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A fast RFID counting algorithm with performance guarantee can 

be used as a fundamental building block for other more sophisti-

cated RFID query protocols and operations. Recently, Kodialam 

et al. propose various low-latcncy RFID counting schemcs with 

accuracy guarantees [1, 2] based on a probabilistic counting ap-

proach which does not require explicit identification of individual 

tags. However, the proposed schemes all assume a perfect com-

munication channel between the reader and the tags which is un-

likely to be true in practice. On the contrary, as demonstrated 

by recent empirical measurement studies, the radio communica-

tions between an RFID reader and a set of seemingly "in-range" 

tags are rather non-deterministic and can even be unreliable at 

times due to varying radio conditions. In this thesis, we investi-



gate fast RFID counting algorithms which can take the effects of 

radio channel unreliability into account. 

In the first approach, we assume the channel has been charac-

terized so that the first two moments of the successful response 

probability distribution of the tags in the tag-set are known. In 

particular, such indirect two-parameter characterization of the 

channel is derived by modeling the spatial distribution of tags and 

the corresponding channel fading effects. Based on such character-

ization, we analyze the new requirements on the algorithm param-

eters used in [2] (e.g., number of reader polling cycles, frame-size 

and persistent probability) in order to achieve a desired level of es-

timation accuracy based on the channel model. A key observation 

is that, unlike the perfect channel case where one can indefinitely 

reduce the estimation error by increasing the number of reader 

polling cycles, with an unreliable radio channel, there is a lower-

bound on the estimation error due to the inherent variation in the 

spatial distribution of the tags and the radio channel conditions. 

Towards this end, we have derived an expression for this lower-

bound. We also demonstrate the efficacy of our analytical results 

and their corresponding guarantees in estimation accuracy via a 

simulation study. 

In the second approach, we develop efficient and fast estima-



tion schemes that can provide good estimates of the cardinality of 

the tag-set while assuming no prior knowledge of the parameters 

of the unreliable radio channel between the reader and the tags. 

This approach is based on a novel interpretation of the capture-

recapture models [3] from the field of ecology/ biostatistics. By 

leveraging the rich estimation techniques in this field, we extend 

the probabilistic counting framework introduced by [1, 2] to tackle 

the challenge of a lossy channel with unknown characteristics. The 

variance of the resultant tag-set cardinality estimators are then 

characterized analytically. We also demonstrate the performance 

of the proposed schemes under various system parameters and 

channel conditions. 
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摘要 

固具履約保證的快速RFID數量估計算法可以用作發展其 

他更尖端的RFID技術查詢協定。Kodialam等人丨1, 2丨最近提 

出了各種以概率計算為基礎的RFID數量估計方法。它們不但 

提供準確性保證，而且不需要明確辨認任何個別RFID標籤， 

大大縮短估計時間。 

然而，它們都作出了不切實際的假設：RFID閲讀器和RFID標 

籤之間有著完善的溝通渠道。相反，近日不斷有實證測量研究 

指出，閲讀器和標籤之間的無線電通信是相當不穩定，甚至是 

不可靠的。在此論文中，我們會將無線電通信納入考慮，並建 

議如何顧及其不可靠性對快速RFID數量估計算法的影響。 

在第一種方法中，我們假設知道無線電通信頻道的特性。 

透過頻道衰落和標籤空間分佈的建模，我們可以得到標籤成功 

回應閲讀器的概率的第一和第二階矩。基於這樣的特性，我 

門重新分析了算法12丨的要求，包括閲讀器輪詢週期、幀大 

和持續概率，以實現理具履約保證的快速RFID數量估計算 

法。一個重要的觀察是，與假設完善溝通渠道的結論不同：在 

完善溝通渠道的情況下，人們可以透過增加閲讀器輪詢週期以 

無限地減少估計誤差。相反，在不可靠的無線電頻道下，由於 

標籤空間分佈的固有變化及無線電頻道的不可靠性，估計誤差 

是有下限的。為此，我們得出這個下限的表達式。我們也透過 

分析和仿真研究證明該算法的結果及其相應的履約保證。 

IV 



在第二個辦法，我們發展出一種不需事先了解無線電頻道 

的快速、有效的數量估計算法。這種方法是運用生態學生物 

統計學的捕獲一再捕獲模型丨3丨。利用在這一領域豐富的數 

量估計技術，我們伸延了 11, 2丨的概率計算框架，於不需事 

先了解無線電頻道下，仍能作出數量估計。我們分析了其估值 

的差額，並展示這算法在不同系統參數和頻道衰落的性能。 
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Introduction 

Radio Frequency Identification (RFID) tags have become increas-

ingly popular in supply-chain management applications to im-

prove processing latency while reducing costs for various logistics 

operations. For instance, the frequent check-in and check-out of a 

large number of goods can be streamlined via RFID tagging and 

reader polling at various points of interest along the supply chain. 

Under standard RFID protocols, upon the receipt of queries from 

a reader, the tags attached to the goods typically respond with 

their unique identifiers based on which the specifics of the goods 

can be collected and tracked. However, such explicit identifica-

tion of individual tags may be an overkill for a large set of com-

mon operations, e.g., determining the quantities of a given type 

of goods. Not only would explicit tag identification increase pro-

cessing latency (as it requires serialization of the responses from 

Chapter 1 



CHAPTER 1. INTRODUCTION 2 

all the relevant tags via some multiple access protocol), it can also 

lead to unnecessary privacy violations. As shown in [1, 2], accu-

rate tag-set cardinality estimation can be done in a much shorter 

time without explicit tag-identification using a frame-based slot-

ted ALOHA-like protocol. This approach can also alleviate some 

of the privacy concerns which has threatened the widespread ac-

ceptance of RFID technologies. 

To meet their low-cost requirement, most RFID tags, especially 

the passive ones, do not contain any power source or support any 

sophisticated error-correction/ retransmission protocol to ensure 

reliable communications with the reader. The objective of this 

thesis is to develop an efficient and fast estimation scheme that 

will provide a good estimate of the cardinality of the tag-set while 

taking non-deterministic/ unreliable radio channel conditions into 

account. The proposed algorithm is based on the schemes devel-

oped in [2] which take an probabilistic counting approach. Like 

its predecessors, our scheme only requires simple modifications 

to standard RFID tags/readers and is easily implementable using 

current technologies with minimal increase in tag/reader cost. 

Counting the number of RFID tags with probabilistic guaran-

tee instead of having exact count can reduce the latency involved. 

Requiring exact count involves serializing the tags and the latency 
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involved depends on the number of tags. For example, counting 

10000 tags would require the reader to receive all 10000 distinct 

tag responses. The minimum size of the tag responses hence has to 

be at least Zo仍(10000)=14bits long. Hence, the minimum latency 

involved would be 140000 slots. This latency has not taken the 

imperfect MAC scheduler and unknown tag set size into account. 

On the other hand, if we are interested in providing probabilistic 

guarantee: within the actual number of tag 2.5% for 99% of the 

time. Then the latency can be reduced to 7018 slots [2]. Suppose 

there are 4000 slots in 1 second, exact counting would require the 

tags to be within the read range for at least 35 seconds while 

probabilistic counting requires only 2 seconds. Given the limited 

read range of the (passive) RFID readers, exact counting requires 

the goods to wait for a much longer time than using probabilis-

tic counting. Moreover, probabilistic counting allows adjusting 

the trade-off between latency and accuracy. Higher accuracy re-

quires higher latency. This controllable accuracy/latency allows 

operators to optimize the (logistics) operations. One example is 

controlling the queue length in supermarket as to maximize the 

revenue. 

In addition, probabilistic counting requires no explicit tag iden-

tification. The information we are interested in (count) is collected 
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during the air interface. The amount of data stored/processed by 

the server (middleware) would be greatly reduced. An example 

is to monitor the stock of goods in the supermarket. When the 

number of goods on the shelf is less than some threshold, it will 

trigger refilling. In this case, all we are interested in is whether 

the number of goods is higher than the threshold or not. We dont 

really care the exact number of goods is 20 or 21, as long as it is 

greater than 5. 

As demonstrated in [1, 2], accurate tag-set cardinality estima-

tion can be done in a much shorter time without explicit tag-

identification using a frame-based slotted ALOHA-like protocol. 

This approach can also alleviate some of the privacy concerns 

which has threatened the widespread acceptance of RFID tech-

nologies. One of the major limitation of the proposed schemes 

is that they all assume a perfectly reliable communications be-

tween the reader and the RFID tags. Unfortunately, such assump-

tion is practically unachievable given the current technology and 

cost constraints: To meet their low-cost requirement, most RFID 

tags do not support any sophisticated error-correction or recov-

ery scheme to maintain reliable communications with the reader. 

This becomes a severe problem when the reader needs to operate 

over a lossy wireless channel caused by noise, fading, or physical 
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blockage: under such circumstances, the reader faces uncertain-

ity over the number of probes that are needed to reliably count 

and/or identify the number of tags in its range. 

The objective of this thesis is to develop efficient and fast esti-

mation schemes that will provide a good estimate of the cardinal-

ity of the tag-set while taking unreliable radio channel conditions 

into account. 

