
Deformation Analysis and Its

Application in Image Editing

J IANG, Lei

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

The Chinese University of Hong Kong

September 2011

I；! 2S JAW 2 鶴 丨 ’
I ' �一 I

V ‘
、、 .

Thesis Assessment Committee

Professor JIA Jiaya (Chair)
Professor WONG Tien Tsin (Thesis Supervisor)
Professor LEE Pak Ching (Committee Member)
Professor LEUNG Chi Sing (External Examiner)

摘要

本論文研究幾何變形下的圖像編輯問愿傳統的圖像編輯技術往往隱性地假定圖

像場景的幾何結構是平面的。如果不滿足假設，編輯方法可能會失敗。爲了取得

一個滿意的結果’我們需要場景的幾何結構來幫助圖像編輯。雖然編輯結果也可

以以交互方式得到，然而這個過程通常是耗時的。因此，我們提出一個可以自動

分析幾何場景的方法去支持圖像編輯。我們針對以下兩個問題討論：平面幾何結

構和胞狀紋理幾何結構的估計問題。

在平面幾何結構估計方面，我們提出了一個圖像大小變化的算法框架。我們首先

檢測並橋正輸入圖像中的平面結構，然後調整橋正圖像的大小。在這樣的框架

下，無論我們采用哪種圖像改變分辨率的方法，編輯結果的質量都可以得到顯著

提高。爲了實現這一目標，我們提出一個新穎簡單的平面識別方法，而無需重建

場景中的幾何結樣我們利用消失點和線段的信息然後使用二進制空間分割的機

制逐步細分圖像。視覺效果和用戶調查來可以證明我們方法的有效性。

其次’我們提出了一種方法來支持隨機胞狀紋理圖片的編輯。我們不對紋理像素

的空間分布和形狀做任何假設，只要求他們的形狀變化在統計上是不變的。我們

的方法可以在圖片紋理區域提取一個穩定的仿射變換場然後我們可以利用這個

信息來支持圖像編歡我們的方法的核心在于一種新穎高效的仿射變換場提取方

法。我們首先分析輸入圖像的紋理像素並計算每個紋理像素的局部方向，然後我

們可以估計局部的仿射變換。由于紋理像素的形狀是隨機的，這些估計的變換之

間可能存在不連續和波動。我們假設這些波動是統計不變的，這樣我們可以叠代

地通過圖傳播的辦法消除變換場的不連續性。最後，我們用差值方法取得整個紋

理上的仿射變換場。我們的方法可以將物體粘貼到紋理區域。我們能夠不用重建

三維結構而取得物體緊貼場景幾何結構的效果。此外，我們的方法能夠擴展支持

變換紋理，陰影映射等。我們在一些圖片上顯示算法取得的可觀結果。

i

Abstract

The thesis studies image editing applications in presence of geometric defor-

mation. Traditional image editing techniques often implicitly assume that

the underlying geometry is planar. If the assumption is not satisfied，the edit-

ing techniques may fail. In order to generate a satisfactory result, knowledge

of the underlying geometry is required to support image editing. Although it

couM be specified interactively, the process is usually tedious and labor inten-

sive. Therefore, we present techniques to analyze deformation automatically

to facilitate image editing. In particular, we address deformation estimation

problem for facade image and cell-structured texture regions.

In the first part, we propose a framework to support image resizing. In

our framework, we first identify the approximated id.Qd.des in the input image,

rectify each facade, and then perform our favorite image resizing method in

rectified domain. With our framework, the visual quality of the resized im-

age can be significantly improved, regardless of the actual resizing method

being employed. To achieve the goal, we propose a novel, simple，and fully

automatic facade identification method without reconstructing the scene ge-

ometry. With the clues of vanishing points and converging lines, it recursively

subdivides the input image into facades, using the binary space partitioning.

V/e demonstrate the effectiveness of the framework by visual comparisons

and user studv.

ii

In the second part, we present a method to support editing of real photos

with stochastic cell structured texture. The spatial distribution of texels as

well as the shape of the cells can be arbitrary as long as the shape variation

is statistically stationary. Our method can extract a stable affine trans-

formation field from the cell structure and distribution, making use of the

cell-based texture cue for photo editing. The core of our method lies in a

novel and efficient cell-based estimator for the affine transformation field. By

identifying cells on the input photo and extracting the orientation of texture

structure in each cell, we can estimate a candidate affine transformation local

to each cell. Since the cell shapes could be stochastic, these candidate trans-

formations may however have discontinuity and fluctuation. By assuming the

fluctuation to be statistically stationary, we can iteratively eliminate discon-

tinuity by propagating the transformation, and suppress the fluctuation b}̂

filtering. Finally, a full affine transformation field is obtained by interpola-

tion. Using our method, we can paste objects on the analyzed image region.

The results can visually adapt to the underlying geometry without any 3D

reconstruction. In addition, our method can also be extended to support re-

text,uring and shadow casting. Visually promising results are demonstrated

on a, number of real photos.

iii

Acknowledge

My two years of study in CUHK would be a unforgettable experience in my

life. I have gained a lot during this period. I would like to express my sincere

thanks to all the people who has ever given me help and support-

Especially, I would like to thank my supervisor. Professor Wong Tien

Tsin. His acute vision helped me grasp the direction for my research. When

I encountered technical problems, his useful guidance helped me overcome

the difficulties. His passion for research as well as his patience for student

constantly inspired me throughout my two years，study.

I would also like to thank Xiaopei Liu for collaborating cellular texture

project in the thesis. Without his novel ideas and persistent work, the project

would not be carried out successfully. Besides，he has also given me a lot of

useful suggestions both for my research and my personal life.

Finally, I would like to thank my dear friends in the lab. My life in CUHK

would not be so colorful without them. I sincerely wish them all the best in

the future.

iv

Contents

1 Introduction 1

2 Background and Motivation 5

2.1 Foreshortening 5

2.1.1 Vanishing Point g

2.1.2 Metric Rectification 3

2.2 Content Aware Image Resizing 11

2.3 Texture Deformation I5

2.3.1 Shape from texture 16

2.3.2 Shape from lattice 18

3 Resizing on Facade 21

3.1 Introduction 21

3.2 Related Work 23

3.3 Algorithm 24

3.3.1 Facade Detection 25

3.3.2 Facade Resizing 32

3.4 Results 34

4 Cell Texture Editing 42

4.1 Introduction 42

V

4.2 Related Work 44

4.3 Our Approach 46

4.3.1 Cell Detection 47

4.3.2 Local Affine Estimation 49

4.3.3 Affine Transformation Field 52

4.4 Photo Editing Applications 55

4.5 Discussion

5 Conclusion g5

Bibliography 57

vi

List of Figures

1.1 Interactive illustration 2

1.2 Image resizing failure result 4

2.1 Visual effects of foreshortening 5

2.2 Vanishing point illustration q

2.3 Line intersection illustration 7

2.4 Metric Rectification of Plane 11

2.5 Seam Carving demo 12

2.6 Warping demo I3

2.7 summarization demo 14

2.8 Texture variation due to texture mapping 15

2.9 Shape from texture illustration 16

2.10 Lattice detection I9

3.1 System overview 23

3.2 Facade detection 25

3.3 Facade illustration 27

3.4 Binai}^ space partitioning in progress from (a) to (d) 28

3.5 Results on facade detection 34

3.6 Merge of facade and non-facade region 35

3.7 Resizing on image (left) and on facades (right) 36

vii

3.8 Failure cases

3.9 Result "temple." 39

3.10 Result “hotel.，， 39

3.11 Result “gate.，，

3.12 Result “train.，，

3.13 Result "door.”

3.14 Result "hotel2." 40

3.15 Result "library." 40

3.16 Result "spam." 40

3.17 Result "street."

3.18 Result "hall."

3.19 Result "handrail."

3.20 Result "building." 4I

4.1 Cell structures in real photographs 43

4.2 Ceil detection

4.3 Affine estimation at a cell 50

4.4 The overall process of estimating local affine 5 1

4.5 Estimated orientations 52

4.6 Results on affine transformation estimation 61

4.7 Object pasting 62

4.8 Shadow synthesis procedure 62

4.9 Image attachment results 63

4.10 Object distribution results 63

4.11 Image cloning results 63

4.12 Shadow casting results 64

4.13 Various image editing result on cellular texture 64

4.14 Limitations 64

viii

List of Tables

3.1 User Study 38

3.2 Timing statistics 38

4.1 Timing statistics on our method 58

ix

Chapter 1

Introduction

�Vith the increasing popularity of digital cameras, it becomes more and more

convenient for people to create their personal artistic photos. In order to

make their work more visually appealing, people would use image editing

softwares, such as Adobe Photoshop and GIMP, to process their captured

photo, which could greatly enhance the photo effects. For example, with

bilateral filtering, the skin of an old woman could become incredibly smooth;

with image completion, unwanted objects could be removed without any

observable artifacts. In fact, it turns out that almost all the artistic photos

in the internet is more or less processed after the step.

Technically, this step is called image editing or image post processing. It

refers to the process of altering an image to achieve certain artistic effects.

There is a great variety of image editing techniques. Different techniques

target different applications. Some techniques aim at eliminating hardware

artifacts such as image denoising，image deblurring and etc. Some techniques

are designed to create man-made effects such as image composition, image

inpainting and etc.

In terms of editing scope, image editing techniques could be roughly di-

1

CHAPTER 1. INTRODUCTION 2

vided into two categories. One class of technique alters the image without

modifying the scene. Typical methods include image sharpening, noise re-

moval，histogram equalization and etc. This kind of techniques has another

name called "image filtering". The other kind of application manipulates the

image scene and the appearance of image object becomes different from the

original Typical methods include image completion, image resizing, image

composition and etc. For this kind of application, one important problem

is to maintain the perception correctness for the edited image, which is a

very challenging task. Most current methods focus on the low level consis-

tency problems such as discontinuity and distortion. However, we can still

not guarantee the appearance of the processed image is natural even if it

is free from these apparent artifacts. For example, when doing object drag

and pasting, the composite result becomes weird if ground shadow is not

considered.

Interactive editing enables user to keep perception correctness manually.

In most cases, high quality editing result could be achieved with sufficient

user intervention. However, it is often a tedious and labor intensive task.

Consider creating the effect of scattering fallen leaves on a perspective ground

(shown in figure 1.1), we need to specify the location and affine transforma-

| | H H H | ' ' - - • H I P ” �

Figure 1.1: The effect of scattering leaves on ground

CHAPTER 1. INTRODUCTION 3

tion for every leaf. In addition, the manually specified transformation tends

to be inaccurate and thus further adjustments needs to be performed. When

the number of leaves is very large, it might take couple of hours to create

a satisfactory result. Moreover, interactive approach is not flexible under

all circumstances. Some application such as image resizing demand few or

no user intervention. Interactive requirement could make the application

unsuitable for batch processing.

Therefore, it is necessary to take account of image semantic so that the

amount of user intervention could be reduced or even discarded. As pro-

posed in several works [44, 17, 60j，the quality of editing result could be

significantly improved by considering different high level semantics, such as

symmetry, illumination and etc. The thesis follows such an approach to fa-

cilitate image editing. In particular we focuses on the semantic of geometric

deformation. Currently, structured patterns under geometric deformation

are usually difficult cases for image editing applications. Most editing tech-

niques explicitly or implicitly assumes that the scene is planar and aligned

to the camera plane. When strong perspective or curved surface exist in the

original photo, the generated result would generally become unsatisfactory.

This is because structured lines and curves are likely to break after editing.

Figure 1.2 shows a failure result due to perspective. Moreover, without con-

sidering the underlying geometry, the appearance of edited result might have

perception artifacts. For example, regular distributed objects on geometry

surface might become stochastic after processing. In the thesis, we aim at

analyzing geometric deformation from a single image and use the estimated

deformation to assist current image editing techniques. We demonstrate that

artifacts due to deformation could be significantly reduced with our frame-

work.

CHAPTER 1. INTRODUCTION 4

nsT̂
l^mm

Figure 1.2: Image resizing failure result due to perspective
Especially, the thesis studies two problems in deformation estimation. In

chapter 3, we analyze foreshortening effect which is a common phenomenon

in man-made environment. It turns out perspective poses a difficult problem

for current image resizing methods. State-of-the-art methods could hardly

preserve structure continuity on resized image in presence of foreshortening.

We designed a method to analyze the foreshortening distribution in the input

image. Then we propose to perform resizing in a way similar to Wu et al [60 .

Non perspective region and perspective region are processed separately and

finally merged seamlessly. The resizing operation is always performed in a

domain free from perspective. In such a way, artifacts due to foreshortening

can be avoided.

In chapter 4，we study a more general deformation phenomenon on tex-

tured region. The underlying geometry could be perspective plane or even

curved surface. Traditional object drag and paste methods would fail on

these regions because of floating effects. We propose a method to estimate

an affiiie transformation field over the textured region. The transformation

field is taken into account in the drag and paste process so that the compos-

ite object would align with the underlying surface. We further extend our

method on on shadow synthesis application. Several results are shown to

demonstrate the effectiveness of our method.

