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Abstract 

The visual system of human beings can easily interpret 2D line drawings and 

perceive their 3D models . In order to emulate this visual ability by a computer, 

many algorithms have been proposed in the literature. The optimization-based 

algorithms are the most successful and popular methods in this field . These 

algorithms derive a 3D configuration from its 2D line drawing by minimizing an 

objective function , whose input variables are the missing depths of the vertices 

in the line drawing. The objective function is formulated as a weighted sum of 

several image regularities , each of which describes a rule that the optimal 3D 

configuration should satisfy as much as possible. In this way, the algorithms 

seek a reconstruction that best satisfies the regularities. 

Although the state of the art optimization-based 3D reconstruction algo

rithms can reconstruct a wide range of 3D objects, there is a serous problem 

with these algorithms , in which a large number of free parameters are set 

without optimization, causing distorted 3D objects often. In this thesis, we 

propose two approaches to solve the parameter setting and tuning problems. 

Firstly, the values of different image regularities span in very different ranges 

and their varying patterns during the optimization procedure are not well cor

related, thus the traditional fixed regularity weights in the objective function 

would cause the problem that only the large value regularities dominate the 

optimization direction . We propose an adaptive parameter-setting strategy 

to handle this different regularity range problem. This adaptive strategy can 

be understood as a proper normalization method for the image regularities 
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at each search step. It can also be seen as making the final objective func

tion as a weighted sum of improvement ratios on the image regularities but 

not a weighted sum of absolute regularity values anymore. The experimen

tal results show that the adaptive parameter-setting strategy brings dramatic 

improvement on the 3D reconstruction results. 

Secondly, the weights of the image regularities in the objective function 

are traditionally set with heuristics and trials. However, when the number of 

regularities becomes large it is very difficult to set the weights appropriately. 

Improper weights may lead to less plausible or even unacceptable reconstruc

tion results. We propose a parameter-learning framework to learn the best 

regularity weights. In the learning framework , a large 3D object database 

is constructed to provide the ground truth 3D objects for the training and 

testing datasets. A reconstruction error measure is defined to evaluate differ

ent weights' fitness. We employ an evolutionary algorithm to search for the 

best regularity weights in the large search space. The experimental results 

show that the proposed parameter-learning framework can effectively find bet

ter regularity weights which produce significantly better reconstruction results 

than the previous manually-set weights do. 
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摘要

人類視覺系統可以容易地理解二維線畫圖並感知它們所表示的三維模型 o 為

了使計算機模擬這個智能能力，文獻中己提出了許多不同的算法。其中基於

優化的三維物體重建算法在此領域中取得了很大成功且普及率最高。這種算

法通過最小化一個目標方程來從二維線畫圖中得到它的三維結構，其目標方

程的自變量即是線畫圖中各節點所缺失的深度坐標。此目標方程的表達形式

是一個由許多圖像規則構成的加權和，其中每個圖像規則規定一個最優三維

結構所應符合的條件。通過這種方式，此類算法尋找那個可以最好地滿足所

有圖像規則的三維重建結果 o

雖然目前最好的基於優化的三維重建算法可以重建範圍很廣的三維物體，這

類算法仍有一個嚴重的參數問題。它的大量自由參數的設置方法沒有被優化，

這通常會導致算法重建出歪斜扭曲的三維物體。在本論文中我們提出兩個方

法來分別解決此類算法的參數設定和調試問題。首先，不同圖像規則的取值

範圍差別很大，而且他們的值在優化過程中的變化趨勢也沒有很好的相關性，

由此傳統的在目標方程中使用固定的圖像規則權重的方式會導致在優化過程

中那些取值大的圖像規則主導了優化進行的方向。我們提出一種自適應的參

數設定策略來處理這個圖像規則取值範圍不同的問題。這種自適應的策略可

以被理解成在每一步優化中對圖像規則進行合適的歸一化:它也可以被看成

是把目標方程的形式改變成為圖像規則取值的提高比率的加權和，而不再是

圖像規則的絕對取值構成的加權和。實驗結果表明這種自適應的參數設定策

略大幅度提高了基於優化的三維重建算法的重建結果質量。

第二，傳統上調試目標方程中圖像規則的權重都是用故發式的方式或者多次

試驗的方法。然而，當所使用的圖像規則的數目變得很大的時候，用這種方

法很難調試出合適的圖像規則權重組合。不適當的權重會導致低質的甚至是

不能接受的三維重建結果。我們提出一個參數學習的框架來學習出最優的圖

像規則權重組合。在此學習框架中， 一個三維物體數據庫被創建出來從而為

訓練數據集和測試數據集提供標準真實的三維物體。 一種三維重建結果的誤

差測算方法也被定義出以評價不同權重組合的合適程度。我們使用遺傳算法

在這個很大的權重搜宗空間中尋找最傻的圖像規則權重組合。實驗結果表明

我們提出的參數學習框架可以有效地尋找到更好的圖像規則權重組合，這些

通過學習得到的權重組合與之前于工設定的權重組合相比可以產生出明顯更

理想、的三，維重建結果。
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Chapter 1 

Introduction 

1.1 3D Reconstruction fron1 2D Line Draw

ings and its Applications 

3D object reconstruction from 2D representat ions is a classic and important 

research topic in computer vision community. It has many important applica

tions including architectural design, 3D game, animat ion, virtual reality, etc. 

The 3D reconstruction problem is difficult because the depth information is 

lost when a 3D object is projected onto a 2D image plane. However, hu

man beings can easily interpret the configuration of a 3D object shown on a 

2D image. To enable the computers to acquire this intelligent ability, many 

algorithms have been proposed for different application scenarios , such as 3D 

reconstruction from video sequences, from single view or multiple view images, 

from engineering drawings of multiple views, etc. 

In this thesis , we focus on the problem of 3D object r construction from 

a single 2D line drawing. A 2D line drawing is defined as the parallel or 

nearly-parallel projection of a 3D object in a generic view where all the edges 

and vertices of the object are visible , and the line drawing can be represented 

by a single edge-vertex graph. Fig. 1.1 shows an example of 3D object re

construction from a single 2D line drawing. Fig. 1.1 (a) is t he input line 
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Chapter 1 Introduction 2 

(a) (b) (c) 

Figure 1.1 : 3D object reconstruction from a single 2D line drawing 

drawing. Fig. 1.1 (b) and (c) are the reconstructed 3D object viewed from 

two different viewing angles. It is straightforward and easy to represent a 3D 

wireframe object in a 2D line drawing. Thus, the automatic reconstruction of 

accurate 3D objects from their 2D line drawings would be desired and helpful 

for various 3D reconstruction applications such as architectural design, land

scape plan, 3D modeling in games, animations, films and etc. In general, these 

applications can be regarded as the work done by a computer-aided design 

(CAD) system. Current sophisticated CAD tools still cannot automatically 

convert a line drawing into a 3D object , which prevent the users , especially 

the conceptual designers, from freely and conveniently expressing their design 

ideas. 

Many researchers have noticed the importance of 3D reconstruction prob

lem from 2D line drawings and a number of publications have been devoted 

into this research both in computer vision and in CAD and graphics liter-

ature [7], (24], [27], [29], (30], [32], [31], [28], [36], [37], [41], [44], [45], [4 7], 

[49], [2], [3], [10], [11], [54], [55], [51]. The specific application scenarios of 

these works include: (1) flexible sketching user interface in CAD systems for 

conceptual designers who tend to prefer using pencil and paper rather than 

mouse and keyboard [3] , [27], [30], [42]; (2) providing rich databases for object 

recognition systems and reverse engineering algorithms [2], [3], [11], (50]; ( 3) 
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automatic conversion of industrial wireframe models to solid models [2], [19]; 

( 4) interactive generation of 3D models from real images [16], [28], [51], [46]; 

(5) friendly user interface in 3D object retrieval systems [5], [39] [61]. The 

line drawings used in these applications may be acquired from the sketches on 

paper, drawing on a digitizer tablet, drawing on the screen with a mouse or 

existing industrial wireframe models. To extract t he edge-vertex graph rep

resentation of a line drawing from a scanned image, some procedures may be 

required such as binarization of the image, thinning of the lines and analysis 

of the connectivity. 

1.2 Algorithn1ic Developn1ent of 3D Recon-

struction fron1 2D Line Drawings 

Since the seventies of last century, researchers have been exploring the ap

proaches of interpreting 2D line drawings as 3D objects . Significant improve

ments of the 3D reconstruction algorithms have been seen in recent years with 

the development of optimization-based 3D reconstruction algorithms which 

can reconstruct more complex and larger-scale 3D objects from a single 2D 

line drawing. In this thesis we focus on enhancing the performance of the 

state of the art optimization-based 3D reconstruction algorithms by optimiz

ing its parameter setting and tuning strategies. O-ur work is important because 

the optimization-based algorithms have a large number of free parameters and 

it is difficult (almost impossible) to set these parameters optimally just with 

experience or heuristics. Our aim is to make the 3D reconstruction results not 

only topologically correct but also aesthetically reasonable. In order to provide 

a comprehensive picture of related works, in the following three subsections we 

will present the algorithmic developments of 3D reconstruction from 2D line 

drawings. 
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1.2.1 Line Labeling and Realization Problem 

A large amount of early works in computer vision are about line labeling and 

3D reconstruction based on a labeled drawing [9], [12], [13], [14], [15], [18], [20], 

[21], [35], [47], [49], [48], [57], [53]. Line labeling targets at the problem of find

ing a set of consistent labels from a line drawing and to provide a qualitative 

description of the scene by classifying the parts of a line drawing as the projec

tion of concave, convex or contour edges. Although line labeling explores 3D 

information, it does not explicitly give the 3D structure represented by a line 

drawing. Early work on line labeling focuses on labeling polyhedra without 

hidden lines. Huffman et al. [20] and Clowes [9] independently first described 

a scheme for labeling line drawings in 1971 . They targeted at the case where 

all faces are planar, that is, a "polyhedral world", so there were only four pos

sible labels { +, - , V, A} in their works. It was assumed that all vertices are 

trihedral, that is, they are formed by exactly three faces, and that there are 

no object alignments, which would result in a "crack" edge. In 1975, Waltz 

[57] presented a filtering algorithm which has a very good average running 

time (roughly linear in the number of segments). The algorithm achieved local 

consistency in the following way: given a junction, rule out all legal labelings 

of the junction for which there is no compatible labeling of its neighbor junc

tions. Then, repeat this procedure until no further progress can be made. To 

label a line drawing, the algorithm need first achieve this local consistency and 

then achieve global consistency by a tree searching with backtracking. Most of 

the line labeling algorithms are designed for polyhedra without hidden edges. 

