
An Extensible Design of a Load-Aware

Virtual Router Monitor in User Space

CHOI , Fu Wing

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

The Chinese University of Hong Kong

September 2011

L/—-——:：:—:-1
|im i V fv? ” ！ ss I
I r 1 “ 丄 。 “ J 1911
K ‘ - h

V’、\ .：!；)/ / 圳
、、‘， t 、、 岁z / \ ^ /、、1 i 分z - a -.-J I

Thesis /Assessment Committee

Professor XU, Qiang (Chair)

Professor LEE, Pak Ching (Thesis Supervisor)

Professor LUI, Chi Shing (Committee Member)

Professor WANG, Jilong (External Examiner)

Abstract of thesis entitled:

abstract

Router virtualization enables multiple virtual routers to be hosted on a physical shared

substrate, and hence facilitates network management and experimentation. One critical

issue of router virtualization is resource allocation of virtual routers. We explore this issue

in the user-space design in order to allow extensil^ility and scalability.

In this thesis, we develop a user-space load-aware virtual router monitor (LVRM) atop

a commodity multi-core architecture, with a key feature that it can dynamically manage

CPU core resources among virtual routers based on their traffic loads so that they can

fully exploit the parallelism of multi-core architectures. The main idea is that we can

have various routing processes executing in separate cores simultaneously; and we have

a LVRM centralize the process isolation and the resource monitoring (e.g., NIC). Also,

LVIIM adopts an extensible and scalable design so that each component can support

diflerent variants of implementation. We implement a proof-of-concept prototype for

LVRM and empirically evaluate its performance overhead on top of a multi-core testbed.

We show that LVRM can effectively manage the resources of different virtual routers based

on their respective traffic loads. Our work provides insights into resource management in

user space in the context of router virtualization. Source code of LVRM is available at

http: "ansrlab. cse . cuhk, edu. hk/sof tware/lvrm.

Submitted by CHOI, Fu Wing

for the degree of Master of Philosophy in Computer Science and Engineering

at, the Chinese University of Hong Kong in July 2011

i

Abstract of thesis entitled:

摘要

路由器虛擬化允許多個虚擬路由器被寄存在一個實體共用的基板上，從而

方便了網絡管理和實驗。一個路由器虛擬化的關鍵問題是虛擬路由器的資

源分配。我們在用戶空間的設計中探討這個問題’以允許擴展性。

在這篇論文中，我們在一個商品的多核心架構上開發一個用戶空間的、

負載感知的和虛擬路由器的監控器，真有一糖1要劝能：它可以動態地在

虛擬路由器間根據其交通荷載而管理中央處理器的核心資源，使它們可以

充分利用多核心架構的並行。主要的想法是，我們可以有不同的路由進程

在不同的核心中同時執行；而我們有一個負載感知的和虛擬路由器的監控

器集中進程隔離和資源監測（例如’網卡）。此外，負載感知的和虛擬路由

器的監控器採用一個可擴展的設計，使每個組件都可以支持不同實施的變

體。我們爲負載感知的和虛擬路由器的監控器而實施一個槪念驗證的原型，

及經驗地在多核心試驗台上評估其效能開銷。我們表明’負載感知的和虛

擬路由器的監控器可以有效地根據各自的交通負荷管理不同虛擬路由器的

資源。在路由器虛擬化的背景中，我們的工作提供在資源管理中的和在用

戶空間中的洞察。負載感知的和虛擬路由器的監控器之源代碼在

h t tp : / /ans r jab .cse .cuhk .edu .hk /so f tware / l v rm。

Submitted by CHOI, Fii Wing

for the degree of Master of Philosophy in Computer Science and Engineering

at the Chinese University of Hong Kong in J u l y 2011

ii

http://ansrjab.cse.cuhk.edu.hk/software/lvrm%e3%80%82

Contents

1 Introduction 2

2 Overview 5

2.1 Summary of our Router Virtualization Architecture 6

3 LVRM Design 9

3.1 Socket Adapter g

3.2 VR Monitor 1!

3.3 VR] Monitor 14

3.4 VRI Adapter . 16

3.5 Inter-Process Communication (IPC) Queue 17

3.6 LVRM Adapter for VRI 17

3.7 VRI

3.8 Interfacing Between LVRM and VRs 18

4 Experiments 20

4.1 Experimental Setup 20

4.2 Performance Overhead of LVRM 23

4.3 Core Allocation 3]

4.4 Load Balancing 38

iii

4.5 Scalability � 3

4.6 Lessons Learned 47

5 Related Work 卯

6 Conclusions 幻

iv

List of Figures

2.1 Overview of the router virtiialization architecture 6

3.1 Hierarchical design inside LVRM 10

3.2 Algorithm of dynamic approach 12

3.3 Algorithms of load balancing 15

3.4 Algorithms of load estimation]6

4.1 The experimental topology. 21

4.2 Experiment la: Achievable throughput in data forwarding 26

4.3 Experiment lb: Round-trip latency in data forwarding 28

4.4 Experiment Ic: Achievable throughput with LVRM only 29

4.5 Experiment Id: Round-trip latency with LVRM only 30

4.6 Experiment le: Latency of message passing 31

47 Experiment 2a: Throughput analysis on core affinity 33

4.8 Experiment 2b: Throughput analyses on number of instances 34

4.9 Experiment 2c: Dynamic core allocation for one VR 35

4.10 Experiment 2c : Dynamic core allocation for one VR 3 7

4.11 Experiment 2d: Dynamic core allocation for more than one VR 38

4.12 Experiment 2e: Dynamic core allocation with dynamic thresholds 39

V

4.13 Experiment 3a: Load balancing among VRIs of a VR 4 0

4.14 Experiment 3b: Load balancing among VRs 4 1

4.15 Experiment 3c: Aggregate throughputs 43

4.16 Experiment 3c: Max-min fairness 44

4.17 Experiment 3c: Jain's fairness index 45

4.18 Experiment 4: Aggregate forward rate 46

4.19 Experiment 4: Max-min fairness 47

4.20 Experiment 4: Jain's fairness index 43

4.21 Experiment 4: Aggregate forward rate vs. elapsed time 4 9

vi

Declaration

The Thesis submitted is partially based on our original work:

• Harry F. W. Choi and Patrick P. C. Lee

“An Extensible Design of a Load-Aware Virtual Router Monitor in User

Space,，

7th International Workshop on Scheduling and Resource Management for Parallel

and Distributed Systems (SRMPDS) (in conjunction with ICPP'll), Taipei, Tai-

wan, September 2011.

Keywords

Router virtiialization, resource allocation, multi-core

1

Chapter 1

Introduction

The virtualization technology simplifies process management by having multiple software

instances hosted on a shared hardware substrate, and evolves as a solution to reduce

hardware footprints. Specifically, in the context of packet forwarding and routing in

networks, router viHuoMzation enables multiple virtual routers to be hosted on shared

network resources, such that each virtual router has its own data forwarding plane and

is independently configured with its own set of routing policies. Thus, a virtual router

works like a typical physical router. There have been commercial vendors (e.g., [9’ 22])

that develop router products with router virtualization, in which a single physical router

provides a platform for hosting multiple virtual (logical) routers. Therefore, we believe

that router virtualization will be adopted in various practical applications. One exam-

ple is to deploy a single physical router on a campus backbone network that provides

connectivity for the IP subnets of different departments [14]. Each department can be

assigned a set of virtual routers (hosted inside the physical router) and it can individually

configure its own routing policies on each virtual router. A more recent application of

router virtualization is network experimentation (e.g., VINI [3], OpenFlow [26]), where

2

users can form a network of virtual routers (or switches) and conduct controlled wide-area

network experiments atop a shared network platform.

Instead of hosting virtual routers on physical routers, an alternative of deploying router

virtualization is to host software-based virtual routers atop commodity, general-purpose

hardware and operating systems, so as to trade processing speed for extensibility and

programmability. Software routers (e.g., Click [21] and XORP [19]) emulate the routing

functionalities of hardware routers, and allow flexible extensions and re-engineering of such

functionalities. Given the emergence of multi-core technologies and advances in hardware

architectures, it is shown that software-based router virtualization can be feasibly deployed

using commodity hardware [14], such that the aggregate performance of software virtual

routers is close to that of a single software router without virtualization.

To exploit the full potential of software-based router virtualization, a critical design

issue is the resource rnano.gernent of virtual routers. Specifically, virtual routers may

receive different amounts of data traffic load for their respective networks, and require

different shares of resources (e.g., I/O, CPU, memory) for processing such packets in a

fair manner. One approach is to rely on a general-purpose hypervisor (also called virtual

machine monitor), such as Xen [2], for resource management by running each virtual

router inside a virtual machine [16]. However, such an approach typically involves unnec-

essary overhead of processing operating system tasks besides routing functions. Also, it

is unclear whether such a general-purpose hypervisor effectively adapts toward different

network traffic patterns that are specific for router virtualization. Thus, it is desirable to

have a customized, lightweight hypervisor that is capable of performing effective resource

management specifically for router virtualization.

In this thesis, we propose a user-space load-aware virtual router monitor (LVRM)

3

that seeks to achieve resource management of virtual routers based on their data traffic

loads. LVRM can in essence host different implementations of virtual routers, as long

as we allow minimal changes to the interfaces of the virtual routers to enable them to

interact with LVRM. Specifically, we focus on the deployment of software-based virtual

routers atop a commodity multi-core architecture, and we narrow down our focus into

one issue: how to dynarmcally assign CPU cores to different virtual routers based on

力Adr data traffic loads? LVRM addresses this question by considering different design

dimensions, including: (i) core allocation, (ii) load balancing, (iii) load estimation, and (iv)

inter-process communication. For each design dimension, LVRM allows extensibility for

different variants of implementation, so as to adapt to different application requirements.

Through the extensible design of LVRM, our goal is to explore a set of design guide-

lines of resource management in router virtiialization. We propose an extensible design

of LVRM, and implement a proof-of-concept prototype of LVRM atop a multi-core ar-

chitecture. Using extensive empirical experiments, we demonstrate that LVRM incurs

minimal performance overhead in data forwarding in terms of throughput and latency

when compared to native Linux IP forwarding. In addition, LVRM can support dynamic

core allocation and load balancing of virtual routers based on their traffic loads. Our

experimental results justify the feasibility of resource management in user space in the

context of software-based router virtiialization atop commodity multi-core architectures.

The remaining of the thesis proceeds as follows. Chapter 2 overviews the design of

LVRM, and Chapter 3 elaborates the design details. Chapter 4 presents the experimental

results for LVRM running atop a multi-core platform. Chapter 5 reviews related work,

and Chapter 6 concludes.

