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Abstract 

Participating life insurance policies are investment/saving plans which spec-

ify a benchmark return, an annual rninirnurn rate of return guarantee and a 

surplus distribution. Thus, it is essentially a contract embedded with strong 

path-dependent option features. These contracts make up a significant part 

of the life insurance market in Europe and North America. In this thesis, 

we propose a very efficient FFT network to value these contracts when the 

underlying asset follows Levy process. The proposed method gets rid of the 

problems generated by standard Monte Carol (MC) simulation and allows for 

earlier termination of the contract. A basic network on the underlying asset 

resembling a combination of combining multinomial trees is first constructed 

through the characteristic function of the process using Fast-Fourier Trans-

formation (FFT). The basic network is then transformed into the one that 

takes into account the strong path-dependency of a participating policy using 

a Markov Chain approximation. The valuation is then carried out efficiently 

within the resulting network. The main advantage is that it can easily accom-

plish the tasks involving surrender rights, different participation rates, guar-

anteed return rates and/or terminal bonus rates. The convergence of the FFT 

network is also proven. Numerical examples show that the proposed scheme 

is much more efficient than Monte Carlo simulation. 
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摘要 

分紅壽險保單是一種預設基準回報、保證最底年息以及期滿分紅的投資/儲蓄 

計劃。因此，這類保單內含期權性質和很強的路徑依賴特質。此類保單在歐 

洲和北美的保險業市場佔有一定的地位。在這論文中，我們提出一種非常高 

效率的快速傅立葉轉換(1^31 Fourier Transform, F F T )網絡來為這種保單定價， 

而保單中的基準資產是跟隨1^677過程的。這方法避免了由蒙地卡羅模擬法衍 

生出來的問題以及容許提早終結保單。我們首先用快速傅立葉轉換把基準資 

產過程的特徵函數建構出一個類似合斂多項樹的基本網絡。然後用馬可夫鏈 

近似法把基本網絡擴展成一個包括強路徑依賴特質變量的網絡。保單定價就 

在此擴展後的網絡上進行。此方法最大的好處是在有提早終結、不同參與比 

率、保證年息和/或期滿分紅的情況下仍舊可以使用。實驗計算結果總結此方 

法比蒙地卡羅模擬法更為有效率。 
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Chapter 1 

Introduction 

Participating life insurance policies are popular in many developed countries 

such as the US, Canada, Australia, Japan and many European countries in the 

recent decade. These policies are relatively less risky but provide competitive 

return compared to other equity-linked products. Participating life insurance 

policies provide guaranteed premiums, death benefits, cash values and a divi-

dend based on the profits earned by the insurance company issuing the policy. 

These policies are particularly interested by those who concern about their 

pension or retirement plans against inflation. While the payoffs are linked to 

equity indices which represent the economy, the policies can track inflation to 

a certain extent. 

In this thesis we concentrate on classical contingent claim valuation of 

the rnost common policy design. Grosen and j0rgensen (2000,2002) [1，2], 

Bacinello (2003i, 2003ii, 2005) [3, 4, 5], Ballotta (2005) [6] and Ballotta et al. 

(2006) [7] mention several possible contract designs and custom features can 

be included in participating policies. 

Unlike non-participating life insurance policies with predictable cash flows, 

participating life insurance policies represent variational liabilities to the is-

suers. The potential risk of participating policies should be carefully addressed. 

Adequate and consistent models for pricing and liability valuation have to be 

1 

t 



Chapter 1 Introduction 2 

built to meet the requirements of niarket-orieiited accounting principles for in-

surance liabilities, such as International Finance Reporting Standards(IFRS), 

from the International Accounting Standards Board (IASB). The pricing and 

risk analysis of participating policies are focused on modelling underlying asset. 

Apart from classic Black and Schole geometric Brownian motion model [8], 

assorted continuous path models have been considered in modelling underlying 

assets in participating policies. Since life insurance products usually have long 

maturities, models capture long term movement are under concerns. Ballotta 

(2005) [6] developed closed-form valuation on part of participating policies 

which underlying assets follow Levy processes. Siu (2005，2007) [9, 10] investi-

gated regime switching models in underlying assets with surrender rights. Siu 

et al. (2007) [11] considered Asymmetric Power GARCH. 

