peaks, identified as K and X 

immunoglopbulin light chains, were up-regulated in patients with hepatocellular 

carcinoma in HCV related cirrhosis. [94] Gogel et al. identified 5 protein markers (m/z 

2,873, 6,646, 7,775, 10,525 and 67,867 Da) to be used to differentiate liver cirrhosis and 

hepatocellular carcinoma in patients with CHC. One protein peak, m/z 6,646, was 

identified as apolipoprotein C-I. [95] -

LC-MS 

An alternate protein separation technology is 1-D or 2-D liquid chromatography 

(1-D or 2-D LC). Its high sensitivity and specificity allows the analysis of biological 

molecules in a complex mixture. LC-MS has become an instrument routinely used for 

protein separation and identification in proteomics laboratory. By using different 

chromatographic columns, whole proteome in biological sample can be fractionated into 

less complex fraction, making it possible for the detection of low abundant protein and 

the deeper proteome. [64] LC-MS is a bottom-up strategy which involves separation and 

digestion of proteins followed by PMF. LC can be linked to different ion sources and 

ion analyzers, providing different platforms for variety uses. Examples of ion sources 

found for proteomics include MALDI, electrospray ionization (ESI), nanospray 

ionization (NSI) and atmospheric pressure chemical ionization (APCI). Ion analyzers 

can be TOF, quadurpole IT (QIT), fourier transform ICR (FT-ICR) and quadruple mass 

filter (QMF). Due to the high complexity of sample, many proteomics studies are 

limited to identify high abundant proteins, those low abundant proteins, potential 

26 



biomarkers for human diseases, are still the challenge in biomarker discovery. 

Tucholska et al. demonstrated the feasibility of using LC-ESI-MS/MS to identify low 

abundance proteins in complex blood sample. By using multiple partition 

chromatography resins, many polypeptides can be purified to nearly homogeneous from 

serum or plasma samples. Enrichment of low abundance proteins can be achieved by 

depletion of high abundance proteins using custom-designed or commercially available 

depletion columns. [96] Yang et al. demonstrated that after the depletion of HSA and 

IgG, low abundance protein like vitamin-K-dependent clotting factors and inhibitors 

were identified by LC-ESI-MS/MS. [97] Gao et al. also showed that after the depletion 

of 58 high abundance proteins, the number of identified proteins was 2.7 times as that of 

the nondepletion method under LC-MALDI-TOF/TOF MS platform. [98] 

For shotgun proteomics, the multidimensional protein identification technology 

(MudPIT), developed by Yates and colleagues, is now widely implemented to analyze 

complete cell lysates，tissue extracts and other subproteomes. [99] The protein mixtures 

are directly digested into peptides which are then separated by on-line multidimensional 

chromatography followed by tandem mass spectrometric analysis. The digested peptide 

mixtures are separated in strong cation exchange (SCX) column followed by reversed 

phase (RP) column. The eluted fractions are then directly passed into the mass 

spectrometer for protein identification. This system can separate and identify 1,484 

proteins for S. cerevisiae proteome, comprising proteins with extreme pi, MW, 

abundance and hydrophobicity. [100] It is a fast, sensitive method for analyzing 

complex peptide mixtures prior to 2-D PAGE as it is an online process. The main 

drawback is that only one sample can be analyzed in single run, the throughput is low. 
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Furthermore, as digestion is performed before separation of protein mixture, it generates 

a more complex peptide mixture than the original one and makes the separation more 

challenging. In serum, there are at least 200,000 peptides coexist after digestion, 

effective separation on SAX-RP system may not be achieved and more sensitive and 

effective separation technique is needed. [101] Some information may lose upon the 

digestion of proteins to peptides which may result in false identification, especially those 

with diverse or unexpected modifications. In addition, the suppression effect by 

abundance difference in mass spectrometer may restrict the probability of identifying 

medium and low abundance proteins especially when high abundance proteins are co-

eluted with medium and low abundance proteins. More advanced and highly sensitive 

mass spectrometers such as triple quadrupole MS, LTQ FT and LTQ-orbitrap can be 

used to allow more accurate mass measurement and peptide fragmentation schemes. 

Apart from shotgun proteomics approach, a newer strategy known as top-down 

approach was developed for studying intact proteins. This top-down approach does not 

need the purification and digestion of proteins for analysis. It requires high-resolution 

mass measurement of intact proteins and their direct fragmentations with the use of very 

expensive instruments such as Orbitrap or FTICR only. A key to this approach is the 

ability to fragment the intact proteins, it can be performed by using electron transfer 

dissociation (ETD) or electron capture dissociation (ECD) techniques. Using this 

dissociation techniques, small to medium-sized proteins can be fragmented while it is 

incapable of analyzing large proteins (>50kDa) because of increasing complexity 

between the protein ions, tertiary structure and many nonconvalent interactions. It is 

believed that top-down approach can be a tool for sequencing peptides and determining 
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the post-translational modification sites which cannot be done by bottom-up approach. 

[102] [103] However, since it is performed with a single protein or simple protein 

mixture fractionated off-line, the analytical throughput and efficiency for large-scale 

proteome analysis is still a challenge. Recently, Bryan et al. demonstrated proof-of-

concept for high throughput top-down proteomics made from the measurement of high-

resolution MS/MS fragment ions in an online fashion. [104] With the integration of 

offline weak anion exchange (WCX) column and online LC-LTQ FT, 22 proteins were 

identified on yeast whole cell lysate. -

1.3.4.3 Quantitative proteomics 

The major progress in proteome study is quantitative proteomics. It is important 

to obtain quantitative information from healthy and disease group for biomarker 

discovery. Stable isotope and molecular labeling methods are currently used for 

quantitative proteomics. Because the labels are chemically identical, the peptide pair 

(light and heavy peptides) will behave identically in terms of chromatographic retention 

and ionization efficiency, allowing samples to be analyzed and compared 

simultaneously. 

Stable isotope labeling by amino acids in cell culture (SILAC) is a common 

stable isotope labeling technique used in cell culture. [105] Two populations of cells are 

cultivated in different culture medium. One of the populations is fed by stable isotope-

labeled essential amino acids while the other is fed by normal one. The stable isotope 

will then be absorbed and secreted by cells in the synthesis of proteins in vitro. '^C is 

usually chosen for labeling, and '^Ce lysine is labeled in HCC cell lines with low 
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and high metastatic potentials for quantitative analysis respectively. [106] Peptide pair 

was separated by 6 Da corresponding to the mass difference between and 

isotopes.By measuring their intensities ratio, differential proteins can be found and 

identified. Nearly all peptides can be isotopic labeled by SILAC, greatly improving the 

sequence coverage of proteins. However, it is not practical for clinical protein samples 

in vivo. 

Isotope-coded affinity tag (ICAT) was introduced in 1999 by Aebersold and co-

workers. [107] The ICAT reagent consists of a reactive group specific for free thiol 

functionality of cysteine residues, a polyether linker region with deuteriums or '^C with 

their light forms (i.e. 'H and '^C) and a biotin tag that allows recovery of labeled 

peptides. In ICAT experiment, the light and heavy isotopic tags bind covalently to 

cysteine moieties of amino acids within proteins. The proteins are then eluted from an 

avidin column and quantified with MS. The relative amount of the identified peptides 

can be calculated by the ratio between heavy and light forms. Because only cysteine-

containing peptides are isolated, complexity of the sample will not affect quantitative 

analysis and it allows detection of low abundance peptides. This technology has been 

applied to study proteome in mammalian cells and human liver cells. Yet, many 

important proteins which do not have cysteine cannot be detected. [108] About 300-400 

proteins per sample can be analyzed by ICAT, far less than that with 2-D PAGE 

technology. Also, deuterium affects peptide retention time in LC and intense fragment 

ions from biotin moiety makes the complicated MS/MS spectra not suitable for database 

searching. 
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Isobaric tag for relative and absolute quantization (iTRAQ) is increasingly 

accepted in secretome analysis. iTRAQ labels consist of reactive groups label with all 

free amines, at the N-terminus of all peptides and also the side chain of internal lysine 

residues, a balance group and a reporter group . [109] Unlike ICAT, they target all 

tryptic peptides and therefore enhance the depth of the coverage. There are currently two 

types of reagents: 4-pIex and 8-plex. Each label has an identical mass but produces 

different fragments during collision-induced fragmentation in MS/MS analysis. Mixed 

differentially labeled peptide mixtures at equimolar concentration, separated by 2-D 

chromatography and subjected to tandem MS/MS analysis, a special mass signal at m/z 

114.1, 115.1, 116.1 and 117.1 can be obtained from the fragmentation between the 

reporter and balance groups. Each signal correlates directly to the amount of peptides 

present in the sample, thus protein concentration can be deduced. [110] The advantage 

of iTRAQ technology is that different tags will not affect the separation performance 

which makes it possible for analyzing at least four samples in single run. However, it 

suffers from some limitations. Fragmentation efficiency depends on charge and 

sequence, small amount of co-eluted labeled fractions may have similar m/z fragment 

ions that can lead to significant error in reporter ion distribution. 

The MS-based technique of multiple reaction monitoring (MRM) is now being 

explored for validation of protein biomarkers in clinical samples. It is not a new 

technique for small molecules which has been used for quantification of metabolites in 

drug metabolism studies over 30 years. Due to the emergence of new MS 

instrumentations, MRM is now capable of analyzing large molecules such as proteins 

and peptides. [ I l l ] For low molecular weight analysis, triple quadrupole mass 

31 



spectrometer enables the precursor ion (parent ion) to be selected in the first quadrupole, 

followed by fragmentation by collision with inert gas atom in the second quadrupole and 

finally passed to the third quadrupole for analyzing selective fragment ion (daughter ion). 

In principle, this technique is able to confirm the identity of the precursor ion by 

fragment ion in a specific transition. Moreover, in combination of stable isotope-labeled 

internal standards (SISs), absolute quantitation can also be obtained. [112] For protein 

and peptide analysis, a triple quadrupole-linear ion trap (QqQ-LlT) instrument like Q 

TRAP® has advantages. Q TRAP® has a high sensitivity that is able to detect low 

abundance analytes in complex matrices. Several recent proof of principle studies 

showed that MRM can be identified and quantified proteins at ng/mL level. Keshishian 

et al showed that 6 spiked proteins in immunodepleted human plasma can be 

quantitated in the 1-lOng/ml range with coefficient of variation ranges from 3 to 15%. 

[113] Kay et al also demonstrated that in combination with ACN precipitation, insulin-

like growth factor-I (IGF-I) can be detected in MRM experiment which has the 

concentration of lOOng/mL in human serum. [114] Besides, Q TRAP® is able to switch 

rapidly between triple quadrupole and linear ion trap mode, making it possible to carry 

out MRM-initiated detection and sequencing (MIDAS). MIDAS, first developed for the 

identification of phosphorylation site on the yeast cell cycle proteins, consists of 

standard M R M experiment and a full-scan product ion to confirm the identity of the 

parent ion, especially for peptide post-translational modifications. [115] Positive MRMs 

trigger an MS/MS experiment to confirm the nature and modification site. It is a more 

sensitive approach due to efficient duty cycle and reduced background signal. Although 

M R M technique shows promising result in the quantitation limit, it still faces lots of 
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limitations that hinder the development of this technique. Detection of low abundance 

proteins which is always masked by high abundance proteins remains the main 

challenge for MRM. It remains unclear the potential of MRM to detect and quantify 

trace amount of protein in a "sea" of high abundance proteins which cover about 99% of 

the total protein. Though there are several depletion methods for enrichment of low 

abundance proteins, it showed that depletion couldn't increase the number of peptide 

transition detected. [116] In addition, designing and validating individual peptide 

transition is a major bottleneck of MRM. In silico methods are available to derive the 

possible MRM transition based on the theoretical rules and empirical observation of the 

target peptide, however, Anderson et al showed that by using in silico method to derive 

peptide transition, only 11 of 30 proteins were identified, indicating that in silico method 

is not reliable enough for transition determination. [116] 

1.3.5 Applications of proteomics to discovery of biomarkers for diagnosis of liver 

fibrosis 

Only few studies used SELDI ProteinChip technology to find biomarkers for the 

detection of HBV-associated liver fibrosis or cirrhosis. Zhu et al. found two markers, 

7,772 and 3,933 m/z, for detection of HBV-induced liver cirrhosis using SELDI 

technology. Two markers were found to be down-regulated in liver cirrhosis group. The 

decision tree model achieved good accuracy (80% sensitivity and 81.8% specificity) 

with 75% positive predictive value. [117] Another study conducted by Cui et al., two 

differential protein peaks (2,050 and 3,166 m/z) were found for detection of CHB with 

100% sensitivity and 86.5 % specificity. [118] Poon et al. reported 30 protein features 
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together with several routine laboratory parameters were included in artificial neural 

network (ANN) model. With a cut-off of 3.0, the ANN model attained good accuracy 

(96% sensitivity, 89% specificity) for detecting liver fibrosis. [119] Though these 

studies reported models with good diagnostic accuracy in their study group, the 

identities of these protein markers were still unknown and the calculation of these 

models were so complicated for clinical use. 
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Rationale and Objectives of the Project 

There is a lack of sensitive and specific serum markers for diagnosis of liver 

fibrosis. Our recent pilot study showed that serum proteomic fingerprint identified by 

the ProteinChip SELDI technology might allow diagnosis of liver fibrosis in CHB 

patients with high accuracy. Unfortunately, the non-recovery nature of the ProteinChip 

SELDI prohibited the identification of the proteomic features forming the diagnostic 

fingerprint. Hence it was important to develop a new technology comparable to the 

ProteinChip SELDI, but it allows purification of the proteins corresponding to the 

proteomic features in parallel. 

The objectives of this research project are: 

1 To develop a magnetic beads-based proteomic profiling method for quantitative 

proteomic profiling and micro-purification in parallel; 

2 To develop a proteome-based fingerprinting model for detecting liver fibrosis in 

patients with chronic hepatitis B infection 

3 To uncover the protein identities of proteomic features forming the diagnostic 

fingerprint 
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Section 1 Method development of magnetic beads-based proteomic 

profiling for quantitative proteomic profiling and micro-purification in 

parallel 

1.1 Introduction 

High throughput quantitative serum profiling method is a useful tool for 

biomarker discovery and is a potential blood test for disease diagnosis/prognosis. By 

comparative proteomic approach, new disease- associated biomarkers can be discovered 

for clinical use. 2-D PAGE was a traditional technique used in biomarker discovery. 

Though it can effectively separate hundreds to thousands of proteins on the gel, low 

throughput and lack of reproducibility are still the main limitations on 2-D PAGE which 

makes it unsuitable for high throughput screening. 

In the past 10 years, there was an overwhelming interest in using SELDI 

technology in biomarker discovery. It is a variant of MALDI-TOF MS used to retain a 

subproteome on the functionalized affinity surface. Proteins retained on the SELDI chip 

are then directly analyzed by MALDI-TOF MS to generate a proteomic profile. By 

using statistics methods, differential proteomic features can be found for the underlying 

diseases. Though biomarker can be reproducibly detected and quantified by the SELDI 

technology even not knowing the protein identity, for clinical use, knowing the protein 

identity is indispensable so that the protein-protein interaction or disease pathologies can 

be understood. The main drawback of the SELDI technology is the retained proteins 

cannot be recovered for further protein identification and analysis. Independent time-

consuming small-scale chromatography needs to be performed to purify the 

corresponding proteins for subsequent protein identification work. Protein identification 
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is usually the bottle-neck in most of the biomarker studies employing the ProteinChip 

SELDI technology. In addition, there are several limitations of the SELDI technology, 

for example, high cost, high susceptibility to identify false-significant biomarkers due to 

systemic bias and sensitive to small changes of experimental procedures and analytical 

variables. [120] Also, competition between large and small proteins occurs during 

sample binding on a small chromatographic surface. 

On the other hand, instrument performance plays an indispensable role in 

quantitative serum profiling. The instrument sensitivity greatly affects the possibility of 

detecting low concentration of proteins on the spot. In addition, stable instrument 

performance can give reproducible MS spectra, reducing variations during MS analysis. 