Recently, Cooper published a series of works which extended the line labeling 

research to handling wireframes objects with hidden lines visible as well as 

curved objects [13], [14], [15]. However, a limitation of line labeling is that 

multiple consistent labeling solutions for one line drawing are possible [43]. 

Another area of the 3D reconstruction work is Realization, which involves 
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the physical legitimacy of the interpreted scene for line labelings, and tries to 

recover the underlying 3D structure based on algebra test with linear equali

ties and inequalities [47], [49], [48], [52], [41]. Using line labeling schemes, all 

physical objects should be labelable. However, labelability is not a sufficient 

condition for physical realizability. Because there are always vertex position 

errors in the line drawings which are either extracted from an image or drawn 

by a person, it is usually impossible to find a 3D object whose projection is ex

actly the same as the line drawing. Small deviations of some vertices from the 

precise 2D projection may cause the corresponding 3D face to be non planar . 

Thus there is no theoretically exact solution to the 3D reconstruction prob

lem. However, human beings usually can easily understand what an imperfect 

line drawing represents. This problem of the realization approaches is called 

superstrictness. Therefore, the limitations of these methods are that such a 

formulation is superstrict and thus not robust; realizability can be efficiently 

checked only when a legal labeling is available. 

1.2.2 3D Reconstruction from Multiple Line Drawings 

Works of 3D reconstruction from multiple line drawings try to reconstruct a 

3D CAD model from its multiple (three, in general) orthographic projections 

[1], [60], [22], [33], [8], [17], [23], [25], [34]. More information can be used 

from three orthographic views than from a single-projected view for the recon

struction task, so this work is easier compared with 3D reconstruction from a 

single line drawing. Traditionally, engineering objects are represented by three 

orthographic views: front, top and side views. Liu et al. [33] used matrices to 

represent conic faces for the reconstruction of different objects such as planar, 

cylindrical and conical faces. He also gave the proof that minimum number of 

views required to represent conics are three. The approach in [8] was based on 
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constructive solid geometry and required three orthographic views. The tech

nique is powerful in handling blind pockets, through pockets, circular pockets, 

through holes , blind holes, counter bored through holes , counter bored blind 

holes, etc. Dimri et al. [17] introduced a novel technique of reconstruction 

from x-sectional views . Handling of sectional views was also discussed by Wes

ley [60] but their approach is limited to full sectional views only. Technique of 

Dimri [17] took into account full sectional, half sectional, offset sectional. As 

these approaches deviate much from our main theme in this thesis , we will not 

give more detailed reviews on this stream of research. 

1.2.3 3D Reconstruction from a Single Line Drawing 

The state of the art algorithm of 3D reconstruction from a single line draw

ing is the optimization-based algorithm which was firstly proposed by Marill 

[36] in 1991. Since then, many improvements on this algorithm have been 

proposed [27], [7], [6], [28], [58]. Our work in this thesis is trying to enhance 

the performance of the optimization-based algorithms from the parameter set

ting and tuning perspective, therefore, in the following we will give a detailed 

introduction of the framework of the optimization-based 3D reconstruction 

algorithms. 

In general, the optimization-based algorithms reconstruct a 3D object from 

a single 2D line drawing in two steps. The first step is face identification and 

the second step is 3D geometry reconstruction. We will use the planar object 

reconstruction as an example to illustrate the two steps of the algorithms. For 

curved object reconstruction the general framework is the same. 

Face Identification From A Line Drawing 

Face identification from a line drawing is the first step of 3D reconstruction. 

An 3D object consists of several faces. If the face configuration of an object 
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(a) (b) 
Figure 1.2: (a) Input line drawing. (b) Faces of the line drawing 

is known before the reconstruction of its 3D geometry, the complexity of the 

reconstruction will be reduced significantly. Fig. 1.2 shows the faces of a line 

drawing. 

In general, a face is a closed cycle in the line drawing's edge-vertex graph. 

There are many cycles in a line drawing but only a small subset of them 

represent the faces, and the number of cycles grows exponentially with the 

number of edges. Thus finding the faces from a line drawing is not a trivial 

problem. Much effort has been made in this area [30], [3], [2], [24], [45], [32], 

[29], [31], [26]. 

A distinct decomposition method for extracting face topologies from wire

frame models was proposed by Agarwal and Waggenspack [2] . They employed 

a divide-and-conquer strategy to remove stars (tetrahedra, N-sided pyramids, 

or multiply connected stars) from a drawing. The faces of the drawing were 

obtained by combining triangles that were created from the stars. However this 

method failed in some occasions mentioned in [30]. Bag ali and Waggenspack's 

approach [3] was based on an efficient shortest path algorithm for cycle genera

tion. Their algorithm is fast, conceptually simpler and easy to implement, but 

limited to 3-connected drawings of genus 0. The recent work presented in [27] 

and [29] can handle a larger range of objects than previous methods. Both of 
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them included two steps: finding a set of circuits that may be potential faces 

and searching for faces from this set. It needs to be emphasized that the two 

steps in each of the two methods correspond to two combinatorial problems. 

The number of circuits is generally exponential in the number of edges of a 

line drawing. Shpitalni and Lipson [27] presented two algorithms for the face 

identification problem. Their first algorithm was using the planar embedding 

algorithm to locate faces of a drawing. Although they put in more effort to find 

multiple interpretations of a drawing that was not 3-connected, the algorithm 

was still suitable only for manifolds of genu-s 0. Their second algorithm was 

an optimization-based procedure. The criterion they employed to formulate 

the face identification was based on the observation on face configuration and 

a basic theorem called the face adjacency theorem. The observation, serving 

as the criterion for the problem, is that, given a line drawing, human beings 

tend to choose a face configuration in which there are as many edges as pos

sible. The face adjacency theorem stated that two adjacent planar faces may 

coexist in the same object if and only if their common edges are collinear. 

This algorithm is suitable for a large set of drawings representing manifold 

and nonmanifold objects. However, it fails when handling the objects with 

internal faces . Liu and Lee [29) revisited the problem tackled by Shpitalni 

and Lipson and used the same criterion and face adjacency theorem to for

mulate the problem. They formulated the face identification as a maximum 

weight clique problem and developed a much faster algorithm to find faces in 

a line drawing. Their algorithm outputs the same results of face identifica

tion, and has the same problem, as Shpitalni and Lipsons. Liu et al. [32) and 

[31] proposed variable-length genetic algorithms with heuristic and geometric 

constraints incorporated for local search and tackled simultaneously the two 

combinatorial problems involved in the previous methods [27), [29). 

In this thesis we use planar manifold objects in training and testing datasets. 

Among these face identification techniques, the work in [30] is most suitable for 
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us, because the previous approaches could not handle the visible hidden lines 

very well. For manifolds only, none of the previous algorithms can handle both 

the objects with the internal faces and with the holes. In addition, it seems 

that it is impossible to develop an efficient (polynomial) algorithm to handle 

drawings with genus > 0. Liu et al. [30] proposed the new method based on a 

number of properties implied in line drawings representing manifold objects, 

used a tree search scheme t o find the faces of manifolds. The two main steps in 

the method were 1) searching for cycles from a line drawing and 2) searching 

for faces from the cycles. In order to speed up the face ident ification procedure, 

a number of properties, most of which relate to planar manifold geometry in 

line drawings, were presented to identify most of the cycles that are or are not 

real faces in a drawing, thus reducing the number of unknown cycles in the 

second searching. Schemes to deal with manifolds of curved faces and mani

folds each represented by two or more disjoint graphs were also proposed. We 

implemented this method to identify faces for our 3D reconstruction system. 

3D Geometry Reconstruction 

To fully reconstruct the 3D object after face identification, the next step of the 

optimization-based algorithms is to formulate the problem as an optimization 

problem and to minimize an objective energy function. 

Marill [36] firstly presented the optimization-based approach which was 

based on a simple criterion: minimizing the standard deviation of the angles 

in the reconstructed object , which is called the MSDA principle. This criterion 

can be used to inflate a 2D line drawing into a 3D shape. Marill's approach is 

tolerant of freehand sketching errors, but it can just reconstruct simple 3D ob

jects, such as cubic, pyramid, st airs , etc. Motivated by the MSDA, Brown and 

Wang [4] proposed to minimize the standard deviation of the segment magni

tudes (MSDSM) in the recovered planar object, and Shoji et al. [44] presented 

the criterion of minimizing the entropy of angle distribution (MEAD), and 
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claimed that it is more general than both the MSDA and the MSDSM. 

MSDA, MSDSM, and MEAD can only recover simple objects from line 

drawings. Later, some researchers extended the criterions following this idea 

and incorporated more heuristic regularities in the reconstruction process. 

