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摘要 

網絡用户一般會在考慮講買產品前刹覽不同的零售網站以作比較。但由 

於相關的零售網站以及產品型號眾多，網絡用户往往要花很多時間去荒 

集詳細資料。對於一般用户來説，這絕對是高成本、低效能的工作。有 

見及此，本論文提出一個薪新的框架，可以從不同的零售網站的原始 

網頁執行無監督式學習(unsupervised learn ing)的產品屬性的提取與規範 

4b(product attribute extraction and normalization)。因01匕，我們的做法可 

以處理大量不同佈局格式的網頁的產品屬性的提取與規範化。我們還開 

發了一個生成模型，可以模型在網頁裡的文本片段的生成。我們更爲該 

生成模型開發了 一個推算方法。我們利用來自 4 9個零售網站 1 5 8個關於 

數碼相機、音樂播放機和液晶電視的網頁進行大規模的實驗。實驗證明 ’ 

我們的方法比現今最先進的方法取得更好的表現。 
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Abstract 

We investigate the problem of jointly extracting and normalizing product 

attributes from different product description web sites without any labeled 

training example. One challenge of this problem is that i t needs to handle a 

huge number of Web pages in diverse layout formats not known in advance. 

To tackle this problem, we consider the clues embodied in the text content 

and the layout of web pages. A generative model is developed to model the 

generation of text fragments in web pages taking into consideration of the 

relationship among the text content and layout formats of text fragments. 

The attribute name and value contained in a text fragment are differentiated 

providing finer-grained information of product attributes. We employ Dirich-

let process prior in our framework leading to another characteristic that it 

allows unlimited number of product attributes. An unsupervised inference 

algorithm based on MCMC is derived. We evaluate our framework by con-

ducting experiments on three different domains consisting of 158 Web pages 

from 49 different web sites. The experimental results are promising and show 

that our framework is effective. 
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Chapter 1 

Introduction 

1.1 Background 

Dated from 1990s, online shopping [36] created a path whereby consumers 

can directly buy products from a seller interactively in real-time without an 

intermediary service over the Internet. Its rapid development can be seen 

from the largely and steadily increasing amount of existing online store web 

sites providing information of millions of kinds of products. Since information ‘ 

on the web is always distributed, ambiguous, and unstructured, i t becomes 

a difficult task for a consumer to retrieve, analyze, and compare products. 

Different web sites tend to organize information in their own fashion. 

Figures 1.1 and 1.2 show two sample web pages about digital cameras col-

lected from two different online store web sites. They organize and display 

the product attributes, such as "color", "weight", etc. of the same prod-

uct in a tabular format. To acquire information about products, say digital 
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-I C4«n t̂KVta \2A MP 
Pf<rt#cl rwpT twvwimwrt： frwy»a»d wirr*my . ^mctv,w Pu«i. UA 傳 

P ^ _ ^ M P M I M ! _ 』 . 1...、急孤 ) 1^内.-沐砂 S.̂ at>on Opt<- ln^ 5她,供 Sŷ t̂  
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Figure 1.1: A sample of a portion of a web page showing some product 

information of a digital camera collected from a web site. (Web site URL: 

http://www.newegg.com) 
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Figure 1.2: A sample of a portion of a web page showing some product 

information of a camera collected from a web site different from the one 

depicted in Figure 1. (Web site URL: http://www.sears.com) 

3 

http://www.sears.com


cameras from the Internet, one third of people [36] who shop online usually 

query search engines, which are in fact information retrieval systems, with 

keywords hoping that the returned results contain relevant web sites or web 

pages. Since the basic unit of the results returned by a search engine is an 

entire web document, the user is required to manually identify the precise 

text fragments about the product attributes from web pages, resulting in in-

effective extraction and analysis of information. This drawback inspires the 

idea of precise information extraction from web content. Layout information 

of web pages are taken in consideration to achieve this task. Moreover, search 

engines usually have limitations in term matching, web documents containing 

terms with the same semantic meaning as query terms may not be returned. 

This raises the need of a framework that can achieve precise information 

extraction as well as product attribute normalization. In addition, the large 

amount of search results requires the framework to be unsupervised, which 

can save human efforts in preparing training data. 

1.2 Motivation 

Databases normally organize data in a structured way. Unlike this manner, 

the data contained in web pages, which are usually formatted by human, does 

not have a well-defined structure. Semi-structured text documents contain-

ing a mix of ungrammatical texts and HTML tags can be one example. I t 

poses additional difficulty to automatically extract the desired information. 

To solve this problem, several works have been developed to extract particu-

lar contents for specific tasks from web pages [34]. In particular, wrappers for 
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information extraction [20] is a promising approach to addressing this prob-

lem. Information extraction wrappers are trainable methods that analyze 

semi-structured texts and learn patterns for extracting inforamtion. They 

are often developed for specific tasks, for example, to extract the values of 

certain product attributes of digital cameras from a particular web site. In 

wrapper induction, the purpose is to automatically construct, a wrapper from 

a set of training examples collected from a web site. The learned wrapper, 

normally composed of a set of extraction rules, can be applied to the remain-

ing web pages of the same site to extract information. For instance, one can 

prepare a set of training examples of digital cameras with values of the at-

tribute “Effective Pixels" of each record annotated to learn a wrapper. The 

learned wrapper can then be applied to the remaining web pages of the same 

web site to extract the values of “Effective Pixels" of different digital cameras. 

However, existing wrapper learning methods have several major limita-

tions. One of the limitations is that they are supervised approaches de-

manding for vast amount of human efforts in preparing training examples. 

Meanwhile, no attribute other than the pre-defined ones can be extracted 

since the learned wrapper can only recognize attributes that are annotated 

in advance without discovering other attributes. Referring to the previous 

example, a wrapper trained for the attribute “Effective Pixels" of digital 

cameras cannot extract other attributes such as "Weight". Another limita-

tion is that the learned wrapper can only be applied to the web site where 

the training examples come from. For instance, the learned wrapper for Fig-

ure 1.1 cannot be applied to the web site shown in Figure 1.2 due to their 

5 



different layout formats. Layout formats of web sites are always different 

from one to another. Hence preparing a particular wrapper for each web site 

makes it ineffective to extract desired information from vast amount of web 

sites. 

Several approaches have been developed to address the above wrapper 

adaptation problem. For example, unsupervised wrapper learning aims at 

reducing the human effort by learning extraction rules without any training 

examples. Some unsupervised wrappers have been proposed by making use of 

layout information of web pages which are generated by templates [11]. The 

major idea of these approaches is to align the structures of different web doc-

uments generated from the same template. Text fragments that are located 

in the same position after the alignment but different in content are consid-

ered to be useful fields and they are extracted. However, since the extraction 

is template dependent, the fields extracted from different web sites, even in 

the same domain, may not be synchronized. For instance, a field extracted 

from a particular site about digital cameras may contain values of both prod-

uct attributes "weight" and "dimension"，whereas in another site, the values 

of "weight" and "dimension" are extracted in two different fields. Chuang 

et al. proposed an unsupervised wrapper learning technique which can con-

struct wrappers to extract synchronized data from multiple sources [10]. For 

example, the field containing both "weight" and "dimension" can be fur-

ther segmented into two separate fields synchronizing the two separate fields 

about "weight" and "dimension" extracted in another web site. The rational 

of their approach is to identify the optimal segmentation of the text in web 
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pages from different sites. However, their method requires to train a field 

model for each field capturing the field's characteristics. Suppose there are 

two different field models for "weight" and "dimension". These field mod-

els are required to be trained from manually prepared training examples, 

or developed by human experts in advance hence resulting in high labor 

cost. Moreover, it cannot handle previously unseen fields. They proposed a 

heuristic method for training the field models for previously unseen fields in 

an unsupervised manner. The idea is to consider each group of aligned seg-

ments created by an unsupervised wrapper as a single field, and train a field 

model for each group using HMM with a pre-defined labeling rule. However, 

such method can only apply to a web page that contains multiple records. 

For web pages containing a single record, such as the ones in Figures 1.1 

and 1.2, there exists neither group of aligned segments, nor a single group in 

which the aligned segments refer to different fields. 

Another shortcoming of existing unsupervised wrapper learning meth-

ods is that they cannot resolve the extracted information from different web 

sites. For example, suppose "portrait" and "landscape" are two text frag-

ments extracted from web pages about digital cameras. Product attribute 

normalization aims at clustering extracted text fragments into the same un-

derlying attribute based on their content. For instance, it enables grouping 

the text fragments "portrait" and "landscape" into the same cluster because 

they refer to the same attribute. For another example, both "effective pix-

els" in Figure 1.1 and "effective sensor resolution" in Figure 1.2 refer to the 

same attribute "effective-pixel", hence they also should be grouped into the 
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same cluster. Production attribute normalization is beneficial for users to 

search and compare different product records, as well as software agents to 

conduct intelligent tasks. Chiiang et al. proposed a clustering method to 

match the extracted data based on the tokens of the data in a separate step 

10]. Unfortunately, since their method mainly considers simple overlapping 

of tokens, it is not able to resolve the text fragments "portrait" and "land-

scape" to the same attribute. Moreover, the clustering algorithm requires to 

fix the number of clusters in advance. However, the number of attributes in 

a domain is unknown in practice. 

In summary, existing approaches suffer from one or more of the follow-

ing problems: (i) the learned extraction rules cannot handle web pages from 

different web sites with layout formats not known in advance, (ii) human 

effort is needed to prepare training examples, (iii) they are unable to dis-

cover previously unseen attributes, and (iv) the extracted attribute values 

are not normalized according to the product attributes they refer. In this 

thesis, we aim at addressing these problems by developing an unsupervised 

learning framework for jointly extracting and normalizing product attributes 

from different web sites. 