4

Chapter 2

Overview

In this chapter, we overview the router virtualization architecture that we consider. We

mainly address dynamic resource allocation in router virtualization. Specifically, we fo-

cus on the allocation of CPU processing resources among virtual routers (VRs) atop a

commodity multi-core architecture. We present the design of a load-aware virtual router

morntor (LVRM), in which one key feature is to achieve dynamic allocation of CPU cores

for VRs based on their traffic loads, so that each VR receives fair allocation of CPU

processing power to process packets. Also, LVRM adopts an extensible design in its com-

ponents. We first overview the router virtualization architecture that we consider, and

then describe the major components of LVRM that collaboratively achieve the goal of

resource allocation among VRs. Note that the implementation that we consider in this

thesis is based on C++ and is running atop Linux.

5

. . . •

• • • M gm^ M- I -VR1 \#DO . . ‘.•.............、......... v n — Vri4&.
’ ， . . • • • • •、

‘• I , r-- ‘ ' • ' ' • ' •

.:':•:.:•:.::、.： ： . ：、 . ’ . 1 . . , - . - :.:•:-:.::.:•:.‘.’’

VR1 VR1 VR2
instance instance instance n data

：闺丨 : : : :丨丨 :I ^丨頃笠:丨丨丨兹：丨丨丨：丨日queue

: : : : : : : I control
_ queue

LVRM 门

I V J

Kernel f 善 j
'"put Output

Port(s) port(s)

^ packets ^

Figure 2.1: Overview of the router virtualization architecture.

2.1 S u m m a r y of our R o u t e r V i r t ua l i z a t i on Architec-

tu re

Our main goal is to virtualize the data forwarding planes of multiple virtual routers atop

a shared hardware substrate. In our design, LVRM is a centralized process that manages

a number of VRs, each of which is an independently administered router and has its own

set of routing policies and configurations. Depending on the current traffic load, LVRM

spawns one or multiple VR instances (VRIs) for each VR to process packets. The VRIs

tiiat belong to the same VR are expected to share the same set of routing policies and

configurations. Figure 2.1 depicts a high-level overview of the entire router virtualization

architecture that consists of LVRM and the VRIs created for different VRs.

We run both LVRM and VRIs as user-space software-based processes that can be

6

deployed on commodity, general-purpose multi-core architectures ami operating systems.

Running the processes in user space enables better progi'arnmability and extensibility, with

a trade-off of degraded data forwarding performance as compared to the kernel space. It

has been shown that software routers running in user space have slower data forwarding

performance than in kernel space [25]. On the other hand, if we leverage concurrent

lock-free synchronization of inter-process communication (IPC) [23] and kernel modules

of packet capture acceleration [12] (see Chapter 3)，then our experiments show that we

can improve the data forwarding throughput performance (see Chapter 4 for details).

To understand the workflow of our router virtiialization architecture in Figure 2.1, we

present, the forwarding path of a data frame from input to output. Suppose that each

hosted VR is configured with an IP subnet and is responsible for processing data packets

originated from this subnet, and that it is configured with the mappings of the routes to

the network interfaces of the deployment architecture. The workflow is summarized as

follows:

1. First, LVRM captures a raw data frame (in the Ethernet layer) from an input

network interface.

2. LVRM inspects the source IP address of the data frame, and determines the VR

that, will process the data frame. It then dispatches the data frame to a VRI of the

VR via an IPC queue called the data queue. Each VRI is associated with a pair of

incoming/outgoing data queues. The dispatch decision of which VRI will process

the data frame is based on the number of VRIs that have been spawned and the

currently used load balancing scheme.

3. The data frame is then processed by the corresponding VRI. If the VRI forwards

the data frame, then it indicates the output network interface in the data frame.

7

4. The VRI relays the data frame to its associated outgoing data queue. LVRM then

sends the data frame to the correct output network interface.

Also, as shown in Figure 2.1, a VRI can share control information with other VRIs of

the same VR, for example, to synchronize the routing state. The sharing is performed by

associating each VRI with another pair of incoming/outgoing queues called the control

—狐 We assume that a control queue has a higher priority than a data queue. Thus,

each VRI first processes any control event available in its incoming control queue, and

then processes data frames available in its incoming data queue.

8

Chapter 3

LVRM Design

III this chapter, we describe the major components of LVRM that collaboratively achieve

the goal of resource allocation among VRs. Note that the implementation that we consider

in this thesis is based on C-t 1- and is niniiing a:top Linux.

Iiiskie LVRKl its design is built on several major user-space components arranged in

a hierarchical structure. Figure 3.1 shows the internal design of LVRM, which can be

viewed as a hierarchical structure. The hierarchical design of LVRM enables it to host

multiple VRs, and each VR can host multiple VRIs. In this section, we explain in detail

the features of each component, and justify how each component provides extensibility

for different variants of implementation.

3.1 Socket Adapter

Tlie socket adapter is tiie software interface that relays data frames via, LVRM. LVRM

can obtain, a data frame by contacting the socket adapter, which then polls for available

data frames from a lower-level interface (e.g., the kernel or the NIC). From the point：

of view of LVRM, the polling process of the socket adapter is transparent. The socket

9

Queues Queues Queues Queues

1 � I 1 - — i ^ i ^
IVRI adapter I VRI adapter VRI adapter VRI adapter

I VRI monitor VRI monitor I

LVRM VR monitor
V

、 — Socket adapter J
Kernel |

Figure 3.1: Hierarchical design inside LVRM:.

adapter is also responsible for forwarding any data, frames from LVRM to the lower level.

Currently, the socket adapter supports three variants of implementation of accessing

data frames in the lower level:

Raw socket [28]. It is the interface between user-space applications and the kernel

network stack for sending/receiving raw frames over the network. Our iniplenieiitatioii is

based on the BSD socket, with which we create a socket descriptor to access raw frames

that start at the link layer (e.g., the Ethernet layer). We use the system call recvfromO

to retrieve raw frames via non-blocking polling, and use the system call sendO to send

raw frames.

PF R ING [12]. It is a new socket type that is designed for speeding up data, capture in

network monitoring. Its idea is to poll the NIC directly and retrieve raw frames from the

NIC through the zero-copy technique, in order to save the iimiecessaTv kernel meniorv

allocation/deallocation as in the raw socket case. Note that, before :PF—RING version

3,7.5 (February 2011)，it only considers how to retrieve incoming frames, but does not

consKler bow to send outgoing frames. Tims, in LVRM: version 1.0 (23 R、bruary 2011)

10

ilu、socket adaptei- still sends outgoing frames via, tlie raw socket. Currently, in LVRI\1

version 1.1 (3 September 2011), it both considers how to retrieve incoming frames and

how to send outgoing frames. Tims, the socket adapter can send outgoing frames via,

either the raw socket or the PFJIING new fiinctioD. call ipfring—sendO.

M a i n memory. YVe also enable the socket adapter to receive raw frames from main

memory rather than from the network. The idea： is to exclude the performance bottleneck

ill the network, so that we can evaluate the processing overhead niainh' due to LVRM.

We load a trace of raw frames iiito main memory, from, which the socket adapter can

sequentially reti'ieve the raw frames.

3.2 V R Monitor

LVRM is by itself a user-space process, ami it internally has a major component VR

monitor tliat coordinates different VRs. In particular, it is responsible for coj'e ciUocaMorL

which coordinates how different VRs use CPU core resources within the underlving rniilti-

core architecture. It adjusts the number of cores being allocated for each VR based on

its traffic load, l b a.void the contention of multiple processes for a single CPU core, it; is

iinpon;a;nt ro associate a CPU core with only one VRL

Here, we consider two core allocatioD. approaches as summarized below:

Fixed approach: The VR monitor pre-assigns a fixed set of cores to a VR when the VR

first starts.

Dynamic approaches: Figure 3.2 summarizes the algorithm of the dynamic approach.

The VR monitor re-assigns a dynamic set of cores to a VR when LVRM receives a packet

after a second or more from the previous re-assignment. In particular, we consider two

variants of the dynamic approach.:

11

/* Create VRI adapter: adding a new VR */
/* instance for a VR */
function VRI m()nitoi,s "create VRI adapter" (int. CPILID)

1: Create packet queues and event queues

2： Put shared queues into shared nieniory

3: Bind VRI to run on the core specified by CPU—ID

4: Add VRI to the list of VRI “

/* Destroy VRI adapter: deleting a VR
/* instance for a VR */
function VRI monitor's “destroy VRI adapter,, (int CPILID)

1: Kill the VRI running on tlie core specifized by CPU—ID

2: Destroy all qvieiies ami clear allocated memory

•i； R(、mov(、VRI irom the list of VRI

/* Allocate: called upon receipt of a */
/* packet after Is or more from previous

core allocation/deallocation process */
function Core allocator's “allocate,’（）

].:for each VR do

2: if arrival rate < threshold (service rate w/ 1 less VRIs) then
3: return This VRI monitor destroys VRI adapter(b(^st CPU)

.1: else if threshold (service rate) < arrival rate then

return This VRI monitor creates VRI adapterfbest CPU)

6： end if
7； end for

Figure 3.2: Algorithm of dynamic approach.

• Dynamic approach with fixed thresholds. The VR monitor assigns cores to a VR

based on the traffic load of the VR. If the current traffic load of the VR is above a

threshold, then the VR monitor allocates an additional CPU core to the VR； if the

traffic load of the VR is iow’ then the VR monitor deallocates a CPU core from the

VR. Strength of this dynamic approach is the simplicity, as it uses a rule based on

oril.v the packet: rate for the allocation. The ix)ssible weakness may be the reliabiliry

if some VRs may require much more processing power (for instance, because of rnucli

more rules). Currently, we measure the load of a VR by estimating the exponential

weighted average arrival rate of incoming data frames for the VR.

• Dynmnic approach with dynarmc thresholds. The VR monitor assigns cores to a VII

based on the traffic load and also the service rate of tlie VR. If the current traffic

12

load of the VR is above the current service rate, then tlie VTl monitor îllocaies

mi additional CPU core t;o the VR; it means that the VR needs more cores as the

load is over the service capacity of VRls. If tiie traffic load of VR is lower than

the service rate with one less VRIs of VR, then VR monitor deallocates a CPU

core from VR: similarly, it means that VR is capable to serve traffic load with, less

VRIs. One of the strengths of this dynamic approach is that it is more straiglitly

for indicating tlie needs of the VRIs. Currently, we measure the load of a VR by

estimating the exponential weighted average arrival rate of incoming frames for the

VR. Also, currently we measure the service rate of a VR by estimating the average

departure rate of the incoming data queues for the VR. One of the strengths of this

departure rate rather than the CPU load via function call getrusageO is that it

can be compared with the traffic load more directly in order to indicate the needs

of the VRIs.