Leclerc and Fischler et al. [24] considered not only the MSDA, but also the 

regularity of face planarity for planar object reconstruction. By modifying 

Marill's objective function to explicitly favor planar-faced solutions, and by 

using a more competent optimization technique, this method performs better 

than MSDA, MSDSM, and MEAD. The methods in [40] and [56] concentrated 

on the reconstruction of symmetric polyhedra by developing a regularity of 

model symmetry. Lipson and Shpitalni [27] took Leclerc and Fischler's work 

further using more regularities for the reconstruction such as line parallelism, 

line verticality, isometry, corner orthogonality, skewed facial orthogonality and 

skewed facial symmetry, all of which are in accordance with human visual per

ception of line drawings. All these constraints are combined together to form 

an objective function to reconstruct more complex objects than all the previous 

methods. When the reconstruction process begins, the given 2D edge-vertex 

graph is analyzed and image regularities are identified. A 3D configuration can 

be represented by a vector Z containing the z coordinates of the vertices. The 

objective function F(Z) can then be computed for any 3D configuration by 

summing the contributions of the regularity terms. Regularities are prefixed 

by a global weighting vector W . The final objective function to be optimized 

takes the form 

F(Z) = wr a(Z), (1.1) 

where a is the vector containing all the constraints including aplanarity, 

a parallel, nvertical, aisosometry, ncornerskewedorthogonatity, etc. Here we note that 

the global balancing coefficient vector W is actually a free parameter. Its 

dimension is the number of different image regularities. When a large number 

of image regularities is used, it is very difficult to set W properly just with 
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(a) i\n inputted line dravving 

(d) Cotnbillation of the seven parts (c) 3D reconstruction of the seven parts 

Figure 1.3: Divide-and-conquer strategy 

experience and heuristics. The work in this thesis will tackle this problem. 

To reconstruct more complex objects, Chen et al. [7] used a divide-and

conquer strategy as shown in Fig. 1.3. The approach consists of three steps: 

1) dividing a complex line drawing into multiple simpler line drawings based 

on the result of face identification; 2) reconstructing the 3D shapes from these 

simpler line drawings; 3) merging the 3D shapes into one complete object rep

resented by the original line drawing. And for curved object reconstruction, 

Wang [58] recently proposed an approach in whi~h the problem is firstly con

verted into the planar object reconstruction problem and solved by the method 

in [7] , and then t he reconstruction result is converted back into the original 

curved form. 

Through the above introduction of the algorithms ' developments, we can 

see that even t hough the state of the art methods become more and more 

complicated so that they can deal with more complex or curved objects, they 

are still holding the core idea of the optimization-based algorithms which is 

to formulate the reconstruction process as an optimization problem and to 
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minimize an objective energy function as expressed in (1.1) . Therefore, all the 

methods must decide the value of the free parameter W and whether or not 

the resulted energy function in (1.1) is appropriate will significantly affect the 

final reconstruction result. This intrigues the research topic of this thesis. 

1.3 Research Problems and Our Contributions 

The optimization-based algorithms reconstruct 3D objects from a line drawing 

by minimizing an objective energy function as shown in (1.1). This function 

can be seen as a weighted sum of a set of image regularity terms. As it is not 

analytically tractable, the step-wise hill-climbing algorithms are usually used 

to find the optimization result . Each image regularity term in this function 

reflects how well the 3D configuration is consistent with a certain aspect of 

human being's perception of the 2D line drawing. For example, the face pla

narity term shows the degree of flatness of all the faces identified in the face 

identification step. Including this term in the objective function is appropriate 

because human beings tend to interpret all the identified faces as flat faces. 

By incorporating many such regularities into the final objective function and 

looking for the best 3D configuration which minimizes it , the algorithms can 

produce the desired reconstruction result which is consistent with human be

ing's perception as much as possible. And because the algorithm is not seeking 

exact algebraic solutions but doing an optimization procedure, it has the ad

vantage that the errors or inaccuracies in a hand-written line drawing can be 

tolerated, which is in accordance with human being's ability. 

However, there are still problems with this optimization formulation. Firstly, 

the regularity weights W are fixed in the objective function during the opti

mization procedure, while the different image regularities' values can vary dra

matically during the process with different value ranges. For example, during 

the optimization procedure a face cycle in 3D can produce a face planarity 
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term with a magnitude of 10000 but an un-parallelline pair can only produce 

a parallel-line term with a magnitude of 100. At the final steps of optimiza

tion, both of these two terms will produce values of nearly zero. And the 

varying patterns among different regularities are not well correlated. Thus, 

it is quite possible that at certain steps of hill-climbing only a subset of the 

image regularities, which are producing larger values , dominates the optimiza

tion direction. Therefore, with fixed regularity weights the algorithm cannot 

fully make use of all the image regularities and the hill-climbing procedure 

becomes more prone to go to the local optimal points. The second problem 

with the optimization-based algorithms is its large number of free parameters. 

Since Lipson and Shpitalni [27], researchers have developed more than dozen 

image regularities to mimic human being's interpretation of line drawings. In 

the objective function , each dimension of the free parameter W is a weight 

assigned to a specific image regularity. Thus, the number of free parameters 

in the objective function equals to the number of image regularities . Assume 

that we want to use ten image regularities to do the reconstruction and the 

weight of each regularity is an integer within [1 , 100], then the number of feasi

ble weight assignments is 10010 == 1 x 1020 . This huge number means that it is 

almost impossible to heuristically find the optimal weight assignment when we 

want to use many image regularities. Because of this parameter problem, in 

practice the 3D reconstruction systems usually just use a small number (three 

to four) of the image regularities and the parameters (regularity weights) are 

arbitrarily set with trials and heuristics. 

In this thesis , we propose approaches to solve the above two problems 

with the optimization-based 3D reconstruction algorithms. We firstly present 

an adaptive parameter-setting st rategy to deal with the problem of differ

ent image regularity magnitudes . In the proposed adaptive parameter-setting 

strategy, the weights of the image regularities are no longer fixed during the 
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optimization procedure but varying according to the values of the correspond

ing image regularity terms. Secondly, we build a 3D object database and with 

the database we develop a parameter-learning framework to learn the optimal 

weight assignments for a large number of image regularities. Our experimental 

results show that both the new adaptive parameter-setting strategy and the 

parameter-learning framework can effectively improve the performance of the 

state of the art optimization-based 3D reconstruction algorithms. 



Chapter 2 

Adaptive Parameter Setting 

The free parameters of the optimization-based 3D reconstruction algorithms 

are the weights of the image regularities. Traditionally, the regularity weights 

are fixed real values. However, as different image regularities ' values span in 

very different ranges and their varying patterns during the optimization proce

dure are not well correlated, the fixed-weights strategy can bring the problem 

that only the large value regularities dominate the optimization direction in 

certain steps of the hill-climbing optimization procedure. In this chapter, we 

will present an adaptive strategy to set the image regularity weights so that 

all the image regularities can be fully utilized in the hill-climbing optimization 

procedure and thus the problem mentioned above is overcome. Before intro

duce the strategy, we firstly introduce twelve image regularities which are used 

in 3D reconstruction from 2D line drawings. 

2.1 Regularities in Optimization-Based 3D Re

construction 

In [27] , Lipson and Shpitalni introduced a large number of image regularities 

into the optimization-based 3D reconstruction algorithms. Our parameter set

ting and tuning work in this thesis is mainly based on these image regularities. 

In this section, most of the following regularities and explanations come from 

15 
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this paper. Image regularities are special geometrical relationships between 

individual entities or within groups of entities in a line drawing. Its heuristic 

rule is that the image regularities do not appear in the line drawing acciden

tally, but rather correspond to some real geometrical regularities existing in 

the 3D object. An example of a typical regularity is parallelism. The heuristic 

rule for the parallelism regularity is that if two lines are parallel in the sketch 

plane, they probably represent parallel lines in the 3D object. This heuristic 

rule has a sound statistical basis: two un-parallel lines in space will appear 

parallel only when viewed from a very limited scope of viewpoints. Parallel 

lines in space, however , will appear parallel when viewed from any viewpoint. 

Hence, if two lines are parallel in the sketch plane, it is more likely that they 

represent true spatially parallel lines. Most of the following image regularities 

are based on similar grounds. The notion of image regularities is so deeply 

rooted in the human visual system that an image failing to comply with them 

often perplexes the viewer. An excellent example is found in M. C. Escher 's 

puzzling drawings , where some of the scenes contain parallel lines that do not 

correspond to parallel lines in the three dimensional scene. 

Because there are inevitable errors in a hand-written line drawing, the im

age regularities should be able to handle small variations. Take the parallelism 

of two lines as an example. A cutting threshold of the angle between two lines 

can be used to detect the parallelism, however this method is too strict and 

not consistent at the values around the threshold. To avoid this threshold 

problem, a continuous compliance factor J-L( a) is defined for the image regu

larities. Here for parallelism, the a is the angular difference between the two 

lines in question. The compliance factor J-L ranges from 1.0 for exact paral

lelism (a== 0) and descends to zero like a standard normal distribution curve 

with the deviation being the threshold value,as a approaches to 90°. For each 

pair of lines in 3D, their line-parallelism term's value will be determined by 

both their layout in the 2D line drawing and their 3D positions. Intuitively, it 
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could be said that "the more the lines are parallel in the 2D sketch plane, the 

more they are required to be parallel in 3D space." Thus, by avoiding a clear 

cut threshold, a small change in the angle of a line would not cause a step 

difference in interpreting parallelism. The general formulation of the function 

M(x)is given by: 

/La,b(x) == e- ((x-a)/b)2 ' (2.1) 

where x represents the value to be checked, a is a nominal value (e.g., 0° for 

parallelism and 90° for perpendicularity), and b is a reasonable deviation (e.g., 

7o for parallelism). 

Here M(x) has been defined so that it evaluates to 1.0 when x ==a exactly, 

and degenerates to 0.0 like a standard distribution curve with (} == b as x 

retreats from a. For practical purposes, equation (2.2) has been modified to 

eliminate values close to zero that may otherwise be weak regularities. That 

lS: 

/La,b(x) = max[O, 1.1 · e- ((x - a)/b)
2

- 0.1], (2.2) 

The inclusion of the consistency principle is a significant contribution to the 

robustness of the interpretation of imperfect 2D line drawings. 

Notations 

The following notation is used in the image regularity expressions: 

a represents the criteria value. These criteria are summed up and used as 

a minimization target . 

w represents the weight inside an image regularity term which is assigned 

to certain entities. Its value is determined by the entities' congruence level 

with the associated regularity in the 2D line drawing. 

v, v' are vectors that respectively represent a vertex belonging to a 3D 

object and its 2D projection in the sketch plane. 
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l , l' are unit vectors that respectively represent a direction in 3D and in the 

sketch plane. 