In this section, we aimed to develop a magnetic bead-based proteomic 

fingerprinting method which was comparable to ProteinChip SELDI technology, but 

allowed quantitative proteomic profiling and microscale purification of the profiled 

proteins in parallel. The performance of the instrument, reproducibility of the proteomic 

profile and the feasibility of protein identification of the MS peak were examined. 
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1.2 Materials and methods 

1.2.1 Biological specimen 

Blood was collected from a healthy volunteer with consent. The blood was 

clotted at room temperature for 30 minutes, and centrifuged at 3000xg for 15 minutes. 

The serum was stored in 10 |liL aliquots at -80 °C before analysis. 

1.2.2 Automated platform for protein capture with magnetic beads 

To improve reproducibility and achieve a high throughput, the capture 

procedures were automated by using the KingFisher 96 magnetic particle processor 

(ThermoFisher), which could process 96 samples per run. Figure I showed the 

schematic diagram of the whole magnetic bead-based serum profiling procedure. 

1.2.3 Capture of hydrophobic serum proteins 

serum was diluted and inactivated with 198|xL of binding buffer (0.9% 

sodium chloride (NaCl) containing 0.1% trifluoroacetic acid (TFA)). 0.5 mg of C18 

magnetic beads in 10 ^L (Dynabeads RPC18, Invitrogen) were pre-washed sequentially 

with 90|liL of pure acetonitrile (ACN) and lOO^iL of binding buffer. 80|liL of diluted 

serum samples were mixed with the washed C I8 beads for 10 minutes. The C I8 beads 

were then washed 3 times with lOO^L of 0.2% TFA. Finally, the captured proteins were 

eluted with 60|liL of universal elution solution (50% ACN containing 0.2% TFA). 

1.2.4 Capture of anionic serum proteins 

2^iL serum was first denatured by adding 8|iL of UC buffer (9M Urea, 2% 

CHAPS, 2.5mM Tris-base, lOmM Tris-HCl). After incubation at room temperature for 

30 minutes, the denatured serum samples were diluted with 190^L of pH 8 phosphate 
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binding buffer (20 mM sodium phosphate, 30% ethanol, pH 8.0). 0.5 mg of SAX 

magnetic beads in 10 [iL (Dynabeads SAX, Invitrogen) were mixed with 60|iL of 1.5 M 

NaCl and 30 |xL of ethanol for prewashing, and then washed with 100 ^L of pH 8 

phosphate binding buffer. SOjiL of diluted serum samples were mixed with the washed 

SAX beads for 10 minutes. The SAX beads were then washed with pH 8 phosphate 

binding buffer, followed by 3 washes with washing buffer (2.3^M ethanolamine, 30% 

ethanol, pH 9.0). Finally, the anionic proteins were eluted with 60|iL of universal elution 

solution. • 
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Figure 1. Schematic diagram of the magnetic bead-based serum proteomic profiling method for parallel 

analytical analysis and micropreparative purification. In the C I 8 assay, serum was diluted and inactivated 

with 0.9% NaCl containing 0.1% TFA; in the SAX assay, the serum was denatured with urea-CHAPS 

(UC) buffer. All the binding and washing procedures were performed automatically with a 96-sample 

magnetic particle processor. 
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1.2.5 Evaluation of the performance of linear MALDI-TOF MS 

The performance of PCS 4000 ProteinChip reader (Bio-Rad Laboratories) was 

evaluated by using ProteinChip OQ Kit (Bio-Rad Laboratories). Unless specified, all 

testing peaks were selected on the spectra and peak information was exported and pasted 

on ProteinChip SELDI OQ form for calculation. ProteinChip detector qualification array 

was used to test the detector sensitivity of PCS 4000 ProteinChip reader. Two different 

concentrations (lOfmol and MOfmol) of immunoglobulin (IgG) were analyzed and the 

corresponding signal-to-noise ratio (S/N) was measured. 1 of 1 partition was used for 

MS analysis. For high concentration, it passed if S/N was greater than 1,000. For low 

concentration, it passed if S/N was greater than 5. ProteinChip peptide standard array 

was used for mass drift, resolution and mass accuracy tests. 1 of 4 partitions was used 

for MS analysis for these three tests. Mass drift and resolution was measured on insulin 

peak (5.96 kDa). It passed if the mass drift was less than 7 Da and average resolution 

was greater than 750. Resolution was further assessed on arg-8-vasopressin peak (1.08 

kDa). It passed if the resolution was greater than 1,000. Mass accuracy of the system's 

internal and external calibration was tested on arg-8-vasopressin (1,084.247 Da), 

somatostatin (1,637.903 Da), dynorphin A (2147.5 Da), ACTH (2,933.5 Da), beta 

endorphin (3,465 Da), arg-insulin (5,963.8 Da) and cytochrome C (12,230.92 Da). For 

external calibration, it passed if the average mass within 0.1% of calibrant mass and 

pooled CV of <0.05. For internal calibration, it passed if the average mass with 0.01% 

of calibrant mass and pooled CV of <0.01. 
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1.2.6 Quantitative serum proteomic profiling by linear MALDI-TOF MS 

l|aL of eluate was spotted onto an 8-spot gold ProteinChip array (Ciphergen 

Biosystems) in duplicate. 0.5|xL of sinapinic acid matrix (13mg/mL sinapinic acid 

dissolving in 50% ACN/ 0.5% TFA) (Sigma-aldrich) was added by using of nano-liter 

non-contact dispenser (BioDot AD3050) and air-dried in a chamber with humidity 

control at 80%. Another 0.5灿 of sinapinic acid matrix was added and air-dried. The 

gold ProteinChip array was subjected to the PCS4000 ProteinChip reader (Bio-Rad 

Laboratories) to determine the masses and intensities of all the peaks over the m/z range 

from 1,000 to 250,000 m/z. Two acquisition protocols were used for low and high mass 

ranges. Intensities of peaks between 1,000 and 20,000 m/z were obtained at a laser 

power of 6,000nJ and the focus mass was 8,000 m/z; intensities of peaks between 

10,000 to 250,000 m/z were obtained at a laser power of 10，000nJ and the focus mass 

was 80,000 m/z. The mass spectra were externally calibrated with a mixture of 

peptide/protein standards (angiotensin, 1,296.51 m/z; ACTH (clip 1-17), 2,093.46 m/z; 

ACTH (clip 18-39)，2465.72 m/z; double charged horse apomyoglobin 8475.8 m/z; E. 

coli Thioredoxin, 11673.5 m/z, horse apomyoglobin, 16951.6 m/z; bovine serum 

albumin, 66430 m/z; bovine serum albumin dimer, 132861 m/z) (Applied Biosystems). 

The common peaks among the mass spectra were identified and quantified using the 

Biomarker Wizard software (Bio-Rad Laboratories). The peak intensities were 

normalized with the total ion current, and subsequently with the total peak intensities. 
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1.2.7 Reproducibility analysis of magnetic bead-based protein spectra 

The peaks with normalized intensities > 0.15% of total peak intensities were 

used to evaluate the reproducibility of magnetic bead-based mass spectra. Same serum 

sample was subjected to quantitative proteomic profiling in at least 20 replicates in a 

single experiment for assessing the intra-assay (i.e. within assay) error. For assessing 

interassay (between assays) error, same serum sample was subjected to quantitative 

proteomic profiling for at least 15 times on different days. For each peak, the intra-assay 

and interassay coefficients of variation (CVs) of the normalized - intensities were 

calculated according to the standard formula (CV = standard deviation / mean value). 

1.2.8 Non-reducing 2-D gel electrophoresis 

Eluted protein sample was dried at 45 using speedvac concentrator 

(Enppendorf) and reconstituted with ISS^iL of rehydration buffer (8M Urea, 2% CHAPS, 

0.2% Biolyte 3-10 ampholyte, 0.001% bromophenol blue, ImM EDTA). An 

immobilized pH gradient (IPG) strip (11cm 3-lONL, Bio-Rad Laboratories) was 

rehydrated with the sample overnight. For the first dimension lEF separation, the 

running condition was as follows: lOOV for lOmin, 250V for 65min, 500V for 25min, 

lOOOV for 40min, and finally 8000V for MOmin. Second dimension SDS-PAGE was 

performed on 4-12% Bris-Tris po 1 yaery 1 amide gels (Bio-Rad Laboratories) and the 

proteins were separated at 200 V for 40min in ice bath. The 2D gel was then stained 

with silver nitrate using Amersham PlusOne silver staining kit (GE Healthcare) with 

some modifications to reduce the loss of proteins with MW < 10 kDa. The gel was fixed 

in 40% methanol/10% acetic acid for 30 min and then sensitized by thiosulfate solution 
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with 25% w/v Glutardialdehyde. Washed with 30% ethanol for 15 min, the gel was 

immersed with silver solution in 30% ethanol and 37% w/v formaldehyde for 1 hr. The 

gel was washed with Milli-Q water for Imin for 3 times and then developed in sodium 

carbonate solution with 37%w/v formaldehye. The development was stopped by EDTA 

solution and the gel was rinsed with Milli-Q water for 3 times before performing image 

analysis with GS-800 calibrated densitometer (Bio-Rad Laboratories). 

1.2.9 Protein identification of eluted proteins 

Protein spots were excised from silver stained gels. The gel pieces were 

destained, reduced with 1.75% DTT, alkylated with 350 mM lAA, and digested with 

modified porcine trypsin overnight (Sequencing grade modified typsin from Promega, 

Madison, WI). The tryptic digest was harvested and cleaned up with CI8 ZipTips 

(Millipore). The cleaned tryptic peptides were subjected to MALDI-TOF/TOF MS 

(Applied Biosystems 4700 Proteomic Analyzer, Applied Biosystems) with a-cyano 4-

hydroxy cinnamic acid as matrix. The MS and MS/MS spectra were then processed with 

Data Explorer software (Ver. 4.4; Applied Biosystems). The spectra were subjected to 

gaussian smoothing with a filter width of 5 points, and the baselines were corrected with 

default settings. Peaks were detected based on a S/N > 15. The MS spectrum data were 

searched via the online ProFound search engine to obtain the protein identity by 

undertaking the peptide mass fingerprinting (PMF) approach. Tandem MS data were 

subjected to MS/MS ion search via the Mascot search engine to obtain the protein 

sequence of a particular peptide. For the search parameters, the 1 missed cleavage in 

trypsin digestion was allowed; partial oxidation of methionine, phosphorylation of 
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serine/threonine/tyrosine, and iodoacetamide modification of cysteine residues were 

selected. The error tolerance values of the parent peptides and the MS/MS ion masses 

were 200ppm and 0.5 Da, respectively. A protein identification result was considered 

valid when both PMF and MS/MS ion search identified the same protein as the 

statistically significant hit from the NCBInr database, and/or when MS/MS ion search 

identified at least tryptic peptides with sequences from the same protein as the 

statistically significant hits. 
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1.3 Results 

1.3.1 Serum proteome profiles obtained with different types of chromatographic 

magnetic beads 

Two different assays for profiling hydrophobic proteins and anionic proteins were 

successfully developed by using CI8 and SAX magnetic beads respectively. Different 

chromatographic magnetic beads resulted in different proteomic profiles (Figure 2 and 

3). CI8 hydrophobic beads captured more proteins in m/z 2000-8000 range than SAX 

beads. Peak at m/z 2750 was unique in CI8 assay. However, there was an exception in 

this range. Proteins at m/z 6,400 and 6,600 had greater affinities in SAX, giving 1.5 to 2 

times of the signal intensities compared with the hydrophobic condition. There was also 

a unique peak found in the SAX profiling assay at m/z 13,850 which cannot be found in 

C18 profiling assays. However, in high mass range, there was no obvious peak 

difference between the two profiles. The only difference was SAX beads captured the 

proteins in greater amount than C18 beads; the overall intensities from SAX profile were 

about 5 times greater than that of C18 beads. 

For the CI8 profiling assay, 88 peaks (74 peaks with normalized intensities > 

0.15% of total intensities) between 1,600 m/z and 20,000 m/z and 143 peaks (93 peaks 

with normalized intensities > 0.15%) between 20,000 m/z and 250,000 m/z were 

observed. For the SAX profiling assay, 65 peaks (54 peaks with normalized intensities > 

0.15%) between 1,600 m/z and 20,000 m/z and 74 peaks (46 peaks with normalized 

intensities > 0.15%) between 20,000 m/z and 250,000 m/z were observed. 
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Figure 2. Representative proteomic profiles obtained with different bead types at low mass range (1,000-

20,000 m/z). Top: CI 8 beads; Bottom: SAX beads. 
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Figure 3. Representative proteomic profiles obtained with different bead types at low mass range (10,000-

250,000 m/z). Top: C I8 beads; Bottom: SAX beads. 
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1.3.2 Performance of PCS 4000 ProteinChip reader 

All performance tests were passed. For detector sensitivity test, the average S/N 

for 140 fmol and 10 fmol were 1147.37 and 51.26 respectively. For mass drift and 

resolution test at 5.96 kDa, the mass drift and resolution were found to be 2.94 and 

817.67 respectively. For resolution at 1 kDa, the resolution was 1681.91. For external 

and internal calibration, the average mass of the calibrants was within 0.03% and 0.01% 

and the pooled CV was 0.023 and 0.005 respectively. Figures 4 - 7 showed the 

resulting spectra of each test. -
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Figure 4. Spectra showing different concentrations of IgG for evaluating detector sensitivity. Spots with 
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5800 6000 6300 

Figure 5. Spectra showing insulin peak (m/z 5,963 Da) for evaluating mass drift and resolution 
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Figure 7. Spectra showing arg-8-vasopressin (1,084.247 Da), somatostatin (1,637.903 Da), dynorphin A 
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1.3.3 Reproducibility of magnetic beads-based serum proteomic profiling 

The reproducibility of each profiling assay was assessed in terms of coefficients 

of variation of the normalized intensities of the protein peaks. The intra- and inter-assay 

CVs for the 2 assays were summarized in Table 2. The reproducibility of the 2 assays 

was similar, but it appeared that the SAX assay had the best performance. The 

normalized intensities of peaks at higher m/z range appeared to be more precise. The 

intra-assay and interassay CVs of different peaks within a proteomic profile were similar, 

and both in the range of 4 to 30%. Figures 8 and 9 showed representative spectra for the 

reproducibility of this magnetic bead-based approach. 
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Table 2. Reproducibility of quantitative proteomic profiles by using CI 8 and SAX beads. Intra-assay and 

interassay coefficients of variation (CVs) of the normalized intensity of each MS peak were calculated, 

and mean values of the CVs from multiple peaks were presented, 

api - number of replicates 
bThe peaks were ranked from the highest normalized intensities to the lowest. 

Intra-assay CV, % Interassay CV, % 
Bead type Mass range mean ( m i n : - m a x . � mean (min. - max ) 

n® ToplQb 11 丨 h_20th i f Top 10 1广-20"^ 
C18 1600-20,000 m/z 24(18-29)24(15-30) 25 (21-30)""“26(13-30) 

20 16 
20,000 - 250,000 m/z 14(8-21) 22 (14-30) 18(15-22) 20(14-29) 

SAX T2T6^)~ 一 “ " 2 4 ( 1 8 - 3 0 ) 
24 24 

20,000 - 250,000 m/z 8(4-17) 8(6-13) 14 (7-19) 16(10-22) 
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250,000) Bottom: Low molecular range {m/z 1000-20,000) 
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1.3.4 Gel electrophoresis of the eluted proteins 

50% ACN solution containing 0.2% TFA was successfully developed as the 

universal elution solution regardless of the types of functionalized magnetic beads used. 

Because it is a volatile solvent, it can be easily removed by speed vac. Then the dried 

proteins could be redissolved in any appropriate solvents for subsequently gel 

electrophoresis. The eluted proteins could be separated by non-reducing 2D PAGE for 

the ease of subsequent protein identification (Figure lOA). 