Chapter 2

Background and Motivation

2.1 Foreshortening

Foreshortening is a common deformation phenomenon among natural images.

It appears when the scene spans a large range of distance from the observer.

The phenomenon would lead to two visual effects on the target image. First,

the object would look smaller as their distances increases. Second, the size

of the object along the direction of sight looks shorter than the size perpen-

dicular to the direction of sight. Figure 2.1 shows the foreshortening effects

in natural images. In photography, photographer sometimes use significant

foreshortening to create amazing effect.

Figure 2.1: Visual effects of foreshortening
Foreshortening estimation is an important topic in perspective geometry.

5

CHAPTER 2. BACKGROUND AND MOTIVATION 1。

It could support applications such as camera calibration, metric rectifica-

tion, road detection and etc. In the following part of this section, some

basic knowledge and algorithm about foreshortening would be introduced.

In particular, vanishing point, vanishing line and metric rectification will be

discussed. The knowledge would be essential for understanding our proposed

algorithm.

2.1.1 Vanishing Point

Vanishing point is an interesting phenomenon in perspective geometry. Par-

allel lines in 3D world will become non parallel after projected to image plane

arid these 2D lines will converge to an image point, which is formally called

Vanishing Point Figure 2.2(a) shows such a phenomenon. Vanishing point

often appears in man made environment. For example, the boundaries of

floor,shelf,library would form the parallel lines and vanishing points exist in

the intersection points of the projected 2D lines. In some cases, there might

be more than one vanishing point. For example, in a scene where the city

buildings are placed in a 3D grid world, there would be up to three vanishing

point. Figure 2.2(b) shows three vanishing points for a cubic building.

S 3 VANISHING POINTS -
LOOKING DOWN ^

,ir
(a) (b)

Figure 2.2: (a) image with one vanishing point (b) multiple vanishing points

CHAPTER 2. BACKGROUND AND MOTIVATION 1。

Vanishing point could be detected from line segment as well as gradient

orientations. Most of the work belong to the first category. There are a

great variety of methods for line segment detection. One popular method is

based on the Canny edge detector. First, edge map is extracted by Canny's

method. Then junction points on the edge are detected. Edge is partitioned

in these junction points. The partitioned edge segments are then fitted by

the Least Square Fitting. The edge segments with a large deviation are

discarded. The rest of edge segments will form the detected edge. There are

also other methods on this topic such as Hough transform, gradient based

method [56 .

Suppose we have detected line segments from image, which is denoted by

C The coefficients for the lines are aix + biy + a = 0, together with their

end points ej and ef. The most simple method to estimate the dominant

vanishing point is Hough transform. If there are only two elements in line

segment set (the vanishing point position would be computed as the cross

product vector of the line coefficient: (x, y, z) = (a^, bi, Ci) x (a?，62, C2). Here

the position of the vanishing point is expressed in homogeneous coordinate.

Its location in image domain could be computed by normalization P =

(as shown in figure 2.3). When there are more than two line segments, the

vanishing point position is computed using a voting based approach. Every

^ ^ 卜]卜2
o P= X b^

^ ^ L IJ L 2J

Figure 2.3: Line intersection illustration

CHAPTER 2. BACKGROUND AND MOTIVATION 1。

two combination of line segments is taken from the line set. A vanishing point

hypothesis is computed from the two selected line segments. Then the rest

of line segments will vote on the hypothesis. The hypothesis point with max-

imal votes will become the detected vanishing point. In practice, since the

exhaustive test of hypothesis would be computational expensive, RANSAC

(RANdom SAmpling Consensus) would replace the exhaustive search. A

random subset of two line segment is selected and voting is performed in the

subset. The process proceeds for several trials and the point with maximal

voting is selected.

When there are multiple vanishing points in image, the problem becomes

more sophisticated. Since the number of vanishing points is not known, it

becomes critical for algorithm to figure it out automatically. Some method

bypasses the problem by requiring user to specify it manually, such as Multi-

RANSAC (an extension to RANSAC). Recently, Tardif [52] proposes a robust

method based on J-Linkage clustering and overcomes the weakness.

Tardif makes use of J-Linkage [53] to cluster edges that have a high proba-

bility to belong to the same set. The method first computes several vanishing

point hypothesis. Then a preference matrix is computed. Each element in

matrix correspond to a boolean value which specifies if the corresponding

edge and hypothesis is consistent. Then J-Linkage clustering is applied to

the preference matrix. The clustered line segments are more likely to belong

to the same set and thus are used to recompute the final vanishing points.

2.1.2 Metric Rectification

A perspective image needs to be rectified to remove foreshortening effects.

This process is normally called metric rectification. The term metric means

that the angles and length ratios are correctly rectified but not of absolute

CHAPTER 2. BACKGROUND AND MOTIVATION 1。

scale. It is reasonable as it is impossible to know the absolute scale without
additional knowledge.

The rectification matrix is a 3 x 3 homogeneous matrix H. The point

in the image plane is projected to the world plane by q = Hp, where p is a

3 X 1 column vector (00, y, 1)丁. The homogeneous matrix H has nine degree

of freedom. However, because it is a homogeneous matrix, the matrix scale

is trivial. As a result, there is only eight degrees of freedom. The matrix

could be further decomposed into two parts, one part is the metric part and

the other is the non metric part.

/o/? t\ fa b 0\
H = M N , M = [l 巧 1 0 1 0 (2.1)

V / \c d 1J
For the non metric part N, we could observe that there is only four degrees

of freedom. So the rectification is a four parameter problem. An effective

method to compute the rectification matrix is manually specifying four corner

points corresponding to the corner points of rectangular structure. Then the

matrix could be solved from this correspondence. This method could be very

accurate if there is a very salient rectangular plane.

The rectification matrix could also be computed if two vanishing points

w and V that corresponds to the horizontal and vertical direction are de-

termined. In such case, the homography matrix could be decomposed to

projection and affine part H = AP. The two part could be both determined

from knowledge of vanishing points.

For the projection part, the matrix has a general form as follows:

/ I 0 0\
} ？ (2.2)

yi h 丄 y

Where the vector {I1J2,1)丁 is the same as the vanishing line coefficient for

the perspective plane. Vanishing line is a line where the perspective plane

CHAPTER 2. BACKGROUND AND MOTIVATION 1。

ends at infinity of image and has two degrees of freedom. As vanishing point

always locates in vanishing line, it is easy to determine the parameters of

vanishing line from the position of two vanishing point, which is computed

by I 二 (J.i,l2,1)T = u X V,

In terms of affine transformation, it could be decomposed into three parts

classically: rotation, shearing, anisotropic scaling. The rotation matrix needs

to be applied first to align one axis of the facade to the X axis so that

subsequent rectification could be performed. The rotation matrix has a form

as follows:
/ cos(7) sin(7) 0 \

— sin(7) cos(7) 0 (2.3)
V 0 0 1；

where the angle 7 correspond to the angle between X axis and the vanishing
point ua

Then shearing transformation is applied to transform two axes to be

orthogonal. The shearing matrix has a general form as follows:

/ I - cot((9) 0\
H 。 0 ？) (2.4)

where the angle <9 corresponds to the shearing angle between two orthogonal

axis. As the two vanishing points already aligns with the orthogonal axes

of the facade, the shearing angle could be equivalently determined from the

position of two rectified vanishing points:

0 = arccos (2 5)

VAWuaI 、 .)

where va and Ua correspond to the projection rectified vanishing points，

respectively: va 二 Pv, u-a = Pu.

Anisotropic is not considered in the rectification because the dominant

structures of facade has already become orthogonal and thus does not affect

the image editing results. The final rectification matrix is a decomposition of

CHAPTER 2. BACKGROUND AND MOTIVATION 1。

three matrix: T = SRP. Figure 2.4 shows the process of decomposed metric
rectification.

(a) Original (b) After Projection (c) Projection+Rotation (d) Final

Figure 2.4: Metric Rectification of Plane

2.2 Content Aware Image Resizing

Content aware image resizing is a popular image editing technique that

emerges recently. Traditionally, when people want to fit an image to a target

resolution, rescaling or cropping would be employed. However, these two

simple techniques has limitations. Rescaling would lead to distortion. Crop-

ping might discard important regions. Those weakness gives rise to content

aware image resizing. The objective for this image editing technique is to

resize an image with minimal distortion of the content. Part of the work in

this thesis is based on this technique.

Among all current resizing techniques, the result is achieved by either-

removing or distorting less important image regions. Both of these two ap-

proaches could preserve the salient regions in image. Typical methods include

Seam carving [3, 47]，Optimal warping [57]. There are also some hybrid meth-

ods such as Multiple operator [48]. Moreover, image summarization could

also achieve the resizing effects. Typical methods include patchmatch image

editing [50, 4]，Shift-map [46], Graphcut [33]. The difference between image

resizing and retargeting is that the pixel locations are rearranged so the rel-

ative position of the object might become different. Fortunately, it turns out

CHAPTER 2. BACKGROUND AND MOTIVATION 1。

to be a small problem as the difference is not significant. In the following

part，these state-of-the-art image resizing techniques will be discussed.

Seam carving Seam carving [3, 47] is the first proposed method for content

aware resizing. The underlying principle is simple and easy to understand.

As implied by its name, the method carves seams consecutively from image so

that image resolution get modified. There are hundreds of thousands of seams

in the image. The best seam is identified as the one that would cause minimal

distortion. In particular, conventional seam carving uses gradient magnitude

as clues to test if removing the pixel is likely to introduce distortion. The

larger the gradient is, the more likely it would cause discontinuity. Dynamic

programming is used to retrieve the optimal seam. Specifically, a table is

computed to record the optimal seam from each pixel to top of the image.

Then the seam pixels are discarded and rest of image are merges together.

Seams are consecutively removed until the image fits to the target resolution.

Figure 2.5 shows the result obtained by seam carving

_ _ _

IBinHiB
(a) Original (b) Seams (c) Result

Figure 2.5: Seam Carving demo

Warping based resizing Warping based method [57] handles the resizing

problem in another way. It is based on the scaling method. Traditional scal-

ing method distorts the image uniformly so object gets distorted inevitably.

CHAPTER 2. BACKGROUND AND MOTIVATION 1。

In contrast, the warping-based approach distorts the image differently in

different regions. Important regions get less distorted and flat regions get

over squeezed. In such a way, the content of the image get preserved. In

particular, the warping is achieved by texture mapping. A quad grid mesh

is overlayed on source image. A corresponding target mesh is computed on

target image via solving an optimization equation. With the mesh correspon-

dence, the target image could be obtained by texture mapping. Figure 2.6

shows the result obtained bv warping ba.sed method.

(a) Original (b) source mesh (c) target mesh (d) Result

Figure 2.6: Warping demo

Bidirectional image summarization Image summarization [50, 4] is an

image retargeting technique. This method could achieve image resizing by

summarizing visually similar data. The data is not restricted to flat patches

but also similar texture patches. Therefore, it could achieve different effects

compared to the image resizing techniques. For example, for a photo with

several similar windows, the number of windows might get reduced after

summarization. This method is based on a bidirectional metric which both

measures the coherence and completeness from the source image to target

image. By minimizing this objective function, a target image with a given

resolution would be generated. The target image is solved in an iterative way

with a coarse to fine framework. Figure 2.7 shows the result obtained by the

summarization techniques.

Several other methods could be applied for image resizing as well. Shift-

CHAPTER 2. BACKGROUND AND MOTIVATION 1。

(a) Original (b) Summarization result

Figure 2.7: summarization demo

map [46] optimizes a resized image via a graph labeling process, which enables

flexible user control. The architectural texture synthesis method [33] makes

use of the graphcut synthesis techniques and formulates the resizing as a

shortest path problem. Wu et al. [60] summarizes the image by first analyzing

the image symmetry.

However, all these above methods does not give good results in perspec-

tive scenarios. Especially, seam carving would cause the line segment dis-

continuity. Warping based method would cause straight lines get distorted.

Image summarization will also fail in straight line cases. In addition, it could

not summarize visually similar data that locates in perspective plane.

User constraints could be added to attenuate the line continuity problem.

For seam carving methods, Utsugi et al. [55] proposed a constraint method.

His method controls the distribution of seams so that it is uniformly dis-

tributed along the constraint line. In such a way, the line continuity is

preserved. For warping based method, the additional constraint restricts the

position of the mesh vertex so that colinear property is maintained [57]. For

image summarization，the constraint is realized by modifying the nearest

neighbor field [4]. However, there is no universal method to apply line conti-

nuity constraint to all these methods. Moreover, no method could guarantee

CHAPTER 2. BACKGROUND AND MOTIVATION 1。

the vanishing phenomenon could be preserved.