In the first approach, we assume the channel has been charac-

terized so that the first two moments of the successful response 

probability distribution of the tags in the tag-set are known. In 

particular, such indirect two-parameter characterization of the 

channel is derived by modeling the spatial distribution of tags and 

the corresponding channel fading effects. Based on such character-

ization, we analyze the new requirements on the algorithm param-

eters used in [2] (e.g., number of reader polling cycles, frame-size 

and persistent probability) in order to achieve a desired level of es-

timation accuracy based on the channel model. A key observation 

is that, unlike the perfect channel case where one can indefinitely 

reduce the estimation error by increasing the number of reader 

polling cycles, with an unreliable radio channel, there is a lower-

bound on the estimation error due to the inherent variation in the 

spatial distribution of the tags and the radio channel conditions. 
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Towards this end, we have derived an expression for this lower-

bound. We also demonstrate the efficacy of our analytical results 

and their corresponding guarantees in estimation accuracy via a 

simulation study. 

In the second approach, we develop efficient and fast estima-

tion schemes that can provide good estimates of the cardinality 

of the tag-set while assuming no prior knowledge of the param-

eters of the unreliable radio channel between the reader and the 

tags. This approach is based on a novel interpretation of the 

capture-recapture models [3] from the field of ecology/ biostatis-

tics. By leveraging the rich estimation techniques available for 

the capture-recapture models, we extend the probabilistic count-

ing framework introduced by [1, 2] to tackle the challenge of a 

lossy channel with unknown characteristics. The variance of the 

resultant tag-set cardinality estimators are then characterized an-

alytically. We also demonstrate the performance of the proposed 

schemes under various system parameters and channel conditions. 

To the best of our knowledge, this is the first set of schemes that 

can support fast RFID tag-cardinality estimation in lossy wire-

less channels without requiring a priori knowledge of the channel 

parameters. 

All of our proposed algorithms require only simple modifica-
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tions to standard RFID tags/readers similar to those proposed in 

1] and can be easily implemented using current technologies with 

minimal increase in tag/reader cost. 

The organization of the thesis is as follows: In Chapter 2, we 

discuss the related work. In Chapter 3，we propose the fast RFID 

counting scheme which requires the first two moments of the suc-

cessful response probability distribution of the tags in the tag-set 

to be known. Chapter 4 covers RFID counting schemes which 

assume no prior knowledge of the characteristics of the unreliable 

radio channel. We conclude the thesis in Chapter 5 and discuss 

possible future work. 

• End of chapter. 



Chapter 2 

Background and Related Work 

A low-latency RFID counting scheme with accuracy guarantees 

can be used as a fundamental building block to support more 

elaborated RFID query operations. RFID counting algorithms of 

such nature have been proposed recently by Kodialam et al. [1, 2 . 

One distinct feature of these schemes is that they do not require 

the reader to explicitly identify individual tags and thus can help 

to preserve privacy of the RFID users. However, these schemes 

all assume a perfect communication channel between the reader 

and the tags which is not achievable in practice. In fact, empirical 

measurement studies have found that the radio communications 

between an RFID reader and a set of seemingly "in-range" tags 

are still unreliable and non-deterministic due to ever-changing ra-

dio channel conditions. Worse still, given the stringent cost con-

straint, it is unlikely that standard channel estimation procedures 

8 
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can be applied for individual tags. In this thesis, we will extend 

the fast probabilistic RFID counting framework pioneered by Ko-

dialam et al to handle lossy wireless channels of known or unknown 

characteristics. 

Recent measurement studies [4, 5, 6] have demonstrated em-

pirically the limited reliability of communications between pas-

sive RFIDs and a reader. [4] studied the impact of read distance 

for tags with different physical sizes under various types of sur-

rounding objects, operating radio frequencies and reader types. It 

showed that even with same output (transmission) power, some 

readers can read some types of tags better than the others. Their 

experiments also compared outdoor and indoor environment and 

showed that there was a clear bias of improved performance in 

read distance for outdoor (open) environment. [5] investigated the 

performance of the tags against different reader operating modes 

defined in the EPC Class 1 Gen 2 UHF standards. They found 

that different modes of reader operation resulted in different error 

rate against reader-tag distance. [7] provided comprehensive dis-

cussions on the performance limitations of the passive UHF RFID 

systems. The above studies, however, do not quantify the impact 

of unreliable reader-tag communications on the application level 

performance of an RFID system. Nor do they provide any reme-
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dial schemes to combat or offset inaccuracies caused by unreliable 

tag readings. 

Several schemes have been proposed to handle the unreliabil-

ity/ uncertainties involved in RFID data acquisition. [8] viewed 

the raw RFID acquired data as a data stream with potential miss-

ing items and made corrections by imposing time-averaged win-

dowing to compensate for missing data items. The paper applied 

an adaptively-sized time-window filter to capture the tag dynam-

ics while reducing false positive reading rate. Per-tag cleaning op-

erations were performed to filter readings obtained from each indi-

vidual tag. One drawback of the proposed approach is its heuristic 

nature. The correctness of the filtering operation relied on the as-

sumption of the time-scale of movements associated with the tags. 

Another limitation of the proposed cleaning scheme was that it 

required explicit identification of individual tags which increased 

the processing latency substantially. [9] defined a high-level appli-

cation event in an RFID system (e.g., a group of people are having 

a meeting in a room) as a series of lower level events related to the 

detection or data-acquisition from the RFID tags involved. To ad-

dress the uncertainties caused by RFID data-acquisition, instead 

of giving a definitive declaration on the occurrence of an event, 

every event observed is reported with an associated probability. 
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The probability of occurrence of a high-level event can be derived 

based on the uncertainties associated with its "component" low-

level events. 

Estimating the unknown population size of species is a well 

studied problem in the field of ecology/ biostatistics, and has im-

plications to the problem under consideration. One of the tech-

niques is capture-recapture [10], where some of animals in a closed 

population are first caught, marked and released. In the recap-

ture process, some of the animals are caught and the number of 

marked/ unmarked animals will provide some clues on the pop-

ulation size. A sample application can be the estimation of the 

number of fishes in a pool using the Lincoln-Petersen method[11 

based on (1) the number of fishes caught in each of two separate 

catches, and (2) the portion of fishes caught in both catches. In 

the most basic model (Mq), all animals have the same likelihood 

of being captured. The basic model can be extended along mul-

tiple dimensions: capture probabilities can vary by time, by ani-

mal, by number of times an animal has been previously captured, 

and any combination thereof. The relevant model to our RFID 

problem is the so-called heterogeneous catchability [12] model, 

commonly denoted by Mh, where each animal has a distinct and 

unknown capture probability which does not vary with time or 
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capture history. Besides the rich set of practical estimators devel-

oped for Mh [3，12, 13，14] by the biostatistics community, there 

are also recent results [15, 16] on the theoretical front regarding 

the identifiability of population-size (N) under the M" model. In 

16], Holzmann et al. provided a general criterion for identifia-

bility of the population-size (N) in the M^ model under different 

classes of capturing-probability distributions. In particular, they 

established the identifiability within commonly used families of 

capturing-probability distributions including the Uniform, Beta 

and discrete distribution with finite support points. 

• End of chapter. 



Chapter 3 

RFID Tag-set Cardinality 

estimation based on a 

Two-parameter implicit Channel 

Model 

In this chapter, we extend the algorithms in [2] by taking into 

account the effects of radio channel unreliability. We model the 

spatial distribution of tags and the corresponding channel fad-

ing effects to result in an indirect characterization of the channel 

effects via the first two moments of the successful respond proba-

bility distribution of the tags in the tag-set of interest. Based on 

this two-parameter characterization, we analyze the new require-

ments on the algorithm parameters used in [2] (e.g., number of 

reader polling cycles, frame-size and persistent probability) in or-

13 
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der to achieve a desired level of estimation accuracy. Another key 

observation is that, unlike the perfect channel case where one can 

indefinitely reduce the estimation error by increasing the number 

of reader polling cycles, with an unreliable radio channel, there is 

a lower-bound on the estimation error due to the inherent varia-

tion in the spatial distribution of the tags and the radio channel 

conditions. Towards this end, we have derived an expression for 

this lower-bound. We also demonstrate the efficacy of our ana-

lytical results and their corresponding guarantees in estimation 

accuracy via an simulation study. 

3.1 System Model 

Consider a reader which broadcasts a probing request to t RFID 

tags located within a warehouse. Assume that the location of 

each tag (represented by its (x, y) coordinates) follows an indepen-

dent, identical spatial distribution y). We are interested in 

estimating the value of t to a desired level of accuracy while con-

sidering the non-deterministic nature of radio channels between 

the reader and the tags. Let y) be the probability that a tag 

located at coordinates (x, y) can communicate with the reader. 

In general, V{x, y) depends on the reader transmission power, an-

tenna gain, minimum power requirement (sensitivity) of the tag, 
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its backscattering efficiency as well as the radio channel and fad-

ing model parameters. In Section 3.4 we will demonstrate how 

V{x, y) can be derived based on this list of parameters. Define 

F{i[-) to be the c.d.f. of the tag responding probability for reader 

R over all realizations of spatial distribution of a tag within the 

warehouse. We have: 

FR{V) = f W W = I I w{x,y)dxdy, (3.1) 
'P{x,y)<p 

where //?(.) represents the corresponding p.d.f.. Denote the mean 

and variance of //?(.) by ji and cr̂  respectively. 

