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Abstract of thesis entitled: 

abstract 

Router virtualization enables multiple virtual routers to be hosted on a physical shared 

substrate, and hence facilitates network management and experimentation. One critical 

issue of router virtualization is resource allocation of virtual routers. We explore this issue 

in the user-space design in order to allow extensil^ility and scalability. 

In this thesis, we develop a user-space load-aware virtual router monitor (LVRM) atop 

a commodity multi-core architecture, with a key feature that it can dynamically manage 

CPU core resources among virtual routers based on their traffic loads so that they can 

fully exploit the parallelism of multi-core architectures. The main idea is that we can 

have various routing processes executing in separate cores simultaneously; and we have 

a LVRM centralize the process isolation and the resource monitoring (e.g., NIC). Also, 

LVIIM adopts an extensible and scalable design so that each component can support 

diflerent variants of implementation. We implement a proof-of-concept prototype for 

LVRM and empirically evaluate its performance overhead on top of a multi-core testbed. 

We show that LVRM can effectively manage the resources of different virtual routers based 

on their respective traffic loads. Our work provides insights into resource management in 

user space in the context of router virtualization. Source code of LVRM is available at 

http: "ansrlab. cse . cuhk, edu. hk/sof tware/lvrm. 

Submitted by CHOI, Fu Wing 

for the degree of Master of Philosophy in Computer Science and Engineering 

at, the Chinese University of Hong Kong in July 2011 
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Abstract of thesis entitled: 

摘要 

路由器虛擬化允許多個虚擬路由器被寄存在一個實體共用的基板上，從而 

方便了網絡管理和實驗。一個路由器虛擬化的關鍵問題是虛擬路由器的資 

源分配。我們在用戶空間的設計中探討這個問題’以允許擴展性。 

在這篇論文中，我們在一個商品的多核心架構上開發一個用戶空間的、 

負載感知的和虛擬路由器的監控器，真有一糖1要劝能：它可以動態地在 

虛擬路由器間根據其交通荷載而管理中央處理器的核心資源，使它們可以 

充分利用多核心架構的並行。主要的想法是，我們可以有不同的路由進程 

在不同的核心中同時執行；而我們有一個負載感知的和虛擬路由器的監控 

器集中進程隔離和資源監測（例如’網卡）。此外，負載感知的和虛擬路由 

器的監控器採用一個可擴展的設計，使每個組件都可以支持不同實施的變 

體。我們爲負載感知的和虛擬路由器的監控器而實施一個槪念驗證的原型， 

及經驗地在多核心試驗台上評估其效能開銷。我們表明’負載感知的和虛 

擬路由器的監控器可以有效地根據各自的交通負荷管理不同虛擬路由器的 

資源。在路由器虛擬化的背景中，我們的工作提供在資源管理中的和在用 

戶空間中的洞察。負載感知的和虛擬路由器的監控器之源代碼在 

h t tp : / /ans r jab .cse .cuhk .edu .hk /so f tware / l v rm。 

Submitted by CHOI, Fii Wing 

for the degree of Master of Philosophy in Computer Science and Engineering 

at the Chinese University of Hong Kong in J u l y 2011 
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Chapter 1 

Introduction 

The virtualization technology simplifies process management by having multiple software 

instances hosted on a shared hardware substrate, and evolves as a solution to reduce 

hardware footprints. Specifically, in the context of packet forwarding and routing in 

networks, router viHuoMzation enables multiple virtual routers to be hosted on shared 

network resources, such that each virtual router has its own data forwarding plane and 

is independently configured with its own set of routing policies. Thus, a virtual router 

works like a typical physical router. There have been commercial vendors (e.g., [9’ 22]) 

that develop router products with router virtualization, in which a single physical router 

provides a platform for hosting multiple virtual (logical) routers. Therefore, we believe 

that router virtualization will be adopted in various practical applications. One exam-

ple is to deploy a single physical router on a campus backbone network that provides 

connectivity for the IP subnets of different departments [14]. Each department can be 

assigned a set of virtual routers (hosted inside the physical router) and it can individually 

configure its own routing policies on each virtual router. A more recent application of 

router virtualization is network experimentation (e.g., VINI [3], OpenFlow [26]), where 

2 



users can form a network of virtual routers (or switches) and conduct controlled wide-area 

network experiments atop a shared network platform. 

Instead of hosting virtual routers on physical routers, an alternative of deploying router 

virtualization is to host software-based virtual routers atop commodity, general-purpose 

hardware and operating systems, so as to trade processing speed for extensibility and 

programmability. Software routers (e.g., Click [21] and XORP [19]) emulate the routing 

functionalities of hardware routers, and allow flexible extensions and re-engineering of such 

functionalities. Given the emergence of multi-core technologies and advances in hardware 

architectures, it is shown that software-based router virtualization can be feasibly deployed 

using commodity hardware [14], such that the aggregate performance of software virtual 

routers is close to that of a single software router without virtualization. 

To exploit the full potential of software-based router virtualization, a critical design 

issue is the resource rnano.gernent of virtual routers. Specifically, virtual routers may 

receive different amounts of data traffic load for their respective networks, and require 

different shares of resources (e.g., I/O, CPU, memory) for processing such packets in a 

fair manner. One approach is to rely on a general-purpose hypervisor (also called virtual 

machine monitor), such as Xen [2], for resource management by running each virtual 

router inside a virtual machine [16]. However, such an approach typically involves unnec-

essary overhead of processing operating system tasks besides routing functions. Also, it 

is unclear whether such a general-purpose hypervisor effectively adapts toward different 

network traffic patterns that are specific for router virtualization. Thus, it is desirable to 

have a customized, lightweight hypervisor that is capable of performing effective resource 

management specifically for router virtualization. 

In this thesis, we propose a user-space load-aware virtual router monitor (LVRM) 
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that seeks to achieve resource management of virtual routers based on their data traffic 

loads. LVRM can in essence host different implementations of virtual routers, as long 

as we allow minimal changes to the interfaces of the virtual routers to enable them to 

interact with LVRM. Specifically, we focus on the deployment of software-based virtual 

routers atop a commodity multi-core architecture, and we narrow down our focus into 

one issue: how to dynarmcally assign CPU cores to different virtual routers based on 

力Adr data traffic loads? LVRM addresses this question by considering different design 

dimensions, including: (i) core allocation, (ii) load balancing, (iii) load estimation, and (iv) 

inter-process communication. For each design dimension, LVRM allows extensibility for 

different variants of implementation, so as to adapt to different application requirements. 

Through the extensible design of LVRM, our goal is to explore a set of design guide-

lines of resource management in router virtiialization. We propose an extensible design 

of LVRM, and implement a proof-of-concept prototype of LVRM atop a multi-core ar-

chitecture. Using extensive empirical experiments, we demonstrate that LVRM incurs 

minimal performance overhead in data forwarding in terms of throughput and latency 

when compared to native Linux IP forwarding. In addition, LVRM can support dynamic 

core allocation and load balancing of virtual routers based on their traffic loads. Our 

experimental results justify the feasibility of resource management in user space in the 

context of software-based router virtiialization atop commodity multi-core architectures. 

The remaining of the thesis proceeds as follows. Chapter 2 overviews the design of 

LVRM, and Chapter 3 elaborates the design details. Chapter 4 presents the experimental 

results for LVRM running atop a multi-core platform. Chapter 5 reviews related work, 

and Chapter 6 concludes. 
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Chapter 2 

Overview 

In this chapter, we overview the router virtualization architecture that we consider. We 

mainly address dynamic resource allocation in router virtualization. Specifically, we fo-

cus on the allocation of CPU processing resources among virtual routers (VRs) atop a 

commodity multi-core architecture. We present the design of a load-aware virtual router 

morntor (LVRM), in which one key feature is to achieve dynamic allocation of CPU cores 

for VRs based on their traffic loads, so that each VR receives fair allocation of CPU 

processing power to process packets. Also, LVRM adopts an extensible design in its com-

ponents. We first overview the router virtualization architecture that we consider, and 

then describe the major components of LVRM that collaboratively achieve the goal of 

resource allocation among VRs. Note that the implementation that we consider in this 

thesis is based on C++ and is running atop Linux. 
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Figure 2.1: Overview of the router virtualization architecture. 