Therefore, it is desirable to have a universal approach that could be ap-

plied to all different kinds of resizing method. Wu et al. [60] proposes to

process the deformation region and non-deformation region (symmetry i�e-

gion) separately. The non-symmetry region is resized using the warping

based method. The symmetry region is rectified and processed using graph-

cut texture synthesis technique. Then the two regions are merged together

to form the final resizing result. As the approach requires no extra deforma-

tion knowledge to be considered in the resizing method, the resizing modules

could be replaced by any other kind of method such as patchmatch, seam-

carving and etc. Our developed method follows a similar approach to address

the perspective problem.

2.3 Texture Deformation

Texture variation is another important clue to estimate scene geometry. Most

texture image has the property of statistically similarity: any part of texture

would look similar to each other. The property will break if texture is mapped

to non planar surface. The variation of the statistics would be due to the

projection to texture surface. Figure 2.8 shows two varying textures

Figure 2.8: Texture variation due to texture mapping

CHAPTER 2. BACKGROUND AND MOTIVATION 1。

i H 4 t f • 着 … I :：：,,：:::::

：： -：：三
« “ 赛 麵 - ： - ： - - . … 一 I I ^^mttn^

W m m k ^
^ m i t ' f t ' ^ ^ H l i l — 二一一 j …二二—.： “ 2 0 ， 。
Wf^lf f : … : : ： ： 7 , 10 •

Figure 2.9: Shape from texture illustration
Human could easily perceive the geometry from the texture variation.

However, it is not easy for machine to achieve the goal. Lots of work is

proposed on the topic in the past two decades. These work could be divided

into two categories. One class of method attempts to solve the problem from

texture statistics, which is often called Shape from texture. Another kind

of method makes use of texel distributions, which is widely known as the

Lattice based method. In the following part, these two kinds of work would

be discussed in detail.

2.3.1 Shape from texture

The objective of shape from texture is to estimate shape geometry from

a homogeneously textured image. Different method makes use of different

cues for estimation. Some methods are based on the texel distributions.

Some other methods make use of frequency knowledge. Those method could

be further be classified into two categories. One class of method aims at

recovering the normal map. The other attempts to estimate affine field.

These two knowledge could both be used for reconstructing the 3D geometry.

Figure 2.9 shows the general process of shape from texture.

Distortion field estimatioin One class of method estimate a distortion

field from a texture image. Then shape geometry is recovered from the

distortion field. The distortion field is a map where each pixel corresponds

CHAPTER 2. BACKGROUND AND MOTIVATION 1。

to its estimated affine transformation matrix. The affine matrix is normally

computed at several sample points. A relative affine transformation is solved

between each sample patch and a given reference patch. Then the distortion

field over texture surface could be obtained via interpolation.

Several different kinds of methods are proposed to compute the relative

affine transformation between a pair of patches. One method is based on

shape adaptation technique proposed by Lindeberg et al [37]. The shape

adaptation technique could be used to find an affine transformation matrix

for a given patch so that the patch becomes isotropic after the transformation

is applied. Suppose we have two patches, say h and h . After shape adap-

tation is applied, we could obtain two affine matrix Ai and A2. Then the

relative transformation between the two transformed isotropic patches could

be decomposed into uniform scaling S and rotation R. These two matrix

could both be efficiently solved based on scale space theoty [36]. Therefore,

the affine transformation matrix between the patch pair Ii and I2 could be

computed as T = AiSRA^^.

Leung and Malik [34] exploited another iterative image registration tech-

nique [39]. This technique takes a differential approach and uses spatial in-

tensity gradient to find a good match between a pair of patches. It assumes

that through an affine transformation A, one patch could become identical to

another path. Mathematically, it could be formulated as minimizing the SSD

distance between two patches Err = X； (/ i (. t) - l2(Ax + d)?. By approxi-

mating the transformed image in a differential form, the equation would be

expanded as Err « X； {h{x) 一 姻-VI^^ixjAAx - Then

the affine matrix T could obtained by solving a linear system equation.

The previous two methods both operates in the image domain. By com-

parison’ Malik and Rosenholtz [40] proposed a method that operates in fre-

CHAPTER 2. BACKGROUND AND MOTIVATION 1。

quency domain. The advantage of the approach is that it is insensitive to

small changes of position. Since small changes of position will only lead to a

change in phase of frequency response. The magnitude will become invariant

and could be exploited for transformation analysis.

Normal estimation The other kind of method attempts to estimate the

normal map over the texture. The shape geometry could then be recon-

structed from the normal Normal is a 3D vector which is perpendicular to

the tangent plane. It has two degrees of freedom, which corresponds to the

tilt and slant angle. The two angles could be estimated separately from local

patch statistics such as local frequency response, normalized auto correlation,

structure tensor and etc. Criminisi et al. [15] proposed to find homography

matrix by estimating the vanishing line parameters. It makes use of NAC

(Normalized Auto Correlation) to find statistics of similar patches and the

parameters of the vanishing line. Forsynth [21] proposed a mathematical

model to estimate geometry surfaces from the distribution of texels. By as-

suming that the texture without projection would have a uniform distribution

of texels, the varying distribution of texels is due to the uneven surface. More

recently, some methods propose to use frequency response of local content

to estimate the surface normal [41, 22]. It is based on the observation that

the dominant frequency at any position of texture is similar. The varying

frequency in texture would be due to the projection. In particular, the local

frequency is estimated by Gabor filter or Lognormal filter.

2.3.2 Shape from lattice

Another category of method attempts to estimate texture deformation from

lattice structure. In terms of texel distribution, texture could be generally

CHAPTER 2. BACKGROUND AND MOTIVATION 1。

divided into four classes: regular, near-regular, irregular and stochastic. The

regular and near-regular texture has a nice property that the distribution of

the texels is similar and could be covered by a lattice grid. Typical examples

include brick, honeycomb, fence and etc. The lattice based method deals

specifically with these two kind of texture. Figure 2,10 shows the lattice

structure for a facade texture.

H H
Figure 2.10: Lattice detection

The four points of a lattice grid could naturally define an affine transfor-

mation matrix. Hence the deformation field could be easily estimation from a

lattice structure. As the transformation between two neighboring grid might

be different, the estimated deformation field would become discontinuous if

the transformation is computed independently. Liu et al. [38] presented a

method to solve the problem. For each vertex in lattice, two linear inde-

pendent vector ti, t) is computed via optimizing the following minimization
problem:

Ni Nj
min � ^ J ^ i k - + t {Ij — I M f . (2.6)

j=l

After the vector ti, t: is computed, the deformation field is computed using
the MFFD algorithm [32 .

However, the most difficult problem for this method is lattice detection,

Liu，s original method requires user intervention to specify the location for

each texel. The interactive approach is apparently labor intensive. An auto-

matic detection algorithm is desirable and several works are proposed on the

topic. Hays et al. [24] proposes an iterative method to gradually discover the

CHAPTER 2. BACKGROUND AND MOTIVATION 1。

texel position. At each time of the iteration, candidate texels are proposed

using the MSER feature or NCC (Normalized Cross Correlation), then the

candidates are matched with detected texels and false proposals are rejected.

Next, the deformation field is interpolated over the entire texture. The tex-

ture is then warped so that the rest of the texels could be detected. These

steps form one iteration and the algorithm proceeds until no texels could be

detected any more.

Recently, Wu et al. [60] proposes a fast method to detect the lattice. The

method is based on Maximal Stable Extremal Region (MSER) detector [42].

MSER is a region feature detector that could detect salient blobs in a image.

As texels are often represented as blobs in a great variety of textures, the

detected blobs are good candidates for texels. Then Mean-Shift clustering

method [14] is applied to cluster the detected features in terms of their ellipse

parameters. Finally the lattice is formed in the dominant cluster of MSER

cells through propagation.

Chapter 3

Resizing on Facade

3.1 Introduction

Foreshortening is a common visual phenomenon captured by cameras and

our eyes due to the nature of perspective projection. Such phenomenon

becomes obvious when the image plane does not align with the major geom-

etry plane where the visual content situates (Figure 3.10(a)). However, it

leads to difficulty in image resizing，as most state-of-the-art image resizing

methods [3, 50, 4，46，57, 48j implicitly assume the image plane is aligned

with the geometry plane. Such violation of assumption leads to bending and

discontinuity artifacts when the images exhibit strong foreshortening. The

structural content, such as column and beam, in the image may also hardly

be preserved without manually specified constraints. (Figures 3.10(b) and

(c)). Note that adding constraint lines [4] may not guarantee the perspective

correctness in the resultant images, but requires extra input.

If we can identify the geometry plane, rectify it, and perform image re-

sizing in this rectified (hence aligned) domain, the above artifacts of existing

resizing methods can be effectively avoided. In this thesis, we make no as-

sumption on the alignment of image plane and geometry plane. We propose

21

CHAPTER 3. RESIZING ON FACADE 22

a simple and efficient method to automatically identify multiple geometry

planes (we call them facades) in an image and rectify them, so that the

subsequent resizing method can perform nicely. It seems that an accurate

estimation of the 3D geometry is needed. Instead, many image applications

have already demonstrated that such accurate estimation is not necessary.

Horry et al. [26] and Carroll et al. [9] demonstrated that convincing visual ef-

fect can be achieved by manually approximating and manipulating the rough

geometry planes. We show that, identifying approximation planes (facades)

in 2D (without really reconstructing the 3D geometric scene) is sufficient

for our image resizing task. Here, we generalize the meaning of "facade" to

a rectangular plane approximating the geometry. It may refer to the front

face of a bookshelf or a fence, and not necessarily only refers to a face of a

building.

To estimate the facades, we first identify the vanishing points and those

line segments [converging lines) converging to these vanishing points. Then

we subdivide the image using 2D binary space partitioning in order to obtain

subregions containing only two dominant types of converging lines (corre-

sponding to the horizontal and vertical lines on a facade). Because a facade

should be characterizable by its horizontal and vertical lines (explained in

Section 3.3.1). Once partitioning is done, we can compute a facade for each

valid subregion. With the estimated facades, the image is divided into facade

and non-facade regions. For each facade region, we can rectify it to a rectan-

gle where we perform existing resizing technique. For the non-facade region,

we simply linearly scale it. The facade and non-facade regions are merged

seamlessly using graphcut. The effectiveness of our method is supported by

the visual comparisons and a user stud}̂ . Note that our major contribution is

a framework (Figure 3.1) that identifies facades before resizing. The actual

CHAPTER 3. RESIZING ON FACADE 23

resizing method can be one of the state-of-the-art resizing methods. In fact，

we have implemented existing resizing methods as our resizing module. We

also demonstrate by experiments that, with our facade identification and rec-

tification, existing image resizing methods can effectively avoid or minimize

the visual artifacts (Section 3.4).

‘ p^'，、 mpff ^ i i i ’

^mw^-—• r -_
Input tmag® Detected facade region J m S ^ B Q ^ ^ ^ ^ ^ ^ ^ , J f c i ^ j k . ‘

FUctmecJ facades Lcrvear scaled 而 age

Figure 3.1: System overview.

3.2 Related Work

Facade Detection Unlike the general facade we (ore interested in this tlie-

sis，all existing methods for facade detection focus on identifying architectural

facades. They can be divided into two classes, multiple view and single view

methods. Werner and Zisserman [58] proposed a multiple view method that

makes use of the reconstructed 3D point cloud and parses the points into

semantic parts. Xiao et al. [61] used structure-from-motion technique to

recover the underlying geometry, where flat regions are possibly good can-

didates for facade. Toshev et al. [54] used a generic parsing algorithm to

construct a semantic tree from a 3D point cloud.

In the class of single view methods, Zhang and Kosecka [64] detected

rectangular structures from photos. This method is based on a rectangle

CHAPTER 3. RESIZING ON FACADE 24

hjTothesis and verification process and relies on the long line segments on

border of facades. Berg et al. [6] utilized a conditional random field model to

detect facade. This method requires the training data for facade recognition

and may not be able to handle a wide variety of facades. David [16] used

the intersecting points of line segments from different vanishing points as

cues and the facade is detected by point clustering. However, when the

intersecting points are not abundant, it may fail.

Unlike most previous facade detection methods, we are interested in gen-

eral facade not just architectural facades. While above methods are interested

ill constructing 3D facades, we are only interested to identify the 2D facades

for our resizing purpose with no intention in reconstructing the 3D geometry.

3.3 Algorithm

Figure 3.1 shows our system overview. Our framework first detects facades

in the input image. This divides the image into facade region (region cov-

ered by facades) and non-facade region (rest of the image). For the facade

region, each facade is rectified and resized in this rectified domain using a

resizing module. This resizing module can be one of the state-of-the-art im-

age resizing techniques. Currently, we have implemented seam carving [3],

patchmatch [4], and a graphcut-based [33j resizing methods for selection.

The resized facade is then projected back to the resized image to maintain

its perspective layout. For the non-facade region, it is linearly scaled. The

final result is obtained by merging the resized facade region with the scaled

non-facade region and determining a seamless cut path using graphcut.