The following is a list of image regularities . Each regularity includes an 

observable geometrical relationship in 2D and the associated configuration 

presumed in 3D. The mathematical terms used to evaluate the regularities 

are given. 

2.1.1 Face Planarity 

As we are considering objects with planar faces only, each face cycle identified 

in the 2D line drawing should reflect a planar face in 3D. The evaluation of 

this condition is performed in two stages: first, the best-fit surface for the face 

cycle in 3D is found ; then, the deviation of each vertex from that surface is 

computed, squared, and summed. 

The best-fit plane is assumed to be in the form: 

ax + by+ cz + d = 0, (2.3) 

The plane coefficients a, b, care computed by solving the linear system (2.4) us

ing the given list of point s (x i; Yi; zii = l..n) lying on the plane, and arbit rarily 

assuming d = 1. 

x? 
~ XiYi XiZi a Xi 

L XiYi YT YiZi b =L Yi (2.4) 

XiZi YiZi z~ 
~ 

c Z· ~ 

The coefficients are t hen normalized by having J a2 + b2 + c2 = 1 with d scaled 

appropriately and the deviation of a point from the plane taken as the absolute 

value laxi + byi + czi + dl. 
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2.1.2 Line Parallelism 

A parallel pair of lines in the sketch plane reflects parallelism in space. The 

term used to evaluate the parallelism of a line pair is 

A A 

2 
aparallel == w1,2[cos- 1(h · l2)] 

W1,2 == f-Loo ,7o(cos- 1(ll· 4)) , 
(2.5) 

A 

where h and l2 are the unit direction vectors of the first and second lines, 

respectively. The weight w1,2 given to a specific pair of lines for this regularity 

depends on how the two lines are parallel in the sketch plane. 

2.1.3 Line Verticality 

A line that is vertical in the sketch plane (parallel to the y-axis of the draw

ing page) is "vertical in space," i.e. , its two endpoints have similar depth 

z-coordinates. The term used to evaluate the verticality of a line is 

a vertical == wz[ COS -
1 (l:)] 2 

wl == f-Loo ,7o ( cos- 1 (l1)) , 
(2.6) 

where ly is the vertical component of the line's direction vector and z1 is its 

vertical component in the sketch plane. 

2.1.4 Isometry 

Lengths of entities in the 3D model are uniformly proportional to their lengths 

in the sketch plane. This term's usefulness can be seen from the example that 

it can make sure that an common isometric cube's projection in 2D is not 

interpreted as a special long cube's projection viewed from a specific angle. 

This term accounts for non-uniformity corresponds to the standard deviation 

of scales as follows: 

a i sometry == n · a 2 
( r i == 1. .. N e) 

r 0 == length( entityi) 
t length' ( entityi) ' 

(2.7) 



Chapter 2 Adaptive Parameter Setting 20 

where n is the number of entities, ri is the ratio between the current length 

of entity i in 3D and its length in the sketch plane, and a is the standard 

deviation of the series of ri. 

2.1.5 Corner Orthogonality 

A junction of three lines that mathematically qualifies as a projection of a 3D 

orthogonal corner is orthogonal in space. To determine whether a junction 

of three lines in a plane qualifies as a projection of an orthogonal corner, the 

test is based on the fact that the projection of an orthogonal corner spans at 

least goo . A junction of three lines has eight variants , created by flipping the 

direction of each line and considering the eight resulting permutations. Fig. 

2.1(a) shows some three-line junctions which may appear to form orthogonal 

corners. Fig. 2.1 (b)'s junctions are not. Fig. 2.1 (c) shows all the eight possible 

variants of a three-line junction. Every variant is tested in this regularity. For 

each variant , three lines exist l~=L .. 3 , forming three pairs between themselves , 

l~= 1 , 2 , l~=2 , 3 , l~=3 , 1 . Each line is described by a 2D unit direction vector l~ in 

the sketch plane, pointing from the junction outwards. If a junction variant 

spans less than goo (i.e ., is not a projection of an orthogonal corner) , all of 

the three dot-products of its direction-vector pairs will be positive. If a three

line junction is a projection of an orthogonal corner, all of its eight variants 

must span at least goo . Thus, if any one of the eight variants appears to span 

less than goo , (shows such an "all-positive" condition) , the tested junction is 

unlikely to represent an orthogonal corner. Consequently, the term used to 

evaluate the corner orthogonality condition is 

3 

acorner = Wcorner L [sin- 1([1 · l~))] 2 

Pair=l 
(2.8) 

Wcorner = { 
1 

/LO,O.l 

if{J<o A A 

- , {3 = m0x [ mi_n (l~ · l~)], 
i j {3 > Q 8varwnts 3pa~rs 
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(c) 
(b) 

Figure 2.1: Corner orthogonality 

2.1.6 Skewed Facial Orthogonality 

A face contour that shows skewed orthogonality is probably orthogonal in 

space. If entities on the contour of a planar face join only at right angles, 

then the contour can be said to be orthogonal. If this contour is viewed from 

an arbitrary viewpoint , it will exhibit skewed orthogonality, as is illustrated 

in Fig. 2.2 (a). Faces or entity chains showing skewed orthogonality are eas

ily detected by alternating their boundary lines between two main directions 

which correspond to the main axis directions of the original shape (see Fig. 

2.2 (a)). The statistical behavior of the alternating values produced by mul

tiplying the scalar-product and the cross-product of adjacent 2D lines in the 

sketch plane is used for detection. Consistent behavior is likely to represent 

skewed orthogonality. The amount by which the face is considered to have 

skewed orthogonality is represented by the value of the weighting coefficient 
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Figure 2.2: Skewed facial orthogonality 

Wskewedorthogonality· The terms to evaluate the above for a face are 

n A A 

a skewed orthogonality = w skewed orthogonality 2:: [sin - 1 ( l i . li+ 1))] 2 
i=1 

22 

Wskewed orthogonality= J-Lo ,o.2(a(f3i=l. .. n)) , f3 = ( -l)i · [l~ .[~~ 1] · [l~ X zi:1], 
(2.9) 

where n represents the number of lines along the face contour. 

2.1.7 Skewed Facial Symmetry 

A face showing skewed symmetry in 2D denotes a truly symmetrical face in 

3D. Algorithms for the detection of skewed symmetry have been the subject of 

extensive research. A simplification used here is that if skewed symmetry exists 

in a polygonal shape, its axis intersects the contour at two points , each either a 

vertex or midpoint of an entity. Assuming also that the number of entities on 

both sides of the symmetry axis in a truly symmetrical shape is equal, the num

ber of possible symmetry-axis candidates is reduced significantly to n, where n 

is the number of vertices in the shape. Each possible candidate symmetry-axis 

passes through the vertices vk and vk+n/2, where k = 1/2,2/2,3/2, ... , n/2 and , 
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Figure 2.3: Skewed facial symmetry 

The relationship between the vertices of the shape and the candidate symmetry

axis determines whether the axis can serve as a skewed symmetry axis. This 

relationship is represented, per axis k, by the weighting coefficient wk. The 

maximal wk determines the selected symmetry-axis if the face possesses the 

skewed symmetry characteristic at all. 

Wskew ed symmetry == max [wk] 
k=l/2,2/2,3/2, ... ,n/2 

Wk == J-lo ,o.2 [ak=l/2,2/2,3/2, ... ,n/2 ( skewi) + ak=l/2 ,2/2 ,3/2, ... ,n/2 ( symi)] 
I I I 1 I I I I k _ [ vk - vk+n/2 vk+i - vk-i ] [ vk - vk+n/2 X vk+i - vk -i ] 

s ewi- llv~-v~+n/ 211 . llv~+i -v~-i ll . llv~ -v~+n/211 llv~+i -v~- ill 

(2.10) 

_ dist of vk+i from axis 1 
sym·- - -

~ dist of Vk -i from axis ' 

Note that the vertices v~ are in the 2D sketch plane. Two conditions are 

required for skewed symmetry to occur. First, corresponding points must be 

evenly distanced from the symmetry axis, a condition denoted by the sym 

term above; second, lines stretched between corresponding points must form 

a consistent angle with the symmetry axis, a condition denoted by the skew 

term above. If skewed symmetry has been detected, the optimization term will 

be 

n/2 
_ \:' [ · ( [ Vk+1 - Vk-1 ] [ Vk -Vk+n/2 ] )] 2 

O:skewed symmetry - Wskewed symmetry u arcsin II v II . llv v II ' i=l Vk+1- k-1 k - k+n/2 

(2.11) 



Chapter 2 Adaptive Parameter Setting 24 

where k denotes the axis that has been selected. 

2.1.8 Line Orthogonality 

All line pairs in a junction except those that are collinear are perpendicu

lar in 3D. This statement does not represent a pure regularity in the sense 

that it does not depend entirely on the appearance of the entity in the image 

plane apart from t he exception clause. For a junction, the regularity serves 

mainly to initially " inflate" the flat projection into 3D. The term used for this 

computation is: 

n A A 

Cttine orthogonality = I: wi[ arcsin (it . l2)] 2' 
i=l 

w i = J-too ,7o (arccos( 4 · l~) ) 
(2.12) 

where n is t he number of non-collinear pairs of lines meeting at the junction. 

2.1.9 Minimum Standard Deviation of Angles 

All angles between all pairs of lines meeting at junctions must be similar 

(MSDA = Minimum Standard Deviation of Angles) . The term used for this 

computation for the entire body is 

(2 .13) 

where l1 and l~ represent the unit direction vectors of all possible line pairs 

meeting at vertices of the object . 

2.1.10 Face Perpendicularity 

All adjacent faces must be perpendicular . Again, this criterion serves to ini

tially "inflate" the flat projection to a convex shape in 3D space from which 

optimization is more easily achieved. The term used here is 

n 

a 1 ace perpendiculari ty = I: [arcsin ( rr 1 · rr2)) F 
i=l 

(2.14) 
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where rh and rf2 denote all possible combinations of normals of adjacent faces, 

and n is the number of such combinations. 