1.3.5 Identification of the protein peaks 

The protein identities of the protein spots in a 2D PAGE can be obtained by 

undertaking standard methods employing MALDI-TOF/TOF MS. The protein peaks in 

the mass spectrum could be easily matched with the protein spots with similar molecular 

weight to obtain their identities. Figure IOC is a typical example illustrating the proteins 

identified in the proteomic profile from a normal healthy subject, which were consistent 

to results previously reported by our team and by other teams using the SELDI 

ProteinChip technology for biomarker discovery. For example, the m/z 11685 peak were 

found to be serum amyloid A, which was consistent to what we found in a previous 

study in which SELDI ProteinChip technology was used. [121] 
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1.4 Discussion 

It is believed that low abundance and small proteins (< 15kDa) of the serum 

proteome contain important diagnostic information and should be a rich source of 

undiscovered biomarkers. However, tradition techniques like 2D PAGE, only allows the 

separation and quantification of proteins with molecular weight in a range of 10 to 

300kDa. [122] Lots of valuable diagnostic information may be lost if the sample is 

subjected to 2D PAGE analysis. This limitation has been overcome by the invention of 

the ProteinChip SELDI technology. However, low reproducibility and not applicable for 

protein identification hinders its development in biomarker discovery. 

To overcome the problems faced by the ProteinChip SELDI technology, magnetic 

bead-based quantitative serum profiling method was developed in the present study. An 

automatic platform was used to process different types of chromatographic magnetic 

beads, such as hydrophobic CI8 beads and strong cation exchange beads, to capture and 

release serum/plasma proteins with specific physicochemical properties. One microliter 

of the eluted proteins (60 uL) was directly spotted on a gold ProteinChip array in 

duplicate, overlaid with sinapinic acid, and finally subjected to the ProteinChip reader of 

SELDI-TOF MS system for acquiring the quantitative proteomic profile (i.e. mass 

spectrum), while the rest of the eluate was enough for subsequent protein identification 

experiments. The resulted proteomic profiles can be analyzed with existing informatic 

softwares for SELDI-TOF MS experiments. This method is cost effective, and can be 

easily adopted by those laboratories equipped with a SELDI-TOF MS system. 

The performance of magnetic bead-based method was comparable to the 

ProteinChip SELDI technology. Different types of ProteinChip arrays could produce 
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different proteomic profiles. Similarly, the use of different types of magnetic beads 

produced different proteomic profiles. Different profiles from CI8 and SAX beads 

illustrate that combined use of different magnetic bead-based profiling assays can obtain 

a more comprehensive proteomic profiles for biomarker discovery. C I8 beads were 

functionalized with CI8 alkyl groups which were hydrophobic in nature. It was used for 

reversed phase fractionation of complex protein/peptide mixtures. It was believed that 

the major proteins captured from CI8 beads were mainly hydrophobic proteins. As most 

proteins are hydrophobic due to long carbon chain, C I8 beads would than give a global 

profile for protein analysis. SAX beads were functional ized with strong anion exchanger 

which was used to adsorb anionic proteins. By using optimized pH (i.e. pH 8) for 

binding, proteins with their pi values below 8 would become negatively charged and 

captured on the magnetic beads. Washing steps were introduced to wash away any 

contaminants and non-specific binding proteins. The pH of the washing solution was 

prepared to have one pH unit above the binding solution (i.e. pH 9) to ensure only 

negatively charged proteins were adsorbed. This greatly enhances the specificity of the 

protein profile. This can explain why more peaks were found in C I8 protein profile and 

some unique peaks were found in either protein profile. With the combination of CI8 

and SAX profiling assays, proteins with different properties were captured and more 

information can be obtained for protein analysis. 

Instrument performance was important for acquiring good quality of mass spectra 

for further analysis. The detector sensitivity, resolution, mass drift and mass accuracy 

were the main factors affecting the quality of the mass spectrum. Failure in any one of 

these may cause wrong peak clustering or failure in detecting low abundance protein 
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peaks for data analysis. The performance of the PCS 4000 ProteinChip reader was 

evaluated using OQ kit (Bio-Rad Laboratories). All tests including detector sensitivity, 

mass drift, resolution and mass accuracy were passed, indicating the MALDI-TOF MS 

was in good condition for acquiring MS spectra for proteomic profiling. The detector 

sensitivity test showed that protein can be detected at lOfmol level with S/N greater than 

5. It showed the MALDI-TOF MS was sensitive enough for detection of low abundance 

proteins which were believed to be potential biomarkers. A severe mass drift may cause 

wrong peak clustering for data analysis which would led to make erroneous conclusion 

on the results. Mass drift of the spectra was therefore important to be evaluated. The 

mass drift between spectra was found to be negligible (2.94 Da) and wrong peak 

clustering was not likely occurred. Moreover, if the resolution of the MALDI-TOF MS 

was not good enough, proteins with similar molecular weight would merge to form one 

single peak, reducing protein peaks detected in the whole profile. The resolution at 1 

kDa was high even 3 other peaks were very close to the testing protein, arg-8-

vasopressin. The result showed that PCS 4000 ProteinChip reader was capable of 

detecting peak proteins with similar masses with high resolution. Mass accuracy was 

important in identifying the interested proteins in the spectra. External and internal 

calibration was carried out to ensure the experimental mass did not deviate too much 

with the theoretical mass. The result showed that the experimental mass was close 

enough with the theoretical mass. 

The reproducibility of peak intensities of magnetic bead-based profiling assays 

(both intra-assay and interassay CVs in range of 4 to 30%) was comparable to the values 

reported for the ProteinChip SELDI technology. [123][124] Alteroviz et al reported an 
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intra-assay CV of 28% for automatic procedure and an intra-assay CV of 45% when 

done manually. [123] Using a robotic sample-processing station, Semmes et al reported 

an intra-laboratory CV from 9 to 43%. [124] In the present study, the use of the 

automated magnetic particle processor for processing the magnetic beads and serum 

samples was one of the keys to achieve good reproducibility. Another automated 

machine used was the nano-liter non-contact dispenser for adding matrix chemical on 

the gold ProteinChip arrays, and the matrix drying step of the added matrix were well 

controlled in a humidity control chamber. It was found that amount of matrix added and 

the drying time could greatly affect the reproducibility. The use of automated machines 

helped to reduce assay-to-assay and person-to-person variations. This also explained 

why the intra-assay CVs and the interassay CVs of assays were very close. 

In addition, reproducibility is greatly governed by binding step which depends on 

the quality of the chromatographic surface. Compared with ProteinChip arrays, the 

functionalized magnetic beads can be manufactured in large single batch and distributed 

to different laboratories while the ProteinChip arrays have to be made one by one. 

Therefore, the quality of magnetic beads can be more easily controlled. 

Protein identification was done to demonstrate the feasibility of the magnetic bead-

based approach to obtain enough eluted proteins for both MS analysis and protein 

identification in one capture step. In contrast, the ProteinChip SELDI technology 

required additional samples and additional preparative purification steps to obtain 

protein fractions that were similar to those captured on the ProteinChip arrays. 

Another advantage of this profiling method is that magnetic bead-based assays are 

more sensitive than the ProteinChip-based SELDI assays. The binding capacity of 
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magnetic beads is much higher than that of ProteinChip arrays. Furthermore, the 

capability of a magnetic bead-based assay can be easily increased by using more 

magnetic beads. In this method, the magnetic beads were added in excess to avoid 

competition among the serum proteins for the binding sites, which happened in the case 

of ProteinChip SELDI technology. Study showed that the ProteinChip SELDI 

technology yielded fewer mass peaks than a profiling assay based on magnetic beads 

and MALDI-TOF MS using urine samples. [125] 

1.5 Conclusion 

A magnetic bead-based proteomic profiling method was successfully developed. It 

was comparable to ProteinChip SELDI technology, but allowed quantitative proteomic 

profiling and microscale purification of the profiled proteins in parallel. The resulted 

proteomic profiles can be analyzed with existing informatic softwares for SELDI-TOF 

MS experiments. It is a good alternative to ProteinChip SELDI technology for 

biomedical research. 
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Section 2 Development of a proteome-based fingerprinting model for 

detecting liver fibrosis in patients with chronic hepatitis B infection 

2.1 Introduction 

Liver fibrosis is the wound-healing scar due to liver injury such as chronic liver 

diseases. It can progress from liver fibrosis, cirrhosis and ultimately liver cancer. The 

prevalence of hepatitis B infection varies worldwide and the highest rates are seen in 

Asia. Each year, an estimated 500,000 people die of cirrhosis and liver cancer caused by 

chronic infection. CHB adult patients develop liver cancer at a rate of 5 % per decade 

which is approximately 100-fold higher than the rate among non-infected people. [126] 

Liver fibrosis is a reversible and appropriate treatment may reverse the liver 

fibrosis and prevent further complications. Clinical guidelines published by the 

American Association for the Study of Liver Diseases in 2007 recommended that 

patients with HBV DNA > 20,000 lU/mL and persistently or intermittently elevated 

ALT with age greater than 40 should be evaluated by liver biopsy. [127] Liver biospsy 

is the gold standard to ascertain the degree of liver injury. The main role of liver biopsy 

is to assist in deciding the need for antiviral therapy. Although antiviral treatment 

suppresses the viral replications effectively, complete eradication of HBV infection is 

rarely achieved with current available therapies. [128] Therefore, treatment monitoring 

is important to evaluate the treatment efficacy and consider the endpoint of therapy. Feld 

et al further pointed out that liver fibrosis was perhaps a stable marker for disease 

progression. However, liver biopsy is subject to sampling error and its invasive nature 

makes it impossible for repeated measurements. 
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Blood tests based on the biochemical and virological markers maybe more 

appropriate for treatment monitoring due to its non-invasiveness. Current blood tests 

such as FibroTest and hepascore have good accuracy for diagnosis of liver fibrosis and 

cirrhosis with an area under the ROC curve -0.8. [129][130] 

The formation of liver fibrosis causes disruption of liver architecture and loss of 

liver function. As proteins are mainly synthesized by liver, alternation of protein 

contents between disease and control groups may reflect the progression of liver disease. 

Blood is a good reservoir of proteins. It is believed that differential serum proteins can 

be found between disease and control groups by using comparative approach. Serum 

proteomic profiling is a useful tool in comparative proteomics and has been widely 

applied to biomarker discovery in different diseases such as breast cancer [131], liver 

cancer [132] and esophagus cancer. [133] 

Serum proteomic profiling can be obtained using 2-D PAGE and gel-free mass 

spectrometry-based technologies, such as ProteinChip SELDI technology. By 

comparing the protein spot intensities in the 2D gel images between disease and control 

groups, differential spots were excised for protein identification. White et al. identified 7 

differential proteins using 2-D PAGE/LC MSMS platform in a CHC-associated liver 

fibrosis study. [134] However, it is a time consuming procedure and subject to large gel-

to-gel variation which limits the sample size of the study. Gel-free mass spectrometry-

based technology was then served as an alternative for biomarker discovery. 

Certain protein markers were found to be associated with HBV-related liver 

fibrosis and cirrhosis using SELDI technology. [117-119] Serum protein markers may 

reflect not only liver function and inflammation but also other physiologic conditions of 
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liver fibrosis. Diagnostic models were constructed based on the differential protein 

markers. Though these reported models achieved good correlation with liver fibrosis 

(ROC curve area >0.8)，the unknown protein identities and complex diagnostic models 

made them less applicable for clinical use. 

In addition, most studies used treatment naive samples to construct diagnostic 

models, but seldom assess the accuracy of the diagnostic model using post-treatment 

samples. The accuracy of the model in detecting liver fibrosis after antiviral treatment 

remains unclear. Only treatment-independent diagnostic model can be used in treatment 

monitoring. For example, acute phase response proteins markers identified by SELDI-

TOF technology may not be useful in treatment monitoring as they can be easily altered 

by antiviral treatment. [135] In addition, hematologic abnormalities may occur after 

antiviral treatment. [126] As some of the current non-invasive diagnostic models consist 

of biochemical and hematological parameters, the accuracy of them may be affected. 

Further examination on these models using serum/plasma samples that were collected 

after the antiviral treatment should be done to assess the possible use in treatment 

monitoring. 

In this section, we aimed to identify the serum proteomic fingerprint, and 

develop a diagnostic model for the detection of liver fibrosis in patients with CHB 

infection using the magnetic bead-based proteomic fingerprinting approach developed in 

the first part of this M.Phil, study. The diagnostic model was validated in a second 

independent group of serum samples that were collected after antiviral treatment to 

investigate the its possible use in treatment monitoring. 
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2.2 Materials and methods 

2.2.1 Patient materials 

The current study included patients with CHB who were recruited or screened 

for other therapeutic trials as well as patients who were suspected of having active liver 

disease based on laboratory or radiologic investigations between 1998 to 2005 in the 

Prince of Wales Hospital, Hong Kong. All patients had compensated liver disease at the 

time of recruitment. Patients had received combined treatment of peginterferon and 

lamivudine, lamivudine or placebo treatment during the study period. Patients had 

received antiviral treatments for 1 year, and liver biopsy were collected 6 months after 

the termination of treatment. After obtaining informed consent, fasting blood samples 

were collected by venipuncture and liver function tests were carried out within 4 weeks 

prior to liver biopsy. All patients had been fasting for at least 6h before the blood 

sampling. Serum was stored at -80°C before proteomic profiling analysis. Clinical, 

biochemical and hematological data were recorded from each patient. Hematological 

and biochemical parameters (complete blood screens, coagulation tests, bilirubin, total 

protein, albumin, AST, ALT, alkaline phosphatase (ALP)) were measured by a Modular 

Analytic system (Roche Diagnostics). All patients gave written consent for use of these 

data for research purposes and use of these clinical samples for biomarker discovery was 

approved by the university ethics committee. 

Liver biopsies were obtained with 16-gauge Temno needles (Bauer Medical). 

The specimens were fixed with formalin, embedded in paraffin, and stained with 

hematoxylin-eosin. Liver tissues were at least 1.5cm in length with a minimum of five 
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portal tracts for diagnosis. Histological staging of liver fibrosis was assessed using Ishak 

fibrosis score by a single pathologist blinded for the clinical and proteomic data. 

A total of 214 randomly selected serum samples (104 treatment naive, 110 post-

treatment) were used in this study. 102 patients had both pre- and post-treatment 

samples; 2 patients had pre-treatment samples only and 8 patients had post-treatment 

samples only. 

Pre-treatment serum samples were used for construction of diagnostic models 

using magnetic-based proteomic profiling technology and post-treatment samples were 

used for independent validation, to examine the independence of the model upon anti-

viral therapy. 

2.2.2 Serum proteomic profiling 

Serum samples were analyzed by two types of magnetic beads, C18 and SAX, to 

capture hydrophobic and anion proteins respectively. An automated machine, Kingfisher 

96，was used for protein extraction in 96-well format for single run. The experimental 

conditions were briefly described. For C18 condition, serum was diluted and 

inactivated with 198|LIL of binding buffer (0.9% sodium chloride (NaCl) containing 

0.1% trifluoroacetic acid (TFA)). 0.5 mg of C18 magnetic beads in 10 ^iL (Dynabeads 

RPC18, Invitrogen) were pre-washed sequentially with 90)aL of pure acetonitrile (ACN) 

and lOO^iL of binding buffer. SO^iL of diluted serum samples were mixed with the 

washed C I8 beads for 10 minutes. The C I8 beads were then washed 3 times with 100|LIL 

of 0.2% TFA. Finally, the captured proteins were eluted with 60|iL of universal elution 

solution (50% ACN containing 0.2% TFA). For SAX condition, 2\iL serum was first 
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denatured by adding 8|LIL of UC buffer (9M Urea, 2% CHAPS, 2.5mM Tris-base, lOmM 

Tris-HCl). After incubation at room temperature for 30 minutes, the denatured serum 

samples were diluted with 190|iL of pH 8 phosphate binding buffer (20 mM sodium 

phosphate, 30% ethanol, pH 8.0). 0.5 mg of SAX magnetic beads in 10 ^iL (Dynabeads 

SAX, Invitrogen) were mixed with 60)iL of 1.5 M NaCi and 30 |iL of ethanol for 

prewashing, and then washed with 100 |LIL of pH 8 phosphate binding buffer. 80|NL of 

diluted serum samples were mixed with the washed SAX beads for 10 minutes. The 

SAX beads were then washed with pH 8 phosphate binding buffer, followed by 3 

washes with washing buffer (2.3|xM ethanolamine, 30% ethanol, pH 9.0). Finally, the 

anionic proteins were eluted with 60)iL of universal elution solution. 