\¥e expect that the dynamic approach is more resource-efficient than the fixed ap-

proadi, since it allocates cores based on the traffic load and hence a:voids over-provisioning.

We also consider two special heuristics to improve the performance of the dynamic ap-

proach. First, LVRM is a user-space process that we bind to a CPU core. It is intuitive

to first assign a VR the cores that are “close” to LVRM, so as to minimize inter-core

cornniiinication between LVRM and the VR. Thus, the dynamic approach first allocates

the s'lblmg cores, i.e., the cores that reside in the same CPU as the core on which LVRM

is riiiiiiiiig, followed by the non-sibUng cores (i.e., cores in a different CPU). We examine

the impact of affinity in core allocation in Chapter 4.

Second, it is important t;o control how often the core allocanon/deallocation process

shoiiW take place. If the frequency is too high, then it will cause instability ro rhe

13

performance of the VR: if the frequency is too low, then it will result in poor responsiveness

to the load conditions. Thus, the dynamic approach periodically monitors t:l::ie traific load

of each VR，and triggers the core allocation/deallocation process if necessary. Here, we set

the period to be 1 second, while this parameter is tunable depending on the applications.

In general，our experiments show that the core allocation/deallocation process has a small

reaction time (see Chapter 4).

The design allows flexible changes, for example, to extend via the function call setr l imit ()

with other resource managements such as the memory management. We consider CPU

more，as the loads are usually CPU-intensive: routers use the memory usually for the

summarized routes, which are less intensive to the commodity hardware. The capacity of

the memory is seldom a major concern.

3.3 V R I Monitor

A VRI monitor is associated with each VR, and is to coordinate the VRIs of a VR. It

creates or deletes VRIs via, the function calls vforkO and k i l l () , respectively, based

on. the number of cores assigned by the VR monitor (assuming that one core is for only

one VRI). It is also responsible for load balancing, wiiicli balances the CPU core resources

among the VRIs of the same VR. Figure 3.3 summarizes the algorithms of the load

balariciDg. Specifically, it dispatches frames to different VRIs for processing, so that th.(、

VRIs receive balanced shares of processing loads. Here, we consider three inipJeiiieiitationb

of load balancing:

Join-the-shortest-qi ieue. It forwards data frames to the VRI that ciirreiitly lias the

lightest traffic load where the load is estimated based on the load estimation algorithm

(̂ eo the description of the VRI adapter below).

14

/* JSQ ： joiri-the-shortest-queue */
function Load balancer's “JSQ”（）

1： for each VRI in this VR do
2: if queue load of this VRI < load of current shortest queue then
3： Remember the VRI with the current shortest queue load

4: end if
5： end for
6: return the VRI with the current shortest queue load

/* Rnd/RR: random/round-robin */
function Load balancer's ()

1: return the randomly-selected/next and valid VRI

/* Balance: called upon receipt of a */
/* packet */
function Load balancer's ''balance''(charbuffer)

1: if tlie iinplerrientatiori is defined as flow-based then
2: Locate the TCP/IP headers from the buffer

3: Construct: the flow entry from the headers

4: Hash table find the entry with ciirreiit tiinestamp arid add flag

5: if the entry is found and the VRI of the entrv is valid then
6： return the VRI of the entry
7： end if
8： end if
9: return (if flow-based, VRI: of added entry —) JSQ()/Rnd()/RR()

Figure 3.3: Algorithms of load balancing.

Random. It forwards each data frame to a VRI that is uniforrnlv selected amon只 all

available VR.Is.

Round-robin. It forwards packets to each VRI in a round-robin manner.

Note that the above implementations can be flxmhhased or frame-based, in which we

dispatch data frames to VIlIs on a: per-frame basis. Another type of implementation is

flow-based (e.g., see [13])，in which data frames of the same flow (e.g., based on 5~tuples)

are always forwarded to same core. Our flow-based load balancing is similar to the frame-

based load balancing. Instead，we dispatch, the second or later data frames to the VRIs

based on the first data frame of the same flow. Instead of the dynamic arrays, the lia,slh

tables are used for the performance issues in the connection tracking functions, which are

called for each incoming data, frames. The flow-based implementation avoids reordering

15

of data frames that belong to the same flow. Note that the VRT monitor can support

both frame-based and fiow-ba,sed load balancing without affecting the design of otiier

components. We examine the impact of load balancing in Section 4.4 and 4.5.

3.4 V R I Adapter

A VRI adapter is associated with each VRL ami is to relay dam packets to/from the

VRI. It; IS also responsible for load estimation of the VRL and reports the estimated load

values to the VRI monitor for load balancing. Figure 3.4 shows the algorithms of the load

estimation. While there are many variants of load estimation, we consider a simple version

as follows. When the VRI adapter forwards a data, frame to the VRL it: measures the

load by observing the current queue length. It; then computes the exponential weighted

average queue length of the incoming data queue of each VRL

3.5 Inter-Process Communication (IPC) Queue

An IPC queue enables two processes (i.e., the producer and the co7isumcr) to share infor-

rnat;i.on, such that the producer (consumer) process inserts (extracts) items t:o (from) the

queue in a first-in-first-out manner. Each VRI is associated with two types of IPC queues:

(i) data, queues and (ii) control queues (see Figure 2.1). Each. VR can send/receive data

frames to/from its VRIs via. a pair of incoming/outgoing data, queues, while each pair of

VRIs can exchange control events via. a pair of incoming/outgoing control queues.

It is important to minimize the inter-process communication. Thus, we consider an

IPC queue implementation based on lock-free synchronizatioii [23]. It allows the producer

arid consumer])ro(:es8e8 to sinmltaiieously access the queue, .so long as they do not accî ŝ

16

class Load hakiiK、(、r

I ： double Average丄oad

/* Get estimate: ca l led upon load */

/* balancing */

function Load balancer's “get estimate” ()

1: return the Average—Load

/* Arr ival time */

function Load balancer'8 '•arrival tinie"()

1: if the current: time stamp is valid then

2: The current time stamp becomes the previous time stamp

3： Get the new time stamp for the current time stamp

4: Update the current load to be: current time stamp - previous timestamp

5： end if

/* Queue length */

function Load balancer's "queue length"()

1: Update the current load to be the VRI adapter's ring buffer's data count

/* Estimate: ca l led upon receipt of a */

/* packet */

function Load estimator's “estimate” ()

1: Get the “arrival time” ()/“queue length" () for the current load

2: if the Average丄0ad is valid then

3： average丄oad — (current load + weight x Average—Load) / (1 + weight)

4: end if

Figure 3,4: Algorithms of load estimation.

the same queue ent;ry. ft is more efficient than the lock-based synchronization, in which

only one process can access the queue at one time. Our current lock-free queue imple-

mentation is based on [23“ while other improved lock-free queue implementations [17, 24

can also be used in LVRM.

3.6 LVRM Adapter for V R I

Similar ro the VRI adapter: a LVRM adapter is for eadi VRI to associate with LVRM,

and IS to relay data, packets to/from the LVRM. Instead of accessing the IPC queues

directly, we provide the Application PrograrnmiDg Interface (API) that allow the VRIs

to simply coinrnuDicate with LVRM via the function calls fromLVRMO and toLVRM().

1.7

The LVRAI adapter is initialized with, a, shared iiieinory identifier, which is passed, from

LVRM via. the main arguments to VRIs. If the dynamic thresholds of the dyimmic core

allocations are enabled, the LVIIM adapters are also responsible for estimating the service

rates of the VRIs, and report the estimated values of the service rates via the IPC queues

to the LVRM：. Here, we consider a simplified version as follows. When the LVRM: adapter

forwards a data frame from the IPC queue to the VRL it measures the service rare by

observing the service time between the current call ami the next call of the fiiiiction

fromLVRlK). It then computes the average service rate of the incoming data frame of

each VRL

3.7 V R I

A VRI is for its corresponding user to maiiipiilate the data, ami the control messages,

ami is also responsible for interpreting the address resolution and routing information.

Currently, the route tables are initialized with tlie map files, which pass the static routes

to the memories of the VRIs. If dynamic routes are used the VRIs can be slightly

clmnged to support both static and dynamic routes without affecting the design of LVRM.

Instead of fixing a,ii application protocol for inter-VRI commimication, we allow users to

coimniinicate with each other VRIs via tlieir user-specified protocols similar to the UDP

socket programming. When the VRI sends/receives a control message to/from others,

they access the control messages in the ways similar to accessing datagrams. Here, we

consider a simplified version of VRIs, which do the minimal routing. The packet; processing

of the VRIs is not our major concern.

18

3.8 Interfacing Between L V R M and VRs

LVRIVl is designed with the capability of hosting different implementations of VRs, pro-

vided that we allow minimal changes to the interfaces of the VRs so that the VRs can

commiuiicate with LVRM. Specifically, instead of accessing data, frames via network inter-

faces, the VRIs of eacli VII should now access data via the IPC queues. LVRM allocates a

shared memory segment for each. IPC queue (via. the function call shmgetO). The shared

memory segment is associated with a shared memory identifier, through which LVRM

and VRIs can access.

Each VR implements the essential data, forwarding/routing functions a.s a software-

based router. It can spawn multiple VRIs for processing raw frames. Note that the

internal processing of the VRI on the raw frames is transparent to LVRM.

We consider two types of user-level VRs to be hosted by LVRM, including (i) C++ VR,

a simple data forwarding program written in C-|•...f- and (ii) Click VR, a forwarding program

based on Click Modular Router [21]. By default, both types of VRs perform the minimal

data forwarding function, i.e., by simply relaying data frames from an input network

interface to an output network interface. Note that tlie Click VR parses a configuration

script to conduct the forwarding function, and internally relays data frames via different

modules. Thus, we expect that the C-1!-• VR is more lightweight ami can eliminate the

internal processing overhead in Click.

19

Chapter 4

Experiments

In this chapter, we conduct empirical studies on LVRM and evaluate its performance

overhead. The goals of our empirical studies are three-fold. First, we show that LVRM

incurs minima] performance overhead, even it is deployed in user space. Second we show

that LVRIVI is loa,d~awa:re，in the sense tliat it; dyiiainically allocates core resources for

VRIs with regard to the current loads of forwarding traffic. Third, we show that LVRM

IS scalable, even in other complicated cases.

4.1 Experimental Setup

Testbed. Figure 4.1 shows the testbed where we conduct our experiments. Similar to

those in [16, 2L 25], the testbed is composed of two sub-networks that connected by a

gateway, on which we deploy LVRM. The si.ib-networks and the gateway are connected

via 1-Gigabit switches and network interfaces (i.e., the raw network bamiwidth is IGbps.

which IS widely in use). We put two sender hosts (Si and Ss) on one sob-network, and two

receiver hosts (./?! and R2) on another sub-network. We iiave senders S! ami S2 generate

raw frames (in layer 2) to receivers ./？：丨 and II2 via tlie gateway, r(、spect.,ivd.y.

