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In multi-cell networks where mobile stations perceive different channel gains to 

different base stations, it is important to associate a MS with the right BS so as to 

achieve a good communication quality with limited bandwidth resources. Oftentimes, 

the already-challenging BS association problem is further complicated by the need of 

transmission power control, which is an essential component to manage co-channel 

interference in many wireless communications systems. Despite its importance, the 

joint optimal BS association and power control (JBAPC) problem has remained largely 

open, mainly because its non-convex nature that makes the global optimal solution 

difficult to obtain. 

In this thesis, we propose a novel algorithm, referred to as BARN, to solve the 

JBAPC problem efficiently and optimally, in the sense that the system revenue is max-

imized while the total transmission power is minimized. In particular, we propose a 

single-stage formulation that simultaneously captures the two objectives in discussion. 

Then the problem is transformed in a way that can be efficiently solved using BARN 

algorithm that is derived from the classical Benders Decomposition. Finally, we derive 

a closed-form analytical formula to characterize the effect of the termination criterion 

on the obtained solution and the optimal one. For practical implementation, we pro-

posed an Accelerated BARN (A-BARN) algorithm that can significantly reduce the 



computational time. By carefully choosing the termination criteria, both BARN and 

A-BARN are guaranteed to converge to the global optimal solution. 
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Chapter 

Introduction 

1.1 Motivation 

Wireless communication has experienced remarkable growth after more than 20 

years' research and operation. Contrary to the wire counterpart, wireless systems have 

the unique aspect of providing ubiquitous and broadband access to the users. Mean-

while, the qualities of wireless services have also experienced explosive improvement. 

For example, Protocol 802.11b specified the maximum raw data rate of 54 megabits 

per second (Mbit/s) in 1999，while 802.1 In, released in 2007，increases the maximum 

raw data rate up to 600 Mbit/s [1]. Consequentially, wireless networks are expected to 

offer a comprehensive solution to fulfill the ever-increasing communication demands. 

However, due to the broadcast nature of wireless communication that the wireless 

channel behaves a random-like fashion and simultaneous transmissions in the same 

channel interfere each other, the network performance is severely limited. Oftentimes, 

the already-undesirable situation is further degraded by the limited radio resource (i.e., 

radio spectrum, transmission technologies,etc. ) as well as the heavy user expectations 

for 'high-speed, high-quality' services. Accordingly, unprecedented challenges are posed 

to the design of future wireless systems that must cope with these deficiencies. 
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It is well known that fully utilizing the wireless resource, in any of the dimensions 

allowed by the multiple access technologies (time or frequency slots, codes, etc.), would 

largely improve the spectral efficiency and thus increase network capacity. At the heart 

of those resource utilization issues lies the need to efficiently allocate channels and power 

in a way that good communication quality is retained on each link at a minimum cost. 

In this respect, each time when a new generation of the wireless systems is proposed, 

some technological revolutions in resource management are made to overcome the lim-

itations of the predecessors. In the following, a historical overview of the technological 

revolutions in wireless cellular systems is presented. 

B3G 
3G 

> Support for ofS-
hoc notworkinQ 
• UUra-tiJgh apeud 

1990s 

• Superior 1 
quality 
Up to 2Mbps 

2000s 20T0S time 

Figure 1.1: Evolution of Wireless Networks 

The first-generation cellular systems (IG) are designed for analog voice data. The 

frequency-modulated (FM) analog technology is adopted, where bandwidth is divided 

into a series of non-overlapped frequency channels to carry analog signals. To avoid 

the interference caused by simultaneous transmissions in the same channel (co-channel 

interference), the same frequency cannot be reused among cells unless their centers are 

greater than certain distance, for that the signal power depletes with distance. This 

situation leads to the frequency assignment problem which is extensively discussed 

in [2]. 
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In second-generation cellular systems (2G), radio signals are changed from analog 

to digital for encoding and decoding. There are two dominant techniques adopted in 

2G. One is termed as TDMA/FDMA {time division multiple access/frequency division 

multiple access) technology where a whole bandwidth is divided in both the frequency 

domain and the time domain. For example, in the standard termed as the Global 

System for Mobile Communication(GSM), a 25MHz bandwidth is divided into 124 

channels ( plus one guard channel) and each channel is divided into eight time slots. 

Both the channels and the time slots can be allocated to the mobile users. To efficiently 

allocate the time and frequency slots is one of the the key issues in GSM, as indicated 

in [3]. The other technique, known as code division multiple access (CDMA), allows 

the entire transmission bandwidth to be shared by all the users at all time, therefore 

no explicit schedule of time or frequency slots are necessary. However, power control 

becomes especially important for providing reliable and energy efficient communications 

to the mobile users. An efficient power control will limit the transmitted power on both 

the mobile stations' side (uplink) and the base stations' side (downlink), and hereby 

enable successful reception on a link while mitigating the interference to the other links. 

Since the power transmitted is exponential to the distance between the transmitter and 

receiver, the problem of selecting a proper base station location for a mobile user is also 

indispensable. An evaluation of problems in base station selection and power control 

in 2G can be found in [4 . 

The third-generation cellular systems (SC), which have been put into commercial 

operation recently, are able to transmit various types of data in high speeds and high 

qualities. The transmitted data can be voice data (the phone call) as well as the 

non-voice data, such as music, photographs, video, email, instant messaging, etc. Un-

like 2G which is built mainly on voice data with slow transmission rate, 3G provides 

more communication bandwidth for each user and thus supports higher speed data 

services, at an extreme up to 100 times those of 2G [5]. SG is mainly based on 

the CDMA technology and companied with a variety of wireless standards including 
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WCDMA( Wideband CDMA), CDMA2000, IJMTS( Universal Mobile Telecommunica-

tions System) and EDGE{Enhanced Data rates for GSM Evolution ). Note that rela-

tively limited bandwidth is available for 3G comparing with the heavy service demand, 

it is clear that efficiently utilizing the spectrum is indispensable for increasing the sys-

tem capacity. As indicated in [6], network operators in 3G should make considerable 

investments in the infrastructures to reduce the reach of each base station (i.e., the 

distance of a base station to the mobile stations it serves) and increase the cellular 

density (i.e., the number of mobile stations served by a base station) in the service area. 

Today the mobile community moves toward fourth-generation (also known as the 

beyond third-generation) systems (4G/B3G) . The B3G systems are expected to be 

a complete replacement for the current networks, providing comprehensive and secure 

solutions where voice, data, and streamed multimedia can be given to users on an 

'Anytime, Anywhere' style, with much higher data rates than previous generations 

7]. Based on the orthogonal frequency division multiple access (OFDMA) technology, 

mobile stations in B3G systems are multiplexed by frequency, and their datas are 

transmitted on a subset of the orthogonal sub-carriers. The design of B3G systems has 

to take into account that the dominant load in B3G wireless channels will be high-speed 

burst-type and heterogenous traffics [8], and thus reformative power control strategies 

as well as proper base station selection schemes are needed. An generalization of the 

technological revolutions is shown in Figure 1.1, 

In this thesis, we address the resource allocation problem in multi-cell networks. The 

so-called multi-cell network is a system where multiple base stations (BSs) are allowed to 

cooperate in terms of joint resource allocation. Herein, the resource allocation denotes 

for the power control and BS association, where the former is to establish spectrum-

efficient connections between mobile stations (MSs) and BSs according to the location 

of MSs and the traffic load distribution in the geometric area, the latter is to ensure that 

each link transmits an appropriate amount of power to maintain its link quality without 

imposing excessive interference on other links. We should mention that while it is 
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widely admitted that a joint optimization of BS association and power control(JBAPC) 

would offer enormous potential to improve overall system performance, it comes across 

extraordinary challenges that such a joint optimization problem is largely intractable 

due to its non-convex and combinatorial nature. 

1.2 Literature Review 

In the past decades, much attention has been paid on the design of spectral efficient 

systems through carefully allocating the system resources, such as carriers, time slots, 

spread codes, power, etc. Among those system resources, transmission power represents 

as an important tunable parameter. A recent survey [9] has generalized the main aims 

of power control, including: manage the interference caused by simultaneous transmis-

sions; manage the energy consumption of the mobile stations considering their limited 

battery budgets, and maintain logical connectivity for the signal receivers so that they 

can stay connected with the signal transmitters and estimate the channel states. Ini-

tially, the work on power control concerns a single service. For example, [10] considers 

the voice service in a CDMA network while users have identical data rate requirement. 

Latter, some work focuses on multimedia services including voice, image, video, file 

transfer, interactive data and so on. For example, in [11], the proposed W-CDMA cel-

lular system offers conventional power assignment mechanisms for multimedia services 

requiring heterogenous data rates. In [12], different types of multimedia services, such 

as heterogeneous requirements of the minimum transmission power, are investigated 

in a novel power control structure. In [13], multimedia services with various service 

quality requirements are concerned, while the main threads and ideas in the recent 

development for minimizing the power usage are elaborately discussed. 

Another key degree of freedom is the interference and energy management in which 

BS association is the main issue. Recent studies have shown that in a multi-cell system, 

MSs are typically not uniformly distributed, and thus some BSs are prone to suffering 
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from heavy load while some adjacent BSs may carry only light load or be idle [14-16 . 