Derivative pricing with Levy processes become practical and feasible after 

Carr and Madan (1999) [12] derive a simple expression for European options by 

using Fast Fourier Traiisform(FFT). Lewis (2001) [13] applied Fourier Trans-

form to European simple or exotic options (without path-dependence) under 

Levy processes with known characteristic functions. In addition to the FFT 

proposed by Cooley and Tukey (1965) [14], FFT implemented with Fourier-

cosine series was recently adopted to financial product pricing, by Fang and 

Oosterlee (2008) [15:. 

This research develops an efficient numerical approach for valuating par-

ticipating policies which's underlying assets follows Levy processes. Because 

of the strong path dependent feature in participating policies, no closed-form 

pricing formula is found. We create a network of underlying asset's dynam-

ics with transition probabilities directly calculated from taking inverse Fourier 

Transform of its characteristic function using FFT. The network discretizes 

in asset price domain and time domain. Therefore, we can price participating 

policies according to this network which mimics the dynamics of underlying as-

set. The network is expanded to cope with two path dependent variables. This 

/ 



Chapter 1 Introduction 3 

approach addressed several problems in traditional pricing methods like tree 

and simulation. The network pricing approach allows jumps in asset dynamics, 

which cannot be included in tree models, by mean of transition probabilities. 

It also allows Bermudan surrender rights, which can be troublesome in simu-

lation, as time in network is discretized and can be adjusted to fit Bermudan 

surrender time. 

Duan and and Simonato (2001) [16] used a Markov Chain approximation 

of GARCH(1,1) model in pricing American option. This rnethod innovates 

our development of network pricing scheme. The major different between our 

proposed method and theirs is we use FFT in finding transition probabilities 

and they used statistical properties of GARCH models. Our scheme is much 

practical when facing different kinds of asset dynamics while most dynamics 

used in financial markets are not analytically tractable. 

We refer Kwok (2009) [17] and Wong and Guan (2010) [18] for similar lat-

tice approach in pricing exotic options. The convergence is trivial in pricing 

options with barrier like American barrier options, American lookback options 

and American Asian options. The product we encountered in this thesis has 

no barrier embedded. Therefore, the convergence of the FFT network is ques-

tionable. We have proven the convergence for all payoffs which are dominated 

by a finite first moment function. 

In the next chapter, we introduce the payoff structure of participating pol-

icy. Chapter 3 reviews use of Levy processes and Fast Fourier Trarisforrn(FFT) 

technique in financial product pricing. Chapter 4 proposes network pricing 

scheme and proves the scheme converges. Chapter 5 puts the proposed scheme 

into practice and compare the results with simulation. Last chapter concludes 

and discuss extension of custom features on policy. 

i 



Chapter 2 

Participating policy 

When people consider their pension or retirement plans, they look for the 

one with a stable payoff and a fair return which can beat inflation, meaning 

protection against adverse movement of the investment. Stock market is a 

good indicator of the economy and inflation for one to invest. The protection 

can be constructed by using derivatives like put options. Gerber and Shiu 

(1998,1999) [19’ 20] introduced dynamic fund protection(DFP) which extends 

this option protection concept to provide protection at multiple tirne points 

contingent on a underlying asset. The most popular contracts are participating 

life insurance policies. This kind of policies is an insurance product which 

guarantees the contract holder a minimum annual return. The cash value of 

the policy is specified by a benchmark return from an underlying asset or index. 

The policyholder will receive the cash value of the policy at maturity or his 

beneficiary will receive a death benefit at the policyholder's premature death. 

These contacts make up a significant proportion of life insurance market in 

many countries like the US, Canada, Australia, Japan and other countries in 

continental Europe. 