CHAPTER 3. RESIZING ON FACADE 25

� (b)

(c) (d)

Figure 3.2: Facade detection, (a) The original image; (b) the extracted
converging line segments; (c) binary space part i t i on ing ;� three estimated
facades.
3.3.1 Facade Detection

The core of our framework is the facade identification. The horizontal and

批rtical line segments over a surface are the major clue for identifying fa-

cade. They can be the edges of columns or windows on a building facade

(Figure 3.2(a)), or even edges of books in the bookshelf. Here, horizontals

and verticals are relative to the facade, not necessarily aligned to the image.

We also do not require the presence of any lattice structure as in [60]. These

horizontal and vertical line segments are the converging lines corresponding

to two vanishing points, respectively (Figure 3.3(a)). In other words, a facade

can be characterized by two dominant types of converging lines. By com-

puting a perspective rectangle bounding these two types of line segments, we

CHAPTER 3. RESIZING ON FACADE 26

can obtain the facade. When there are multiple facades in the same image,

the detection becomes more complex. To solve the problem, we use binary

space partitioning to recursivety subdivide the image into subregions until

each subregion contains onty two dominant types of converging lines.

Vanishing Points and Converging Lines The major assumption of our

method is that the scene in the image satisfies the Manhattan world assump-

tion, i.e. objects are placed in a 3D grid world. Many photographs, especially

those with architectural content, satisfy this assumption. As a result, there

axe only three vanishing points. Our first step is to extract these three vanish-

ing points î i, V2, and V3 together with their corresponding sets of converging

line segments Li, L2, and L3, respectively. Line segments in the same line set

converge to the same associated vanishing point. Several methods have been

proposed to detect converging line segments and vanishing points from a sin-

gle image [4, 35]. In particular, we employ the fast and optimization-based

method proposed by Tardif [52]. This method first extracts line segments us-

irig the Canny edge map, and then optimally identifies the vanishing points

using the J-Linkage algorithm. Figure 3.2(b), 3.3(b) and 3.3(c) show three

detection results. In particular, we color-code the three sets of converging

lines in red, green, and blue.

Binary Space Partitioning Binary Space Partitioning (BSP) is a pop-

ular subdivision scheme and widely used in computer graphics and image

processing. The basic idea is to recursively subdivide the space into two

parts at each time of the partitioning. The criteria for partitioning is differ-

ent among different applications. But the purpose of partitioning is similar:

to convert one complex object into several simplex objects that could be pro-

cessed easily. Next, we make use of BSP in order to separate the facades. By

observation, two different facades are different in terms of their two dominant

CHAPTER 3. RESIZING ON FACADE 27

converging lines (horizontal and vertical). For example in Figure 3.2(b), the

two facades of the center building contain significantly different amount of

blue and green line segments, corresponding to the left and right vanishing

points, respectively. This is because a facade is dominated by two sets of

converging lines, say Li and L) (without loss of generality), the third set L3

must be scarce or missing (as shown in Figure 3.2(b)). A neighboring but

different facade must contain sets L3 and Li (L2)，and miss the other set L2

(Li), due to the Manhattan world assumption. Hence, an optimal partition

line to separate the two facades must be a line originated from Vi (V2) and

optimally separates L2 (Li) from L3. In the example of Figure 3.2(b), the

ideal partition line is a line originated from the vanishing point associated

with the red converging lines, that can separate the blue and green lines. In

other words, the distribution of different line sets actually serves as a very

important clue for determining the partition line.

Since there can be more than two facades in the image, line segments

from other facades may interfere the partition line determination. To solve

.r . , . . Partition line
Vanishing point B H ^ ^ ^ ^ ^ H ^ ^ ^ ^ ^ H H a

Vanishing po i n ^ ^ j H H ^ ^ ^ ^ H ^ ^ ^ ^ ^ H H j

� （b) (c)

Figure 3.3: (a) A facade

is dominated by two types of converging lines cor-

responding to its horizontal and vertical lines, (b) Determination of optimal

partition line by sweeping, (c) Vanishing point within an image has to be

partitioned.

CHAPTER 3. RESIZING ON FACADE 28

the problem, we formulate the partition line determination as an optimization

process and define an objective function that measures the separability for

a partition line. Without loss of generality, let us consider the separation of

line sets Li and L2 in the following discussion. Other combinations of line

sets can be constructed similarly. The objective function Fi,2 computes the

sum of two normalized line weights on the two sides of a partition line s.

Fi，2 � = + (3.1)
乙I让 1 I Ẑ Z€L2 I

where Li k 丄2 are the two line sets being separated; superscripts L" &

Lb denote the subsets of line segments from L that locate on the two sides

� (b)

yiJi
(C) (d)

Figure 3.4: Binary space partitioning in progress from (a) to (d).

CHAPTER 3. RESIZING ON FACADE 29

of the current partition line s. To determine which side of s (a or b sides) a

line segment I falls into, we simply compute the signed distance from the end

points o f / t o 5. Any line segment being crossed by the current partition line is

ignored. Longer line segments are obviously more important than the shorter

ones, as longer ones are more likely to belong to the major structure while the

shorter ones are more likely to be outliers. We account for this by taking the

length of the line segment as the weight in the above objective function. We

also normalize the line segment length by dividing it with the sum of all line

segments (denominators). This is necessary because, without normalization,

the partition line may be biased when there is a large difference between the

number of line segments in h and L2. The range of the objective values is

0,2]. The higher the objective value is, the better the partition line is. When

the Li and L2 are perfectly separated, the objective value reaches 2. Since we

may not know on which side Li and L2 may dominantly distributed, Eq. 3.1

has to be evaluated twice with the roles of a and b being interchanged.

Instead of searching any arbitrary partition line, we constrain our po-

tential partition lines to pass through the vanishing point associated with

the third line set {v^ in this case). This is reasonable because the potential

partition lines are more likely to align with the facade edge that separates

the two line sets Li and L2. For instance, the shared boundary between the

two facades of the center building Figure 3.2(b) (also Figure 3.3(b)) is one

potential partition line that can separate the blue lines from green lines. As

the partition line is originated from V3, we can sweep the partition line either

clockwisely or anti-clockwisely about V3 to search for the optimal partition

line (as illustrated in Figure 3.3(b)).

So far, we only describe how to determine the optimal partition line given

two line sets. As there are three line sets L^ 丄2，and L3, there axe three

CHAPTER 3. RESIZING ON FACADE 30

combinations (L1&L2,丄丄3, and L1&L3), giving rise to three objective

functions 巧’3, & and hence three potential partition lines. We se-

lect the partition line with the highest objective value to perform the actual

image partitioning. This forms one step of the whole binary-space partition-

ing process. The subdivision process continues until each subregion contains

two dominant sets of line segments, i.e. a single facade. To suppress the

interference of outlier line segments, we regard a line set Li,i e 1,2,3 as

non-dominating when |Li|/(X^，=i < 7, where 7 is a threshold. In our

current implementation, 7 is 0.05 � 0 . 1 5 . Figure 3.2(c) shows our subdi-

vision result. A step-by-step partitioning of another example is shown in

Figure 3.4.

A special case happens when the vanishing point is located inside the

image (Figure 3.3(c)). In this scenario, the same vanishing point associates

with converging line segments from 360^. Since a facade at most spans 180�

of a vanishing point, we need to partition the region enclosing the vanishing

point into two halfs by putting a partition line to pass through this vanishing

point’ and another vanishing point that outside the image, as in Figure 3.3(c).

As there are two vanishing points outside the image, we pick the one that can

form a partition line with minimal crossing of line segments. Such partition

line is added before the BSP starts. The pseudocode of the whole facade

identification algorithm is shown as follows:

Facade Formation The above image partitioning only ensures each sub-

region contains a single facade. The partition lines may not coincide with the

boundary of the facade. Hence we need to compute the facade by determining

a perspective bounding rectangle. We first check for the two dominant line

sets in each subregion. If the number of lines is too small (below a threshold

/?)’ this subregion is considered as non-facade region and ignored. For each

CHAPTER 3. RESIZING ON FACADE 31

Algorithm 1 BSP-based Facade Identification
U = {0} / / a stack holding subregions
R = {0} / / a set of resultant partition lines
Extract three dominant vanishing points vi, V2, k V3
and corresponding line segment set Li, L2 k L3.

is the one located inside image:
subdivide the image at v
add the two corresponding subregions into U

else
add the whole image into U

while U is not empty
pop a subregioii from U with 3 associated line sets k L.
if all of|Li|, IL2I, ‘

find optimal partition line Sj to separate L2 k L3 according to Fa 3
巧d optimal partition line S2 to separate L! k L3 according to 3
find optimal partition line S3 to separate 丄 1 & Ls according to Fj 2
choose the one with highest score, s, among {si，S2,53} ’
R = R U 5 and perform partition
add the two partitioned subregions to U

for each subregion partitioned by the partition lines in R
Compute perspective bounding rectangle

facade region, we first rectify the content inside a subregion using the two

vanishing points associated with this subregion, say ？;1 and V2 (without loss of

generality). We compute a rectification matrix T which is the multiplication

of projection P, rotation R, and shearing S matrices，i.e. T = SRP [35 .

The matrices are

^ f I ？ „ f cos(7) s i n (7) 0、 A -qjqy 0 \
,0" ? ， 一 s i n (7) c o s (7) 。 二 0 1 0

\h/l3 h/h 1/ \ 0 0 ij \0 0 IJ

where
=V1XV2； the rotation angle 7 = arctan(pa-/p^), [Px^Py.Pz)^ =

P”i; and = RPv2.

Then we project all end points of line segments in the two dominant sets

to the rectified domain, in order to compute an axis-aligned rectangle that

bounds these points. Finally, the four corners of the bounding rectangle

are projected back to the original image domain to determine the quadrilat-

CHAPTER 3. RESIZING ON FACADE 32

eral that represents the facade. Figure 3.2(d) shows the resultant facades.

Figure 3.5 shows more results.

3.3.2 Facade Resizing

With the estimated facades (quadrilaterals in the original image), we can

rectify the texture enclosed by each quadrilateral to a rectangle using T

above and perform resizing in the rectified domain. The resizing ratio on the

facade is the same as the whole image. We can use of existing state-of-the-

art content-aware resizing and summarization-based method to perform the

resizing, as there is no more foreshortening. Currently, we have implemented

seam carving [3], patchmatch [4], and a graphcut-based [33] resizing method.

In some cases, the result of seam carving may not be quite visually appealing

as the image structure may be too crowded when the facade is significantly

reduced in size. In that case, texture synthesis and image summarization

technique might be more appropriate. For texture synthesis, we can use

the architectural texture synthesis method proposed by Lefebvre et al [33 .

For image summarization, we can use the bidirectional image summarization

technique [50] or patchmatch [4 .

For non-facade region, we simply scale it to the desired image resolution.

As we scale the non-facade region linearly, the quadrilateral placeholders

(holding the facades) are also linearly scaled. Each resized facade in the rec-

tified domain and its corresponding scaled placeholder in the image defines

a transformation V that allows us to project the resized facade texture back

to the image. However, inconsistency of texture content (between facade

and non-facade regions) may appear at the boundary of placeholders (Fig-

ure 3.6(a)). To reduce the inconsistency, we use the graphcut technique. In

practice, we not only scale the non-facade region but the whole input image,

二
養
s

旗
議
義
薩
疆

！

 __圔

CHAPTER 3. RESIZING ON FACADE 34

國國疆
議 PBPW

(a) Original image (b) BSP (c) facade detection
Figure 3.5: Results on facade detection

and treat it as a background. The resized facade are overlaid onto this back-

ground to produce overlapping region so that the seamless cut path can be

obtained by graphcut (Figure 3.6(b)). Figure 3.6(c) shows the finally merged

result.

3.4 Results

Visual Comparisons To evaluate our framework, we first visually com-

pare it to three state-of-the-art methods, including seam carving [3]，patch-

CHAPTER 3. RESIZING ON FACADE 35

i^m
� (b) (c)

Figure 3.6: Merge of facade and non-facade region, (a) direct overlay facade
region on the non facade region, the blowup region shows the artifacts (b)
the cutting path found by graph cut (c) the result image.
match [4] and warping [57j (Figures 3.9-3.13). To generate our results, we

choose the graphcut-based resizing method [33] as the resizing module. Seam-

ing carving may lead to bending artifact when the salient content is too

crowded, as it does not summarize similar content. Without user-specified

constraints, patchmatch may result in discontinuity artifact (Figures 3.11-

3.13) due to the foreshortening. Warping performs nicely when there are

still homogeneous region to exploit. However, it may over-squeeze the con-

tent (Figures 3.9 & 3.11) in order to preserve the structure lines. In contrast,

our framework avoids the bending，discontinuity and over-squeezing artifacts

by identifying the rectified domain for resizing. Figure 3.14-3.19 shows more

results and comparisons.