2.2.3 Quantitative serum proteomic profiling by linear MALDI-TOF MS 

1|LIL of eluate was spotted onto an 8-spot gold ProteinChip array (Ciphergen 

Biosystems) in duplicate. 0.5)iL of sinapinic acid matrix (13mg/mL sinapinic acid 

dissolving in 50% ACN/ 0.5% TFA) (Sigma-aldrich) was added by using of nano-liter 

non-contact dispenser (BioDot AD3050) and air-dried in a chamber with humidity 

control at 80%. Another 0.5^L of sinapinic acid matrix was added and air-dried. The 

gold ProteinChip array was subjected to the PCS4000 ProteinChip reader (Bio-Rad 

Laboratories) to determine the masses and intensities of all the peaks over the m/z range 

from 1,000 to 250,000 m/z. Two acquisition protocols were used for low and high mass 

ranges. Intensities of peaks between 1,000 and 20,000 m/z were obtained at a laser 

power of 6,000nJ and the focus mass was 8,000 m/z; intensities of peaks between 

10,000 to 250,000 m/z were obtained at a laser power of 10，000nJ and the focus mass 

was 80,000 m/z. The mass spectra were externally calibrated with a mixture of 
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peptide/protein standards (angiotensin, 1,296.51 m/z; ACTH (clip 1-17), 2,093.46 m/z; 

ACTH (clip 18-39), 2465.72 m/z; double charged horse apomyoglobin 8475.8 m/z; E. 

coli Thioredoxin, 11673.5 m/z, horse apomyoglobin, 16951.6 m/z; bovine serum 

albumin, 66430 m/z; bovine serum albumin dimer, 132861 m/z) (Applied Biosystems). 

The common peaks among the mass spectra were identified and quantified using the 

Biomarker Wizard software (Bio-Rad Laboratories). The peak intensities were 

normalized with the total ion current, and subsequently with the total peak intensities. 

The duplicate normalized peak intensity measurements were averaged for further 

statistical analysis. 

2.2.4 Statistical analysis 

Serum samples were divided into two groups. Treatment naive samples were 

used as training group for both biomarker discovery and diagnostic model construction 

and post-treatment samples were used as validation group. The correlations among Ishak 

score, protein peak intensities obtained from magnetic bead protein profiles, age 

(calculated to the date of liver biopsy), circulating HBV DNA, haemoglobin level (HB), 

white blood cell count (WBC), platelet count (PLT), INR, total protein concentration, 

albumin concentration, bilirubin concentration, ALP, AST and ALT were analyzed by 

Spearman's rank correlation test. Mann-Whitney U and bivariate Spearman's rank 

correlation tests were conducted with SPSS 16.0 (SPSS, Inc, Chicago, IL). 

For the discovery dataset, 4 criteria should be fulfilled for a differential 

proteomic features. Firstly, the normalized protein peaks should be significantly higher 

or lower in patients with significant fibrosis than those patients without significant 
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fibrosis. 2-independent sample comparison tests were performed by using Mann-

Whitney U test. 2 groups were classified based on Ishak scores, Minimal fibrosis (Ishak 

score = 0，1 and 2) and typical fibrosis (Ishak score = 4，5 and 6) groups. Secondly, the 

normalized protein peaks should be associated with the progression of liver fibrosis. 

Spearman's rank correlation test was used to examine the correlations between 

proteomic features/serological parameters and the degrees of liver fibrosis. Thirdly, the 

proteomic features should be identified to be significantly associated with Ishak score at 

a false discovery rate (FDR) less than 5%. To assess the FDR, significance analysis of 

microarray (SAM) analysis was used (Stanford University, 161, 162). In the SAM 

analysis, "Quantitative" was selected in response type list, “ranks” was chosen in 

regression method, and 5,000 permutations were performed. Fourthly, the differential 

proteomic features should be significantly correlated with at least 1 of the 

serological/biochemical/clinical parameters to illustrate its biological relevance. 

Proteomic features showed statistically significant in all 4 tests were considered as 

potential biomarkers. 

2.2.5 Development of diagnostic model 

The potential proteomic, biochemical and serological markers were log2 

transformed before constructing diagnostic model. The log： values were subjected to 

multiple linear regression (forward stepwise) to formulate predictive models for 

detecting significant liver fibrosis. During model training, the potential proteomic, 

biochemical and serological markers were used as independent variables and Ishak score 

as dependent output variable. For the biomarker discovery group, the performance of the 
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predictive model was evaluated by 10 fold cross-validation. Briefly, all treatment naive 

cases were divided into 10 groups, the model was trained on 9 groups and the trained 

model was then used to test the case that had been left out. The process repeated until 

every case in the dataset had been used once as an unseen test case. The results were 

averaged across all cases to evaluate the prediction performance. Receiver Operating 

Characteristic (ROC) curves was used to assess the sensitivity and specificity of the 

diagnostic models in detecting significant fibrosis (Ishak score >2) and cirrhosis (Ishark 

score >4). The positive (PPV) and negative predictive values (NPV) were then 

calculated to investigate the diagnostic value of the predictive model. 

2.2.6 Independent validation of diagnostic model 

Independent validation was carried out using post-treatment data to evaluate the 

accuracy of the predictive model and examine whether the model was affected by 

antiviral therapy. The diagnostic value of the model was assessed by ROC curve 

analysis, and sensitivity, specificity, PPV and NPV in detecting significant fibrosis were 

calculated according to standard equations. 
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2.2.7 Comparison of the constructed diagnostic model with other non-invasive 

models 

Two non-invasive models constructed for detecting CHB associated liver fibrosis, 

Aspartate aminotransferase to platelet ratio index (APRI) [Hepatology 2003，38，518-26] 

and age-platelet index (API) [J Viral Hepatol 1997;4:199-208], were investigated, and 

their diagnostic performances were compared with our predictive model. APRI and API 

were calculated according to the following equation and procedure. 

Equation for calculating APRI: 

ADDi AST level/ULN ，，湖 
APRI = , , ^ 令 、 X 100 

Platelet counts (10 /L) 

Procedure for calculating AP index: 

1) Age (years): <30=0; 30-39 =1; 40-49 =2; 50-59 =3; 60-69 = 4; >70 =5 

2) Platelet count (10^/L): >225 =0; 200-224=1; 175-199 =2; 150-174 =3; 125-149 =4; <125 =5 

3) AP index is the sum of the age-platelet count index (possible value 0-10) 
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2.3 Results 

2.3.1 Patient characteristics 

For pre-treatment group, the mean (SD) of Ishak fibrosis score was 1.81 (1.55). 

10 patients had no fibrosis (Ishak score =0); 52 had minimal fibrosis (Ishak score =1); 

23 had mild fibrosis (Ishak score =2); 8 had moderate fibrosis (Ishak score =3 or 4); 6 

had severe fibrosis (Ishak score =5), and 5 had probable/ definite cirrhosis (Ishak score 

=6). The prevalence of significant fibrosis in discovery group was 18.27%. 

For post-treatment group, the mean (SD) of Ishak fibrosis score was 1.84 (1.76). 

14 patients had no fibrosis (Ishak score =0); 61 had minimal fibrosis (Ishak score =1); 9 

had mild fibrosis (Ishak score =2); 11 had moderate fibrosis (Ishak score =3 or 4); 7 had 

severe fibrosis (Ishak score =5), and 8 had probable/ definite cirrhosis (Ishak score =6). 

The prevalence of significant fibrosis in validation group was 23.64%. Minimal fibrosis 

was defined as Ishak score lower than 3 while significant fibrosis was defined as Ishak 

score greater than 3，indicating the presence of bridging fibrosis and/or cirrhosis. Table 3 

showed the distribution of fibrosis stages in both pre- and post-treatment groups. Results 

showed that the prevalence of significant fibrosis was similar in both training and 

validation groups. 

The demographic data of pre- and post-treatment groups were compared to find 

any differences in biochemical/ hematological data after antiviral treatment using two-

tailed Student-t test. To avoid multiple comparisons, p-value was adjusted using 

Bonferroni method and p <0.003 was considered as statistically significant. There were 

no significant difference in age, Ishak score, HB, WBC, PLT，INR, total protein and 

bilirubin concentration (p-values > 0.003). On the other hand, statistically significant 
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differences were found in PT, ALB, ALP, AST, ALT and HBV DNA. All these 

parameters except ALB were found to have lower level in post-treatment groups. 

Further evaluation was done on pre- and post-treatment dataset. The serum 

samples from patients with and without significant liver fibrosis were separated and 

investigated to evaluate the effects of the treatment on the serological/biochemical 

parameters. For patients without significant fibrosis, PT, INR, ALB, ALP, AST, ALT 

and HBV DNA were found to be statistically significant between pre- and post-

treatment groups (p-values < 0.003). For patients with significant fibrosis, ALB, AST 

and ALT were significantly different between pre- and post-treatment groups (p-values 

<0.003). All the comparisons in different groups were summarized in Tables 4-6. 
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Table 3 Distribution table of patients with different Ishak scores in pre- and post-treatment samples. 

N.A.= Not applicable 

Pre-treatment I Post-treatment “ 

Ishak score samples samples Pe r�=age 

(n=104) (Zo) (n=110) (,。） 

0 10 ^ 14 一 12.73 
1 — 52 50.00 61 55.45 

— 2 23 22.12 9 8.18 

3 — 2 1.92 4 3.64 
— 4 6 5.77 7 “ 6.36 

5 — 6 5.77 7 — 6.36 

一 6 — 5 4.80 8 •• 7.27 

— Mean 1.81 N.A. — 1.84 “ N.A. 一 

— SD 1.55 N.A. - 1.76 N.A. 

Prevalence of ^ 18.27 26 ^ 

significant Fibrosis 
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Table 4 A summary of demographic data of all patients in pre- and post-treatment samples, mean 

(SD) (*p <0.003) N.A = Not applicable 

Pre-treatment Post-treatment 

M ^ P - v — 

~Sex (Male/Femai^ 3.00 3.07 N.A. 

Age (yr) — 35.8 (10.0) 37.90(10.5) 0.136 

Ishak score 1.81 (1.55) 1.84 (1.76) a900 

一 HB (g/L) 14.83 (1.49) 14.86(1.55) 0 . 8 6 7 ~ 

WBC (107L) 6.45 (5.53) 6.18 (1.65) 0.633 — 

— P L T ( 1 0 ^ / L ) 一 183.51 (54.28) 203.79 (60.27) . “ 0.011 

PT (sec) — 11.07(0.83) “ 10.45 (0.64) "<0.0005* 

INR 一 1.07(0.08) _ 1.04 (0.07) 0.004 

"Total protein (g/L) 76.83 (4.53) “ 77.75 (5.03) ~~0.163 

ALB (g/L) 39.93 (3.20) 43.95 (3.21) <0.0005* 

Bilirubin (mg/dl) 10.42 (4.33) [ 1 1.35 (5.37) 0.165 

ALP (lU/L) 87.90 (24.84) 74.00 (22.79) <0.0005* 

AST (lU/L) 80.82 (51.27) _ 31.42 (21.17) "<0.0005* 

ALT (lU/L) 一 151.73 (103.48) 51.94 (59.04) ~ ^ 0 0 0 5 * 

— H B V D N A 5.71E+08(1.01E+09) I 4.84E+06 (1.91E+07) <0.0005* 
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Table 5 A summary of demographic data of patients with minimal fibrosis in pre- and post-treatment 

samples, mean (SD). (*p <0.003) N.A = Not applicable 

Pre-treatment I Post-treatment 

Minimal fibrosis Minimal fibrosis P-value 

Sex (Male/Femai^ 2.70 2.74 N.A. 

Age (yr) 34.69 (9.99) 35.92 (9.84) 0.424 

Ishak score 1.15 (0.61) 0.94 (0.52) 0.016 

HB (g/L) — 14.76(1.48) 14.66(1.63) 0.694 

WBC (107L) 一 6.52 (6.05) 6.40 (1.68) 0.863 

一 P L T ( 1 0 ' / L ) 一 191.96 (52 .78) 215.38 (58 .09) . ~ ~ 0 . 0 0 7 

— P T (sec) 10.93 (0.79) 10.28 (0.51) "<0.0001* 

— INR 1.07(0.08) 一 1.03 (0.05) — <0.0001*— 

"T^tal protein (g/L)— 76.79(4.82) — 77.94 (4.62) 0 . 1 14~ 

ALB (g/L) 40.22 (3.31) 44.08 (3.16) ~^.0001* 

Bilirubin (mg/dl) 9.98 (4.38) 10.69 (5.55) 0.354 

ALP (lU/L) 86.07 (24.19) 71.08 (21.08) <0.0001* 

一 AST (lU/L) 75.08 (48.44) — 30.54 (20.93) _ <0.0001* 

一 ALT (lU/L) — 149.93 (105.09) 48.70 (57.92) ~^.0001* 

HBVDNA 6.68E+08 (1.08E+09) 3.68E+06 (1.71E+07) <0.0001* 
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Table 6 A summary of demographic data of patients with significant fibrosis in pre- and post-treatment 

samples, mean (SD). (*p <0.003) N.A = Not applicable 

Pre-treatment Post-treatment 

Significant fibrosis Significant fibrosis P-value 

~Sex ( M a l e / F e m a ^ 5.33 5.00 N.A. 

Age (yr) 40.74 (8.48) 44.31 (10.36) 0.225~~ 

Ishak score 4.74(0.99) 4.73 (1.08) 0.985 

一 HB (g/L) — 15.14(1.55) 15.50(1.04) 0 . 3 4 7 ~ 

~ ~ W B C (1 07L) — 6.09(1.99) 5.46(1.36) — 0.212 

PLT jlOVh) 145.68 (44.88) 166.35 (52.22) . 0.172 一 

PT (sec) 一 11.68 (0.77) 11.01 (0.70) ~ 0 . 0 0 4 

INR — 1.12(0.08) — 1.11(0.07) 0.560~~ 

"Total protein (g/L) 77.00 (3.04) 77.11 (6.22) ~~0.941 

ALB (g/L) 38.63 (2.31) — 43.54 (3.42) "<0.0001* 

Bilirubin (mg/dl) 12.42 (3.52) — 13.50 (4.12) 0.362 

ALP (lU/L) 96.11 (26.72) 83.42 (25.84) 0.116 

AST (lU/L) 一 110.00 (53.24) 36.31 (22.72) "~0.001* 

一 ALT (lU/L) 一 159.79 (98.24) 62.38 (62.52) ~0.001* 

HBVDNA 1.49E+08 (3.14E+08) | 1.27E+07 (2.94E+07) 0.144 
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2.3.2 Correlation between biochemical/serological markers and the degrees of 

liver fibrosis 

4 significant serological markers (PLT, PT, bilirubin and HBV DNA level) were 

correlated with the degrees of liver fibrosis. PLT and HBV DNA were negatively correlated with 

the degrees of liver fibrosis while PT and bilirubin were positively correlated. List of differential 

serological/biochemical markers were summarized in Tables 7 and 8. 

2.3.3 Serum proteomic profiling by linear MALDI-TOF MS 

Protein profiles were obtained in two mass ranges, low (1,000 and 20,000 m/z) and high 

mass range (10,000 to 250,000 m/z). In CI8 profiles, 129 and 74 peaks were found in low and 

high mass range respectively. In SAX profiles, 69 and 81 peaks were found in low and high 

mass range respectively. 