2.1 S u m m a r y of our R o u t e r V i r t ua l i z a t i on Architec-

tu re 

Our main goal is to virtualize the data forwarding planes of multiple virtual routers atop 

a shared hardware substrate. In our design, LVRM is a centralized process that manages 

a number of VRs, each of which is an independently administered router and has its own 

set of routing policies and configurations. Depending on the current traffic load, LVRM 

spawns one or multiple VR instances (VRIs) for each VR to process packets. The VRIs 

tiiat belong to the same VR are expected to share the same set of routing policies and 

configurations. Figure 2.1 depicts a high-level overview of the entire router virtualization 

architecture that consists of LVRM and the VRIs created for different VRs. 

We run both LVRM and VRIs as user-space software-based processes that can be 
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deployed on commodity, general-purpose multi-core architectures ami operating systems. 

Running the processes in user space enables better progi'arnmability and extensibility, with 

a trade-off of degraded data forwarding performance as compared to the kernel space. It 

has been shown that software routers running in user space have slower data forwarding 

performance than in kernel space [25]. On the other hand, if we leverage concurrent 

lock-free synchronization of inter-process communication (IPC) [23] and kernel modules 

of packet capture acceleration [12] (see Chapter 3)，then our experiments show that we 

can improve the data forwarding throughput performance (see Chapter 4 for details). 

To understand the workflow of our router virtiialization architecture in Figure 2.1, we 

present, the forwarding path of a data frame from input to output. Suppose that each 

hosted VR is configured with an IP subnet and is responsible for processing data packets 

originated from this subnet, and that it is configured with the mappings of the routes to 

the network interfaces of the deployment architecture. The workflow is summarized as 

follows: 

1. First, LVRM captures a raw data frame (in the Ethernet layer) from an input 

network interface. 

2. LVRM inspects the source IP address of the data frame, and determines the VR 

that, will process the data frame. It then dispatches the data frame to a VRI of the 

VR via an IPC queue called the data queue. Each VRI is associated with a pair of 

incoming/outgoing data queues. The dispatch decision of which VRI will process 

the data frame is based on the number of VRIs that have been spawned and the 

currently used load balancing scheme. 

3. The data frame is then processed by the corresponding VRI. If the VRI forwards 

the data frame, then it indicates the output network interface in the data frame. 
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4. The VRI relays the data frame to its associated outgoing data queue. LVRM then 

sends the data frame to the correct output network interface. 

Also, as shown in Figure 2.1, a VRI can share control information with other VRIs of 

the same VR, for example, to synchronize the routing state. The sharing is performed by 

associating each VRI with another pair of incoming/outgoing queues called the control 

—狐 We assume that a control queue has a higher priority than a data queue. Thus, 

each VRI first processes any control event available in its incoming control queue, and 

then processes data frames available in its incoming data queue. 
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Chapter 3 

LVRM Design 

III this chapter, we describe the major components of LVRM that collaboratively achieve 

the goal of resource allocation among VRs. Note that the implementation that we consider 

in this thesis is based on C-t 1- and is niniiing a:top Linux. 

Iiiskie LVRKl its design is built on several major user-space components arranged in 

a hierarchical structure. Figure 3.1 shows the internal design of LVRM, which can be 

viewed as a hierarchical structure. The hierarchical design of LVRM enables it to host 

multiple VRs, and each VR can host multiple VRIs. In this section, we explain in detail 

the features of each component, and justify how each component provides extensibility 

for different variants of implementation. 

3.1 Socket Adapter 

Tlie socket adapter is tiie software interface that relays data frames via, LVRM. LVRM 

can obtain, a data frame by contacting the socket adapter, which then polls for available 

data frames from a lower-level interface (e.g., the kernel or the NIC). From the point： 

of view of LVRM, the polling process of the socket adapter is transparent. The socket 
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Figure 3.1: Hierarchical design inside LVRM:. 

adapter is also responsible for forwarding any data, frames from LVRM to the lower level. 

Currently, the socket adapter supports three variants of implementation of accessing 

data frames in the lower level: 

Raw socket [28]. It is the interface between user-space applications and the kernel 

network stack for sending/receiving raw frames over the network. Our iniplenieiitatioii is 

based on the BSD socket, with which we create a socket descriptor to access raw frames 

that start at the link layer (e.g., the Ethernet layer). We use the system call recvfromO 

to retrieve raw frames via non-blocking polling, and use the system call sendO to send 

raw frames. 

PF R ING [12]. It is a new socket type that is designed for speeding up data, capture in 

network monitoring. Its idea is to poll the NIC directly and retrieve raw frames from the 

NIC through the zero-copy technique, in order to save the iimiecessaTv kernel meniorv 

allocation/deallocation as in the raw socket case. Note that, before :PF—RING version 

3,7.5 (February 2011)，it only considers how to retrieve incoming frames, but does not 

consKler bow to send outgoing frames. Tims, in LVRM: version 1.0 (23 R、bruary 2011) 
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ilu、socket adaptei- still sends outgoing frames via, tlie raw socket. Currently, in LVRI\1 

version 1.1 (3 September 2011), it both considers how to retrieve incoming frames and 

how to send outgoing frames. Tims, the socket adapter can send outgoing frames via, 

either the raw socket or the PFJIING new fiinctioD. call ipfring—sendO. 

M a i n memory. YVe also enable the socket adapter to receive raw frames from main 

memory rather than from the network. The idea： is to exclude the performance bottleneck 

ill the network, so that we can evaluate the processing overhead niainh' due to LVRM. 

We load a trace of raw frames iiito main memory, from, which the socket adapter can 

sequentially reti'ieve the raw frames. 

3.2 V R Monitor 

LVRM is by itself a user-space process, ami it internally has a major component VR 

monitor tliat coordinates different VRs. In particular, it is responsible for coj'e ciUocaMorL 

which coordinates how different VRs use CPU core resources within the underlving rniilti-

core architecture. It adjusts the number of cores being allocated for each VR based on 

its traffic load, l b a.void the contention of multiple processes for a single CPU core, it; is 

iinpon;a;nt ro associate a CPU core with only one VRL 

Here, we consider two core allocatioD. approaches as summarized below: 

Fixed approach: The VR monitor pre-assigns a fixed set of cores to a VR when the VR 

first starts. 

Dynamic approaches: Figure 3.2 summarizes the algorithm of the dynamic approach. 

The VR monitor re-assigns a dynamic set of cores to a VR when LVRM receives a packet 

after a second or more from the previous re-assignment. In particular, we consider two 

variants of the dynamic approach.: 
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/* Create VRI adapter: adding a new VR */ 
/* instance for a VR */ 
function VRI m()nitoi,s "create VRI adapter" (int. CPILID) 

1: Create packet queues and event queues 

2： Put shared queues into shared nieniory 

3: Bind VRI to run on the core specified by CPU—ID 

4: Add VRI to the list of VRI “ 

/* Destroy VRI adapter: deleting a VR 
/* instance for a VR */ 
function VRI monitor's “destroy VRI adapter,, (int CPILID) 

1: Kill the VRI running on tlie core specifized by CPU—ID 

2: Destroy all qvieiies ami clear allocated memory 

•i； R(、mov(、VRI irom the list of VRI 

/* Allocate: called upon receipt of a */ 
/* packet after Is or more from previous 

core allocation/deallocation process */ 
function Core allocator's “allocate,’（） 

].:for each VR do 

2: if arrival rate < threshold (service rate w/ 1 less VRIs) then 
3: return This VRI monitor destroys VRI adapter(b(^st CPU) 

.1: else if threshold (service rate) < arrival rate then 

return This VRI monitor creates VRI adapterfbest CPU) 

6： end if 
7； end for 

Figure 3.2: Algorithm of dynamic approach. 

• Dynamic approach with fixed thresholds. The VR monitor assigns cores to a VR 

based on the traffic load of the VR. If the current traffic load of the VR is above a 

threshold, then the VR monitor allocates an additional CPU core to the VR； if the 

traffic load of the VR is iow’ then the VR monitor deallocates a CPU core from the 

VR. Strength of this dynamic approach is the simplicity, as it uses a rule based on 

oril.v the packet: rate for the allocation. The ix)ssible weakness may be the reliabiliry 

if some VRs may require much more processing power (for instance, because of rnucli 

more rules). Currently, we measure the load of a VR by estimating the exponential 

weighted average arrival rate of incoming data frames for the VR. 