Note that our major contribution is a framework to resize on facade,

the resizing module can be changed. To demonstrate that our approach

can effectively minimize artifact, we compare the results generated with and

—hout resizing-on-facades. Figure 3.7 shows three comparisons on three

rows. The results on the upper, middle, and bottom rows are generated by

seam carving, patchmatch, and graphcut-based resizing. The only difference

CHAPTER 3. RESIZING ON FACADE 36

_ _

(a) Seam carving (b) Seam carving on facades

ii
(c) Patchmatch (d) Patchmatch on facades

ii
(e) Graphcut (f) Graphcut on facades

Figure 3.7: Resizing on image (left) and on facades (right).

between the left and right results is that all left results are resized directly

on the image, while all right results are resized on the facade. Obviously,

our framework can better preserve the foreshortening effect and the content

structure.

Comparison Comparing with existing facade detection method, the key

novelty of our method is to partition an image into several candidate single

CHAPTER 3. RESIZING ON FACADE 37

facade regions. We do not make use of existing techniques such as spatial

clustering approach [16] or over segmentation techniques [25]. Compared

with classifier based method [25], our approach has advantages and lirnita-

tions. We make use of line features in input image, which is universal among

different facades. It enables us to address a wide range of facade images. By

contrast, the classifier based method depends on training data so it is likely

to fail on facade image that does not exist on the training data. Moreover,

our Binary Space Partition based method is easy to understand and imple-

ment. It works very fast in practice. In terms of disadvantages, our method

might not be very stable since our method depends on line segment detection

and vanishing point estimation. The classifier based method would have a

higher stability since it works directly on raw image pixels.

User Study To further evaluate the effectiveness of our resizing-on-facade

approach, we conduct a user study by asking 30 subjects to grade the resized

images. Each time a subject is presented with the original image, and a pair of

resized images. Both resized images are generated by the same randomly se-

lected resizing method (either seam carving, patchmatch, or graphcut-based

resizing). Their only difference is that one is resized on facades and the other

is resized on the image directly. We have generated altogether 15 image pairs

(5 for seam carving, 5 for patchmatch, and 5 for graphcut). In Table 3.L the

first-row statistics shows the comparison between the resizing-on-facade and

the resizing-on-image using seam carving as the resizing engine. Our resizing-

on-facade achieves 88% of wins. Similarly, the second and the third rows list

the statistics of comparisons using patchmatch and graphcut as the resizing

module, respectively. Our resizing-on-facade significantly outperforms the

resizing-on-image, regardless of the resizing method.

CHAPTER 3. RESIZING ON FACADE 38

Mean of 95% confidence interval
Prpfprpnpp Std.dev.
T e r e n c e Lower Bound； Upper Bound

Seam carving 88.0% 16.5% 8 7 . 7 % ： ^

Patchmatch ； 83.2% 16.0% ^ 8 2 . 9 % ^ ^ ； “ 8 3 . 5 % ~
Graphcut ： 93.6% 15.6% 93.3% f 93.8%

Table 3.1: User Study
I ‘ "I 丁

r. Line and ； BSP+ _ , I Input size Output size "oot vanishing point | facade i*acaae | ^ ,..
facades detection detection resizing

I FiglJ— — 640x427 320x427 — 3 ~~o764s 67ns~~ ——— ~497f ““sTs———
Fig. 8 48^33^ —2407332 2 ^^Is | 0.19s 23s | 2As
Fig.9 717x470 359x470 2 3.19s | 0.5s _ 40s | 44s

‘Fig- 10 640x528 — 320x528 _ 2 1.37s | 2.05s 1 4 ^ | 1 5 1 s
^ Fig. 11 615x461 308x^1 1 — 0.79s | 0.71s 13s | 15s
Fig. 12 820x552 1230x552 3 0.95s j 1.32s 53s | 55s 一

Table 3.2: Timing statistics

Timing Table 3.2 shows the timing statistics with individually tabulat-

ing the times for vanishing points and converging lines extraction, binary

space partitioning and facade estimation, and facade resizing. All timings

are recorded on a PC with CPU Intel Core 2 Duo CPU 2.8GHz，memory

4GB. Even though our current Matlab implementation is not optimized, our

times for extracting vanishing points and converging lines, BSP, and facade

estimation are still very minimal comparing to other parts of the framework.

The resizing module used for generating these examples are the graphcut-

based resizing.

Limitation Figures 4.14(a) k (b) show two failure cases that our method

cannot handle. In (a)，the Manhattan world assumption is violated, as there

are more than three vanishing points. In (b), the right building is not domi-

nated by horizontal and vertical lines, and hence our BSP gets confused. In

addition, our method cannot handle facade that is largely occluded, as the

hinting line segments are too few to be useful.

CHAPTER 3. RESIZING ON FACADE 39

f ‘ ^^〜 邏 二…

� (b)

Figure 3.8: Failure cases.

(a) Ongina] (b) Seam carving (c) Patchmatch (d) Warping (e) Ours

Figure 3.9: "temple." Input size is 480x332, output size is 240x332

圓圓國
(a) Original (b) Seam carving (c) Patchmatch (d) Warping (e) Ours

Figure 3.10: “hotel•” Input size is 640x427, output size is 320x427

纖國•園
(a) Original (b) Seam carving (c) Patchmatch (d) Warping (e) Ours ‘

Figure 3.11: "gate." Input size is 717x470, output size is 359x470

CHAPTER 3. RESIZING ON FACADE 40

(a) Original (b) Seam carving (c) Patchmatch (d) Warping (e) Ours

Figure 3.12^"train." Input size is 640x528, outpui^size is 320x528

(a) Original (b) Seam carving (c) Patchmatch (d) Warping (e) Ours

Figure 3.13: "door." Input size is 615x461, output size is 308x461

^iiii
(a) Original (b) Seam carving (c) Patchmatch (d) Warping (e) Ours

Figure 3.14: "hotel2." Input size is 640x423, output size is 320x423

画•國國
(a) Original (b) Seam carving (c) Patchmatch (d) Warping (e) Ours

Figure 3.15: "library." Input size is 660x440, output size is 330x440

aiiii
(a) Original (b) Seam carving (c) Patchmatch (d) Warping (ej Ours

Figure 3.16: "spam." Input size is 615x460, output size is 307x460

CHAPTER 3. RESIZING ON FACADE 41

^̂BWBBH
(a) Original (b) Seam carving (c) Patchmatch (d) Warping

Figure 3.17: "street." Input size is 640x435, output size is 320x435

Hiiii
(a) Original (b) Seam carving (c) Patchmatch ‘ (d) Warping ^ ^ ^ ^ ^

Figure 3.18: "hall." Input size is 640x425，output size is 320x425

_ _ _ _

(a) Original (b) Seam carving (c) Patchmatch (d) Warping ‘丨 ‘ (e j ^ s

Figure 3.19: "handrail." Input size is 717x517, output size is 359x517

(a) Original (b) Our extended image
Figure 3.20: "building." Input size is 820x552, output size is 1230x552

Chapter 4

Cell Texture Editing

4.1 Introduction

Human vision makes use of many cues to interpret the 3D geometry of a

scene. One of them is the aggregation of structured elements, as described

by the shape from texture method in a psychological study [7]. By assuming

a uniform distribution of structured elements over a surface, statistical infor-

mation such as density of elements can be used to infer the surface geometry.

Cell structure is a common form of aggregation appeared in many real

photos (see Figure 4.1). The variation of shape and size of the cells could

provide a visual hint on the orientation and depth of the scene. By glancing

over the cells on a photo, our vision system can roughly estimate the under-

lying scene geometry from the statistical changes over the cell structure even

though the cells are not uniformly distributed and shaped.

Motivated by this observation, we propose a novel method that explores

cell structures in real photos to support high-level photo editing. Our method

allows the location of the cells to be stochastic, and the shape of the cells to

be arbitrary, provided the shape variation of the cells is statistically station-

42

CHAPTER 4. CELL TEXTURE EDITING 43

肌y over the photo. In other words, this statistically stationary assumption

ensures the local variations of cell shapes to have similar statistics over the

entire cell structure. Based on this property, we still can analyze the orien-

tation and size of cells to generate useful hint on the scene geometry even

though the given cell structure is not uniform.

The key technique is a novel and efficient method to estimate a mid-

level representation of the scene geometry from the stochastic cell structure

without involving any 3D reconstruction. This mid-level representation is a

continuous affine transformation field, providing sufficient geometric infor-

mation for many high-level photo editing applications. To achieve this, we

first develop a customized filter based on MSER features to identify indi-

vidual cells on the input photo. Each cell is characterized by an ellipse，so

that we can model cells that are arbitrarily located and shaped. Then, we

propose a new orientation estimator to solve for a local affine transformation

at each cell detected.

Since cells on the given photo can be arbitrarily located and shaped,

the local affine transformations across cells could appear to be random with

fluctuation and discontinuity, thus not immediately usable for photo editing.

Based on the statistically stationary assumption we introduced earlier, we

found that these issues can be overcome by examining the local affine trans-

mm
Figure 4.1: Cell structures in real photographs.

CHAPTER 4. CELL TEXTURE EDITING 44

formations in a statistical way. In detail, we develop an iterative technique

to eliminate discontinuity by propagating the local transformation, and sup-

press the fluctuation by filtering the local transformations based on the global

statistics of the transformations. Hence, we are able to produce a full and

stable affine transformation field by interpolating or extrapolating the esti-

mated transformations at the cells, making our method capable of handling

real photos.

Using the resulting affine transformation field, we can support many high-

level photo editing applications. For example, we can distribute objects

with shadow over the ground shown in Figure 4.13. The distributed objects

can be automatically adapted with appropriate sizes by using the estimated

affine transformation field without any manual adjustment. Additionally,

we can also apply the results of our method to support applications such

as shadow casting and image cloning. Various visually-promising results are

demonstrated in this thesis to show the effectiveness and applicability of our

method on real photos. To the best of our knowledge, this is the first work

we aware of in exploring stochastic structures to estimate scene geometry for

photo editing.

4.2 Related Work

Among the wide variety of photo editing applications, this work belongs to

the category of local photo editing. Barrett and Cheney [5] developed an

object-level editing tool that supports real-time animation and manipulation

of objects on images. Perez et al. [45] proposed a generic method to seam-

lessly clone image regions on photos by solving the Poisson equations. Later,

Agarwala et al. [1] developed a digital photomontage system using the Pois-

son equations; it enables interactive select-and-merge of image regions from

CHAPTER 4. CELL TEXTURE EDITING 45

different photos. Jia et al. [29] improved the quality of image cloning by opti-

mizing the cloning boundary, while Jeschke et al. [28] improved the efficiency

for solving the Poisson equations by a new and easy-to-implement Laplacian

solver. Farbman [20] proposed a new method that facilitates efficient image

cloning based on mean value coordinates.

Another related stream of research aims at enhancing photo editing capa-

bility by recovering certain scene geometry information in the input photo.

Oh et al. [43] presented an image-based modeling and editing system for users

to interactively build image layers with depth on a single photo; operations

such as painting and relighting are provided. Fang and Hart [18] applied

shape-from-shading and texture synthesis to enable re-texturing of objects

on photos. Khan et al. [30] proposed an image-based approach to edit the ma-

terial of objects on a single photo; this is achieved by reconstructing surface

normals on objects using the object's luminance distribution. Later, Gutier-

rez et al [23] detected phase symmetry on the depth map recovered from

the input photo to simulate caustics, while Yeung et al. [63] proposed the

attenuation-refraction matte model to recover light-transport information to

support editing of transparent and refractive objects on photos.

Other than recovering 3D geometric information, we can also enhance

high-level photo editing by analyzing the texture or structural information

on photos. Brooks and Dodgson [8] identified self-similar texture patterns on

an input image to provide similarity-based image editing. Chuang et al. [12.

proposed a framework to animate dynamic elements such as water on still

photos; users can control parameters such as wind speed and directions. Fang

and Hart [19] proposed a feature-aware local retexturing method that pre-

serves texture and image detail when we deform objects on photos. Barnes et

al. [4] introduced an efficient randomized texture patch matching technique,

CHAPTER 4. CELL TEXTURE EDITING 46

aiming at preserving structures in high-level photo editing applications such

as image retargeting and reshuffling. Xu et al. [62] proposed the concept of

affinity space to speed up the computation in stroke-based image and video

editing. Wu et al. [60] analyzed lattice structure for objects on an input

photo to improve the quality of retargeting or resizing the objects. Cheng

et al. [11] detected repeated objects and their mutual relations in a photo to

support high-level photo editing.

Different from previous methods on photo editing, our work explores the

use of cell structures in an input photo to support high-level photo edit-

ing. The cells can have varying shapes and their spatial distribution can be

stochastic. As long as the variation of shapes is statistically stationary, we

can compute a stable affine transformation field from the cell structure and

distribution. Then, we can perform high-level photo editing tasks, including

image cloning, object distribution, and shadow casting, over the input photo.

The idea and technique of exploring stochastic cell structures on photos were

not studied in any research work we noticed before.