20

Sender Si y Receiver R̂

J! Switch • Gateway ^ Switch .

Sender $2 f Receiver R^

Figure 4.1: The experimental topology.

The gateway is deployed on a machine with two Intel Xeori E5530 64-bit quad-core

2.4GHz CPUs (i.e., a total of eight cores) and 8GB RAM. The sender and receiver hosts are

deployed on machines with two Intel Xeon 64-bit dual-core W3565 3.2GHz CPUs and 2GB

RAM. All machines are running Linux 2.6.35 with Uburitu 10.10. The implementation is

based on C4-+, and is compiled with GCC 4.4.5 with the -03 option.

Before we conduct our experiments, we first evaluate whether our testbed can reflect

a realistic network environment. In particular, we consider the maximum frame rate [7

achievable by the gateway in forwarding data traffic. To obtain our measurements, we

enable Linux IP forwarding in the gateway, so that it can relay traffic from the senders

to the receivers. Each sender host generates raw frames to its respective receiver host

using the minimum frame size of an Ethernet frame [7], which is 84 bytes (including

tlie preamble, pay load, and check sequence). We obtain the maximum frame rate by

increasing the sending rate of each sender host until the sending rate and the receiving

rate differ by more than 2 % . Based on our measurements, we find that; both sender hosts

can simultaneously send at most 224K frames per second (fps) based on our requirement.

Thus, the maximum frame rate achievable by the gateway is 2x224 Kfps = 448 Kfps.

This value lies in the range of the maximum frame rates achievable by commercial routers

(e.g., 225 Kfps for a Cisco 3745 router [8] and 2 Mfps for a Cisco 7200 router [10]). Thus,

we believe that our testbed can realistically resemble a routing network.

In our experiments, we have LVRM host two types of VRs: C++ VR and Click VR

21

(see Chapter 3). Both VRs perform the minimal data forwarding function by relaying

raw frames from the interface of the sender sub-network to the interface of the receiver

sub-network, as shown in Figure 4.1.

Traffic Model. We are interested in two traffic models:

• The UDP/IP senders and receivers. We have a coordinator generate the “START”

requests to the senders Si and S2 via a switch at the same moment. We have the

senders start generating UDP/IP packets after receiving the “START” requests,

respectively. For each sender, it generates UDP/IP packets once it finds that the

aggregate source rate is lower than the specified source rate. The source models

are constant departure. The resulted UDP flows are smooth and evenly distributed

to the senders and the receivers. Unless otherwise specified, the flows last for 60

seconds and there are ten trials in one experiment.

• Realistic FTP/TCP servers and clients. Instead of the UDP/IP senders and re-

cdvers，we use the pre-installed FTP client programs f tp and install the FTP

server programs ftpserver from the default updater. We have the FTP clients log-

in anonymously via the gateway at the same moment. They generate bi-directional

TCP/IP packets when they are getting some large files. The pair of FTP flows

includes the data and the control connections in various flow and segment sizes.

Tile aggregate source rates should be slightly lower than the maximum source rate

contTolled by the mechanisms of TCP. The resulted TCP flows are not as smooth

as the UDP flows as mentioned above, but are also evenly distributed to the hosts.

Unless otherwise specified, one trial of an experiment lasts for 600 seconds and there

are three trials in one experiment.

Default implementation of LVRM. Unless otherwise specified, we assume the fol-

22

lowing (lofault iiii]:)leiiient:ation of LVRKl We assume that; the socket adapt:(〕r is hasod on

PF—RING for both retrieving incoming frames and sending outgoing frames. LVRM iisos

(iynaniic core allocation with fixed thresholds, and uses the frame-!)ase(i joiD-the-shortest-

queue sclieiiie for load balancing.

Metr ics. \¥e are interested in three metrics:

• AchievaMe throughput. It corresponds t-o the ma^ximiim frame rate achievable hy

LVRM such that the sending rate and the receiving rate differ by no more than 2%.

• Round-tri/p latency. It corresponds to t,he average round-trip time obtained via the

ICMP Ping utility. We generate 40OK ICMP echo requests from a sender host to a,

receiver host, and measure the average round-trip time for the sender host to obtain

the ICMP echo replies from the receiver host.

• Favrness. We are interested in two fairness indexes: (i) the Jairis fairness index

20], which, focuses on the majority of the flows, and (ii) the rnax-rmn favrness,

which focuses on the outliner.

4.2 Performance Overhead of L V R M

We first evaluate the performance overhead of the data, path in LVRM. We seek to address

the following questions:

• Given that LVRM is deployed in user space, does it incur significant performance

overhead in data forwarding?

• Given that LVRM targets only data forwarding, is ir more lightweight than genera.1-

puipose hypervisors that; are designed for monitoring virtual machines?

23

rn this section, we consider the case where LVRM hosts a single VR, and die VR uses

only a single VRI to process raw frames. In Sections 4.3, 4.4 and 4.5，we consider how

LVRM hosts a single VR with multiple VRJs, how LVRM： hosts multiple VRs and how

scalable LVRM is.

Exper iment l a (Achievable th roughput in data forwarding) . In this experiment,

we aim to show that LVRM will not become a performance bottleneck in data, forwarding

throughput. Using the topology in Figure 4.1, we have both sender hosts generate raw

frames of different frame sizes via tlie gateway to their respective receiver hosts, and then

meamire the achievable throughput. Here, we consider three types of data forwarding

raediaiiisms deployed in the gateway:

® ^oMve- Linux IP forwarding: We enable the IP forwarding fimction in tlie gateway,

and the forwaxding decision is made within the Linux kernel.

* LVRM: We disable Linux IP forwarding，and Imve LVRM forward raw frames.

Speciticall\\ upon receiving raw frames from the input network interface of the

；semie], sub-network, LVRM relays the raw frames to the VR that is beino. hosted.

O ~ ‘:

and the VR relays the raw frames to the outgoing network interface of the receiver

sub-network. In particular, we consider three variants of LVRM:

—LVRM with C++ VR and raw socket in which. LVRM hosts a C++ VR and

uses non-blocking polls of the system call recvfromO to retrieve raw frames

from, the network interface,

....LVRM with C++ VR and PF—RING、in which. LVRM hosts a C++ VR and

uses the PF—RING library [12] to retrieve raw frames, and

24

—LVRM with Click VR and PFJUNG. in which LVRM hosts a Click VR ajid

uses PF—RING.

We ass I line that each VR uses a single VRI for fxjr warding raw frames. In later

experiineiits, we also study how multiple VRIs further improve the forwarding per-

formance.

• Geneml-purpose hypervisors: We consider two publicly known general-purpose liy-

pervisors VMware Server [30] and QEMU-KVM! [4]. In each of the hypervisors,

we host a guest virtual machine (VM), on which we install Linux ami enable the

IP forwarding function. We set the network adapter of each, guest VM to bridged

mode, so as to allow the guest VM to forward data, frames. Each of the hypervisors

relays traffic to the guest VM, which then relays traffic to the receiver sub-network

throiigil its hyper visor.

Figure 4.2 shows the achievable throughput of different data forwarding mechanisms

versus the frame size】. First, we observe that the native Linux IP forwarding has the

highest achievable throughput for all frame sizes. This result is expected, since the data

path is the simplest among all the mechanisms.

The throughpiit: performance of the general-purpose hypervisors (i.e., VMware Server

and QEMU-KVM) is significantly worse than the native Linux IP forwarding. The reason

is that in addition to data forwarding, they also incur performance overhead of processing

various operating system tasks. \¥e observe that QEMU-KVM has significantly poor

performance. We do not know the; exact reason, but; we conjecture that the performance

may be improved with other coiifigiiration settings.

丄Tt, is expected that for small frames, the throiigiipnt is less than the raw bandwidth IGbps, mainly
due to tlie processing overhead of a large number of frames.

25

6 0 0 r ‘ 1 1 1 1 I 1

I P f o r w a r d 乂

L V R M w / C + + V R & r a w s o c k e t _ • + • •

7 o u u - L V R M W / C + + V R & P F 一 R I N G - + - “

^ ^ S J ^ V R M w / C l i c k V R & P f ^ R I N G

V • - V M w a r e - ， • - -

0 300 • X -
1 +
t 200 - -

I

^ 1 0 0 - - • 一 • — . 一 _

0 o ^ n •n o o … o

0 200 400 600 800 1000 1200 1400 1600
F r a m e s i z e (b y t e)

Figure 4.2: Experiment la: Achievable throughput in data forwarding.

For LVRM, it generally achieves higher throughput than the general-purpose hypervi-

sors. We note that using the Click VR has smaller through put than the C-l......卜 VR” since rhe

Click VR has more internal operations and hence higher processing overhead. It is impor-

tairt to note that the throughput performance also depends on the use of socket adaptors.

The PF—RlNG-based LVRM generally has higher throughput than the raw-socket-based

LVRM. As shown in Figure 4.2: if C...I.1... VR. is hosted then the PF_RING-ba,sed LVRM

outperforms the raw-socket-based LVRM for smaller frame sizes (e.g.: by 50% wlien the

frame size is 84 bytes). More importantly, it achieves very similar throiighpiit as compared

to the native Linux IP forwarding for all frame sizes.

We point out that there is room for further improving the achievable throughput of

LVRM, for example, through the I/O optimization of the Linux network stack (e.g., see

Note that PF—RING is designed for packet capture, and it more optimizes t he

2(3

1 2 0 ： .

si w / I P f o r w a r d 丨 丨

u s w / L V R M & r a w s o c k e t ----

1 0 0 s y w / L V R M & r a w s o c k e t …

si w / L V R M & r a w s o c k e t [：：二]

— OQ US w / L V R M & P F — R I N G

£ s y w / L V R M & P F : R I N G

CD si w / L V R M & P F — R I N G • • • •

I 6 0 … 二 … t… -

• :Hri_m…-..I
2 0 - ： • -

I
0 u L ： ! ! ! I I Illllilllliiliillli_ —

Figure 4.3: Experiment la: CPU usage in data forwarding.

receiving side of raw frames. On the other hand, optimizing the Linux network stack

requires kernel modifications, and we pose this issue as future work.

Figure 4.3 shows the per-core CPU usages of different data, forwarding mechanisms

versus the frame size. In this experiment, we seek to show that LVRM in the user space

(US) is not the key overhead with the minimum-sized frames in terms of the CPU time. We

compare different data forwarding mechanisms as in the previous Experiment. To fully

understand the internal CPU overhead of LVRM, we consider a different sets of CPU time

e.g. the S3巧tern CPU time (sy) and the software interrupts. Here, we consider only C十+

VR and execute the system utility top in，Batch mode，operation with 20 iterations.