We assume that the RFID system follows the q-persistent framed-

slotted ALOHA model described in [1, 2]. Denote by n the total 

number of reader polling cycles required per estimation. In each 

polling cycle, the reader will broadcast the frame size / , persis-

tent probability q and a random seed. Depending on the forward 

(reader-to-tag) radio channel condition, some tags may not receive 

sufficient power to process the probing request. A tag receiving 

sufficient power will pick an integer within the range of [1，/] and 

respond in that slot with probability q. Depending on the reverse 

(tag-to-reader) radio channel condition, the reader may not be 

able to detect the reply from a responding tag. The reader will 

then count the number of empty slots, i.e., the slots in which no 



response is observed. Denote by Zi the number of empty slots 

observed by the reader during the i-th polling cycle. The reader 

will repeat the polling cycle for n times, each with a different seed. 

Denote by y = h Z i /n the average number of empty slots per 

frame over the n polling cycles. Suppose the actual cardinality of 

the tag-set is t. The estimator will take Y as an input and return 

an estimate i satisfying the following accuracy requirement: 

M H i - 夸 ， 1 + 0 ] + " ， 

where P > 0 specifies the error bound and 0 < a < 1 gives 

the failure probability. We use Za to denote the ce-percentile of 

the Unit Normal distribution A/'(0,1) where A/^(a, b) represents 

a Normal distribution with mean a and variance b respectively. 

Table 3.1 summarizes the definition of the symbols and parameters 

used in our derivation. 

CHAPTER 3. TWO-PARAMETER IMPLICIT CHANNEL MODEL ... 16 

3.2 Number of Empty Slots Observed by the 

Reader 

In this section, we characterize the number of empty slots ob-

served by a reader under an unreliable radio channel. Our tag-set 

cardinality estimator relies on the average empty-slot count. The 

accuracy of the estimator depends on the variance of the empty-
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Variables Meaning 

t True niiinber of tags in the set 

i Estimated number of tags given by the estimator 

a 

Failure probability of the estimator satisfying the 

accuracy requirement. The scheme will fail with 

probability 1 — a 

P 
Error bound for specifying accuracy requirement 

of the estimator, i/t G [1 - /?/2,1 + (3/2] 

Pi 
Probability for tag i to have a perfect channel 

with the reader R 

P the set of {pi} 

fnip) 

With probability //? (p) dp, a tag in the 

warehouse will have a responding probability 

within the range \p + dp] 

M 

The average responding probability (due to 

imperfect channel) for a tag in the warehouse to 

respond to reader R 

The variance of the responding probability of a 

tag with respect to reader R 

f frame size/ number of slots in each frame 

n number of polling cycles per estimation 

Q 
A tag receiving the query will choose to content 

with persistent probability q 

P loading factor = t/ f 

No{t) random variable for empty-slot count 

Zi empty-slot count for the z-th reader polling cycle 

Y average empty-slot count = Zli 么/几 

Table 3.1: Notations 
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slot count, which is determined by the following two factors: (1) 

the inherent variation in the spatial distribution of tags and the 

radio conditions, (2) the randomness in the slotted-ALOHA-based 

polling scheme. 

Denote by p = {pi，...pt} a realization of the set of responding 

probabilities of t tags within the warehouse. In general, p depends 

on the realization of the spatial locations of the t tags within the 

warehouse and the radio channel propagation parameters. Notice 

that a different realization of p will result in a different distribution 

of the number of empty slots observed by the reader. 

Denote by No{t) the empty-slot count of one single polling 

cycle. The expected value of No{t) is derived in Lemma 3.2.1 

below. 

L e m m a 3.2.1 Given that there are t tags within the warehouse, 

the expected number of empty slots observed by the reader, E [iVo(力) 

is given by /e一帰. 

Proof 1 Define Xj to be an indicator random variable with Xj = 

1 corresponding to the event that the j-th slot is not chosen by 

any of the responding tag(s). Xj 二 0 represents the event that 

the j-th slot is chosen by at least one of the responding tags. The 
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probability that tag i will not respond in slot j is given by: 

f f - 1 \ 
I - PiPi 1 1 + —r-q 

\ J 
= 1 -

m 
了 

Thus, we have: 

Prob [Xj = l\p] = n (1 - m 
了‘ 

E [A^o � \p] = E /.n 1-
m 
f J 

(3.2) 

Taking e^ ^ 1+x for \x\ 1, the R.H.S. of (3.2) can be rewritten 

as 

f e - _ 1 + 2 
\ k 

oo u 

k\p 
X
7
 

/
—
\
 Pi - tid 

k\ 

/ 

(3.3) 

Note that, for large t, ^Pi — t f j , follows a Gaussian distribution 

J\f{0,ta^) and E (EPz-^m) 二 E REPi-uo—oy IS 

the k-th central moment of the Gaussian distribution which is 

equal to 0 when k is an odd number. The 2k-th central moment 

is given by: 

E I
 

2k f
c
 

\
—
•
/
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 b

 

I
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/
.

\
 

1
1
!
 

By the linearity of expectation, we have: 

E [iVo {t)] = fe-PqP 1 + 2 ^ 
\ k=i 

oo jf. OiU 
「 q ^ K pq 

\ f 
(3.4) 

With f selected according (3.13) which we will discuss later, we 

have 
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Denote ( as 2 J ^ • Noted that ( � 1 since � 1 and 
qcr'̂  In { 5 

2 
i > 1 and ^ < 1 for a p.d.f. with support G [0，1] (See proof 

fc 2k / \ ^ 

below). Hence 1 + [ j ) ~ 1. For example, when 

f 二 200，a'^/fi = 1, q = !,(： = 0.0075《1. 

Hence, we have E [iVo � ] ~ /e—网" 

L e m m a 3.2 .2 ^ < 1 for any p.d.f. with support e [0,1 

Proof 2 

a ‘ E —五2 X 

E 
< 

E\X] 
< 1 for X with support G [0,1 
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Lemma 3.2.3 The variance of the number of empty slots for an 

actual tag-set of size t is given by: 

Var[No{t) 
t g V 

+ fe—_ (1 - (1 + pq" + CJ^)) e-層) 

Proof 3 In order to capture the variance of the number of empty 

slots, we need to compute (1) Var[E[NQ{t)\p]]^ the variance due 

to different realizations ofp, and (2) E [Var [Nq {t) \p]], the vari-

ance due to the slotted-A L OH A - based polling scheme. 

Consider only the first and second order terms in (3.3) and 

(3.4)，we have: 

Var [E [A^o (0 \p]] = E {E [No{t) \p]f - {E [No W]) 

2
 a.

 X
 

I
 

1
 -

2
 

y
l
 9
 

+
 

1
 

u
-

如
 

I
 

e
 / 

(3.5) 
V P … ^ P 

Higher order terms are ignored because we pick f according to 

(3.13). shown in the proof following (3.4)； the sum of the 

terms are small enough to be ignored. 

The variance caused by the polling scheme is given by: 

V 1 � ^ 1 
Var [ T V � � p] = E —E 

、 力 P 
Lj=i J 

where Xi is defined in the proof of Lemma 3.2.1. For i + j 

E[XiXj\p] = Prob[Xi 二 l , X j = l | p ] = J]^ ( 1 
2pig\ 

丁 J 
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For i = j, we have E [X? \p] = E [Xj \p]. Hence, we have 

^ar [iVo � \p] = f ( f - l ) Y [ h -
1 V f 

+/n 1 
PiQ 
f J f ' U 

\ _ w 
\ f 

- / + 
(2/ - /2) ^ …2A2�g-f/xg + fe-〜网 

p .一 M 
J 

9
 

u
-

t
l
/
 

I
 

e
 

耐e—7叫 

1 - 1 + 

1 -

2
 二
 I

 ”
 /
 

/
 1
 e M 

+ 7 

=1 / / \ � 

2 2 vk 

Notice that the proof of (3.6) is given in Appendix A. 

Step (3.8) is true because f � 2 . 

Taking expectation of (3.8) to yield: 

E [Var [iVo � \p]] = / e—卿（1 - (1 + + a � e , � 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

Substitute Equations (3.5) and (3.9) into the "Conditional Vari-

ance Formula” [17], the variance of the number of empty slots can 

be shown to be: 

Var [iVo � ] = V a r [E [iVo (t) |p]] + E [Var [iVo � \p. 

T h e o r e m 1 Given that there are t tags. Consider Y 二 Zi/n. 
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The expectation and variance of Y are given by: 

E [y] 二 fe—qpA 

and 

I
 

_
 

/
 

2
 b

 

2
 

Var lY e ^ w n 
-pw、 

Proof 4 Denote by Zi, the empty-slot counts observed over 

the n polling cycles. Recall that the mean and variance of Zi � 

N^it) have been derived in Lemma 3.2.1 and 3.2.3 respectively. 

Since the {Zi}'s are obtained from the same (i.e., a singlej real-

ization of p, the {Zi} 's are dependent on each other. Such de-

pendency is removed by conditioning on p. We have: 

E[Y] = E [TVo � ] = f e -q叫. 

Var [Y] = Var [E [Y\p]] + E [Var [Y\p 

Note that we can reproduce Theorem 4 of [1] as the special case 

of a perfect communication channel by setting /i = 1, cr̂  = 0 in 

Theorem 1. 