• Dynmnic approach with dynarmc thresholds. The VR monitor assigns cores to a VII 

based on the traffic load and also the service rate of tlie VR. If the current traffic 
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load of the VR is above the current service rate, then tlie VTl monitor îllocaies 

mi additional CPU core t;o the VR; it means that the VR needs more cores as the 

load is over the service capacity of VRls. If tiie traffic load of VR is lower than 

the service rate with one less VRIs of VR, then VR monitor deallocates a CPU 

core from VR: similarly, it means that VR is capable to serve traffic load with, less 

VRIs. One of the strengths of this dynamic approach is that it is more straiglitly 

for indicating tlie needs of the VRIs. Currently, we measure the load of a VR by 

estimating the exponential weighted average arrival rate of incoming frames for the 

VR. Also, currently we measure the service rate of a VR by estimating the average 

departure rate of the incoming data queues for the VR. One of the strengths of this 

departure rate rather than the CPU load via function call getrusageO is that it 

can be compared with the traffic load more directly in order to indicate the needs 

of the VRIs. 

\¥e expect that the dynamic approach is more resource-efficient than the fixed ap-

proadi, since it allocates cores based on the traffic load and hence a:voids over-provisioning. 

We also consider two special heuristics to improve the performance of the dynamic ap-

proach. First, LVRM is a user-space process that we bind to a CPU core. It is intuitive 

to first assign a VR the cores that are “close” to LVRM, so as to minimize inter-core 

cornniiinication between LVRM and the VR. Thus, the dynamic approach first allocates 

the s'lblmg cores, i.e., the cores that reside in the same CPU as the core on which LVRM 

is riiiiiiiiig, followed by the non-sibUng cores (i.e., cores in a different CPU). We examine 

the impact of affinity in core allocation in Chapter 4. 

Second, it is important t;o control how often the core allocanon/deallocation process 

shoiiW take place. If the frequency is too high, then it will cause instability ro rhe 
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performance of the VR: if the frequency is too low, then it will result in poor responsiveness 

to the load conditions. Thus, the dynamic approach periodically monitors t:l::ie traific load 

of each VR，and triggers the core allocation/deallocation process if necessary. Here, we set 

the period to be 1 second, while this parameter is tunable depending on the applications. 

In general，our experiments show that the core allocation/deallocation process has a small 

reaction time (see Chapter 4). 

The design allows flexible changes, for example, to extend via the function call setr l imit () 

with other resource managements such as the memory management. We consider CPU 

more，as the loads are usually CPU-intensive: routers use the memory usually for the 

summarized routes, which are less intensive to the commodity hardware. The capacity of 

the memory is seldom a major concern. 

3.3 V R I Monitor 

A VRI monitor is associated with each VR, and is to coordinate the VRIs of a VR. It 

creates or deletes VRIs via, the function calls vforkO and k i l l ( ) , respectively, based 

on. the number of cores assigned by the VR monitor (assuming that one core is for only 

one VRI). It is also responsible for load balancing, wiiicli balances the CPU core resources 

among the VRIs of the same VR. Figure 3.3 summarizes the algorithms of the load 

balariciDg. Specifically, it dispatches frames to different VRIs for processing, so that th.(、 

VRIs receive balanced shares of processing loads. Here, we consider three inipJeiiieiitationb 

of load balancing: 

Join-the-shortest-qi ieue. It forwards data frames to the VRI that ciirreiitly lias the 

lightest traffic load where the load is estimated based on the load estimation algorithm 

(̂ eo the description of the VRI adapter below). 
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/* JSQ ： joiri-the-shortest-queue */ 
function Load balancer's “JSQ”（） 

1： for each VRI in this VR do 
2: if queue load of this VRI < load of current shortest queue then 
3： Remember the VRI with the current shortest queue load 

4: end if 
5： end for 
6: return the VRI with the current shortest queue load 

/* Rnd/RR: random/round-robin */ 
function Load balancer's () 

1: return the randomly-selected/next and valid VRI 

/* Balance: called upon receipt of a */ 
/* packet */ 
function Load balancer's ''balance''(charbuffer) 

1: if tlie iinplerrientatiori is defined as flow-based then 
2: Locate the TCP/IP headers from the buffer 

3: Construct: the flow entry from the headers 

4: Hash table find the entry with ciirreiit tiinestamp arid add flag 

5: if the entry is found and the VRI of the entrv is valid then 
6： return the VRI of the entry 
7： end if 
8： end if 
9: return (if flow-based, VRI: of added entry —) JSQ()/Rnd()/RR() 

Figure 3.3: Algorithms of load balancing. 

Random. It forwards each data frame to a VRI that is uniforrnlv selected amon只 all 

available VR.Is. 

Round-robin. It forwards packets to each VRI in a round-robin manner. 

Note that the above implementations can be flxmhhased or frame-based, in which we 

dispatch data frames to VIlIs on a: per-frame basis. Another type of implementation is 

flow-based (e.g., see [13])，in which data frames of the same flow (e.g., based on 5~tuples) 

are always forwarded to same core. Our flow-based load balancing is similar to the frame-

based load balancing. Instead，we dispatch, the second or later data frames to the VRIs 

based on the first data frame of the same flow. Instead of the dynamic arrays, the lia,slh 

tables are used for the performance issues in the connection tracking functions, which are 

called for each incoming data, frames. The flow-based implementation avoids reordering 
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of data frames that belong to the same flow. Note that the VRT monitor can support 

both frame-based and fiow-ba,sed load balancing without affecting the design of otiier 

components. We examine the impact of load balancing in Section 4.4 and 4.5. 

3.4 V R I Adapter 

A VRI adapter is associated with each VRL ami is to relay dam packets to/from the 

VRI. It; IS also responsible for load estimation of the VRL and reports the estimated load 

values to the VRI monitor for load balancing. Figure 3.4 shows the algorithms of the load 

estimation. While there are many variants of load estimation, we consider a simple version 

as follows. When the VRI adapter forwards a data, frame to the VRL it: measures the 

load by observing the current queue length. It; then computes the exponential weighted 

average queue length of the incoming data queue of each VRL 

3.5 Inter-Process Communication ( IPC) Queue 

An IPC queue enables two processes (i.e., the producer and the co7isumcr) to share infor-

rnat;i.on, such that the producer (consumer) process inserts (extracts) items t:o (from) the 

queue in a first-in-first-out manner. Each VRI is associated with two types of IPC queues: 

(i) data, queues and (ii) control queues (see Figure 2.1). Each. VR can send/receive data 

frames to/from its VRIs via. a pair of incoming/outgoing data, queues, while each pair of 

VRIs can exchange control events via. a pair of incoming/outgoing control queues. 

It is important to minimize the inter-process communication. Thus, we consider an 

IPC queue implementation based on lock-free synchronizatioii [23]. It allows the producer 

arid consumer ])ro(:es8e8 to sinmltaiieously access the queue, .so long as they do not accî ŝ  

16 



class Load hakiiK、(、r 

I ： double Average丄oad 

/* Get estimate: ca l led upon load */ 

/* balancing */ 

function Load balancer's “get estimate” () 

1: return the Average—Load 

/* Arr ival time */ 

function Load balancer'8 '•arrival tinie"() 

1: if the current: time stamp is valid then 

2: The current time stamp becomes the previous time stamp 

3： Get the new time stamp for the current time stamp 

4: Update the current load to be: current time stamp - previous timestamp 

5： end if 

/* Queue length */ 

function Load balancer's "queue length"() 

1: Update the current load to be the VRI adapter's ring buffer's data count 

/* Estimate: ca l led upon receipt of a */ 

/* packet */ 

function Load estimator's “estimate” () 

1: Get the “arrival time” ()/“queue length" () for the current load 

2: if the Average丄0ad is valid then 

3： average丄oad — (current load + weight x Average—Load) / (1 + weight) 

4: end if 

Figure 3,4: Algorithms of load estimation. 

the same queue ent;ry. ft is more efficient than the lock-based synchronization, in which 

only one process can access the queue at one time. Our current lock-free queue imple-

mentation is based on [23“ while other improved lock-free queue implementations [17, 24 

can also be used in LVRM. 

