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摘要 

在IP網路語音傳輸�VoIP或網絡電話’下稱VoIP�的實際應用中，許多VoIP 

工具，比如Skype, Google Talk, MSN，已經開始使用「自适应變速率」的 

語音編碼技術。不同于以往固定速率網路電話�Constant bit-rate VoIP ’下稱 

CVoIP�，自适应變速率網路電話�Adaptive bit-rate VoIP ’下稱AVoIP�可以根 

據網絡狀況靈活的調整其數據傳送速率。早前研究表明，對于CVoIP而言，在 

保證通話質量的前提下，一個IEEE 802.11無線區域網絡〔下簡稱無線區域網 

絡〕可以容納的通話數目是固定的。但是對于AVoIP，我們發現，由于每個通 

話的數據傳送速率都是可變的，很難界定一個無線區域網絡究竟可以同時容納 

多少路通話。隨之而來的一個問題是：如何對接入無線区域網絡的AVoIP通話 

進行呼叫允許控制。這篇論文針對這個問題進行了深入研究。 

首先’我們做了大量的實驗來推導Skype的自适应變速率通話機制。根據推導 

結果’我們在Network Simulator〔一個網絡模擬仿真軟件〕中開發了一個Skype 

模擬流量生成器〔Skype-emulating Traffic Generator ’ 下稱 S T G � ° STG 模擬了 

Skype的流量特征’并且可以像Skype —樣針對不同的網絡狀況調整其流量速 

率。之后’借助STG，我們對一定數目的AVoIP通話共存于一個無線區域網絡 

的場景進行了仿真。仿真結果表明
：
如果單純通過限制通話接入網絡的數目來 

進行呼叫允許控制，整個系統會陷入一個高度不公平，不穩定的狀態：各路 

AVoIP通話不能公平的分享無線網絡帶寬’并且通話語音質量非常不穩定。爲 

了解決這兩個問題’我們設計了一個由訪問點�Access Point�實施的’對無線 

區域網絡中所有通話進行集中式控制的方案：CFSC� Call admission, Fairness, 
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and Stability C o n t r o l ,下稱S T G � ° CFSC融合了呼叫允許控制’公平控制，以 

及穩定控制三個控制功能0仿真結果表明’ CFSC可以使系統達到一個公平穩 

定的狀態’同時確保各路AVoIP通話的語音質量° 
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Abstract 

Adaptive bit-rate VoIP (AVoIP) has been widely adopted by many VoIP applications, 

including Skype, Google Talk, and MSN. Unlike Constant bit-rate VoIP (CVoIP) 

which employs fixed bit-rate speech codecs, AVoIP adopts variable bit-rate speech 

codecs. For CVoIP, the number of voice sessions that can be supported by an IEEE 

802.11 WLAN is fixed. For AVoIP, however, since its bit rate can be adjusted 

according to the network condition, the number of voice sessions admitted into a 

WLAN can be flexibly adjusted. An issue is how one would perform call admission 

control when AVoIP is used. 

This thesis approaches the problem in the following way. First, we conduct extensive 

experiments to deduce the rate adaptation mechanism of Skype, arguably the most 

popular AVoIP application. We then implement a Skype-emulating Traffic Generator 

(STG) module in Network Simulator (NS2) that incorporates the mechanism. 

Simulation results verify that STG can produce Skype-like traffic and react to 

network congestion in the same way as Skype does. We then demonstrate with STG 

that traditional call admission control that simply limits the number of admitted calls 

will cause the system to settle at an operating region where there is a high degree of 

unfairness and instability among the AVoIP sessions. To solve the problem, we 

design a comprehensive scheme, which integrates the function of call admission, 

fairness, and stability control (CFSC), for AVoIP over 802.11 WLAN. CFSC makes 

use of AVoIP ’s adaptiveness to packet loss to fairly assign bandwidth to AVoIP 
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sessions. Simulation results show that this scheme can provide fair and consistently 

good voice quality for all AVoIP sessions. 
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Chapter 1 
Introduction 

Chapter 1 
Introduction 

1.1 Motivations and Contributions 

Previous works on VoIP over WLAN have mostly assumed the use of Constant 

bit-rate VoIP (CVoIP) codecs [1-11]. In practice, however, Adaptive bit-rate VoIP 

(AVoIP) has taken the place of CVoIP in many VoIP applications, including Skype, 

Google Talk, and MSN [12-13]. Unlike CVoIP, AVoIP can adjust its bit rate in 

response to the network bandwidth variations [14-18]. Specifically, when the 

bandwidth is abundant, AVoIP works at a higher rate to achieve better voice quality; 

when the bandwidth is scarce, AVoIP lowers its flow rate accordingly. Reducing rate 

at the source allows more graceful degradation of voice quality compared with 

letting the network drop its packets arbitrarily under congestion. 

The "capacity" of VoIP over WLAN is defined as the maximum number of 

bidirectional voice sessions that can be supported in a WLAN, subject to a minimum 

voice quality requirement [5]. For CVoIP, the "capacity" is a fixed number, (e.g. the 

capacity is 12 when the codec used is GSM 6.10 and the WLAN is 802.11b). Once 

the capacity is exceeded, the quality of every voice session in the WLAN degrades 

badly. Therefore, one can simply limit the number of voice sessions admitted into the 

WLAN to perform call admission control. For AVoIP, however, the "capacity" is not 

as clear cut. Even when the bandwidth of the WLAN has already been fully utilized, 
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it is Still possible to add a new session, since the existing AVoIP sessions could 

reduce their rates at the sources to make room for the new session. Consequently, 

how to perform call admission control for AVoIP over WLAN becomes not trivial 

anymore and needs careful rethink. 

This thesis is dedicated to the study of the interaction between the adaptation process 

at the voice source and the dynamic of the network condition. There are two major 

contributions: 

1. To facilitate our studies, we have built a voice traffic generator that can 

reproduce AVoIP traffic in NS2. We choose to emulate Skype because it is the 

most popular VoIP application. Also, the adaptation process of Skype is quite 

generic and is representative of many other AVoIP applications. Besides our own 

studies, our traffic generator and the behaviors we unearth about Skype might be 

useful to the studies by other researchers. 

2. We find that traditional call admission control that does not take into account the 

intricacies of the adaptation process at the source may lead to unfair and unstable 

performance among the voice sessions. To tackle these problems, we design a 

scheme that integrates the function of call admission, fairness, and stability 

control (CFSC). Simulation results show that our CFSC scheme can provide 

good, fair, and consistent voice quality for every user. 

A primary assumption held in this work is that all VoIP sessions in the WLAN are 

constrained by the same bottleneck - the local WLAN. In practice, different sessions 

might have different bottlenecks locating at different places. In this thesis, we also 

explore some methods to perform call admission control without this assumption. 
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1.2 Related Works 

Much work [4-11] has been devoted to the study of VoIP capacity of IEEE 802.11 

WLAN. References [6-7] gave an analytical model of studying the capacity of a 

general wireless network. References [8-9] derived several methods to calculate the 

capacity for common voice codecs. References [9-11] proposed various schemes to 

boost the capacity. In this thesis, we continue to use the calculation method in our 

prior work [9] to obtain the capacity. 

As popular but closed-source software, Skype has attracted much 

reverse-engineering interest. In [19] and [20], Skype's P2P internet protocol was 

analyzed. In [21] and [22], methods and rules to classify Skype traffic were proposed. 

Security problems of Skype were also well studied in [23-24]. Our work is most 

closely related to [25] and [26]. Reference [25] studied the performance of Skype 

when packet loss occurs due to network congestion. References [26] confirmed that 

Skype has a rate adaptation mechanism. It also claimed that Skype traffic is not 

TCP-friendly and not self-friendly. Neither [25] nor [26], however, paid much 

attention to the characteristics of Skype traffic, and the details of the rate adaptation 

mechanism are lacking. This thesis, in contrast, attempts to carry out a thorough 

analysis on the rate adaptation mechanism of Skype, especially under its newly 

adopted SVOPC codec [27]. 

Call admission control over WLAN studied in the past can be broadly classified into 

two types: user-number based [9-11] and residual-bandwidth based [28-30]. 

References [9-11] used a computed capacity as the criterion to constrain the number 

of sessions admitted. References [28-30] proposed to admit a new session only if the 
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residual WLAN bandwidth monitored by the Access Point (AP) is sufficient to 

accommodate it. Residual-bandwidth based approach is not compatible with AVoIP: 

since existing voice sessions can reduce their flow rates to accommodate the new 

session, it is possible to add a new session even when the residual bandwidth is zero. 

The user-number based approach is also not appropriate for AVoIP, because the 

capacity in terms of an absolute maximum number of admissible calls is not clear cut 

for AVoIP. In this thesis, we show that unfairness and instability problems can occur 

under the user-number based approach. We show that our proposed scheme, CFSC, 

can solve these problems in a comprehensive manner by taking into account the 

intricacies of the adaptation processes at the sources. 