The estimator proposed depends highly on value of fi. Suppose 

the value of jj, is deviated from the actual value by 10%, the es-

timated number of tags would also deviate from the actual value 

by 10%. 
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Exact distribution and Operating range of the estimator 

The operating range of our estimator is defined as the valid range 

of tag-set cardinality t under which the resultant estimate i will 

satisfy the desired accuracy requirement. Notice that if all the 

slots in the response frame as observed by the reader are occupied, 

our estimator would not be able to provide an upper bound on the 

tag size. Hence, we determine the maximum number of tags that 

the estimator can support by requiring that, with high probability 

(w.h.p.)，at least 1 empty slot will be observed in the response 

frame. Towards this end, we need to first characterize the exact 

distribution of the number of empty slots observed in a response 

frame. We follow [1, 18, 19] to derive this exact distribution. In 

particular, the probability of no empty slot observed in a frame is 

given by: 

Prob{No = 0)^(1- (3.10) 

where p = t / f . Here e—卿 is the probability that a slot is empty. 

Hence, the probability of having no empty slot for all f slots is 

given by (3.10). Notice that (3.10) gives the upper end of the 

operating range for the estimator such that at least one empty 

slot can be observed in the response frame. If we want this to 

happen with probability at least 7, the target tag-set size t must 

satisfy: 
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Prob [A/q = 0] = (1 _ < 1 - 7 . (3.11) 

For 7 = 0.99, we have 

( 1 - e —一 / / ) < E-7 A 1 —、 (3.12) 
J 

叫" < 善. (3.13) 

By solving (3.13) numerically, we can obtain an upper bound on 

the effective range of t. 

3.3 Estimator Accuracy and Performance Anal-

ysis 

In Section 3.2, we have shown that the mean and variance of the 

average empty-slot count is given by Theorem 1. Here we describe 

our estimation scheme. 

Theorem 2 Based on the observed average empty-slot count Y 二 

Zi/n, we propose an estimator 

M \f J 

which has the following properties: 
( e 脚 一 （ l + p g 2 + 

E [g {¥)] 二 力 + 
2NIIQ 

FJ? NFJ^Q^ 
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Proof 5 The expected number of empty slots E [Y] = /e一卯"=9. 

Consider the Taylor series expansion of g (y) around 6, we have: 

g{Y)^g{e) + {Y-e)g'{0) + {Y — OY 

2! 
. 劑 

Compute the individual terms: g' {¥) = g" iX) = 

9 (0) = t, � = - 尝 � = 5 ^ ’ to yield 

Var \Y] e2綱 

2 f^iq 

Similarly, by considering the first two terms of the Taylor series 

expansion, we get: 

Var [g (”] ^ Var [y] {g' {6))\ 

The proof can be completed by substituting back the terms listed 

above. 

The R.H.S. of the expression of Var [g (F)] in Theorem 2 im-

plies a lower-bound on the estimation error which cannot be re-

duced by increasing the number of reader polling cycles n. An 

increase in n can only reduce the randomness caused by the prob-

abilistic response probability {q) and the varying radio channel 

conditions but not the inherent variation in the spatial distribu-

tion of the tags within the warehouse. This is because all the 

polling cycles within an estimation share the same realization of 
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tag locations. For a given a load factor the optimal persistent 

probability q for minimizing the variance is given by: 

q = mm 1, . 
V W 乂 

Determining the parameters for a range of tag population 

Typically, the exact loading factor p, ( i.e., the size of the tag-

set) is unknown. Instead, we are given an upper bound tu and 

lower bound ti on the number of tags in the set. Based on these 

bounds, we want to determine the polling parameters such that 

the estimation accuracy requirement can always be satisfied. If 

we want the estimation error t — i to be within ±/3t/2, we need 

ZAYJ% < y 

where 如 = V a r [g (F)] as given in Theorem 2. 

Theorem 3 For a given spatial distribution of the tags, a ra-

dio channel model (summarized by and cP' of the corresponding 

//?(.) function), and a set of accuracy requirements (defined by a 

and (3), there exists a lower-bound on the size of the tag-set (tcHt) 

below which the accuracy requirement of the estimator cannot be 

satisfied regardless of the settings of the other protocol parameters, 

e.g., n, f and q. 
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Proof 6 Rewriting Jq shown above, we have: 

如 = 2 2 2 —— l + ] 3.14 nf \ fx^q^p^ p V f ^ y J 4Z2 

Note that the necessary condition for satisfying the accuracy 

requirement is ^ < which does not depend on the number 

of reader polling cycles. This is because the estimator requires 

a minimum number of tags, tcrit, present in the tag-set to com-

pensate, via the Law of Large Number, the variation caused by 

different realizations of tag locations within the warehouse in or-

der to achieve the required estimation accuracy: 

t 〉 = ‘ 议 . 

For any t > tcrit, ihe number of polling cycles required is given 

by： 

n 一 " (3.15) 
4 纪—-pJ^ 

In Fig. 3.1, we plot the number of reader polling cycles required for 

fi = 0.8820 and 二 0.0089, with f = 165, q = 0.65408, n - 41 

and estimation accuracy requirement of a = 0.99 and jS — 0.1. 

The range t is varied from 50 to 1200 with tcrit = 31. Under the 

4000 slots per second assumption, the estimation takes around 1.7 

seconds. Observe that as the number of tags approaches tcrit from 

above, the number of reader polling cycles approaches infinity. 



、卿-1 _ 1 + £！、 
"〒p2 p \ 

s.t. n > max 
Pl<P<Pv 

0 < q < l , f〉0 

Since the R.H.S. of (3.16) reaches its maximum when either 

p = p^ or p = pu we set 
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As long as the number of tags is larger than tcrit, the accuracy 

requirement {a and P) can always be satisfied. However, when the 

number of tags approaches tcrit, the variance due to the unknown 

realization of the tag position will also become larger (since there 

arc less tags), and there is only a small allowance for the vari-

ance of protocol randomness. Toward this end, as the number of 

tags approaches to tcrit, the variance allowance for protocol ran-

domness will approaches to 0. This implies the number of polling 

cycles/latency will become larger and larger in order to reduce 

the randomness in the protocol (since we are using probabilistic 

counting). 

To support a tag-set of size t G [ti, ty] ^ p E [pi = Pu = ’ 

with minimum response latency while meeting estimation error 

requirement, we can solve the following optimization problem: 

minimize n • f 

3.16) 

4纪 



400 600 800 
Number of tags 

Fig 3.1: Number of polling cycles vs tag-set size with optimal parameters 

for range |100, 1000] ( / = 165, q = 0.65408, n = 41). The number of slots 

involved is C7C5 slots. Suppose there are 4000 slots in one second, the latency 

involved would be 1.7 seconds. 

簡一1 1 / 1 I 
,2丄2 — : I丄十：：！ Pi 

e剛 u —] 1_ 

Fu 1 + 
一 —工L (3.17) 

Define s = ti/tu and treat (3.13) as an equality and substitute 

1 
^ 

f沪—丄 
" ；2 

it into (3.17), we have: 

i
 

1
 A
 5

 

-

i
 

7
r
}
_
 

一
 Z
5
 

5
 、/

 n
 / + 

1
 
\

/
 

I
 Z
5
 

1
5
 

(1】 
P u 

.2\ 

— 

4纪 ^ ^ 

2
 2
 s
 

/
4
 丄 

Pu 
(3.18) 

Upon solving (3.18) numerically for / , the optimal persistent 

probability q can be obtained from (3.13). The number of reader 

polling cycles required can be found by using (3.15). The mini-

mum response latency can then be calculated. However, solving 
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(3.13) may give q > 1. In such cases, we put q = 1 and solve (3.17) 

and (3.15) for f and n respectively. This will give the polling pa-

rameters for our estimator with an operating range of t ^ [ti, tu 

and a latency of n • / . 

The latency for estimating the tag-set cardinality can be fur-

ther reduced by applying the sub-ranging techniques proposed in 

Section VB of [2]. Since Theorem 3 suggests that when ti is close 

to tcrit, the number of polling cycles required approaches infinity, 

this motivates us to minimize the latency when t = ti. As a larger 

value of q will reduce the required number of polling cycles for a 

given accuracy requirement, we set g = 1 and find the optimal 

value of f to minimize the estimation latency when t = ti： 

. e帅 I - 1 1 广1 y � � 
f = a r g ( m i n ^ U + — ) 

f pi \ MV 

The maximum tag-set cardinality supported by the operating 

range, with q = I together with the f shown above, is given by 

(3.12): 

tu' < -^f 

This gives the polling parameters for the sub-range [t,，力 

When tu' < tu, an additional sub-range will be required to guar-

antee the accuracy requirement of the estimator over the entire 

range of t. In such cases, replace ti by tu' and repeat the pro-

cedure described above to determine the parameters for the next 
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sub-range. Further sub-range optimization can be performed us-

ing techniques described in [2]. However, the overall estimation 

latency is typically dominated by the polling operations for the 

lowest sub-range, i.e., when t is close to tcrit-

3.4 Results and Discussions 

Before presenting the results, we introduce the channel model used 

in the simulation. Here, we assume the channel to be dependent 

only on the distance, d, between the reader and the tag. We derive 

the probability for receiving a tag response as a function of d under 

different channel fading models. Denote by Cp"i’d(.) the p.d.f. of 

the received signal power at distance d from a transmitter trans-

mitting at a power of Pin. In general, the distribution CV^d(-) 

depends on the actual channel model. In our simulation, we con-

sider the Lognormal and Rayleigh fading [40] channels. Both the 

forward and reverse link effects are accounted for. A tag response 

is observed by the reader only if (1) the tag can receive sufficient 

power from the reader probe, and subsequently, (2) the reader can 

receive sufficient power to detect the tag response. The probabil-

ity that the reader will receive a response from a tag at a distance 



CHAPTER 3. TWO-PARAMETER IMPLICIT CHANNEL MODEL ... 33 

d is given by: 

Prob (tag at distance d will response to the reader) 
roo noo 

= {Ws) • / CEfWs4 M dWrdWs, (3.19) 
JPt J Sr 

where P^ is the reader transmitting power, Pt is the minimum 

power required to power up a tag, Sr is the receiving sensitivity of 

the reader, Gr{Gt) is the reader (tag) antenna gain and Et is the 

backscatter efficiency. The outer integral specifies the condition 

that enough power is received by the tag during the forward link 

transmission while the inner integral corresponds to the power 

requirement for successful detection for the reverse link transmis-

sion. 