2.3.4 Correlation of proteomic features with Ishak score 

5 differential proteomic features were associated with Ishak scores and 

significantly different in minimal and significant fibrosis groups. At a FDR < 5%, 4 of 

the differential proteomic features (9,165, 9,452, 10,045 and 12,243 m/z) were found 

from CI8 profiles and one (17,286 m/z) was from SAX profiles. Among 5 potential 

proteomic markers, 3 (9,165, 9,452 and 12,243 m/z) were down-regulated and 2 (m/z 

10,045 and 17,286) were up-regulated. List of differential proteomic features were 

summarized in Table 9. Representative spectra of individual peaks were shown in 

Figures 11-14. 
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Table 7 List of significant differential proteomic features (p <0.05, FDR<5%), mean (SD) 

Correlation ^ ^^alue Minimal Significant 

coefficient Spearman Mann- fibrosis fibrosis 

correlation Whitney U 

PLT -0.399 <0.0005 <0.0005 191.96 (52.78) 145.68 (44.88) 

PT 0 .349 " ~ ^ . 0 0 0 5 0.001 "“~IO.93 (0 .79) “ 11.68 (0 .77) 

Bilirubin 0.255 0 . 0 0 9 ~ 0.005 9.98(4.38) 12.42 (3.52) 

^ Q 6.67E+08- 1.49E+08 

DNA -0.369 0.002 0 .額 (1.08E+09) (3.14E+09) 
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Serological markers (r, p-value) 

WBC (0.255，0.009)，PT (-0.288，0.003)，INR (-0.311, 0.003)，Bilirubin (-0 212 

PLT ‘ 

0.03)， 

PLT (-0.288, 0.003)，INR (0.882, <0.0005), Bilirubin (0.325, 0.001), ALP 

PT 

(0.320,0.001), AST (0.339，0.002)，HBVDNA (-0.257, 0.033) 

HB (0.236，0.016), PLT (-0.212, 0.03)，PT (0.325, 0.001)，INR (0.327, 0.002), ALT 

Bilirubin 

(0.200，0.042)，AST (0.297，0.008) 

HBV D N A P T (-0.257, 0.033) ‘ 

Table 8 A summary of correlation of biochemical / serological markers (p <0.05) 
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Table 9 List of significant differential proteomic features (p <0.05, FDR <5%), mean (SD) 

Correlation p-'̂ aluQ Minimal Significant 

coefficient Spearman Mann- fibrosis fibrosis 

correlation Whitney U 

- 0 . 2 ^ 0 . 0 0 4 0.045 0 . 0116 ( 0 . 0047 ) 0 .0096(0 .0036) 

m/z 9452 ~~^324 0.001 0.025 0.0141 (0.0069)飞.0106 (0.0049)一 
" i ^ l 0 0 4 5 0.248 0 . 0 1 1 0 . 0 4 1 0.0235 (0.0105) 0.0282 (0.0123) 

1 ^ 1 2 2 4 3 -0.317 0.001~~ 0.02 0.0044 (0.0027) 0.0032 (0.0017) 

I 0.271 0.006 0.019 0.3290(0.1337) 0.3762(0.1322) 
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2.3.5 Correlation of significant proteomic features with serological markers 

4 significant proteomic features were correlated with serological markers. 

9,165 m/z was positively correlated with WBC (r = 0.200, p = 0.042). Two proteomic 

features, 10,045 and 12,243 m/z were associated with clotting factors. Proteomic feature 

10,045 m/z, which was up-regulated with the degree of liver fibrosis, was negatively 

correlated with PLT (r = 0.228, p = 0.02) and positively correlated with PT (r = 0.240, p 

=0.015). 12,243 m/z, a down-regulated marker, was negatively correlated with PT (r =-

0.208，p = 0.035) and INR (r = -0.223, p = 0.034) and positively correlated with PLT (r 

=0.228, p = 0.02). The correlation between proteomic features and serological markers 

were summarized in Table 10. These 4 proteomic features were then regarded as 

potential diagnostic markers. 
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Table 10 A summary of correlation of significant proteomic fearures and biochemical / serological markers (p 

<0.05) 

Proteomic 

Serological markers (r, p-value) 

feature 

m/z9165 WBC (0.200, 0.042) 

m/z 10045 PLT (-0.227，0.021), PT (0.240，0.015), “ 

m/z 12243 PLT (0.228, 0.02), PT (-0.208, 0.035), INR (-0.223，0.034)， ~ 

m/z 1 7 2 8 6 P L T (-0.183,0.013) 
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2.3.6 Construction of diagnostic model in detecting liver fibrosis and cirrhosis 

A total of 8 log2 of normalized potential protein markers and serological markers were 

selected to construct linear regression model (forward stepwise). Two protein markers 

(9,165 and 12,443 m/z) and PT were selected as the independent variables in the 

diagnostic model. The linear regression model was found to be Proteomic fibrosis index 

=-0.739*log2 (peak intensity of m/z 9165) - 0.398* log2 (peak intensity of m/z 12443) + 

3.689* log2 (PT) -19.09. For predicting liver fibrosis (Ishak score >2), the diagnostic 

model was useful in identifying cases with significant liver fibrosis in the CHB patients 

with AUROC = 0.758 (95% CI 0.640-0.875, p = 0.0005). At a high cut-off of 2.4693, 

the specificity and sensitivity were 88% and 42% respectively. At a low cut-off of 

1.5294, the specificity and sensitivity were 48% and 90% respectively. For predicting 

liver cirrhosis (Ishak score > 4)，the diagnostic model was useful in identifying cases 

with significant liver cirrhosis in the CHB patients with AUROC = 0.851 (95% CI 

0.743-0.958，p < 0.0005). At a high cut-off of 2.4693，the specificity and sensitivity 

were 88% and 64% respectively. At a low cut-off of 1.9762, the specificity and 

sensitivity were 66% and 91% respectively. 

2.3.7 Cross-validation of the diagnostic model using pre-treatment samples in 

detecting liver fibrosis and cirrhosis 

After 10 fold cross-validation, the diagnostic model showed similar performance. 

Our predictive index was consistent with Ishak score with a good correlation (r = 0.452, 

p < 0.0005) and a positive trend was shown in the boxplot. [Figure 15] 
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For predicting liver fibrosis, the diagnostic model was useful in identifying cases 

with significant liver fibrosis in the CHB patients with AUROC = 0.726 (95% CI 0.605-

0.846，p < 0.005)，indicating overfitting did not significantly exist in the predictive 

model. With the use of high (3.0844) and low cutoffs (1.3068)，the PPV and NPV were 

found to be 80% and 96% respectively. 

For predicting liver cirrhosis, the model was significantly useful with AUROC = 

0.825 (95% CI 0.709-0.941，p<0.0005). With the use of high (3.0844) and low cutoffs 

(1.8981)，the PPV and NPV of detection of liver fibrosis were found to be 80% and 98% 

respectively. Figure 15 showed a summary of ROC curves for both discovery and cross-

validation group in detecting significant liver fibrosis and cirrhosis. 
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Figure 15 Boxplot of the predictive index in pre-treatment group (Group 1: minimal fibrosis (Ishak score 

=0，1,2); Group 2: moderate fibrosis (Ishak score = 3，4); Group3: cirrhosis (Ishak score = 5,6)) 
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Figure 16 ROC curves of the diagnostic models in detecting significant fibrosis and cirrhosis in discovery 

group (pre-treatment). A) Liver fibrosis B) Liver cirrhosis C) 10 fold cross-validation for liver fibrosis D) 

10 fold cross-validation for liver cirrhosis 
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2.3.8 Independent validation of the diagnostic modd using post-treatment 

samples in detecting liver fibrosis and cirrhosis 

Post-treatment samples protein data was used to evaluate the independence of the 

diagnostic model to the anti-viral therapy. Our predictive index was consistent with 

Ishak score with a good correlation (r = 0.211’ p < 0.05) and a positive trend was shown 

in the boxplot. [Figure 17] 

For liver fibrosis, the diagnostic model was useful in identifying cases with 

significant liver fibrosis in the CHB patients with AUROC = 0.750 (95% CI 0.640-0.860, 

p < 0.0005)，similar to the performance in the pre-treatment discovery group. For 

predicting liver cirrhosis, the diagnostic model was useful in identifying cases with 

significant liver cirrhosis in the CHB patients with AUROC = 0.783 (95% CI 0.672-

0.894, p < 0.0005). Figure 18 showed the ROC curves of the diagnostic model in 

detecting liver fibrosis and cirrhosis. Same cutoffs were obtained in predicting fibrosis 

and cirrhosis with the same accuracy. With the use of high (2.7303) and low cutoffs 

(0.3427), the PPV and NPV for detection of liver fibrosis were found to be 75% and 

92% respectively. 
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Figure 17 Boxplot of the predictive index in post-treatment group (Group 1: minimal fibrosis (Ishak score 

=0，1,2); Group 2: moderate fibrosis (Ishak score = 3，4); Group3: cirrhosis (Ishak score = 5,6)) 
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Figure 18 ROC curves of the diagnostic models in detecting significant fibrosis and cirrhosis in validation 

group (post-treatment). A) Liver fibrosis B) Liver cirrhosis 
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2.3.9 Comparison against other non-invasive models in detecting liver fibrosis 

and cirrhosis 

The diagnostic performances of two non-invasive models, APRI and API, and 

our diagnostic model were compared. Our predictive model showed comparable results 

with the APRI and API models. For pre-treatment samples, both APRI and API models 

were useful in identifying cases with significant liver fibrosis in the CHB patients with 

AUROC = 0.791 and 0.781，respectively (p values=0.001). However, for post-treatment 

samples, the APRI model was not significantly useful in predicting post-treatment 

samples while API was still significantly useful (p=0.045). However, the AUROC of the 

API was dropped from 0.781 to 0.676. Our predictive model showed better and more 

stable performance in detecting post-treatment samples with an AUROC of 0.750. 

Proteomic model (m/z 9,165 and 12443) was constructed and compared with our 

reported diagnostic model (m/z 9，165，12443 and PT). The linear regression model was 

found to be Proteomic index = -0.827*log2 (peak intensity of m/z 9,165) - 0.513* log2 

(peak intensity of m/z 12,443) 一7 . 833 . For predicting liver fibrosis (Ishak score >2), the 

diagnostic model was useful in identifying cases with significant liver fibrosis in the 

CHB patients with AUROC = 0.676 (95% CI 0.546-0.807，p = 0.017). However, the 

proteomic model was not significantly useful in predicting post-treatment samples (p-

value >0.05). Figure 19 and Table 11 showed the ROC curves and comparison of the 

diagnostic accuracy between our diagnostic model, proteomic model, APRI and API 

using pre-treatment data respectively. Figure 20 and Table 12 showed the ROC curves 

and comparison of the diagnostic accuracy between our diagnostic model, proteomic 

model, APRI and API using post-treatment data respectively. 
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Figure 19 ROC curves of constructed diagnostic model, proteomic model, APRI and API models using 

pre-treatment samples. 

99 



Table 11 A comparison of AUROC of different non-invasive models using pre-treatment samples. (*p 

<0.05) 

、T . . , , a T 1 95 % confidence interval 
Non-invasive model AUROC p-value — . Tr ； — 

Lower bound Upper bound 

Our diagnostic model 0.726 0.002* 0.605 0.846 

Proteomic model “ 0.675 0.017* — 0.545 0.806 

— APRI 0.791 ~~0.001* 0.676 ~ 0.907 — 

— API 0.781 0.001* 0.638 0.925 一 
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Figure 20 ROC 
curves of constructed diagnostic model, APRI and API models using post-treatment 

samples. 
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Table 12 A comparison of AUROC of different non-invasive models using post-treatment samples. (*p < 

0.05) 

95 % confidence interval 

Non-invasive model AUROC p-value Lower~~ ~ “ ~~ 

bound Upper bound 

“Our diagnostic model 0.750 <0.0005* 0.640 0.860 

Proteomic model —0.621 0.066 0.500 0.743 

— APRI ~0.633 0.130 0.439 0.827 

API 0.676 0.045* 0.471 0.880 
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2.4 Discussion 

Currently there is no drug that can cure liver fibrosis directly though it is thought 

to be a reversible process. Antiviral therapy is mainly taken by patients with chronic 

hepatitis diseases to suppress or clear the virus load level so that the stress on the liver 

can be relieved and allow recovery on the fibrosis area. Several drugs were approved by 

the U.S. FDA and taken by patients with different treatment responses. In our study, 

patients were taken combined treatment of peginterferon and lamivudine, lamivudine or 

placebo treatment. Similar clinical trials studies [136-138] showed that decrease of PLT 

occurred during the anti-viral treatment, indicating the host responses might be affected 

by the medication. In our study approach, post-treatment samples were included and 

therefore a systematic evaluation on the serological parameters was done to investigate 

the effect of the antiviral treatment which might affect the diagnostic accuracy of the 

non-invasive models. 

Recently, there were 3 studies using SELDI technology to find biomarkers in 

detecting HBV-associated liver fibrosis. [117-119] Though the recruited patients had the 

same etiology, different differential proteomic features were reported. There are two 

reasons for this discrepancy. One explanation is that there are thousands of potential 

differential features in serum and the chance of two groups finding a common biomarker 

is low. However, it is unlikely to occur. Another more reasonable explanation is that 

those markers are subject to systemic bias. It is well known that the SELDI biomarkers 

are sensitive to experimental details or to serum storage condition even same condition 

was used. [139] 

Zhu et al. used peaks at m/z 7,772 and 3933 and Cui et al. selected peaks at m/z 
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2,055 and 3,166 for differentiating liver cirrhosis from healthy controls. Poon et al. 

reported 30 differential proteomic features and 7 of these together with serological 

markers were used to differentiate significant fibrosis. Compared our result with these 3 

studies, our results were only consistent with Poon et al. Two proteomic features (m/z 

9,498 and 9,714) were also found in our protein peaks list though these were not 

included in their diagnostic model. M/z 9,498 was believed to be m/z 9,452 in our study. 

This 9.5 kDa proteomic features showed negatively correlation with the Ishak scores in 

both studies. [119] 

The consistency with Poon et al. study was due to similar sample processing 

method and statistical design used. In our study and Poon et al., all samples were 

analyzed blindly without knowledge of the fibrosis stages. Pre-treatment samples were 

used for constructing diagnostic models. Spearman correlation test and SAM analysis 

were used to find differential proteomic features. SAM is a conservative multivariate 

bioinformatics test which allows the adjustment of median FDR and therefore a more 

reliable result could be achieved. Large proteomic data was usually encountered in 

proteomic profiling and more attention should be paid on multiple comparisons to avoid 

finding false differential markers by chance. Among 3 studies, only Poon et al. adopted 

the FDR approach and used correlation tests to search for differential peaks. Moreover, 

several SELDI studies also adopted this FDR concept in finding potential features from 

proteomic data. [140-142] Moreover, another criterion was set in our study. The 

differential proteomic features should be not only correlated with the degrees of liver 

fibrosis but also significantly higher or lower in patients with significant fibrosis. Mann-

whitney U test was used to find proteomic features which could differentiate between 
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with and without significant fibrosis. With these stringent criteria, the resulting 

differential proteomic features were therefore not likely identified by chance or selection 

bias. 

On the contrary, the discrepancy with these studies was due to several reasons. 

First, although all liver fibrosis/cirrhosis cases were HBV-associated, different controls 

samples were used. In Zhu et al. and Cui et al. studies, healthy patients were used as 

control while all recruited cases in Poon et al. were fibrosis cases from minimal fibrosis 

to cirrhosis which was the same as our study. It is obvious that different results can be 

obtained from different normal control. Second, different statistical designs can also 

give different results even using the same proteomic data. [143] Different statistical 

tools were used in model construction. Zhu et al. and Cui et al. used decision tree to 

construct the diagnostic models while Poon et al developed artificial neural network 

(ANN) models for prediction of liver fibrosis. Linear regression model was used in our 

study instead. This could explain that why the common differential peaks found in our 

study was not included in Poon et al. ANN model. 

In addition, previous studies of our team showed that case-control experiment 

design could lead to a discovery of a set of statistically valid differential proteomic 

features. However, only about 20% of them were genuinely associated with the diseases 

studied. [142][144] None of the previously published SELDI studies on discovering 

biomarkers for liver fibrosis had attempted to assess the biological relevance of the 

differential proteomic features. In the current study, in order to be considered as a 

potential diagnostic marker, the differential proteomic features needed to have 

association with at least 1 serological/biochemical biomarker reflecting liver function or 
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inflammation. This served as indirect evidence that the proteomic features had clinical 

meanings related to the liver fibrosis. Under these stringent criteria, only 4 proteomic 

features were found as potential markers in detecting liver fibrosis. 