Therefore, intelligently assigning MSs with proper BSs are crucial to overcome such an 

imbalanced situation. In [14] the long-time average system throughput is maximized by 

dynamically providing service to its MSs. In [15], the proposed BS association scheme 

is based on the assumption that the required data rates of all the mobile stations are 

identical. In [16], the BS association problem is formulated as a pricing-based non-

cooperative game where no explicit communications are allowed among the BSs and 

each user maximizes its own utility function by selecting a strategic action according 

to its observation of the actions of other links. 

Moreover, recent years have seen the rise of interests on the Joint problem of Bs 

Association and Power Control(JBAPC) [17-29]. Currently, many researches in this 

area are based on the concept of "divide and conquer": decouple the multi-cell BS 

association from the optimization of per-link transmission power (e.g., BS association 

assuming fixed transmit power [17,18] and power control assuming fixed BS association 

19-22]) and then solve the two problems sequentially. Those researches have shown 

the potential of improving the overall system performance by a scheme to joint the two 

optimizing problems together. However, since JBAPC problem is largely intractable 

due to its non-convex and combinatorial nature, most schemes attempt to find an 

equilibrium (or stable) solution or a suboptimal solution through heuristics. In [23], 

the author proposes a heuristic algorithm which decomposes transmission power control, 

BS association, and user admission. In [24-26], joint BS association and power control is 

formulated as several pricing-based non-cooperative games. With well designed prices, 

the proposed games can converge to some Nash equilibrium points, which, however, have 

no guarantee to be unique or optimal. Furthermore, some researches seek for suboptimal 

solutions through heuristic methods. Several related algorithms on the JBAPC problem 

have been proposed in [30,31]. For example, in [30], the JBAPC problem is based on 

the condition that all the MSs in the system should get served simultaneously. Such a 

condition would sometimes be the key factor for a severe performance degradation. The 
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work in [31] proposes a utility-based resource allocation algorithm to solve the JBAPC 

problem through elaborately designing the utility function for each individual BS. 

1.3 Contributions Of This Thesis 

In this thesis, we aim to maximize the overall system revenue while minimizing the 

total transmission power under the constraint of meeting the signal-to-interference-and-

noise radio (SINR) target on each link. The challenges and contributions are listed as 

follows: 

• BS association and power control interact with each other, and hence cannot be 

optimized separately. In this thesis, we transform the two problems into a single-

stage problem that can simultaneously optimize the objective functions of both 

problems. 

• The single-stage optimization problem is a mixed-integer linear program (MIP), 

and thus difficult to solve. In this thesis, we propose the BS Association and poweR 

Control (BARN) algorithm, to optimally and efficiently solve the JBAPC problem. 

In particular, BARN is derived from the classical Benders Decomposition method, 

which has nice convergence properties. By doing so, our proposed algorithm is 

guaranteed to converge to the global optimal solution. 

• To strike a balance between computational complexity and system performance, 

an error tolerance is introduced to terminate the BARN algorithm before it con-

verges to the global optimal solution. In this thesis, we obtain a closed-form 

expression characterizing the effect of the error tolerance on system performance. 

This result provides a convenient trade-off in the system design. More interest-

ingly, our analysis shows that there exists a threshold, below which the error 

tolerance does not degrade the system revenue that we aim to maximize. 

• To further expedite the computation of the JBAPC problem, a novel algorithm, 

referred to as Accelerated BARN (A-BARN), is proposed. A-BARN avoids solving 
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the integer optimization problem in each iteration, and thus largely reduces the 

computational time. By carefully choosing the termination criteria, A-BARN is 

guaranteed to converge to the global optimal solution. Similar to the BARN algo-

rithm, A-BARN allows a convenient trade-off between computational complexity 

and the optimality of the solution. 

• Throughout this thesis, we focus on the downlink communication of multi-cell 

networks. However, the problem formulation and analysis can be extended to the 

uplink case as well. The extension is discussed in the chapter 6 of the thesis. 

1.4 Structure Of This Thesis 

Following this introductory chapter, Chapter 2 provides the system model and trans-

forms the JBAPC problem into a single-stage optimization problem through parametriza-

tion. Chapter 3 describes the preliminary mathematics and proposes the BARN al-

gorithm to solve the single-stage problem, together with the analysis of the tradeoff 

between its performance and convergence time. In Chapter 4, the A-BARN algorithm 

to expedite the calculation of JBAPC problem is proposed. The performance of BARN 

and A-BARN is evaluated through several simulations in Chapter 5. In Chapter 6，we 

extend the JBAPC problem to uplink multi-cell networks and finally, we conclude this 

thesis in Chapter 7. 

• End of chapter. 



Chapter 2 

Problem Formulation 

In this chapter, we describe the system model and the general formulations of the 

BS association and power control problems. Then the two problems are transformed 

into a single-stage optimization problem through parametrization. 

2.1 The JBAPC Problem 

We consider the downlink communication (i.e., transmission from BS to MS) of a 

multi-cell network consisting of a set J = {!,••• , J} of base stations (BS) and a set 

工 = { 1 , … ， / } of mobile stations (MS). In particular, a MS is classified as being served 

if there exists a BS communicating with it at a satisfactory SINR level. Let xij be a 

binary indicator variable. Xij is equal to one when MS i is served by BS j , and is equal 

to zero otherwise. Likewise, let pij denote the transmission power with which BS j 

communicates to MS i, and 恥 denote the channel gain between BS j and MS i. To 

condense the notations, we define X = [xij], G = [gij] and P = [jpij] to represent the 

BS association matrix, the channel gain matrix, and the transmission power matrix, 

respectively. With the above notations, the received SINR at MS i from the BS j is 
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given as follows 

10 

received power 

SINK,J = ^ ^ ^ ^ ^ ^ ^ : 
Vi'j'^i'j'Qij' + C Pi'jXi'jOij + (Jt 

(2.1) 

inter-cell interference intra-cell interference 

where the received power corresponds to the power received by MS i from BS j , the 

inter-cell interference corresponds to the received interference from all the other BSs f , 

j' + j, and the intra-cell interference corresponds to the received interference from the 

same BS j . Besides, of is the thermal noise at the MS z, and C is the orthogonality 

factor representing the ability of intra-cell interference cancelation at the receiver side. 

Without loss of generality, the value of ( spans between [0,1]. Specifically, ( = 0 stands 

for the perfect intra-cell interference cancelation ( i.e., no interference within the intra-

cell), and C = 1 stands for no intra-cell interference cancelation (i.e., full interference 

within the intra-cell). 

In this paper, we aim to jointly optimize BS association and power control. In 

particular, our paper is to maximize the system revenue while minimizing the total 

transmission power under the constraint of meeting the SINR target of each MS in 

service. Suppose that MS i generates a 'revenue' Xi once it gets served. Then, the 
I J 

system revenue is the weighted sum of the number of served MSs, i.e., Xi工ij• In 
i= l j 二1 

I J 
practice, Xi can be the data rate of MS i, and then is the throughput of the 

/ J 
network. Likewise, when Â  is equal to 1 for all z, J ] Zl 入i工ij is the total number of 

i = l j = l 

served MSs in the network. In general, the BS association problem can be formulated 

as follows. 



CHAPTER 2. PROBLEM FORMULATION 11 

BA] : m^ [ XiXij 

I 

s.t. 0 < Y^PijXij < Ff^ 

Pij^ijQij � p 
E E Pi'j'Xi'j'gij' + C E Pi'jXi'j9ij + ~ ‘ 

VzViVjYi ViYi 
J 

< 1’ 
j=l 

Xij e {0,1}, 

0 < Pij < PijXij, Mi G X,Vj G J. 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

Herein, Pj"^ is the maximum transmission power of BS j , r^ > 0 is the minimum SINR 

requirement for MS i to be in service, and constraints (PI.4) ensures that Pij is equal to 

0 if MS i is not served by BS j, i.e., Xij = 0. Through solving [BA], we can obtain the 

optimal BS associations, which support the maximum total number of MSs in service. 

We should mention that the optimal BS association may not be unique, since different 

association strategy may result in the same total number of served MSs. These optimal 

solution set of [BA] is denoted as 

n = { ( X , P) I V(X, P) is the solution to PI }. (2.7) 

To reduce power consumption of the system, it is desirable to find one solution 

(X , P) in ri that consumes the minimum amount of power. The minimum transmission 

power needed by a given BS association can be obtained by solving the following power 
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control problem. 

PC] 

I 

S.t. 0 < Y ^ P i j X i j < P f ^ , 
i = l 

Pij^ijOij � p -
Y. E Pi'j'Xi'j'gif + C I ] Pi'jXi'jgij + af _ ‘ ” 

ViYiVjYj ViYi 

0 < Pij < PijXij, Mi 6 I ， V j G J . 

(2.8) 

( 2 . 9 ) 

(2.10) 

Once we obtain the solutions P of [PC] where P yields the minimum power con-

sumption for each specific X , it is easy to find, among all ( X , P) 's in 17，the one that 

requires the minimum amount of transmission power. In other words, through solving 

BA] and [PC] sequentially, we can simultaneously maximize the system revenue and 

minimize the total transmission power consumed by the MSs in service. Unfortunately, 

a close look at [BA] indicates that it is a mixed-integer non-convex problem due to the 

products of optimization variables PijXij in the constraints. Thus, it is difficult to find 

the global optimal BS association even in a centralized fashion. In the next Section, 

we will show that problems [BA] and [PC] can be combined into a mixed integer linear 

optimization problem, which can then be solved efficiently by the BARN algorithm 

presented in Chapter III. 