1.3 Organization of the Thesis 

The reminder of this thesis is organized as follows. First, we give an overview of the 

background of VoIP over IEEE 802.11 WLAN in Chapter 2. Chapter 3 then 

describes the Skype rate adaptation mechanism we uncover from our experiments. It 

also presents our Skype-emulating Traffic Generator and validates it under different 

scenarios. Using the generator, we then demonstrate the unfairness and instability 

problems under the traditional user-number based call admission control in Chapter 

4. Chapter 4 also presents our proposed CFSC scheme, which integrates the function 

of call admission control, fairness control, and stability control. Chapter 5 evaluates 

CFSC with detailed simulation results. Chapter 6 concludes the thesis. 
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In this chapter, we briefly introduce the IEEE 802.11 standards and VoIP techniques. 

Particularly, we put forth the appealing features of Adaptive bit-rate VoIP. Then we 

offer an overview of VoIP over WLAN. We also introduce Skype, which is the object 

of our study on rate adaptation mechanism of AVoIP applications. 

2.1 IEEE 802.11 

2.1.1 IEEE 802.11 Topologies 

The most basic component of an 802.11 WLAN is the station [31]. A station could be 

any device that contains the functionality of the 802.11 protocol. For example, it 

could be a laptop PC, a handheld device, or an Access Point. 

A set of stations that could communicate with the others compose a Basic Service 

Set (BSS). The BSS is the basic building block of an 802.11 wireless networks. 

There are two types of BSS topology supported in IEEE 802.11 standard, the 

Independent Basic Service Set (IBSS), which is also referred as Ad-hoc network, and 

the Infrastructure Basic Service Set. 



Figure 2.1: An Independent Basic Service Set (Ad hoc network) 

Figure 2.1 depicts an independent BSS (IBSS). Stations in an IBSS communicate 

with each other directly. Since there are no relay functions in an IBSS, all stations 

need to be within the range of the others. Typically, IBSS is composed of a small 

number of stations set up for a specific purpose and for a short period of time. A 

common practice of using IBSS is to create a short-lived network to support a single 

meeting in a conference room. 

Figure 2.2 depicts an Infrastructure BSS. Different from IBSS, an Infrastructure 
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Figure 2.2: An Infrastructure Basic Service Set 
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BSS has a special station called Access Point (AP). The access point provides a local 

relay function for the BSS. All communications, including the communications 

between ordinary stations in the same BSS, must be relayed through the AP. 

Therefore, the coverage of the Infrastructure BSS is effectively doubled by the local 

relay function, and is decided by the transmission range of the AP. In an 

Infrastructure BSS, ordinary stations must actively associate with the AP to obtain 

network services. Upon receiving an association request, AP may choose to grant or 

deny access. There is no limit on the number of ordinary stations that an AP may 

serve in the 802.11 standard. 

By chaining BSSs together with a backbone network, an Extended Service Set (ESS) 

is created and larger network coverage can be achieved. Figure 2.3 depicts an ESS. 

In an ESS, the APs communicate among themselves to forward traffic from one BSS 

to another. The AP also performs the wireless-to-wired bridging function. It converts 

frames on an 802.11 network to another type of frame for delivery to the rest of the 

world. 



Chapter 2 
Background 

2.1.2 IEEE 802.11 MAC 

Access to the wireless medium is controlled by coordination functions. The IEEE 

802.11 MAC protocol supports two modes of operation, the Distributed 

Coordination Function (DCF) and the Point Coordination Function (PCF) [32]. 

The DCF is basically a Carrier Sense Multiple Access with Collision Avoidance 

(CSMA/CA) access mechanism. It provides a standard Ethemet-like 

contention-based service where multiple independent stations interact without central 

control. Therefore, DCF can be used in either IBSS networks or in Infrastructure 

BSS networks. There are two transmission modes in DCF, Basic Mode and RTS/CST 

Mode. In Basic Mode, a station wishing to transmit senses the medium. If the 

medium is busy then it defers. If the medium is free for a period of time specified by 

Distributed Inter Frame Space (DIPS), then the station transmits. In order to avoid 

collisions among stations, DCF also specifies random backoff, which forces a station 

to wait for a number of Slots before accessing the medium. This backoff number is 

randomly chosen between 0 and CW-1. Once the target station receives the packet 

correctly, it responds with an Acknowledgement after a Short Inter Frame Space 

(SIFS). Figure 2.4 presents the schematic of the Basic Mode of IEEE 802.11 

channel busy " c w —^ DIPS 

Source 
Slot ~ • 

Destination 

SIFS — • 

Ack 

Figure 2.4: Basic Mode of IEEE 802.11 DCF 



Chapter 2 
Background 

DCF. Another transmission mode, RTS/CTS Mode, is designed to reduce collisions 

resulting from hidden nodes. Before transmitting data packet, a station sends an RTS 

(Ready-to-Send) packet first. The RTS packet has a smaller size than the common 

data packet. It reserves the radio link for the following data transmission by silencing 

any stations (except the target station) that hear it. If the target station receives an 

RTS, it responds a CTS (Clear-to-Send) packet. The C I S packet silences stations in 

the immediate vicinity. Once the RTS/CTS exchange is complete, the data 

transmission can proceed. Figure 2.5 presents the schematic of the RTS/CTS Mode. 

NAV stands for Network Allocation Vector, all stations receiving either the RTS 

and/or the CTS will not try to access the medium for a certain amount of time 

indicated by the NAV. 

PCF provides contention-free services. It relies on a central node, often an AP, to 

communicate with other stations and to check whether the airtime is free. Therefore 

the PCF is restricted to Infrastructure BSS networks. PCF is designed to support 

applications that require real-time services. It could offer a sort of "packet-switched 

Other NAV (RTS) 

.. NAV (CTS) 
reucs Q)!! a cei:V“: n ！ocluv otU n 

Figure 2.5: RTS/CTS Mode of IEEE 802.11 DCF 
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connection-oriented" service, thus allow the network to provide delay guarantees 

necessary for real-time applications like interactive voice [33]. However, in practice, 

PCF is an option not supported in most commercial products. Most work on VoIP 

over WLAN assumes the use of DCF, and only some consider PCF. 

In this thesis, we assume the use of DCF. Of the two modes of DCF, VoIP over 

WLAN applications commonly use the Basic Mode (no RTS/CTS handshake). This 

is because the overhead introduced by RTS/CTS packet is significant when 

compared with the small size of the voice data packet. Table 2.1 listed the values of 

the 802.1 lb [34] DCF parameters that been adopted in both analysis and simulations 

in this thesis. Since VoIP application is sensitive to delay, the retry limit is 3. 

Table 2.1: Parameter Values of 802.11b DCF 

DIFS 50 |isec 
SIFS 10 |Lisec 

Slot Time 20 usee 

CWmin 32 

CWmax 1023 

Retry Limit 3 

Date Rate 1,11Mbps 

Basic Rate 2Mbps 
PHY header * 192 usee 
MAC header 34Bytes 
ACK* 248 |isec 

* PHY header is transmitted at 1 Mbps, ACK shown above is actually ACK frame + PHY 

header. The ACK frame is 14 bytes and is transmitted at basic rate, 2 Mbps, regardless of 

date rate. 
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2.2 Voice over Internet Protocol (VoIP) 

2.2.1 A VoIP system 

Figure 2.6 shows a typical VoIP system [35]. At the sender side, audio signal is 

digitalized and compressed into a low-rate frame stream by speech codecs. Then one 

or more speech frames might be aggregated into one packet before being sent out. 

When traveling through the Internet, packets suffer different transmission delay 

depending on the current network condition and the routing path, and might get lost 

due to network congestion or transmission errors (often in wireless scenario). At the 

receiver side, packets are buffered and rescheduled to provide a smooth playout. Any 

packet arriving after its scheduled playout time is simply discarded and regarded as 

lost. Consequently, losses as seen by the application may actually consist of two 

parts, the real losses at the network and the deliberate losses at the receiver. After the 

playout buffer, the speech frames are finally decoded and the digital signal is 

transformed into an acoustic signal. 

2.2.2 QoS requirements for VoIP 

As a real-time application, VoIP has stringent requirements in delay and jitter. 

According to [36-37], the one way transmission delay for VoIP should be 

Encoder packetizer Depacketizer Playout Buffer 令 Internet 一 

Sender Receiver 

Figure 2.6: VoIP system 

Decoder 
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preferably less than 150ms, and must be less than 400ms. On the other hand, VoIP is 

not very sensitive to packet loss. A loss of 3% is acceptable for real-time audio with 

rate 4kbps to 64kbps. Since delayed packets are not tolerable, retransmission of lost 

packets is not useful. Therefore, VoIP applications commonly use UDP as transport 

layer protocol. 

In our study, we assume that the tolerable maximum packet loss is 3%, and the 

end-to-end delay bound is 400ms. An arrived packet with delay that beyond the 

bound is simply regarded as lost. For a VoIP session with two directional flows, once 

the overall packet losses of either flow exceed 3%, we say the session fails to meet 

the QoS requirement. Notice the overall packet losses consist of the packet losses 

due to network congestion and the packet losses due to unacceptable delay. 