A general participating life insurance policy guarantees the policy holder a 

death benefit and a minimum rate of return, which is determined by the un-

derlying asset or index. In addition to the guaranteed minirnurri amounts, the 

participating policy accumulates dividends each year. The dividends are not 

4 
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Chapter 2 Participating policy 5 

guaranteed but are paid oiice the underlying asset outperforms the guaranteed 

return. In our discussion, we ignore lapses and mortality. However,surrender 

right of contracts and mortality within our pricing scheme will be discussed in 

a later section. 

Consider a fund which puts all the premium from the policyholders to an 

underlying asset, A{t), with the guaranteed return by the insurance company. 

This fund provides 100% of the profit to policyholders. This is called the 

unsinoothed asset share, i.e. an 100% participation rate participating policy. 

Let P*{t) be the value of this unsmoothed asset share for 0 < t < T, where T 

is the maturity time. At time zero, the value of this unsmoothed asset share 

is equal to the initial premium, Po-

P*(0) = Fo, 

P * W = P * ( t - l ) ( l + r H O ) , (2.1) 

rp{t) = max{rG,#OiW}, 

r c and /3 G (0,1) are the guaranteed rate of return and the return ratio, 

respectively. rA{t) is the annual rate of return of the reference asset which can 

be calculated from its value, A{t) for 0 < t < T, 

, r , ) A W - ^ ( ^ - i ) 

柳 — A ( t - 1 ) • 

Participating policy will invest a fixed proportion, a E (0,1)，of the policy 

account in the unsmoothed asset share and (1 — a) of it as reserve. This 

participating account is defined as 

P{t) = aP%t) + (1 - a)P{t - l ) , a G (0,1), (2.2) 

P{0) = Po. 

At the contract's maturity, a terminal bonus might be paid by the issuer. 

The terminal bonus is a fraction of the surplus earned from the reference asset 

over the policy reserve, which can be expressed as 7 ( A ( T ) — P{T)) where 7 is 

i 



Chapter 2 Participating policy 6 

the bonus rate usually taking value between 0 and 1. However, it is possible 

that the reference asset underperforms the participating account and the issuer 

cannot fully repaid the participating account value. The issuer would then pay 

the value of the reference asset instead in this case. These two terminal features 

can be summarized as follows: 
f 

A{T) ifA{T) < P(T), 
C{T)= 

P(7^ + 7 ( A ( T ) — P{T)) otherwise, 

v 

where C{T) is the terminal payoff of the contract. The payoff can be rewritten 

in an option-like payoff: 

C ( T ) = P(T)+jinax(A(T) - F(T),0) - rnax(P(T) - ^ ( T ) , 0 ) 

= A ( T ) + (7 — 1) max(A(T) — P ( T ) , 0 ) . (2.3) 

Prom the previous section, the terminal payoff depends on the value of the 

underlying reference asset, A(T) , and participating account,P(T), only. The 

value of the participating account at maturity can be calculated recursively as 

F ( T ) = a P ' ( T ) + ( l - a P ( T - l ) ) 
T-k 

= a X)(1 - a)^P*(T - k) + (1 - a f P o 
k=0 

-T-1 T-k _ 

= P o aY,{l-a)']J{l^rp{t)) + { l - a f . 
_ fc=0 t=i _ 

This means that the terminal payoff is actually depending on the path of A{t) 

instead of just the single terminal value of it. The variable relationship is 

shown in figure 2.1. This highly path-dependent feature causes the contact to 

lack of closed-form pricing formula and the early exercise boundary is uneasy 

to be visualized once early unwind is allowed. 

i 



Chapter 2 Participating policy 7 

P ( 0 ) — — ^ P ( 1 ) — — - … — — - P ( T - 1 ) — — - F ( T ) 

P*(0 )——^P*(1)——j … — — ^ P * ( T - 1 ) — — ^ P * ( T ) 

A{0) L__.A(1) L__.…L__^A{T - 1) L__.^(T) 

Figure 2.1: Variable relationship in participating policy 
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Chapter 3 

Levy Process and its use in 
financial modelling 

Although Bachelier[21] first suggested Brownian motions to model stock prices, 

financial modelling using stochastic processes was not widely adopted to the 

market until 1970's. Black and Scholes (1973) [8] proposed geometric brownian 

motion{GBM) model for assets and risk neutral pricing. Merton (1976) [22 

introduced a jump in asset value process which further generalizes diffusion 

model to account for unusual dramatic movements observed in the market. 