1.3 Our Approach 

We propose to develop a framework which can automatically extract product 

attribute information from a large number of different web sites with layout 

formats not known in advance, normalize the extracted attribute informa-
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tion, and organize the information in a structured manner. This framework 

aims at jointly extracting and normalizing product attributes in an unsuper-

vised way. One advantage of solving the two problems in a single framework 

is that the resulting solution can optimize the performance of the two tasks 

and reduce possible conflicts. Our mathematical formulation formally illus-

trates that the two tasks can be tackled in a coherent manner. We illustrate 

the idea of our framework using a running example. 

Referring to the web pages about two different digital cameras shown 

in Figures 1.1 and 1.2. These two web pages are collected from two differ-

ent web sites and therefore they have different layout formats. The task of 

extraction is to extract product attribute relevant information from the web 

page and discard the irrelevant information. For instance, the tables under 

the tab "specification" in Figures 1.1 and 1.2 will be identified as attribute-

relevant information in the extraction task, while skipping other information 

like advertisements and user reviews by treating them as attribute-irrelevant. 

Meanwhile, the normalization task will resolve the reference attribute that 

each attribute item refers to. For instance, both "Focal length f=5.0 -100 mm 

(35mm equivalent: 28-560mm)" in Figure 1.1 and “Wide Angle (Min.Focal 

Length): 5 mm “ are referring to the reference attribute "focal-length", so 

they are likely to be grouped to the same cluster. 

We define an attribute as a field of a product; an attribute valiie as 

the text representing the value of a particular attribute for a record; and 

an attribute name as the text displayed on the web page to show the at-
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tribute to which an attribute value refers. For instance, suppose there is a 

product attribute about "efFective-pixels". An example of its attribute name 

and attribute value are "Effective Pixels" and “12.1 MP" respectively for 

the digital camera shown in Figure 1.1. Another example of the attribute 

name and attribute value of the same attribute are "Megapixels" and "12 

to 13.9 megapixels" respectively for the digital camera shown in Figure 1.2. 

Meanwhile, other information besides product attributes, for example, the 

columns under "Special offers” in Figure 1.1 and user comments in Figure 1.2, 

is defined as "irrelevant" data with product attr ibute information. Very of-

ten, users may know a few terms related to the content of some attributes 

of interest in the domain. Such information can be easily obtained, for ex-

ample, by scanning one web page about digital cameras and collecting a few 

terms such as "image" and "stabilizer" in a list. Based on such informa-

tion, one can infer from the content of the text fragments in the web page 

that the text fragments "Image Stabilization" and "Optical Image Stabilizer 

System" in Figure 1.1 likely refer to an attribute name and the correspond-

ing attribute value respectively. In addition, there commonly exists some 

previously unseen attributes. For example, from the layout format of the 

web page in Figure 1.1, it can be inferred that the text fragments "Metering 

System" and "Evahiative*, Center-weighted average, Spot**" should be an-

other pair of attribute name and attribute value because the layout format 

of these text fragments is similar to that of the extracted text fragments 

"Image Stabilization" and "Optical Image Stabilizer System" in Figure 1.1. 

Meanwhile, somo annotation attached in the field, i.e. "*Facial brightness is 

also evaluated in Face Detect. ** Metering frame is fixed to the center/linked 
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to AF frame", is treated as attribute value as well. Similarly, more pairs of 

attribute name and attribute value such as "Exposure Metering" and "Eval-

uative, center-weighted, spot", can be discovered from Figure 1.2. As the 

terms appeared within the text fragment "Evaluative, center-weighted, spot" 

in Figure 1.2 and that of the text fragment "Evaluative*, Center-weighted 

average, Spot**" in Figure 1.1 share certain similarity, one can infer that 

these two extracted pairs of attribute name and attribute value refer to the 

same attribute. Additionally, this also increases the degree of confidence in 

extraction. This scenario shows that the content and the layout format of 

attribute names and attribute values in web pages can be cooperative for 

extraction and discovery of previously unseen attributes. In our framework, 

the page-independent information, which refers to the sematic meaning of 

the contents, as well as the page-dependent information, which refers to the 

layout format, jointly affect the result of extraction and normalization of 

product attributes. 

Sometimes, an extracted attribute value from a particular web page may 

not be associated with any attribute name. For instance, there is an ex-

tracted attribute value "portrait" not associated with any attribute name in 

a web page. It is not trivial for a user to understand the attribute that this 

attribute value refers to. Suppose the attribute value "Landscape, portrait 

mode, stitch assist, fireworks, night scene, sunset, indoor, foliage, beach, 

kids k pets, night snapshot, snow, high sensitivity, aquarium" is extracted 

in Figure 1.2 representing the attribute "Shooting Programs" of the digital 

camera. If the text fragments can be automatically clustered to the same 
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group representing an attribute, one can easily observe that they refer to the 

same attribute corresponding to "Shooting Programs". This allows better 

understanding and interpretation of the semantic meaning of the extracted 

text fragments in the same group. 

1.4 Potential Applications 

Our framework can summarize information from different data sources and 

help users analyze and compare products. For example, shopping search en-

gines, one of the most popular Internet application that has been widely used 

by online consumers, can potentially adopt it to enhance service. The inter-

face of existing shopping search engines normally provides an HTML form 

field into which a user can type product queries to return lists of vendors sell-

ing a particular product, as well as pricing information. The incorporation 

of our approach enables product search and comparison based on product 

attributes other than price. Moreover, the extracted and normalized infor-

mation can be applied to other intelligent tasks. The organized database of 

product information generated by our approach can be applied to business 

users for conducting further data mining. Customers interests on product 

types can be inferred by conducting analysis on the data of product at-

tributes, therefore products with similar properties can be recommended to 

users. 

Another potential application is to construct the product attribute tax-

onomy which can capture the relationship among attributes in a hierarchi-
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cal structure. For example, "max-focal-length" and "min-focal-length" are 

two different normalized product attributes in our framework. In essence, 

they can be grouped together and become a more abstract reference at-

tribute "focal-length". As a consequence, if we can organize the reference 

attributes in a hierarchical structure in which the lower level nodes represent 

finer grained reference attributes and the higher level nodes represent more 

abstract reference attributes, users can compare products in different level of 

abstraction. 

1.5 Research Contributions 

Our approach to unsupervised product attribute extraction and normaliza-

tion can effectively acquire and organize the product information from a 

large number of web pages with different layout formats. We have developed 

an unsupervised learning framework for jointly extracting and normalizing 

product attributes from multiple web sites. For example, the text frag-

ments "fireworks" are "portrait" are samples of extracted and normalized • 

text fragments in the digital camera domain using our method. These two 

fragments do not have words in common, but actually they refer to the prod-

uct attr ibute "shooting mode" in the digital camera domain. Unlike existing 

methods which conduct the extraction and normalization tasks in separate 

steps unavoidably leading to the accumulation of errors, we propose a single 

framework which can conduct extraction and normalization tasks simultane-

ously in an unsupervised manner. 
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Oiir framework considers the page-independent content information and 

the page-dependent layout information in a single framework. As illustrated 

in the above motivating example, the mutual influence between the content 

and the layout format of text fragments provides useful chies for attribute ex-

traction and normalization tasks. We design a probabilistic graphical model 

to model the relationship between the content and layout information for 

solving the two tasks simultaneously. 

In practice, the number of attributes is not known in advance. We employ 

Dirichlet process prior leading to another characteristic that the number of 

attributes to be discovered needs not to be fixed and can be unlimited, dif-

ferent from existing works which need to fix the mimber of attributes. This 

can handle product attributes not known in advance and new attributes can 

be discovered. Theoretically, it can handle an infinite number of attributes. 

We also incorporate Hidden Markov Models (HMM) to achieve labeling for 

tokens of each attribute field. Since words with similar sematic meaning are 

likely to refer to the same attribute, each single attribute is applied with 

a single HMM, with higher probabilities that related words would be gen-

erated. Therefore, labeling of attribute name and attribute value can be 

executed more precisely. 

The semantic meaning of the extracted and normalized attributes can 

be visualized by a set of weighted terms in the model. This can significantly 

help users understand and interpret the attributes. We have conducted ex-

tensive experiments from three different domains consisting of 158 web pages 
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from 49 web sites. The experimental results show that our framework is ro-

bust and effective. 

1.6 Thesis Organization 

Chapter 2 presents a literature survey of existing works addressing issues 

related to attribute extraction and normalization. Chapter 3 provides the 

problem definition and gives a preliminary of our framework as well as the 

graphical models. Chapter 4 describes our generative models for the genera-

tion of text fragments in web pages and presents our unsupervised inference 

method for solving the problem. In Chapter 5, experiments are conducted 

based on our framework. We draw the conclusions and present several pos-

sible directions of future work in Chapter 6. 
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Chapter 2 

Literature Survey 

Our approach to unsupervised product attribute extraction and normaliza-

tion draws on techniques from different research areas. In the following sec-

tions we will give a literature survey of information extraction techniques. 

Then, works on attribute normalization as well as approaches aiming at in-

tegration of these two tasks wil l be discussed. 

2.1 Supervised Extraction Approaches 

In the survey on information extraction systems conducted by Chang et 

al. [8], they described various supervised information extraction techniques 

that have been proposed to extract attributes from semi-structured docu-

ments including web pages. They compared the information extraction sys-

tems in three dimensions: the techniques used, the degree of automation, and 

the task domain explaining why an IE system fails to handle some web sites 

of particular structures. The criteria are believed to be capable of providing 
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qualitatively measures to evaluate various IE approaches. 