2.2.3 VoIP speech codecs 

An important component that influences the quality of VoIP is speech codec. There 

are various standardized speech codecs, such as G.711, G.729, iLBC, iSAC. Different 

codec has different coding rate (bits/s), frame rate (Hz), algorithmic latency (ms), 

complexity and speech quality (MOS). Generally, a higher coding rate usually gives 

a better speech quality. On the other hand, if the packet rate is set low and the 

packetization time is high, the overall transmission delay increases and conversation 

call quality is harmed. Each speech codec implements a different trade-off between 

output speech quality, algorithmic delay, bit rate, computational complexity and 

robustness to background noise. The optimal codec for VoIP depends on the specific 

scenario. 

12 
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VoIP speech codec can be divided into two types, the Constant bit-rate VoIP (CVoIP) 

speech codec (e.g. G711, G729 and iLBC) and the Adaptive bit-rate VoIP (AVoIP) 

speech codec (e.g. iSAC). In the past, CVoIP codecs were usually employed. Such 

codecs generate a constant output bit-rate, independently of the network conditions. 

If the network cannot sustain the traffic, the packets will be delayed or dropped. In 

the recent years, AVoIP codecs are taking place of CVoIP ones gradually. Based on 

our observation, many popular VoIP applications have adopted AVoIP codecs, such 

as GoogleTalk, MSN and Skype. AVoIP codec can adapt its rate to the current 

condition of the network. If the network is congested, speech is coded at lower bit 

rates; if the network, instead, is lightly loaded, the speech codec is allowed to operate 

at higher bit rates. In other words, it could always generate only the traffic that the 

network is capable of carrying with a given quality at any instant in time. 

AVoIP has several appealing features. Firstly, by adapting gracefully to network 

congestion, AVoIP could provide relatively better speech quality than CVoIP. 

Secondly, AVoIP does not require a rigid partitioning of the link bandwidth. It can 

exploit statistical rather than deterministic QoS guarantees. As such, AVoIP uses the 

bandwidth with higher efficiency. Finally, AVoIP provides operators more flexibility. 

By trading off perceived QoS and monetary cost, VoIP operators can offer different 

levels of services. For example, fixed-high-bit-rate calls, fixed-low-bit-rate calls, 

adaptive-high-bit-rate calls, and adaptive-low-bit-rate calls. 

2.3 VoIP over WLAN 

Unlike traditional data traffic, which still takes up the majority of bandwidth in IP 

networks, the sending rate of VoIP session is usually small (less than 130kbps for a 

13 



n ( VoIP Session 
_ ~> 

Figure 2.7: System architecture of VoIP over a single-cell WLAN to backbone 

network 

bidirectional VoIP session) and relatively constant over the duration of a call. 

Available bandwidth is often plenty enough for VoIP so that there might not be a 

problem to support VoIP traffic in wired network. However, existing wireless 

networks like 802.11 WLAN might face challenges to support numbers of VoIP users. 

This thesis reviews the problems for CVoIP over WLAN, and reveals new problems 

forAVoIP over WLAN. 

2.3.1 System Architecture of VoIP over WLAN 

The scenario we focus on in this thesis is a “single cell" WLAN, which is an 

Infrastructure BSS with one AP in the center. Since the coverage of a WLAN is 

commonly less than 300 meters, we assume users seldom call their neighbors within 

the same WLAN. In other words, we assume a VoIP session is between a user in 

the WLAN and a user in the backbone network. All voice packets to or from the 

WLAN must be relayed by the AP. Figure 2.7 shows the system architecture of VoIP 

over a single-cell WLAN to the backbone network. 

14 
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2.3.2 VoIP Capacity over WLAN 

The VoIP capacity over WLAN is defined as the maximum number of VoIP sessions 

a WLAN can support with satisfactory user perceived quality. Using a simple 

method, the capacity can be easily calculated for common voice codecs [9]. It is well 

known that the capacity for VoIP over WLAN is severely limited and quite small. It 

is mainly due to the various inherent header (e.g. IP/UDP/RTP header) and protocol 

overheads (e.g. backoff countdown time, Physical Header of 802.11 packet, etc.). 

Prior works mainly focused on the CVoIP capacity over WLAN and proposed 

various schemes to boost the capacity. This thesis, however, investigates the AVoIP 

capacity over WLAN. We focus on AVoIP because of its appealing features and its 

widely adoption in reality. 

A VoIP session has two directional flows, the uplink flow from the wireless station to 

its AP and the downlink flow from the AP to its wireless station. There exists 

unbalance problem between the uplink flows and the downlink flows [8]. When the 

wireless network is saturated, uplink flows always suffer severer packet loss than 

uplink flows. It is might because that the AP transmits a larger load than the stations 

and its buffer gets overflow more quickly. In this thesis, to eliminate the influence of 

unbalance problem and concentrate on issues introduced by AVoIP, we assume that 

AP has separated buffers for each downlink flows. Another assumption we hold is 

that all VoIP sessions have the same bottleneck and the bottleneck is the WLAN. In 

Appendix 2，we also discuss the case without the bottleneck assumption. 
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2.4 Skype 

Skype is beyond doubt the most prominent example of applications providing VoIP 

calls. Until 2009, the number of Skype registered users over the world has reached 

443 million, and the average number of Skype online users everyday hits 17 million 

[38]. People use Skype mainly for the high quality of voice it offers and especially 

for its free PC to PC service. 

Skype uses a proprietary and closed-source VoIP protocol. The main difference 

between Skype and other VoIP protocols like SIP, H.323 is that Skype operates on a 

peer-to-peer model rather than the more usual client-server model. An array of 

different audio codecs including G.729 and SVOPC are adopted in Skype [39]. 

SVOPC (Sinusoidal Voice Over Packet Coder) is an adaptive voice codec developed 

by Skype itself. G.729 is mainly used for Skypeout (PC-to-PSTN) calls while 

SVOPC is mainly used for PC-to-PC calls. 

In this thesis, we limit our study to Skype PC-to-PC calls using SVOPC codec. We 

show that Skype can adapt to the network condition and we conduct extensive 

experiments to investigate how Skype manages to do so. The Skype rate adaptation 

mechanism we conjectured provides important information for us to develop AVoIP 

traffic generator and to continue our study on AVoIP over WLAN. 
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In this chapter, we investigate the Skype rate adaptation mechanism with the goal of 

building an AVoIP traffic generator. To achieve this goal, we have performed 

extensive experiments in a controlled environment. 

3.1 Experimental Setting 

Our experimental testbed consists of two PCs connected by a router, as shown in 

Figure 3.1. Each PC is installed with Skype V.3.8.0.139. Three tools are used in our 

experiments: i) Wireshark, a protocol analyzer for collecting packet traces; ii) 

Bandwidth Controller for adjusting link capacity; and iii) Tone Generator 

Router 

SkyperA(SA) 

Skyper B (SB) 

Figure 3.1: Experimental testbed 
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for generating test tones. 

The general measurement setup is the following: Skyper A (SA) sends audio signal 

to Skyper B (SB). During the voice communication, we vary the bandwidth between 

SA and the router using Bandwidth Controller, and collect two kinds of information 

at both SA and SB: i) packet traces captured by Wireshark and ii) data shown on the 

Call Technical Information Display (CTID) of Skype. 

CTID is a utility of Skype [40], as shown in Figure 3.2. It provides statistics of 

ongoing Skype calls, such as jitter, round-trip time, and packet loss. In addition, 

there are other measurements and parameters whose official definitions cannot be 

found. In our experiments, we look at two such parameters: i) BM (Bps) - we 

interpret it to be the bandwidth usage target; and ii) a number measured in 

milliseconds - we interpret it to be the time gap between two successive voice 

magnified v i e � � . 

Figure 3.2: Skype Call Technical Information Display 
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frames generated by SVOPC and name it frame interval At. In general, a packet 

may consist of one or more voice frames. 

All our results and analysis in the following are based on the packet trace files 

collected by ourselves and the information shown on CTID. 

3.2 Overview 

Figure 3.3 provides the schematic of our "conjectured" Skype rate adaptation 

mechanism. A node generates a receiver report (RR) to, and receives a receiver 

report from, the node at the other end of the voice communication. The received RR 

is used to set a bandwidth usage target (BM), which is fed to a rate controller for the 

voice codec and packetizer. According to the BM, Skype adapts its flow rate. In 

general, a Skype receiver continuously monitors the statistics of the received packets 

and packs the information in the RR sent to its counterpart. 

^ Skype ^ 
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In the following subsections, we will give full descriptions of the flow rate region, 

RR, and BM, along with supporting evidence and analysis. 