The jump diffusion model is proved empirically better than GBM for describing 

stock movements. Plenty of models are then introduced thereafter to capture 

different movement behaviors in different markets. Whereas, GBM becomes a 

benchmark model for financial product pricing. 

3.1 Levy process in asset modelling 

In the late 1980s, Levy process was first proposed for modelling financial data. 

Let's first look at the definition of Levy processes. 

Definition 3.1. (Properties ofLevy processes) An adapted real-valued stochas-

tic process Xt, with Xo = 0； is called a Levy process if it has the following 

properties: 

8 
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Chapter 3 Levy Process and its use in financial modelling 9 

(i) Independent increment. For any choice ofn > 1 and 0 < t � < ti < . • • < 

tn, the random variables, ^ , ¾ - ¾ , • •., Xt^-Xt^_, are independent; 

(ii) Time-homogeneous. The distribution ofthe random variable, Xt+s - ^s, 

does not depend upon s. 

(iii) Stochastically continuous. For any e > 0, Pr{|Xs+t — ̂ s| > ^} — 0 as 

t ^ 0. 

(iv) Cddldg. It is everywhere right-continuous and has left limits everywhere. 

One can observe that Black and Scholes's diffusion model and Merton's 

jump model are both under the scope of Levy processes. 

Let's consider some common Levy processes which consist of Brownian 

motions with drift and a jump process. In the jump process part, we define 

possible jump sizes to be non-zero real numbers. Let N f be the cumulative 

nurnber of jumps in time interval [0, t] with jump size in a closed interval 

A e R\{0} . Nf is a random variable as well as a measure. If we fix A, N^ 

is a Poisson random variable with mean t f^ /i(x)dx. The measure fi(x)dx is a 

Levy measure measuring the relative occurrence of different jump sizes. 

We can distinguish two types of Levy processes by looking at the Poisson 

arrival rate ofjumps. For type I, the unit time arrival rate is finite, J^ fji[x)dx < 

oo. We can write the mean jump arrival rate to be A = fj^ ju(x)dx. Take 

Merton's jump-diffusion niodel(1976) as an example, the jurnp size is normally 

distributed, / i ( x ) = 入 /⑷ = A e x p [ - ( a : — mY/2s^]/y/2iis^ 

In type II, the unit time arrival rate is infinite, /股 fi{x)dx = oo, no Poisson 

intensity can be defined. The jumps in this case is infinitely frequent and small 

which causes /i(x) cannot be integrated at the origin. We can use a general 

integral representation to describe the process at some large \x . 

Xt = ujt + aWt + / / {xu{ds,dx) - xl{\x\<i}fJ^{s)ds dx) 
Jo JR\{0} 

t 



Chapter 3 Levy Process and its use in financial modelling 10 

u{ds,dx) is a differential forrri of the integer-valued random measure of 7 V , = 

"([0，t], A). The Levy process Xt can then be decomposed in the above form. 

It can be seen that the Wiener process and the jump process are indepen-

dent. uj and a are constant. For a given {Xt ： t > 0} , {u;,cr,/x(x)} forms a 

unique Levy-Khintchine triplet which can be fully representing a Levy process. 

Before stating the Levy-Khintchine representation, we define the characteristic 

function of a stochastic process. 

Definition 3.2. (Characteristic function) The characteristic function of pro-

cess Xt is defined as 

^t{z) = E[exp{izXt)] z e C, i = V^ 

Let ft{x) he the transition probability density for Xt to be x. The characteristic 

function is the generalized Fourier transform of the transition density inside 

regular strip a < Im{z) < b, where a < b, 

^t{z) - T[ft{x)] = / exp{izx)ft{x)dx 
JR 

Definition 3.3. (Infinite divisibility) A probability distribution F is infinitely 

divisible ifX is a random variable with distribution F, for any positive integer n 

there exist n independent identically distributed random variables, Xj,..,, X^ 

such that Xi + • •. + X^ ^ X. 