In addition, the diagnostic model was validated with the post-treatment samples. 

To the best of our knowledge, none of the previously published SELDI studies provided 

this information. However, due to limited samples provided, most of pre- and post 

treatment samples were from the same patient group which might introduce sampling 

bias and confounding factors into our study. Sample heterogeneity between the pre- and 

post-treatment groups were studied and no difference was found in the mean fibrosis 

score and prevalence of the significant liver fibrosis between groups, showing there was 

no sample bias between discovery and validation groups. By comparing the biochemical 

and serological parameters between discovery and validation groups, result showed that 

significant differences were found in PT, ALB, ALP, AST, ALT and HBV DNA levels. 

This implied that the antiviral drugs effectively suppressed the viral load and some liver 

functions were recovered. 

Several preventative measures were done to avoid biased results caused by the 

nature of clinical samples used, sample storage conditions, experimental details, the 

mass spectrometric instrument, and/or bioinformatics analyses』143][145] All recruited 

patients, including non-liver fibrosis cases, were suffered from CHB infections. All 

serum samples were collected and processed in the same clinical center under the same 

laboratory settings. To ensure the quality of the serum samples, they were stored at -

80°C before analysis. 

For the diagnostic model construction, PT was the only serological/biochemical 
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markers included. PT is a blood test that measures how long it takes blood to clot. As 

all the clotting factors except factor VIII are produced by liver, the contents of these 

clotting factors will decrease if liver injury occurs. Therefore, measurement of PT is an 

indicator of liver function. People suffered from liver injury will have longer PT, 

showing that the liver lose its function to synthesize enough clotting factors for blood 

clotting. 

For pre-treatment group, the diagnostic model was useful in identifying cases 

with significant liver fibrosis in the CHB patients with AUROC = 0.726 (95% CI 0.605-

0.846，p < 0.005). Comparison between our diagnostic model and other non-invasive 

models in detection of liver fibrosis was performed. APRI, API and FibroTest (or 

Fibrosure in USA) were the non-invasive models developed for liver fibrosis and 

showed good accuracy in detecting liver fibrosis in some studies. Hongbo et al. reported 

that the AUROC of APRI in detection of liver fibrosis was 0.70 in a Chinese CHB 

cohort. [146] API, developed by Poynard et al mainly for CHC, [147] was evaluated by 

a Korean group in CHB cohort with AUROC = 0.751. [148] FibroTest (or FibroSure), 

constructed mainly for CHC-associated liver fibrosis, has been widely evaluated in the 

detection of liver fibrosis associated with different etiologies. A meta-analysis of 

FibroTest showed that the mean standardized AUROC was 0.84 (95% CI 0.82-0.87) and 

0.80 (95% CI 0.77-0.84) for patients with chronic hepatitis C and CHB, respectively. 

[149] As the sample size of this study was still small, it is difficult to conclude that the 

clinical performance of FibroTest was better than of our model in diagnosis of liver 

fibrosis in CHB patients. With available data, the diagnostic accuracy of APRI and API 

were calculated and compared with our diagnostic model. As two parameters included in 
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FibroTest equation such as GGT and a-2 macroglobulin were not available in our cohort, 

comparison between our diagnostic model and FibroTest could not performed. The 

AUROC of APRI and API were found to be 0.791 and 0.781 respectively which was 

consistent with recent studies. Our diagnostic model showed comparable result with 

these non-invasive models. 

However, from our result, APRI and API did not perform well in post-treatment 

samples with AUROC values of 0.633 (p = 0.130) and 0.676 (p = 0.045) respectively. It 

showed that these models were treatment-dependent. For APRI model, it performed well 

for pre-treatment samples but could not accurately classify significant fibrosis from 

minimal liver fibrosis patients. AST and PLT were involved in APRI model. As AST 

only reflected the liver injury, it did not represent the severe of liver fibrosis and the 

reduction of AST did not imply the reverse of fibrosis. In addition, AST was not 

significantly correlated with the degrees of liver fibrosis in our study. No significant 

difference was found between significant and minimal liver fibrosis group decreased its 

accuracy in APRI model. On the other hand, FibroTest was also found to be treatment-

independent. Poynard et al. reported that the AUROC for the diagnosis of advanced 

fibrosis was 0.76 both at baseline and after treatment. [150] Another longitudinal study 

indicated that the AUROC of FibroTest was 0.77 [151], showing stable performance 

upon antiviral therapy. It is worth noting the AUROC reported in these studies was 

similar to the value of our diagnostic model. Hence, we could conclude our diagnostic 

model and FibroTest both were useful in monitoring changes of liver fibrosis during 

antiviral treatment with similar accuracy. 

On the other hand, our diagnostic model consisted of PT as one of the parameters. 
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The accuracy of the model without PT was constructed and compared with our 

diagnostic model. It was found that the accuracy was dropped in model without PT 

parameter when classifying pre-treatment group. In addition, this model was unable to 

classify post-treatment group, indicating that PT was an important parameter in 

detecting liver fibrosis. 

For pre-treatment samples, the formed diagnostic model had a good accuracy in 

detecting liver fibrosis and cirrhosis. This allowed us to classify the liver fibrosis 

patients into 3 different risk categories with the use of high and low cut-offs, 3.0844 and 

1.3068. For those predictive score > 3.0844，they will be classified as high risk of liver 

fibrosis. Suspended patients with predictive score within 1.3068 and 3.0844 will be 

classified as medium risk. Those patients with predictive score < 1.3068 will be 

classified as low risk group. The positive predictive value for liver fibrosis in high risk 

group is 80%. This means 20 % of the cases with a positive blood test are false positive. 

Serious follow up, such as histological examination of liver biopsy, should be given to 

this group of high risk patients. For patients in medium risk group, they should be 

subjected to transient elastography for further examination. On the other hand, the 

negative predictive value in the low risk group is 96%, meaning that only 4 % of 

patients will be wrongly classified as low risk group. Low risk group will be excluded 

from both liver biopsy and antiviral treatment. For this group of patients, less aggressive 

follow-up, such as monthly blood test, can be provided. 

Though the model was treatment-independent, different cut-offs were set for pre-

and post-treatment. Another interesting finding was that same cut-offs were obtained for 

detecting fibrosis and cirrhosis. With the use of high and low cut-offs, 2.7303 and 
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0.3427, 3 different risk categories were made. For those predictive score > 2.7303, they 

will be classified as high risk of liver fibrosis. Suspended patients with predictive score 

within 0.3427 and 2.7303 will be classified as medium risk group. Those patients with 

predictive score < 0.3427 will be classified as low risk group. The negative predictive 

value in the low risk group is 92%, meaning that only 8 % of patients will be wrongly 

classified as low risk group. Low risk group will be excluded from both liver biopsy and 

antiviral treatment. For patients in medium risk group, they need to take liver biopsy for 

histological examination. 

For both treatment naive and post-treatment cases, it is worth nothing that similar 

high cut-off was obtained for both fibrosis and cirrhosis diagnosis. It may be due to the 

fact that our model was more applicable to detect liver cirrhosis than liver fibrosis. It 

might imply that our model was suitable in detecting liver cirrhosis instead of liver 

fibrosis. Another possible reason was due to the similar sample characteristics, the 

number of cases in fibrosis and cirrhosis groups were so similar that it was possible to 

get identical cut-offs with the same accuracy in these two groups. The model should be 

further investigated with larger sample group to confirm the reason for this phenomenon. 

However, the significant positive correlation between our predictive index and Ishak 

score strongly suggested that our model was useful for detecting both liver fibrosis and 

cirrhosis. 

Different cut-offs between pre- and post-treatment could be explained by the 

different values of PT and the peak intensities in pre- and post-treatment groups even at 

the same fibrosis stage. This was also due to small sample size issue and the cut-off 

values carried certain degrees of error, making different cut-off values in two groups. On 
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the contrary, as the AUROC values were similar, the diagnostic performance of the 

model was not greatly affected. Further studies with larger sample size are needed 

before we could decide whether different cut-offs should be set for pre- and post-

treatment groups. 
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2.5 Conclusion 

Using the in-house magnetic bead-based proteomic profiling assays, 4 potential 

proteomic markers were found for the diagnosis of liver fibrosis in CHB patients. A 

diagnostic model composed of 2 proteomic markers (m/z values of 9,165 and 12,443) 

and PT was constructed. Independent validation showed the diagnostic performance of 

this model was comparable to those non-invasive diagnostic models previously 

published. However, it appeared that our model was more superior because our model 

maintained similar diagnostic performance for the serum samples collected after 

antiviral treatment. 
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Section 3 Identification of proteomic features to form diagnostic 

fingerprint for the detection of liver fibrosis in patients with chronic 

hepatitis B infection 

3.1 Introduction 

As mentioned, SELDI has become a useful tool in proteomic profiling for different 

diseases in biomarker discovery. However, only knowing the mass values of the 

differential protein peaks limits its usefulness and significance in clinical field. Wu et al. 

discovered 45 differential protein peaks between HBV-related hepatocelluar carcinoma 

(HCC) and liver cirrhosis groups. [152] Among them, two protein features (m/z 9,297 

and 29,941) and AFP were selected to form a diagnostic model with 79.3% sensitivity 

and 90.0% specificity. As the protein identities were unknown, the validity and 

significance of protein biomarkers could not be evaluated. Furthermore, without 

differential peak identities, it was impossible to study why such abnormalities would 

occur and how the disease enhances such effects. This was well illustrated by Liu et al. 

[153] Factor analysis was performed from SELDI MS data to characterize serum low-

molecular weight proteins/peptides in liver injury. A group of proteins/peptides was all 

down-regulated in hepatitis serum samples and factor analysis showed that they were 

highly correlated and influenced by the same factor. However, since the protein 

identities of these protein group as well as their chemical properties were unknown, it 

was not possible to draw definite conclusion regarding the nature of the peaks and 

factors. 

Also, protein identity could provide evidence that the differential protein peaks 

were not artifacts which were common in biomarker discovery studies. In addition, 
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doubly or triply charged protein signals were usually occurred in SELDI-TOFMS. 

Sometimes the same protein with different charges may be selected in the same 

diagnostic model which could affect the diagnostic accuracy. [154] On the other hand, 

wrong classification of a protein as a multiple charged species can lead to a loss of 

useful information. The only solution was protein identification of the interested peaks. 

Kanmura et al. found a numbers of peaks that might represent doubly charged peaks. 

They suspected that the differential peaks at 4,067 m/z might be the doubly charged 

form of the 8,138 m/z peak. Surprisingly, after protein identification, they concluded 

that the peak at 4,067 m/z did not appear to be the doubly charged of 8,138 m/z peak. 

This demonstrated that protein identification was indispensable for biomarker discovery 

before concrete conclusion could be made. 

The major limitation of SELDI technology was that the retained proteins on the 

proteinchip could not be recovered for protein identification. Other purification 

techniques were needed to enrich the corresponding proteins. This made the whole 

procedures complicated and tedious. Several approaches had been reported to enrich the 

interested proteins. Zinkin et al enriched the interested SELDI peak by using a spin 

column containing Q Ceramic HyperD F beads. The column was washed thrice with 

50mmol/L Tris (pH9) and incubated with diluted serum (40^iL serum + 500jxL 

50mmol/L Tris (pH9) for 90 minutes. The column was then washed with 150|iiL of 

50mmol/L Tris (pH9) twice and the flow through pooled and dried in a Speedvac 

centrifuge for 1-D SDS PAGE. Wu et al proposed that the biomarkers could be purified 

by using affinity capture, anion exchange, size exclusion and reversed-phase 

chromatography depending on their individual biochemical properties. [132] 5 mL of 
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serum was first subjected to blue sepharose to deplete albumin, the remaining proteins 

were then separated by CI8 reverse-phase chromatography. The purified biomarkers 

were further digested and subjected to ESI-MS/MS for sequence identification. 

Alternately, the fractions obtained from liquid chromatography could be further 

separated by SDS PAGE. The interested band was then excised, digested and identified 

by MALDI-TOF-MSMS. Another approach was ACN precipitation reported by He et al. 

[155] Pure ACN was added to 200(iL of serum to remove high molecular weight 

proteins. The supernant was then concentrated for 2D-PAGE analysis. All methods 

required large amount of serum which might not be affordable by many research groups 

as patient samples were limited. 

Western blotting and immundepletion/immunoprecipitation was usually followed 

to confirm the protein identity of the interested peak. [156] Furthermore, immunoassays 

were also done to confirm the identities of the biomarkers and evaluate the feasibility of 

using these biomarkers for clinical use. [135] 

In this section, we aimed to identify the protein identities of the protein features 

selected in the diagnostic model by using the developed methodology mentioned in 

section 1. The validity of the protein identity to the targeted peak was then confirmed by 

immunodepletion. The concentrations of the biomarkers were then further quantified by 

immunoassay. 

3.2 Materials and methods 

3.2.1 Non-reducing 2-D gel electrophoresis 

Proteins eluted from the magnetic beads was dried at 45 °C using speedvac 

concentrator (Enppendorf) and reconstituted with 185^L of rehydration buffer (8M Urea, 
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2% CHAPS, 0.2% Biolyte 3-10 ampholyte, 0.001% bromophenol blue, ImM EDTA). 

An immobilized pH gradient (IPG) strip (11cm 3-10NL, Bio-Rad Laboratories) was 

rehydrated with the sample overnight. For the first dimension IEF separation, the 

running condition was as follows: 100V for lOmin, 250V for 65min, 500V for 25min, 

1000V for 40min, and finally 8000V for 140min. Second dimension SDS-PAGE was 

performed on 4-12% Bris-Tris polyacrylamide gels (Bio-Rad Laboratories) and the 

proteins were separated at 200 V for 40min in ice bath. The 2D gel was then stained 

with silver nitrate using Amersham PlusOne silver staining kit (GE Healthcare) with 

some modifications to reduce the loss of proteins with M W < 10 kDa. The gel was fixed 

in 40% methanol/10% acetic acid for 30 min and then sensitized by thiosulfate solution 

with 25% w/v Glutardialdehyde. Washed with 30% ethanol for 15 min, the gel was 

immersed with silver solution in 30% ethanol and 37% w/v formaldehyde for 1 hr. The 

gel was washed with Milli-Q water for lmin for 3 times and then developed in sodium 

carbonate solution with 37%w/v formaldehye. The development was stopped by EDTA 

solution and the gel was rinsed with Milli-Q water for 3 times before performing image 

analysis with GS-800 calibrated densitometer (Bio-Rad Laboratories). 

3.2.2 Protein identification of eluted proteins 

Protein spots were excised from silver stained gels. The gel pieces were 

destained, reduced with 1.75% DTT，alkylated with 350 mM IAA, and digested with 

modified porcine trypsin overnight (Sequencing grade modified typsin from Promega, 

Madison, WI). The tryptic digest was harvested and cleaned up with C I8 ZipTips 

(Millipore). The cleaned tryptic peptides were subjected to MALDI-TOF/TOF MS 
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(Ultraflex-III, Bruker Daltonics) with a-cyano 4-hydroxy cinnamic acid as matrix. The 

MS and MS/MS spectra were then processed with Data Explorer software (Flex analysis 

3.0). The spectra were subjected to Gaussian smoothing with a filter width of 5 points, 

and the baselines were corrected with default settings. Peaks were detected based on a 

S/N > 15. The MS spectrum data were searched via the online Mascot search engine to 

obtain the protein identity by undertaking the peptide mass fingerprinting (PMF) 

approach. Tandem MS data were subjected to MS/MS ion search via the Mascot search 

engine to obtain the protein sequence of a particular peptide. For the search parameters, 

the 1 missed cleavage in trypsin digestion was allowed; partial oxidation of methionine, 

phosphorylation of serine/threonine/tyrosine, and iodoacetamide modification of 

cysteine residues were selected. The error tolerance values of the parent peptides and the 

MS/MS ion masses were 200ppm and 0.5 Da, respectively. A protein identification 

result was considered valid when both PMF and MS/MS ion search identified the same 

protein as the statistically significant hit from the NCBInr database, and/or when 

MS/MS ion search identified at least tryptic peptides with sequences from the same 

protein as the statistically significant hits. 