2.2 The Single-Stage Reformulation 

In this section, we propose a novel methodology to combine problems [BA] and [PC 

into an single-stage optimization problem. By doing so, the mixed integer non-convex 

optimization problem can be simplified as a mixed integer linear optimization problem, 

which is critical for developing the BARN algorithm in Section IV. 
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This single-stage optimization problem is formulated as 

SSP mm = + 卿 ( 1 - rr 
A,尸 . 1 . 1 . 1 . 1 

7 = 1 1 = 1 1 = 1 

‘ 

s.t 0 < Y^Pij < P广 

Pijgij + S-^(1 - X 

E E Piyffif + C E E Pi'jdij + erf 

> r , 

:i VjVj ViVi j=] 

工ij — 

ooij e {0,1}, 

Pij>o,yieiyj e j . 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

Specifically, Wi is obtained by scaling up all A '̂s by the same constant p, so that all Wi's 

are positive integers, i.e., 

P At Ai/ 

This is tenable as long as A '̂s are rational numbers. Moreover, e and (5 

satisfying 

0 < 6 < ； 

E P^^/w + 

(2.16) 

constants 

(2.17) 

and 

0<S <mm 
r - i 

(2.18) 

where p = g = maxij{py} and w = mini Note that there must 

exist a set of Wij,s that satisfies (2.16) as long as A '̂s are rational numbers. Given 

parameters Wi/s, e and 6 satisfying (2.16), (2.17) and (2.18), respectively, Lemma 1 

shows that solving [SSP] is equivalent to solving the joint BS association problem (i.e., 

BA]) and the power control problem (i.e., [PC]) simultanously. 
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Lemma 1. The solution to [SSP] yields the maximum system revenue and minimum 

total transmission power in the same time. In other words, the solution to [SSP 

simultaneously optimizes problems [BA] and [PC . 

The proof of Lemma 1 is deferred to the Appendix A.l. 

SSP] is a mixed-integer linear programming problem. Furthermore, it is easy to 

see that [SSP] reduces to [BA] when e = 0. This implies that even if there is no need 

to minimize the total power consumption, it is still desirable to reformulate the non-

convex BS association problem [BA] to the linear [SSP] using the technique described 

above. However, it is worth nothing that [SSP] is still NP-hard due to the presence of 

integer variables. In the next section, we will propose an efficient algorithm, referred 

to as BARN, to solve [SSP] through Benders Decomposition. 

Before leaving this chapter, we note that the single-stage formulation technique was 

also used in [32] in a different context. Unlike our work, their work solved a joint 

multiuser beamforming control problem. 

• End of chapter. 



Chapter 3 

The BARN Algorithm 

In this chapter, we propose the BARN algorithm to efficiently solve [SSP] based 

on its special characteristics. The key idea of this algorithm largely comes from the 

Benders Decomposition method [33]. Instead of directly solving the mixed integer 

linear programming in [SSP], BARN tackles the problem by iteratively solving a linear 

optimization problem with IJ continuous variables, and an integer linear optimization 

problem with IJ 0/1 integer variables. By doing so, the computational complexity can 

be largely reduced. 

The main structure of this chapter is as follows: Section 3.1 introduces the prelim-

inary mathematics, including the theory for linear optimization (LP) and the Benders 

Decomposition method. The BARN algorithm is proposed in Section 3.2. The tradeoff 

between performance and convergence time of BARN is finally analyzed in Section 3.3. 

3.1 Preliminary Mathematics 

3.1.1 Duality Of The Linear Optimization Problem 

Consider the following linear programming (LP) problem: 

15 
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min c^x 
X 

s.t. Ax > b (3.1) 

X > 0. 

where x represents the vector of variables, c and b represent the vectors of coefficients 

and A is a matrix of coefficients, c^x is so-called the objective function and constraints 

Ax > b together with x > 0 specify a polyhedron known as the feasible set, over which 

the objective function is minimized. In particular, the feasible set can be bounded, 

unbounded or infeasible, to represent that (3.1) is bounded (i.e., objective function 

value is finite), unbounded (i.e., the objective function value is infinite), or infeasible 

(i.e., (3.1) has no solution), respectively. Herein, each x that lies in the feasible set of 

(3.1) is called the feasible solution, and the one that generates a finite minimal objective 

value is termed as the optimal solution. Otherwise, any x outside the feasible set is 

called the infeasible solution. 

In the theory about the LP problem lies the concepts of extreme points and extreme 

rays, both of which have rigorous definitions in the domain of convex optimization. 

Interested readers are recommended to refer to book [34] for details. Herein, we termed 

the extreme points as the solutions in the feasible set that generate the finite minimal 

(for minimum optimization problem) or maximal (for maximum optimization problem) 

objective value for certain objective functions, and the extreme rays are the rays on 

which the optimal solution goes to unboundness at the maximum gradient. 

An example of extreme points and extreme rays is illustrated in Figure 3.1 under 

the problem structure of (3.1), where the solution x consists of two real variables, i.e., 

X 二 The dashed polyhedral is the feasible region of (3.1). The blue curves 

represent the objective function which achieves its optimal value at the red point. This 

red point is an extreme point of the feasible set. The green curves represent the objective 

function which is unbounded, and the red ray is the corresponding extreme ray. 
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extreme ray 

Objcctivc 

dccrcascs 

Figure 3.1: The feasible set and solution. 

Having introduced the extreme points and extreme rays, now we consider the dual 

problem of a linear problem. Specifically, the dual problem corresponding to (3.1) is in 

the form 

max b^A 
A 

s.t. A'̂ A < c 

A > 0. 

(3.2) 

where A represents the vector of variables. 

There is a fundamental duality theory [34] that the objective function value of (3.2) 

at any point of its feasible set is always smaller than or equal to that of (3.1). As 

showed in Lemma 2. 

Lemma 2. Let the feasible set of problem (3.1) and (3.2) be C and T> respectively. If 
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£ ^ 0 or 0 then it follows that 

inf c^x = sup b^A. (3.3) 
xe£ AGD 

If one of the two problems is solvable, then the other is also solvable, and the strong 

duality holds: 

min c^x = max b^A. (3.4) 
x€£ xev 

Corollary 1. If either Problem (3.1) or (3.2) has an unbounded objective value, then 

the other problem possesses no feasible solution. 

3.1.2 Benders Decomposition 

Benders Decomposition is one of the efficient iterative approaches for solving prob-

lems that involve a mixture of either different types of variables or different types of 

functions [33,35], such as the Mixed Integer Linear programming (MIP) problems and 

the mixed linear/nonlinear problems. In the following section, we provide an exposition 

of the Benders Decomposition method. 

Consider a generic MIP problem with integer variables and positive continuous vari-

ables in the following form: 

min c^p + f^s 
p’s 

s.t. Ap + Bs > b 

Ds > t (3.5) 

p > 0,s > 0 and integer. 

where p represents the vector of continuous variables, x represents the vector of integer 

variables, c, f, b and t are vectors of coefficients and A, B, D, are matrices of coef-

ficients. Ds > t represent the constraints which, if any, involve the integer vector s 

only. 
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Problem (3.5) can be rewritten as 

min fTg + ip(s) 
s 

s.t. Ds > t 

s > 0 and integer. 

where is 

功(s) = min c^p p 

s.t. Ap > b - Bs 

P > 0 . 

(3.6) 

(3.7) 

The dual of (3.7) is given as 

(/>(s) = max (b 一 Bs)^A 
X 

s.t. A'̂ A < c 

A > 0. 

(3.8) 

By Lemma 2, if problem (3.7) has the optimal solution for a particular Si, then the 

strong duality holds, i.e., 

^(si) = min{cTp|Ap > b - B s i , p > 0} = max{(b-Bsi)'^A|A'^A S c, A 2 0} = (/>(否i) p 

(3.9) 

Let Ap be the extreme point of (3.8) for this particular Si, i.e., </>(豆i) = maxA(b -

Bsi)^A = (b - Bsi)了Ap, and let Hp indicates the set of the extreme point. By substi-

tuting ip{s) with 0(s) in problem (3.6)，we can get 

min f s + V 
s 

s.t. (b - Bs)了Ap < V, 

Ds > t 

s > 0 and integer. 

/Xp G dp (3.10) 
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On the other hand, if (b - Bs2)^Ar. > 0 for a particular S2, where Â  is the extreme 

ray in the feasible set of (3.8), then m\r is also in the feasible set for any positive scalar 

m. Note that (3.8) is linear in A ,̂ which implies that (b-Bs2)^mAr. = m(b —B否2)了入”-

Thus, (b — Bs2)TAr > 0 implies that max^ (b — Bs2)^Ar goes to infinity. Based 

on Corollary 1，when (3.8) is unbounded, (3.7) is infeasible. Therefore, constraint 

(b -Bs)^Ar < 0 should be added to (3.6) in order to exclude this unacceptable S2, i.e., 

• r T 
mm I s s 

s.t. (b - < 0, ArGHr (3.11) 

Ds > t 

s > 0 and integer. 

where Er indicates the set of the extreme rays. The first constraint of problem (3.11) 

provides necessary and sufficient conditions on s to generate a new solution different 

from S2. 