Definition 3.4. (Infinite divisible characteristic functions) An infinite divisible 

characteristic function is the characteristic function of any infinitely divisible 

distribution. 

Theorem 3.5. (Levy-Khintchine Representation) If the process Xt is stable 

and 4>t{z) is an infinitely divisible characteristic function, the characteristic 

function has the representation 

cj)t{z) = exp lizut — ̂ z^a^t + t f [e^^^ — 1 — izxI{ix\^i}]f2{x)dx\ 
1 2 jR\{0} J 

/ 



Chapter 3 Levy Process and its use in financial modelling 11 

When we take the stock price evolution to be Sr = 5'o exp[(r - q)T + 

XT, where r is the interest rate, q is the dividend yield and Xr is a Levy 

process. The evolution is full characterized by the characteristic function of 

XT. In this thesis, we will focus on three Levy processes which includes pure 

diffusion model, jump-diffusion model with finite activities and jump-diffusion 

model with infinite activities. To illustrate the aforementioned three types, we 

use Black-Scholes (1973)[8] GBM model, Merton's(1976)[22] jump-diffusion 

rnociel and Carr, Madan and Chaiig's(1998)[23] variance gamma model. Their 

corresponding characteristic functions are listed in table 3.1. 

Levy Process Characteristic Function0T(^) 
Pure Diffusion 
Geometric Brownian Motion exp[izojT — ^z^a^T 
Jump-Diffusion with finite activities 
Merton,s Jump-Diffusion exp[izioT —�zVT + AT(e^"^^'" '" ' / ' — 1): 
Jump-Diffusion with infinite activities 

rjn j ^ 

Geometric Brownian Motion exp[izujT] ( l — izuO + ^z^ua^) 

Table 3.1: Characteristic Functions for Levy Process 

3.2 Levy process in derivative pricing 

The most common problem encountered in derivative pricing is option pric-

ing. Option prices are evaluated by taking the expectations on terminal pay-

offs. Taking the simplest European Vanilla option as example, the expectation 

can be solved if the density function of the underlying is analytically known, 

e.g. Black-Scholes(1973) model. However, the density functions of most Levy 

processes cannot be expressed analytically. Carr and Madan (1999) [12] sug-

gested a Fast Fourier Transformation(FFT) approach to value options when 

the characteristic function of the underlying asset is known. This approach can 

virtually deal with all kinds of distribution because the characteristic functions 

I 



Chapter 3 Levy Process and its use in financial modelling 12 

are always well defined and this approach only requires the numerical values 

of the characteristic functions. 

Suppose that a probability space (0 ,7" , P) and filtration {7；,0 < t < T} 

are given. We consider the price process St = Soe^' defined on this probabil-

ity space, where Xt is a Levy process. We assume Tt = a{Ss,0 < s < t)= 

cr(X,,0 < s < t) and F = JV. Our pricing will be on a risk free probability 

measure Q on (fl, J^) which is an equivalent martingale measure of St satis-

fying Q � P and e~^^St is (7i,Q)-martiiigale, where r is the risk free interest 

rate. We refer the work by Gerber and Shiu(1994) [24] who adopted Esscher 

transform, which introduced by Esscher(1932) [25], in choosing an equivalent 

martingale measure. Pricing of derivatives throughout this thesis will be under 

this risk neutral measure Q. 

3.2.1 Review of FFT methods in option pricing 

Consider an European call option with maturity T and strike at K written on 

an underlying asset St. The risk-neutral price of this call option is 

Ct = e-'^^-'^Et[m8ix{ST-K,0)'. 

Denote Sr = ln(5V) and k = ln(i^). We can write the above expectation in 

integral form as 

POO 

Ct = e-4T-t) / [eST — e\0)MsT)dsT, 
J k 

where f t {sr ) is the risk-neutral density function of the log asset price. 