In Fig. 3.2, we plot the tag responding probability against 

distance between the reader and a tag for the Lognormal and 

Rayleigh fading channels with path loss exponent r = 3 and 4. 

We assume Pr 二 3QdBm, Pt = -lOdBm, Sr - -SOdBm, Gr = 

QdBi, Gt = IdBi, Et = -2QdB. 

Here, we validate the estimation accuracy guarantees derived 

in Section 3.3 by simulation: A reader is placed at the center of 

a 5m X 5m room and each tag is randomly placed in the room 

according to the i.i.d. uniform distribution. We compare the Log-

normal and Rayleigh channel fading models under different path 

loss exponent r = 3，3.5 and 4. Assume the accuracy requirement 
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1 4 5 6 7 8 9 
Distance away from reader (m) 

Fig 3.2: Tag responding probability against distance 

is a = 0.99, P = 0.1, i.e., to estimate the number of tags within 

±5% of its actual value for 99% of the time. As discussed in The-

orem 3, there exists a minimum tag requirement tcru in order to 

satisfy the given level of estimation accuracy. As shown in Table 

3.2, tcrit generally increases with the path loss exponent r . 

We set the operating range of the estimator to be 10^ < t < 10^ 

and compute the corresponding polling latency in order to achieve 

the stated accuracy requirement. Table 3.2 also compares the re-

sults when sub-ranging technique is applied. The number in the 

bracket corresponds to the number of sub-ranges used (m). As 

shown in Fig. 3.2, the Rayleigh fading channel drops off faster 

than the Lognormal one for r = 4. As such, more time slots will 

be needed for the former. Notice that the overall latency increases 
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dramatically especially when the lower-end of the operating range 

is close to tcrit (e.g., for Rayleigh fading with r = 4). By applying 

the sub-ranging technique to split the operating range of the es-

timator into multiple smaller sub-ranges, the overall latency can 

be reduced by at least 75% for all cases. However, even with sub-

ranging, the latency for the Rayleigh fading model with r = 4 is 

still extremely large when compared with other scenarios where 

tcrit is far smaller than the lower-end of the operating range. In 

particular, 92% of the latency is due to the polling for the lowest 

sub-range. In Table 3.3, we plot the minimum latency for the 

conventional MAC protocol for different tag-set size between 10^ 

to 10^. We assume prefect channel, prefect scheduling, prefect 

information of tag size in computing the latency. To estimate a 

tag-set with 10^ tags, conventional MAC protocol takes at least 

425 seconds, compared with 6 seconds in our proposed scheme 

(under the unreliable channel model we considered). 

Next, we examine the simulation results for the case of a Log-

normal shadowing channel with r == 3.5, a = 8.7dB. The level set 

of the responding probability distribution of the room y)) 

and the corresponding histogram are depicted in Fig. 3.3(a) and 

(b) respectively. In Fig. 3.4, we show the accuracy of the pro-

posed estimator against a given tag-set of size 二 500 under dif-
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path loss exponent r 3 3.5 4 

Channel Lognormal {a = 8.7dB) 

M 0.9149 0.8820 0.8426 

0.0043 0.0089 0.0164 

^crit 13.77 30.47 61.24 

without sub-ranging (slots) 101290 105110 126660 

latency (s) 25.3 26.3 31.7 

with m sub-ranges (slots) 22785 (m = 3) 23444 (m = 3) 24426 (m = 3) 

latency (s) 5.7 5.9 6.1 

Channel Rayleigh 

M 0.9275 0.8893 0.8350 

0.0038 0.0106 0.0260 

^crit 11.73 35.64 99.07 

without sub-ranging (slots) 100830 106340 3289392 

latency (s) 25.2 26.6 822.3 

with m sub-ranges (slots) 22844 (m = 3) 23726 (m = 3) 256571 (m = 4) 

latency (s) 5.7 5.9 64.1 

Table 3.2: tcru and latency for operating range from 10^ tags to 10̂  tags, 

with accuracy requirement a = 0.99, 13 = 0.1 under different channel model, 

Pr = 36dBm, Pt = -lOdBm, Sr = -8QdBm, Gr = 6dBi, Gt = IdBi, 

E, = -20dB 
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c coordinate (m) 

(a) Visualization of the response probability distribution 

0.75 0.8 0.85 0.9 
Responding probability 

(b) aggregated response probability over the readers 

Fig 3.3: Testing Scenario: Reader at position (2.5,2.5), channel: Lognormal 

with r = 3.5，a = S.7dB 
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Conventional MAC protocol latency (slots) latency (s) 

102 tags 700 0.2 

103 tags 10000 2.5 

104 tags 140000 35 

105 tags 1700000 425 

Table 3.3: Latency for conventional MAC protocol (Assuming prefect chan-

nel, prefect scheduling and prefect information of tag-set size) 

ferent realizations of tag locations. The estimator is designed for 

an operating range of t G [100,1000] and no sub-ranging is per-

formed in this case. The optimal set of parameters are computed 

to be: n = 41, q = 0.6541 and f = 165，which takes around 

1.7 seconds. The solid curve shows the analytical distribution of 
A 

t predicted by Theorem 2 and the circles represent the simulation 

results. The outer dotted curve corresponds to the desired level of 

estimation accuracy for a = 0.99 and (5 = 0.1. The best achiev-

able accuracy guarantee (by polling infinite number of cycles) is 

shown as the inner dotted curve. Notice that , with t = 500, we 

only require n = 22 polling cycles (or equivalently 0.9 second) to 

achieve the required level of accuracy according to Fig. 3.1. On 

the other hand, 41 polling cycles (or equivalently 1.7 second) are 

required for t = 100 or 1000. 

In Fig. 3.5, we show the estimation results as the size of the 

tag-set varies from 50 to 1300 while the operating range of the 
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500 
estimated number of tags 

Fig 3.4: Simulation result of 10000 trials of 500 tags distributed uniformly 

under the map of Fig. 3.3 

estimator is designed to he t e [100,1000]. Fig. 3.5a plots the 

estimate value i against the actual value t while Fig. 3.5b depicts 

the ratio i/t against t. In both cases, the pair of solid lines in the 

graph correspond to the 土5% target error bounds. According to 

our design, on average, only 1 out of the 100 simulation experi-

ments will have an estimate lying outside the error bounds. This 

is in line with the observation from Fig. 3.5a and b. Observe from 

Fig. 3.5b that when t falls out of the designed operating range of 

the estimator (i.e., when t < 100 or t〉1000), the number of 

experiments which cannot produce an estimate meeting the accu-

racy requirements (manifested in form of dots lying outside the 

error-bound lines) increases only gradually. 
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Fig 3.5: Simulation result showing 99% confident within 士5% interval for 

the estimated number of tag with size [100，1000], the range predicted by the 
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3.5 Chapter Summary 

In this chapter, we extend the algorithms in [2] by taking into 

account the effects of radio channel unreliability. Unlike the per-

fect channel case where one can indefinitely reduce the estimation 

error by increasing the number of reader polling cycles, with an 

unreliable radio channel, there is a lower-bound on the estimation 

error due to the inherent variation in the spatial distribution of 

the tags and the radio channel conditions. We have demonstrated 

the efficacy of our analytical results and their corresponding guar-

antees in estimation accuracy via an simulation study. 

• End of chapter. 



Chapter 4 

RFID Tag-set Cardinality 

estimation over Unknown 

Channel 

In Chapter 3，the RFID counting algorithms in [2] are extended 

to account for the effects of radio channel unreliability. However, 

the work there implicitly assumes the knowledge of the channel by 

requiring the first two moments of the tag responding probability 

distribution to be known. As such, the focus has been on the ef-

fects of radio channel variations on the latency and accuracies of 

RFID counting algorithms. In this chapter, we propose a set of 

new algorithms to count RFID tags over unknown, lossy wireless 

channels. In particular, the proposed schemes can provide good 

estimates of RFID Tag-set cardinality while assuming no prior 

42 
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knowledge of channel parameters. This makes this work appli-

cable in a wide variety of situations where the reader is unaware 

of channel conditions and also cannot afford to perform explicit 

channel estimation. We will demonstrate the efficacy and accu-

racy of the proposed schemes via extensive simulation studies. 

4.1 System Model 

Consider a reader which broadcasts a probing request to t RFID 

tags located within a region of interest. The tags send a response 

of fixed length back to the reader. The probability that a tag 

i can successfully 1 communicate with the reader is pi. In gen-

eral, Pi depends on the reader transmission power, antenna gain, 

minimum power requirement (sensitivity) of the tag a,nd reader, 

backscattering efficiency as well as the radio channel and fading 

model parameters. Unlike the previous chapter (and [20]), we 

hereby assume piS of each tag to be sampled from a common 

unknown probability distribution. We are interested in obtain-

ing good estimates for the value of t to while accounting for the 

non-deterministic, unknown nature of radio channels between the 

reader and the tags. 