First, we observe that the native Linux IP forwarding has the lowest; overall CPU

usage, servicing software interrupts only. This result; is expected, since the data, path is

icile while waiting for incoming frames.

27

The overall CPU usages of the LVRM are higher than the native Limix IP forwarding.

The reason is that in addition to handling the data, frames within the kernel, they are

also looping for the non-blocking polls from the sockets and the IPC queues, which are

CPU-intensive. We observe that the raw-socket-based LVRM has higher CPU time in

rmmmg kemd,s and users, processes. Although we do not know the exact functions

corresponding to software interrupts, but we intuitively believe shows that:: the CPU times

may be spent: in the x86 processors' assembly language instriiction INT, for generating a

software interrupt, which are typically executing kernel system calls.

It is important to note that only the minority of CPU times is in the user space. The

PF—RING-based LVRM generally has lower user-spacers CPU times than the raw-socket-

based INBM. As shown, LVRM achieves smaller CPU times within the code managed by

us.

Experiment l b (Round-trip latency in data forwarding). In this experiment, we

seek to show that LVRM is not the key overhead compared to the network in terms of

the latency of forwarding raw frames. We compare different data, forwarding medmnkms

as ill Experiment la.

Figure 4.4 shows the results of different data forwarding media,iiisms as defined in

Experiment la. We observe that both Linux IP forwarding and different variants of LVRM

return similar round-trip latencies, and their differences are mainly due to tlie variance

in measurements. On the other hand, the general-purpose hypervisors QEMU-KVM ami

VMware Server return remarkably higher round-trip latencies.

Experiment Ic (Maximum achievable throughput wi th L V R M only). To fuLly

understand the internal overhead (e.g., CPU or memory) of LVllM:’ we consider a difierent

smting that excludes the network transmission part:. Here, we]oad a trace file of lOOM

28

1400 ‘ •
一 IP forward ~ ' ~
？ 1200 - LVRM w/ C++ VR & raw socket •__><•••.
c/) LVRM w/C++VR & PF—RING —朱
f 1000 - LVRM w/Click VR&PF:RING .
0 VMware — ••• 一
^ onn - KVM ••••<>…•
1 800 o…。…••…o..……。o•……o"……o…••…0"…0
- 6 0 0 - •
9-

I 400 -

圣 2 0 0 •

Q 1 1 1 1 I I I

〇 200 400 600 800 1000 1200 1400 1600
Frame size (byte)

Figure 4.4: Experiment lb: Round-trip latenc}' in data forwarding.

minimum-sized frames (i.e., 84 bytes) into main memory within the gateway. We add an

input interface to LVRM to read the raw frames from RAM, and add an output interface

to LVRM to simply discard the frames. Then LVRM reads the frames from RAM as fast

as possible, relays the frames to a hosted VR, and forwards the frames to the output

interface that will simply discard the frames. This enables us to eliminate the overhead

that occurs in network transmissions. Here, we consider both C++ VR and Click VR,

both of which use a single VRI to process the frames.

Figure 4.5 shows the results. We note that C .1f- VR can achieve a sigiiificantlv

higher throughput than Click VR，mainly because the latter is the implementation of a

software router and contains different internal operations that incur substantial processing

overhead. Thus, the peak achievable throughput depends on the irnplenientatioii of a VR.

For C++ VR, which is a very simple VR implementation, LVRM can achieve 3.7M frames

29

4 ‘ > -r 1 1 1 1
-u C++ VR ~ I ~

_ 3.5 - \ Click VR •_•><•__ -

I 3 入 -

V 2 . 5 - \ •
0 2

1 1 .5 -
I 1 •

0-5 - x _ - x X ——X-——X X ——X"——X…X-

Q ‘ 1 “~— 1 1 I I

0 200 400 600 800 1000 1200 1400 1600
Frame size (byte)

Figure 4.5: Experiment Ic: Achievable throughput with LVIIM： only.

per second for the smallest frame size 84 bytes; it can achieve 922K frames per second,

or eqiiivalently, llGbps, for the largest frame size 1538 bytes.

Experiment Id (Round-trip latency with LVRM only). Similar to Experiment].(:，

we evaluate the minimum round-trip latency with LVRM: only by excluding the network

transmission part. We use the same setting as in Experiment Ic’ tliat is. we let LVRM: read

raw frames from main memory rather than from, the network interface. LVRM forwards it

to a VR that: is hosted, and the VR forwards it to the output; interface, where we simply

discard the raw frames. We measure the latency of each frame from the input interface

(i.e.. main memory) to the output interface (i.e., where the raw frames are discarded) and

compute the average latency for a given frame size.

Figure 4.6 shows the results. If C++ VR is hosted on LVRM:, tlie latency is within

15 as opposed to 70-120 /j.s as in Experiment lb. Thus, LVRM])y itself does not

30

4 5 ‘ 1 1 1 1 1 1

C++ VR — ^
^ 40 - Click VR •• + • • -
^ QC - _
CD 力 . .+

I + . - • • "t"

V 25 - -
2 0 - -

i 1 5 - ^ -

" I 1 0 _ Z _
〇 厂

Q： 5 - -
Q 1 1 1 1 I I I

0 200 400 600 800 1000 1200 1400 1600
Frame size (byte)

Figure 4.6: Experiment Id: Round-trip latency with LVRM: only.

contribute too much latency overhead as opposed to the network interface. The use of

Click VR introduces a higher latency (in the range of 25-35 //s), but this latency remains

small in general.

Experiment l e (Latency of message passing). We now evaluate the latency of

LVRM in relaying messages among VRIs. We have LVRM host a C..I…“卜 VR，which has

two VRIs. Then we have one of the VRIs send a control event to another VRI through

tlie control queues. Then we measure the latency of such message passing between the

two VRIs. We consider two settings: (i) no load, in which there is no raw data frames

traversing LVllM, and (ii) full load, in which we use the topology in Figure 4.1 and have

the sender hosts generate raw frames to the receiver hosts at the achievable throughput

(see Experiment la).

31

16 ‘ 1 1— 1 1 1 1
一 No load ~ I ~
g 14 - Full load •••><_••-
C/)

CO 12 • . . X X … X -
< •. X • … • X X' - •
^ 1 0 : < — — - X - — — Y T . -
^ — ^

E 8 - -
； ^ 1 h
.9- 6 • 1 K ^

E 4 • _
13
o 9 -

ct： 乙 _

0 ‘ ‘ ‘ 1 1 I I

0 200 400 600 800 1000 1200 1400 1600
Frame size (byte)

Figure 4.7: Experiment le: Latency of message passing.

Figure 4.7 shows the latenc}^ of relaying control events between two VRIs versus dif̂

ferent sizes of the control events. The full-load setting has a higher latency than the

no-load one. The reason is that in the full-load setting, a VRI is usually in the middle

of processing a data frame when a control event arrives in the control queue, so it incurs

some dday to retrieve the control event. However, we observe that the latency in the

full-load setting remains in the range of 10-12 / � � w h i c h is relatively small compared to

the network transmission part (see Experiment lb). In the no-load setting, the latency

is only in the range of 5-7 /j-s. Overall the latency overhead of relaying control events

between two VRIs is insignificant.

32

4.3 Core Allocation

now evaluate the core allocation mechanism in WRM. Based on the topology in

Figure 4.1. we have the two sending hosts generate a certain traffic load, which contains

raw frames of minimize frame size (i.e.； 84 bytes), to the gateway on which we run LVRM.

Our goal IS to show that LVRM can dynamically allocate CPU cores to a VR based cm

the input traffic load.

Experiment 2a (Throughput; analysis on core affinity). In this experiment, we

evaluate how core affinity in the core allocation mechanism affects the throughput. We

have LVIIM host a, single VR (either the C++ VR or the Click VR), and we create a. single

VRI for the VR to process raw frames. We run LVRM： as a user-space process on a CPU

core. Given that our gateway has two quad-core CPUs, we consider different approaches

of allocating a CPU core for i;he VRI: (i) “sibling”，in which LVRM dedicates a CPU

core that: resides in the same CPU as with LVRM，(ii) “non-sibling,,, in which LVRM

dedicates a CPU core that resides in a different CPU as with LVRM, (iii) “default”，in

which LVRM lets the kernel assign the CPU core to the VRI, and (iv) “same”，in which

LVRM dedicates the same CPU core on which LVRM is currently ruiinirig (i.e., it lias

t:wo processes ninning on one core).

Figure 4.8 shows the achievable throughput for both C...1—f- and Click VRs. Clearly,

t:he “same” approach has the poorest performance, as a single core is bound with more

than one process. For the Click VR, both the “sibling” and “iion-sibliiig” approaches have

similar achievable throughput，mainly because the bottleneck is due to the processing load

of the Click iinpleiiientation. However, for the C-f....I.. VR, we observe that; the “sibling”

approach lias the highest achievable tlirouglipiit. Thus, in general it is more beneficial

to first associate a, sibling core to a VR if possible.

33

900 . — ： ： ^
Sibling C++ 丨 丨

800 Non-sibling C++ -
� ^^^ Default C++ 二：：：二

左 /UU S a m e C++ [: : : :] …

^ 600 Sibling click ...
0 Non-sibling click nsmm
2 500 ……-…-- Default click • • • • i -
(D Same click • • • •
E 4 0 0 • ；：：：：： ;：：：：

2 ^ ^ ^ ； 1 1 i 丨 - -
X 3 0 0 - - 」 ： ： - - | ； — — 1 - - • : 、 — —
CO I ••mii i i I •

^ 200 • “ ：--l I 1 - - ^ B H
1 0 0 - •：-: ； f - ^ M -

0 [l 1 : ‘ 丨 丨 〒 丨 i M . •

Figure 4.8: Experiment 2a: Throughput anai3 ŝis on core affinity.

We also note that; the “default;” approach has less achievable throughput, even when

compared to the “noii-sibling” approach. The reason is that the kernel may occasionalh^

switch a VRI process to a different core. This creates context switches, and will degrade

the throughput performance. Thus, LVRM seeks to dedicate a core to a VRI
process.

Experiment 2b (Throughput comparisons on fixed core allocation). In this

experiment, we seek to show that it is important to adjust the number of cores assigned

to a VR based on its traffic load. We have LVRM host a single VR (either the C十+ VR or

the Click VR). We then let LVRM fix the number of cores (i.e., VRIs) associated with the

VR at the beginning when the VR is first started. Based on the topology in Figure 4.1,

we iiiject a traffic load of maximum 360 Kfps. In the C++/Click VR knplementatkm.