3.3 Flow Rate Region 

We have conducted experiments on the testbed shown in Figure 3.1 to investigate the 

"feasible" flow rates of Skype. In our experiments, we first decrease the link 

bandwidth between SA and the router, and then increase it back. The variation range 

is large enough to cover all possible flow rates of Skype. We vary the bandwidth in 

two manners: 1) step-by-step and 2) sharply, in order to study the dynamics of 

transience. From the trace files and the information shown on CTID, we summarize 

the characteristics of the traffic from SA and the traffic from SB in Table 3.1. 

As shown in Table 3.1，Skype traffic can be categorized into four levels according to 

the frame interval A t . For all levels, the packets of SA have significantly larger size 

P and smaller packet interval A T than those of SB. Since SA has voice input but 

not SB in our experiments, we believe that Skype can distinguish silence and speech, 

and treat them differently. 

A close look of Table 3.1 reveals two interesting aspects of the rate adaptation. 

1. Generally, a higher level, such as LI, has smaller AT and larger R. This 

implies smaller mouth-to-ear delay and larger voice coding rate, thus better voice 

quality. 

2. Although levels can be distinguished without ambiguity according to A t , the 

flow rates of adjacent levels may overlap. This suggests that there might be a 

grey region of flow rates between adjacent levels. We believe this is related to 

bandwidth probing and we will further discuss this in Section 3.5. 
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Table 3.1: Characteristics of packets of SA and SB 

SA SB 

L bd 
(ms) 

A T 
(ms) 

a ^mhi 
(Byte) 

P max 

(Byte) 
Kun 
(Bps) 

只max 
(Bps) 

AT 
(ms) 

a P 
(Byte) 

R 
(Bps) 

1 16 16 1 64 81 4000 5027 48 3 16 333 
2 32 32 1 95 168 2812 5250 96 3 23 240 
3 48 48 1 57 215 1187 4480 144 3 30 208 
4 64 64 1 73 173 1140 2703 128 2 37 289 

Our experiments also reveal that transitions can only occur between adjacent levels, 

even when the bandwidth changes dramatically. The aim might be to avoid 

over-correction of flow rate to ensure relatively smooth voice quality. 

Another trivial finding from our experiments is that a 3-byte packet is generated 

every 20 seconds from both ends. References [41-42] believed that the 3-byte packet 

is quality feedback. However, we observed that Skype reacted to network condition 

changes in no more than 2s. This reaction time is much shorter than 20 seconds. 

Therefore, feedback is impossible to be these 3-byte packets. In our study we found 

the real one who plays the role. 

3.4 Feedback: Receiver Report (RR) 

From the experiments in Section 3.3，we find that Skype piggybacks certain 4-byte 

information on some packets for the purpose of rate adaption. Figure 3.4 depicts the 

packet traces of SA and SB. As we can see, packets that are four bytes larger than 

other packets appear periodically, and SA only adjusts its flow rate (by changing 

packet size) after receiving such packets from SB. Therefore, we believe the 4-byte 

extra information plays the feedback role, and we call it Receiver Report (RR). 
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Figure 3.4: Packet traces of SA and SB showing that Receiver Report does 

exist and can trigger rate adaptation. 

We now investigate the generation rule of RR. Figure 3.5 (a) shows the packet traces 

of SA and SB under a scenario where bandwidth is sufficient to carry LI Skype 

traffic. All packets are received successfully. By inspection, packets with RR are 

generated periodically. We also see that SA sends packets at a rate three times the 

rate of SB, and SB replies RR at a rate three times the rate of SA. However, the 

generation of RR is always periodic and the frequency is not always proportional to 

the received packet rate. Figure 3.5 (b) presents the packet traces of SA and SB 

under a scenario where bandwidth is not sufficient to even carry L4 Skype traffic. As 

we can see, RR is not generated periodically, and the time intervals between two 

successive RRs can be 0.5s and 2.5s. After digging into the trace files of both 

scenarios, we find the following identical phenomena: i) for a new RR to be 

generated, there must be at least 30 received packets since the last RR; ii) the interval 

between two successive RR can only be a multiple of 0.5s. Therefore, we deduce 

that the rule of RR generation is as follows: every 0.5s, Skype checks whether it has 

received 30 or more packets. It piggybacks an RR if yes; otherwise it waits another 

0.5s. 
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Figure 3.5: Packet traces of SA and SB under different scenarios: (a) 

bandwidth is sufficient to support LI traffic; (b) bandwidth is not sufficient 

even to support L4 Skype traffic. 

We believe RR contains two kinds of information: round-trip time (rtt) and a 

parameter related to packet loss. We deduce this from the fact that Skype can display 

rtt and packet loss ratio of its counterpart on the CTID. Additionally, rtt and packet 

loss are commonly used metrics in many network protocols, such as RTCP [43]. 

We classify RR into three types, good RR, average RR, and bad RR, according to its 

influence on the receiver. The good RR reports little packet loss. It indicates that the 

network is in good condition and encourages the receiver to probe for more 

bandwidth. The bad RR reports large packet losses which exceed the packet loss 
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threshold, Ithrcshoid. It warns the receiver to reduce the rate. The average RR reports 

packet losses less than l—shoid. threshold will be an important metric in our proposed 

CFSC scheme in Chapter 6. 

3.5 Bandwidth Usage Target (BM) 

Upon receiving an RR, Skype precisely controls the BM which in turn shapes the 

flow rate. The evidence is shown in Figure 3.6. In this experiment, we first decrease 

the link bandwidth between SA and the router from 8000 Bps to 2000 Bps (refer to 

Figure 3.1 for experimental testbed), then increase it back to SOOOBps. As we can see, 

the BM changes before the flow rate changes at time 70s and 175s. Since the BM 

decides the flow rate, it also decides the level. 
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< 4000 Bps < 2750 Bps < 1250 Bps 

> 5500 Bps > 4000 Bps > 2750 Bps 

Figure 3.7: Level transition diagram 

BM threshold 

Embedded in Figure 3.6 is an interesting observation is that Skype sets two BM 

thresholds for level transition The mechanism is elaborated in Figure 3.7, which we 

arrive at by observing hundreds of level transitions in our experiments. In general, 

the level will be maintained to be the same when BM only changes slightly. A level 

transition will be triggered when the BM changes appreciably. This ensures a more 

stable voice quality, and that is why the flow rates of adjacent levels overlap with 

each other. 

We then investigate how BM changes. After tracking down the times during which 

BM changes, we find that Skype updates the BM after and only after an RR is 

received. We also observe that the trend of BM depends on the types of the received 

RR. Next, let us break down the mechanism. 

Decreasing mechanism of BM 

After receiving a series of bad RRs, Skype realizes that congestion happens and then 

reduces the BM. Since RR contains packet loss information, Skype can estimate the 

minimum available bandwidth, B�…and could have adjusted BM directly to the 

Bcsi. However, in Figure 3.6, the BM exhibits a smooth decrease rather than a slump 
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in network bandwidth. Therefore, we conjecture that the new value of BM not only 

depends on the B^st, but also depends on the previous values of BM. In other words, 

the new value of BM is a weighted average of previous values of BM and the B̂ ^̂ . 

Probing mechanism of BM 

After receiving a series of good RRs, Skype will try to probe for more bandwidth by 

increasing the BM. BM increases in a preset manner. Based on our observation, the 

value of BM can be divided into four regions, and in each region, the increment of 

BM grows linearly. The four regions of BM are [1187 Bps, 2000 Bps], [2000 Bps, 

3000 Bps], [3000 Bps, 5500 Bps], and [5500 Bps, 6250 Bps]. 1187 Bps and 6250 

Bps are the minimum and maximum value of BM observed respectively. For 

instance, here is a series of values of BM for instance, 1638 Bps, 1679 Bps, 1721 

Bps, 1764 Bps, and 1808 Bps. Their corresponding increments are 41 Bps, 42 Bps, 

43 Bps and 44 Bps. 

All discussions above only focus on the intermediate duration of a Skype session, 

and there might be something special that Skype set for the initial phase. Therefore, 

we performed a set of experiments with different initial link bandwidth between SA 

and the router. Figure 3.8 presents these experimental results. The initial bandwidths 

in Figure 3.8 (a), (b), (c), and (d) are 8000Bps, 6000Bps, 4000Bps and 2000Bps 

respectively. Comparing all the subflgures, we have three conclusions about the 

initial phase of Skype: 
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10 15 20 25 

Time (s) 

10 15 20 25 

Time (s) 

Figure 3.8: The performance of Skype adapting to different initial 

bandwidths. The initial bandwidths are (a) SOOOBps, (b) 6000Bps，(c) 4000Bps 

and (d) 2000Bps. 

1. The initial BM is 3750 Bps and the initial level is L4. 

It seems that Skype starts quite conservatively at first. An interesting observation 

is that the initial value of BM (3750Bps) and the level (L4) seems not match each 

other according to the level transition diagram in Figure 3.7. We think it is a 

special setting that enables Skype to jump to L3 immediately if the bandwidth is 

enough to carry L3 traffic during the start phase. 

2. Skype can successfully adapt its level to the initial bandwidth quickly. The 

decreasing and probing of BM still follows the principles discussed above. 