3.6 LVRM Adapter for V R I 

Similar ro the VRI adapter: a LVRM adapter is for eadi VRI to associate with LVRM, 

and IS to relay data, packets to/from the LVRM. Instead of accessing the IPC queues 

directly, we provide the Application PrograrnmiDg Interface (API) that allow the VRIs 

to simply coinrnuDicate with LVRM via the function calls fromLVRMO and toLVRM(). 
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The LVRAI adapter is initialized with, a, shared iiieinory identifier, which is passed, from 

LVRM via. the main arguments to VRIs. If the dynamic thresholds of the dyimmic core 

allocations are enabled, the LVIIM adapters are also responsible for estimating the service 

rates of the VRIs, and report the estimated values of the service rates via the IPC queues 

to the LVRM：. Here, we consider a simplified version as follows. When the LVRM: adapter 

forwards a data frame from the IPC queue to the VRL it measures the service rare by 

observing the service time between the current call ami the next call of the fiiiiction 

fromLVRlK). It then computes the average service rate of the incoming data frame of 

each VRL 

3.7 V R I 

A VRI is for its corresponding user to maiiipiilate the data, ami the control messages, 

ami is also responsible for interpreting the address resolution and routing information. 

Currently, the route tables are initialized with tlie map files, which pass the static routes 

to the memories of the VRIs. If dynamic routes are used the VRIs can be slightly 

clmnged to support both static and dynamic routes without affecting the design of LVRM. 

Instead of fixing a,ii application protocol for inter-VRI commimication, we allow users to 

coimniinicate with each other VRIs via tlieir user-specified protocols similar to the UDP 

socket programming. When the VRI sends/receives a control message to/from others, 

they access the control messages in the ways similar to accessing datagrams. Here, we 

consider a simplified version of VRIs, which do the minimal routing. The packet; processing 

of the VRIs is not our major concern. 
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3.8 Interfacing Between L V R M and VRs 

LVRIVl is designed with the capability of hosting different implementations of VRs, pro-

vided that we allow minimal changes to the interfaces of the VRs so that the VRs can 

commiuiicate with LVRM. Specifically, instead of accessing data, frames via network inter-

faces, the VRIs of eacli VII should now access data via the IPC queues. LVRM allocates a 

shared memory segment for each. IPC queue (via. the function call shmgetO). The shared 

memory segment is associated with a shared memory identifier, through which LVRM 

and VRIs can access. 

Each VR implements the essential data, forwarding/routing functions a.s a software-

based router. It can spawn multiple VRIs for processing raw frames. Note that the 

internal processing of the VRI on the raw frames is transparent to LVRM. 

We consider two types of user-level VRs to be hosted by LVRM, including (i) C++ VR, 

a simple data forwarding program written in C-|•...f- and (ii) Click VR, a forwarding program 

based on Click Modular Router [21]. By default, both types of VRs perform the minimal 

data forwarding function, i.e., by simply relaying data frames from an input network 

interface to an output network interface. Note that tlie Click VR parses a configuration 

script to conduct the forwarding function, and internally relays data frames via different 

modules. Thus, we expect that the C-1!-• VR is more lightweight ami can eliminate the 

internal processing overhead in Click. 
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Chapter 4 

Experiments 

In this chapter, we conduct empirical studies on LVRM and evaluate its performance 

overhead. The goals of our empirical studies are three-fold. First, we show that LVRM 

incurs minima] performance overhead, even it is deployed in user space. Second we show 

that LVRIVI is loa,d~awa:re，in the sense tliat it; dyiiainically allocates core resources for 

VRIs with regard to the current loads of forwarding traffic. Third, we show that LVRM 

IS scalable, even in other complicated cases. 

4.1 Experimental Setup 

Testbed. Figure 4.1 shows the testbed where we conduct our experiments. Similar to 

those in [16, 2L 25], the testbed is composed of two sub-networks that connected by a 

gateway, on which we deploy LVRM. The si.ib-networks and the gateway are connected 

via 1-Gigabit switches and network interfaces (i.e., the raw network bamiwidth is IGbps. 

which IS widely in use). We put two sender hosts (Si and Ss) on one sob-network, and two 

receiver hosts (./?! and R2) on another sub-network. We iiave senders S! ami S2 generate 

raw frames (in layer 2) to receivers ./？：丨 and II2 via tlie gateway, r(、spect.,ivd.y. 
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Sender Si y Receiver R̂  

J! Switch • Gateway ^ Switch . 

Sender $2 f Receiver R^ 

Figure 4.1: The experimental topology. 

The gateway is deployed on a machine with two Intel Xeori E5530 64-bit quad-core 

2.4GHz CPUs (i.e., a total of eight cores) and 8GB RAM. The sender and receiver hosts are 

deployed on machines with two Intel Xeon 64-bit dual-core W3565 3.2GHz CPUs and 2GB 

RAM. All machines are running Linux 2.6.35 with Uburitu 10.10. The implementation is 

based on C4-+, and is compiled with GCC 4.4.5 with the -03 option. 

Before we conduct our experiments, we first evaluate whether our testbed can reflect 

a realistic network environment. In particular, we consider the maximum frame rate [7 

achievable by the gateway in forwarding data traffic. To obtain our measurements, we 

enable Linux IP forwarding in the gateway, so that it can relay traffic from the senders 

to the receivers. Each sender host generates raw frames to its respective receiver host 

using the minimum frame size of an Ethernet frame [7], which is 84 bytes (including 

tlie preamble, pay load, and check sequence). We obtain the maximum frame rate by 

increasing the sending rate of each sender host until the sending rate and the receiving 

rate differ by more than 2 % . Based on our measurements, we find that; both sender hosts 

can simultaneously send at most 224K frames per second (fps) based on our requirement. 

Thus, the maximum frame rate achievable by the gateway is 2x224 Kfps = 448 Kfps. 

This value lies in the range of the maximum frame rates achievable by commercial routers 

(e.g., 225 Kfps for a Cisco 3745 router [8] and 2 Mfps for a Cisco 7200 router [10]). Thus, 

we believe that our testbed can realistically resemble a routing network. 

In our experiments, we have LVRM host two types of VRs: C++ VR and Click VR 
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(see Chapter 3). Both VRs perform the minimal data forwarding function by relaying 

raw frames from the interface of the sender sub-network to the interface of the receiver 

sub-network, as shown in Figure 4.1. 

Traffic Model. We are interested in two traffic models: 

• The UDP/IP senders and receivers. We have a coordinator generate the “START” 

requests to the senders Si and S2 via a switch at the same moment. We have the 

senders start generating UDP/IP packets after receiving the “START” requests, 

respectively. For each sender, it generates UDP/IP packets once it finds that the 

aggregate source rate is lower than the specified source rate. The source models 

are constant departure. The resulted UDP flows are smooth and evenly distributed 

to the senders and the receivers. Unless otherwise specified, the flows last for 60 

seconds and there are ten trials in one experiment. 

• Realistic FTP/TCP servers and clients. Instead of the UDP/IP senders and re-

cdvers，we use the pre-installed FTP client programs f tp and install the FTP 

server programs ftpserver from the default updater. We have the FTP clients log-

in anonymously via the gateway at the same moment. They generate bi-directional 

TCP/IP packets when they are getting some large files. The pair of FTP flows 

includes the data and the control connections in various flow and segment sizes. 

Tile aggregate source rates should be slightly lower than the maximum source rate 

contTolled by the mechanisms of TCP. The resulted TCP flows are not as smooth 

as the UDP flows as mentioned above, but are also evenly distributed to the hosts. 

Unless otherwise specified, one trial of an experiment lasts for 600 seconds and there 

are three trials in one experiment. 

Default implementation of LVRM. Unless otherwise specified, we assume the fol-
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lowing (lofault iiii]:)leiiient:ation of LVRKl We assume that; the socket adapt:(〕r is hasod on 

PF—RING for both retrieving incoming frames and sending outgoing frames. LVRM iisos 

(iynaniic core allocation with fixed thresholds, and uses the frame-!)ase(i joiD-the-shortest-

queue sclieiiie for load balancing. 

Metr ics. \¥e are interested in three metrics: 

• AchievaMe throughput. It corresponds t-o the ma^ximiim frame rate achievable hy 

LVRM such that the sending rate and the receiving rate differ by no more than 2%. 