Meng et al. proposed a novel schema-guided approach to wrapper gen-

eration [25]. They provided a user-friendly interface that allows users to 

define the schema of the data to be extracted, and specifies mappings from 

an HTML page to the target schema. The system can automatically gener-

ate an extraction rule to extract data from the page, based on the mappings. 

Since the user never has to deal with the internal extraction rule, or even 

familiarity with the details of HTML, the approach to wrapper generation 

can significantly reduce the human work. 

LafFerty presented conditional random fields [21] as a framework for build-

ing probabilistic models to segment and label sequence data, offering several 

advantages over hidden Markov models and stochastic grammars for such 

tasks, including the ability to relax strong independence assumptions made 

in those models. This framework had been applied to extract information 

from web documents achieving the state-of-the-art performance. 

Sarawagi and Cohen developed a semi-Markov CRF model [29] which 

can assign labels to segments of a sequence rather than individual elements 

of a sequence. They presented Semi-CRFs as a tractable extension of CRFs 

that offer much of the power of higher-order models without the associated 

computational cost. Also they conducted experiments on five named entity 

recognition problems and proved that semi-CRFs generally outperformed 

conventional CRFs. 
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Sutton et al. proposed Dynamic CRF models (DCRFs) [32] for labeling 

and segmenting sequence data. The model was presented as an integration 

of the best of both conditional random fields and the widely successful dy-

namic Bayesian networks (DBNs). Therefore, it addressed difficulties both of 

DBNs, by incorporating arbitrary overlapping input features, and of previous 

conditional models, by allowing more complex dependence between labels. 

In the paper, inference in DCRFs were performed using approximate meth-

ods, and training by maximum a posteriori estimation. Experiment results 

showed that a DCRF performed better than a series of linear-chain CRFs, 

achieving comparable performance using only half the training data. 

Zhu et al. developed an approach to segmenting web pages and label-

ing the elements within the web pages from different sources [39] achiev-

ing promising performance. Their approach was template-independent and 

hence it coiild handle web pages in different layout formats. The main 

idea of their approach was to integrate Hierarchical Conditional Random 

Fields (HCRF), which is used for learning the web page structure, and Semi-

Conditional Random Fields (Semi-CRF), which is used for labeling the text 

fragments, into one model. Extraction was accomplished by jointly solving 

the two problems under a single framework. 

However, the supervised methods can only partially solve the problems 

in wrapper learning. Since the learning requires training examples, and 

the learned extraction rules can only extract those product attributes pre-
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specified in the training examples in advance, there are still limitations that 

are not addressed. 

2.2 Unsupervised Extraction Approaches 

Several methods have been developed to extract data from web pages with-

out supervision. IEPAD [7] is a system aiming at extracting information 

by recognizing the repeated patterns using PAT trees inside the web pages. 

The core technique of this work is unsupervised discovery of extraction rules. 

The system can automatically identify record boundary by repeated pattern 

mining and multiple sequence alignment. The discovery of repeated patterns 

are realized through a data structure call PAT trees. Additionally, repeated 

patterns are further extended by pattern alignment to comprehend all record 

instances. No human intervention and training example was involved in this 

work. 

Liu et al. [22] proposed a system known as MDR (Mining Data Records ‘ 

in web pages) to discover the data region in a web page by making use of 

the repeated pattern in HTML tag trees. This system firstly builds a HTML 

tag tree of the page, then conducts mining algorithms in data regions in the 

page using the tag tree and string comparison, and heuristics are then ap-

plied to extract useful information from the data region. Both IEPAD and 

MDR assume that the input web pages contain multiple records and repeated 

patterns. I t exploits such evidence and recognizes the repeated patterns ap-

peared in the web pages. However, the web pages are required to have similar 
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layout format and this may not be true in web pages collected from different 

sources. 

Grenager et al. [15] applied hidden Markov model and exploited prior 

knowledge to extract information in an unsupervised manner. They demon-

strated that for certain field structured extraction tasks, such as classified 

advertisements and bibliographic citations, small amounts of prior knowl-

edge could be used to learn effective models in a primarily unsupervised 

fashion, which could dramatically improve the quality of the learned struc-

ture. However, the quality of the extracted data was unlikely suitable for 

subsequent data mining tasks. 

Golgher et al. [14] proposed a web data extraction method by applying a 

bootstrapping technique and a query-like approach. The idea was to exploit 

the existing repositories which can be generated from legacy databases, or the 

data extracted by an existing wrapper for a web site. The system searched 

the text fragments exactly matched with the elements in the repository in 

the unseen web page. A revised wrapper for the unseen site was then gener-

ated by bootstrapping using the matched item. This approach assumed that 

the seed words, which refer to the elements in the source repository in their 

framework, must appear in the unseen web page. However, exact matching 

of items from different web sites was generally not feasible. 

Wong and Lam [37] aimed at reducing the human work of preparing 

training examples by automatically adapting extraction knowledge learned 
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from a source web site to new unseen sites. Two kinds of features related 

to the text fragments from the web documents, site-invariant features and 

site-dependent features, were investigated in this work. The site-invariant 

features, which derived from previously learned extraction knowledge and 

the items previously collected or extracted from the source web site, would 

be exploited to automatically seek a new set of training examples in the new 

unseen target site. Both the site-dependent features and the site-invariant 

features of these automatically discovered training examples would be con-

sidered in the learning of new information extraction knowledge for the target 

site, and no human effort was needed. 

Besides, Probst et al. [27] proposed a semi-supervised algorithm to ex-

tract attribute value pairs from text description. Their approach aimed at 

handling free text descriptions by making use of natural language processing 

techniques, that is, using unlabeled data to extract an initial seed list that 

served as training data for the supervised and semi-supervised classification 

algorithms. Hence, it required very little initial user supervision, but could 

not be applied to web documents which were composed of mixing HTML 

tags and free texts. 

2.3 Attribute Normalization 

The product attribute normalization problem is related to the task of record 

resolution. Record resolution is the problem of determining which records in 

a database refer to the same entities, and is a crucial and expensive step in 
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the data mining process. Singla and Domingos [31] developed an approach 

to record resolution based on Markov Logic Network. Their approach was 

to formulate first-order logic and probabilistic graphical models and combine 

them in Markov logic by attaching weights to first-order formulas, and view-

ing them as templates for features of Markov networks. Experiments on two 

citation databases showed that the resulting learning and inference problems 

can be solved efficiently. Bhattacharya and Getoor [3] proposed an unsu-

pervised approach for record resolution based on Latent Dirichlet Allocation 

(LDA). A probabilistic generative model was developed for collectively re-

solving entities in relational data, which did not make pairwise decisions and 

introduced a group variable to capture relationships between entities. One 

limitation of these approaches is that the entities are required to be extracted 

in advance and cannot be applied to raw data. 

2.4 Integrated Approaches 

A common drawback of existing methods is that the extraction and nor-

malization tasks are conducted in two separate steps, leading to conflict 

solutions and degrading overall performance. Approaches based on CRF 

have been proposed to collaboratively conduct information extraction and 

mining. McCallum and Jensen [24] proposed the use of unified, relational, 

undirected graphical models for information extraction and data mining, in 

which extraction decisions and data-mining decisions were made in the same 

probabilistic "currency" with a common inference procedure. In this case, 

each of the two components were able make up for the weaknesses of the 
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other and therefore improving the performance of both. Wellner [35] et 

al described an approach to integrated inference for extraction and coref-

erence based on conditionally-trained undirected graphical models. They 

advocated conditional-probability training to allow free use of arbitrary non-

independent features of the input, and adapted undirected graphical mod-

els to represent autocorrelation and arbitrary possibly cyclic dependencies. 

Also approximate inference and parameter estimation were performed in 

these large graphical models by structured approximations. However, the 

attributes to be extracted have to be known in advance in these approaches 

and previously unseen attributes cannot be handled. 

To address the problems mentioned above, we apply the use of Dirichlet 

process prior. Dirichlet process prior has been studied and applied in image 

analysis [5] and language modeling [33]. Hall et al. [17] have employed Dirich-

let process prior to model the relationship between two fields of data, which 

was called cross-field dependence in this paper, and applied to the research 

area of de-duplication that explicitly models cross-field dependence. The 

model used a single set of latent variables to control two disparate clustering 

models: a Dirichlet-multinomial model over titles, and a non-exchangeable 

string-edit model over venues. Our framework extends the Dirichlet process 

mixture model by integrating HMM model, and shows that the content and 

layout information of text fragments can be considered jointly to achieve a 

better solution in product attribute extraction and normalization. 
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Chapter 3 

Problem Definition and 

Preliminaries 

This chapter aims at defining the main problem to be tackled in this thesis. 

Pre-processing of raw data is mentioned in this chapter. We also give a 

brief introduction of our framework, as well as the background knowledge of 

the graphical models, since our framework is developed using the graphical 

models for representation. 

3.1 Problem Definition 

In a product domain V, let A denote a set of reference attributes and CLi be 

the i-th attribute in A. For example, in the digital camera domain, reference 

attributes of digital cameras may include "lcd-screen-size", "effective-pixels", 

"focal-length", etc. We design a special element denoted as a representing 

"not-an-attribiite". Since the number of attributes is unknown and hence 
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the size of A denoted by | ^ | is between 0 and oo. 