3. During the first 20 s after the communication connection is established, the 
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increase/decrease amplitudes of BM are 3 times larger than those during the 

subsequent phase. 

As shown in Figure 3.8(a), where the initial bandwidth is sufficient to carry LI 

traffic, Skype can transit from L3 to LI within 20 seconds. However, in Figure 

3.6，the same transition costs Skype more than 60 seconds (from 250s to 320s). 

Based on these conclusions, we divide the duration of a Skype session into two 

phases: conservative start phase and congestion avoidance phase. Conservative start 

phase is the first 20 seconds after the connection is set up, while the congestion 

avoidance phase is the following period. 

3.6 Summary of Skype Rate Adaptation Mechanism 

The following is a summary of our conjectured Skype rate adaptation operation. 

1. Initially set the BM to 3750 Bps and the quality level to L4. 

2. Every 0.5 second, check whether 30 or more packets have been received. 

Piggyback an RR in normal packet if yes; otherwise, wait another 0.5 second. 

3. When a series of bad RR are received or a timeout occurs, decrease BM. When a 

series of good RR are received, increase BM. Otherwise, keep BM unchanged. 

4. The increase/decrease amplitudes of BM are 3 times larger. during the 

conservative start phase than those during the congestion avoidance phase. 

5. During both the conservative start phase and the congestion avoidance phase, 

the quality level is adjusted based on BM as depicted in Figure 3.7. 

3.7 Skype-emulating Traffic Generator 

Based on our observations of Skype adaptation process, we have developed a 

28 



Chapter 3 
Skype Rate Adaptation Mechanism 

Skype-emulating Traffic Generator (STG) in Network Simulator (NS2) [44]. 

Important concepts and mechanisms of Skype rate adaptation, such as flow rate 

region, RR and BM, are all implemented. The source code of STG is available at 

CUHK-Wireless Networking Lab [45]. To install and use STG on NS2 platform, just 

follow the instructions in Appendix 1. 

To validate the STG, we compare the traffic it generates with Skype's traffic under 

the same conditions. In Figure 3.9，the link bandwidth between SA and the router is 

changed sharply while in Figure 3.10，the bandwidth is changed step-by-step. In each 

figure, the subfigure (a) presents the flow rates and levels gathered from Skype's 

experiments; and the subfigure (b) presents the flow rates and levels generated by 

STG. We can see that STG traffic resembles Skype's traffic in both Figure 3.9 and 

Figure 3.10. 
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Figure 3.9: Flow rate and level in response to sharp variation 
experiment and (b) simulation 

30 

50 

350 

(a) 



200 

Bandwith 

400 600 

Time (s) 

Flow rate 

800 1000 

Level 

Figure 3.10: Flow rate and level in response to step-by-step variation in (a) 
experiment and (b) simulation 
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Chapter 4 
Call Admission, Fairness and Stability 
Control 

In this chapter, by using STG in designed simulations, we expose that simply limit 

the number of admitted calls will cause the unfairness and instability problems 

among the AVoIP sessions. Some sessions enjoy high voice quality while some 

others suffer periodic sever packet loss and unacceptable delay. To tackle these 

problems, we design a control scheme that integrates call admission, fairness, and 

stability control (CFSC) functions. The three functions work together to ensure that 

the whole WLAN system settles at an ideal operating point. 

4.1 Unfair and Instability problems for AVoIP 

4.1.1 Analysis 

Unlike CVoIP, AVoIP could flexibly choose its rate in accordance with the network 

condition. As far as the maximum number of VoIP sessions is concerned, CVoIP has 

a fixed capacity over WLAN. For example, this maximum number is 12 when the 

codec used is GSM 6.10 and the WLAN is 802.11b. Admitting more than 12 CVoIP 

sessions will cause many VoIP packets to be dropped in the WLAN, resulting in 

unacceptable voice quality. For AVoIP, on the other hand, the capacity is not as clear 

cut. Even when the bandwidth of the WLAN has already been fully utilized, it 
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Table 4.1: Capacity under different targeted quality levels in 802.11b 

WLAN 

L ^.uin (Bps) Airtime Usage per second (ms) Capacity 

1 4000 57.00 8 
2 2812 29.08 17 
3 1187 18.89 25 
4 1140 14.35 34 

is still possible to add a new session, since the existing AVoIP sessions could reduce 

their rates at the sources to make room for the new session. Reducing rate at the 

source allows more graceful degradation of voice quality compared with letting the 

network arbitrarily drop packets under congestion. The call admission could be more 

elastic under AVoIP than under CVoIP. 

In the case of Skype, there are four levels of quality. By simple calculations [9], we 

can obtain the capacity (numbers of admissible AVoIP sessions, including two 

one-way flows) of a WLAN for different targeted quality levels. Table 4.1 presents 

the figures for 802.11b. 

If we wish the users to have a quality of, say, at least L2\ then we might limit the 

number of Skype sessions in the WLAN to 17. Note an assumption must be held is 

that all the admitted sessions share the same bottleneck - the WLAN. We relegate 

the discussion of the scenario without this assumption to Appendix 2. Under the 

bottleneck assumption, as long as there are fewer than 17 AVoIP sessions, we would 

continue to admit new sessions. When the limit is reached, new sessions would be 

‘ W e provide publicly available recordings for Skype AVoIP at different levels of quality at our 
website [45]. We consider L2 to be the minimum acceptable voice quality level in our study. The 
reader can listen to the recordings to make his/her own judgment 
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denied. This is similar to the simplistic user-number based cac scheme often used 

under CVoIP except that we have a higher capacity limit here. When the number of 

users is 8 or fewer, then all the users will be at LI. When the number of users is 

between 8 and 17，we expect that there is a mix of users at LI and L2. It turns out 

that things may not work as expected because of the intricate dynamics of the rate 

adaptation process. From our simulations, we discover that there could be users at L3 

and L4 even when the number of users is fewer than 17. Meanwhile, there could also 

be users at LI. In other words, there is a high degree of unfairness among the users if 

the system is left to evolve according to rate adaptation processes of the respective 

sources, even though the users use identical rate adaptation mechanism. In the 

following, we will illustrate this phenomenon with Skype-based simulation results. 

4.1.2 Simulation Evaluation 

We have performed comprehensive NS2 simulation to evaluate the performance of 

the simplistic user-number-based cac scheme. We model a "WLAN cell" with a 

square area of200m*200m (refer to Table 2.1 for parameter values of 802. l i b DCF). 

An AP is placed at the center of the cell while wireless client stations are placed 

randomly in the area. All nodes are within the carrier-sensing range of each other and 

there is no hidden node. Our Skype-emulating Traffic Generator is used to produce 

the traffic of AVoIP sessions. Altogether, 20 AVoIP sessions request to join the 

service. Starting from time 5 s, their requests arrive one by one separated by 

5-second intervals. The total simulation time is 400 s. With a targeted minimum 

quality of L2, the capacity limit is set to 17. Thus, the last three requests are denied 

admission. We have run 20 simulations under the same setting, and all the 

simulations exhibit similar results. 

34 



20 

0 50 100 150 200 250 300 

Time (s) 
350 400 

Figure 4.1: User-number-based CAC scheme: (a) Level distribution versus 
time; (b) System throughput and average loss ratio versus time 

Figure 4.1 presents the results taken from one of the simulation runs. Figure 4.1(a) is 

related to distributions of individual performance. Specifically, we show the numbers 

of flows at different levels (one bidirectional voice session has two one-way flows). 
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Figure 4.1(b) is related to the overall system performance. Specifically, we show the 

overall system goodput and the overall average end-to-end loss ratio. Note the 

overall end-to-end packet loss consists of packet losses i) at the congested router; ii) 

at the WLAN due to collisions; and iii) at the application layer due to unacceptable 

delay. The simulation results expose two problems, as detailed below. 

1. Unfairness 

Perhaps the most significant observation is that the qualities enjoyed by users are 

unevenly distributed. As can be seen from Figure 4.1(a)，the qualities of many 

sessions fall far short of the L2 minimum requirement even though the capacity 

limit is not exceeded. There are many flows at LI and L4. Ideally, the flows at LI 

should yield some of their bandwidth to those at L3 and L4 to bring about better 

fairness. However, different sources run their own rate adaptation processes in a 

distributed manner, and the evolution of the rate adaptation processes at the 

sources does not bring about this desirable outcome. Another observation is that 

newly added clients are prone to starvation. As shown in Figure 4.1(a), from 50 s 

to 100 s, many clients slide into L4. Most of them are new clients who come 

after time 50 s. We believe this phenomenon can be attributed to the 

"conservative start" property of Skype: new clients start from L4 and react more 

aggressively to congestion. 

2. Instability 

As a whole, the system suffers from recurrent jumps in packet loss and slumps in 

goodput, as shown in Figure 4.1(b). These are side effects of the probing 

mechanism of AVoIP. Periodically, each client will attempt to raise its own rate if 

there has been no significant packet loss. As each client does that, there 
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eventually will come a point when their aggregate will drive the network to 

beyond its capacity limit. The overall system instability and oscillatory behavior 

will in turn cause fluctuations of the voice qualities perceived by individual users. 