WG add a dummy processing load of 1/60 ms for each received raw frame before the raw

frmne is to be forwarded, in order to make the comparison of the various solutions in tlio

34

siinilnr câ ses that tlie applications are CPU-bound. In the ideal case, if c < G corĉ s ai'o

allocated for a VR, then t;lie achievable throughput is 60c Kfps.

Figure 4.9 shows the achievable throughput of the C++/Click VR versus the number

of cores allocated for the VR，as well as the maximum achievable throughput in the

ideal case (labeled as “max”)，Note that the gateway that we currently use has eight

CPU cores, one of which is used by the W R M process itself. Thus, we have seven cores

available for the VR. ¥/e observe that the achievable throughput of the VR can scale up

with the number of cores available. For the C++ VR, its achievable throughput is slightly

less than the ideal case, implying that LVRM by itself is not a performance bottleneck.

Oil the other hand, if the number of allocated cores is larger than the actual number of

cores available in the gateway, then we observe contention, and the achievable throughput

drops. Thus, INRM seeks to limit the number of cores allocated for a VR based on the

available CPU cores in the currently deployed system.

Experiment 2c (Dynamic core allocation). In this experiment, we evaluate the

dynamic core allocation approach that adjusts the number of CPU cores based on the

traffic load of a VR. We assume that LVRM hosts a single C++ VR, whose number of

VRIs is varied by LVRM based on the current traffic load. Based on our topology in

Figure 4.1，the two sending hosts generate an aggregate of traffic rate at S (in Kfps) for

the C++ VR, while S increases from 60 to 360, and decreases from 360 to 60, at a step

size of 60 at every 5 seconds. We also add a dummy processing load of 1/60 ms for each

received raw frame to the VR implementation. We allocate c CPU cores to the VR if the

aggregate traffic rate is 60(c — 1) and 60c Kfps. For example, LVRM initially allocates

one CPU core for tlie VR. If the aggregate traffic rate reaches the threshold 60 Kfps, then

LVRM increments the number of cores for the VR to two. Note that each allocated core

35

500 . . .
Max)(

C++ VR • • + •_
^ 400 - Click VR -
立 X — — K — — X — — X — — K

I 300 - 米 " \ •、+、：
g 、、、、 ”

I 200 • 来 … —

X y ^ z
cu X
^ 1 0 0 • ^ ^ -

0 ‘ ‘ • ‘

0 2 4 6 8 10

cores

Figure 4.9: Experiment 2b: Throughput analyses on niiniber of instances,

is associated with a VRI.

Figure 4.10 shows the number of CPU cores (or VRIs) allocated for the C++ VR with

respect to tiie traffic rate. We observe that the number of cores is allocated for tlie VR,

in ail expected manner. This shows that our dynamic core allocation approach can adapt

the number of CPU cores with respect to the traffic load of a VR.

We also measure the time for allocating/deallocating a core for a VR (shown m the Fig-

lire 4.11), corresponding to the Figure 4.10. This latency metric corresponds to the time

inclusively between the begin of iterating VR monitors and the end of crea,tino;/destroviii^
o / o

a VR instance adapter, including the retrievals and the comparisons with the load esti-

nmtes and the thresholds. In this Figure, we aim to show that the core reallocations of

IA,RM will not become a performance bottleneck in data forwarding latency. This Figure

shows tlie reaction latency of different reallocations versus the elapsed time. In. generML

3(3

450 • ‘ • • 8
Source rate ~ i ~

400 - #instance •••><••• - 7
^ 350 . . 6

3 0 0 - 5 ①

I 2 5 0 - U iZ . 4 I

今 1 5 0 - ^ ^ ^ ^ - 3 壮

50 W ^ c 1

0 ^ ‘ ‘ ‘ ‘ ‘——Wfl- 0

0 10 20 30 40 50 60
Time (sec)

Figure 4.10: Experiment 2c: Dynamic core allocation for one VR.

we observe tliat the times for the allocations and the deallocations are within 900 (js and

700 /is, respectively. Thus, the core allocation/deallocation process can be completed

within a small reaction time comparing to the International telecommunication Union

(ITU) standard G.114 [29] which states that 150 ins of one-way, end-to-end (from mouth

to ear) delay ensures user satisfaction, for telephony applications. As expected, the effect

of LVRM to latency-sensitive applications such as Voice over Internet Protocol (VoIP)

is not excessive. The reaction time is also small comparing to the TCP timeouts, and

we show that the effect of LVRM to TCP is also not excessive in the Sections 4.4 and

4.5. Second, we observe that the allocations have the higher latencies than the deallocar-

t:i(ms. These results are expected, since the deallocations are simpler than the allocations

involving the heavy-weight process creations.

Tlie latency performance with more VRIs is slightly worse than that with less VRIs.

O r-7

6 I

9 0 0 r ‘ ^ . . — — - ,
^ ^ ^ ^ ^ A d d —

800 Del ••_><•••-
G 700 - -
① Y

CO 叫 u 1 . V -
J X- - . X

0 500 • -

I ： 400 - -
1 300 • -
3 200 • -

1 0 0 • -

0 ‘ ‘ ‘ ‘ .
0 10 20 30 40 50 60

Time (sec)

Figure 4.11: Experiment 2c: Dynamic core allocation for one VR.

The reason is that in addition to creating/destroying the VR instance adapter, iterating

more VR monitors and retrieving more load estimates also incur additional performance

overliead of ax-cessing memories and processing various comparisons.

Experiment 2d (Dynamic core allocation with more than one VR) . In this

experiment, we aim to show that our dynamic core allocation can handle more than one

VR. We

now have LVRM host; tw.o C-f......f- VRs. Based on our topology in Figure 4] earh

sending host generates a flow that is to be forwarded by a respective C-|......I- VR. We also

have the two flows start at different times. Tlie core allocation condition is the same

as in Experiment 2c, such that we allocate c CPU cores to each VR if the aggregate

traffic rate is 60(c — 1) and 60c Kfps. Tlie traffic generation approadi is similar to that

ill Experiment 2c, except that each flow has a maximum rate 180 Kfps and. the step size

is 30 Kfps.

38

300 ‘ • • 4.5
Source rate 1 ~ i ~
Source rate 2 •• •><••• _ 4

一 • - #instance 1 o ；̂
互 #instance2 —o—

200 • p^ j i I - 3
一 ； I f m t ^ ‘ 1 o
0 ； / / v . ； I - 2 5 c

2 1 5 0 • ； 1 ‘ S

⑴ 卿 j i i m i i i j : \ ^'111111111J - 2 ^

S • ‘ ； ^fH^H^ 丨 「 1 . 5

① 50 ^ d m : 1

W t o c 0.5
0 n W i ~ ‘ ‘ ‘ ‘ ‘——Vml 0

0 10 20 30 40 50 60
Time (sec)

Figure 4.12: Experiment 2d: Dynamic core allocation for more than one VR.

Figure 4.12 shows how the core allocation scheme adjusts the numbers of CPU cores

for each of the VRs based on their traffic rates. We observe that each of the VRs is

allocated the nuiiiber of cores iii an expected manner, and the allocation is reflected with

a small reaction time.

Experiment 2e (Dynamic core allocation with dynamic thresholds). In this

experiment, we aim to show that our dynamic thresholds for the dynamic core allocation

can handle VRs with different service rates. We also have LVRM: host two C++ VRs.

Based on our topology in Figure 4.1, each sending host generates a flow that is to be

forwarded by a respective C-l......I- VR. Nevertheless, we have the t;wo flows start at the

same time. The core allocation condition is similar to Experiment 2d, except that we

allocate c CPU cores to each VR based on the dynamic thresholds. Tlie traffic generation

approach is similar to that in Experiment 2(1，except that each flow has a maximum rate

39

5 ‘ “ I 1 1 1
VR1 ~ I ~
VR2 • • "X- • •

4 - 广 m i i m m m m m m m m m m m m m -

3 - fhl -

g 厂

0 ^ ‘ ‘ ‘ . .
0 10 20 30 40 50 60

Time (sec)

Figure 4.13: Experiment 2e: Dynamic core allocation with dynamic thresholds.

180 Kfps a,t： the beginning and 1:,he ratio of V R I t o VR2,s service rates is 1 :2 .

Figure 4.13 shows how the core allocation scheme adjusts the m.imbers of CPU cores

for each of the VRs based on their service rates. We observe tlmt each of the VRs is

allocated tlie number of cores iii an expected manner, ami the allocation proportionally

reflects tlie service times with a small error.

4.4 Load Balancing

In this section, we explore the load balancing iiiiplemeritation of LVRM. Similar t o Sec-

tiori 4.3. we use tlie topology in Figure 4.1, we liave the two sending hosts generate raw

frames of niiniiiiize frame size (i.e., 84 bytes) to the gateway on which we riii.i. LVRM. Our

办)al IS to ex|:)]ore tlie achieva]:)le throughput of different load balaiidiig iin]:)]ciiioiitatioiis.

40

Experiment 3a (Throughput of load balancing implementation in a single VR) .

l】i this experiment, we first evaluate how I.VRM balances the processing load among VRIs

of a single VR. We generate a traffic load of 360 Kfps to the gateway. We have LVRM host

a single VR (either the C++ VR or the Click VR). In the VR implementation, we also

add a dummy processing load of 1/60 ins to each VRI. Based on dynamic core allocation,

the VR eventually is allocated six cores, each of which runs a VRI (see Experiment 2c).

We evaluate different load balancing approaches, iiicliiding join-the-sliortest-queiie (JSQ),

round-I'obm (RR), and random (see Chapter 3). We then evaluate the achievable through-

put of eacli load balancing scheme.

Figure 4.14 shows the achievable throughput of different load balancing schemes, as

compared to the maximum achievable throiighput (labeled “max”) in the ideal case (i.e.,

360 Kfps). The load balancing schemes have similar achievable throughput. The Click VR

has less achievable throiighput than the C-|—I- VR, mainly due to its internal processing

load. Note that JSQ slightly outperforms others since it distributes raw frames based on

the current load of eacii VRI, while RR and random do not take this factor into account.

Experiment 3b (Load balancing among VRs). In this experiment, we evaluate how

LVRM balances the loads of more than one VR. We have LVRM host: two VRs that are

either both C++ VRs or both Click VRs. Using the topology in Figure 4.1，each sending

host generates a flow that is to be forwarded by a respective VR. The traffic rate of each

flow is 180 Kfps (i.e., the aggregate traffic rate is 360 Kfps). For each of the two VRs,

we measure the achievable throughput values (call them 7.\ and Ti). Then we compute

T = 2 X mmiTi,T2), and compare it with the ideal value (i.e., 360 Kfps). If T is close to

the ideal value, then it implies that both VRs receive fair shares of processing load.