2.1.11 Line Collinearity 

Lines collinear in the sketch plane are collinear in space. The term used to 

denote this heuristic is 

_ ~ [ detivj,vj+l,vj+21 ]2 
O'.[ine collinearity - ~ Wi · .~1ax4 max(llv~j -Vj+I II,IIvj+l -vj+2ll,llvj+2 -vjll) 

t=l J , ... , (2.15) 

where n is the number of such collinear pairs and Vj == 1 ... 4 are the four 3D 

end vertices of the two lines. 

2.1.12 Whole Symmetry 

Based on the spirit of the law of symmetry from Gestalt psychology, the whole 

symmetry term was firstly proposed by Cao et al. [?]. It considers a symmetry 

measure S for a closed planar shape. It is defined as 

A 
s == p2 ' 

where A and P are the area and perimeter of the figure , respectively. 

(2.16) 

It holds that S < 4~ for any closed planar figure. A circle is the most 

symmetrical planar figure with S == 4~. For a -polygon with m vertices, its 

symmetry measure S < 4m tan(~). The maximum is achieved if and only if 

the polygon is the most symmetrical with m equal-length sides. These facts 

indicate that (2.16) is a rather reasonable measure of symmetry. 

A polyhedron consists of more than three faces, each being a polygon. Weconsider 

the recovered object as the integration of all its planar faces in 3D space. Thus, 

the whole symmetry measure of a polyhedron with n faces is defined as 

n A · 
WS==Lp~' 

i=l t 

(2.17) 
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where Ai and Pi, 1 < i < n, are the area and perimeter of face i , respectively. 

We expect that given a line drawing, maximizing W S combined with other 

two criteria would provide us with the most plausible recovered 3D object. 

The intuition behind it is that if we force the faces of the reconstructed object 

to be as symmetrical as possible, then the flat 2D line drawing will be inflated 

into a 3D object . 

It should be mentioned that the faces of the 3D object may not be strictly 

planar. In this case, the area of a face is denoted by the sum of the areas of 

the triangles obtained by the triangulation of the face . 

2.2 Adaptive Parameter Setting in the Objec

tive Function 

The twelve image regularities introduced in previous section can be categorized 

into two groups. The first group's regularity values are determined by a given 

3D configuration only. This group includes Face Planarity, Minimum Standard 

Deviation of Angles (MSDA) , Line Orthogonality, Face Perpendicularity, and 

Whole Symmetry. The other seven regularities belong to the second group, 

whose regularity values are not only determined by a given 3D configuration, 

but also by the 2D line drawing's appearance. 

No matter for which group of regularities, after initially analyzing the 2D 

line drawing at the beginning of the 3D reconstruction process, all the regular

ities ' values can be determined when a certain 3D configuration is given in the 

optimization procedure. The goal of the optimization-based algorithms is to 

find the optimal 3D configuration which minimizes the value of the weighted 

sum of the image regularity terms. Because the 2D line drawing is a parallel 

projection of a 3D wireframe object, the x and y coordinates of the object's 

vertexes in 3D must be the same as the x and y coordinates of the vertexes in 
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Figure 2.4: Different z coordinates represent different 3D configurations 

the 2D line drawing. Thus, only the different assignments of z coordinates for 

the object 's vertexes can represent different 3D configurations. In other words, 

for each vector Z == [z1 , z2 , ... , zn] , where n is the number of vertexes in the 2D 

line drawing, there is a corresponding 3D configuration which can be evalu

ated by the image regularities. Fig. 2.4 illustrates this property. Based on this 

formulation , we can write the objective function of the optimization-based 3D 

reconstruction algorithms as 

12 

F(Z) == wr. o{Z) == L[wi . ai(Z)], (2.18) 
i=l 

where i == 1, .. . , 12 represents one of the twelve-image regularities, wi is the 

weight of the ith regularity and ai is the overall value of the ith regularity for 

the whole 3D configuration. Note that w/s here are the regularities ' overall 

weights in the final objective function , but not the weights of certain associated 

entities inside a regularity as in Section 2.1 any more. a/s value is computed 

by firstly calculating the ith regularity value for each associated entity (or 

entities) in the 3D configuration and then summing the individual values up. 

Take the Line Parallelism regularity as an example. For each possible pair of 

lines (vi , vk) in the 3D configuration, their Line Parallelism regularity value 
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aparallel,j,k can be calculated as in Eq. (2.5) . Then aparallel is calculated as 

a parallel == 2:::::: aparallel,j ,k. 
j,k 

2.2.1 Hill-Climbing Optimization Technique 

The optimization-based algorithms use the Hill-climbing search technique to 

look for the optimal 3D configuration (Z*) which minimizes the objective func

tion F ( Z). Although the Hill-climbing search can not guarantee to find the 

globally optimal point(s) , it is effective in most cases of the 3D reconstruc

tion from 2D line drawings because its procedure can be well explained by a 

heuristic process of inflating the 2D line drawing into the 3D object . 

In this inflation process, the input line drawing is thought of as a fiat 

object with all zero z coordinates lying in the xy plane at first . The hill

climbing search starts with this initial condition, which is Z0 == [z1 , z2 , .. . , zn] == 

[0, 0, ... , OJ, where Zi is the ith vertex's z coordinate in the 3D space. At the 

tth step of the hill-climbing process, the objective function's value F(Z;) at 

the current Z vector z; is firstly calculated. Then, all the children of z; are 

evaluated by the objective function F(Z) . A child of z; is a vector which is 

one step-size away from z;. For example, let s be the step-size and the current 

vector is z; == [ Zl ,t , Z2 ,t, . .. , Zn ,t] , then all the children of z; are the following 

2n Z vectors: 

[zl ,t + s , Z2 ,t , .. . , Zn ,t] 

[zl ,t - s , Z2 ,t , .. . , Zn ,t] 

[zl ,t, Z2, t + s , ... , Zn,t] 

[ Z 1, t , Z2 , t - S , .. · , Zn , t] 

(2.19) 

[zl ,t, Z2,t, ... , Zn,t + s] 
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For each of these 2n children, F(Z) is calculated and the child with the 

minimum objective function value is selected as z;+l, which is the next step's 

new current Z vector. If F(Z;+1) < F(Z;) , then the search process goes on; 

otherwise, the hill-climbing search process terminates and outputs the current 

z vector z;. 
In the real implementation, in order to coarsely inflate the line drawing at 

first and then refine the inflation result so that t he algorit hm is faster , there 

are three rounds of hill-climbing searches with the different step-sizes 8 1 , 8 2 , 8 3 , 

where 8 1 > 8 2 > 8 3 . Each round starts with the resulted 3D configuration of 

its preceding round. 

2.2.2 Adaptive Weight Setting and its Explanations 

From the definitions of the different image regularities , we can see that the a i 

terms in the objective function (2.18) may have very different value ranges. 

For example, at an intermediate step of a simple 3D cube 's reconstruction the 

Face Planarity term's value a faceplanarity can be more than 27000 while the Line 

Parallelism term's value alin eparallelism is less than 4. And at the final step of the 

hill-climbing reconstruction, both a faceplanarity and alin eparalleli sm are less than 

one. To reconstruct the object shown in Fig. 1.2, the ranges of the twelve reg

ularity terms are as follows : a face planarity E (0, 142929.2], aMSDA E [3.2, 20.9], 

a lin e parallelism E (0 , 34.4), aisometry E (0 , 10.2], a corner orthogonality E (2.1 , 12.1], 

(} skewed f acial or thogonali t y E (1.4, 17.5], a skewed fa cial symmetry E [3.1 , 24.0], 

alin e orthogonality E [3.4, 20.9), a f ace perpendicularity E (1.8, 91.3], awhole symmetry E 

[119.4, 301.1], alin e collin earity E (0 .4, 115.6], alin e verticality E [0 , 2.8] . The vary

ing patterns of this two regularity terms' values during the optimization pro

cedure are also not well correlated. However, in the traditional definition of 

the object ive function (2.18) , the regularity weights w i are all fixed real values. 

In this way, it is quite possible that during the hill-climbing process only the 
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regularities with large magnitudes dominate the optimization direction. This 

is a serious problem with the state of the art optimization-based algorithms. 

In the following we propose a new adaptive weight-setting strategy to solve 

this regularity range problem. 

To solve the regularity range problem, a straightforward idea is to normal

ize the regularity terms so that their values become being in a same range. For 

example, dividing the Face Planarity term by 100000 and the Line Parallelism 

term by 10 can normalize their values into the same range [0 , 1] approximately. 

However, this simple normalization strategy will not work. Its main problem is 

that the image regularity values can not linearly reflect the 3D configuration's 

compliance with the regularities' high-level semantics. And the varying pat

terns of the regularity values during the optimization procedure are also not 

well correlated. Moreover , at the final steps of the hill-climbing procedure all 

the regularity terms would be nearly zero and with similar magnitudes. At this 

time the above simple normalization would make the large range regularities ' 

values too small. 

Instead of using the simple constant normalization, we propose to update 

the value of the regularity weights wi after each step of the hill-climbing pro

cedure, so that the weights can appropriately adapt to the current situations 

of the corresponding image regularities. The updating rule of the weights after 

the tth step is: 

wi,t+1 = wi/ a i,t , i = 1, 2, ... , 12 

W t+1 = [w1 ,t+1 , W2,t+1? .. . , w12,t+ 1], 

(2.20) 

where i == 1, 2, ... , 12 represents one of the twelve image regularities , wi's are 

fixed overall weights of the image regularities which reflect the relative impor-

tance of the regularities, a i,t is the ith regularity's overall value at the new 

current Z vector z;+ 1 , that is a i, t = a i ( z;+ 1), Wt+ 1 is the new weight vector 

and will be used in the t + 1th step to calculate the objective function 's value 

F(Z). 
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Substitute the updating rule (2.20) into the objective function (2.18), we 

can get 

(2.21) 

where Ft+I ( Z) is the objective function used at the t + 1 th step of the hill

climbing procedure to evaluate all the children of the current Z vector Zt+r· 

In the practical implementation of the updating rule, when some of the 

regularity terms ai(Zt+1) become very small , their corresponding weights are 

not updated any more because at this time these terms are nearly optimal and 

dividing them by a very small value becomes meaningless. 