Note that the feasible set of (3.8) is irrelevant with s, and thus, in general, with all 

the extreme points and extreme rays obtained, problem (3.6) can be equivalently write 

as 

min f^s + V 
s 

s.t. (b - Bs)了入p < V, VAp G 三p 

(b - < 0, VA, G Er (3.12) 

Ds > t 

s > 0 and integer. 

Hereafter, constraints (b - Bs)^Ap < v and (b - Bs)?入广 < 0 are termed as the 

optimality cuts and the feasibility cuts, respectively. 

A close look at (3.8), there are considerably large number of extreme points in 三户 

and extreme rays in 三尺’ which make problem (3.12) intractable. Fortunately, applying 



CHAPTER 3. THE BARN ALGORITHM 21 

the Benders Decomposition only needs partial of the optimality cuts and feasibility 

cuts. In particular, Benders Decomposition adopts a strategy of，learning from ones 

mistakes,: starting with an initialization s(o) = 0, we check whether the subproblem 

(3.7) is feasible (or equivalently, whether its dual (3.8) is bounded) for s(o). If it is, add 

an optimality cut (b — Bs)^Ap < f to (3.12), where Ap is the maximizer of (3.8) for 

s(o). Otherwise, if (3.7) is infeasible (or equivalently, (3.8) is unbounded), then add a 

feasibility cut (b — Bs)^Ar < 0, where A” is a point on the extreme ray for s(o). With 

the newly added constraints, (3.12) is solved to obtain an updated s(o) = s(i). The 

iteration continuous until certain stopping criterion is satisfied. 

3.2 Solving The JBAPC Problem Using BARN Algorithm 

The single-stage optimization problem [SSP] falls within the generic structure of the 

MIP problem(3.6), and thus can be exploited by Benders Decomposition method. 

For a fixed matrix X, [SSP] reduces to 

I J 
PSP] = 

i=l .7 = 1 

Pij 

I 
s.t 0 < ^pij < (3.13) 

i=l 
Pij9ij + - Xjj) 

—I -J gr“ 
E E Pi'j'Qij' + C E E Pi'jOij + (̂ f 

Pij>0,yiel,\/j e j , 
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while the dual of fPSPl is 

DSP max g(X, a , (5) 
a’/9 

(3.14) 

= + ( � - 1 ) ) + 
/=i 

S.t. 1 + aj + C X I S ^i'l^i'jdi'. 

^i'^i'j'di'j - PijOij > 0,Vi,Vj, 
i' = l VjVj. 

a = ^ 0,(3 = [Aj,Vz,Vj] ^ 0. 

Intuitively, the single-stage problem [SSP] can be solved using search methods by evalu-

ating for any X of interest through solving [PSP]. However, one major drawback 

of such process is that some X ' s may result in an empty feasible set for [PSP]. Once 

such an X is fed into [PSP], no meaningful 'd(X) can be obtained and the algorithm 

cannot proceed. 

To avoid this issue, we resort to Benders Decomposition described in the above 

section, which, instead of obtaining directly through [PSP], generates optimality 

cuts and feasibility cuts to shrink the feasible region of [SSP] by solving the dual of 

PSP], i.e.,[DSP], in each iteration. In particular, an optimality cut is added to [SSP 

once [DSP] is bounded (or [PSP] is feasible), and a feasibility cut is added when [DSP 

is unbounded (or [PSP] is infeasible). Following this procedure, we obtain the master 
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problem: 

MSP] min + 
-A，y 

i=l j=l 
s.t. = l 

J 

OCi 

(3.15) 

^ii e { 0 , l } , V i G X , V j G J , 

where the new constraints g(X, ô 饥)，二爪))and g{X, Oir\(3f') are added when problem 

[DSP] is bounded and unbounded, respectively. Obviously, the total number of added 

constraints ki + k2 = k. 

The BARN algorithm works as follows. Starting with an initialization •X(o) = 0, 

the algorithm checks whether [PSP] is feasible (or equivalently, whether its dual [DSP] 

is bounded) for If it is, 

a constraint ap,/3p) < ^ is generated and added to 

MSP]. Note that ((：^。)’/̂ ;。)）jg an extreme point in the feasible set of [DSP], because 

DSP] is a linear problem. Otherwise, if [PSP] is infeasible (or equivalently, [DSP] 

is unbounded), find a point (aio)，/3j°)) on the extreme ray i and add a feasibility 

cut < 0 to [MSP]. With the newly added constraint, we solve [MSP； 

to obtain an updated •X(o) = The iteration continuous until certain stopping 

criterion is satisfied. 
Let the objective values of [DSP] and [MSP] at the A;th iteration be 

[/(知）and m 

respectively. Lemma 2 shows that U � and L � can be used to calculate the upper and 

lower bounds of the optimal objective value of [SSP . 

Lemma 3. Let LB denote the lower bound of the optimal objective value of [SSP] and 

UB denote the upper bound. The upper and lower bounds can be improved iteratively 
represents the 

As in an unbounded polyhedral set, the extreme 

positive combination of other rays in the set. 

that cannot be represented 
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as follows: in iteration k, L B � = L � i s a lower bound of the optimal value of [SSP], 
I J 

while = min { [ / � e + (1 - e) Zl Z) '^iji^ ~ 端 ) } is an upper bound. 
0<s<k z=lj=l 

The proof of Lemma 3 is deferred to the Appendix A.2. 

The BARN algorithm adopts the gap between U B � and L B � as the termination 

criteria. The algorithm stops when f / B � -！ /召⑷ < r, where r > 0 is the so-called 

error tolerance. In particular, if t" = 0 then the exact global optimal solution to [SSP 

is obtained when the algorithm terminates. 

Having introduced the basic operations, we now formally present the BARN algo-

rithm in Algorithm 1 and the flow chart of BARN is illustrated in Figure 3.2，with 

T = 0. 

Algorithm 1 The BARN algorithm with r = 0 
Initialization: Set k = 0. 

repeat 

If A; = 0, set � = 0 ; otherwise, solve the optimization [MSP] to obtain the optimal 

solution JSC � = [ x \ f ] and the lower bound LB�. 

Solve the optimization [DSP] to obtain the upper bound C / B � according to 

min { [ / � e + ( l - e ) E E ( l - Then, add the constraint g(X, < 
0<s<k i=i j=i •‘ 

9 into the optimization [MSP] if the optimization [DSP] is bounded, and add 

< 0 into the optimization [MSP] otherwise. 

k = k + l. 

u n t i l U B � k � - � = 0 ; 

Compute the optimal power allocation P* through solving the optimization [PSP] with 

X � . A n d thus ⑷）is a global optimal solution to problem [SSP]. 

3.3 Performance And Convergence 

After proposing BARN algorithm, we analyze the global optimality as well as the 

tradeoff between performance and converge time in BARN. 
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Figure 3.2: The flow chat of BARN 
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3.3.1 Global Convergence 

In this subsection, we propose the following theorem to elucidate the convergence 

of BARN algorithm. 

Theorem 1. The BARN algorithm globally converges to a global optimal solution of 

Problem [SSP] with finite number of iterations. 

Proof: Immediate from the theories about the Benders Decomposition method [33 . 

3.3.2 BARN With Error Tolerance 

In Algorithm 1, we have forced r to be 0. Alternatively, we can set r to be a small 

positive value to speed up the convergence of BARN. That is, when BARN terminates 

with t/丑(A) - LB� < r, r > 0, the power allocation P' is computed through solving 

[PSPI with where X^'^ is the solution to [MSP] that generates the current upper 
I J 

bound, i.e., s = argmin{ [ /�e + (1 - e) X) ZK^ By doing so, we have obtained 
l<s<A; i=l j=l 

an approximate solution to [SSP], denoted as , P'), where X' = � . I t is obvious 

that - UB�k� , according to the definition of UB�. 
The BARN algorithm with a positive error tolerance is formally stated in Algorithm 

2 

3.3.3 Trade-off Between Performance And Convergence Time 

In this subsection, we analyze the effect of r on the system performance. 

Definition 1 (r-optimal solution). Let P*) denote the optimal solution of [SSP . 

We say that a solution P') to [SSP] is an r-optimal solution of [SSP] if (X' ,P') 

satisfies all the constrains of [SSP] and - ^ X ' , P ' ) < r. 

Theorem 2. With the termination criteria U B � k � - LB(处）< r, the solution obtained 

by the BARN algorithm is an r-optimal solution. 
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Algorithm 2 The BARN algorithm with r > 0 
Initialization:Set UB⑶=+oo and LB�=-oo. Let k = 0. 

repeat 

If fc = 0，set � = 0 ; otherwise, solve the optimization [MSP] to obtain the optimal 

solution � = [ x \ f ] and the lower bound LB^ . 

4: Solve the optimization [DSP] to obtain the upper bound [ 7 5 � according to 

min � e + ( l - e ) E E ( l - a^jf)}. Then, add the constraint p(J\：’ a ， ） ’ < 
0<s<k i=lj=l 

9 into the optimization [MSP] if the optimization [DSP] is bounded, and add 

iKX,aJ^)，y0fW) < 0 into the optimization [MSP] otherwise. 