We assume that the RFID system follows the same q-persistent 

^The success probability decreases with the length of the message. 
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framed-slotted ALOHA model introduced in Chapter 3: In each 

probe, the reader will broadcast the frame size /，persistent prob-

ability q and a random seed. Since tags select the slot in a frame 

based on a hashing scheme initialized by the random seed, we 

need multiple random seeds to reduce the variability due to the 

hashing scheme. Denote by m the total number of random seeds 

required for the probes. 

Depending on the forward (reader-to-tag) radio channel con-

dition, some tags may not receive sufficient power to process the 

probing request. A tag receiving sufficient power will randomly 

select an integer within the range of [1,/] and respond in that 

corresponding slot with probability q. Depending on the reverse 

(tag-to-reader) radio channel condition, the reader may not be 

able to detect the reply from a responding tag. The reader de-

tects whether a slot is empty or not (indicated by SNR levels). 

The reader will count the number of empty slots, i.e., the slots in 

which no response is observed. 

The reader cannot silence an individual tag based on the status 

of its response, as is common with passive tags that do not possess 

any active memory or power source. In order to account for the 

unreliable channel, the reader sends out multiple (r) probes with 

the same seed. Thus, the total number of probes performed (as 
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well as the number of frames received) by the reader \s m x r. 

Our goal is to estimate the tag-set cardinality i with the fewest 

possible number of probes such that the following constraint on 

the accuracy of i is met: 

Prob +
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where jS > Q specifies the error bound and 0 < a < 1 gives the 

failure probability. 

Similar to the arguments in [1], since tags cannot be silenced in-

dividually, if we let tags transmit their identifiers, then any scheme 

that attempts to identify individual tags will take a large amount 

of time to complete. Thus, we are interested in a simpler counting 

algorithm that uses only a few bits ( g { 1 , 1 0 } ) bits as response 

from each tag without individually identifying them. 

4.2 Baseline: The Union-based approach 

Before we study the capture-recapture-based approach, we first 

consider a simple baseline solution for the problem under consid-

eration. We analyze its bounds for comparison with the capture-

recapture-based estimators. 
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4.2.1 Motivation 

A tag i with Pi < 1 cannot guarantee that its response to a reader 

probe will reach the reader. In fact, the reader should probe at 

least ^ times in order to achieve in the average case, one re-

sponse per tag, can be registered at the reader. Assume that 

Pmin < Pz,V2. If we assume that each tag picks a distinct slot in 

a frame without collisions, it is safe to say that we need at least 

I/Pmin probes to count all the tags on average. In order to get 

much stronger performance guarantees while considering the pres-

ence of collisions between tag responses, we extend the slot-based 

estimator proposed in [2], the details of which are described next. 

4.2.2 Union Algorithm 

In the original slotted-ALOHA model [2], for each probe, the 

reader will announce a seed and the persistent probability q to 

the tags such that the tags can pick one slot out of the f slots and 

respond to the reader with probability q. The reader will then 

observe the number of empty slots (slots that no tags picked) and 

hence estimate the number of tags. The presence of channel loss/ 

fading will make some of tags fail to register their response to the 

reader and hence resulting in observing more empty slots (which 

are marked as zeros) than it should be. To provide a reliable 
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estimate, we will need to distinguish slots that no tags picked ver-

sus slots that seems to be empty simply because tags responses 

in those slots cannot be observed by the reader due to channel 

loss. A simple approach is to repeat the probe with the same seed 

multiple times and take the slot-wise logical OR operation across 

those frame responses based on the empty slots. As long as the 

tag response is recorded by the reader in one of the probes of the 

same seed, we will be able to take the tag into account via this 

so-called Union-based approach. By repeating the probes multiple 

times, the probability of failing to detect a presented tag will be 

reduced exponentially. 

We define the set of r probes as a single experiment The 

outcome of each experiment is an estimate of the actual number of 

empty slots in a given frame (seed), which can be used to estimate 

the number of tags. In order to reduce the variance of the estimate, 

we need to perform multiple experiments using different seeds to 

realize different tag-to-slot mappings. We denote the number of 

experiments (and thus seeds) by m. 

4.2.3 Analysis of the Union algorithm 

As described in the previous subsection, the number of probes 

with the same seed is given by r. There are t tags in the system. 
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We provide the worst-case bound for the cardinality estimation 

time by assuming all the tags have minimum success probability 

Pmin- The probability that the response of a tag i is received by 

the reader after r probes is given by 

Summing this over all tags i, and using the fact that < 1, 

we get 
t 

t ( l - ( l - P m m r ) 
i=l 

For accuratc capture of all tags responses, we require 

t (1 — Pmin丫 < 1 

Therefore, the required number of probes in each experiment is 

given by 
- l o g t l o ^ (4.1) 

l0g(l - Pmin) Pmin 

Let Xj be the random variable representing the number of 

empty slots after aggregating the r frames of an experiment. It is 

easy to see that 

E[Xj] = f n U ( l - y ) ^ fe-qP 

where p = We now derive a couple of results similar to 

those in [1] that characterize Xj and Y = ^ ^^ Xj as normal 

distributions. 
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Theorem 4.2.1 If each of the t tags picks randomly among f 

slots and transmit in that same slot with probability q in each of 

the r probes of an experiment, then Xj � J \ f /^o? ^^o ； 

where 鄉= / e —卯, e r g = fe—^ ( l - ( l + q^p) e-^) and p = � 

o 

Theorem 4.2.2 Consider each of the t tags picks a slot randomly 

among f slots in the j-th experiment j = 1, 2,...，m and transmit 

in the same chosen slot with probability q in all r probes of this 

experiment. If 
m 

then, 

Y � M [iiQ.aljm 

where fi^ and ao are given in Theorem 4-2.1. o 

The proofs of these two theorems are similar to those in [2 . 

The reader computes the estimate i of the tag set size, t, based 

on y = Xj/m as described below where y and Xj's are the 

realizations of Y and Xj respectively for this set of experiments. 

In particular, we know that the expected number of empty slots 

is / e—卯，or the fraction of empty slots is Thus the reader 

can determine p, an estimate of p, by: 

(4.2 
m f og( 

1 

q 
I

I
 

/

\
 g

 

T
w
 

1

 I

 e
r
r
 

P = 



CHAPTER 4. ESTIMATION OVER UNKNOWN CHANNEL ... 50 

Since r is chosen based on Equation (4.1), ~ 亡，and hence, 
八 

we can set t = f p . This is the Union-bound estimator. The 

estimation algorithm is stated in Algorithm 1. 

Algorithm 1 Adaptive scheme based on union algorithm 
1. Determine r = —；~t^^r. 

l o g ( l - p m i n ) 

2. Probe the tag set with same seed for r times. 

3. Determine the number of empty slots for which no response was re-

ceived in any of the r probes. 

4. Compute the average number of empty slots over all previous experi-

ments and use Union-bound estimator to compute tag estimate. 

5. Repeat step 2-4 until the required accuracy is achieved, based on the 

observed variance. 

Note that /xq is a continuous, monotonically decreasing, func-

tion of t, and hence it has an inverse function denoted by p(-), 

i.e., g(juo(t)) = t. The mean and variance of the estimator g{-) 

can be derived along the lines of Theorem 3 in [2], and are stated 

as follows. 

T h e o r e m 4.2 .3 Given g{Y) 二 —f\og(X/f)， 

, 、 ， ( e ^ ^ - ( l + gV) ) 

mq2 
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As m oo, E[g{Y)\ — t. o 

We know from the results in [2] that given a p, we want to 

select the probing probability q to minimize the variance rather 

than increasing m. By differentiating (̂ o with respect to g, and nu-

merically solving the resultant expression, we can show that given 

any p, the variance of the Union-bound estimator is minimized 

when qp = 1.59. In other words, for minimum variance, we set 

/ 1 . 5 9 � . / 1.59 g � 
q = mm 

V P 
—mm 

/
 

\
—
/
 

7—-\
 

g
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V
 

(4.3) 

We estimate the optimal persistent probability q based on the 

current estimate of the number of empty slots in the frame, which 

in itself is a function of the number of tags. We can start with an 

initial value of q and as we progressively increase the number of 

experiments, we can refine the value of q. With each successive 

estimate of i, we can use minimum variance combining ([2]: The-

orem 4) across different p's (and thus i) obtained using different 

values of q in Eq. 4.2 to produce a unified estimate until we reach 

our desired variance bound. 

In summary, the key of the union-based approach is that by 

repeating the same probe (with the same seed) over and over 

again within an experiment, we eliminate the effects of the lossy 

wireless channel on the tags' responses. This helps us to obtain 
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the final count accurately. The drawback of this baseline scheme 

is that the number of probes required is We now propose 

a set of schemes that aims to use far fewer number of probes to 

determine the tag set cardinality. 

4.3 Probabilistic Tag-counting over Lossy, Un-

known channels via the Mh model 

Recall the Capture-Recapture model with heterogeneous catcha-

bility Mh introduced in Chapter 2. In this section, we will describe 

how to formulate a key sub-problem of the RFID counting over a 

lossy, unknown channel based on the M^ model and then leverage 

the rich estimation techniques developed by the biostatistics com-

munity to extend the probabilistic counting framework in [2] to 

address the uncertainties caused by the unknown, lossy wireless 

channel. 