• Round-tri/p latency. It corresponds to t,he average round-trip time obtained via the 

ICMP Ping utility. We generate 40OK ICMP echo requests from a sender host to a, 

receiver host, and measure the average round-trip time for the sender host to obtain 

the ICMP echo replies from the receiver host. 

• Favrness. We are interested in two fairness indexes: (i) the Jairis fairness index 

20], which, focuses on the majority of the flows, and (ii) the rnax-rmn favrness, 

which focuses on the outliner. 

4.2 Performance Overhead of L V R M 

We first evaluate the performance overhead of the data, path in LVRM. We seek to address 

the following questions: 

• Given that LVRM is deployed in user space, does it incur significant performance 

overhead in data forwarding? 

• Given that LVRM targets only data forwarding, is ir more lightweight than genera.1-

puipose hypervisors that; are designed for monitoring virtual machines? 
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rn this section, we consider the case where LVRM hosts a single VR, and die VR uses 

only a single VRI to process raw frames. In Sections 4.3, 4.4 and 4.5，we consider how 

LVRM hosts a single VR with multiple VRJs, how LVRM： hosts multiple VRs and how 

scalable LVRM is. 

Exper iment l a (Achievable th roughput in data forwarding) . In this experiment, 

we aim to show that LVRM will not become a performance bottleneck in data, forwarding 

throughput. Using the topology in Figure 4.1, we have both sender hosts generate raw 

frames of different frame sizes via tlie gateway to their respective receiver hosts, and then 

meamire the achievable throughput. Here, we consider three types of data forwarding 

raediaiiisms deployed in the gateway: 

® ^oMve- Linux IP forwarding: We enable the IP forwarding fimction in tlie gateway, 

and the forwaxding decision is made within the Linux kernel. 

* LVRM: We disable Linux IP forwarding，and Imve LVRM forward raw frames. 

Speciticall\\ upon receiving raw frames from the input network interface of the 

；semie], sub-network, LVRM relays the raw frames to the VR that is beino. hosted. 

O ~ ‘: 

and the VR relays the raw frames to the outgoing network interface of the receiver 

sub-network. In particular, we consider three variants of LVRM: 

—LVRM with C++ VR and raw socket in which. LVRM hosts a C++ VR and 

uses non-blocking polls of the system call recvfromO to retrieve raw frames 

from, the network interface, 

....LVRM with C++ VR and PF—RING、in which. LVRM hosts a C++ VR and 

uses the PF—RING library [12] to retrieve raw frames, and 
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—LVRM with Click VR and PFJUNG. in which LVRM hosts a Click VR ajid 

uses PF—RING. 

We ass I line that each VR uses a single VRI for fxjr warding raw frames. In later 

experiineiits, we also study how multiple VRIs further improve the forwarding per-

formance. 

• Geneml-purpose hypervisors: We consider two publicly known general-purpose liy-

pervisors VMware Server [30] and QEMU-KVM! [4]. In each of the hypervisors, 

we host a guest virtual machine (VM), on which we install Linux ami enable the 

IP forwarding function. We set the network adapter of each, guest VM to bridged 

mode, so as to allow the guest VM to forward data, frames. Each of the hypervisors 

relays traffic to the guest VM, which then relays traffic to the receiver sub-network 

throiigil its hyper visor. 

Figure 4.2 shows the achievable throughput of different data forwarding mechanisms 

versus the frame size】. First, we observe that the native Linux IP forwarding has the 

highest achievable throughput for all frame sizes. This result is expected, since the data 

path is the simplest among all the mechanisms. 

The throughpiit: performance of the general-purpose hypervisors (i.e., VMware Server 

and QEMU-KVM) is significantly worse than the native Linux IP forwarding. The reason 

is that in addition to data forwarding, they also incur performance overhead of processing 

various operating system tasks. \¥e observe that QEMU-KVM has significantly poor 

performance. We do not know the; exact reason, but; we conjecture that the performance 

may be improved with other coiifigiiration settings. 

丄Tt, is expected that for small frames, the throiigiipnt is less than the raw bandwidth IGbps, mainly 
due to tlie processing overhead of a large number of frames. 
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Figure 4.2: Experiment la: Achievable throughput in data forwarding. 

For LVRM, it generally achieves higher throughput than the general-purpose hypervi-

sors. We note that using the Click VR has smaller through put than the C-l......卜 VR” since rhe 

Click VR has more internal operations and hence higher processing overhead. It is impor-

tairt to note that the throughput performance also depends on the use of socket adaptors. 

The PF—RlNG-based LVRM generally has higher throughput than the raw-socket-based 

LVRM. As shown in Figure 4.2: if C...I.1... VR. is hosted then the PF_RING-ba,sed LVRM 

outperforms the raw-socket-based LVRM for smaller frame sizes (e.g.: by 50% wlien the 

frame size is 84 bytes). More importantly, it achieves very similar throiighpiit as compared 

to the native Linux IP forwarding for all frame sizes. 

We point out that there is room for further improving the achievable throughput of 

LVRM, for example, through the I/O optimization of the Linux network stack (e.g., see 

Note that PF—RING is designed for packet capture, and it more optimizes t he 
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Figure 4.3: Experiment la: CPU usage in data forwarding. 

receiving side of raw frames. On the other hand, optimizing the Linux network stack 

requires kernel modifications, and we pose this issue as future work. 

Figure 4.3 shows the per-core CPU usages of different data, forwarding mechanisms 

versus the frame size. In this experiment, we seek to show that LVRM in the user space 

( US) is not the key overhead with the minimum-sized frames in terms of the CPU time. We 

compare different data forwarding mechanisms as in the previous Experiment. To fully 

understand the internal CPU overhead of LVRM, we consider a different sets of CPU time 

e.g. the S3巧tern CPU time (sy) and the software interrupts. Here, we consider only C十+ 

VR and execute the system utility top in，Batch mode，operation with 20 iterations. 

First, we observe that the native Linux IP forwarding has the lowest; overall CPU 

usage, servicing software interrupts only. This result; is expected, since the data, path is 

icile while waiting for incoming frames. 
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The overall CPU usages of the LVRM are higher than the native Limix IP forwarding. 

The reason is that in addition to handling the data, frames within the kernel, they are 

also looping for the non-blocking polls from the sockets and the IPC queues, which are 

CPU-intensive. We observe that the raw-socket-based LVRM has higher CPU time in 

rmmmg kemd,s and users, processes. Although we do not know the exact functions 

corresponding to software interrupts, but we intuitively believe shows that:: the CPU times 

may be spent: in the x86 processors' assembly language instriiction INT, for generating a 

software interrupt, which are typically executing kernel system calls. 

It is important to note that only the minority of CPU times is in the user space. The 

PF—RING-based LVRM generally has lower user-spacers CPU times than the raw-socket-

based INBM. As shown, LVRM achieves smaller CPU times within the code managed by 

us. 

Experiment l b (Round-trip latency in data forwarding). In this experiment, we 

seek to show that LVRM is not the key overhead compared to the network in terms of 

the latency of forwarding raw frames. We compare different data, forwarding medmnkms 

as ill Experiment la. 

Figure 4.4 shows the results of different data forwarding media,iiisms as defined in 

Experiment la. We observe that both Linux IP forwarding and different variants of LVRM 

return similar round-trip latencies, and their differences are mainly due to tlie variance 

in measurements. On the other hand, the general-purpose hypervisors QEMU-KVM ami 

VMware Server return remarkably higher round-trip latencies. 

Experiment Ic (Maximum achievable throughput wi th L V R M only). To fuLly 

understand the internal overhead (e.g., CPU or memory) of LVllM:’ we consider a difierent 

smting that excludes the network transmission part:. Here, we ]oad a trace file of lOOM 
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Figure 4.4: Experiment lb: Round-trip latenc}' in data forwarding. 

minimum-sized frames (i.e., 84 bytes) into main memory within the gateway. We add an 

input interface to LVRM to read the raw frames from RAM, and add an output interface 

to LVRM to simply discard the frames. Then LVRM reads the frames from RAM as fast 

as possible, relays the frames to a hosted VR, and forwards the frames to the output 

interface that will simply discard the frames. This enables us to eliminate the overhead 

that occurs in network transmissions. Here, we consider both C++ VR and Click VR, 

both of which use a single VRI to process the frames. 