In addition, our method is also related to a computer vision technique

called shape from texture [37’ 13, 59，22], where the geometry of a textured

surface can be estimated from the orientation, slant/tilt, and density of lo-

cal texture patches over the image space. However, despite their complex-

ity，these methods are designed to work with low-level pixel-based elements,

hence are usually slow and not very stable.

4.3 Our Approach

Our approach to realize high-level photo editing using cell structures include

the following key techniques: the detection of cells on a given photo, the

estimation of a local affine transformation at each detected cell, and finally,

CHAPTER 4. CELL TEXTURE EDITING 47

the estimation of a full and stable affine transformation field over the input

photo. The following subsections detail these key techniques

(a) input image (b) initial detection (c) simplex filter (d) ^ g a t l ^ ^ r

Figure 4.2: Cell detection

4.3.1 Cell Detection

The first step in our approach is to detect cells on the given photo. Pre-

vious methods to locate cells either incorporate image features [34, 31] or

boundaries [2, 11]. To enable efficient and stable detection of cells capable of

supporting high-level photo editing, we base our detection method on MSER

features because the MSER feature detector is well-known for its efficiency

in detecting blob regions, and the detected blobs are affine invariant. In this

work, we assume the inner region of the cells to be relatively textureless, so

that MSER features can be used to efficiently identify the cells.

In detail, our cell detector is roughly divided into two parts: simplex filter

and propagation filter. Before we proceed, we first give some definitions.

Each MSER feature corresponds to a mask that defines a region S on the

given image. Each S may contain independent sub-regions Si, and we define r

to be the area ratio of all independent sub-regions and S: r = J2 1八{8)�

where A{s) returns the area of region s. A region is said to be complex if its

area ratio is above a threshold £； e is usually set to be larger than 0.5，meaning

CHAPTER 4. CELL TEXTURE EDITING 48

that a complex region can be approximated by the union of all independent

sub-regions it contains. Otherwise, the region is said to be simplex.

Simplex Filter. In general, we observe that cell regions we demanded

are usually simplex. In other words, if the independent sub-regions of a

given region occupy most of the region's area, we can regard the region as

an outlier. Hence, we can develop the simplex filter to remove outlier cells

from an initial pool of blobs produced by the MSER feature detector. Note

that the MSER feature detector actually builds a tree structure on all the

independent regions based on the inclusion relationship; each node in the

tree represents a region and the leaf nodes refers to regions without sub-

regions. To filter out unwanted regions, we start from the root node of the

tree and check its immediate children. If the region associated with the node

is simplex, we accept and add it to the cell list to be output from this filter.

Otherwise, we ignore it and also its descendants, and proceed to next child

node. The children are visited in a breath-first manner until all the nodes

in the tree have been visited. In practice, the threshold e is set to be in the

range [0.5,0.7] in our experiment. Figure 4.2 (c) shows an example set of

cells output from the simplex filter.

Propagation Filter. Using the simplex filter alone is not sufficient be-

cause there could still be many outlier cells, as can be seen in Figure 4.2

(c). Regarding this, we further develop the propagation filter to improve the

quality of detected cell by assuming that nearby cells on the photo should

not have huge difference in area. To achieve this, we triangulate the centers

of cells remained after the simplex filter using Delaunay triangulation [49].

Hence, we can determine neighboring cells for each cell we have. Then, we

select the cell that has the lowest (average) area difference with all its neigh-

CHAPTER 4. CELL TEXTURE EDITING 49

bors，and denote it as Cq. After that, we examine the area of all neighbors of

Co, and remove those that are too large or too small as compared to A{Cq)

against a threshold. Neighboring cells that are too far away are not consid-

ered. Finally, we recursively visit the remaining cells from Cq, and prune

away outliers. Figure 4.2 (d) shows the resulting cells after applying the

propagation filter.

Note that our cell detection method does not impose any smoothness

constraint on orientation, scale, or isotropy of the cells, nor the cells' spatial

distribution. Thus, it is suitable for detecting cells in a stochastic structure,

which is an important and original feature not present in previous cell de-

tection methods [24，60], where strong spatial lattice constraint is typically

imposed on cell locations.

4.3.2 Local Affine Estimation

After cell detection, we obtain a set of cells which can be taken as samples to

estimate the local affine transformation. Note that after the cell detection,

each cell is fit with an ellipse that encloses its cell region. However, the

orientation and size of these ellipses cannot be directly used for computing the

affine transformation because they are insufficient. In this work, we propose

to analyze the orientation of texture structure in each cell, and integrate this
with the ellipse geometry to solve for a local affine transformation at each
cell.

FVom Ellipse geometry. In general, affine transformation contains four

independent variables, but in fact can also be approximated by a sequence of

rotation and anisotropic scaling in 2D. As for this, we apply eigen-analysis

on the ellipse geometry from cell detection to compute a rotation matrix

R and an anisotropic scaling matrix S, which serves as a very good pair

CHAPTER 4. CELL TEXTURE EDITING 50

of estimation for the affine approximation. Note that R defines a specific

direction along which shearing and anisotropic scaling can be eliminated by

applying S, and the initial affine transformation can be approximated by

TO 二 RS.

Using To alone is inadequate to consistently align all detected cells to the

same global image coordinates, particularly with the stochastic cell struc-

tures. We further need to incorporate a correction matrix. As shown in

Figure 4.3, after we transform the cell image with T�一丄，we only need to fur-

ther rotate the cell image by a certain amount; then, we can align it with

the global image coordinate axes. Such a correction matrix provides an ad-

ditional rotation, denoted by to consistently align cell images altogether.

Thus, the overall affine transformation can be approximated by T = TqR',

and the core of our affine estimator lies in further incorporating our esti-

mation on the texture orientation to compute this R' term consistently for

different cells.

•棚
(a) (b) (c) (d)

Figure 4.3: Affine estimation at a cell: (a) a detected cell with its ellipse; (b)
applying r�—丄 to transform the cell image; (c) further rotation by R'] and (d)
the resulting local affine transformation estimated at the cell.

From Texture orientation. Methods to estimate texture orientation have

been studied to a certain extent in [27, 51, 10]. In our case, we propose a

new orientation estimator suitable for our problem, aiming at estimating

orientations consistent to human observation but subject to the orientation

ambiguity.

CHAPTER 4. CELL TEXTURE EDITING 51

� （b) (c) (d)
Figure 4.4: The overall process of estimating the local affine transformations:

(a) input photo; (b) cell detection after the simplex and propagation filters;

(c) initial estimation of local affine transformation from the ellipse geometry

and texture orientation; and (d) stabilized local affine transformations after

iteratively applying the propagation and filtering substeps.

One crucial consideration here is on how human understands the orieri-

tation of a structure. Edges, or consecutive gradients, are believed to give

strong influence here, motivating us to find two directions along which most

significant edges are aligned. In general, these two directions need not be

orthogonal, but since T̂ —i has been applied to remove the local shearing in

the cell image, we can assume the two directions to be orthogonal in our
computation. In detail we search for an orthogonal local coordinate frame
that minimizes

五fe) = [叫(gfrJ + UJyigfTy)],
i

where i goes over all pixels in the cell region; g, is the normalized gradient

at: pixel i, r^ and r^ are the normalized vectors for the two coordinate axes

that are orthogonal to each other: rjr^ 二 0; the weights u工 and a;̂ are

used to control the impact of the corresponding gradient at pixel L For

small gradient magnitude, a;工 and Uy should both be small. In addition, if a

gradient is closer to one a^is, say it should have less impact on l y So the

CHAPTER 4. CELL TEXTURE EDITING 52

weight in front of the other axis, i.e., ojy, should be reduced, and vice versa.

Combining these criteria, we come to the specification of w^ as:

叫 = h ai ||g,|i e-喊ry ,

where k! and k) are adjustable coefficients and â is the Gaussian weight to

emphasize the influence near the cell center. Note further that ujy can be

computed likewise with r^, and the a,: term can further help suppress the

noise in the minimization. See Figure 4.5 for the estimated orientations on

different structured texture patches.

漏圓圓麗
Figure 4.5: Orientations estimated on different structured texture patches.

4.3.3 Affine Transformation Field

With the estimated orientation matrix R\ we can obtain a local affine trans-

formation T at each cell (see Figure 4.4 (c)). Once these local affine transfor-

mations are established, we can further solve for a full affine transformation

field by interpolation (and extrapolation). A multi-quadric RBF function is

adopted to produce better interpolation/extrapolation results.

However, before we proceed to the interpolation or extrapolation sub-

step, we need to first resolve the following problems related to the local

affine transformations we currently have. First，since there are eight possible

axes orientation in 2D (axis-to-axis rotation plus mirror reflection), coordi-

nate axes may align inconsistently, leading to discontinuities in the estimated

results. In addition, the estimated orientations could also be heavily affected

CHAPTER 4. CELL TEXTURE EDITING 53

by the image and structure noise, see the rectangle boxes marked in Fig-

lire 4.4 (c). These problems cannot be simply alleviated by image filtering.

Another problem is that the current orientation estimation is inadequate

to handle stochastic cell structures. The shape fluctuation among the cells

can also heavily affect the estimated transformations. To account for these

problems, we propose and develop an iterative method that consists of two

substeps in each iteration: propagation and filtering. These two substeps can

progressively refine the local affine transformations，making them consistent

and stable over the entire image. In our experiments, this iterative process

can always converge and finish within only a few iterations.

Propagation substep. To minimize the discontinuities in the estimated

local affine transformations, we construct a triangular mesh over the detected

cells, and then perform propagation over this mesh. Here we select a seed

node that has the largest vorticity, and progressively visit neighbor nodes in

a breath-first manner; note that the vorticity of a node is defined as the sum

of rotation of this node against each of its neighbors:

i

where i goes over the neighboring nodes; 1，工 and Vy are the normalized coor-

dinate vectors at the current node; i;而 and Vy, are the normalized coordinate

vectors at each neighbor; and a, is the Gaussian weight measured with the

distance between the current node and the ith neighbor.

To address the axes flipping and the noise problems mentioned earlier,

we propose a voting scheme during the propagation. This scheme helps

determine whether (and how) the direction of the two coordinate vectors

should be flipped by measuring the difference between the eight possible

CHAPTER 4. CELL TEXTURE EDITING 54

choices of orientations at the current node against its neighbors:

C = l > i [(1 — + (1 - v lvy)]，
i

where i goes over visited neighbors of the current node, and we aim at min-

imizing C by choosing an appropriate orientation v^ and Vy out of the eight

possible orientation choices.

Filtering substep. With stochastic structures, fluctuation of cell shapes

may significantly affect the estimated transformations. To stabilize the esti-

mation results, we propose a filtering substep to suppress the fluctuation as

well as to remove the outliers possibly missed by the cell detection. Our idea

here is based on the overall statistics of all the local cell transformations.

By the statistically stationa.o, assumption we introduced, the local differ-

ences in the transformation between a given node and its neighbors should

have similar statistical distributions. Thus, the fluctuation of local trans-

formation can be spread out by applying a filter. Such filter could take the

form: / = Yli � iTi lYU � “ where i goes over the current node as well as

all its neighboring cells; cui is the weight controlling the filter and could be

spatially varying; and the key here is to specify different uji for different cells.

Since the difference of local transformations is assumed to be statistically

stationary, we can measure such difference by a difference matrix between

the current node and its neighbors:

D = \det{J29iTrT-')\ .
f

Then, we compute the statistics of D over all the cells as a histogram

H with each bin indicating the probability of a certain difference. This his-

togram helps reveal the local structure distribution and suggests how prob-

able a transformation could happen in overall. In addition, cells that are

farther away should have less impact on the current estimation. Hence, we

CHAPTER 4. CELL TEXTURE EDITING 55

can define uji to be a丨if“ where â is the Gaussian weight with distance as
its parameter.

The propagation and filtering substeps actually influence each other, and

must be performed alternatively. This is because after the first round of prop-

agation and filtering, neighboring relations between cells could be changed.

Hence, we could have a new structure for the propagation. In addition, the

new propagation structure could then change the filter values employed in

the filtering substep. Figure 4.4 (d) shows stabilized estimation results af-

ter iteratively applying propagation and filtering; as we can see from this

result, discontinuity and structure difference can be reduced. This proposed

method continues to iterate until the difference between the maximum and

minimum D falls below a prescribed threshold. Figure 4.6 shows results for

cell detection and affine estimation.

4.4 Photo Editing Applications

Once a stable affine transformation field is available, we need an additional

step before moving forward to the photo editing applications. This step is

to construct an image-based 2D mesh based on the affine transformation

field, so that such a mesh provides per-compiited image-based deformation

information to support efficient photo editing. In detail, we can integrate the

affine transformation field with Euler's method, tracing out principal lines

on the field to generate such an image-based mesh (see Figure 4.7 (b) for an

example). Then, by using this mesh, we can support various photo editing

applications, including the four applications we implemented and presented
below.