5： k = k + l . 

6： until [/5(A) — jL召⑷=0; 

7： Compute the optimal power allocation P' through solving the optimization [PSP] with 

A：⑷，where s = argmin{C/�e + (1 - e) E E “ _ Denote X(云)as X'、and thus 
1<5<A: i~\ j = l 

{X\P') is the solution to [SSP]. 

Proof: Let {X', P') be the solution when BARN terminates at the kth. iteration 

with U B � k � - L B � < r. Then 

LB⑷ < P') = UB、的. (3.16) 

Since LB� < < UB�^�and f / B � - L B � < r, (3.16) implies that 

- < T. In other words, is an r-optimal solution to 

SSP]. • 

By tuning the error tolerance r, we can achieve an appropriate tradeoff between 

the convergence time and the obtained system revenue. The following proposition 

characterizes such a tradeoff. 
I J 

Proposition 1. Let e = — where 0 < k, < 1. The system revenue S \工ij 
E 尸广 + 1 i=l 

of [SSP] obtained by the BARN algorithm with a positive r is at m o s t � • |/("|:y�less 

^than the maximum system revenue obtained by setting T = 0. 

2 [xj rounds x to the nearest integer less than or equal to x. 
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Proof: Assume that BARN terminates at the kth iteration with U - LB� < r 

and obtains a r-optimal solution [X', P'). Let Z' be the corresponding objective value, 

(X*, P*) be the optimal solution for [SSP] and Z* be the optimal objective value. By 

the definitions of � and L5⑷，we have Z' = � and Z* > LB�.Thus 

Z' -Z* <Z' - L B � = U B � - L B � < T. (3.17) 

I J I J J 
On the other hand, e = ^ implies that E E P；,- - E E Ph > " E P 广 = 

E P广 x+i i=ij=i i=ij=i j=i 
j=i 

—宁.H e n c e , we can get 

f z* = ( i E Pij + (1 - E E �(1 -
z=l j=l i=l j=l 

i= l j=l i=l j = l 

i=l j=l 1=1 

i= l j=l i=l j=l 

I J I J 

> + Wijxlj - [ [ Wijx'i 

(3.18) 

7 = 1 

Prom (3.17) and (3.18), it follows that 亡 亡 WijX^.-f： E 如 ij 工'a < Since 切小 x*. 
i=lj=l i=l j=l 

I J I J 
and oc'ij are all integers, the difference between J ] S '^ij^h and S '^ij^'a satisfies 

E E WijXlj - E E < L ^ J - Thus we have f E - E E A x̂̂  < 
i=i:;_=i i二 ij=i i=ij=i i=i j=i 
1 . I T+K-e I • 

I J I J 
Note that if < 1, 2 L '^ij^ij is exactly equal to J ] ^ WijX*.. In other words, 

i=lj=l i=l j=l 
I J I J 

the system revenue ^ J ] AjxJ- is exactly equal to the optimal one Y^ ^ ^jKi- Thus, 
t=l j=l i=\3 = 1 

we have the following remark. 
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I J I J 
Remark 1. With r < 1 - k, the gap between ^ ^ WijX$j and JZ Z) ^ij^ij is 0 (i.e., 

i= l j=l i = l j=l 
I J I J 

= 0), and thus the gap between E XiX̂ j and ^ Xi工'ij is 0. 
i=l j=l i=l j = l 

In general, the smaller r, the longer the algorithm runs, and the more accurate the 
solution is. Theorem 2 and Proposition 1 have pointed to a convenient tradeoff between 
convergence time and system performance. 

Before leaving this section, we emphasize that the key idea of BARN is to decompose 
a mixed-integer problem [SSP] into two smaller problems with fewer variables. In 
particular, subproblem [DSP] is a linear program that can be solved easily. Moreover, 
the master problem is composed of binary integer variables 0Cij,s plus one continuous 
variable 6. Such a problem can be solved with the need of considering the integer 
variables only, for example, the methods proposed in [36,37 . 

• End of chapter. 



Chapter 4 

Accelerating BARIN 

In this chapter, we propose a novel algorithm, referred to as A-BARN, to reduce the 

computational complexity of the BARN algorithm. In particular, we relax the master 

problem into a linear optimization problem which, together with the Feasibility Pump 

method introduced latter, play an important role in A-BARN. Our analysis shows 

that A-BARN is guaranteed to achieve the global optimal solution despite its reduced 

computational cost. 

The structure of this chapter is as follows: in Section 4.1 we relax the master problem 

of BARN, and propose an important property of this relaxed problem. In Section 4.2 

we introduce the Feasibility Pump method to generate an integer solution from the 

relaxed master problem. And finally, we propose the A-BARN algorithm to solve the 

JBAPC problem in Section 4.3,. 

4.1 The Relaxed Master Problem 

A close look at the BARN algorithm shows that the computational complexity is 

dominated by the cost of solving the integer linear programming problem [MSP] in each 

iteration. A-BARN reduces the complexity by relaxing the integer constraints of [MSP 

in the intermediate iterations. In particular, in the kth iteration, the master problem 

30 
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MSP] is relaxed into the following linear programming (LP) problem. 

J 

111. •( 1 — T • • 丄13 ‘ LMSP mm 
X£ 

-
1
 

/
 \
 w

 

、 y
 

I
 

1
 

/
 \
 +

 

6
 

S . t . p C X ’ a J r ) ’ / 3 l r ) ) S A V m = l,--.，Ai, 

= (4.1) 
J 

Xij e [0, l ] , V z G l , V j G J , 

where Xij is now a continuous variable ranging between [0,1]. [LMSP] are can be solved 

very fast, due to its linear programming nature, a lot of existing algorithms can be 

applied such as the simplex method [38], the ellipsoid method [39], and the interior 

matrix method [40]. Hereafter, we say that X is an integer matrix when all its entries 

Xjj's are 0/1 integers, and X is not an integer matrix or a fractional matrix if some 

entries in it are not integers. 
A A . 

Lemma 4. Let (X, 9) denote an arbitrary feasible solution of [LMSP]. The optimality 

cut or feasibility cut generated by solving [DSP] with X does not exclude the optimal 

solution (X*, P*) to [SSP], from the remaining feasible set of [LMSP . 

Proof: If [DSP] is bounded with X, an optimality cut 

g ( X , � J p )认 (4.2) 

A A 

is generated, where {dp,/3p) is the optimal solution to [DSP] with X. Otherwise, a 

feasibility cut 
g { X , a r J r ) < 0 . (4.3) 

A A 

is generated where (oLr^Pr) is a point on the extreme ray of [DSP] with X . To prove 

Lemma 4’ we show in the following that in either case, the optimal solution (X*, P*) to 
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Problem [SSP] does not violate constraints (4.2) or (4.3), and hereby not be excluded 

from the feasible set by the cuts. 

Let (a*,/3p be the optimal solution of Problem [DSP] with X*, The corresponding 

optimal objective function value of [DSP], denoted by 9*, is hereby given as 沪 = 

Suppose that {X\e*) violates (4.2) when [DSP] is bounded. Then, we 

have, g[X*, dp, $p) > 6*. This contradicts the fact that (a*, is the optimal solution 

to [DSP] with X*, and that 6* should be the maximum objective value of [DSP]. Hence, 

the optimality cut (4.2) cannot be violated by X*. 

In the case when [DSP] is unbounded, we suppose that X* violates the feasibil-

ity cut (4.3). That is, g (X ,ar ,$r ) > 0. Since is a point on the extreme 

ray of the feasible region of problem [DSP], (mdj., m/3^) is also in the feasible set for 
A A 

any positive scalar m. Note that if function g{X, dr,/3j.) is linear in (dr,/3^) then 
A >S 八 

g{X,mar,mf3j.) = mg{X,dLr,(3^). Therefore, g{X*,dtr, (3^.) > 0 implies that the ob-

jective value of problem [DSP] is also unbounded with X*. This contradicts the fact 

that Q* should be a finite value of [DSP] with X*. Therefore, X* cannot violate the 

feasibility cut (4.3). • 

Lemma 4 implies that we can safely replace [MSP] by [LMSP] in the BARN algo-

rithm without compromising the optimality of the solution. However, one should note 
A 

that when [DSP] is solved with X�the upper bound calculated from its objective func-

tion value may not be a valid upper bound for [SSP], for that X may be a fractional 

matrix and is infeasible to [MSP]. One way to solve this problem is to round X to the 

nearest integer matrix that is feasible to [IMSP] (and hence feasible to [MSP]). Such an 

integer matrix can be efficiently found using the Feasible Pump (FP) method proposed 

in [41 

4.2 The Feasibility Pump Method 

Let (X, be the solution of [LMSP], and X be an integer point with the same 

dimension as X. Using denotation X) to represent the /i-norm distance between 
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A o 

X and X, i.e., 

dist{XX)全{||X - X||i I X e the feasible set of [LMSP] }. 

o /s 

Given an integer matrix X, the matrix X within the feasible set of [LMSP] and the 
o o 

minimal distance of X can therefore be determined by arg minx dist{X, X) . Note by 
A O >S O 

intuition that if dist{K,X) = 0, then X is an integer point equivalent to X, and thus 

feasible to [MSP]. Additionally, an integer matrix nearest to a fractional matrix X can 

be easily determined by scalar rounding all the entries of X to the nearest integer point. 