By taking Fourier Transformation on the strike, the transformed option 

price can be expressed in terms of the characteristic function of the log asset 

price. To make sure Ct is square integrable in the transformation, Carr and 

Madan(1999) suggested to add a damping factor, exp{ak) to the integral part 

and undamp it afterwards. The Fourier Transform of the damped call option 

t 



Chapter 3 Levy Process and its use in financial modelling 13 

price is 

jF[exp{ak)Ct]] = r e^':CV dk 
J —oo 

poo roo 
= / e��^k‘‘e-<T-t) {e'^-e',0)ft{sT)dsTdk 

J —oc J k 
/oo rsT g-r(T-t)从8丁) / (e^+a& — e ( l + W � — dk dST 

-oo J —OO 
/CX) / Ja+l+iz)sT \ 

r')M(^^TWTT7iy) 'ST 
=c_r(T-t) ¢t{z-{a + l)i) 

(a + iz){a + 1 + iz) ’ 

where 0t(z) is the characteristic function of the log asset price. 

The option price can be found by performing inverse Fourier Transforma-

tion with undamping factor exp{-ak), 

Ct 二 J'~^[exp{—ak)J'[exp{ak)Ct] 

— 1 r e x p ( — ^ e — f - 0 ^ ( z - ( Q + l ) 0 心 
一 Trio P( ) (a + zz)(a + l + z z ) ^ . 

In order to rnake use of FFT to evaluate the integral efficiently, we first dis-

cretize the integral by quadrature rules. Different from expectation approach, 

a spectrum of option prices with different strike prices will be yield by mean 

of FFT. 

3.2.2 Expectation using FFT 

In the previous part, the payoff function after Fourier Transform is analytically 

trackable. However, in some cases, Fourier Transform cannot be performed an-

alytically. This will yield two numerical integrations in Fourier Transforming 

tlie payoff' function and inverse Fourier Transforming to the expectation. It is 

undesirable to do numerical integration twice even though it can be speeded 

up by using FFT. We now demonstrate a numerical expectation using charac-

teristic functions. 

^ 



Chapter 3 Levy Process and its use in financial modelling 14 

Denote a general payoff function V{T) depends only on the terminal value 

of the underlying asset Sr which's return follows Levy process, i.e. V[T) 二 

g^{Sr) = g(sr) where Sr = ln5V. The risk-neutral price at time t is the 

expectation of the terminal payoff under risk-neutral measure discounted by 

risk-free rate, 

V{t) = E[e^V(^)|7;] 

= r e - ^ ^ ^ - ' ^ g { s { T ) ) f { s T ) d s r , 
Jo 

where f { s r ) is the density function of sr under risk-neutral measure given 

filtration J i . We discretize the log asset value into n levels and hence write 

the integral into a sum, 

兩 = E t " " W ^ ) | J i ] 

= f > — f — � ( s - , ) p _ , 
i=0 

where 5̂  is the discretize value of Sr for i = 0 , . . . ’ n, As is the size of discretized 

levels of sr and p{s^) is the probability of terminal value Sr falls into the bin 

\ — As /2 , ^ + As /2 ) . The probabilities, p(A), are evaluated by the inversion 

formula of characteristic function numerically. 

Proposition 3.6. Given a non-negative real-valued continuous payofffunction 

g{sT) is dominated by a real-valued function h[Sr) such that £[/2,(57-)] < c < 00, 

lim lim V{^ = V{T) 
s*^oo n^oo 

where s* is the computational domain radius center at St = In^； i.e, the 

computational domain is [ŝ  — s*, St + s* . 

Proof. Since the discrete density function generated by FFT converges point-

wisely to the continuous one, when n ~> 00, the discretized random variable 

ST converges in distribution to the continuous one Sj\ Therefore, under the 

t 



Chapter 3 Levy Process and its use in financial modelling 15 

computational dornain, the discretized expected payoff is 

n 

lim y^e—"r—”_g(A)p(A) - E[g{sT)lsTe[exp{st-s*),exp{st+s*)]\J^t.. 
n^oo ‘ “ z=0 

The error between the cropped domain expectation and original continuous 

expectation is 

V{T) - lim V{T) = E[y(T)l5^^[exp(st-s*),exp(st+s*)]|^i. 
n^oo 

< ^[h{T)lsr^¢[exp{st-s*),exp{st+s*)] ^t. 