CHAPTER 4. CELL TEXTURE EDITING 56

Image attachment. In this basic application, we treat the image-based

mesh like a u^'-parametrization, so that texture images can be mapped and

adapted to the underlying geometry by using the mesh. Figure 4.7 (c) shows

a simple example of laying a carpet image on the wall while Figure 4.9 shows

two more examples: we put two carpet images on different parts of the

ground, and a flower pattern over the detected cells on a real photo of a

fabric structure. In addition, it is worth to note that the detected cells on

the fabric structure are actually sparse and not uniformly covering the entire

surface, but yet, we can still estimate a stable affine transformation field

over the structure to generate this photo editing result. Furthermore, note

that since the grid sizes on the mesh deforms with the affine transformation

field，i.e., the underlying geometry, such a mapping can naturally produce a

foreshortening effect.

Object distribution. More than manually placing a single object, we can

also apply the mesh and automatically distribute objects randomly in the

scene- Based on the deformation suggested by the mesh, we can estimate the

relative depth in the scene, and thus can adjust sizes of objects according to

their locations on the mesh. Figure 4.10 shows two examples of scattering

sunflowers and leaves on the ground; note that we prepare multiple instances

of leaf images, and randomly employ them at different scene locations. In

addition, these leaf images are rendered from back to front (according to the

amount of local deformation) to ensure a correct 2.5D layering.

Image cloning. More than pasting 2D image objects into the photo scene,

we can also use the constructed image-based mesh to inversely extract image

objects from input photo. In this way, we can extract a normalized image

object from the photo, clone it, and then place it properly in the same scene

CHAPTER 4. CELL TEXTURE EDITING 57

as well as in other photos. In case of we are cloning image objects from one

photo to another, we can first estimate affine transformation fields on both

source and target photos, and then create two image-based meshes for each

of them. Figures 4.11 shows an example of such application.

Shadow casting. Lastly, we can also put a 3D object into the scene with

simulated shadow. To do so, we first pick a location in the scene, i.e., a point

on the image-based mesh, at which the 3D object will be placed. Then, a

reference normal can be estimated at this point by using the local affine trans-

formation (see Figure 4.8 (b)). After that, we also have to roughly estimate

the lighting direction in the scene; then, we can pre-render a shadow image

of the 3D object by projecting the object onto a flat plane according to the

reference normal, and pre-process the shadow map to create soft shadowing

effect. Finally, we can trace out the shadow from the picked location over

the image-based mesh, and properly warp the shadow image over the photo

to cast a shadow on the underlying geometry.

Figure 4.8 shows an example, where a simulated shadow can be properly

adapted to the underlying geometry even though the geometry is a curved

surface. Additionally, Figure 4.12 presents two more shadowing examples

on two different photos with two different 3D objects. Note also that the

undertying cell structure for the photo shown on the right of Figure 4.12

is actually near-uniform; our method is robust enough to handle also near-

imiform lattice structures, which in fact, is easier to handle as compared to

stochastic structures.

CHAPTER 4. CELL TEXTURE EDITING 58

4.5 Discussion

Performance. Our proposed affine estimator could be analyzed qualita-

tively. Our procedure mainly consists of three different parts: cell identi-

fication, orientation estimation and our affine field filtering step. For cell

identification part, we only make use of simple Breadth First Search (BFS)

algorithm to search along the MSER component tree. The search algorithm

is well known and computation complexity is 0{N), where N represents the

number of detected MSER cells. For the orientation estimation part, the

computation is equal to the number of detected cells N multiply the cost of

each orientation estimation. For each estimation, the consumption is equal

to the number of sampled orientations M multiply each response evaluation.

The response evaluation is proportional to the sampling area with width S.

So the time complexity of this part is 0{NMS'^). In fact, it is the most time

consuming part in our method. Fortunately, the algorithm could be easily

parallelized and thus could be accelerated using GPU. For affine field filtering

part., its principle is similar to image filtering and thus the time complexity is

also 0{N). So the overall time complexity of our affine field solver is linearly

proportional to the number of cells. The analysis result guarantees that our

proposed method would not be slow in practice.

P h n w tfroiio Cell detection Local a f f i n e A f f i n e field
Knotos ff Cells , 、 Resolution

(sec.) estimation (sec.) estimation (sec.)

Figure 9 (left) 127 0.17 ^ 4 8 600x450

Figure 9 (right) 52 0.19 1.78 0.19 640x427

Figure 10 (left) 45 0.34 1.6 0.21 800x600

Figure 10 (right) 206 0.29 7.25 0.37 533x800

Figure 11 (target) 106 0.34 3.78 0.16 600x800

Figure 11 (source) 178 0.25 6.33 0.36 640x427

Figure 12 (left) 107 0.24 3.79 0.25 478x600

Figure 12 (right) 150 0.21 5.23 0.21 640x429

Table 4.1: Timing statistics on our method.

CHAPTER 4. CELL TEXTURE EDITING 59

The performance of our method is also evaluated qualitatively. Our photo

editing system is implemented using C++, and experimented on a personal

computer with an Intel(R) Core(TM) i7 CPU @ 3.20 GHz and 9GB memor�,.

Table 4.1 shows the running time of our method on various photos shown

in Figures 4.9 to 4.12; we break down the overall running time for the three

major steps involved: cell detection, estimation of the local affine, and the

estimation of the affine field, corresponding to Sections 4.3.1, 4.3.2, and 4.3.3,

respectively. From the table, we can see that our method can finish within 8

seconds for all the example photos, and the estimation of the local affine takes

the most computation time compared to the other two steps. In addition,

the time taken here in this step is roughly proportional to the number of cells
being processed.

On the other hand, we found that after pre-computing the image-based

mesh structure, the photo editing process can be performed almost instan-

taneously, allowing interactive image attachment and cloning. Lastly, we

envision that our proposed method can further be optimized by parallel com-

piita.tion with GPU, in particular, the estimation of texture orientation in

each cell. This could significantly improve the overall performance, allowing

interactive analysis of cell structures. We leave this as a potential future

work.

Discussion. Though our method is designed for stochastic cell structures,

we would like to highlight that it can also be employed to handle uniform and

near-uniform lattice structures without any change in the implementation. In

these cases, since the cell structures typically have relatively little fluctuation,

the iterative step can finish very quickly, and generate stable and smooth

affine transformation fields.

Second，since the cell structure on a given photo may not cover the entire

CHAPTER 4. CELL TEXTURE EDITING 60

photo, we need a mask image to indicate the image region occupied by the

cells. In our current implementation, such a mask is manually created by

conventional image editing tools.

Limitations. First, since we assume the shape variation of cells to be sta-

tistically stationary, violation of this assumption could affect the estimation.

Second, our orientation estimator on R' relies on the gradient in textures to

produce a consistent local affine transformation at each cell. Noisv textures
o

and rotational-symmetric patterns in cells could lead to ambiguities in this

estimation step，as demonstrated on the left and right sides of Figure 4.14,

respectively. In these cases, our orientation estimator is apt to be influenced

by image and structure noise; we thus have to examine spatial distribution of

neighboring cells instead. Lastly, since we employ the MSER feature detec-

tor to generate the initial pool of cells, our current implementation inherits

the limitations of the MSER feature detector and fails to work with more

complicated patterns.

CHAPTER 4. CELL TEXTURE EDITING 61

mmm

•

⑷ Original (b) Cell detection (c) Affine e.stimation

Figure 4.6: Results on affine transformation estimation

CHAPTER 4. CELL TEXTURE EDITING 62

_ _

⑷ （ b) (c)

Figure 4.7: (a) An estimated affine transformation field; (b) part of an image-

based mesh pre-constructed from the affine transformation field; and (c) we

can attach a carpet image on the wall using the mesh.

念-：-’:、•，^、武••‘、.
袭* ^ ‘ ‘ ‘ - ̂ . •；

⑷ （ b) (C)

Figure 4.8: Shadow casting, (a) shadow map: raw (top) and soften (bottom);

(b) estimated affine transformation field; and (c) result: shadow can be cast

on the curved geometry in the scene.

CHAPTER 4. CELL TEXTURE EDITING 53

Figure 4.9: Image attachment results.

Figure 4.10: Object distribution results.

Figure 4.11: Image cloning results (from left to right): the target photo; the

source photo that contains the object to be cloned; cloning the object on the

same photo; and cloning the same object multiple times on another photo.

CHAPTER 4. CELL TEXTURE EDITING 64

Figure 4.12: Shadow casting results.

•••HM
Figure 4.13: From left to right: input photo; extracted cells with local affine

transformations estimated; a stable affine transformation field over the cells;

and an example photo editing result, where shadow is cast over the analyzed

image region.

_圖
Figure 4.14: Our method could fail to operate on cells with noisy texture

(left) or rotational-symmetric patterns (right).

Chapter 5

Conclusion

Image editing is a sophisticated topic. Most of current methods simply con-

sider low level consistency issues such as discontinuity and blurring. However,

even if the resultant image is free from pixel-wise artifacts, it may still suf-

fer from perceptual problems. Human have high level understanding about

image scene and thus could easily recognize editing artifacts. As a conse-

quence, higher level semantics also needs to be considered in editing. The

performance of image editing techniques could be significantly improved if

these aspects are taken into account.

The thesis focuses on deformation semantic in image editing. Geometric

deformation is a common visual phenomenon in many photographs. While

it could create amazing effects for photographs, it leads to distortion and

bending artifacts for many image editing applications. Because many state-

of-the-art methods implicitly assume the image plane aligns with the ge-

ometry plane. Interactive editing is an effective approach. However, it is

not always flexible in all cases. Hence automatic estimation techniques are

desirable. Many cues from image could be used to estimate geometric de-

formation, such as shading, blur, texture, boundary and etc. In particular,

65

CHAPTER 5. CONCLUSION 66

the thesis makes use of two cues, vanishing point and texture variation, to

support image editing.

First, from the clues of converging lines, we propose a method to partition

an image into several planar regions. Rectangular facades could be estimated

for each region together with the underlying transformation. We demonstrate

that the estimated facade could significantly improve the visual quality for

image resizing. By changing the resizing domain from the image plane to

the estimated facades, we can avoid the artifacts that are common in images

with strong foreshortening, regardless of the actual resizing methodology.

The proposed facade identification is surprisingly simple and efficient. In

some senses, we are trying to protect the major structure (facade) in the

image while leaving out the minor structure (fine details in the facade), as

we still cannot avoid the resizing method from breaking the fine structure

within the facade. Fortunately, most existing resizing methods can nicely

handle well-aligned image content.

Second, we propose a method that explores cell structures to estimate

a stable affine transformation field to support high-level photo editing. Our

motivation behind this idea lies in the fact that cell structures can be a useful

visual cue suggesting the underlying scene geometry. Hence, we propose the

statistically stationary assumption for analyzing stochastic cell structures,

so that for the first time, we can generate useful geometric hint from the

cells even though they are stochastically-distributed and arbitrarily-shaped.

Moreover, we propose also an original computational method to realize this

idea with three components: detection of cells from the input photo by a tai-

lormade method; estimation of the local affine transformation at each cell by

incorporating the ellipse geometry with the texture orientation; and finally,

solving for a stable and consistent affine transformation field by iteratively

CHAPTER 5. CONCLUSION 67

performing the propagation and filtering substeps. With this novel method,

we can support various high-level photo editing applications including the

four examples demonstrated in this thesis. Various visually-promising results

are demonstrated to show the effectiveness and applicability of our method

on different real photos.

Future work for the thesis is to address the limitations for the estimation

technique. The facade detection method requires the Manhattan assumption

to be satisfied, which generally does not hold in complex scene. A future di-

rection is to relax the Manhattan world assumption. A potential approach

is to first subdivide the image into regions and each region satisfies the as-

sumption. Furthermore, the robustness of the facade detection method relies

on the ability of line and vanishing detection. Hence a more robust vanishing

point detector is necessary. Moreover，the planar region might be over parti-

tioned in some cases, which is likely to break the foreshortening phenomenon.

A possible solution is to add a merging scheme.

The cellular texture deformation estimation relies on texel identification.

Although the current MSER based texel detection method performs well on

mosaic like textures, it could hardly handle the texture cases of which the

texel has a complex structure. Hence, a more robust texel detection method

is crucial for performance improvement. Moreover, the orientation estimation

is not stable for ambiguous texture structures like triangles and circles, thus a

better filtering method is necessary to replace the original propagation based

approach. Thirdly，it is difficult to tell the affine transformation of highly

irregular texture even for a human observer. In such cases, other cues such

as texture boundary would be necessary for estimation.

Bibliography

1] AGARWALA, A . , DONTCHEVA, M . , AGRAWALA, M . , DRUCKER, S.，

COLBURN, A . , CURLESS, B., SALESIN, D.，AND CoHEN, M . Interac-

tive digital photomontage. ACM Trans. Graph. (SIGGRAPH 2004) 23,

3 (2004)，294-302.

2] AHUJA, N . , AND TODOROVIC, S . Extracting texels in 2.1D natural

textures. In International Conference on Computer Vision 2007 (2007),

pp. 1-8.

3] AVIDAN, S . , AND SHAMIR, A . Seam carving for content-aware image

resizing. ACM Trans. Graph. 26, 3 (2007), 10.