These observations lead to the FP method. 

The FP method can be described as a linear searching cycle. At the kth itera-

tion, denote the solution of [LMSP] as (文⑷’识〜，denote X � as X(0). Firstly, an 
A 

integer matrix, denoted as [X(0)], is obtained by scalar rounding all the entries of 

X(0) to the nearest integer point. Then a solution X ( l ) is obtained through solving 

minx dist{'X{l), [X(0)]), and [X(l)] is obtained through rounding X ( l ) to the nearest 

integer. After that a new cycle begins. This process stops until an integer matrix X(?;) 

is obtained at the ？;th cycle with dist{'X{v),[文(v - 1)]) = 0 and this integer matrix 

has not been fathomed in the previous iterations.文(v) is therefore adopted to solve 

the dual subproblem [DSP] to generate a new constraint for the later iterations. The 

procedure of the FP method is formally given in Algorithm 3 

Before leaving this section, we have proposed the basic procedure needed for A-

BARN. One should note that the linear searching cycle in Algorithm 3 terminates as 

long as one feasible integer solution X{v) is found, or when the maximum cycles limit 

V is met. In the latter case, FP fails to generate a feasible integer solution, which is 

'not surprising, for that finding a feasible solution of an integer problem is NP-hard 

in general，[41]. However, we should mention that when FP is adopted in A-BARN 

algorithm, such a failure will not cause the algorithm break down, due to the special 

structure of A-BARN, as shown in the next section. 
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Algorithm 3 The Feasibility Pump method 
1： Initialization: Input 文(知).Let 文(知）=X(0) and the maximum cycle limit be V. Set 

；̂ = 0. 

2 

3 

repeat 

find an integer matrix [X(i;)]; 

X(v + 1) = argminx dist(X, [X(0)]) 

If X(v + 1) is an integer matrix, return X(i； + 1); 

V = v + 1; 

until V二V; 

8： return False. 

4.3 A-BARN Algorithm For Solving The JBAPC Problem 

Based on the discussion in the above two sections, the A-BARN algorithm is formally 

presented in Algorithm 4. 

Note step5 in A-BARN, L召(左）may typically be generated by a fractional matrix 

j t � while U B � is generated by an integer matrix [J^(知)].Thus, the speed for the gap 

between UB� and LB� to shrink from a small value to zero is slow. To avoid such 

a situation, we add Phase-11 which runs the same procedure as BARN, except for that 

Phase-II is initialized with the cuts generated in Phase-I. Actually there are variety of 

choices to decide when to transfer from Phase-I to Phase-II [37], In this paper, we just 

set that Phase-I goes to Phase-II after K iterations, which implies that K cuts have 

been generated from Phase-I. Numerical results in the next section will show that, with 

a proper K, only a few iterations are needed in Phase-II before the algorithm converges. 

Besides, when FP fails to find an integer solution X through the FP procedure, the 

algorithm directly jumps to Phase-II, in which we start the identical procedure as BARN 

algorithm, therefore avoids the A-BARN breaking down that would be brought by the 

failure of FP failure. 

• End of chapter. 
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Algorithm 4 The A-BARN algorithm 
1： Initialization:Set UB�=+oo, LB�=-oo and X(o) = 0. Let k = 0. 

Phase — I 

2: repeat 

3： Solve the LP relaxed optimization problem [LMSP], and obtain the solution 

get the relaxed lower bound LB叫. 

4: If find an integer matrix [Ĵ  � ] through the FP procedure, solve [DSP] to obtain the 
I J , , 

upper bound C / B � according to min { min { [ / � e + ( l - e ) E E ( l -
0<s<k 2=1j=l 

Then, add the constraint "(J\：，c4左i),⑷）< 0 into the optimization [LMSP] if the 

optimization [DSP] is bounded, or add g{X, < 0 into the optimization 

[LMSP] if the optimization [DSP] is unbounded. 

if failed to find an integer solution X through the FP procedure, go to Step 9. 

k = k-\-l] 

If � - Z ^ B � < r, go to Step I4. 

until k = K. 

Phase — II 

9： repeat 

10： Solving the optimization [MSP] added with the constraints generated in Phase-I, and 

obtain the optimal solution • X " � = a n d the lower bound L j B � . 

11： Solve the optimization [DSP] to obtain the upper bound UB叫 according to 
I J , , 

min{ min � e + (1 - e) ^ ^ ( 1 - xj '^} , t / ^ ^ } . Then, add the constraint 

g{X, 於1)) < 6 into the optimization [MSP] if the optimization [DSP] is bounded, 

and add p ( J ^ ， 卢 [ 如 < 0 into the optimization [MSP] otherwise. 

12： k = k-\-l. 

13： until [ 7 5 � - L B � < T. 

14: Compute the optimal power allocation P' through solving the optimization [PSP) with 

A：�,where § = argmin{C/�e + (1 - e) E E ( l - Denote X � as and thus 
l<s<A: i=l j=l J 

{X\P') is the solution to [SSP]. 



Chapter 5 

Computational Results 

In this chapter, we illustrate the effectiveness of BARN and A-BARN through several 

examples. Herein, the two algorithms are implemented in MATLAB 7.0. Simulations 

are conducted using an HP Compaq dx7300 desktop with two (2.40GHz,1.60GHz) pro-

cessors and iGb of RAM. The propagation gains are calculated by the Log-Distance 

Path Loss Model [42]: 

g幻 (5.1) 

where n is the path loss exponent, do is so-called the reference distance and dij is 

the distance between BS j and MS i. Eqn.(5.1) indicates that the propagation gain 

decreases at the rate n as dij decreases. Herein, n is set to 4 to represent the shadowed 

urban environment, and d � i s set to 1 meter as suggested in [42 . 

5.1 Global Optimality And Convergence 

We consider a multi-cell network with two BSs and six MSs in Fig. 5.1. The BSs and 

MSs are placed in a 10m-by-10m area. The channel matrix is 
- - I T 

0.0894 0.0019 0.0007 0.0442 0.0010 0.0021 
二 

0.0894 0.0019 0.0007 0.0442 0.0010 0.0021 

0.0033 0.0894 0.0007 0.0131 0.0143 0.3974 

36 
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Let the minimum SINK requirement of each MSs be (Pi, [2’ Fg,�4) = (0.5，0.5,0.65,0.65,0.5，0.65)dB, 

the maximum BSs power be (尸广狀，Pf̂ ) = (200’ 100)mW, the orthogonality factor ( 

be 0.1, the revenue Aj of each MS i be 1，and the thermal noise of each MS be O.OOlmW. 

K is set to be 15 in Algorithm 4. 

Fig. 5.2 illustrates the convergence of BARN and A-BARN. It can be seen that 

both algorithms converge to the global solution quickly. The gap between the upper 

bound and the lower bound shrinks to 0 at the 44th iteration with BARN and at the 

36th iteration with A-BARN, respectively. Besides the reduced number of iterations, A-

BARN runs much faster than BARN in terras of the total computational time, because 

the average time spent on each iteration is reduced in A-BARN. In this particular 

example, BARN converges in 265.5 seconds, while A-BARN algorithm converges in 

123.6 seconds. 

5.2 Average Convergence Time 

We consider a set of network topologies, where two BSs and a number of MSs are 

randomly placed in a 15m-by-15m area. Let the minimum SINR requirement of each 

MS be IdB, and the maximum transmission power of each BS be 200mW. Likewise, 

let the orthogonality factor be 0.1, the revenue Aj of each MS i be 1 and the thermal 

noise be O.OOlmW. 

The number of MSs, I, varies from 1 to 13. The computational time is plotted 

against the number of MSs in Fig. 5.3. For fair comparison, we introduce the so-called 

the normalized error tolerance r], such that both BARN and A-BARN algorithms 

stop when f / B � — L B � < r j L B � . B y doing so, when the algorithm terminates at 

iteration k, the relative difference between the obtained objective value Z � and the 

exact optimal objective value Z* is bounded as 

IZ⑷-Z*, UB叫-LB⑷ UB⑷-LB⑷ , 
< " " " " ^ < 咖 ） ^ ( 5 . 2 ) 

when > 0. Otherwise when � < 0, we have t / B � -L B ⑷ < r]LB⑷ < 0. In 



CHAPTER 5. COMPUTATIONAL RESULTS 38 

the later case, algorithms will not stop. Note that the objective value of Problem P3 

is always positive, the algorithms will always stops when (5.2) is satisfied. Therefore, 

through setting 7] other than the error tolerance r in this example, we can compare 

the relative error of the solution for different network topologies. The normalized error 

tolerance rj is set as 0 and 0.2 in this example. 

From the figure, we observe that the convergence time of A-BARN is always lower 

than that of BARN. For example, with rj = 0 (i.e., r = 0), A-BARN terminates in 

around 83000 seconds with 10 MSs. In contrast, the convergence time of BARN is 

several orders of magnitude longer. The figure also shows that the convergence time 

can be significantly reduced by increasing the error tolerance. For example, when r] is 

set to 0.2, the computational times for BARN and A-BARN reduce to around 87000 

seconds and 1000 seconds, respectively. 