Given a collection of product record web pages W collected from a set 

of web sites S. Let Wi(s) be i-th page collected from the site s. Within 

the web page Wi(s), we can collect a set of text fragments X(Wi(s)). For 

example, "Optical Zoom 20X" and "Focal Length f=5.0 - 100 mm (35mm 

equivalent: 28-560mm)" are samples of text fragments collected from the 

page shown in Figure 1.1. Let Xj(wi(s)) be the j - t h text fragment in the 

web page Wi(s). Essentially, each x in J^(w"(s)) can be represented by a 

five-field tuple (U,Q,L,T,A). U refers to the tokens of each text fragment, 

and Q refers to the label information of the tokens, i.e. q^ represents the 

attribute name information, labeled as "attribute-name", and q2 represents 

the attribute value information contained in the text fragment, labeled as 

"attribute-value", respectively. In particular, q represents that the token 

is a "attribute-irrelevant" token. Take the fragment "Focal Length f=5.0 -

100 mm (35mm equivalent: 28-560mm)" as an example. The tokens "Focal 

Length，，refer to the attribute name, while the remaining tokens correspond 

to the attribute value. For another example, the text fragment "Community 

Discussions" corresponds to neither the attribute name nor the attribute 

value, so i t refers to attribute-irrelevant information. L refers to the layout 

information of the text fragment. For example, the text fragment "General" 

is in boldface and in larger font size in Figure 1.1. T, defined as the target 

information, is a binary variable which is equal to 1 if the underlying text 

fragment is related to an attribute in A , and 0 otherwise. For example, the 

values of T for the text fragments "General" and "Focal Length f=5.0 _ 100 
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mm (35mm equivalent: 28-560mm)" are 0 and 1 respectively. A, defined as 

the attribute information, refers to the reference attribute that the underly-

ing text fragment belongs to. I t is a realization of A and hence it must be 

equal to one of the elements in A. For example, the values of A for the text 

fragments "Focal Length f=5.0 - 100 mm (35mm equivalent: 28-560mm)" 

and ※ “Wide Angle (Min.Focal Length): 5 mm “ collected from Figures 1.1 

and 1.2 respectively should be equal to the reference attributes "focal-length" 

included in A. 

In practice, the layout information L and the token information U of 

a text fragment can be observed from web pages. However, the target infor-

mation T, the attribute information A and the label information of tokens 

Q cannot be observed. As a result, given the observation of L and U, the 

task of product attribute extraction can be formulated as the prediction for 

the value of T for each text fragment in web pages aiming at discovering all 

text fragments corresponding to certain attributes A. Formally, for each text 

fragment, we aim at finding T = t*, such that 

r = argmaxP(T = t | L , t / ) (3.1) 

The task of attribute normalization can be defined as the prediction of the 

value of A for each text fragment, so that one can obtain the reference at-

tribute to which the underlying text fragment refers. Formally, for each text 

fragment, we aim at finding A = a*, such that 

a* = arg max P ( 4 = a\L, U) (3.2) 
a 
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Meanwhile, our framework predicts the label information of tokens Q for 

each text fragment, and the information can help with the task of extraction 

as well as the task of normalization. Formally, for each text fragment, we 

aim at finding Q = q*, such that 

^ * = a r g m a x P ( g = ^ |L , [ / ) (3.3) 

When T = 1, we have P{A - a\L,U) > 0, P(Q = q,q e quQ2lL,U) > 0 

for some a e A\a and P{A = a\L,U) = 0. When T 二 0, we have 

P{^ = a\L,U) = 1, P{Q = q\L, U) = 1. As a result, conducting prod-

uct attribute extraction and normalization separately may lead to conflict 

solutions degrading the performance of both tasks. In our framework, we 

aim at predicting the values of T, A and Q such that the joint probability 

P(T,成 Q\L, U) can be maximized leading to a solution satisfying both tasks. 

3.2 Preliminaries 

3.2.1 Web Pre-processing 

〇ur framework can automatically extract and normalize product attributes 

collected from web pages. A web page is an HTML document mixed with 

iingrammatical text fragments and HTML tags. The web pages are first 

pre-processed to automatically identify a set of text fragments. Some of 

the identified text fragments are related to product attributes, while some 

of them are irrelevant. Each web page can be represented by a Document 

Object Model (DOM) structure [16]. DOM structure is an ordered tree rep-

resenting the layout format of a web page. There are two kinds of nodes in 
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a DOM structure. The first kind of nodes are the HTML nodes which are 

responsible for the layout format of the web page. These nodes are labeled 

with the corresponding HTML tags. The second kind of nodes are the text 

nodes, which are responsible for the text displayed in browsers. These nodes 

are simply labeled with the associated texts. Figures 3.1 and 3.2 depict the 

excerpt of the HTML document and a portion of the DOM structure corre-

sponding to the web page in Figure 1.2 respectively. 

We define a text fragment as the text within a block of information such 

as a line, a paragraph, a row of table, etc., conveying a single idea or message. 

To identify the text fragments, we select some HTML tags such as TR, BR, 

P, etc. We call these HTML tags and the corresponding HTML nodes in 

the DOM structure separators and separator nodes respectively. Consider a 

separator node, namely, nodtseq, in a DOM structure. The texts contained in 

the text nodes that are offspring of nodegeq but do not have other separator 

nodes between nodegeq and the underlying text nodes are concatenated to 

form a text fragment. Each single word within a text fragment is defined as 

a "token". The tokens denote the content information of the web page to our 

framework. For example, "Display Information Battery status, focus, fader, 

menu, exposure" is an identified text fragment because the texts "Display 

Information" and "Battery status, focus, fader, menu, exposure" are the off-

spring of the separator TR and there is no other separator node between 

them in the DOM structure. 

Additionally, we get the layout information from the DOM structure. 
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<dxv id="pcraTabContent3" atyle-"display:block;"> 
<div xd="pcraSpec3"> 

<table ceilpaddlng="0" ceiispacing="0" cias3="specification"> 
<tr> 

<td coi，pan="2" cia33="txtle">General</td> 
</tr> 
<tr> 

<td ciasa="naae">Brand</tcl> 
<td cia53="de3c">Canon</td> 

</tr> 
<tr> 

<td cia55="name">Seriea</td> 
<td ciaj55="de3c">PowerShot SX Series</td> 

</tr> 
<tr> 

<td cias3="name">Model</td> 
<td cias3="desc">PowerShot SX20 IS</td> 

</tr> 
<tr> 

<td ciass="nanie">Color</td> 
<td cla3a="desc">BlacJc</td> 

</tr> 
<tx> 

<td cia5s="narae">Dijnen3ions (WxHxD)</td> 
<td cia3s="desc">4.88" x 3.48" x 3.42"</td> 

</tr> 
<tr> 

<td ciass="name">Weight</td> 
<td cia5a="de3c">Approx. 19.8 oz./560g (camera body only></td> 

</tr> 
<tr> 

<td cla33="Bame">Type</td> 
<td class="de3c">SLR-Style</td> 

</tr> “ 
<tr> 

<td col5pan="2" cias3="title">Image Sensor</td> 
</tr> 

Figure 3.1: An excerpt of the HTML texts for the web page shown in Fig-

ure 1.2 
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<table> 

^ ^ 
<tr> 

^ ^ 1 ^ \ 
Brand: Canon 

Figure 3.2: A portion of the DOM structure for the web page shown in 

Figure 1.2 

Besides tokens about content, each text fragment may also contain one or 

more special tokens featuring layout characteristics of the related text frag-

ment. The set of layout tokens includes "bold", "center", "capitalized", 

"single_word", "doiible_word", "triple_word", and "mutiple_word" etc. A set 

of layout functions are designed to represent the characteristics. For example, 
z 

1, Xn is bold, 
! L , M = (3.4) 

0, otherwise 
\ 

captures the characteristic of "bold" ofthe text fragment Xn- Take Figure 1.1 

as an example. "General" and "Image Sensor" are both bold in layout format, 

therefore //^^^("General") = 1. Consider another example, "Color Black" has 

two words within the text fragment, so we have fdmibie-worA''^^^^^ B lack " )= 

1 while i i _ _ , — ( “ C o l o r Black") = 0, / / ; _ _ _ # ( C o l o r Black") = 0 and 

fmuitipie.wordi"Coloi Black") = 0. In ouF framework, the layout information 

wil l collaborate with content information to tackle product attribute extrac-

tion and normalization problems. 

• 30 



We construct a dictionary of tokens based on a small quantity of text 

fragments. Since the raw data consists of attribute-relevant data as well as 

large amount of attribute-irrelevant data, we set up a simple filtering mech-

anism that only tokens appear more than once will be taken into considera-

tion, while those show up only once will be treated as attribute-irrelevant and 

skipped. Our framework employ a stemmer [23] for reducing inflected words 

to their stem, base or root form. For example, "interfaces" and "included" 

should be reduced to the root words "interface" and "include" respectively. 

Our framework is then applied to these identified text fragments for attribute 

extraction and normalization. 

3.2.2 Overview of Our Framework 

We employ graphical models to develop our framework. Generally, proba-

bilistic graphical models [18] use a graph-based representation as the founda-

tion for encoding a complete distribution over a multi-dimensional space. The 

nodes in the graph models correspond to random variables, and joint proba-

bility distributions are defined by taking products over functions defined on 

connected subsets of nodes. By exploiting the graph-theoretic representa-

tion, the formalism provides general algorithms for computing marginal and 

conditional probabilities of interest. Therefore, it is effective for graphical 

models to formulate probabilistic models of complex interactions among the 

elements in the problem. These characteristics make graphical models widely 

used in probability theory, Bayesian statistics, and machine learning. More 

detailed background of graphical models is described in Section 3.2.3. 
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Dirichlet process [5] is employed in our framework. Dirichlet process 

can provide an explicit construction of the non-parametric models and sup-

port discrete samples. Another important characteristic of Dirichlet process 

is that the number of mixture components is not required to provide in ad-

vance [38]. Al l the properties make it suitable for tackling our problem in 

hands among various existing clustering approaches, such as K-Means, link-

age metrics, and density-based connectivity [2]. The background of Dirichlet 

process is described in the Appendix A. 