3.2.3 Immunodepletion of apolipoprotein C-III 

Protein G Agarose bead (Pierce®) was used to capture polyclonal goat anti-human 

apolipoprotein C-III antibody (Abeam) to deplete apolipoprotein C-III in serum. 3 

conditions were set: Sepharose 4B with antibody, Protein G Agarose without and with 

anti-apolipoprotein antibody. The first two conditions were served as negative controls. 

Briefly, beads were pre-equilibrated with PBS buffer for 3 times. Then, 40jxL of anti-
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apolipoprotein antibody or PBS buffer (negative control) was added to the beads and 

incubated at 4 °C overnight. The supernant was then removed, and the beads were 

washed with PBS buffer for 3 times. 2 ^L of serum samples diluted 100-fold in PBS was 

added to the washed beads and incubated at 4°C overnight. The supernatant was finally 

collected for serum proteomic profiling using the developed method, as described in the 

previous section. Figure 21 showed the experimental flow of the immundepletion assay. 
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Positive control: Negative control 2: Negative control 1: 

Protein G Agarose (Pierce®) Sepharose 4B (Amersham) Protein G Agarose (Pierce®) 

^ ^ ！-

Wash gel with PBS 

1 4 • 

Incubate with anti-app C-III at 4'C overnight Incubate with PBS at 4'C overnight 

• fl • . 

Wash gel with PBS 

Incubate with serum sample at 4'C overnight 

( fl • 

Collect supernatant for magnetic beads protein profiling 

Figure 21 Experimental flow of the immunodepletion assay 
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3.2.4 Measurement of serum levels of apolipoproteins 

Human apolipoprotein LINCOplex kit (Millipore) was used to measure the amount 

of apolipoproteins (apoA-I, apoA-II, apo B, apoC-II，apoC-III and apoE) in patient 

serum. 2jaL of whole serum was diluted in 50,000 fold with assay buffer (10 mM PBS 

with 0.08% Sodium Azide and 1% BSA, pH 7.4). The whole procedure was followed by 

manufacturer's protocol. Briefly describe 10|a.L of the diluted samples or calibration 

standards were added to each well and mixed with antibody-immobilized beads for lhr 

incubation. After washing with washing buffer (10 mM PBS with 0.08% Sodium Azide, 

and 0.05% Tween 20, pH 7.4)，detection antibody was added to each well and incubated 

for 30min. With 3 washing steps, Streptavidin-Phycoerythrin was added to each well 

and incubated for another 30min. Shield fluid was finally added to each well. The 

concentration of the apolipoproteins was then measured by Bio-Plex 200 system (Bio-

Rad Labs). 

3.2.5 Statistical Analysis 

Spearman rank correlation analysis was performed to investigate the correlation 

between concentrations of apolipoproteins and the degree of liver fibrosis in serum level. 

The correlation between the protein peak intensity of 9,153 m/z and the concentration of 

apolipoprotein C-III measured from LINCOplex kit was studied. 
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3.3 Results 

3.3.1 Protein identification of the protein marker in the diagnostic model 

It was obvious that the overall protein quantity of the low peak intensity gel 

(samples with minimal 9.2kDa and 12.4 kDa peak intensity) was less than that of high 

peak intensity gel (samples with intense 9.2kDa and 12.4 kDa peak intensity)while the 

gel pattern was the same (Figure 22). Gel pattern was similar between the two gels, 

indicating the gels were undergone similar condition and background. By studying the 

intensity contrast of these two gels with mass estimation from the protein gel marker, 

several spots were excised and protein identification work was done. The marked area 

on the gel photos were the potential protein spots corresponding to 9.2kDa and 12.4 kDa 

protein peaks. The 9.2 kDa protein selected in the predictive model was found to be 

apolipoprotein C-III (apo C-III). 2 peptides were matched in Mascot MS/MS database 

with a score of 166 (expected value = 5.13 e-13). The two peptides were m/z 1,716 and 

m/z 2,016 and the corresponding peptide sequences were K. DALSSVQEQVAQQAR. G 

and K. TAKDALSSVQESQVAQQAR. The resulting spectra and the corresponding 

database search result were shown in Figures 22-24. The protein identity of 12.4 kDa 

could not be found and was still unknown. 
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3.3.2 Immunodepletion of apolipoprotein C-III 

To further confirm the m/z 9,165 proteomic feature was apo C-III, 

immunodepletion assay specific to apo C-III was performed. Depletion of apo C-III was 

only observed when both protein G agarose and anti-apo C-III antibody were present 

(Figure 25). 3 peaks (9,165, 9,452 and 9,735 m/z) were depleted while other peaks were 

not affected. Except these 3 peaks, similar profile patterns and intensities were observed 

in both the experimental condition and the negative controls. The peak intensities of 

9,165, 9,452 and 9,735 m/z in the negative controls were comparable to the profiles 

without immunodepletion, showing that the sample loss was negligible during sample 

manipulation. When protein G-beads were replaced with Sepharose 4B beads, 3 peaks 

were not depleted. This was consistent to the fact that the anti-apolipoprotein could not 

bind to the Sepharose 4B bead surfaces and therefore no depletion could take place in 

this condition. As a result, this immunodepletion experiment confirmed that m/z 9,165 

proteomic feature was a variant of apo C-III. Our result also showed that proteomic 

features at m/z 9,452 and m/z 9,735 were other two variants of apo C-III. 
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Figure 25 The proteomic profiles of a representative serum sample before and after immunodepletion of 

apo C-III. 

A: Not subjected to immunodepletion; B: Only Protein G beads was included during immunodepletion; C: 

Sepharose 4B beads and anti-apo C-III antibody were included; D: Protein G beads and anti-apo C-III 

antibody were included. 
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3.3.3 Serum levels of Apolipoproteins and Their Associations with Liver Fibrosis 

Serum concentrations of six apolipoproteins, including apo C-III, were measured, 

and correlation analysis between their serum concentrations and Ishak scores were 

carried out. Two apolipoproteins, apo A-II (r = -0.156，p = 0.016) and apo C-III (r = 

0.153, p = 0.019)，were negatively correlated with the degree of liver fibrosis. Other 

apolipoproteins did not show statistical significance with the progression of liver fibrosis. 

The correlations between six apolipoproteins and the Ishak scores were summarized in 

Table 13. 

As expected, the intensities of the 2 protein peaks corresponding to apo C-III 

variants, i.e. peaks at m/z 9,165 and 9,452，were positively correlated with the apo C-III 

concentration obtained by immunoassay with correlation coefficient of 0.257 (p = 0.015) 

and 0.223 (p = 0.036) respectively. For m/z 9,735 peak, it could be considered as 

marginally significant. In addition, the sum of these 3 peak intensities also showed 

positive correlation with the apo C-III concentration (r = 0.245, p = 0.020). Table 14 

showed the correlations between different peaks and the apo C-III concentration. 
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Table 13 Correlation between apolipoproteins and Ishak scores. (*p <0.05) 

Apolipoprotein Correlation coefficient p-value 

"Apo A-I -0.071 ~0278~ 

"Apo A-II ^ 1 5 6 0.016*~ 

"ApoB ~a042 "0.515 

"Apo C-II :0.120 0.064 

"Apo C-III 1 . 1 5 3 0.019* 

"Xpo E <0.0005 0.992 
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Table 14 Correlation between protein peaks intensities and apo C-III concentration (*p <0.05) 

Proteomic feature Correlation p-value 

coefficient 
"9,165 m/z 一 0.257 ~0.015* 

"9,452 m/z ~ 0.223 ~OQ36* 

"9,735 m/z — 0.204 ~QjQ55 

Percentage of 9,165 m/z p e a k 0 . 0 4 9 0.624 

intensity 

Percentage of 9,452 m/z peak -0.076 0.445 

intensity 

Percentage of 9，735 m/z peak 0.073 0.462 

intensity 

"Sum of 3 peaks 0.245 0.020* 
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3.4 Discussion 

2-D PAGE followed by in-gel digestion was a common approach used for protein 

identification. 1-D SDS PAGE or 2-D PAGE could be used, depending on the 

complexity of the protein fraction. 2-D PAGE was used in this study was mainly 

because the eluted proteins consisted of many proteins with similar molecular weights. 

Proteins with similar molecular weights would appear as one single band in 1-D SDS 

PAGE, and were not suitable for protein identification. 5 samples with most intense / 

minimal peak intensities of 9.2 kDa and 12.4 kDa were pooled separately to find the gel 

spots corresponding to the interested peaks. By comparing the intensity contrast of the 

two gels with the help of protein marker for mass estimation, potential gel spots were 

selected, excised and digested for sequence identification. Apo C-III was successfully 

identified for m/z 9,165 peak in the diagnostic model. Unfortunately, protein identity of 

m/z 12,443 peak was still unknown. The failure could be explained by the following 

reason. It might be because the peptide sequence was not available in the database or the 

protein spots were mixed with other proteins so the targeted protein was masked by 

other proteins. 

Immunodepletion of apo C-III was carried out to confirm the identity of m/z 9,165 

peak. It was confirmed by depleting the 9,165 m/z peak in an experimental condition. 

The anti-apo C-III specifically bind to the Protein G beads for depleting apo C-III in 

serum but not for Sepharose CL 4B beads. Polyclonal goat apo C-III antibody with IgG 

isotype was used for immunodepletion. Protein G is a bacterial cell wall protein 

expressed in group G Streptococci. It binds to most mammalian immunoglobulins 

primarily through their Fc regions. Native Protein G contains two immunoglobulin 
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binding sites, as well as albumin and cell surface binding sites. However, since albumin 

appears as the major contaminant in serum, a recombinant form of protein G which 

albumin and cell surface binding sites are eliminated is made to reduce nonspecific 

binding. Sepharose CL 4B beads do not have immunoglobulin binding sites for anti-apo 

C-III and therefore depletion cannot occur in Sepharose CL 4B condition. After 

immunodepletion, other protein peaks remained unaffected in terms of peak shape and 

intensity, showing that depletion was so specific to the particular proteins and magnetic 

beads-based proteomic profiling was not affected by immuodepletion. 

Together with 9,165 m/z, two other neighboring peaks (9,452 and 9,735 m/z) 

were also depleted by apo C-III antibody, indicating that there were 2 other isoforms of 

apo C-III detected in the magnetic beads proteomic profile. According to the literatures, 

apo C-III consists of 79 amino acid residues and exists in three isoforms depending on 

the number of post-translational sialyl groups (0 to 2) terminating the oligosaccharidic 

portions of the protein. The sugar moiety of apo C-III consists of 1 galactose, 1 N-

acetyl-galactosammine and 0, 1 or 2 sialic acids molecules. [157] These three isoforms, 

apo C-IIIo, apo C-IIIi and apo C-III2 contribute 10，55 and 35 % of total apo C-III 

respectively. Figure 26 showed the three peaks and their corresponding structures in the 

proteomic profile. 
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Sialic acid is a family of N- and 0-substituted derivatives of neuraminic acid 

which is an amino sugar. [158] Over 40 naturally occurring derivatives have been 

identified and the most common sialic acids found on human plasma proteins and 

glycolipid is 5-N-acetylneuraminic acid. The functions of sialic acids in biological 

system include conformation stabilization, protease resistance, charge, enhancement of 

water binding capacity, cellular recognition, protein targeting and developmental 

regulation. The sialylation of apolipoprotein is still not completely understood; however, 

it is known that the sialic acid content of individual apolipoi)roteins w川 vary in 

response to physiological conditions. Disease states may selectively alter any 

biosynthesis stage and passed into plasma, generating an altered glyco-isoform 

distribution. [159] Glycomic structures and distributions may therefore provide insight 

into disease mechanisms that impact on cellular events leading to protein export. 

Apolipoprotein sialylation is an intracellular process driven by Golgi-membrane-bound 

enzymes, sialyltransferases. The glycol-isoform ratio change has been studied for 

various diseases. Excess sialylation of apo C-III, apo C-III2, was found in 

hypertriglyceridemic subjects. This may be due to its higher affinity for VLDL than apo 

C-IIIo and apo C-III 1. Also, apo C-III2 is a poorer inhibitor of VLDL binding to the 

purported lipolysis stimulated receptor than apo C-IIIQ and apo C-IIIi. Harvey et al 

demonstrated that the apo C-IIIi/ apo C-III2 ratio changed on bariatric surgery, chronic 

or severe liver disease. [159] A decrease in apo C-IIIi/ apo C-IIb was found after 

bariatric surgery while it was increased by liver disease. However, other studies showed 

that no significant difference was found in the distribution of these three apo C-III 

isoforms in a CHC study. [160] Mauger et al also reported that no correlation was 

133 



observed between the relative proportion of each isoform and anthropometric variables 

and suggested that the degree of sialylation of apo C-III might not be related to neither 

plasma lipid levels nor obesity indices. [161] Our study followed the latter results. In our 

study, all three apo C-III isoforms were down-regulated with the degree of liver fibrosis. 

Furthermore, positive significant correlations were found between the three isoforms, 

further validating the coherent of the correlation direction trend. From our result, there 

was no implication that the degree of sialylation was related to liver fibrosis as the 

relative proportion of apo C-III was not significantly correlated with liver fibrosis. Our 

results might be account for our purposed mechanism rather than sialylation of apo C-III. 

In addition, our result was consistent with our previous pilot study. [119] Two protein 

peaks, 9,498 and 9,714 m/z were negatively correlated with liver fibrosis. It was 

believed that these 2 peaks were sialylated forms of apo C-III. Also, Molina et al. 

reported that apo C-III was a candidate biomarker in plasma associated with the 

resolution of HCV infection. [160] These two studies further supported our result that 

apo C-III was associated with liver function. It also implied that apo C-III was not only 

valid in CHB but also in CHC cases. Further studies were needed to examine the clinical 

performance of apo C-III in detecting liver fibrosis caused by different etiologies. 

Apo C-III is the most abundant C-apolipoprotein in human and is found on the 

surface of very low density lipoprotein, low density lipoproteins, chylomicrons and high 

density lipoproteins (HDL). [162][163] Apo C-III is mainly synthesized in liver and 

intestine. It is a well known inhibitor of lipoprotein lipase and hence delays lipoprotein 

triglyceride lipolysis. Overexpression of apo C-III leads to the increase in plasma 

triglyceride levels. Apo C-III is thought to interfere with the binding of apo C-II to 
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lipoprotein lipase and to prevent binding of apo B particles to LDL receptors. Elevated 

apo C-III level is usually found in patients with metabolic syndrome and has also been 

associated with insulin resistance. Also, it has been implicated in coronary artery disease. 

It was shown that lifelong deficiency of apo C-III had a cardioprotective effect. [164] 

On the contrary, in our study, apo C-III was down-regulated in CHB patients with 

liver fibrosis which was an opposite situation to most lipid and cardiovascular studies. 