The proposed adaptive weight-setting strategy can be understood in two 

ways. In the first way, it can be similarly explained with the idea of the 

straightforward constant normalization. The new step-wise objective function 

(2 .21) can be interpreted as that all the ai(Z) in the t+1th step are normalized 

by a i(z;+1) . As all the children vector Z 's are just one step-size away from 

z;+1, a i(Z) 's magnitude would not change very much from ai(Zt+1) 's. Thus, in 

this interpretation the weights ' updating rule is just normalizing the regularity 

values into similar magnitudes , which are around unit 1, with their previous 

values. 

Another way of understanding the adaptive weight-setting strategy is to 

see the ratio term ~~~) ) as a whole which reflects how much improvement 
at t+ l 

on the ith regularity can be made by using the child vector Z instead of using 

the current vector z;+I · In this way, the whole objective function can be seen 

as a weighted sum of the improvement ratios on the individual regularities 

using Z instead of Zt+r· This explanation tells us that using the adaptive 

strategy not the absolute regularity values determines the optimization direc

tion any more, but the improvement ratios of the regularity values determines. 

This characteristic of the adaptive weight-setting strategy solves the regularity 

value range problem very well. It is intuitively reasonable and also suitable 
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for the hill-climbing 3D inflation process. The experimental results in Chapter 

4 demonstrate that the proposed adaptive weight-setting strategy can signif

icantly improve the performance of the optimization-based 3D reconstruction 

algorithms. Comparing with the traditional fixed-weight strategy, t he pro

posed adaptive strategy makes t he quality of the reconstructed 3D objects 

much better 

In this chapter the adaptive parameter-setting strategy is proposed to solve 

the regularity value range problem. However, how to decide the values of wi in 

(2.21) , which reflect the relative importance of the image regularities , is still an 

unsolved problem. In the next chapter, we will present a parameter-learning 

framework to solve t his problem. 



Chapter 3 

Parameter Learning 

The weights w i of the image regularities in the objective function (2.21) are 

free parameters which traditionally are set with heuristics or trials . When 

the number of regularities becomes large, it is almost impossible to manually 

set the parameters appropriately. Assume ten image regularities are used to 

do the reconstruction and the weight of each regularity is an integer within 

[1 , 100], then the total number of feasible parameter assignments would be 

10010 == 1 x 1020
, which is an untacklable huge number. Because of this, 

most of the practical 3D reconstruction systems can only use a small number 

(three to four) of the image regularities. Thus the large number of parameters 

problem in the optimization-based 3D reconstruction algorithms has hindered 

their way to fully utilize all the image regularities ' powers. In this chapter, we 

propose a parameter-learning framework to solve this problem. The proposed 

framework will be able to learn the appropriate weights for a large number of 

image regularities. 

3.1 Construction of A Large 3D Object Database 

In order to learn the appropriate image regularity weights, a sufficiently large 

database of 3D objects need be built firstly. These 3D objects will be used as 

the ground-truth objects in the parameter-learning procedure. 

33 
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Figure 3.1: Samples objects from the 3D object database 

To build the database, we designed more than 70 different 3D objects 

and created them with a CAD software. All the 3D objects are only with 

planar faces. This is sufficient because current curved object reconstruction 

algorithms usually first convert the curved objects into planar objects and then 

do the 3D reconstruction. These objects hold a large variety of 3D shapes which 

cover the common 3D structures used in practical applications. Simple cubes, 

pyramids and complex objects like lamp, desk and house are all included in 

this database. Fig. 3.1 shows some sample objects from the database. 

All the 3D objects are represented by a wireframe model, in which all of the 

object's vertexes are indexed and their x, y, z coordinates are known, and all 

the edges are indexed by their two ending vertexes. This 3D wireframe model 

is consistent with the 2D line drawing's graph representation, which makes it 

convenient to project the 3D objects into 2D line drawings. We build a tool 

with OpenGL to view the 3D wireframe models and project them in to 2D line 

drawings. 

3.2 Training Dataset Generation 

To learn the regularity weights, we not only need the ground-truth 3D objects, 

but we also need their corresponding 2D line drawings from which the 3D 
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objects are expected to be reconstructed. For each 3D object, it has a large 

number (infinite number theoretically) of possible 2D parallel projections with 

different projection angles. Which 2D line drawing of a 3D object should be 

used in the training dataset? This question can be answered only after we 

investigate the criterion of a good 3D reconstruction result from a 2D line 

drawing. 

The 3D reconstruction from a single 2D line drawing is an ill-posed prob

lem, which means that there are many possible correct 3D configurations for 

a single 2D line drawing. Fig. 3.2 demonstrates this problem. Give a 2D line 

drawing, the aim of the optimization-based 3D reconstruction algorithms is to 

reconstruct the 3D configuration which is in accordance with human being's 

interpretation of the line drawing. Take the line drawing shown in Fig. 3.2 as 

an example. When a person sees t he line drawing, he would almost definitely 

interpret this object as a 3D isometric cube with its eight edges having the 

same lengths. However, this line drawing can actually represent a very long 

cube with a special projection angle. Based on the reconstruction criteria that 

the reconstructed 3D object should be the same as what the human beings 

perceive, the correct reconstruction of the 2D line drawing shown in 3.2 should 

be the isometric cube. This reconstruction criteria is appropriate not only 

because it is consistent with human beings' perception, but also because it is 

using the maximum likelihood idea in its underlying principle. This under

standing can be seen from the cube example too. If the line drawing in Fig. 

3.2 is the projection of a long cube, then only a very limited scope of projec

tion angles can produce similar line drawings. However, if it is an isometric 

cube, there are quite a lot of projection angles which can produce similar line 

drawings as t he one in Fig. 3.2. Thus, we can see that the expected best 

reconstruction result of the 3D reconstruction algorithms is actually the 3D 

configuration which has the highest probability to produce the given 2D line 

drawing after a casual parallel projection. In another way of interpretation, 
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Figure 3.2: Many possible correct 3D configurations for a cube's 2D line draw
Ing 

we can also see the reconstruction result as a stable 3D configuration which 

after a small rotational perturbance the appearance of the 2D projection does 

not change very much. There is a reference paper [59] which provides theo

retical discussions of this problem. This understanding of the reconstruction 

criterion can help us decide which 2D projections of a 3D object to be used in 

the training dataset . 

In order to select the appropriate 2D projections of the 3D objects for 

the training dataset , we firstly project each 3D object with a large number 

of different projections angles . As a rotation in 3D can be represented by a 

combination of separate rotations which are along the x-axis, y-axis and the z

axis respectively, we enumerate all the possible projection angles of a 3D object 

by setting the x, y , z rotations from oo to 180° respectively, with a step-size 10° . 

Thus there are totally 183 = 5832 candidate line drawings for each 3D object . 

The next step is to select the best line drawing from the candidates. To make 

sure that we can include the most appropriate 2D projection in the training 

dataset, we select 10 out of the 5832 line drawings into the training dataset 

for each 3D object . The method of selecting these line drawings is as follows: 
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Figure 3.3: Training samples of a bed-shaped object 

We firstly use the state of the art 3D reconstruction algorithm to reconstruct 

all the 5832 line drawings and then compare the reconstructed results with 

the ground-truth object using the error measure defined in Algorithm 2. The 

best ten line drawings with minimum reconstruction errors for each object are 

selected into the training dataset. After this automatic selection procedure, 

we have also manually checked all the selected line drawings to make sure that 

the most appropriate line drawings are included in the training samples for 

each 3D object. The ten training samples of a bed-shaped object are shown 

in Fig. 3.3. 

3.3 Paraineter Learning Frainework 

After having prepared all the training data, the whole parameter learning 

framework can be introduced in this section. The basic idea of learning the 

parameters is to try all different parameter combinations and use them to 

reconstruct the line drawings in the training dataset, then compare the recon

structed results with the ground truth objects and choose the best parameters 

which produce the most similar reconstruction results as the ground truth 
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objects. This idea of parameter learning is straightforward. However, as men

tioned before there are a huge number of different parameter combinations 

which makes it impossible to try all different parameters, thus the exhaustive 

search method can not be used. We will introduce the Evolutionary Algo

rithms to solve this explosive number of combinations problem. And we will 

also introduce a quantitative way of measuring how similar a reconstructed 

object is with the ground truth object. After these two parts, the complete 

learning framework will be introduced at the end of this section. 

3.3.1 Evolutionary Algorithms 

An evolutionary algorithm is a generic population-based optimization algo

rithm. It creates an environment which mimics the biological evolution pro

cess and the natural selection process in nature so that it expects the optimal 

solution to the original problem can be found just as only the best species of 

animals survives in nature. It is a probabilistic algorithm which iterates until 

the result converges or meets a stopping criteria. At iteration t , an evolution

ary algorithm maintains a population Pt = { x 1,t, x 2 ,t, ... , Xn ,t}. Each individual 

of the population represents a potential solution to the problem at hand and 

it is implemented by some data structure S which is usually a fixed-length 

string. Each individual solution Xi ,t is evaluated by a fitness function which 

measures how well it solves the original problem. Then, the new population 

of the t + 1 th iteration is formed by selecting the more fit individuals. After 

the selection step, some members of the new population undergo some trans

formations by means of genetic operators to form new solutions. The transfor

mation can be unary or with higher order. An unary transformation creates 

new individuals by changing a single individual in some way. Higher order 

transformations create new individuals based on information of several indi

viduals. These two kinds of transformations correspond to the gene mutation 
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and the chromosome crossover in the biological evolution. After some number 

of iterations (generations, in genetic programming terminology), the program 

converges and the best individual in the final population is expected to be the 

optimal solution. The process of an evolutionary algorithm is illustrated in 

Algorithm. 1. Although the evolutionary algorithms can not guarantee to find 

the global optimal solution, they have shown very good performance in many 

general optimization applications because they are not easily to be trapped 

into a suboptimal region in the solution space. We use the evolutionary algo

rithm in our parameter-learning framework to learn the regularity weights. A 

comprehensive introduction of evolutionary algorithms can be found in [38]. 