Figure 4.5 shows the results. We note that C .1f- VR can achieve a sigiiificantlv 

higher throughput than Click VR，mainly because the latter is the implementation of a 

software router and contains different internal operations that incur substantial processing 

overhead. Thus, the peak achievable throughput depends on the irnplenientatioii of a VR. 

For C++ VR, which is a very simple VR implementation, LVRM can achieve 3.7M frames 
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Figure 4.5: Experiment Ic: Achievable throughput with LVIIM： only. 

per second for the smallest frame size 84 bytes; it can achieve 922K frames per second, 

or eqiiivalently, llGbps, for the largest frame size 1538 bytes. 

Experiment Id (Round-trip latency with LVRM only). Similar to Experiment ].(:， 

we evaluate the minimum round-trip latency with LVRM: only by excluding the network 

transmission part. We use the same setting as in Experiment Ic’ tliat is. we let LVRM: read 

raw frames from main memory rather than from, the network interface. LVRM forwards it 

to a VR that: is hosted, and the VR forwards it to the output; interface, where we simply 

discard the raw frames. We measure the latency of each frame from the input interface 

(i.e.. main memory) to the output interface (i.e., where the raw frames are discarded) and 

compute the average latency for a given frame size. 

Figure 4.6 shows the results. If C++ VR is hosted on LVRM:, tlie latency is within 

15 as opposed to 70-120 /j.s as in Experiment lb. Thus, LVRM ])y itself does not 
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Figure 4.6: Experiment Id: Round-trip latency with LVRM: only. 

contribute too much latency overhead as opposed to the network interface. The use of 

Click VR introduces a higher latency (in the range of 25-35 //s), but this latency remains 

small in general. 

Experiment l e (Latency of message passing). We now evaluate the latency of 

LVRM in relaying messages among VRIs. We have LVRM host a C..I…“卜 VR，which has 

two VRIs. Then we have one of the VRIs send a control event to another VRI through 

tlie control queues. Then we measure the latency of such message passing between the 

two VRIs. We consider two settings: (i) no load, in which there is no raw data frames 

traversing LVllM, and (ii) full load, in which we use the topology in Figure 4.1 and have 

the sender hosts generate raw frames to the receiver hosts at the achievable throughput 

(see Experiment la). 
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Figure 4.7: Experiment le: Latency of message passing. 

Figure 4.7 shows the latenc}^ of relaying control events between two VRIs versus dif̂  

ferent sizes of the control events. The full-load setting has a higher latency than the 

no-load one. The reason is that in the full-load setting, a VRI is usually in the middle 

of processing a data frame when a control event arrives in the control queue, so it incurs 

some dday to retrieve the control event. However, we observe that the latency in the 

full-load setting remains in the range of 10-12 / � � w h i c h is relatively small compared to 

the network transmission part (see Experiment lb). In the no-load setting, the latency 

is only in the range of 5-7 /j-s. Overall the latency overhead of relaying control events 

between two VRIs is insignificant. 
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4.3 Core Allocation 

now evaluate the core allocation mechanism in WRM. Based on the topology in 

Figure 4.1. we have the two sending hosts generate a certain traffic load, which contains 

raw frames of minimize frame size (i.e.； 84 bytes), to the gateway on which we run LVRM. 

Our goal IS to show that LVRM can dynamically allocate CPU cores to a VR based cm 

the input traffic load. 

Experiment 2a (Throughput; analysis on core affinity). In this experiment, we 

evaluate how core affinity in the core allocation mechanism affects the throughput. We 

have LVIIM host a, single VR (either the C++ VR or the Click VR), and we create a. single 

VRI for the VR to process raw frames. We run LVRM： as a user-space process on a CPU 

core. Given that our gateway has two quad-core CPUs, we consider different approaches 

of allocating a CPU core for i;he VRI: (i) “sibling”，in which LVRM dedicates a CPU 

core that: resides in the same CPU as with LVRM，(ii) “non-sibling,,, in which LVRM 

dedicates a CPU core that resides in a different CPU as with LVRM, (iii) “default”，in 

which LVRM lets the kernel assign the CPU core to the VRI, and (iv) “same”，in which 

LVRM dedicates the same CPU core on which LVRM is currently ruiinirig (i.e., it lias 

t:wo processes ninning on one core). 

Figure 4.8 shows the achievable throughput for both C...1—f- and Click VRs. Clearly, 

t:he “same” approach has the poorest performance, as a single core is bound with more 

than one process. For the Click VR, both the “sibling” and “iion-sibliiig” approaches have 

similar achievable throughput，mainly because the bottleneck is due to the processing load 

of the Click iinpleiiientation. However, for the C-f....I.. VR, we observe that; the “sibling” 

approach lias the highest achievable tlirouglipiit. Thus, in general it is more beneficial 

to first associate a, sibling core to a VR if possible. 
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Figure 4.8: Experiment 2a: Throughput anai3 ŝis on core affinity. 

We also note that; the “default;” approach has less achievable throughput, even when 

compared to the “noii-sibling” approach. The reason is that the kernel may occasionalh^ 

switch a VRI process to a different core. This creates context switches, and will degrade 

the throughput performance. Thus, LVRM seeks to dedicate a core to a VRI 
process. 

Experiment 2b (Throughput comparisons on fixed core allocation). In this 

experiment, we seek to show that it is important to adjust the number of cores assigned 

to a VR based on its traffic load. We have LVRM host a single VR (either the C十+ VR or 

the Click VR). We then let LVRM fix the number of cores (i.e., VRIs) associated with the 

VR at the beginning when the VR is first started. Based on the topology in Figure 4.1, 

we iiiject a traffic load of maximum 360 Kfps. In the C++/Click VR knplementatkm. 

WG add a dummy processing load of 1/60 ms for each received raw frame before the raw 

frmne is to be forwarded, in order to make the comparison of the various solutions in tlio 
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siinilnr câ ses that tlie applications are CPU-bound. In the ideal case, if c < G corĉ s ai'o 

allocated for a VR, then t;lie achievable throughput is 60c Kfps. 

Figure 4.9 shows the achievable throughput of the C++/Click VR versus the number 

of cores allocated for the VR，as well as the maximum achievable throughput in the 

ideal case (labeled as “max”)，Note that the gateway that we currently use has eight 

CPU cores, one of which is used by the W R M process itself. Thus, we have seven cores 

available for the VR. ¥/e observe that the achievable throughput of the VR can scale up 

with the number of cores available. For the C++ VR, its achievable throughput is slightly 

less than the ideal case, implying that LVRM by itself is not a performance bottleneck. 

Oil the other hand, if the number of allocated cores is larger than the actual number of 

cores available in the gateway, then we observe contention, and the achievable throughput 

drops. Thus, INRM seeks to limit the number of cores allocated for a VR based on the 

available CPU cores in the currently deployed system. 

Experiment 2c (Dynamic core allocation). In this experiment, we evaluate the 

dynamic core allocation approach that adjusts the number of CPU cores based on the 

traffic load of a VR. We assume that LVRM hosts a single C++ VR, whose number of 

VRIs is varied by LVRM based on the current traffic load. Based on our topology in 

Figure 4.1，the two sending hosts generate an aggregate of traffic rate at S (in Kfps) for 

the C++ VR, while S increases from 60 to 360, and decreases from 360 to 60, at a step 

size of 60 at every 5 seconds. We also add a dummy processing load of 1/60 ms for each 

received raw frame to the VR implementation. We allocate c CPU cores to the VR if the 

aggregate traffic rate is 60(c — 1) and 60c Kfps. For example, LVRM initially allocates 

one CPU core for tlie VR. If the aggregate traffic rate reaches the threshold 60 Kfps, then 

LVRM increments the number of cores for the VR to two. Note that each allocated core 
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Figure 4.9: Experiment 2b: Throughput analyses on niiniber of instances, 

is associated with a VRI. 

Figure 4.10 shows the number of CPU cores (or VRIs) allocated for the C++ VR with 

respect to tiie traffic rate. We observe that the number of cores is allocated for tlie VR, 

in ail expected manner. This shows that our dynamic core allocation approach can adapt 

the number of CPU cores with respect to the traffic load of a VR. 