Our framework also employs Hidden Markov Models(HMM). HMM can 

label the tokens of each text fragment as an attribute field. We set up 

a unique HMM model for each chister based on the distribution of tokens 

within each reference attribute, so that tokens with higher probability be-

longing to one cluster would also share higher probability to be generated 

for the same text fragment. The background of HMM is described in the 

Appendix B. 

3.2.3 Background of Graphical Models 

A graphical model is a probabilistic model for which a graph denotes the 

conditional independence structure between random variables. Two branches 

of graphical representations of distributions are commonly used, namely, di-

rected graphical models and undirected graphical model. These two branches 

are based on directed acylic graphs and undirected graphs, respectively. Since 
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our thesis uses the directed graphical models, the following introduction wil l 

only focus on this pattern. 

Let Q be a directed acyclic graph, then the model represents a factor-

ization of the joint probability of all random variables. Let Z1,Z2, . . . , Z^ 

be a random variable indexed by the nodes of the graph. Also, let 0 de-

note the set of random variables indexed by the parents of Z. Given that 

P(Zi\6x), P(Zi| l9i),. • . , P(Zn|i9jJ sum or integrate to one, a joint probability 

distribution can be defined as 

n 

P ( Z u Z 2 , . . . , Z n ) = Y [P(Z , l9 i ) (3.5) 
i=l 

In other words, the joint distribution factors into a product of conditional 

distributions. Any two nodes are conditionally independent given the values 

of their parents. 

¢^"^^^^^^^¾ 
Zl ^2 Z3 Z„ 

Figure 3.3: A simple example of a graphical model 

Figure 3.3 illustrates a graphical model asserting that the variables Z „ are 

conditionally independent and identically distributed given 6>. Generally, the 

graphical models use a plate to capture replication. Figure 3.4 is a shorthand 
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Figure 3.4: A shorthand for the graphical model in Figure 3.3 

for the graphical model of Figure 3.3 using plate representation. 

The graph provides an appealing visual representation of a joint prob-

ability distribution. Regardless of the form of the probability functions, 

the factorization in Equation 3.5 implies a set of conditional independence 

statements among the variables. The entire set of conditional independence 

statements can be obtained from a polynomial time reachability algorithm 

based on the graph. 

The graphical structure can be exploited by algorithms for probabilistic 

inference [19]. Let (0 , U) be a partitioning of the node indices of a graphical 

model into disjoint subsets, such that ( ¾ , Xy) is a partitioning of the ran-

dom variables. Let 0 and U be the set of observable variables and the set 

of iinobservable variables, respectively. In this thesis, inference tries to solve 

the problem of maximum a posteriori (MAP) probabilities: 

p*{xo) = mdixp{xo,xu) (3.6) 
Xu 
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From these basic computations we can obtain other quantities of interest. 

The graphical structure can make this computations efficient. 
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Chapter 4 

Our Proposed Framework 

4.1 Our Proposed Graphical Model 

Our proposed framework is based on a specially designed graphical model 

as depicted in Figure 4.1. Shaded nodes and unshaded nodes represent the 

observable and unobservable variables respectively. The edges represent the 

dependence between variables and the plates represent the repetition of vari-

ables. Figure 4.2 illustrates the meaning of each notation used in our frame-

work. 

We employ Dirichlet process prior to tackle our problem. Each mixture 

component refers to a reference attribute in our framework. As a result, our 

framework can handle unlimited number of reference attributes. Essentially, 

our framework can be viewed as a mixture model containing unlimited num-

ber of components with different proportion. Each component refers to a 

reference attribute in the domain. Suppose we have a collection of N differ-
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Figure 4.1: The graphical model for the generation of text fragments in web 

pages 
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ent text fragments collected from S different web sites. Each generation of 

a text fragment is modeled as an independent and identical event. The n- th 

text fragment Xn consists of an unobservable variable Zn representing the 

index of the mixture component from which the underlying text fragment is 

generated. Essentially, A^ is replaced with Z^ for clarity and A^ = a^^ where 

a,i e A. We also employ Hidden Markov Models (HMM) to predict the label 

of each token of the N text fagments. As mentioned in Section 3.1, we use 

three kinds of labels in this thesis, i.e. "attribute-name", "attribute-value" 

and "attribute-irrelevant". Suppose there are M „ tokens of the n- th text 

fragment. We assume that each mixture component consists of an individual 

HMM. Hence through the variable Zn we can find the corresponding H M M 

of the n- th text fragment for labeling its tokens. The token information Un, 

also known as the page-independent content information, is then generated 

according to P"{UnlQn^Zn,0^) , where P^( - |Qn,^n ,6 ' f ) is the probability 

distribution about the token information Un given the variables Q„, Zn and 

6^. Un represents the sequence of tokens Un,\, Un,2, • • •，Un,Mn, while Qn rep-

resents the label information of tokens Qn,i,Qn,2, •. •，Qn,Mn- ^k refers to the 

set of parameters of the A:-th H M M model. 

Next, the target information T„ is generated by P^(T„|0j^) , where P^{- \0\ ) 

is the probability distribution about the target information T given the vari-

able 9^. Since the layout format of the text fragments in a web page is 

page-dependent, we have a set of layout distributions, namely, 6^, for gen-

erating the page-dependent layout format of the text fragments in the page 

s. As shown in the ninning example in Section 1.3, there is mutual coop-
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N The number of text fragments 

S The number of web sites 

Xn The n- th text fragment 

M n The number of tokens of the n - th text fragment 

Zn The index" of the parameters, stating the cluster from which the text fragment comes 

Un The tokens information [ / „ ,1 , t /n ,2 , . . • ’ f / n ,M„ of the n- th text fragment 

Qn The label information of tokens Qn,uQn,2,- • • , Q n , M „ 

Wn The set of t 0 k e n s U n , u U n , 2 , . . . , ^ n , M n and labels Q n , i , Q n , 2 , . . - , Q n , M „ of the n - th text fragment 

T „ The target variable illustrating whether the text fragment is related to product attribute 

L „ The layout of the n - th text fragment, indicating whether i t has or has not some particular layout 

7Tfc The proportion of the fcth component in the mixture , 

e l A set of binomial distribution parameters for generating T „ 

6 ^ The set of parameters of the A;-th H M M model 

gL A set of site-dependent parameters controlling the layout format of each text fragment on the page 

a The parameter denoted in the stick breaking of Dirichlet process 

G ^ The hyper parameter, or prior process to generate 9^ 

G ^ The hyper parameter, or prior process to generate Oĵ  

Figure 4.2: Notations Used in Our Framework 

eration between the layout information and the target information of a text 

fragment. 7； together with 約 wil l generate the page-dependent layout in-

formation Ln of the n-th text fragment according to P^^(Ln|T„, 6>》工打))，where 

P^(-|Tn,^f') is the probability distribution about the layout information L 

given the variables T^ and 0^ and s(a:„.) denotes the web page from which Xn 

is collected. 

In ordinary Dirichlet mixture models, each mixture component consists 

of a distribution to characterize the data. Instead, our framework consists 
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of two different distributions parameterized by 8 l and 6^ for the A:-th com-

ponent. 6^ and 9^ are in turn generated from the base distributions G^ 

and GQ respectively in the Dirichlet process. G『and G@ act as the prior 

distributions of the target information and the component-relevant HMM 

information respectively. For example, suppose we model the target infor-

mation of the text fragments. Since T is a binary variable, it can be modeled 

as a Bernoulli trial. Therefore, P^{- \9 l ) can be a binomial distribution with 

parameter 0工 and G^ can be a Beta distribution, which is the conjugate 

prior of a binomial distribution. Similarly, G^ can be can be a Dirichlet 

distribution which is the conjugate prior of a mixture model, P"{-]6|^) is 

a multinomial distribution, and 9^ is the set of parameters of multinomial 

distribution in component k. 

We adopt the stick breaking construction representation of Dirichlet pro- ‘ 

cess prior in the graphical model depicted in Figure 4.1. In summary, we 

can break a one-unit length stick for an infinite number of times. Each time, 

we break a î k portion from the remaining portion of the stick according to 

Beta(l,a) in the A:-th break, where Beta{a1,a2) is the Beta distribution, 

with parameters a^ and a2. Therefore, the A:-th piece of the broken sticks 

can represent the proportion of A:-th component in the mixture. Dirichlet 

process prior can support an infinite number of mixture components, which 

refer to the reference attributes in our framework. Zn is then drawn from 

the distribution 7r. In summary, the generation process can be described as 

follows: 
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k-1 
T^kW 〜Beta(l,a) nk = ifk H (1 一 n) 

i=l 

Ol\Gl ^ G l m ~ G S 

^ … （ 4 1 ) 

T n l o i - p ^ e l ) 

UnlQn,Zn,e^ �p"(t4|(5„，z„A") 

L,|T, ,^f^P^(Ln|T, ,e( .„)) 

The joint probability for generating a particular text fragment Xn given the • 

parameters a, G^，G^, and 6[̂  can then be expressed as follows: 

P(Un, Qn, ^n, ^n, T , , TTj ’ 7T2, . • .，0[, 0^ ...,斤,6^, . . . |«, G ^ G^, 6'^) 
oo 

= n { P " ( i ^ r j T n , & & ) ) [ i ^ T p ; | Z n , C ) i ^ " ( f 4 | a n Z n , A " ) P ^ { ^ = 0 
i~\ 

00 
P{Zn = ik,7T2, . . .)P(eJ\Gl)P(9^\G^)} n P(7r,|a, 7Ti, • . . , 7T,_i) 

i=\ 

(4.2) 

where 

P"(f^|<5n, ^n, ^k) 
Mn (4.3) 

= n [^K,mkn,m, ̂ n, ^ )̂F(9n,mkn,m-l,̂ n, Oj^)] 
m = l •• 

and X{Zn=i} = 1 if Zn = i and 0 otherwise. 