5.3 Trade-off Between Performance And Convergence Time 

Consider a multi-cell network with two BSs and nine MSs, where all BSs and 

MSs are randomly placed in a 15m-by-15m area. Assume that the minimum SINK 

requirements of the MSs are (0.5，0.5’ 0.65,0.65,0.5’ 0.65’ 0.5’ 0.55,0.65)dB, and A '̂s are 

(0.5,0.5,0.65,0.65,0.5,0.65,0.5,0.55,0.65). Let the orthogonality factor C be 0.1 and 

the thermal noise of each MS be O.OOlmW. Set t = — ~ — . Likewise, assume that 
E 尸 严 / 州 

the maximum power of BSs is 战，F^^) = (200.0,200.0)mW. 

We run BARN and A-BARN with different normalized error tolerance r]. The system 

revenues and the convergence times are plotted in Fig. 5.4 and Fig. 5.5, respectively. 

Form Fig. 5.4, it can be seen that the system revenue reaches the maximum value when 

Tj is smaller than or equal to 0. = 2, which is consistent with Proposition 1. Besides, 

it is not surprising that the system revenue increases as the error tolerance decreases. 

On the other hand, Fig. 5.5 shows that the convergence time increases as the error 

tolerance decreases. Moreover, we observe that A-BARN is likely to terminate during 
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Phase-I when the error tolerance is large. As such, it completely avoids the calculation 

of integer optimization. 

5.4 Average Algorithm Performance Of BARN and A-BARN 

Consider a set of network topologies where J BSs and I MSs are randomly placed 

in a 15m-by-15m area. Assume that the minimum SINR requirement Fj of each MS is 

randomly selected between [-l,l]dB. Let the orthogonality factor ( be 0.1, the thermal 

noise of each MS be O.OOlmW, the revenue Xi of each MS i be 1, and the maximum 

power of each BS be 200.0mW. 

We compare the performance of BARN and A-BARN through testing the same 15 

cases in Table 5.1 and 5.2, respectively. Through the two tables, we observe that A-

BARN becomes more efficient as the complexity of the problem (in terms of the number 

of MSs multiplied by BSs) increases. For the small scale cases, such as case 1 and case 

6, A-BARN requires a slightly more computational time. This is because that in cases 

of only a few variables solving the IP problem [MSP] in BARN costs less than solving 

LMSP] in A-BARN where additional time is spent on the FP cycle. For the middle 

scale cases, such as cases 3 — 5, 7—11 and 13 — 15，A-BARN outperforms BARN in 

terms of the computational time. This is not surprising, for that solving the relaxed 

master problem [LMSP] in those instants could cost much less time than solving the 

integer problem [MSP] and thus reduced the total computational time. This is reflected 

in the last column of Table 5.2，which enumerates the average computational time 

required for each case. From this column, we observe that in case 10 the computational 

time per iteration is reduced by approximately 23.6%, and on the other extreme, the 

computational time per iteration for case 3 is reduced by 5.15%. 

• End of chapter. 
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'able 5.1: Average performance of the BARN algorithm 

Case BS MS Total Iter Time Time per Iter 

1 2 4 15 3.042 0.2028 

2 2 5 27 8.432 0.3123 

3 2 6 65 39.78 0.6120 

4 2 7 166 201.2 1.212 

5 2 8 347 838.1 2.415 

6 3 3 31 10.73 0.3460 

7 3 4 82 35.73 0.4357 

8 3 5 321 632.4 1.970 

9 3 6 630 1233 1.957 

10 3 7 1215 3469 2.855 

11 3 8 2301 9243 4.017 

12 4 3 63 31.96 0.5073 

13 4 4 259 579.6 2.238 

14 4 5 1543 4169 2.702 

15 4 6 2853 9466 3.318 
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Table 5.2: Average performance of the A-BARN algorithm 

Case BS MS LP Iter IP Iter Time Total Iter Time per Iter 

1 2 4 25 1 3.698 26 0.1422 

2 2 5 25 1 6.738 26 0.2592 

3 2 6 50 4 31.35 54 0.5805 

4 2 7 50 2 52.05 52 1.001 

5 2 8 178 43 411.7 221 1.863 

6 3 3 50 1 16.41 51 0.3218 

7 3 4 50 5 22.39 55 0.4070 

8 3 5 100 72 167.9 172 0.9763 

9 3 6 200 102 482.9 302 1.599 

10 3 7 318 183 1091 502 2.173 

11 3 8 377 298 2136 675 3.164 

12 4 3 50 14 23.80 64 0.3719 

13 4 4 200 19 452.5 219 2.066 

14 4 5 500 212 1638 712 2.301 

15 4 6 784 611 4332 1395 3.105 
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Figure 5.1: A multi-cell network with two BSs and four MSs 

CHAPTER 5. COMPUTATIONAL RESULTS 42 

5
 o

 5
 

T
—
 T—
 

①
o
u
e
l
s
l
l
D
 A
 



5 95 
0 5 10 15 20 25 30 36 40 44 

iterations 

Figure 5.2: The converge condition of BARN and A-BARN 
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Chapter 6 

Discussions 

So far, we have focused on the downlink communication of a multi-cell network.In 

this chapter, we extent the single-stage formulation to the uplink communication (i.e., 

transmission from MS to BS) in multi-cell networks. 

6.1 Resource Allocation In The Uplink Multi-cell Networks 

The JBAPC problem in the uplink case can be formulated as 

I J 

[UBA] : max^^AiXi,-
‘ i = l j=l 

J 

S.t. 0 < J^Pij^ij ^ (6.1) 
j=l 

^ ^ ^ ^ 2 > r 卿 ( 6 . 2 ) 
E E Pi'j'^i'j'9i'j + C E Pi'j^i'jdi'j + cr 

J 

�:工ij — 1， 

Xij G {0,1}； 

0 < Pij < PijXij, \/i e X, Vj e J.. 

47 
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Herein, Xij has the same meaning as that in the downlink case, Pij denotes the trans-

mission power with which MS i communicates to BS j, gij denotes the channel gain 

between MS i and BS j in the uplink case and P广 denotes the maximum transmission 

power of MS i. Constraints (6.1) corresponds to the maximum uplink power of the MSs, 

and (6.2) corresponds to the minimal SINR requirement of the MSs in the uplink case. 

Correspondingly, the power control problem is formulated as 

I J 

UPC] : min ̂  ^ Vij^ij 
i= l j = l 

J 
s.t 0 < Y^PijXij < Pr^, (6.3) 

j=i 
Pij^ijQij 

Z Pi'j 'Xi ' j 'Qi' j + C Z Pi ' j^ i ' jdi ' j + (^i 
ViViVjVj W 卢 

0 < Pij < PijXij, \fi e I , Vj G J. 

6.2 JBAPC Problem In The Uplink Multi-cell Networks 

After presenting the JBAPC problem formulation for the uplink case, we propose the 

single-stage formulation. 

USSP] ： mm$(p, X) = eY^J^P^j ̂  {I - 斯 " 工 仏 
i=l j=l i=l j=l 

J 

S.t. 0 < Y . v i j < 

Pij9ij + - Xij] 

E E Pi ' j '9 i ' j + C E Pi'jOi'j + (yf 
viViVjYj w 卢 

J 

� : ^ i j — 1 ’ 
j=l 

Xij e {0,1}, 

Py > 0 , V i G X , V j G J . 
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Similar to the downlink case, [USSP] is equivalent to [UBA] and [UPC] with properly 

chosen the parameters Wij e and 6. Specifically, 

Wi is obtained by scaling up all A '̂s by the same constant p, so that all Wi，s are 

positive integers, i.e., 

P Ai Ait 
(6.4) 

This is tenable as long as A '̂s are rational numbers. Moreover, e and 5 are constants 

satisfying 

0 < e < 

i=\ 

(6.5) 

and 

0 < ^ < min- n 
� ( / - l ) H + � 2 ’ 

where p = maxj{尸广。”，g = maxij{gij} and w = mini{i(;i}. 

(6.6) 

To prove that problems [UBA] and [UPC 

USSP], one can refer to the proof of Lemma ] 

Note that the structure of [USSP] is similar 

and A-BARN can be used to solve [USSP 

re equivalent to the single-stage problem 

for the downlink case, 

to that of [SSP]. Therefore, both BARN 

• End of chapter. 



Chapter 7 

Conclusion 

7.1 Conclusion Of This Thesis 

This paper considers the JBAPC problem in wireless multi-cell systems. By trans-

forming the BS association and power control problems into the single-stage optimiza-

tion problem [SSP], we can simultaneously maximize the system revenue and mini-

mize the total transmission power consumption. The single-stage problem [SSP] is 

efficiently and optimally solved by the proposed BARN algorithm. An error tolerance 

T is introduced to facilitate a convenient trade-off between system performance and 

computational time. Our analysis shows that when r is sufficiently small, the proposed 

algorithm converges to a solution that yields the same system revenue as the global 

optimal value. To further reduce the computational complexity, a novel algorithm, A-

BARN, is proposed. In particular, A-BARN solves a relaxed master problem instead 

of an integer programming problem in each iteration. Our numerical results show that 

A-BARN can converge within a much shorter computational time than the BARN al-

gorithm. Besides, both BARN and A-BARN are guaranteed to converge to a r-optimal 

solution of the JBAPC problem. By setting r = 0, both algorithms converge to the 

exact global optimal solution within finite time. 