Figure 4.15 shows the results. For the C++ VR, we observe that the value of T for

41

700 •
Max I I

finn JSQ w/ C++ VR
_ RRW/C++VR [: :] - -
这 Random w/ C++ VR i i ^^ i s
妄 ⑷ U JSQ w/ Click VR …
① RR w/ Click VR mmm
2 400 - Random w/ Click VR • • • • …
0 i

I 300 • ：- ； l-l ——I
03 I I F 1 ；

t _ I , t 卜 ’ 、’、1
I I f" ' - - • i ^ ^ ^ • • •

祭 200 - -I I- - ‘ : - I 纖

^ i、、、、’、

0 U L J _ IKV-- I v M i ^ M

Figure 4.14: Experiment 3a: Load balancing among VRIs of a VR.

each of the load balancing scheme is very close to the ideal value (labeled as “Max”).

For the Click VR, its achievable throughput is less due to its internal processing load.

Overall, LVRM can maintain load balancing among more than one VR. Also, similar to

Experiment 3a’ we observe that JSQ outperforms other load balancing schemes.

Experiment 3c (Frame-based and flow-based load balancing). In this ex-

perimeiu, we evaluate how LVRM balances the FTP/TCP loads and compare both the

frame-based and the flow-based load balancing. We have LVRM host at most six VRIs

of the same VR that is C++ VR. Using the topology in Figure 4.1, it generates 100 pairs

of flows that are to be forwarded by the VRIs (, respectively if the implementation is

flow-based). Here, we consider two types of metrics: (i) the aggregate throughpm and

(ii) the fairness.

Figure 4.16 shows the aggregate throughputs of different load balancing. First, wo

42

700 •
Max I I

finn JSQ W/C++VR ...
一 叫 u R R w/ C++ VR [三 : 」

^̂ ^̂ ̂ ^̂ 0 ^ ^ ^ ^ I ^̂^̂^ ^̂ ^̂ • • •• j

：^ 500 JSQ w/ Click VR “
V RR w/ Click VR
"cS 400 Random w/ Click VR • h h …

,
笨 ： : r — — 二 r — — i
E 3 0 0 - --： ：--： l--i 卜,；：:-，------…-…1---------
2 ： ： 丨 丨 I 丨 i
vv ^^^ « • t 丨丨 I t':'、':'WaUM:
结 200 - - - � 「-; I"!
^ . t <1 I 卜‘“'''；I ^ m i

100 - '--I - - ^ M r ^ H -
. . I ‘ I I t；. ^ ^ ^ ；

Q U L L_j u I _ L ^ S B H I L L H I ^ H .

Figure 4.15: Experiment; 3b: Load balancing among VRs.

observe that the native Linux IP forwarding and the LVRM with JSQ load balancing

have the highest aggregate throughput, whicii are lower than the link rate. This result is

expected, since TCP may push some small segments such as the FTP control messages

and acknowledgements (see Section 42 for details of throughputs with small frames). It

is reasonable that the aggregate througlipiits are lower than the link rate.

The throughput performances of LVRM with flow-based load balancing are slightly

worse tliaii that with the frame-based load balancing, since the data paths with the flow-

based load balancing are less simple such as involving some connection tracking. Besides

accessing the liash tables, the connection tracking function also updates the timestamps

getting the process times via the system call times() which incurs some

overheads.

Figure 4.17 shows the rnax-rnin fairness of different load balancing, normalized by their

43

1400 p ,
IP forward 丨 丨

1200 Per-frame JSQ
^ Per-frame RR 二 _
且 wpjp^ Per-frame random
圣 luuu Per-flow JSQ …
^ Per-flow RR mmm
东 800 Per-flow random mmm …

I

E 6 0 0 -I I--;' ：- ；：二；：…厂
CU I I i ^ H H

I 400 . |-]]
^ 2。。- [•

0 U L 」 u L[l i ^ H .

Figure 4.16: Experiment 3c: Aggregate throughputs.

corresponding aggregate throughputs. The indexes are all over 0.6，wiiich are good. For

LVRM with JSQ load balancing, it generally achieves the fairness as wdl as the native

Linux IP forwarding does. We note that using flow-based load balancing has smaller

fairness than using frame-based load balancing. The reason is that the flow-based load

balancing is more sensitive to the variances of the flow sizes, as the granularity of the

flow-based load balancing is coarser than that of the frame-based load baJanciiig.

Figure 4.18 shows the Jairrs fairness index of different load balancing. It is important

to note that the indexes are all over 0.9, which are good. More importantly, it means that

the majority of the flows are also fair with, the use of LVRM with different load balancing.

44

2 •
IP forward 丨 丨

Per-frame JSQ
Per-frame RR [三三

1 - P©r~f'r3m0 random j
B “ Per-flow JSQ
2 Per-flow RR ^ ^ m
^ Per-flow random • • • •
t 1 J
2 I i

祭 ‘ ： 1

I ：; i
0.5 - ： - 卜 l i i f H I i ^ -

： 1 1 M • 丨 •
Q u L Lj LJ ！ m — ！

Figure 4.17: Experiment 3c: Max-min fairness.

4.5 Scalability

We finally evaluate the scalability of the flows in LVRM. We seek to address the following

question:

• With only little losses of the throughputs and the fairness, is LVRM scalable in

other complicated cases?

In this section, we consider the case where LVllM hosts at most six VRIs, and the

VRIs used only process raw frames. Similar to Sections 4.3 and 4.4, it is based on the

topology in Figure 4.1. \¥e have four hosts generate realistic FTP traffic load, which

contains TCP segments of various segment sizes, through the gateway on which we run

LVriM. Our goal is to show that LVRM can maintain the throughputs and the fairness

while it is scalable to large iiiimbers of flows.

45

2 I
IP forward 丨 丨

Per-frame JSQ
Per-frame RR [：二

0 1.5 Per-frame random …
c Per-flow JSQ [二]
•Z) Per-flow RR wmmm
给 Per-flow random • • • •
CI I I" “ T ̂ ^ I ‘

！门；：「—“ _ _ _

： ： ； i :
Q L-i ' —^^I I «-J— i

Figure 4.18: Experiment 3c: Jaiii/s fairness index.

Experiment 4 (Scalability). In this experiment, we especially evaJuate how the con-

gestioii control among TCP flows responds to LVRM. TCP generates a traffic load of

almost maximum rate via the gateway. We have maximum of 1 Gbps (i.e., 1000 Mbps).

In the VII implementa,tion, we do not add a dummy processing load to each VRI as TCP

responds to late segments. So mainly due t,o lost segments, the flows eventually Imve con-

gestion crests’ which are just below the maximum. We then evaluate the average rates in

crests’ aggregating different flows. We also evaluate the fairness of aggregate throughput.

We use the max-ruin fairness and the Jairrs fairness index of all flows.

Figure 4.19 shows the aggregate forward rate with different number of flows. The

maximum aggregate rate in the ideal case is 1000 Mbps. The LVRM with frame-based

load balancing and the native Linux IP forwarding have similar aggregate forward rate,

wlndi is blightly less than the ideal case. It is mamiy clue to TCP drops at iimximimi

46

1 2 0 0 • . . .

Frame-based LVRM ~ i ~
, n … Flow-based LVRM ••_><•••

— 1 U U U • ^^^^^^ 一 IP forward — 紊 — “

1 _ • •
0) … 交

2 6 0 0 - X -

-a

I 400 • •
〇
L 2 0 0 - -

0 ‘ ‘ ‘ ‘
0 20 40 60 80 100

data flows

Figure 4.19: Experiment 4: Aggregate forward rate.

because of the congestion avoidance. Second, we also observe that the LVRM with frame-

based load balancing has the higher aggregate forward rate for most numbers of flows.

Similar u) that in Experiment 3c, this result is expected. Overall, LVRM with more flows

can still maintain the maximum rate.

Figure 4.20 shows the rnax-rniii fairness of different load balancing versus the number

of data flow, normalized by their corresponding aggregate throughputs. The indexes are

all over 0.8, which are very good. The fairness performances of the W R M are roughly

the same as that of the native Linux IP forwarding.

Figure 4.21 shows the Jain's fairness index of different load balancing versus the niiru-

ber of data flow. Tlie indexes are all over 0.99, which are very good. For the Jaiifs fairness

index, they generally achieve the almost highest fairness. We note that the majority of

tlie flows are also fair with the use of LVRM with different load balancing.

47

1.4 ‘ — . .
Frame-based LVRM ~ i ~

1,2 - Flow-based LVRM • • - x…_
IP forward “糸“

^ 0.8 •
CO
i 0.6 - -
o

^ 0.4 • -

0 . 2 • -

0 ‘ •
0 20 40 60 80 100

data flows

Figure 4.20: Experiment 4: Max-miri fairness.

Figure 4.22 shows the aggregate forward of different load balancing with 100 pairs

of flows versus the elapsed time. Most of the time, the forward rates are around 700

Mbps, which are good. It is also important to note that using LVRM 1ms roughly the

same forward rate as that of native Linux IP forwarding. For both the native Linux: IP

forwarding and the LVIIM:，there are little drops at the tails in terms of the throughput.

We have to point out tliat tlie receive window of TCP's flow control also affect the source

rate, since our realistic FTP programs read from the sockets and write to files but not

simply discard the data. The results are that the source rates are sometimes faster than

t:lie rates of a, FTP program to be scheduled by kernel in order to access the sockets and

tlie files.

48

1.4 ‘ • ‘ ‘ - I
Frame-based LVRM ~ i ~

1 2 - Flow-based LVRM __•><•••.
X IP forward --糸--
①

1 • ^ ~ ^ — — ^ ^ — — ^ ^ — — ^ ^——、、

织 0 8 - -

c
I 0.6 • -

0.4 - -

0.2 - _

0 ‘ ‘ ‘ ‘

0 20 40 60 80 100
data flows

Figure 4.21: Experiment 4: Jaiirs fairness index.

4.6 Lessons Learned

We summarize the lessons learned from our experiments.

• Overall LVIIM itself incurs minimal performance overhead in data, forwarding in

terms of throughput and latency. It also provides a more lightweight approach than

general-purpose hypervisors for hosting VRs.

• LVRM dynamically allocates CPU cores for VIls based on their traffic loads, with,

very small reaction times. To make core allocation effective, it is desirable to first;

select sibling cores that reside in die same CPU as LVRM for core allocation, ami

to dedicate a CPU core to at most one VRL

• LVRM performs load balancing among VRIs of a VR, as well as among VRs. In

general tlie joiri-tlie-shortest-queiie approach slightly outperforms other approaches

49

1 0 0 0 K • . . . •

考 Frame-based LVRM ~ i ~
\ Flow-based LVRM …x…

S _ 感 I P f o 广 d - + - -

I aoo ^^^^^^^^
芸 4 0 0 • 、义 -
03

I

^ 200 • -

0 ^ ‘ ' ‘ .
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0

Time (s)

Figure 4.22; Experiment 4: Aggregate forward rate vs. elapsed time,

that do not consider the current load of a VRL such as round robin and random.