4.2 Inference 

As described above, Equation 4.3 provides the basic formulation ofthe graph-

ical model. For simplicity, we let 0 , Z7, and (f be the set of observable vari-

ables, which include all L „ and Un, where 1 < n < N, the set of unobservable 

variables, which include all Z „ , T„, 6>【,9^ and 7r̂ , where 1 < n < N and 

1 < k < 00, and the set of model parameters, which include a, Gl, G^, 
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and 6g respectively. Given a set of text fragment and the parameters <p, 

the unsupervised learning problem can be viewed as an inference problem 

defined as follows: 

U* = a rgmax{P(Z7 = w|0,v?)} 
” (4.4) 

=a rgmax { l ogP(L / " = u|0,c^)} 

Since the computation of \ogP{U\0,(p) = ]ogL^iM^|^^ involves the 

marginalization of P{U, 0|(p), over the unobservable variables, exactly solv-

ing Equation 4.4 is intractable. As a result, approximation methods are re-

quired. In this thesis, we make use of Markov Chain Monte Carlo (MCMC) 

techniques [26] to solve this problem in a principled and efficient manner. 

Due to the difficulty of direct sampling, Metropolis-Hastings algorithm [9_ 

may be considered. The Metropolis-Hastings algorithm can draw samples 

from any probability distribution P{x), requiring only that a function pro-

portional to the density can be calculated. The algorithm uses a proposal 

density Q(x']x^), which depends on the current state x \ to generate a new 

proposed sample x'. This proposal is "accepted" as the next value (工⑷= x ' ) 

if a drawn from satisfies 

a < m i n { ^ ^ , l } (4.5) 

If the proposal is not accepted, the current value of x is retained:工&1 = xK 

For example, the proposal density could be a Gaussian function centered on 

the current state x \̂ Q(x']x^)〜 iV(j;(,o"2/) 

However, in our graphical model, new density forms are available when 
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the components Z„, T„, L^, Un and Qn are used seperatedly. In this case, 

Metropolis-Hastings algorithm needs to handle multi-component situation. 

It requires repeatedly sampling different components and would be very time 

consuming. This inspires us looking for another algorithm that cost less time 

on computation. The goal of our framework is to generate a Markov chain 

with stationary distribution f{U, 0 , cp). Since the conjugate priors are used 

in our model, we adopt Gibbs sampling [13] to sample from the posterior 

distribution P{U\0, ( f ) . Based on the sampling process, we can determine • 

how many distinct components are likely contributing to our data and what 

the parameters are for each component. It avoids sampling from all the rele-

vant variables in the framework as that mentioned in Section 4.1, hence saves 

time on computation. 

Figure 4.3 depicts the high-level outline of our inference algorithm. We 

sample for the component indicator Zn for the n-th text fragment as well as 

the component parameters 6^ and ^ f , for all 1 < k < oo. Assuming current 

state of the Markov chain in MCMC algorithm consists of Z,, Z2,... , and the 

component parameters Oj and B", for all 1 < k < 00. For convenience, we use 

a variable Wn to represent the set of tokens Un,i,Un,2,. • . , Un,Mn and labels 

Qn,1,Qn,2, • • •, Qn,Mn of the n-th text fragment. Samples can be generated 

by repeating the following steps: 

1. For i = 1 , . . . , N: 

• If Zi is currently a singleton, remove 6^. and 9". from the state. 

• Draw a new value for Zi from the conditional distribution: 
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# Unsupervised inference algorithm 

I N P U T : X. The set of text fragments from different Web pages 

O U T P U T : Z n . Tn and Un for all Xn € A' 

I N I T : 

0 set all model parameters as uninformative prior 

1 until convergence 

2 foreach Xn G ^ 

3 sample Zn according to Equations 4.6 and 4.7 

4 update 6^ and 0jJ for all k according to Equation 4.8 

5 update Tn according to Equation 4.9 

6 learn the H M M model corresponding to Xn and update 0[^ using Baum-Welch algorithm 

7 use the learned H M M model to label the text fragments using Viterbi algorithm 

8 end foreach 

9 end until 

Figure 4.3: A high-level outline of oiir unsupervised inference algorithm. 

p{Zi = z\z,i,Ti,Wi,el,el) 

z 
j^F(eJ\Ti}F(0f,Wi}, for existing z, (4.6) 

~ < 

j ^ f F(0^,T,)dG^F(e^, Wi)dGS: for a new z 
\ 

• I f the new Z^ is not associated with any other observation, draw a value 

for ^J. and 0£ from: 

P r | T . ) CX F ( e J , T , ) G l ( e ^ ) ( 4 7 ) 

P{e"lWi) oc F(6l',Wi)GS(e") 

2. For all 1 < k < o o : . 
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• Draw a new value for 9^ and l9f from the posterior distribution based 

on the prior C j and G " and all the data points currently associated 

with component k: 

p{0^\n) oc n p{Timp{o^) 
i:Z{==k 

= n F{9^,T,)Gl(0^) 
z :ZF /c - ( 4 . 8 ) 

P{e"lWk) oc n P{WilB^)P(0") 

= n F{e",w,)G^{e") 
i-.Zi=k 

As mentioned in Section 4.1，T] can be modeled as a Bernoulli trial, let G^ be 

a Beta distribution, which is the conjugate prior of a binomial distribution, 

then P(-\dl) can be modeled as a binomial distribution with the parameter 

Ok - So the posterior probability P{9^\Tk) is also a Beta distribution. Simi-

larly, let G^ be can be a Dirichlet distribution, which is the conjugate prior 

of a mixture model then P{-\9") can be modeled as a multinomial distribu-

tion with parameter 6 " and its posterior probability P{e"\Wk) is a Dirichlet 

distribution. .. 

As exemplified in Section 1.3, our framework can consider the page-

dependent layout format of text fragments to enhance extraction. Consid-

ering the fact that web pages within one web site usually share the same 

set of layout information, we use a set of parameters 6̂  to represent the 

layout information. Therefore, P(-|0f,Tn) can be modeled as a multinomial 

distribution. Given /9f-, we can update T^ based on the P{Tn\6^,Tn). 

P{TnlLn) oc P{KlOt,Tr,)P{Tr,)P(Oi^) (4.9) 
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After updating 9 " for all the components, the n-th text fragment wil l 

be labeled by the corresponding HMM generated from the k-th component, 

where Zn = k. 9 " contains a set of HMM parameters: the start probabil-

ity representing at which label the HMM starts, the transition probability 

representing the change of labels in the underlying Markov chain, and the 

emission probability representing which token would be generated by each 

label. We conduct Baum-Welch algorithm to derive the maximum likelihood 

estimate and update the set of probabilities. And the text fragment, also 

known as a token sequence, is labeled using Viterbi algorithm based on the 

updated parameters of the model. 

To initialize this algorithm, we need to provide the parameters a, G j 

, G " , and _̂J'. For the model parameters, a is the scaling parameter in 

the Dirichlet process, which essentially affects the number of normalized at-

tributes in the normalization process. Since we apply our framework to the 

domains, for example, digital cameras, in which each product contains a 

number of attributes, we set a to a value that favors a large number of ex-

tracted attributes. G^ refers to the prior knowledge about how likely a text 

fragment wil l be a product attribute. We treat it as an uninformative prior 

by letting a = 1,^ = 1 of a Beta distribution. Similarly, G^ is treated as 

uninformative and all a's of a Dirichlet distribution are set to 1. 6̂  can also 

be initialized in this way. 

46 



4.3 Product Attribute Information Determi-

nation 

As mentioned in Section 4.1, the integration o f H M M enables our framework 

to label tokens of text fragments as "attribute-name", "attribute-value" or 

"attribute-irrelevant". To determine whether a text fragment should be ex-

tracted or not, in other words, whether it is relevant to a reference attribute 

or not, we design a procedure to achieve this task. The threshold e： decides • 

whether a text fragment is "attribute-relevant" or "attribute-irrelevant". Let 

Pi represent the proportion of tokens labeled as "attribute-irrelevant" within 

a sequence of a text fragment. When pi < e： within a sequence, the whole se-

quence will be considered as "attribute-relevant" for subsequent processing. 

When p： > ei, the sequence will be considered as "attribute-irrelevant". The 

threshold e2 decides whether a cluster is "attribute-relevant" or "attribute-

irrelevant". Let p2 represent the threshold of the proportion of predicted 

"attribute-irrelevant" text fragments within a cluster. When p2 > e2 within a 

cluster, the whole cluster wil l be considered as "attribute-irrelevant". In this 

case, all the text fragments that exist in this cluster, regardless "attribute-

relevant" or "attribute-irrelevant", are treated as "attribute-irrelevant". 
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# Product Attribute Information Determination 

I N P U T : X: The set of text fragments from different web pages 

O U T P U T : L a b e l s ("attribute-relevant" or "attribute-irrelevant") for all Xn G A' 

I N I T : 

0 execute unsupervised inference algorithm for the set of text fragments and get H M M lables 

1 set the threshold e\ and €2 

2 foreach cluster k 

3 foreach Xn,k € ^ k 

4 calculate p\ of Xn 

5 if p\ < e\ 

6 label x^,k as "attribute-relevant" 

7 else 

8 label Xn,k as "attribute-irrelevant" 

9 end foreach 

10 calculate p2 for cluster k 

11 if P2 > e2 

12 label all x^,fc as "attribute-relevant" 

13 end foreach 

Figure 4.4: An outline of product attribute information determination. 
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Chapter 5 

Experiments and Results 

We have conducted several sets of experiments to evaluate our framework. 