50 
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7.2 Future Work 

The proposed analytic model of the JBAPC problem helps network operators achieve 

business objectives such as maximizing the MSs in service, increasing the network 

revenue and improving the service quality. 

Besides, the single-stage formulation in this paper is one example of solving two 

correlated optimization problems. It is an interested future research direction to study 

the optimization of multiple correlated optimization problems. 

Another future research topic would be the development of variants of the BARN 

algorithm to expedite the convergence and reduce the computational complexity. 

• End of chapter. 



Appendix A 

The Proof 

A. l Proof of Lemma 1 

Let ( X , P) be the optimal solution of [BA] and {X*,P*) be the optimal solution 

to [SSP]. To prove Lemma 1, we prove that the maximum system values obtained by 

X and X* are equal. That is, 

i2i>^=i2i>� (A.l) 
i=l j=l t=l j—l 

~ ~ I J 
Firstly, we need to prove that (X , P) is also feasible to [SSP]丄 while S Xiiij < 

i=lj=l 
I J 

Y^ Ŷ  XiX*j. According to constraints (2.6), = 0 for each Xij = 0 in [BA]. Therefore, 
i=l 
when Xij 二 1, constraints (2.3) are reduced to 

> rV (A.2) 
E E Pi'j'9ij' + C E Pl'jdij + (̂ i 

V i Y i Vj Y j Vi'#i 

This is equivalent to constraints (2.12) with Xij = 1. Therefore, ( X , P) satisfies con-

^The term ’feasible’ denotes that a solution satisfies all the constraints of the considered optimization 

problem 

52 
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r 

straints (2.12) for Xij = 1. Otherwise, since 6 < mi�_”•奸乂 (see (2.18))，we have 

P础ii + r 1 ^ r,{{I - l)p • g a f ) � ” 
； > ？ > 丄 i 

E E Pi'j'Qij' + C E E Pi'jQij + � 2 E E Pi'j'9ij' + C E E Pi'mj + (^？ 
i' = l VjYj i'=l VjYj 

(A.3) 

when Xij = 0. This implies that ( X , P ) satisfies constraints (2.12) for Xij = 0. Besides, 

(X , P) also satisfies constraints (2.11) and (2.13)-(2.15) in [SSP], respectively, for that 

these constraints are consistent with constraints (2.2), (2.4)-(2.6). Therefore, (X , P) 

is a feasible solution to [SSP]. 

Let (X*, P*) be a global optimal solution to [SSP]. Suppose that X yields a system 

revenue greater than X* does. That is, 
I J I J 

Y . H Ai知 > Z E 入i工h. (A.4) 
1=1 j=l i=l j=l 

Since P = ^ (see (2.16)), by multiplying p at the both sides of (A.4), we get 

I J I J 

Y. —ij > Z l Z l '^ij^ij • (a.5) 
z=l j=l i=l j=l 

With Xij 's and x ĵ 's being binary variables, and Wij being positive integers, (A.5) implies 

that X achieves a system revenue that is at least one more unit than that is achieved 

by X*. As a result, (A.5) can be tightened to 
I J I J 

Y^ 叫 j壬ij 1 - Z I S 叫j^i. (A.6) 
i=l j=l 2 = 1 j=l 

I J J 
Note that 0 < e < -j—^——(see (2.17)). Hence, we have e E Pij < ^ E P f 欣 < 

亡户尸 ax+ 1 i=lj = l j = l 
J = 1 

(1-e). This, together with (A.6), imply that the objective function values corresponding 
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to (X\P*) and ( X , P ) satisfy 

I J I J 

c 负 J. + (1 一 d I] 斯乂 1— 
i=l j二1 i==l j=l 

< ̂ EEp̂ j + (1 - EE �(1 - 4) - (1 —) 
j=l i=l j=l (A 7) 

<(1-^) E E 

i = l j=l i—l j=l 

Consequently, {X, P) yields a smaller objective value than (X*, P*) does. Since 
(X, P) is also a feasible solution to [SSP], the inequality (A.7) contradicts the as-
sumption that (X*, P*) is a global optimal solution of [SSP]. Therefore, we have 

E ^ > 知 s ^ ] ^ > 4 • . (A.8) 

Next, we show that (X*, P*) is feasible to [BA] and 工Ij < X] Xi无ij. Note 
i = l j = l i = l j=l 

that for each x*j = 0, constraints (2.12) are reduced to 

Plj9ij + 卜 \ r,{{I - l)p • g + af) … 
—I -J ^ —I -J ^ 1 -

E E Pi'j'Sif + C E E vljQij + E E PlrQif + C E E Pljda + 
i'=\ VjYj W卢 i'=l VjYj W卢 j=l 

(A.9) 
Considering that p = and g = maxjj. •[仿inequations (A.9) always hold 
regardless of the corresponding power p*̂ -. Hence, the minimization nature of [SSP] will 
force p*j to be 0. Therefore, the denominator of (2.12) is equal to the denominator of 
(2.3). When 吟=1，（2.12) is reduced to 

^ = P冗恥 > r - . 

Pi'j'9ij' + C L Pi'jdij + (^i w 卢 句 
i'=l Vj Vj W^ij^l 

(A.IO) 



tj- (A.l l ) 

(A.8) and (A.l l ) imply that ^ ^i^ij = S \无ij, In other words, the optimal 
i=l j=l i=l j=l 

solution to [SSP] yields the maximum system revenue of [BA . 
八 

We now prove that P* yields the minimal transmission power among the X ' s in 
八 I J I J 

PC], where X's have the same system value, i.e., Y^ ^i^ij — \ 吟 . W e can 
i=l j=l i=\ j=l 

prove that ( X , P) is feasible to [SSP], and P* is feasible to [PC] with the particular X*, 

following the similar process of the proof for the solutions of [BA] and [SSP]. Then, to 

prove that P* is the minimum transmission power required to generate the maximum 

system revenue, we need to show that P* yields the minimum transmission power, i.e. 

E^>�sE^>• (A.12) 
i=l j=l i=\ j=\ 

Since {X*,P*) is a global solution to [SSP], we have 

(A.13) 

Together with X； J ] Kiij = E E Ai<j，it follows that E E < E E Pij-
2=1 j=l i=l j=l i=l j=l i=l j=l 

/S A 

On the other hand, since P is the optimal solution to [PC] for any X satisfy-
/ J I J I J I J 

ing E E Xi工*ij = E E XiS^ij, we have ^ J^p*^ > ^ J^Pij- Therefore, equation 
i= l j=l i=l j=l i=l j=l 1=1 j=l 

I J I J 
p*j = X] Pij holds, and the optimal solution to [SSP] yields the minimum 

i=l j=\ i=\ j=\ 
transmission power of Problem 2 for a particular X*. • 

A.2 Proof of Lemma 3 
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which is equivalent to (2.3). Similarly, we can also show that (X*, P*) satisfies con-

straints (2.2) and (2.4)-(2.6), respectively. This implies that (X*, P*) is feasible to 

BA]. Since {X, P) is the optimal solution to [BA], we have 

EI 
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Let (X*, P*) be the optimal solution of [SSP], Z* be the corresponding objective 

value and 9* be the dual value of P*. To prove Lemma 2’ we show that LB� < Z* < 

UB(的 for all k. First, we prove that LB� is the lower bound of [SSP . 

Let (没⑷，J\：�)be the solution of [MSP] at the kth iteration. Assume that L B � > 

Z*. Since [MSP] is a relaxed problem, {9*, X*) should be one of the feasible solutions 

of [MSP]. Besides, 知)’X(知)）is the optimal solution at the kth iteration. Hence, we 

have Z* = + > e沪)+ (1 - e) E E ( 1 _ = L � = L B � , 
i=l j=l i=l j=l 

which is a contradiction to the assumption that � > Z*. Therefore, is the 

lower bound of [SSP . 

Next, we prove that 知）is the upper bound of [SSP]. Note that is either 

finite or infinite depending on the boundness of [DSP]. If f / � = + o o，\ / 0 < s < k, 
then UB� 

that 

and U B � 

妒）< 

=mir i + (1 - e ) ^ ^ Wij(l - a：!】))} = +oo. In this case, it is trivial 
0化& j = l 

is the upper bound of [SSP]. On the other hand, when [DSP] is bounded 

< +CXD, to prove that U B � is the upper bound of [SSP], we first assume 

Due to the strong duality 
[ / � � , a � , / 3 � ) = (A.14) 

where � = [ P i f ] is the optimal solution to [PSP] with ^� .Hence , we have 

,⑷、 力‘ _ � = e f / � + (1 — e) E E Wij(l - 4 
i = l j = l 

i = l j=l i=l j=l 

= ^ O Z p h + (1 - -

(A.15) 

7 = 1 

where the inequality is due to the assumption that f / B � < Z*. (A.15) implies that 

there exists a solution (：^⑷，P�)that yields a smaller objective value than {X*,P*) 

does. This is a contradiction to the fact that (X*, P*) is the optimal solution to [SSP 
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I J , . 

Hence, we can claim that min { [ / � e + (1 - e) E E " ^ij ) } is the upper bound 
0<s<A; i=i j=i 

of [SSP]. • 

• End of chapter. 
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