We also measure the time for allocating/deallocating a core for a VR (shown m the Fig-

lire 4.11), corresponding to the Figure 4.10. This latency metric corresponds to the time 

inclusively between the begin of iterating VR monitors and the end of crea,tino;/destroviii^ 
o / o 

a VR instance adapter, including the retrievals and the comparisons with the load esti-

nmtes and the thresholds. In this Figure, we aim to show that the core reallocations of 

IA,RM will not become a performance bottleneck in data forwarding latency. This Figure 

shows tlie reaction latency of different reallocations versus the elapsed time. In. generML 
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Figure 4.10: Experiment 2c: Dynamic core allocation for one VR. 

we observe tliat the times for the allocations and the deallocations are within 900 (js and 

700 /is, respectively. Thus, the core allocation/deallocation process can be completed 

within a small reaction time comparing to the International telecommunication Union 

(ITU) standard G.114 [29] which states that 150 ins of one-way, end-to-end (from mouth 

to ear) delay ensures user satisfaction, for telephony applications. As expected, the effect 

of LVRM to latency-sensitive applications such as Voice over Internet Protocol (VoIP) 

is not excessive. The reaction time is also small comparing to the TCP timeouts, and 

we show that the effect of LVRM to TCP is also not excessive in the Sections 4.4 and 

4.5. Second, we observe that the allocations have the higher latencies than the deallocar-

t:i(ms. These results are expected, since the deallocations are simpler than the allocations 

involving the heavy-weight process creations. 

Tlie latency performance with more VRIs is slightly worse than that with less VRIs. 
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Figure 4.11: Experiment 2c: Dynamic core allocation for one VR. 

The reason is that in addition to creating/destroying the VR instance adapter, iterating 

more VR monitors and retrieving more load estimates also incur additional performance 

overliead of ax-cessing memories and processing various comparisons. 

Experiment 2d (Dynamic core allocation with more than one VR) . In this 

experiment, we aim to show that our dynamic core allocation can handle more than one 

VR. We 

now have LVRM host; tw.o C-f......f- VRs. Based on our topology in Figure 4 ] earh 

sending host generates a flow that is to be forwarded by a respective C-|......I- VR. We also 

have the two flows start at different times. Tlie core allocation condition is the same 

as in Experiment 2c, such that we allocate c CPU cores to each VR if the aggregate 

traffic rate is 60(c — 1) and 60c Kfps. Tlie traffic generation approadi is similar to that 

ill Experiment 2c, except that each flow has a maximum rate 180 Kfps and. the step size 

is 30 Kfps. 
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Figure 4.12: Experiment 2d: Dynamic core allocation for more than one VR. 

Figure 4.12 shows how the core allocation scheme adjusts the numbers of CPU cores 

for each of the VRs based on their traffic rates. We observe that each of the VRs is 

allocated the nuiiiber of cores iii an expected manner, and the allocation is reflected with 

a small reaction time. 

Experiment 2e (Dynamic core allocation with dynamic thresholds). In this 

experiment, we aim to show that our dynamic thresholds for the dynamic core allocation 

can handle VRs with different service rates. We also have LVRM: host two C++ VRs. 

Based on our topology in Figure 4.1, each sending host generates a flow that is to be 

forwarded by a respective C-l......I- VR. Nevertheless, we have the t;wo flows start at the 

same time. The core allocation condition is similar to Experiment 2d, except that we 

allocate c CPU cores to each VR based on the dynamic thresholds. Tlie traffic generation 

approach is similar to that in Experiment 2(1，except that each flow has a maximum rate 
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Figure 4.13: Experiment 2e: Dynamic core allocation with dynamic thresholds. 

180 Kfps a,t： the beginning and 1:,he ratio of V R I t o VR2,s service rates is 1 :2 . 

Figure 4.13 shows how the core allocation scheme adjusts the m.imbers of CPU cores 

for each of the VRs based on their service rates. We observe tlmt each of the VRs is 

allocated tlie number of cores iii an expected manner, ami the allocation proportionally 

reflects tlie service times with a small error. 

4.4 Load Balancing 

In this section, we explore the load balancing iiiiplemeritation of LVRM. Similar t o Sec-

tiori 4.3. we use tlie topology in Figure 4.1, we liave the two sending hosts generate raw 

frames of niiniiiiize frame size (i.e., 84 bytes) to the gateway on which we riii.i. LVRM. Our 

办)al IS to ex|:)]ore tlie achieva]:)le throughput of different load balaiidiig iin]:)]ciiioiitatioiis. 
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Experiment 3a (Throughput of load balancing implementation in a single VR) . 

l】i this experiment, we first evaluate how I.VRM balances the processing load among VRIs 

of a single VR. We generate a traffic load of 360 Kfps to the gateway. We have LVRM host 

a single VR (either the C++ VR or the Click VR). In the VR implementation, we also 

add a dummy processing load of 1/60 ins to each VRI. Based on dynamic core allocation, 

the VR eventually is allocated six cores, each of which runs a VRI (see Experiment 2c). 

We evaluate different load balancing approaches, iiicliiding join-the-sliortest-queiie (JSQ), 

round-I'obm (RR), and random (see Chapter 3). We then evaluate the achievable through-

put of eacli load balancing scheme. 

Figure 4.14 shows the achievable throughput of different load balancing schemes, as 

compared to the maximum achievable throiighput (labeled “max”) in the ideal case (i.e., 

360 Kfps). The load balancing schemes have similar achievable throughput. The Click VR 

has less achievable throiighput than the C-|—I- VR, mainly due to its internal processing 

load. Note that JSQ slightly outperforms others since it distributes raw frames based on 

the current load of eacii VRI, while RR and random do not take this factor into account. 

Experiment 3b (Load balancing among VRs). In this experiment, we evaluate how 

LVRM balances the loads of more than one VR. We have LVRM host: two VRs that are 

either both C++ VRs or both Click VRs. Using the topology in Figure 4.1，each sending 

host generates a flow that is to be forwarded by a respective VR. The traffic rate of each 

flow is 180 Kfps (i.e., the aggregate traffic rate is 360 Kfps). For each of the two VRs, 

we measure the achievable throughput values (call them 7.\ and Ti). Then we compute 

T = 2 X mmiTi,T2), and compare it with the ideal value (i.e., 360 Kfps). If T is close to 

the ideal value, then it implies that both VRs receive fair shares of processing load. 

Figure 4.15 shows the results. For the C++ VR, we observe that the value of T for 
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Figure 4.14: Experiment 3a: Load balancing among VRIs of a VR. 

each of the load balancing scheme is very close to the ideal value (labeled as “Max”). 

For the Click VR, its achievable throughput is less due to its internal processing load. 

Overall, LVRM can maintain load balancing among more than one VR. Also, similar to 

Experiment 3a’ we observe that JSQ outperforms other load balancing schemes. 

Experiment 3c (Frame-based and flow-based load balancing). In this ex-

perimeiu, we evaluate how LVRM balances the FTP/TCP loads and compare both the 

frame-based and the flow-based load balancing. We have LVRM host at most six VRIs 

of the same VR that is C++ VR. Using the topology in Figure 4.1, it generates 100 pairs 

of flows that are to be forwarded by the VRIs (, respectively if the implementation is 

flow-based). Here, we consider two types of metrics: (i) the aggregate throughpm and 

(ii) the fairness. 

Figure 4.16 shows the aggregate throughputs of different load balancing. First, wo 
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Figure 4.15: Experiment; 3b: Load balancing among VRs. 

observe that the native Linux IP forwarding and the LVRM with JSQ load balancing 

have the highest aggregate throughput, whicii are lower than the link rate. This result is 

expected, since TCP may push some small segments such as the FTP control messages 

and acknowledgements (see Section 42 for details of throughputs with small frames). It 

is reasonable that the aggregate througlipiits are lower than the link rate. 

The throughput performances of LVRM with flow-based load balancing are slightly 

worse tliaii that with the frame-based load balancing, since the data paths with the flow-

based load balancing are less simple such as involving some connection tracking. Besides 

accessing the liash tables, the connection tracking function also updates the timestamps 

getting the process times via the system call times() which incurs some 

overheads. 

Figure 4.17 shows the rnax-rnin fairness of different load balancing, normalized by their 
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Figure 4.16: Experiment 3c: Aggregate throughputs. 

corresponding aggregate throughputs. The indexes are all over 0.6，wiiich are good. For 

LVRM with JSQ load balancing, it generally achieves the fairness as wdl as the native 

Linux IP forwarding does. We note that using flow-based load balancing has smaller 

fairness than using frame-based load balancing. The reason is that the flow-based load 

balancing is more sensitive to the variances of the flow sizes, as the granularity of the 

flow-based load balancing is coarser than that of the frame-based load baJanciiig. 