Require: t f- 0, initialize Pt , evaluate Pt 
while (not termination-condition) do 

tf-t+l 
select Pt from Pt- 1 
alter Pt 
evaluate Pt 

end while 

Algorithm 1: Evolutionary algorithm 's process 

3.3.2 Reconstruction Error Calculation 

In order to measure the similarity between the reconstruction result and the 

corresponding ground truth object, we need design an error function which 

calculates the difference between the reconstruction result and the ground 

truth object . As each line drawing is a parallel projection of a ground truth 

object from a certain projection angle, the difference between a reconstructed 

object and the ground truth object is only in the z coordinates of all the 

vertexes . Their x, y-coordinates are the same. Therefore, to appropriately 

measure the difference we can firstly align the two objects along the z direction 

and then calculate a distance measure among the corresponding vertexes. 

It is not easy to define a good alignment of two different 3D objects, even 
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though their x, y coordinates are the same. Here, we adopt a strategy which 

unifies the alignment step and the distance calculation step. Our method is 

to exhaustively search the best alignment, which produces the smallest dis

tance measure, in a promising z-alignment search range. We use the L1-norm 

to measure the distances between corresponding vertexes. In this way, both 

the best alignment and the difference measure between the two objects are 

derived simultaneously. There is one more thing to take care about which is 

the Necker cube illusion. Because of the Necker cube illusion, there are two 

possible 3D interpretations for each 2D line drawing. Both of the two interpre

tations are correct and actually they correspond to the same 3D topology. The 

only difference between these two interpretations is that their corresponding 

z-coordinates are with opposite signs. Thus, when we try to calculate the dif

ference between a reconstruction result and its ground truth object , we would 

test both the reconstruction result and its Necker cube illusion 's counterpart 

which has all the z-coordinates' signs reversed and pick the smaller difference 

of the two as the correct measure of the reconstruction error. 

Let n be the number of vertexes in the line drawing. Then we use the two Z 

vectors Zrecontructed [ i], i == 1, .. , n and Z ground truth [ i], i == 1, .. , n to represent the 

reconstruction result and the ground truth 3D object respectively. It is obvious 

that if we add/subtract a constant value to/from all the dimensional elements 

in a Z vector , the corresponding 3D object's appearance is not changed but 

the object is just translated with a certain distance along the z direction. 

Thus, before searching the best alignment and determining the reconstruction 

error, we firstly roughly align the two objects by repositioning them so that 

Zrecontructed [1] ==== Z 9round truth [1] ==== 0. The whole procedure of calculating 

the reconstruction error for one line drawing is summarized in Algorithm. 2 
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Require: roughly align the two objects so that 
Zreconstruted[1] ==== Zgroundtruth[1] ==== 0, MinError == MaxValue 
for displacement == -range to range do 

Error1 ~ 0 
Error2 ~ 0 
for i == 1 to n do 

Error1 + == I Z groundtruth [ i] - ( Zreconstruted [ i] + displacement) I 
Error2+ ==. IZgroundtruth[i]- ( -Zreconstruted[i] +displacement)! 
{ Error2 is handling the Necker cube illusion counterpart} 

end for 
if Error1 < M inError then 

M inError ~ Error1 
end if 
if Error2 < M inError then 

MinError ~ Error2 
end if 

end for 
return M inError 

Algorithm 2: Reconstruction error calculation for one line drawing 

3.3.3 Parameter Learning Algorithm 

41 

With the training dataset, the Evolutionary Algorithm and the reconstruction 

error calculation method, we can present the whole parameter-learning frame

work now. Our aim is to find the best parameter assignment with which the 

total reconstruction error on the whole training dataset is minimized. After 

adopting the adaptive weights-setting strategy introduced in Chapter 2, the 

free parameters of the optimization-based 3D reconstruction algorithms are 

just the fixed weights wi of the image regularities in the step-wise objective 

function Eq. (2.21). In our implementations we totally use twelve image regu

larities as introduced in Chapter 2. However, in the following descriptions we 

would generally use r to represent the number of image regularities. 

The optimization-based 3D reconstruction algorithms search for the best 

Z vector which produces minimum objective function values, thus for the reg

ularity weights in the objective function, it is not important what their actual 
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values are but only their relative ratios are important. Therefore, we can ar

bitrarily fix one regularity's weight and just tune the others '. The parameter

learning problem's degree of freedom is actually r- 1. So in general we can 

think of the parameter-learning problem as looking for a best value for a r -!

dimensional vector 0 . As the search space is extremely large, we can not 

exhaustively test each possible value of 0. Thus we use an Evolutionary Al

gorithm to search for the best value. 

The fitness function of the Evolutionary Algorithm in our parameter-learning 

framework utilizes the reconstruction error calculation method introduced in 

Algorithm 2. It gives higher fitness scores to the vector values which produce 

less reconstruction errors for the whole training dataset . At each iteration of 

the evolutionary algorithm, the evolving population is just a set of potential 

vector values of 0 . The fitness function thus can give higher chance of sur

vival to the individuals with better values. As introduced in Section 3.2, in the 

training dataset there are 10 line drawings for each 3D object. To calculate 

the overall reconstruction error on the whole dataset , the fitness function only 

picks the best reconstruction result among the 10 line drawings ' results for 

each object. The pseudo code of the fitness function is shown in Algorithm. 3 

The population's reproduction step in our proposed parameter-learning 

framework has two types of variation operators. The first operator is crossover, 

which interchange the values at some dimensions of two input individual vec

tors. The crossover operator is a binary operator which takes two input vectors 

and outputs two new vectors. There is a parameter pCross in the Evolution

ary Algorithm which controls the probability that a give couple of individual 

vectors is applied with the crossover operator. The second variation operator is 

mutation, which changes the numerical values at some dimensions of an input 

vector. The mutation operator is a unary operator. There is also a parameter 

pM ut which controls the probability that a given individual vector is applied 

with the mutation operator. And there is another parameter pM utPer Bit 
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Require: Input weights vector W (includes 0 and the fixed weight), n is the 
number of 3D objects in the database, TotalError == 0 
for i == 1 to n do 

GroupMinError == MaxValue 
{there are 10 line drawings for each 3D object} 
for j == 1 to 10 do 

Reconstruction from LineDrawing[i] [j] with W 
Compute the TmpReconError with Algorithm. 2 
if TmpReconError < GroupM inError then 

GroupM inError ~ TmpReconError 
end if 

end for 
TotalError+ == GroupMinError 

end for 
return -TotalError 
{Return Min us Total Error because we need fitness measure, not error 
measure} 

Algorithm 3: Fitness Function 

in the mutation operator which represents the probability that the value at a 

given dimension of an individual vector is changed. In the learning framework 

we set a value range for each dimension of the objective vector 0. Thus when a 

certain dimension is undergoing a mutation, its new value is randomly chosen 

from this range. 

After the fitness evaluation of all the new individuals produced by the repro

duction step , the selection step of the algorithm just selects the best individual 

vectors with highest fitness scores to form the new generation of the popula

tion and keeps the population size unchanged. The algorithm will continue 

the same process of reproduction and selection and produce new generations 

until no improvement can be made on the population or a certain number of 

iterations has been done. The final result of the Evolutionary Algorithm in 

the parameter-learning framework is the best individual vector in the last gen

eration. This vector , together with the fixed weight of an arbitrarily selected 

regularity, is the final learning result of the parameter-learning framework. We 
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will show in the experiments in Chapter 4 that using the learned weights can 

produce much better 3D reconstruction results than using the old manually-set 

weights. The whole procedure of the parameter-learning framework is show in 

Algorithm.4 

Require: t ~ 0, randomly initialize Pt with pop_size feasible 0 vectors 
while (not termination-condition) do 

do crossover and mutation on Pt, produce an intermediate population 
P' t 
Evaluate P; with Algorithm.3 
select the best pop_size vectors from P; to form Pt+l 
tf---t+l 

end while 
return the best 0 vector from Pt and the fixed weight 
{the best vector in the final population together with the fixed weight is 
the whole set of learned weights} 

Algorithm 4 : Parameter-learning framework 
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Experimental Results 

In this chapter we show the experimental results of our proposed algorithms. 

There are two sections which show the performance of the adaptive parameter

setting strategy and the parameter-learning framework respectively. 

4.1 Adaptive Parameter Setting 

In this section, we compare the reconstruction performance between using the 

traditional fixed regularity weights and using the proposed adaptive parameter

setting strategy. There are two parts of the experiments in this section. 

4.1.1 Use Manually-Set Weights 

In the first part , we use some manually-set regularity weights which had been 

showing reasonably good performance in practice. The manually set weights' 

values are shown in Table 4.2. We firstly fix the weights as old approaches 

and reconstruct some objects from the database. Then, we use the adaptive 

weights-setting strategy to reconstruct the objects again. The graphical results 

are shown in Fig. 4.1 

Fig.4.1 (a) column shows the three input 2D line drawings. Fig.4.1 (b) are 

the reconstruction results with the proposed adaptive weights-setting strategy. 