The dataset used in our experiments is composed of data from three different 

domains, namely, digital camera, MP3 player, and LCD TV domains. For 

these domains, a set of web pages were collected from different web sites, 

which were randomly selected by making use of product search engines. One 

human accessor were invited to prepare the ground truth of the data for 

evaluation. Each Web page was first pre-processed to generate a set of text “ 

fragments as described in Section 3.2.1. The attribute name and the at-

tribute value, if any, of the text fragment will be identified. Note that such 

annotation is only used for evaluation purpose. Table 5.1 summarizes the 

information of the dataset. The first and second column of the table shows 

the total number of web pages and the total number of web sites from which 

the data is collected. The third column shows the total number of text frag-

ments in all the web pages after pre-processing. The fourth column shows 

the total number of text fragments about product attributes in all the pages. 
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Domain No. of pages No. of sites No. of text No. of text 

fragments fragments 

related to 

attributes 

Digital Camera 50 21 5696 690 

MP3 Player 59 13 5040 572 

LCD TV 61 15 3014 ^ 

Table 5.1: A summary of the data used in the experiments collected from 

the digital camera, MP3 player, and LCD TV domains. 

In each domain, we conducted two sets of experiments. In the first set of 

experiments, we applied our framework to jointly extract and normalize the 

product attributes from all the web pages in the domain. We call this set of 

experiments "Our Approach". The second set of experiment employs latent 

Dirichlet allocation (LDA) [6] to cluster text fragments instead of Dirichlet 

process. Since the number of components has to be given to LDA model 

in advance, here we set K = 50. Then HMM models are applied to la-

beling the text fragments. This set of experiments can be considered as a 

comparison and called "LDA Approach". Note that this approach asks for 

knowledge about the number of product attributes in advance, while the 

"Oiir Approach" can handle unlimited number of product attributes. We 

conducted several runs in each set of experiments using different parameters 

of the model. The performance of both extraction and normalization in each 

run were recorded for evaluation. 

We first evaluate the performance of product attribute extraction. The 
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attribute extraction results from each set of experiment are compared with 

the ground truth prepared by the human accessor. Extraction precision and 

recall are adopted as the evaluation metrics. Extraction recall is defined as 

the number of text fragments correctly extracted text fragments correspond-

ing to a product attribute divided by the actual number of text fragments 

corresponding to a product attribute. Extraction precision is defined as the 

number of correctly extracted text fragments corresponding to a product 

attribute divided by the total number of text fragments extracted by the • 

system. Extraction Fi-measure is defined as the harmonic mean of equal 

weighting of extraction recall and precision. Similarly, we use precision and 

recall to evaluate labeling results. For each label, i.e. "attribute-name" and 

"attribute-value", precision is defined as the number of tokens correctly pre-

dicted as "attribute-name" or "attribute-value", divided by the total num-

ber of tokens which are predicted as "attribute-name" or "attribute-value". 

Recall is defined as the number of tokens correctly predicted as "attribiite-

name” or "attribute-value", divided by the actual number of tokens which 

are judged by the human accessor as "attribute-name" or "attribute-value". 

Also Fi-measure is defined as the harmonic mean of equal weighting of ex-

traction recall and precision. 

Table 5.2 shows the the product attribute extraction performance of "Our 

Approach" and "LDA Approach" respectively. Each column refers to the ex-

traction performance in a domain depicted in the first row. Each row of the 

tables corresponds to an set of experiment result using "Our Approach" and 

“LDA Approach". "Our Approach" obtains better results compared with the 

51 



DC MP3 LCD TV 

P R F P R F P R F 

Our Extraction 0.476 0.610 0.535 0.294 0.575 0.393 1.000 0.376 0.547 

Approach Label "attribute-name" 0.599 0.554 0.557 0.630 0.619 0.625 0.549 0.407 0.450 

Label "attribute-value" 0.804 0.580 0.629 0.837 0.533 0.630 0.893 0.716 0.784 

LDA Extraction 0.476 0.610 0.535 0.294 0.575 0.393 1.000 0.330 0.497 

Approach Label "attribute-name" 0.628 0.545 0.558 0.515 0.545 0.529 0.519 0.373 0.409 

Label "attribute-value" 0.476 0.610 0.535 0.789 0.471 0.557 0.883 0.712 0.777 

Table 5.2: The attribute extraction performance of "Our Approach" and 

"LDA Approach" on the digital camera (DC), MP3 player (MP3), and LCD 

T V domains. P, R, and F refer to the recall, precision, and Fi-measure 

respectively. 

"LDA Approach". In particular, the Fi-measiire of label "attribute-value" 

are 0.629, 0.625 and 0.784 in the digital camera, MP3 players and LCD T V 

domains respectively. "LDA Approach" obtains a relatively low recall and 

precision compared with "Our Approach". Since the text fragments contains 

more tokens that are judged to be "attribute-value"，e.g. there are several 

text fragments contains only "attribute-value" tokens, "Our Approach" ap-

pears more adaptable in handling the text fragments. 

We have investigated the effect of the thresholds e： and e2 of our frame-

work. The results can achieve a stable performance when e] = 0.1 -0 .15 and 

62 = 0.5 - 0.6. In particular, we keep ei in a relatively low value. The major 

reason is to keep a certain level of filtering clusters. I f e： was set to a higher 

value, i.e. above 0.2，the framework would treat almost all the clusters as 

attribute-relevant. This also explains why the difference of the extraction 

F] of “Our Approach" and "LDA Approach" is not obvious. Although the 
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clusters generated by these two methods are different, the presence of most 

clusters for HMM labeling and evaluation leads to an indifferent extraction 

Fi. 

0.66r r — — — ~ ^ n , i r • • 
attribute-name 

mmmm atthbute-valu6 
0.64 • ‘ I I ‘ I ‘ '• 

: v ^ A ^ 
證 0.58- ^ ^ ^ ^ -13 ① 
气 0.56 - -

: _ / ^ _ _ _ _ _ ^ _ _ ^ ^ ^ ^ ^ ^ ^ ^ ^ X ^ 

0,52 • / ^ ^ 

0.5 • / . 

0.48' ‘‘ ^ 1 1~ 1 _ x 
- 3 - 2 -1 0 1 2 3 4 

l°fl,o(«) 

Figure 5.1: The effect of a in Dirichlet process on the extraction performance 

Figure 5.1 illustrates the effect on Fj measures for label "attribute-name" 

and "attribute-value" under different a of Dirichlet process, a affects changes 

of the clustering results as well as the labeling performance. From Figure 5.1 

we can see that the performance is quite stable while a changes within a 

relatively wide range. I t means that we can choose the value of a from a 

wide range instead of sticking to a certain value. In our experiment we pick 

« = 100, with which the performance gets a relatively high value and the 
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Att. 1 Att. 2 Att. 3 Att. 4 Att. 5 

memory iso battcry dimension lcd 

card resolution rcchargcablc height color 

optical effective include width tft 

build image alkaline weight screen 

expandable megapixel lithium length display 

Ati. 6 Att. 7 Atl. 8 Att. 9 AU. 10 

while iso box red scene 

balance speed open eye auto 

flash additional usb fix mode 

daylight, burst connect rcduce select 

cloudy high cablc flash portrait, 

Table 5.3: The visualization of the top five weighted terms in the ten largest 

normalized attributes in the digital camera domain. 

difference between F、measures of "attribute-name" and "attribute-value" is 

relatively small. 

We conduct a qualitative analysis on the attribute normalization by com-

paring the tokens that are generated in each cluster. Table 5.3 shows the top 

5 weighted terms in 10 normalized attributes in the digital camera domain. 

I t can be observed that the semantic meaning of the attributes can be easily 

interpreted from the terms. The output of attribute normalization can be 

very useful for supporting other intelligent applications such as product at-

tribute indexing and product retrieval. 

We also look into how a affects the number of clusters. Figure 5.2 illus-
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Figure 5.2: The effect of a in Dirichlet process on the number of "attribute-

relevant" and "attribute-irrelevant" clusters 
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trates the effect of a on the number of clusters. The number of "attribute-

relevant" clusters as well as "attribute-irrelevant" clusters fluctuate within a 

reasonably small range when a changes. This also strengthens the conclusion 

that the value of a can be chosen within a wide range. Notice that we do 

not need to provide the exact number of clusters as the "LDA Approach" 

did. Dirichlet process wil l automatically adapt the size of clusters and the 

number of clusters according to the data set. Our framework performs more 

adaptable than "LDA Approach" since it is difficult to choose the number of 

cluster in advance. 
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Chapter 6 

Conclusion 

We have developed an unsupervised framework which aims at simultaneously 

extracting and normalizing product attributes from a number of web pages 

collected from different sites. We have proposed a graphical model, which 

employs Dirichlet process prior, to model the generation of text fragments in 

Web pages. This leads to a property that our framework can handle an un-

limited number of product attributes. An unsupervised inference algorithm 

based on MCMC is derived. We show that the page-independent content “ 

information and the page-dependent layoiit information can collaborate and 

improve both extraction and normalization performance. An HMM model 

is integrated in oiir framework to label tokens for further uses. Extensive 

experiments on real-world data have been conducted to show the robustness 

and effectiveness of our approach. We also proposed potential applications 

that can make use of the results of attribute extraction and normalization. 