:4j BARNES, C., SHECHTMAN, E.，FINKELSTEIN，A.，AND GOLDMAN,

D. B. Patchmatch: a randomized correspondence algorithm for struc-

tuml image editing. ACM Trans. Graph. (SIGGRAPH 2009) 28, 3

(2009), 24:1-24:11.

:5] BARRETT, W . A., AND CHENEY, A. S. Object-based image editing.

^CM Trans, Graph. (SIGGRAPH 2002) 21, 3 (2002), 777-784.

6j BERG, A . C., GRABLER, F . , AND MA L I K , J. Parsing images of archi-
tectural scenes. In ICCV (2007), pp. 1-8.

68

BIBLIOGRAPHY 80

BLAKE, A., BULTHOFF, H . H . ， A N D SHEINBERG, D . Shape from
texture: ideal observers and human psychophysics. Vision Research 33

(1993), 1723-1737.

[8] BROOKS, S.，AND DODGSON，N . Self-similarity based texture editing.

4CM Trans. Graph. (SIGGRAPH 2002) 2L, 3 (2002)，653-656.

CARROLL, R.，AGARWALA, A., AND AGRAWALA, M . Image warps for
artistic perspective manipulation. ACM Trans. Graph. 29 (July 2010),
127:1-127:9.

[10] CHANG，J., AND III, J. W . F. Analysis of orientation and scale in
smoothly varying textures. In International Conference on Computer

Vision 2009 (2009), pp. 881-888.

FLLJ CHENG, M.-M., ZHANG, F.-L., M I T R A , N . J., HUANG, X” AND

Hu, S.-M. RepFinder: finding approximately repeated scene elements

for image editing. ACM Trans. Graph. (SIGGRAPH2010) 29, 4 (2010),

83:1-83:8.

[12] CHUANG, Y.-Y., GOLDMAN, D . B., ZHENG, K . C., CURLESS, B . ，

SALESIN, D‘ H .， A N D SZELISKI, R . Animating pictures with stochastic

motion textures. ACM Trans. Graph. (SIGGRAPH 2005) 21 3 (2005),

853-860.

13] CLERC, M . ， A N D M A L L AT, S . The texture gradient equation for re-

covering shape from texture. IEEE Transactions on Pattern Analysis

and Machine Intelligence 24, 4 (2002), 536-549.

14] COMANICIU, D.，AND ME E R，P . Mean shift: A robust approach toward

feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 5

(2002), 603-619.

BIBLIOGRAPHY 70

15j CRIMINISI, A . , AND ZISSERMAN, A . Shape from texture: Homogeneity
revisited. In BA4VC (2000).

16] DAVID, P. Detection of building facades in urban environments. In

Visual Information Processing (2008), p. 69780.

17j EISENACHER, C.，LEFEBVRE, S.，AND STAMMINGER, M . Texture

synthesis from photographs. Comput Graph. Forum 27, 2 (2008), 419-

428.

18] FANG，H” AND HART, J. C. Textureshop: texture synthesis as a

photograph editing tool. ACM Trans. Graph. (SIGGRAPH 2004) 23, 3

(2004), 354-359.

19] FANG, H . , AND HART, J. C. Detail preserving shape deformation in
image editing. ACM Trans. Graph. (SIGGRAPH 2007) 26, 3 (2007),
12:1-12:5.

20] FARBMAN, Z.，HO F F E R , G .， L I P M A N， Y . , CO H E N - OR , D . , AND

LISCHINSKI, D . Coordinates for instant image cloning. ACM Trans.

Graph. (SIGGRAPH 2009) 28, 3 (2009), 67:1-67:9.

21] FORSYTH, D . A . Shape from texture and integrability. In ICCV (2001),
pp. 447-453.

22] GALASSO, F .， A N D LASENBY, J. Shape from texture via Fourier anal-

ysis. In Proceedings of the 4th International Symposium on Advances in

Visual Computing 2008 (2008), pp. 803—814.

23j GUTIERREZ, D . , LO P E Z -MO R E N O , J., FANDOS, J., SERON, F.,

SANCHEZ，M., AND REINHARD，E. Depicting procedural caustics

BIBLIOGRAPHY 71

in single images. ACM Tran. Graph. (SIGGRAPH ASIA 2008) 27,

5 (2008), 120:1-120:9.

24J HAYS, J., LEORDEANU, M . , EFROS，A. A., AND LIU, Y . Discov-

ering texture regularity as a higher-order correspondence problem. In

European Conference on Computer Vision 2006 (2006), pp. 522-535.

[25] HOIEM, D•，EFROS, A. A., AND HEBERT, M . Automatic photo pop-

up. ACM Trans. Graph. 21 3 (2005)，577-584.

[26] HORRY, Y . ， A N J Y O , K.-L , AND ARAI, K . Tour into the picture:

using a spidery mesh interface to make animation from a single image.

In Proceedings of the 24th annual conference on Computer graphics and

interactive techniques (1997), SIGGRAPH ,97, pp. 225-232.

27] JAFARI-KHOUZANI, K .， A N D SOLTANIAN-ZADEH, H . Radon trans-

form orientation estimation for rotation invariant texture analysis. IEEE

Transactions on Pattern Analysis and Machine Intelligence 27, 6 (2005),

1004-1008.

[28] JESCHKE, S., CLINE, D . , AND WONKA, P. A GPU laplacian solver

for diffusion curves and poisson image editing. ACM Trans. Graph.

(SIGGRAPH ASIA 2009) 28, 5 (2009)，116:1—116:8.

29] JiA, J . , SUN, J . , TANG, C . -K . , AND SHUM, H.-Y . Drag-and-drop

pasting. ACM Trans. Graph. (SIGGRAPH 2006) 25, 3 (2006)，631-

637.

30] KHAN, E . A . , REINHARD, E .，FLEMING, R . W .，A N D BULTHOFF,

H. H. Image-based material editing. ACM Trans. Graph. (SIGGRAPH

2006) 25, 3 (2006), 654—663.

BIBLIOGRAPHY 72

LAZEBNIK, S., SCHMID, C •，AND PONCE, J. A sparse texture rep-

resentation using local affine regions. IEEE Transactions on Pattern

Analysis and Machine Intelligence 21, 8 (2005), 1265—1278.

32] LEE, S . , CHWA, K . - Y . , AND SHIN, S. Y . Image metamorphosis using

snakes and free-form deformations. In SIGGRAPH (1995), pp. 439-448.

33] LEFEBVRE, S . , HORNUS, S.，AND LASRAM, A. By-example synthesis

of architectural textures. ACM Trans. Graph. 29 (July 2010), 84:1—84:8.

34] LEUNG, T . K . , AND MALIK, J. Detecting, localizing and grouping

repeated scene elements from an image. In European Conference on

Computer Vision 1996 (1996), vol. 1, pp. 546-555.

35] LIEBOWITZ, D . ， A N D ZISSERMAN, A. Metric rectification for perspec-

tive images of planes. In CVPR (1998), pp. 482-488.

36] LINDEBERG, T . Scale-Space Theory in Computer Vision. Kluwer Aca-

demic Publishers, Norwell, MA, USA, 1994.

37j LINDEBERG, T . , AND CARDING, J . Shape-adapted smoothing in esti-

mation of 3-D shape cues from affine distortions of local 2-D brightness

structure. In European Conference on Computer Vision 1994 (1994),

pp. 389-400.

38j LIU, Y ” LIN, W . - C . , AND HAYS，J. Near-regular texture analysis and

manipulation. ACM Trans. Graph. 23, 3 (2004), 368-376.

39] LUCAS, B . D .，AND KANADE, T . An iterative image registration tech-

nique with an application to stereo vision. In IJCAI (1981), pp. 674-679.

BIBLIOGRAPHY 73

40] MALIK, J.，AND ROSENHOLTZ, R . Computing local surface orientation

and shape from texture forcurved surfaces. International Journal of

Computer Vision 23, 2 (June 1997), 149-168.

41] MASSOT, C.，AND HERAULT, J . Model of frequency analysis in the

visual cortex and the shape from texture problem. International Journal

of Computer Vision 76, 2 (2008), 165-182.

42] MATAS，J . , CHUM, O . , URBAN, M . , AND PAJDLA, T . Robust wide

baseline stereo from maximally stable extremal regions. In BMVC

(2002).

43] O H , B . M . , CHEN, M . , DORSEY, J . , AND DURAND, F . Image-based

modeling and photo editing. ACM Trans. Graph. (SIGGRAPH 2001)

(2001)，433-442.

44] PAVIC, D . , SCHONEFELD, V . , AND KOBBELT, L. Interactive image

completion with perspective correction. The Visual Computer 22, 9-11

(2006), 671-681.

45] PfeEZ, P., GANGNET，M.，AND BLAKE, A. Poisson image editing.

ACM Tran. Graph. (SIGGRAPH 2003) 22, 3 (2003), 313-318.

[46] PRITCH, Y . , K A V - V E N A K I , E . , AND PELEG, S. Shift-map image

editing. In ICCV (2009), pp. 151-158.

:47j RUBINSTEIN, M . , SHAMIR, A . , AND AVIDAN, S. Improved seam carv-

ing for video retargeting. ACM Trans. Graph. 21, 3 (2008).

:48j RUBINSTEIN, M.，SHAMIR, A.，AND AVIDAN, S. Multi-operator media

retargeting. ACM Trans. Graph. 28, 3 (2009).

BIBLIOGRAPHY 74

49] SHEWCHUK, J. R. Triangle: Engineering a 2D Quality Mesh Generator

and Delaunay Triangulator. Applied Computational Geometry: Towards

Geometric Engineering II48 (May 1996), 203-222.

50] SIMAKOV, D .， C A S P I , Y . , SHECHTMAN, E . , AND IRANI, M . Summa-

rizing visual data using bidirectional similarity. In CVPR (2008).

51] TAI, Y . - W . , BROWN, M . S . , AND TANG, C . - K . Robust estimation

of texture flow via dense feature sampling. In Computer Vision and

Pattern Recognition 2007 (2007), pp. 1-8.

52] TARDIF, J . - P . Non-iterative approach for fast and accurate vanishing

point detection. In ICCV (2009), pp. 1250—1257.

53] TOLDO, R . , AND FUSIELLO，A. Robust multiple structures estimation

with j-linkage. In ECCV (1) (2008), pp. 537-547.

:54j TOSHEV, A . , MORDOHAI, P., AND TASKAR, B . Detecting and parsing

architecture at city scale from range data. In CVPR (2010), pp. 398-405.

55j UTSUGI, K . , SHIBAHARA, T . , KOIKE, T . , AND NAEMURA，T. Pro -

portional constraint for seam carving. In SIGGRAPH Posters (2009).

56j VON Gioi, R . G., JAKUBOWICZ, J . , MOREL, J . - M . , AND RANDALL,

G. Lsd: A fast line segment detector with a false detection control.

^EEE Trans. Pattern AnaL Mach. IntelL 32, 4 (2010), 722-732.

57] WANG, Y . - S .，T A I , C . - L . , SORKINE, O . , AND LEE, T . - Y . Optimized

scale-and-stretch for image resizing. ACM Trans. Graph. 27, 5 (2008),

118.

BIBLIOGRAPHY 75

58j WERNER, T . ， A N D ZISSERMAN, A . New techniques for automated

architectural reconstruction from photographs. In ECCV (2) (2002)，

pp. 541-555.

[59] W H I T E ， R . ， A N D FORSYTH, D . A . Combining cues: Shape from slmd-

ing and texture. In Computer Vision and Pattern Recognition 2006

(2006)，vol. 2, pp. 1809-1816.

[60J W u , H . , WANG, Y . - S .，F E N G , K . - C . , W O N G , T . - T . ， L E E , T . - Y . ,

AND HENG, P . -A. Resizing by symmetry-summarization. ACM Trans.

Graph. 29 (December 2010), 159:1-159:10.

[61J XIAO, J., FANG，T. , T A N，P . , ZHAO, P . , O F E K ， E . ， A N D QUAN,

L. Image-based facade modeling. ACM Trans. Graph. 27 (December

2008)，161:1-161:10.

[62j X U ， K . , LI, Y .， J U , T . , HU, S , M . ， A N D LIU, T , Q . Efficient affinity-

based edit propagation using K-D tree. ACM Tran. Graph. (SIGGRAPH

^SIA 2009) 28, 5 (2009)，118:1-118:6.

[63] YEUNG, S . - K .， T A N G , C , K . , BROWN, M . S .，AND KANG, S . B .

Matting and compositing of transparent and refractive objects. ACM

Trans. Graph. 30, 1 (2011), 2:1-2:13.

[64] ZHANG, W . , AND KOSECKA，J. Extraction, matching and pose recov-

ery based on dominant rectangular structures. In Proceedings of High

Level Knowledge in Vision Workshop, ICCV 2003 (2003).

C U H K L i b r a r i e s

0 0 4 8 0 6 7 7 7