Fig.4.1 (c) are the reconstruction results with the traditional fixed regularity 

45 
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Image 
MSDA Face Planarity Line Parallelism 

Regularities 
Manually-Set 

80 100 100 
Weights wi 

Image 
Isometry 

Corner Skewed Facial 
Regularities Orthogonality Orthogonality 

Manually-Set 
60 70 70 

Weights wi 

Image Skewed Facial Line Face 
Regularities Symmetry Orthogonality Perpendicularity 

Manually-Set 
70 70 50 

Weights wi 

Image Whole 
Line Collinearity Line Verticality 

Regularities Symmetry 
Manually-Set 

40 50 50 
Weights wi 

Table 4.1: Manually-set image regularity weights 

(a) (b) (c) 

Figure 4.1: Adaptive weights-setting VS. fixed weights 
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weights. All the reconstruction results are shown in a different view angle 

from the input 2D line drawing so that we can better see the reconstructed 

3D configuration. Comparing Fig.4.1 (b) and Fig.4.1 (c) we can see that using 

the adaptive parameter-setting strategy can make the reconstructed objects 

much more congruent with human being's interpretation. The reconstructed 

objects with the adaptive parameter-setting strategy are well rectified and 

have regular and tidy appearance. In the third row of Fig. 4.1, with the fixed 

weights the reconstruction result is even totally wrong while the result with 

the adaptive weight-setting is very good. Thus it is obvious that the adaptive 

parameter setting strategy can better utilize all the image regularities so that 

the reconstructed results are more congruent with human being's perception. 

We also apply the fixed weights method and the adaptive weights-setting 

method on the whole training dataset with the manually-set weights. Table 

4.2 shows the performance evaluation results. The total error on the dataset is 

calculated in the way as the fitness function (Algorithm.3) except that the re

turn value is now the TotalError itself. From the results, we can see that using 

the adaptive weights-setting strategy has significantly reduced the overall con

struction error on the database. The error using the adaptive weights-setting 

strategy is only 4432/15662 f"'-..1 28.3% of the error using the fixed weights. We 

also compared the reconstruction errors on each object with the two different 

strategies and tried to find some failure cases. _ However, we found that the 

adaptive weights-setting strategy consistently outperforms the fixed weights 

strategy on all the objects in the database. Therefore, we believe that the 

proposed adaptive weights-setting strategy is better than the old fixed weights 

strategy. 
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On the Whole Training Dataset 
Total Error of Adaptive Weights-Setting 4432 

Total Error of Fixed Weights 15662 

Table 4.2: Compare adaptive weights-setting strategy with fixed weights on 
the whole training dataset using manually-set weights 

Learned Best Weights Training Error 

Adaptive Weights 
80 81 37 54 36 69 

3669 
95 68 81 72 27 88 

Fixed Weights 
80 22 61 70 36 67 

7506 
84 90 46 5 27 55 

Table 4.3: Learning weights with two different weights-setting strategies 

4.1.2 Learn the Best Weights with Different Strategies 

In the second part of the experiments, in order to fairly compare the two 

weights-setting strategies, we try to learn the best weights with the two differ

ent weights-setting strategies using our proposed weights-learning framework, 

and then compare the learned weights' performance on the whole training 

dataset. The parameter values of the learning algorithm is as follows: MSDA's 

weight is fixed at 80, the population size is 20, the value range of each weight 

is [0, 100], pCross == 0.6, pMut == 0.8 and pMutPer Bit== 0.01. 

The learning results are shown in Table 4.3, where all the numbers have 

been rounded to integers. The learned weights in the second column are ar-

ranged in the following order: WMSDA, WFacePlanarity, WLineParallelism, WJsometry, 

WcornerOrthogonality, W SkewedFacialOrthogonality' W SkewedFacialSymmetry, W LineOrthogonality , 

W FacePerpendicularity , Ww holeSymmetry, W LineCollinearity, W Line Verticality · From the 

Training Error column, we see that learning with the adaptive weights-setting 

strategy produces less than half of the reconstruction errors on the whole train

ing dataset than learning with the fixed weights strategy does. 

Based on the above results shown in subsection 4.1.1 and subsection 4.1.2, 

we can draw the conclusion that using the proposed adaptive weights-setting 

strategy cari significantly improve the quality of the 3D reconstruction results 
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from 2D line drawings. 

4.2 Evolutionary-Algorithn1-Based Paran1eter 

Learning 

This section shows the experimental results of the parameter learning frame

work. In the experiments, we firstly randomly split the whole dataset into two 

groups with equal sizes. One group is used for training, and the other is used 

for testing. We then compare t he reconstruction performances on the testing 

dataset with the learned weights and with the old manually-set weights. As 

the training set and t he test ing set are disjoint , this comparison can fairly 

demonstrate whether using our proposed parameter learning framework can 

effectively find better regularity weights. 

We did t he experiments several times with different t raining and testing 

sets and different learning parameters. The results are summarized in Table 

4.4. In this Table, Learning 1 's learning parameters are: MSDA 's weight is 

fixed at 80, the population size is 20, the value range of each weight is [0, 100], 

pCross == 0.6, pMut == 0.8 and pMutPerBit == 0.01. Learning 2's learning 

parameters are: Face Planarity's weight is fixed at 80, the population size 

is 20, t he value range of each weight is [0 , 100], pCross == 0.6, pMut == 0.9 

and pM utPer Bit == 0.01. In Learning 3, we do-not fix any regularity weight 

but let the evolutionary algorithm to learn all the twelve weights. The other 

parameters are: t he population size is 20 , the value range of each weight is 

[0 , 100], pCross == 0.6 , pMut == 0.9 and pMutPer Bit== 0.01. We find that in 

Learning 3 the converging speed becomes much lower but the learned results 

do not show very much degradation. The manually-set weights in Table 4.4 

are the same as used in Section 4.1.1 . And the learned best weights are also 

arranged in the order as in Section 4.1.1. All the learning algorithms in these 
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(a) (b) (c) 

Figure 4.2: (a) Input line drawing. (b) Reconstruction result with manually-set 
weights. (c) Reconstruction result with learned weights . 

experiments use the adaptive parameter-setting strategy introduced in Chapter 

2. 

In Table 4.4, we see that the learned weights can significantly reduce the re

construction errors on the three testing datasets comparing with the manually

set ones. Learning 3 does not fix any regularity weight, so its average recon

struction precision improvement is the smallest. For Learning 1 and Learning 

2, the average reconstruction precision improvement is 25.2%. Some graph

ical comparisons are shown in Fig. 4.2 . These results demonstrate that the 

proposed parameter learning framework can effectively learn better regularity 

weights for the 3D reconstruction from 2D line drawings . 

Fig. 4.3 shows two failure cases in which the reconstruction results with the 

learned weights are worse than the reconstruction results with the manually-set 
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Learned Training Testing Precision 

Best Weights Error Error Improvement 

Manually-Set 
- - 1901 -

Weights 

Learning 1 
80 83 99 58 47 69 2036 1621 17.3% 
92 68 65 22 27 93 

Learning 2 
83 80 54 70 38 58 

2136 1471 29.2% 
84 7 4 86 57 16 19 

Learning 3 
7 90 10 38 37 99 

1869 1531 24.2% 
36 79 41 36 4 7 55 

(a) Training&Testing Dataset 1 

Learned Training Testing Precision 
Best Weights Error Error Improvement 

Manually-Set 
2185 - - -

Weights 

Learning 1 
80 81 96 56 46 70 

2063 1658 31.8% 
89 69 66 72 30 42 

Learning 2 
83 80 54 70 38 58 

2004 1571 39.1% 
84 74 86 57 16 19 

Learning 3 
100 80 82 37 61 98 

1966 1909 14.5% 
70 79 98 35 24 53 

(b) Training&Testing Dataset 2 

Learned Training Testing Precision 
Best Weights Error Error Improvement 

Manually-Set 
2263 Weights 

- - -

Learning 1 80 81 37 54 36 69 
1774 1882 20.2% 

95 68 81 72 27 88 

Learning 2 83 80 54 70 38 58 
1665 1993 13.5% 

84 7 4 86 57 16 19 

Learning 3 7 79 9 38 37 70 
1784 2120 6.7% 

36 81 41 45 46 56 

(c) Training&Testing Dataset 3 

Table 4.4: Weights-learning results and comparisons 
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(a) (b) (c) 

Figure 4.3: Failure cases with the learned weights. (a) Input line drawing. (b) 
Reconstruction result with manually-set weights. (c) Reconstruction result 
with learned weights. 

weights. We use the learned weights of Learning 2 on dataset 2. The first fail

ure case is due to the low weight of Isometry regularity in the learned weights. 

And in the second case, because the input line drawing has a large number 

of pairs of parallel lines, the Line Parallelism regularity is very important for 

this object . But the weight of the line parallelism regularity is relative low in 

the learned weights, thus its result is failed. Although there could be failure 

cases for the learned weights , its overall performance on the whole dataset is 

still much better than the manually-set weights ' as shown before. 



Chapter 5 

Conclusions and Future Work 

In this thesis we propose an adaptive parameter-setting strategy and an evolutionary

algorithm-based parameter-learning framework to improve the performance of 

the optimization-based 3D object reconstruction from 2D line drawings. The 

adaptive parameter-setting strategy solves the problem that the image regu

larities ' values vary largely during the hill-climbing optimization procedure. 

It can be understood as a proper normalization method for the image reg

ularities at each search step. And it can also be understood as making the 

final objective function in the optimization-based algorithms as a weighted 

sum of improvement ratios on the image regularities but not a weighted sum 

of absolute regularity values anymore. The experimental results show that the 

adaptive parameter-setting strategy brings dramatic improvement on the 3D 

reconstruction results from 2D line drawings. 

The evolutionary-algorithm-based parameter-learning framework searches 

for the best weights assignment for the image regularities in the final objective 

function. We build a large 3D object database to provide the ground truth 

objects in the training and testing datasets. The evolutionary algorithm is 

used to search for the best solution in a very large search space. The ex

perimental results show that the proposed parameter-learning framework can 

effectively find better weights assignments which produce significantly better 

reconstruction results than the old manually-set weights do. 

53 
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The proposed approaches in this thesis have effectively improved the per

formance of the optimization-based 3D reconstruction from 2D line drawings 

algorithms from the perspective of parameter setting and tuning. In the future 

work, other aspects of the optimization-based 3D reconstruction algorithm can 

be exploited to improve its performance, such as the optimization strategy, re

sult refinement methods and etc . 
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