We plan to extend our framework to several directions. One possible 
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direction is to develop a method to automatically construct the ontology of a 

domain based on the normalized attributes. Since each normalized attribute 

can be represented by a set of terms in our framework, we plan to develop 

an automatic method to organize the attributes into a hierarchical structure, 

enriching the expressiveness of the extracted information. Another direction 

is to utilize the extracted and normalized attributes for automatic product 

record matching. There are numerous different products being sold in online 

stores. Automatic product matching can compute a score between products 

considering attribute-wise information. This is useful for users to analyze 

the products make decision. 
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Appendix A 

Dirichlet Process 

The following description of the Dirichlet process is extracted from (Y. Teh, 
2005) [33]. The Dirichlet process was formally introduced by Thomas Fer-
guson in 1973 [12]. Let (9 , ^ ) be a measurable space, with Go a probabil-
ity measure on the space. Let 0¾ be a positive real number. A Dirichlet 
process DP(a.Q, Go) is defined to be the distribution of a random proba-
bil i ty measure G over (6,/3) such that, for any finite measurable partit ion 
{A],A2,..., Ar) of |3, the random vector ( G ( ^ ] ) , . . .,G{Ar)) is distributed 
as a finite-dimensional Dirichlet distribution with parameters 
(QfoGG(^),...,0;oGQ(AO): 

(C(^i), . . .，G{Ar))〜Dir(aoGo(々)， . . .，QoCo(^r)) (A.1) 

We write G 〜 D P { a o , Go) if G is a random probability measure with distri-
bution given by the Dirichlet process. 

Measures drawn from a Dirichlet process are discrete with probability 
one [12]. This property is made explicit in the stick-breaking construction 
due to Sethuraman [30]. The stick-breaking construction is based on inde-
pendent sequences of independent random variables (7rJJ^i and (0k)h ' -

Kl^o,Go 〜Beta{l,ao) Oklao,Go 〜G。’ (A.2) 

Now define a random measure G as 

k-l 00 

^ F ^ i ; n ( i i ' ) G = E i A , (A.3) 
/ = 1 Jfc=l 

where So is a probability measure concentrated at 9. Sethuraman [30] showed 
that G as defined in this way is a random probability measure distributed 
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according to DP(aQ,GQ). 

A second perspective on the Dirichlet process is provided by the P61ya 
urn scheme [4]. The P61ya urn scheme shows that draws from the Dirichiet 
process are both discrete and exhibit a clustering property. The P61ya urn 
scheme does not refer to G directly; i t refers to draws from G. Thus, let 
没1’没2, • •. be a sequence of i.i.d. random variables distributed according to G. 
That is, the variables 6>i,&, • •. are conditionally independent given G, and 
hence exchangeable. Let us consider the successive conditional distributions 
of 9i given ^ i , . . . , ^ _ i , where G has been integrated out. Blackwell and 
MacQueen [4] showed that these conditional distributions have the following 
form: 

叫〜•..，氏-1’0^’ Go 〜 2 . /丄 ^ + . ， G o (A.4) 
^ « 一 1 + OiQ 1 - 1 + Q;o 

We can interpret the conditional distributions in terms of a simple urn model 
in which a ball of a distinct color is associated with each atom. The balls 
are drawn equiprobably; when a ball is drawn it is placed back in the urn 
together with another ball of the same color. In addition, with probability 
proportional to ao a new atom is created by drawing from G^ and a ball of 
a new color is added to the urn. 

Expression A.4 shows that 氏 has positive probability ofbeing equal to one 
of the previous draws. Moreover, there is a positive reinforcement effect; the 
more often a point is drawn, the more likely it is to be drawn in the fu tu re . . 
Tb make the clustering property explicit, it is helpful to introduce a new set 
of variables that represent distinct values of the atoms. Define (^ i , . . . , ¢ ^ to 
be the distinct values taken on by ^ i , . • •，氏-i, and let rUk be the number of 
values 6[ that are equal to cj)k for 1 < i' < i. We can re-express A.4 as 

叫没1,...，氏-1,御,Co 〜 X ： 厂 ^ ^ 知 + - ^ G , (A.5) 
t z t « _ 1 + 0 k i - 1 + a o 、 ‘ 

The Dirichlet process mixture model [1] adds a level to the hierarchy by 
treating ”几 as the parameter of the distribution ofthe nth observation. Given 
the discreteness of G, the DP mixture has an interpretation as a mixture 
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model with an unbounded number of mixture components. In particular, 
suppose that observations X{ arise as follows: 

躺 〜 6 rAfii 
Xi\e,�F(6il (A.b) 

where F{9i) denotes the distribution of the observation Xi given 氏 .T h e 
factors 9i are conditionally independent given G, and the observation Xi is 
conditionally independent ofthe other observations given the factor 氏.When 
G is distributed according to a Dirichlet process, this model is referred to 
as a Dirichlet process mixture model. A graphical model representation of a 
Dirichlet process mixture model is shown in Figure A.1. 

O ^ 0 

0 - Q ^ 
�o T 

^ 

4 
0 0 

Figure A.1: A representation of a Dirichlet process mixture model as a graph-
ical model. In the graphical model formalism, each node in the graph is asso-
ciated with a random variable, where shading denotes an observed variable. 
Rectangles denote replication of the model within the rectangle. 

Since G can be represented using a stick-breaking construction Equa-
tion A.3, the factors 氏 take on values ^k with probability Tr̂ . We may denote 
this using an indicator variable Zi which takes on positive integral values and 
is distributed according to n (interpreting 7r as a random probability measure 
on the positive integers). Hence an equivalent representation of a Dirichlet 
process mixture is given by the following conditional distributions: 

7 r | a 0 〜*Stidc(0;o) ^ | 7 T 〜 7 T ( 、 

4 l < ^ 0 - G o x,\ziMk)Z^-n^zX ( ) 
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oo 
Moreover, G = Y^ 7TkS^^ and 氏= ¢ ^ , . 

k=l 
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Appendix B 

Hidden Markov Models 

The following description of the hidden Markov model (HMM) is extracted 
from (R. Rabiner, 1989) [28].A hidden Markov model is a statistical model 
in which the system being modeled is assumed to be a Markov process with 
unobserved state. In a regular Markov model, the state is directly visible 
to the observer, and therefore the state transition probabilities are the only 
parameters. Lawrence R. Rabiner [28] extended the concept of Markov mod-
els to include the case where the observation probabilistic function of the 
state, and the resulting model is called Hidden Markov Models. In a hidden 
Markov model, the state is not directly visible, but output, dependent on the 
state, is visible. Each state has a probability distribution over the possible 
output tokens. Therefore the sequence of tokens generated by an HMM gives 
some information about the sequence of states. Note that the adjective "hid-
den" refers to the state sequence through which the model passes, not to the 
parameters of the model; even if the model parameters are known exactly, 
the model is still "hidden". 

Suppose there is a sequential data u = u], U2,..., u“ ..., ur, Ut G 3¾̂ . 
As in the mixture model, every Ut,t = 1 , . . . , T, is generated by a hidden 
state, qt. The diagram below shows the general architecture of an instan-
tiated HMM. Each oval shape represents a random variable that can adopt 
any of a number of vahies. The random variable qt is the hidden state at 
time t (with the model from the above diagram, q — q^,q2, • •.,qt,.. •, ^T, 
qi e 3¾ )̂. The random variable Ut is the observation at time t. The arrows in 
the diagram denote conditional dependencies. The underlying states follow a 
Markov chain. Prom the diagram, it is clear that the conditional probability 
distribution of the hidden variable qi at time t, given the values of the hidden 
variable s at all times, depends only on the value of the hidden variable qt—\'. 
the values at time qt-2 .and before have no influence. In other words, the 
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qt-i Qt qt+i 

- o ^ - ^ 

0 0 o 
^ t - l Ut Ut+1 

Figure B.1: The general architecture of an HMM 

future is independent of the past: 

P{Qt+ilQt,qt-u---,qo) = P(qt+i\qt) (B.1) 

Therefore, the transition probability of HMM is defined as 

ak,i = P{qt+i =l\qt = k), (B.2) 

K I = 1,2, • . . , M, where M is the total number of states. 7Tk represents the 
initial probabilities of states, so we have 

M M 

^ ak,i = 1 for any k, ^ î k = 1 (B.3) 
i=i k=i 

Similarly, the value of the observed variable Ut only depends on the value of 
the hidden variable qt (both at time t). For a fixed state, the observation Ut ‘ 
is generated according to a fixed probability law. Given state k, the proba-
bility law of U is specified by hk(u). In Discrete Markov Processes, suppose 
U takes finitely many possible values, hk{u) is specified by the probability 
mass function. In continuous cases, most often the Gaussian distribution is 
assumed like 

1 1 一 1 

办‘⑷ 二 7 ^ ^ ^ H S f ^ ( - ^ ( " - “ “ ？ … - “ 』 （B-4) 

In summary, 

P M = P{q)P{u\q) = 7r«?A“W)«9i，<7A“^). ..tV-】’<7r~T(^) 
^ M = EgPiQ)P{u\q) = T^q^qAi (̂ 1)%,<72V(w2). --aq^_,,g^bq^(ur) 

(B.5) 
There are three canonical problems associated with HMM: 
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• Given the parameters of the model, compute the probability of a partic-
ular output sequence. This requires summation over all possible state 
sequences, but can be done efficiently using the forward algorithm, 
which is a form of dynamic programming. 

• Given the parameters of the model and a particular output sequence, 
find the state sequence that is most likely to have generated that out-
put sequence. This requires finding a maximum over all possible state 
sequences, but can similarly be solved efficiently by the Viterbi algo-
rithm. 

• Given an output sequence or a set of such sequences, find the most 
likely set of state transition and output probabilities. In other words, 
derive the maximum likelihood estimate ofthe parameters of the HMM 
given a dataset of output sequences. No tractable algorithm is known 
for solving this problem exactly, but a local maximum likelihood can 
be derived efficiently using the Baum-Welch algorithm or the Baldi-
Chaiivin algorithm. The Baum-Welch algorithm is an example of a 
forward-backward algorithm, and is a special case of the Expectation-
maximization algorithm. 
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