4.3.1 Novel Interpretation of Af/! for RFID Counting 

over Lossy, Unknown Channels 

In most facilities where RFIDs are deployed, the responding prob-

abilities across different tags can vary widely, e.g., due to the 

hardware characteristics of the tag, its location and communica-
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tion channel properties. As such, one may attempt to directly 

apply the Mh model for estimating the RFID tag population size 

by mapping tags as animals whose population is to be estimated 

using capture-recapture techniques. However, such application 

would require one to explicitly identify and record individual tags 

responded (captured) in each probing and thus substantially in-

crease operational latency. Instead of mapping tags as animals 

and estimating the tag population size directly, we map slots as 

animals and count the number of slots occupied by the tags during 

each probe. By using the same seed to probe the tags, tags will 

always select the same slot in a frame. This tags-slot mapping is 

fixed for r probes when the same seed is used. Although the map-

ping is fixed, the frame responses for the r probes may be different 

due to the unreliable radio channels. Slots with tags occupied may 

have no tag responded for some probes, resulting in idle slots. The 

probability of being idle, however, depends on the actual number 

of tags selecting the slot and the responding probabilities of those 

tags, and is not the same for all slots with tags. This is an analogy 

to the animal capturing in the Mh model where animals have het-

erogeneous capture probabilities and each of the r reader probes 

using the same seed corresponds to a round of animals-trapping, 

i.e., a catch, under the capture-recapture model. The occupancy 
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history of each slot in a frame across these multiple probes corre-

spond to the statistics of capture history of marked animals caught 

across multiple trappings. We can then apply various population 

estimators for the M^ model to determine the actual number of 

occupied slots in the frame for the current tag-to-slot mapping 

as if the channel were perfectly reliable. In particular, most M^ 

model-based estimators have the "projection power" which allows 

us to estimate the ultimate number of slots with at least one tag 

under the current tag-to-slot mapping, even though some of the 

tags might have failed to respond in any one of the r probes due 

to the lossy channel. With the number of occupied slots {N) es-

timated, we can then determine the corresponding number of idle 

slots {Nq = f - N) under the current tag-to-slot mapping. Once 

this sub-problem is solved, we can use different random seeds to 

realize different tag-to-slot mappings as in the case of [1，2] and 

apply the one of the estimators in [1, 2] to estimate the total the 

number of tags. 

To determine the actual number of empty slots in a frame as 

if the channel were perfect, we will first consider two capture-

recapture estimators, namely, the Moment Estimator proposed in 

21, 22] and the Sample Coverage Estimator introduced in [3 . 

While there are other M/i-based estimators which can serve the 
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purpose, e.g., the 广based estimators in [3, 13], we select these two 

estimators due to their relatively low implementation complex-

ity, near best-of-class performance, and more importantly, com-

plementary strength under different types of distributions of the 

heterogeneous capture probabilities. 

Both the Moment and Sample Coverage estimators rely on the 

"capture" frequencies of the slots, rii as sufficient statistics for 

the "hidden" non-empty-slot population. In particular, rii is the 

number of slots which has received one or more responses in i 

out of the r reader probes using the same random seed, for i = 

1,2, . . .，r . Denote by S the number of slots with at least one 

response out of the r reading probes, i.e., S = 几i. One key 

power of these capture-recapture-based estimators is to provide 

an estimate of no. 

4.3.2 The Moment Estimator 

The Moment estimator assumes that the capture probability pi 

of the z-th animal is sampled from the same unknown distribu-

tion which is valid in our model where we assume individual tag 

response probabilities are i.i.d. according to some common, un-

known distribution Ft. Because each tag selects a slot uniformly 

random from the f slots, if there is no hash collision, the "capture 
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probability" distribution F , of the actually-non-empty slots in a 

frame should follow the same distribution of Ft. In case of hash 

collision(s), part of the probability mass of Ft will shift towards 1 

to result in F. 

Below, we summarize the derivation of the Moment estimator 

by following the development in [22]. Consider the expected value 

of ni,s given by: 

Bim) = N 
0 

r 
dF (u) 

for 2 = 0,1, r. (4.4) 

where N is the actual number of non-idle slots in the current frame 

given the current seed under perfect channel and F is the c.d.f. 

of the capture probability of the slot. 

By combining the Cauchy-Schwarz inequality with Eq. 4.4 for 

i = 0 ,1 and 2, we have: 

which gives 

{1-uYdF (u) 
> 

E [no] > 

化 - w 广 2 dF (u) 

u(l-uY-^dF (u) 

f r - l \ 1 [炉 ni]— 

\ r J\2E rn. 

When r is large, an estimator NM for N is given by the following 

theorem: 
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Theorem 4.3.1 The estimate of the moment estimator is given 

by： 

NM = S-\- n\l (2n2). 
A 

The variance of NM is given by: 

Var NM =n2 0.25 
/ \ 4 

+ 
ni 

+ 0.5 
\ri2J \n2j \n<2j 

Note that the estimator relies on the first two frequency counts 

to predict the number of uncaptured animals (no). It is reason-

able, as pointed out in [21], that those animals with small capture 

probabilities will be missed or show up a few times only, and 

the first few frequency counts contain most information about 

no. The estimator therefore is particularly suitable for scenarios 

where most animals are having small capture probabilities. How-

ever, when 712 = 0, the estimator will fail to produce an estimate. 

A modified estimator NM for 722 = 0 is therefore proposed in [24 

Nm = S + 
ni (ni - 1) 

2 

where 

Var NM = 0 . 2 5 n i (2ni — 1)^ + 0.5ni (n： - 1) 
Q.25nt 

N M 

4.3.3 Sample Coverage Estimator 

Another capture-recapture-based population estimator for Mh re-

lies on the idea of Sample Cover age [3]. The Sample Coverage C is 
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defined as the proportion of the total individual capture prob-

abilities of the captured animals. Under the equal-individual-

catchability assumption, we have an estimate of the population 

size 

N = S/C. (4.5) 

The basic motivation in [14, 3] is that sample coverage usually can 

be well estimated in general populations even under heterogeneous 

capturing probabilities. By finding the discrepancy between S/C 
A 

and N in (4.5) under heterogeneous scenario, we can have an 

estimate of the population size. Based on the derivation from [3], 

a sample-coverage-based estimator for the Mh model is given by 

the following theorem: 

Theorem 4.3.2 The estimate of the sample coverage estimator 

is given by: 
- S NI 2 

Nsc = i + 

where 

n i 
C = 1 -

ELi k几 k 

2 J ( J 丄 \ / 1 n 

7 二 max < 9——1’ 0 
l ( r - l ) (ELi knkf 

A 

The exact computation of the variance of Nsc requires the 

knowledge of individual animal capturing probabilities, i.e., the 
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values of Pi 's, which we do not have. With the weaker assumption 

that the pi，s are random variables from the same distribution F, 

the variance can be computed approximately via the delta method 

as follows: 

Var Nsc =2^2^ HkHiCOVk,i (n； 
/c=l 1=1 

A 

where Hk denote {d/duk) Nsc o/nd COV(n) is the covariance 

matrix of n whose (/c, l)-th entry, COVk,i (n) is given by: 

covariance (n/j, ni)= 

A 

rik 1 — rik/N if k 二 I, 

A 

-UkTii/N i f k ^ L 

The error associated with this approximation will be quantified 

in the later section. 

4.3.4 Estimating the overall Tag population t 

After applying the Mh model to estimate the number of occupied 

slots N under a given random seed (which dictates the corre-

sponding tag-to-slot mapping in the frame), we will perform m 

experiments, each using a different seed to estimate the overall 

tag population t according to the approach given in [2]. In par-

ticular, the use of m different seeds is for reducing the estimation 

variability due to different tag-to-slot mappings per the hashing 

scheme in [2 . 
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Using one of the capture-recapture-based population estima-
A 

tors described in the previous subsections, we compute Nj, the 

estimated number of occupied slots in the frame when the j-th. 
A A 

seed is used. Represent by Xj = f — Nj the corresponding es-

timate of the number of idle slots in the frame under the j-th 

seed. Denote by Nqj the true number of idle slots under the j-th. 

seed. From [2]，we know Nqj is a realization of a Gaussian random 

variable Nq with 

E[NO] = 

and 

Var [ i V o ] = 如 = ( l - ( l + gVi) e—肌) 

where pi = t/f is defined as the load factor. 
/V 

Denote by 6j = Nj — ( / — Noj) the noise introduced by either 

one of the capture-recapture estimators for Noj as described in 

the previous subsection. We have 
A 

Xj = Nqj — 6j. 

Let 6j = Var [9j] be the variance of the capture-recapture esti-

mators given in the previous subsection. Define 

y
-
/
 9{y) = -^log 
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to be our estimator for the overall tag population t, where 

1 
m 

•7=1 

is the average of the number of estimated empty slots obtained 

from the capture-recapture estimator across m different seeds. 