As can be seen in Figure 4.1(b), even after no more new sessions are admitted 

and the number of sessions is a constant, the distribution of users among the 

different quality levels fluctuates in a significant manner. 

The unfairness and instability problems may not be unique to Skype. In AVoIP, it is 

natural for a source to probe the network for more bandwidth if it is not enjoying the 

best possible quality and that it has not experienced significant packet losses or 

delays. That is how it can make sure that the network bandwidth can be fully utilized. 

It is also reasonable to begin service conservatively at a lower level before raising it 

later, but this leads to unfairness for newcomers, as our experiments indicate. Our 

experimental observations point out the need for a careful reexamination of rate 

adaptation to take into account the interactions among the processes at the individual 

sources - without further regulation and coordination among these processes, the 

system may evolve to an undesirable operating point. 

4.2 CFSC scheme 

We propose an integrated scheme to solve the unfairness and instability problems. 

Our scheme, CFSC, consists of three control functions: Call Admission Control 

(CAC), Fairness Control (FC) and Stability Control (SC). Using CFSC, we could 

ensure consistent good voice quality to every c l i en t . , 

The AP of the WLAN is responsible for performing the CFSC scheme. It handles the 
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Figure 4.2: Overview of CFSC scheme 

access requests from clients, identifies potential problems among clients, and 

executes the CAC, FC, and SC control functions. 

The AP maintains a request queue Q’ and two parameters，Z)此 and L. These 

parameters are collected and updated every second. They assist the AP to identify 

and deal with the problems. T礙 is the idle time over the period of one second at 

the MAC layer. L is a vector recording the levels of all flows. Since the network is 

working in the infrastructure mode, the AP can easily monitor the traffic in both 

directions and collect these information. T * can be observed at the MAC layer or 

estimated at the network layer [29]. In our work, the AP estimates the T-^ by 

calculating the airtime used by all the packets passing it. Although this method 

induces small error, it needs not cross-layer cooperation between the network layer 

and the MAC layer. The level of a flow can be determined through the packet 

interval without accessing the application header. 

CAC, FC and SC operate in parallel. Every second, the AP checks Q，T * and L， 

38 



Chapter 4 

Call Admission, Fairness and Stability Control 

and decides which control function should be performed. Figure 4.2 gives an 

overview of the CFSC scheme. Below we will explain the three control functions 

separately. We continue to assume L2 is the minimum quality requirement. But note 

that our scheme works for other requirements and only some control parameters need 

to be changed accordingly. The overall algorithm for CFSC is contained in the 

pseudo code of Algorithm 1. 

4.2.1 Pre-admission Bandwidth-reallocation Call Admission 

Control (PBCAC) 

We continue to use the capacity limit, 17，as an upbound of the admitted number of 

sessions in our CAC. When a new client wants to join the service, it first sends a 

request to the AP. We assume a client will wait for a maximum of 10 seconds for a 

reply from the AP. Thus, the AP has a budget of 10 seconds to perform the necessary 

computation and control before a decision has to be given to the client as to whether 

it is admitted or not. 

Upon receiving a new request, the AP immediately admits it if there are less than 

eight existing clients in the WLAN (the rationale is that, according to Table 4.1，all 

sessions could be at LI). If there are more than 17 clients, the request will be denied. 

In other cases, the AP appends the request to the request queue, Q. 

Every second the AP checks whether Q is empty. If not, it checks whether T-,, 

can accommodate a new AVoIP session demanding L2 service. If T讼,> 2T^2， 

where T^j is the minimum airtime requirement for an one-way flow at L2’ the AP 
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Algorithm I CFSC Algorithm 

Procedure HANDLE N E W REQUEST ( Q ) 
if Number of Existing Clients < 8 then 

Admit the new request; 
else if Number of Existing Clients > 17 then 

Deny the new request; 
else 

Add the new request to Q ； 

end if 
end Procedure 

Loop ；The AP checks Q, 7；他 and L 

Procedure CALL ADMISSION CONTROL( Q，7；彻) 

if Q is not empty then 
if then 

Admit the first request in the Q ； 

else 

end if 
end if 

end Procedure 

BIackl is t - I2Ll flows; 
Blacklist-II the left LI and all L2 flows; 
Set ldl<ld�<kres_<yyo•， 
Start Deliberate Drop. 

Procedure FAIRNESS CONTROL( L ) 

if {N,, + N,, ；̂  0) n 礼 + N,, ^ 0) then 

Blacklist-I [O.SiV^j LI flows; 

Blacklist-II the left LI and all L2 flows; 

Start Deliberate Drop. 
end if 

end Procedure 

Procedure STABILITY CONTROL( L ) 
if L = L i - � then 

Blacklist-II all LI and L2 flows; 
Set l<i2 < hliirKliold ； 

Start Deliberate Drop. 
end if 

end Procedure 

end Loop 
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grants admission to the first request of Q . It then updates accordingly. 

Otherwise, the AP takes a measure called "deliberate drop", the goal of which is to 

make the existing sessions at higher level to yield some of their bandwidth to 

accommodate the new session. The AP rechecks T * after one second to see if the 

deliberate drop has succeeded in creating enough idle airtime for the admission of 

the new client. Deliberate drop is performed until enough idle airtime is created, or 

the request is withdrawn after waiting 10 seconds. 

Deliberate Drop 

Step 1: If there are 2 or more LI flows, the AP arbitrarily puts 2 of them on 

Blacklist-I, and puts the left ones and all L2 flows on Blacklist-II (the rationale is 

that, according to Table 4.1，the airtime taken by 1 LI flow can accommodate 2 L2 

flows). Otherwise, the AP puts the only LI flow, and all L2 flows except the ones at 

the lowest rate of L2 on Blacklist-I, and puts the left L2 flows on Blacklist-II (due to 

limited space, the pseudo code in Algorithm 1 does not cover this case.). Step 2: In 

the next second, the AP will deliberately drop some packets of the Blacklist-I flows 

and the Blacklist-II flows with drop ratios and respectively, where 

< t̂hreshold < L < 3% (assuming the bearable loss ratio of VoIP traffic is 3%). 

Deliberate drop drags down the flow rates of the Blacklist-I flows and prevents the 

Blacklist-II flows from probing. In other words, deliberate drop forces the LI flows 

and L2 flows at higher rate to yield some airtime for the new session, and prevents 

the L2 flows at lower rate from taking over the idle time created before the new 

session is added. If there are existing L3 flows also, Fairness Control will blacklist 

more LI flows to yield more airtime to the new session and the existing L3 flows. In 

short, our CAC mechanism forces some LI and L2 flows to give up some bandwidth 
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SO as to make room for the new session. This scheme avoids over-admission and 

guarantees the new session transits from L4 to higher levels quickly during the 

conservative start phase. 

4.2.2 Fairness Control 

The AP detects unfairness by inspecting L. Unfairness is indicated when LI or L2 

flows coexist with L3 or L4 flows. More specifically, unfairness is said to occur 

when the following event occurs: (A^̂ , + N̂ ^̂  ^̂  0) n (TV ĵ + TV"̂^ 其 O)，where N^j 

denote the number of flows at level i . 

Upon detection of unfairness, the AP performs deliberate drop to force the flows at 

higher levels to give up some bandwidth to the flows at lower levels. This procedure 

is similar to the one in CAC except + N^̂ ]̂ LI flows are put into 

Blacklist-I here (the rationale is that, according to Table 4.1, if 1 LI flow degrades to 

L2, it will at most yield about 28 ms airtime per second, which is enough for 2 L3 

flows or 1 L4 flow to upgrade to L2). 

Fairness Control fairly and efficiently reassigns the bandwidth resource to flows 

without communication overhead. With Fairness Control, the level distribution of all 

flows could converge to the ideal operation point, where max-min fairness and 

maximum system goodput is achieved. We will give detailed description of the ideal 

operation point in the next part. 

42 



Chapter 4 
Call Admission, Fairness and Stability Control 

4.2.3 Stability Control 

Stability Control prevents the system from diverging again after converging to the 

ideal operating point. The divergence is due to the probing mechanism of AVoIP. We 

define the ideal operating point, L ^ , as the level distribution when max-min 

fairness among clients is achieved - an upgrade of any clients must not result in the 

degradation of some lower-level clients. The ideal operation point can be obtained 

through calculation [2]. In Table 5.1，the column of "ideal operation" reports the 

ideal operation points versus different numbers of clients. 

The Stability Control function is conducted as follows: the AP checks L every 

second. When L = L—,，the AP starts Stability Control. It puts all flows, including 

all the LI flows and L2 flows, into Blacklist-II. Then it set < Lrcshoid to merely 

prevent them from probing. Stability Control keeps the system working at the ideal 

operation point where max-min fairness is achieved. 
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We validate CFSC by simulations in NS2. For comparison, the simulation setting is 

the same as that in Chapter 4.1.2. An AP is placed at the center of a "WLAN cell" 

with a square area of 200m*200m. Wireless clients are randomly placed in that area 

with a uniform distribution. Altogether, 20 clients wish to initiate AVoIP sessions. 