• LVRM is scalable in other complicated cases. It also provides a: fair approach as

well as the native Linux IP forwarding.

50

Chapter 5

Related Work

Router virtiializatioD. has appeared in commercial products. For example, Cisco [9] and

Juniper [22] partition the resources of a physical router into multiple logical routers, each

of which has its own configuration and inventory information. However, their logical

router management systems are not, fully op en-son reed, and hence lack the flexibility of

customizing their resource management policies.

Software programmable routers lim,e been studied for emulating routing functions of

hardware routers. For example, router pliigins [11] are proposed such that they can be

dynamically configured, loaded, and unloaded in the kernel. Another software router ar-

chitecture [27| is built on top of network processors, where low-level implementation issues

of network processors are addressed. In particular, Click [21] and XORP [19] are exten-

sible software router architectures that build configurable and flexible router instances

and can run on commodity infrastructures. In the context of router virtualization, both

Click and XORP can be extended for multi-process frameworks. SMP Click [6] proposes

Click optimization on a multiprocessor setting that parallelizes packet processing, while

XORP e:nal:)]e8 multiple routing processes for different; routing protocols to run entirely

51

samiboxed. Other areas of router virtiialization include router experimentation [3, 26\

performance evaluation of softwa.re-based virtual routers on conimoditv hardware fl4. 15 .

vimial router migration across hardware platforms [31], parallel executions of virtual ma.

chines on a single data plane [25], and network I/O fairness [1], In particular, both [25, 1'

address resource allocation of virtual instances in the context of network virtiialization.

In [25], it considers allocation of processing power among different forwarding engines;

while in |1), it allocates an upper boiiiid of bandwidth shares to virtiiaJ machines via rate

limiting. Both of them do not consider how the allocation can be fine-tuned based on the

load of each, virtual instance.

With the emergence of multi-core technologies, miilti-core router design is getting

incrcmsing attentions. A PC-based software router architecture [5] is proposed to use

kernel-level enhancements (e.g., CPU core binding of kernel-level packet; ring buffers) for

a multi-core server to speed up the routing performance. RoiiteBricks [13] proposes a

multi-core architecture that speeds up packet processing, and PacketShader [18] further

acceierates packet processing using both, multi-core and GPU technologies. Note that

13, 18] use available CPU cores for boosting the packet I/O performance, while we focus

01:1 using cores for packet processing inside routers. Our work differentiates itself from

all the above virtual router architectures in that: it considers CPU core allocation tlmt is

adaptive to tiie current traffic load.

52

Chapter 6

Conclusions

We explore the potential of building a router virtualization architecture in user space.

We propose LVRM, a user-space load-aware virtual router monitor that hosts software-

based virtual routers atop a commodity multi-core platform. A key feature of LVRM

is to dynamically allocate CPU cores to different virtual routers based on their traffic

loads. We propose an extensible design for LVRM that supports different variants of im-

plementation including core allocation, load balancing, load estimation, and inter-process

communication. We implement a proof-ot-concept prototype of LVRM, and conduct ex-

tensive empirical experiments. We demonstrate that LVRM incurs minimal performance

overhead i n terms of throughput and latency as compared to hosting virtual routers atop

general-purpose hyper visors. We also compare different variants of implementation for

different components of LVRM, and show the extensibility of LVRM, •

The source code of LVIIM is published for academic use at http://ansrlab.cse.

cuhk•edu.hk/software/lvrm.

53

http://ansrlab.cse

Bibliography

1] M. B. Anwer, A. Nayak, N. Feamster, and L. Liu. Network I/O Riirness in Virtual

Machines. In ACM SIGCOMM Workshop on VISA. 2010.

[2] P. Barham, B. Dragovic, K. Eraser, S. Hand，T. Hams, A. Ho, R. Neugebaiiery,

I. Pratt, and A. War field. Xen and the Art of Virtualization. In Proc. of ACM

Syrrvp. on Operating Systems Principles (SOSP), 2003.

3| A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford. In VINT Veritas:

Realistic and Controlled Network Experimentation. In Proc. of ACM SIGCOMM,

200(1

4| F. Bellard. QEMU, a Fast and Portable Dynamic l>ansla:tor. In USENIX ATC、Apr.

2005.

5] R. Bolla and R. Briisclii. PC-based Software Routers: High Performance and Appli-

cation Service Support. In ACM workshop on Programmable routers for extensible：

services of tomorrow, Aug. 2008.

6] B. (Jlien and R. Morris. Flexible control of parallelism in a multiprocessor PC router.

In USENIX ATC, pages 333 ...346, June 2001.

54

7*1 C'iSCA-) Systems. Inc. Bandwidth，packet,s per second, and other network perforniaiico

n let r ICS. http://www.cisco.com/web/about/security/intelligence/network—

performance—metrics.html.

:8] Cisco Systems, Inc. Cisco 3700 Series Multiservice Access Routers [Cisco 3700 Series

Multiservice Access Routers] - Cisco Systems, http: //www. cisco . com/en/US/prod/

collateral/routers/ps282/product„data„sheet09186a008009203f.html, 2004.

9] Cisco Systems, Inc. Configuring Logical Routers on Cisco lOS XII Soft-

ware. http://www.cisco.com/en/US/docs/ios—xr„sw/iosxr—r3.2/interfaces/

conf igiirELtion/giiide/hc3:21ogr. html, 2(3(35.

,10] Cisco Systems, Inc. Cisco 7200 Series Routers - Products & Services - Cisco Systems,

http : //www. cisco . com/eii/US/products/hw/routers/ps341/, 2011.

11| D. Decasper, Z. Dittia, G. Pamlkar. and B. Plattner. Router Plugins: A Software

Architecture for Next Generation Routers. ACM SI G CO MM Corn/puter (Jommum-

caUon Review. 28(4):229 240, Oct 1998.

12] L. Deri. Improving Passive Packet Capture: Beyond Device Polling. In System

AdrmmstrnUon and Network Engineering, Sept. 2004.

13] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K‘ Fall G. lannaccone, A. Knies,

丄 1 丄 1 ciliC.sli，S* .1 (XX11 ciS11 lA . RouteBricks: Exploiting Parallelism To Scale Soft-

ware Routers. In ACM Syrnp. on Operating Systems Principles (SOSP), Oct 2009.

14] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, and L. Mathy. Ibwards High

Performance Virtual Routers on Commodity Hardware. In Proc. of ACM CoNEXT,

Dec. 2008.

55

http://www.cisco.com/web/about/security/intelligence/network%e2%80%94
http://www.cisco.com/en/US/docs/ios%e2%80%94xr%e2%80%9esw/iosxr%e2%80%94r3.2/interfaces/

N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Hiiici, L. Mathy, and P. Papadiiii-

itriou. Implementing Software Virtual Routers on Multi-core PCs using Click. In

First Syrrvp. on Click Modular Router, Nov. 2009.

:16] N. Egi, A. Greenhalgh, M. Handley. M:. Hoerdt, L. Mating and T. Sdiooley. Evalu-

ating Xeri for Router Virtimlization. In Proc. of IEEE ICCCN, 2007.

17] J. Giacomom, T. Moseley, and M. Vachharajani. Imstforwarcl for efficient pipeline

parallelism: a cache-optimized concurrent lock-free queue. In Proc, of PPoPF\ 2008.

:18] S. Han, K. Jang, K. Park, and S. M:oon, PacketSliader: a: GPU-accelerated Software

Router. In Proc. of ACM SIGCOMNL 2010.

19] M. Handley, E. KoWer, A. Ghosh, O. Hodson, and P. Radosla巩)v. Designing Exten-

sible TP Router Software. In IJSENIX NSDL May 2005.

20| R. K. Jain, D,M. W. Chiiu ami W. R‘ Hawe. A Qiiaiititative Mea.,siire Of Fairness

And Discrimination For Resource Allocation In Shared Computer Sysu ；ms. DEC

Research Report TR-30L Sept. 1984.

21| E. Kohler, R. Morris, B. Chen, J. Jamiotti, and M. F. Kaashoek. Tlie Click modular

router. AC Ad Trans, on Computer Systems, 18(3) :263 297, Aug. 2000.

22] M.. Kolon. Intelligent Logical Router Service. iittp://www. juniper .net/

solutions/literature/white_papers/200097.pdf, Oct 2004. Juniper Networks,

Inc.

23] L. Lamport. Proving the Correctness of Multiprocess Programs. IEEE Tmns. on

Software Engineering, 3(2): Mar 1977.

56

[24] P. P. C. Loo, T. Bu, and G. CliaiKlrmiinenoii- A Lock-Free. Ca(.li(、-Effi(.i(、nt Multi-

Core Syiichionization Med顺ism for Line-Rate Network Traffic Monitoriiig. In Pror.

of IEEE IPDPS、Oct 2010.

[25] Y. Liao- D. Yin, and L. Gao. PdP: Parallelizing Data Plane in Virtual Network

Substrate. In ACM SIGCOMM Workshop on VISA, 2009.

[26] N. AIcKcown, T. Anderson, H. Balakrislmaii. G. Panilkar, L. Peterson. J. Rexforrl，

S. Sheiiker, and J. Turner. OpciiFlow: enabling imiovation in campus networks.

ACM SIGCOMM Computer Comrnnnication Review, 38(2):69 74. Apr 2008.

27] T. Spaliiik, S. Karliii, L. Peterson, and Y. Gottlieb. Building a Robust Software-

Based Router Using Network Processors. In ACM Symp. on Operating Systems

Principles (SOSP), Oc t 2001.

28] W. R. Stevens. UNIX Network ProgTainming: Networking APIs Sockets and XTL

1998.

29] I. tclcconniiunication Union. One-way traiisiiiission time, h t tp : / / w w . i t u . i n t /

rec/dologin_pub. asp?laiig=e&id=T-REC-G. 114-200305-1! ！ PDF-E&type=items,

May 2003.

30] VAIwarc, Inc. VAIwarc Server. Free Virtvializatioii Download for Virtual Server Con-

solidation. http://www.vmware.com/products/server/. 2011.

31] Y. Wang, E. Keller. B. Biskcboni, J. van dcr Mcrwc. and J. Rexford. Virtual Routers

on the Move: Live Router Aligratioii as a N e t k - AIaiiageiiiciit Primitive. In Proc.

of ACM SIGCOMM, Jul 2008.

57

http://www.vmware.com/products/server/

CUHK Libraries

004806809