Based on results from [2], together with the additional Gaussian 

assumption of Qj, y is the realization of a Gaussian random vari-

able Y where 

E\Y 
E [A^oj] + E [6 

Var \Y 

=E [TVo] + 

Var [iVo 

m 

m 
= / e 一卯 1 + 

E[6j 
m 

m EVar \9n] 6o Y] 6 
171' m 

Although the variance of the Moment and Sample Coverage 

estimators, and thus, the variance of 9j can be approximately 

characterized as described in the previous subsections, these esti-

mators are both biased in nature and no analytical characteriza-

tion of their bias, i.e., can be found in the literature except 

that extensive numerical studies, e.g., those in [3, 12，13, 14], 

have demonstrated the bias to be acceptable under a wide range 

of capture-probability distributions and population sizes. As such, 

we have to ignore the bias of the estimator for now and resort to 

numerical studies in the later section to evaluate the impact of 

the bias in practice. 
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By ignoring the bias of the capture-recapture estimators, i.e., 

assuming ^ ^ ^ = 0, we apply the Taylor series expansion of 

g {Y) around E [Y] to obtain the first two moments of our esti-

mator for t from the following theorem: 

T h e o r e m 4.3 .3 Let g ( y ) = —^ log ( � ) b e our estimator, where 

Y = to be the average number of empty slots estimated by 

the capture-recapture estimator. Assume that the estimators are 

unbiased in the previous subsections are unbiased. We have 

E g [Y) = t H — = t + 

Var [g (F)] = Var [Y 

2 qf 2m?qf 

e2卯 1 E t i + 如）一P、 
Tin?q^ 

The unbiased assumption does not affect the variance devised, but 

only the bias of the estimator. 

4.4 Performance Validation and Comparison 

To compare the effectiveness of the estimators proposed in Section 

4.2 and 4.3，we will apply them to three capture probability dis-

tributions F of different characteristics. In particular, the capture 

probabilities, i.e., the piS of the tags will be distributed as follows: 

Case I: uniform between 0.1 and 1，Case II: uniform between 0.5 

and 1, and Case III: mostly concentrated at 0.1. (probably the 
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most challenging case, especially for Union-based) Case IV: F 

based on realistic Rayleigh fading model inside a room with path 

loss exponent equals to 4. 

For each instance of the problem, 1000 tags are introduced, 

each with a fixed pi drawn from the capture-probability distribu-

tion F from one of the above cases. The frame-size is set to 629 

slots, which is optimal for the perfect channel case. 100 instances 

are simulated for each set of the parameters and the difference 

between the estimate and the actual number of tags across these 

100 instances are recorded. We plot the 99%-tile worst case on 

the graphs. 

We present the results in form of contour graphs to show the 

performance of each of the estimators in terms of (1) the accuracy 

level they claims to support (assuming zero-bias from the under-

lying capture-recapture estimator), and (2) the actual accuracy 

level they can deliver during the simulation study by comparing 

the difference between their estimates and the actual value of t. 

For each graph, contour-lines of values 0.02, 0.05 and 0.1 are 

plotted. Those contours are the accuracy levels that the estima-

tors claimed to support. For example, areas enclosed by the 0.02 

contour-line corresponds to the accuracy level of 士2%, namely the 

estimator will provide an estimate will differ from the actual value 
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by at most 2%. We plot on the same graph the actual level of ac-

curacy achieved by the estimator using different number of seeds 

(m) and different number of probes (r) for the same seed. The 

minimum number of seeds to achieve an accuracy level of ±2%, 

99% of the time under the perfect channel case is also plotted as 

a horizontal dotted line in each graph. 

Four colors (from light to dark in black-and-white printing) are 

used to represent the differences between the estimate and the ac-

tual value of the tag-set size over 100 number of problem instances 

Yellow, Orange and Red are used to represent accuracy-level of 

at least 2, 5 and 10% respectively. Black is used for estimation 

errors of larger than 10%. 

By looking at these graphs, we are able to determine how good 

the estimator is. For example, area enclosed by the contour 0.02 

should be filled up with yellow color if the estimators are accurate. 

If there are a lot of orange, red, or even black color areas, that 

means the estimator failed to achieve what it promised. 

The moment estimator shows superior performance over sam-

ple coverage for the mostly-0.1 cases (Case III) as expected; oth-

erwise, sample coverage typically achieves better accuracy given 

the same latency in other distribution cases. 

From the color panel, we see that the sweet zone can be reached 
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sooner when capture-recapture estimators are used, i.e., smaller 

value of m * r will be required to reach the accuracy requirement 

when compared with the union algorithm. Typically, r has to be 

at least 5 for those capture-recapture based estimators to function 

properly. The number of seeds to use (m) has to be at least the 

number of seeds required under prefect radio channels. With m 

and r satisfying the requirements, the capture-recapture based 

estimators can return an estimate within 5% for most of the time. 

The assumption on having an unbaised estimate for the sam-

ple coverage estimator makes the accuracy requirement cannot be 

satisfied. This only happens for small r . 

In Table 4.1, we listed the latency involved in Case IV for 

achieving ±5% using different estimator proposed. We also cal-

culate the latency involved when conventional MAC protocol is 

used. We assume prefect channel, prefect scheduling and prefect 

information of tag-set size in the calculation of the latency of con-

ventional MAC protocol. 
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Latency for achieving ±5% for 1000 tags m X r Slots Latency (s) 

Case I 

Union Estimator 4 X 15 37740 9.4 

Moment Estimator 5 x 9 28305 7.1 

Sample Coverage Estimator 4 X 11 27676 6.9 

Case II 

Union Estimator 3 x 5 9435 2.4 

Moment Estimator 4 x 4 10064 2.5 

Sample Coverage Estimator 3 x 5 9435 2.4 

Case III 

Union Estimator 6 X 29 109446 27.4 

Moment Estimator 5 X 16 50320 12.6 

Sample Coverage Estimator 6 X 25 94350 23.6 

Case IV 

Union Estimator 5 x 5 15725 3.9 

Moment Estimator 3 x 3 5661 1.4 

Sample Coverage Estimator 4 x 4 10064 2.5 

Conventional MAC (with assumptions) 

Conventional MAC / 10000 2.5 

Table 4.1: Latency requried for achieving ±5% using Union Estimator, Mo-

ment Estimator, Sample Coverage Estimator. Latency for conventional MAC 

protocol is calculated by assuming prefect channel, prefect scheduling and 

prefect information of tag-set size 



CHAPTER 4. ESTIMATION OVER UNKNOWN CHANNEL ... 70 

Case 3 distribution 
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Fig 4.4: Case III distribution of the Pi 

4.5 Chapter Summary 

In this chapter, we have developed efficient and fast estimation 

schemes that can provide good estimates of the cardinality of 

the tag-set while assuming no prior knowledge of channel charac-

teristics based on a novel interpretation of the capture-recapture 

models [3] from the field of ecology/ biostatistics. In particular, 

by leveraging the estimation techniques available for the capture-

recapture model with heterogeneous catchability, we extend the 

probabilistic counting framework introduced by [1，2] to tackle the 

challenge of a lossy channel with unknown characteristics. The 

variance of the resultant tag-set cardinality estimators are then 

characterized analytically. We also demonstrate the performance 

of the proposed schemes under various system parameters and 
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Case 4 distribution 

0.08 

0, 

06 

0.4 0.6 
Responding probability p. 

Fig 4.6: Case IV distribution of the pi 

channel conditions. 

• End of chapter. 



Chapter 5 

Conclusions and Future Work 

In this thesis, we have proposed fast probabilistic RFID count-

ing schemes which can provide accurate estimates of the tag-set 

cardinality even under non-deterministic, unreliable radio chan-

nels. The first approach requires the channel to have been char-

acterized so that the first two moments of the successful response 

probability distribution of the tags in the tag-set are known. In 

the second approach, we provide fast, good estimates of the car-

dinality of the tag-set while assuming no prior knowledge of the 

parameters of the unreliable radio channel based on a novel in-

terpretation of the capture-recapture models [3] from the field 

of ecology/ biostatistics. By leveraging the rich estimation tech-

niques available for the capture-recapture models, we extend the 

probabilistic counting framework pioneered by [1, 2] to tackle the 

challenge of a lossy, unknown channel. We also demonstrate ef-

73 
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ficacy and quantify the performance of the proposed schemes via 

extensive simulation studies under various system parameters and 

channel conditions. 

Our future work includes the extension of the single reader 

scenario into multiple readers scenario and to provide tighter an-

alytical characterization of the performance guarantees under the 

unknown channel scenario. Another dimension of investigation is 

to extend our techniques to tackle dynamic membership changes 

for the tag-set being probed. The study of optimal stochastic 

stopping rules [23] for the reader-probing process over lossy chan-

nels given latency cost is also a problem of practical interest. 

Another promising direction is to leverage the species-identifying 

techniques [24, 25, 26, 27] from biostatistics for solving the RFID 

tag category identification problem [28] under lossy channels. 

• End of chapter. 



Appendix A 

Proof of Equation (3.6) in 

Chapter 3 

L e m m a A.0 .1 A Y [ U { 1 - 亨 ） - J ? ^ {A - B -

^{EliPi))^''''' for any A eR, Be M. 
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Proof 7 By expanding the exponential function, we have: 
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A.l is true because j «C 1 and hence we ignore higher order 

terms. 
/ 2 \ 2 

In A.2, we ignored the term f as it is much smaller then 

e f and p i � f . 

In A.3, we ignored the terms with pi with order 4 or above as 
2 \ Z 

癸 ) i s very small because p i � f ‘ 

In A.we relies on the fact that pi are with mean ji. Hence, 

sum of Pi is approximately tfi. 
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