Starting from time 5s, their requests arrive at the AP one by one every five seconds. 

In the following, to better identify their roles and effects, we isolate and evaluate 

Fairness Control, Stability Control and Call Admission Control separately. 

5.1 Evaluation of Fairness Control 

In this simulation, the Call Admission and Stability Control functions are disabled, 

and only the Fairness Control function is activated. For comparison, we adopt the 

same user-number based CAC that is used in Figure 4.1. Figure 4.1 (a) presents the 

distributions of the performance of individual VoIP sessions; Figure 4.1(b) presents 

the overall system performance. As we can see, at time 145s, the system converges 

to the ideal operating point when all clients are at L2. In particular, the unfairness 

problem in Figure 4.1 has been removed with our fairness control algorithm. 

At 150s, however, some clients attempt to go to LI and succeed in doing so. This 

causes a surge of packet loss and a slump in system throughput. The system diverges 
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Figure 5.1: 
time; (b) System throughput and average loss ratio versus time 
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from the ideal operating point. As discussed in Chapter 4.1，this instability problem 

is due to the probing mechanism of AVoIP. It takes a long time before ideal 
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operation is achieved again (at 400s). This result indicates that we need Stability 

Control to prevent the system from diverging from the ideal operating point. 

5.2 Evaluation of Stability Control 

In this simulation, the Fairness and Stability Control functions are activated, together 

with the user-number based CAC. The distributions of individual performance and 

the overall system performance are presented in Figure 5.2. As we can see, under the 

coordination between the Fairness Control and Stability Control, fairness among all 

clients and consistent good voice quality are guaranteed. 

5.3 Evaluation of PBCAC 

In this simulation, we replace the user-number based CAC with our own Call 

Admission Control, and also activate the Fairness Control and Stability Control 

functions. Simulation results are presented in Figure 5.3. Comparing Figure 5.2 and 

Figure 5.3, we can see that our CAC outperforms the user-number based CAC in two 

ways: i) Our CAC achieves better bandwidth usage. Under our CAC, the number of 

LI clients decreases more gently when the total number of clients increases in the 

WLAN between 50s and 100s. We also achieve higher system goodput. ii) Under our 

CAC, level distribution converges to the ideal operation point more quickly. The 

reason is that before a new session is admitted, we have reserved enough airtime for 

it to transit to the higher levels quickly during the conservative start phase. Our 

improvement is at the expense of longer waiting time of clients. The average waiting 

time is about three seconds under our CAC while zero under the user-number based 

CAC. 
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Figure 5.2: Fairness Control and Stability Control activated: (a) Level 
distribution versus time; (b) System throughput and average loss ratio 
versus time 
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Figure 5.3: Complete CFSC scheme: (a) Level distribution versus time; 
(b) System throughput and average loss ratio versus time 
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5.4 Evaluation of complete CFSC 

To further evaluate the overall performance of the CFSC scheme, we conduct 

simulations with different number of clients requesting to initiate AVoIP sessions. 

For each case, we run 10 simulations. The results of 10 simulations are similar. Table 

5.1 presents the results taken from one simulation. It reports the level distribution 

under the user-number based CAC scheme, and under the CFSC scheme, versus the 

number of requesting clients. We also list the ideal operation points in the table. In 

all the 10 simulations, the system can always converge to the ideal operation points 

regardless of the number of clients under our CFSC scheme. But under the 

user-number based CAC, the level distribution displays a high degree of unfairness. 

Another simulation that demonstrates the performance of our CFSC scheme is 

presented in Figure 5.4，where 50 clients join and leave the WLAN during a period 

of 550s. Arrivals of clients are a Poisson process with rate 0.2s"'，and the duration of 

a voice session is exponentially distributed with parameter-j-^s"'. As we can see, 

even under this dynamic scenario, our CFSC scheme performs well. Voice quality of 

L2 is guaranteed when there are more than 8 clients in the WLAN from 100s 

Table 5.1: Level distribution versus number of clients 

User-number-based CAC CFSC Ideal 0 Deration 
N LI L2 L3 L4 LI L2 L3 L4 LI L2 L3 L4 
8 16 0 0 0 16 0 0 0 16 0 0 0 
10 18 1 1 0 14 6 0 0 14 6 0 0 
12 17 1 2 4 10 14 0 0 10 14 0 0 
14 16 1 3 8 6 22 0 0 6 22 0 0 
16 13 2 7 10 2 30 0 0 2 30 0 0 
17 12 2 7 13 0 34 0 0 0 34 0 0 
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Figure 5.4: Complete CFSC: 50 clients join and leave over a period of 50s. 
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ratio versus time 
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Accelerating adoption of WLAN and increasing maturity of VoIP technology have 

attracted great interests towards VoIP over WLAN from both industry and academia. 

Much previous research work has studied Constant bit-rate VoIP over WLAN. This 

thesis, inspired by the reality that many popular VoIP applications have employed 

Adaptive bit-rate VoIP codecs, studies AVoIP over WLAN. 

We investigate the rate adaptation mechanism of Skype and implement a traffic 

generator module in NS2 to emulate it. With the help of the traffic generator, we 

identity two problems associated with the transport of Adaptive bit-rate VoIP (AVoIP) 

traffic over WLAN. We then devise solutions to solve the problems. 

We find that when AVoIP is adopted by the end users, the AVoIP-over-WLAN system 

could evolve to an operating point where there is a high degree of unfairness among 

the AVoIP sessions. In particular, some sessions enjoy very good voice quality while 

other sessions suffer from very poor voice quality. Furthermore, the performance 

may be unstable in that a session may oscillate between good and poor voice 

qualities. 

To solve these problems, we develop a scheme that integrates the call admission, 
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fairness and stability control functions. Our call admission control makes use of the 

principle of pre-admission bandwidth reallocation. In essence, if the WLAN is 

already saturated when a new call arrives, and if some existing sessions are enjoying 

the highest possible voice quality and that lowering their quality somewhat is still 

acceptable, then the AP deliberate drops some packets of these existing sessions to 

cause them to adapt to a lower but acceptable voice quality level. This has the effect 

of reshuffling the bandwidths of the existing sessions so as to make room for the new 

call. Doing so allows the new call to adapt to an acceptable quality level very 

quickly. 

Our fairness control makes sure that among the existing calls, their quality levels are 

comparable and not drastically different. The fairness equilibrium is also achieved by 

deliberate and selective dropping of packets at the AP. The goal, however, is to 

prevent the interactions among the users' adaptation mechanisms to cause the system 

to evolve to an unfair operating point. Our fairness control achieves max-min 

fairness. Finally, stability control ensures that once fairness is achieved, the system 

does not diverge from the ideal operating point due to the bandwidth-probing 

mechanism of AVoIP. Experimental results indicate that our proposed scheme 

effectively eliminates the unfairness and instability problems we observe for AVoIP 

over WLAN operation. 
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Appendix 1 

Using Skype-emulating Traffic Generator (STG) in 

NS2 

A. Overview 

The Skype-emulating Traffic Generator is developed to generate adaptive voice 

traffic in NS2 simulations for research on AVoIP. The motivation behind is that NS2 

lacks support for modeling adaptive voice traffic which is quite popular in practice. 

As its name indicated, STG can emulate the behavior of Skype adapting to network 

variations. STG is fully implemented the Skype rate adaptation mechanism described 

in Chapter 3. Two STGs working as counterparts can produce and feedback receiver 

reports following the RR generation rule, update BM upon receiving an RR, and 

adjust flow rate accordingly. 

B. Installation 

The STG module consists of three files, skype.h, skype.cc and packet.h. They are 

downloadable at our lab website http://www.wireless.ie.cuhk.edu.hk. 

To install the STG module to your NS2 platform, you should: 

Step 1. Download the files (skype.h, skype.cc) to a directory under 
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ns-allinone-2.3x/ns-2.3x named "skype" (or any name you wish) 

Step 2. Make the following change to the "Makefile": 

(i) Add Sskype/skype.o to the OBJ CC macro. 

(ii) Add -L/Sskype to the INCLUDES macro. 

Step 3. Change some of the files in the ns-2 distribution: 

(i) “ns-process.h，，. Add the following lines before the last ADU in 

AppDataType enumerator at the begining of the file: 

//SkypeADUs 

SKYPE_DATA, 

SKYPE_DATAwRR, 

SKYPE_SYN, 

(ii) "packet.h". Download packet.h and replace the old one at 

/ns-allinone-2.33/ns-2.33/common. 

Step 4. Recompiling ns with the configure; make clean; make command. 

After completing those steps, STG is usable on the target NS2 platform. The 

following section will show how to use STG. 

C. Usage 

STG is an application layer traffic generator working on User Data Protocol. Its 

usage is quite like using CBR generator. The only difference is that STG must be 

used in pair. If the sender side uses STG as generator, the receiver side must also use 

the STG. It is because that STG needs feedback to perform rate adaptation. 