The cause of this down-regulation might be associated with the dysregulation of TGF-pl 

in fibrogenesis. TGF-pl, a well studied cytokine, is believed to play a key role in 

fibrogenesis. TGF-pi carries out multiple biological functions including development, 

cell growth, differentiation, ceil adhesion, migration and contribution to the regulation 

of the production, degradation and accumulation of ECM proteins. High levels of TGF-

(31 are often found in liver fibrosis and it has been considered as a mediator of liver 

fibrosis. It is well known that liver fibrosis occurs under the activation of quiescent 

HSCs that will further enhance the growth of myofibroblasts to disrupt the liver 

architecture. Researches found that this consequence was associated with the 

overexpression and activation of TGF-pl, implying that TGF-pl may be one of the first 

signals to activated quiescent HSCs. TGF-pl enhances ECM synthesis as well as 

inhibits ECM degradation by suppressing expression of matrix-degrading enzymes and 

promoting expression of matrix metalloproteinase inhibitors (MMP). [165] 

Hepatocyte nuclear factor -4a (HNF-4a), an apo C-III target gene, was inhibited by 

TGF-pl. [166] It was showed that TGF-pi affected both HNF-4a mRNA and protein 

levels by decreasing the DNA-binding capacity of HNF-4a and inducing degradation of 

HNF-4a in the proteasome in HepG2 cells, respectively. HNF-4a is abundant in liver, 
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intestine, pancreas and kidney. It is a highly conserved member of the nuclear receptor 

superfamily that was initially identified as a transcriptional factor required for liver-

specific gene expression. [167] It generally acts as a positive transcriptional regulator of 

many hepatocyte genes. HNF-4 was shown to be an important candidate for liver 

development; expression levels of large number of genes whose products were essential 

for mature liver function were disrupted in HNF-4 null livers. [168] In addition, Lucas et 

al postulated that the loss of hepatic specific functions during the progression of liver 

fibrosis could be explained by the inhibition of HNF-4a by TGF-|31 and nitric oxide 

(NO). [166] Moreover, many studies reported that apo C-III gene was transcriptionsally 

dependent on HNF-4a in the liver, by interacting at least two sites of the apo C-III 

promoter. [169-171] Therefore, the reduction of apo C-III in liver fibrosis patients might 

be due to the inhibition of HNF-4a. 

As apolipoproteins are mainly synthesized in liver, their contents in plasma may 

reflect liver function. Also, the association of apolipoproteins A1/C3/A4/A5 gene cluster 

that modulates plasma triglycerides reveals the inter-correlation of different 

apolipoproteins which may be also related to liver fibrosis. [172] Therefore, after 

identifying apo C-III as one of the diagnostic markers in detecting liver fibrosis, 

immunoassay in quantifying six apolipoproteins was carried out to study the correlation 

between other apolipoproteins and liver fibrosis. 

Apart from apo C-IIl, other apolipoproteins such as apo A-I, apo B and apo E have 

been studied and found to have clinical values in liver diseases. Apo A-I was correlated 

with patients with chronic liver disease such as primary biliary cirrhosis [173] and liver 

fibrosis. [48] [174] It has been included in several non-invasive models in detecting liver 
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fibrosis like FibroTest [175] and PGAA index. [176] Apo B levels were significantly 

lower in patients with CHC. It was negatively correlated with steatosis and HCV viral 

load and became an indictor to confirm the interaction between hepatitis C infection and 

p - lipoprotein metabolism. [177] For apo E, Ferre et al reported that 

hypercholesterolemic ApoE-/- mice were more susceptible to develop severe liver injury. 

[178] Also, the mRNA level of apo E was found to be down-regulated to the liver injury 

in mice model. [179] 

However, among six apolipoproteins (apo A-1, A-II, B, C-II, C-III and E), only apo 

A-II and C-III were negatively correlated with the degree of liver fibrosis in our study. 

This finding was consistent with recent study. [180] D.Q. Shih et al found that patients 

with HNF-4a mutation had a significant reduction in apo A-II and apo C-III but not in 

apo A-I and B though they were all HNF-4a target gene and mainly expressed in the 

liver. By further genotypic and phenotypic comparison, they confirmed that these 

reductions were due to HNF-4a haploinsufficiency rather than factors from family 

aggregation or diabetes. It was known that both apo A-II and C-III genes contained an 

HNF-4a binding site and therefore this reduction could be explained by the decreased 

binding capacity ofHNF-4a caused by TGF-pl in our proposed mechanism. [181] 

The down-regulated correlation between apo C-III and liver fibrosis in the 

immunoassay further validated the clinical significance of apo C-III found in our 

diagnostic model. By investigating the correlation between the protein peak intensities 

of apo C-III (9,165, 9,452 and 9,735 m/z) and their corresponding apo C-III 

concentration in serum, significant positive correlation result gained the validity of these 

three peaks as apo C-III. However, the correlation was low and the sum of the 3 
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isoforms peak intensities did not show great improvement in the correlation between the 

apo C-III concentration. Though 3 major apo C-III isoforms were found in proteomic 

profile, there was still a number of variants reported in other studies [157][182][183] 

cannot be detected in our system. This could explain the low correlation coefficient 

between peak intensities of apo C-III variants and apo C-III concentration measured by 

immunoassay. 

Though apo A-I was currently included in two common non-invasive models, there 

were still some studies reported that it was not correlated with liver fibrosis which was 

accordant with our result. Lebensztejn DM et al. found that apo A-I was not 

significantly different in patients with CHB infection compared with the controls. [184] 

Lu et al further pointed out that there was an ethnic difference in the normal range of 

apo A-I. The concentration of apo A-I in controls was abnormally high compared with 

those in foreign countries for a CHB study in China, making it inapplicable to PGA and 

PGAA models. [185] Another CHB study by Selimoglu MA et al. also showed the same 

result. [186] This discrepancy may be account for the differences of ethnicity and 

etiology of the patients as FibroTest and PGAA index were mainly used for hepatitis C 

infection and alcoholic liver diseases respectively. Nevertheless, a study showed that 

apo A-I was a biomarker for hepatitis B virus infected liver inflammation. [187] 

Apolipoprotein A-I presented heterogeneous change in expression level with different 

isoforms specific to HBV infection. Further study on apo A-I in CHB studies against 

other liver diseases is needed to sort out this discrepancy. No correlation between apo B 

and liver fibrosis could be explained by the difference in etiology. Apo B was found to 

be associated with HCV in plasma. A CHC study illustrated that higher apo B-
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associated cholesterol was positively correlated with CHC patients after receiving anti-

viral treatment. Sherudan et al. proposed this might due to competition between apo B-

containing lipoproteins and infectious low-density HCV lipo-viral particles for 

hepatocytes entry via shared lipoprotein receptors. [188] On the other hand, although 

several studies demonstrated that decreased expression of apo C-II was found in biliary 

atresia-associated liver cirrhosis patients and suggested it was a novel substrate for 

matrix metalloproteinases [189] [190], no correlation between apo C-II and liver fibrosis 

was found in our study. Despite apo C-II, like apo C-IlI, belongs to the C class of 

apolipoproteins, no recent non-invasive model or study reported apo C-II was a 

biomarker in detection of liver fibrosis. Further investigation is needed to elucidate its 

significance in clinical use. Apo E has been found to be correlated with liver function in 

mice model and related to lipid metabolism. However, its importance and usefulness to 

liver fibrosis in human remains unclear and need further investigation. 

3.5 Conclusion 

The m/z 9,165 proteomic feature, which was one of protein markers selected in 

the diagnostic model, was identified to be apo C-III by mass spectrometry. Subsequently, 

it was confirmed by immunodepletion. Two peaks (m/z 9,452 and 9,735) were also 

confirmed to be isoforms of apo C-III. Concentration of apo C-III obtained by 

immunoassay was negatively correlated with Ishak score. The positive correlation 

between the depleted protein peaks and apo C-III concentration was found. Another 

apolipoprotein, apo A-Il, was also negatively correlated with the progression of liver 
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fibrosis. Magnetic bead-based proteomic profiling is able to find biomarkers in the 

detection of liver fibrosis in patients with CHB infection. 
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General discussion 

After the completion of human genome project (HUGO) in 2003 [191], proteomics 

has become another important research area in biomarker discovery. Proteomics, which 

is defined as the study of proteome, has been widely applied to studies of the protein 

expression levels, structures and protein-protein interactions. [192] With advanced 

technology, complex protein mixtures could be well separated and analyzed by MS 

technology to study the protein expression, finding biomarkers for various diseases. 

Protein expression profiling has been considered as a new strategy for biomarker 

discovery and the disease-associated/specific "fingerprinting" or "proteomic pattern" is 

used as a biomarker. [193] 

In our study, using a magnetic beads-based platform we successfully developed an 

in-house proteomic profiling method that allows both quantitative analysis and micro-

scale purification in parallel. Similar to the SELDI technology, a subset of proteins with 

definite chemical properties were retained and screened for disease-associated proteins. 

Disease-associated proteins were found by comparing the protein contents between 

disease and control groups which was regarded as comparative proteomics. Large 

sample size was needed so that good statistical power could be achieved for searching 

biomarkers. Therefore, high-throughput technology is indispensable for a large scale 

study. Our developed method, magnetic-beads platform allows analyzing 96 samples in 

one batch which greatly reduces the experimental time and enhances reproducibility. 

The other concern is the specificity of the biomarkers. Serum amyloid A (SAA), an 

acute phase protein, was found to be a biomarker for various disease such as renal 

cancer [89], nasopharyngeal cancer [194], hepatocelluar carcinoma. [155] The non-
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specificity of SAA made it not suitable for clinical use when is used alone as a 

biomarker. Furthermore, it seemed that SAA responded to inflammation rather than 

carcinogenesis. [195] In addition, high abundance proteins in plasma/serum are the 

major problems in proteomic profiling. Competition occurs during sample binding and 

those large and high abundance proteins usually mask low abundance proteins. 

Transferrin, ranked as of the most abundance proteins [83], was found as biomarker 

for certain diseases like breast [196] and ovarian cancer. [197] The usefulness of this 

kind of high abundance protein is usually limited. It is believed that disease-associated 

markers released by a very small tumor/defected area and their microenvironment 

should be at very low level and probably in )xg/L level like prostate specific antigen 

(PSA). [139] [143] Diamandis pointed out that SELDI technology could only detect 

proteins in mg/L level which is 1000-fold higher than the concentration of known tumor 

markers in the circulation. For apo C-III found in our study, the concentration was 60-

180 mg/L in healthy person. Though it was not as high abundance as apolipoprotein A-I 

and transferrin (1,000-3,600 mg/L), it was far higher abundance than those known 

biomarkers. [83] 

In the future, it is important to develop novel high-throughput technologies to 

profile the low abundance proteins in the serum/plasma samples for patients with 

different degrees of liver fibrosis. Penetration into the deep proteome therefore becomes 

the main challenge in discovering low abundance biomarkers. It is well known that high 

abundance proteins always mask the detection of low abundance proteins, a potential 

source of biomarkers under assumption that only a subtle difference may occur and is 

reflected to the bloodstream at the early stage of the disease. The high dynamic range of 
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proteins can be compressed by the use of large-bead-based library of combinational 

peptide ligands (Equalizer beads or ProteoMiner) to enrich the low abundance proteins. 

Sihlbom et al. investigated the feasibility of the combined use of the Equalizer beads 

with SELDI or 2-D DIGE to improve the protein profiling compared with the depleted 

method. [198] They showed that better resolving efficiency and reproducibility were 

achieved using beads technology compared with multiple affinity depletion columns. 

High abundance protein such as albumin was greatly reduced and more gel spots could 

be resolved from the sample depleted with Equalizer beads. 

Traditionally, the high abundance proteins were depleted by immunodepletion 

based on dye-ligands or specific antibodies. [199] However, it is subject to some 

limitations. It is a low throughput and time consuming process as the abundance proteins 

are depleted accordingly. Certain amount of low abundance proteins are co-depleted out 

with the removal proteins and information on these low abundance proteins may be lost. 

Furthermore, the large dynamic range is only reduced by removing the high abundance 

proteins; there is no concentration step on low abundance proteins which still limits the 

chance of detecting the low species. Indeed, this depletion step will further dilute the 

sample as larger elution volume is obtained compared with the original sample. [200] A 

rather new method, Equalizer bead, has been introduced to compress the high abundance 

proteins and enrich the low species simultaneously with no further dilution on the 

elution sample. Its principle is based on the use of combinatorial ligand libraries of 

hexapeptides bound to a chromatographic support. [201] The ligand libraries consist of 

lO^-lO'^ unique peptide ligands which greatly enhance the number and variety of 

proteins being captured. In the past, due to the relative abundance issue, high abundance 
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proteins had a higher chance to be captured and analyzed than low abundance proteins. 

With the new technology, the high abundance proteins stop being captured when the 

binding sites of the specify beads are saturated. 

In the future, combined use of Equalizer beads and our magnetic beads technology 

should allow the discovery of low abundance proteins as potential biomarkers. The 

serum can be first treated by Equalizer beads to enrich the low abundance proteins. The 

fraction is then subjected to magnetic beads protein profiling for biomarker discovery. It 

is believed that the relative concentration differences of the low abundance proteins 

between disease and control groups should remain approximately unchanged if these 

low abundance proteins were not saturated on the beads. [200] The main drawback of 

this technology is large volume of plasma/serum (e.g. ImL) is needed for the enrichment 

of low abundance proteins, and the current technology can only be performed manually. 

If the magnetic property is added to the Equalizer beads, our developed method can be 

adopted so that automation of enrichment together with purification can be done on the 

Kingfisher 96 platform. Besides applying 2-D PAGE for protein identification, gel-free 

shotgun proteomics approach can be used instead. The eluted fraction can be subjected 

to 2-D LC for protein identification using MudPIT approach. The fraction was first 

digested and then separated by SCX and reversed phase columns. This approach can 

greatly reduce sample loss and high coverage of protein can be obtained. 

Although our current magnetic beads-based profiling technology and the SELDI-

TOF technology cannot provide quantitative information of the low abundance proteins, 

the identification of disease-specific variants may help to improve the specificity of the 

proteomic fingerprints for disease diagnoses. Both SELDI and magnetic bead profiling 
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are capable of differentiating low molecular weight protein variants having different 

post-translation modification(s). Some variants could be disease-associated. For 

example, des-Ala-fibrinopeptide A (m/z 1,466), was found to be a potential liver cancer 

marker [202] and fibrinogen a-chain (m/z 2,664) was a potential biomarker for oral 

cancer. [84] These protein variants are too small to be analyzed using traditional 2-D 

PAGE technique. 

In our study, apo C-III variants were detected as a biomarker in detecting liver 

fibrosis which was undergone sialylation. Though three variants were correlated with 

the degrees of liver fibrosis, the hyposialylated apo C-III variant appeared as the best 

marker. It is well known that it is difficult to develop a glycoform-specific assay using 

the conventional immunoassay technology. If one wants to only quantify a specific apo 

C-III variant, one will need to develop glycosylation immunosorbent assay [203], MS 

immunoassay [204], or multiple reaction monitoring assay. [205] MRM can be done for 

further investigation on isoform characterization and relative quantitation of apo C-III 

isoforms. 

In clinical point of view, our result has suggested that our diagnostic model can be 

used as a screening test for liver fibrosis. Blood test is cheaper and more versatile 

compared with other non-invasive tests such as FibroScan. As FibroScan is proved as a 

stable and accurate method in predicting liver fibrosis, it may be a good alternative to 

reduce liver biopsy. However, specialist is required to perform the FibroScan test, 

leading to lower turn around time and higher running cost. Therefore, in order to shorten 

the waiting time and running cost, blood test can be introduced as the first line screening 

test. Patients can first do a routine blood test in the clinics for routine check. Those 
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patients with blood test result falling in the grey area will be followed up with FibroScan. 

Finally, the highly suspected cases will be confirmed by histological examination of 

liver biopsies. This approach can remarkably decrease the hospital expense. 
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Conclusion 

In conclusion, a novel magnetic beads-based proteomic profiling method was 

successfully developed, and proven to be a useful tool in biomarker discovery. With the 

developed methodology, a proteomic fingerprint composed of 2 protein markers was 

found in patients with CHB-associated liver fibrosis, and could be used as a diagnostic 

marker with good accuracy. The predictive model was treat-independent which would 

not be affected by anti-viral treatment. It could be considered as a screening test for 

detecting liver fibrosis. With our classification strategy, those patients in high risk and 

low risk group can be excluded from the examination of liver biopsy. Liver biopsy and 

hospital expense can be reduced under this strategy. Apo C-III was identified to be one 

of the protein markers. Subsequently, we showed that serum Apo C-III and Apo A-II 

concentration were decreased in the CHB patients with liver fibrosis. As both apo A-II 

and apo C-III were regulated by HNF-4a, it was believed that HNF-4a maybe a key 

factor for liver fibrosis. 
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