Figure 4.18 shows the Jairrs fairness index of different load balancing. It is important 

to note that the indexes are all over 0.9, which are good. More importantly, it means that 

the majority of the flows are also fair with, the use of LVRM with different load balancing. 
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Figure 4.17: Experiment 3c: Max-min fairness. 

4.5 Scalability 

We finally evaluate the scalability of the flows in LVRM. We seek to address the following 

question: 

• With only little losses of the throughputs and the fairness, is LVRM scalable in 

other complicated cases? 

In this section, we consider the case where LVllM hosts at most six VRIs, and the 

VRIs used only process raw frames. Similar to Sections 4.3 and 4.4, it is based on the 

topology in Figure 4.1. \¥e have four hosts generate realistic FTP traffic load, which 

contains TCP segments of various segment sizes, through the gateway on which we run 

LVriM. Our goal is to show that LVRM can maintain the throughputs and the fairness 

while it is scalable to large iiiimbers of flows. 
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Figure 4.18: Experiment 3c: Jaiii/s fairness index. 

Experiment 4 (Scalability). In this experiment, we especially evaJuate how the con-

gestioii control among TCP flows responds to LVRM. TCP generates a traffic load of 

almost maximum rate via the gateway. We have maximum of 1 Gbps (i.e., 1000 Mbps). 

In the VII implementa,tion, we do not add a dummy processing load to each VRI as TCP 

responds to late segments. So mainly due t,o lost segments, the flows eventually Imve con-

gestion crests’ which are just below the maximum. We then evaluate the average rates in 

crests’ aggregating different flows. We also evaluate the fairness of aggregate throughput. 

We use the max-ruin fairness and the Jairrs fairness index of all flows. 

Figure 4.19 shows the aggregate forward rate with different number of flows. The 

maximum aggregate rate in the ideal case is 1000 Mbps. The LVRM with frame-based 

load balancing and the native Linux IP forwarding have similar aggregate forward rate, 

wlndi is blightly less than the ideal case. It is mamiy clue to TCP drops at iimximimi 
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Figure 4.19: Experiment 4: Aggregate forward rate. 

because of the congestion avoidance. Second, we also observe that the LVRM with frame-

based load balancing has the higher aggregate forward rate for most numbers of flows. 

Similar u) that in Experiment 3c, this result is expected. Overall, LVRM with more flows 

can still maintain the maximum rate. 

Figure 4.20 shows the rnax-rniii fairness of different load balancing versus the number 

of data flow, normalized by their corresponding aggregate throughputs. The indexes are 

all over 0.8, which are very good. The fairness performances of the W R M are roughly 

the same as that of the native Linux IP forwarding. 

Figure 4.21 shows the Jain's fairness index of different load balancing versus the niiru-

ber of data flow. Tlie indexes are all over 0.99, which are very good. For the Jaiifs fairness 

index, they generally achieve the almost highest fairness. We note that the majority of 

tlie flows are also fair with the use of LVRM with different load balancing. 
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Figure 4.20: Experiment 4: Max-miri fairness. 

Figure 4.22 shows the aggregate forward of different load balancing with 100 pairs 

of flows versus the elapsed time. Most of the time, the forward rates are around 700 

Mbps, which are good. It is also important to note that using LVRM 1ms roughly the 

same forward rate as that of native Linux IP forwarding. For both the native Linux: IP 

forwarding and the LVIIM:，there are little drops at the tails in terms of the throughput. 

We have to point out tliat tlie receive window of TCP's flow control also affect the source 

rate, since our realistic FTP programs read from the sockets and write to files but not 

simply discard the data. The results are that the source rates are sometimes faster than 

t:lie rates of a, FTP program to be scheduled by kernel in order to access the sockets and 

tlie files. 
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Figure 4.21: Experiment 4: Jaiirs fairness index. 

4.6 Lessons Learned 

We summarize the lessons learned from our experiments. 

• Overall LVIIM itself incurs minimal performance overhead in data, forwarding in 

terms of throughput and latency. It also provides a more lightweight approach than 

general-purpose hypervisors for hosting VRs. 

• LVRM dynamically allocates CPU cores for VIls based on their traffic loads, with, 

very small reaction times. To make core allocation effective, it is desirable to first; 

select sibling cores that reside in die same CPU as LVRM for core allocation, ami 

to dedicate a CPU core to at most one VRL 

• LVRM performs load balancing among VRIs of a VR, as well as among VRs. In 

general tlie joiri-tlie-shortest-queiie approach slightly outperforms other approaches 
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Figure 4.22; Experiment 4: Aggregate forward rate vs. elapsed time, 

that do not consider the current load of a VRL such as round robin and random. 

• LVRM is scalable in other complicated cases. It also provides a: fair approach as 

well as the native Linux IP forwarding. 
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Chapter 5 

Related Work 

Router virtiializatioD. has appeared in commercial products. For example, Cisco [9] and 

Juniper [22] partition the resources of a physical router into multiple logical routers, each 

of which has its own configuration and inventory information. However, their logical 

router management systems are not, fully op en-son reed, and hence lack the flexibility of 

customizing their resource management policies. 

Software programmable routers lim,e been studied for emulating routing functions of 

hardware routers. For example, router pliigins [11] are proposed such that they can be 

dynamically configured, loaded, and unloaded in the kernel. Another software router ar-

chitecture [27| is built on top of network processors, where low-level implementation issues 

of network processors are addressed. In particular, Click [21] and XORP [19] are exten-

sible software router architectures that build configurable and flexible router instances 

and can run on commodity infrastructures. In the context of router virtualization, both 

Click and XORP can be extended for multi-process frameworks. SMP Click [6] proposes 

Click optimization on a multiprocessor setting that parallelizes packet processing, while 

XORP e:nal:)]e8 multiple routing processes for different; routing protocols to run entirely 
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samiboxed. Other areas of router virtiialization include router experimentation [3, 26\ 

performance evaluation of softwa.re-based virtual routers on conimoditv hardware fl4. 15 . 

vimial router migration across hardware platforms [31], parallel executions of virtual ma. 

chines on a single data plane [25], and network I/O fairness [1], In particular, both [25, 1' 

address resource allocation of virtual instances in the context of network virtiialization. 

In [25], it considers allocation of processing power among different forwarding engines; 

while in |1), it allocates an upper boiiiid of bandwidth shares to virtiiaJ machines via rate 

limiting. Both of them do not consider how the allocation can be fine-tuned based on the 

load of each, virtual instance. 

With the emergence of multi-core technologies, miilti-core router design is getting 

incrcmsing attentions. A PC-based software router architecture [5] is proposed to use 

kernel-level enhancements (e.g., CPU core binding of kernel-level packet; ring buffers) for 

a multi-core server to speed up the routing performance. RoiiteBricks [13] proposes a 

multi-core architecture that speeds up packet processing, and PacketShader [18] further 

acceierates packet processing using both, multi-core and GPU technologies. Note that 

13, 18] use available CPU cores for boosting the packet I/O performance, while we focus 

01:1 using cores for packet processing inside routers. Our work differentiates itself from 

all the above virtual router architectures in that: it considers CPU core allocation tlmt is 

adaptive to tiie current traffic load. 

52 



Chapter 6 

Conclusions 

We explore the potential of building a router virtualization architecture in user space. 

We propose LVRM, a user-space load-aware virtual router monitor that hosts software-

based virtual routers atop a commodity multi-core platform. A key feature of LVRM 

is to dynamically allocate CPU cores to different virtual routers based on their traffic 

loads. We propose an extensible design for LVRM that supports different variants of im-

plementation including core allocation, load balancing, load estimation, and inter-process 

communication. We implement a proof-ot-concept prototype of LVRM, and conduct ex-

tensive empirical experiments. We demonstrate that LVRM incurs minimal performance 

overhead i n terms of throughput and latency as compared to hosting virtual routers atop 

general-purpose hyper visors. We also compare different variants of implementation for 

different components of LVRM, and show the extensibility of LVRM, • 

The source code of LVIIM is published for academic use at http://ansrlab.cse. 

cuhk•edu.hk/software/lvrm. 
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