The commands to adopt and use STG are as below: 

Step 1. To attach STG to UDP agents: 
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Step 2. 

set skype [new Application/Skype $udp] 

To start and stop STG traffic: 

$skype start 

$skype stop 
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Figure A.l: An example scenario where some counterparts of users in Local 

WLAN are in the wired network and some ones are in Remote WLAN. 
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Performing CAC When Bottleneck is not in the 

Local WLAN 

A. Motivation and Overview 

An assumption held in this thesis is that all VoIP flows in the WLAN are constrained 

by the same bottleneck - the local WLAN. Then if a VoIP flow has poor performance, 

it must indicate that the WLAN is saturated. As for AVoIP, the poor performance 

might also be a warning signal of unfairness problem. This assumption is reasonable 

if we assume that all the counterparts of the VoIP callers in WLAN are in the wired 

network where bandwidth is usually abundant. However, if one end of a VoIP session 

is in a wireless network, this assumption does not hold anymore. Figure A. 1 gives an 

example. Apparently the bottleneck of VoIP session aa' is the local WLAN. But for 
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session bb，，either the local WLAN or the remote WLAN could be the bottleneck. 

Besides, the bottleneck of session bb，could even shift back and forth between local 

and remote WLANs. In this situation, poor performance of a flow might not 

necessarily indicate that the local WLAN is congested or unfairness problem exists. 

It is also possible that the poor performance is due to the congestion of the remote 

WLAN. 

If we remove the bottleneck assumption, two issues need to be reconsidered in CFSC 

scheme: 

1. Indication of unfairness that triggers fairness control; 

As discussed above, a low quality level does not always indicate unfairness. If 

we blindly perform fairness control upon every such signal without further 

identification, the system might enjoy no improvement but suffer higher packet 

loss induced by deliberate drop (in fairness control). 

Define the flows, whose bottlenecks are in the remote networks as "remote 

flows" and the flows, whose bottlenecks are in the local WLAN as "local flows". 

To solve this issue, we need to identify the remote flows. A possible method is 

like this: at the beginning, AP executes fairness control upon poor performance 

of any flow. After a period T , if the performance of the flow in question remains 

unimproved, AP assumes that the flow is a remote flow and marks the flow. Then, 

during the following period T’，AP will ignore the poor performance of the 

marked flow. Note h e r e T ' � T . 

2. The upper bound of the admitted number in call admission control. 
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Continue to assume that the requirement of voice quality is L2. Recall that in 

Chapter 5，we limit the upper bound of the admitted number of voice sessions to 

the WLAN capacity, 17. If we still use the same limitation here, in the worst 

case where all flows are remote flows, a half of the wireless resource of the local 

WLAN is wasted (Assume remote flows are all at L4. The rationale is that, 

according to Table 5.1，the airtime taken by 1 L2 flow equals to the airtime taken 

by 2 L4 flows.). On the other hand, if we loosen the upper bound and admit 

more sessions, we may fail to maintain the quality of admitted voice flows. 

Once some remote flows change to local flows, the system capacity is exceeded 

and everyone's quality is hurt. 

This issue is quite complicated. We will discuss it elaborately in the following 

sections. In section B, we will give a model to analyze this issue. In section C, D and 

E, we will present three kinds of CAC scheme for the situation that the bottleneck is 

not in the local WLAN. The first scheme limits the number of admitted sessions to 

an estimated upper bound. The second scheme reserves an amount of bandwidth for 

remote flows. The third scheme guarantees the voice quality of flows with a required 

probability. 

B. Analytical Model 

Assume the arrivals of call requests follow a Poisson process with rate A, and the 

duration of a call is exponentially distributed with parameter f i . According to its 

bottleneck location, a directional voice flow may have two states: remote state and 

local state. Assume the durations that a flow stays in remote state and local state 
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Figure A.2: The State diagram of a flow 

follow exponential distribution with parameter \ and A, respectively. Figure A.2 

gives the state diagram for a flow. Further assume the flow transitions are 

independent. 

Suppose at time t�，a new request arrives and AP has to decide whether to admit it. At 

this moment AP has the following information: the overall number of flows in the 

WLAN, N ； the number of remote flows, N^ ； the number of local flows, N^ ； the 

average airtime taken by a remote flow, B^ (ms); the airtime required by a local 

flow with accepted quality, B； (ms) {B^ < B^); and the transition rates between 

remote state and local state, \ and \ . 

Assume a new admitted flow starts from local state and no voice session leaves 

during the following period/i. Define danger probability as the probability that the 

WLAN capacity C will be exceeded by adding a new session. Specifically, if at 

any time during [力。，力o + “ ] ， A T , 钱 + N^B^ > C is satisfied, we say the capacity is 

exceeded. Then the problem can be reformulated as: based on current information, 

how should AP perform CAC to ensure a low danger probability during [ ‘ i � + /i] ? 
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Since B^ < B" the system can remain stable when N^ becomes larger and larger. 

However, if Ni increases during [、，、+/i], the system might enter into danger 

states where the system capacity is exceeded. 

To ensure that the system never enters the danger states, AP must reserve B̂  

bandwidth for all flows. In the worst case where Nj is zero, a half of the bandwidth 

is wasted. To ensure that no waste of bandwidth even when TV, is zero, AP must 

admit a number of sessions which is twice the capacity limit. In worst case, if all 

N^ remote flows change to local flows, everyone will suffer 50% packet losses. 

Apparently, there is a trade-off between system bandwidth efficiency and voice 

quality insurance. A good call admission control scheme should balance well 

between them. 

C. CAC based on Upper bound of Admitted Number 

The key assumption in this scheme is that the system is already in a steady state 

where the numbers of remote flows and local flows are rather constant. Then from 

Figure A.2, we can derive the steady state probabilities for each state: 

入 ， 
TT, = 

where tt̂  and tt, denote the steady state probability for remote state and local 

state respectively. For a given N, there would be NR = N — ~ remote flows 
\ + \ 

and NL — N — ^ local flows in the system. As long asNjBi + < C, we 
\ + \ 

say the system can support N voice sessions. Therefore, the upper bound of the 
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admitted number of flows is 

N = m a x { n 
I nX^B^ ^ 

A, + A, A, + A, 

AP admits a request only if the number of flows in the system is less than the upper 

boundN . 

D. CAC with Bandwidth Reservation 

Every time receiving a new request, AP predicts two parameters if it admits the 

request: the bandwidth B狄 that should be reserved for remote flows and the 

residual bandwidth^^^. B^y = C - N^B^ - (TV, + 1)钱 .IfB仆 > B^y, AP admits 

the request; otherwise, AP refuses the request. 

Now the problem is how to p r e d i c t . Assume that during[、，亡�+ h], each flow 

makes state transition at most once. Then during [�o’（o + the expected number of 

local-to-remote transitions is (TV, + l) 入 while the expected number of reverse 

transitions is N^ 
A. 

Overall, there are max 
TV入 - (TV,+1)入 

more local 

flows in the system. Since a local flow takes B! - B^ more bandwidth than a remote 

flow, it is necessary to reserve B 肝 = m a x 0. 

A ^ (B�Br 

bandwidth for those remote flows that might become local flows. 

E. CAC based on Danger Probability 

This CAC scheme is based on the predicted danger probability e and the risk 
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N\ (N -1)\ {N-i + \)\ {N-i)\ 2\ \ 

嚇.......... 
\ 2\ i\ {i + (N - 1)A, NXi 

Figure A.3: The state diagram of the number of local flows, TV； 

requirement 7 . Upon receiving a new request, AP predicts e for the system with 

N + 1 flows. Ife < 7 , AP allows the new session to come in; otherwise, AP turns 

the request down. The key is how to gete. 

The transition process of Ni can be formulated as a continuous-time Markov chain 

with the finite state space{1,2,...,iV}. Figure A.3 gives the state diagram ofA^,. 

As i increases, the system might enter the danger state. Define danger state e as 

the state satisfyinge = min iB^ -\-(N - i ) B^ > C | . Then, at time IQ，the transition 

probability from the current state s to the danger state e in time h 

After knowing all the transition rates, as shown in Figure A.3, can be 

calculated using mathematical tools. p̂  JJi) reflects the risk of the system being 

overloaded. Let e = p̂  X^). By comparing e with 7，the admission decision can 

be made as per the risk requirement. 

Larger h implies larger danger probability and stricter requirements, h can be 
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interpreted as the insurance time. Since the average duration of a call is/x, the 

number of flows in the system is expected to decrease after a period o f ^ . Once the 

number decreases, the danger probability drops sharply. Therefore, a reasonable 

value of h is/i = — . 
N 

F. Implementation Issues 

In the proposed CAC schemes, we assume that the transition rates A^and A, are 

known. In practice, these parameters can be roughly estimated from past data and 

statistics. By recording the durations of all flows that stay at the remote state and 

local state, AP can do such estimation. 
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