< cPr(6V • [exp(s, — s*),exp(s^ + 5*)|7^), 

When the computational domain radius s* goes to infinity, the tail probability 

Pr(5V • [exp(5t — s*),exp{st + s*)) goes to 0. Therefore, the error diminish to 

0 when we expand the computational domain. • 

There is practical interest to compute the price of an derivative with a 

different initial value, for example in Greeks calculation. The error will increase 

if we keep using the domain centered at Sf. However, it is possible for us to 

expand the domain in order to keep the error tolerance satisfied. 

Corollary 3.7. When the pricing error of numerical expectation is satisfied by 

using the computational domain [ŝ  — s*, St + s*], the domain can be expanded 

to keep the pricing error from a range of initial stock value under the tolerance 

level. 

Proof. Consider the computational domain [s, — 5*, ŝ  + s*], the error of pricing 

original derivative is bounded by 

e 二 cPr(SV • [exp(5^ — s*),exp(st + s*)|J^ . 

Assurne we are interested in pricing the derivative with initial stock price 

St 二 e $ t + A s � S t . The equivalent error bound is 

e' = cPr(5V 孝[exp(5, - 5*),exp(s, + 5*)|^ = St) = 6. 

i 
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By extending the computational domain from [s^-s*, ŝ  + s*] to [s^-s*, ŝ  + 5*], 
/s 

the error bound of derivative pricing with initial stock value St is 

c P r ( 5 V ^ [exp(st — s*),exp0§t + ? ) | & = & < e ' . 
A 

Therefore, pricing with initial stock value ranged in [St, 5'J using the expanded 

computational domain [st — s*, St + s*] have error lower than the original error 

bound e. 口 

t 



Chapter 4 

Network methodology 

In this chapter we propose a network approach to price participating con-

tracts. This network approach makes use of the Markovian property of Levy 

processes to construct a progressive network. The network approach is a two-

step method. Firstly, we discretize the underlying reference asset values and 

the time domain. This is used to define the network which mimics the dynam-

ics of the asset. It is required that the asset dynamics has Markovian property 

which can be assumed from the Levy properties. We then expand the network 

to a multi-dimension network which records the participating account and the 

unsmoothed asset share account which are required for the pricing of partici-

pating contracts. The pricing will be done under the expanded network as an 

numerical expectation, 

4.1 Asset dynamic: Network Approach 

Under the assumption of underlying reference asset follows Levy process, we 

use a Markov chain process to approximate the asset price in the first network 

setup. Let A{t) be the price at time t of an asset, which can be a stock or an 

index, follows an exponential Levy process defined as 

A{t) = A(0) exp[(r — q)t + X[t) 

17 
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Chapter 4 Network methodology 18 

where r is the risk free rate, q is the dividend rate and X{t) is a general 

Levy process defined in section 3. The asset prices can be approximated by n 

different vales 

A[t) « A{t) G {A1,A2,...,An}. 

Denote the Markov transition probability matrix from time 丁^ to time 丁] by 

n”.. The elements 7T ĵ{k, 1) is the transition probability of the asset from Ak at 

time T̂  to Ai at time Tj, The elements are ordered as follows: 

^ 7Ty(l, 1) ^ ( 1 , 2 ) . . . 7 ^ ( l , n ) � 

7T,,(2,1) 7^(2,2) . . . n,j{2,n) % = • . . • 
• « * • • • 

� 7 r ” . ( n , l ) 7^(n ,2 ) . . . 7r”.（n’n) 乂 

Under constant parameter Levy process, the Markov chain is time-homogenous. 

If we assume time intervals are equal, the Markov transition probability ma-

trices are identical. Hence, denote the transition probability matrix by U with 

elements 7i{k, 1) where k,l = 1,2, . •. ,n. The dynamic of the asset value can 

be represented by a network as shown in figure 4.1. 

4.1.1 Transition probability by FFT 

The Markov transition probability matrix is evaluated by using inversion for-

mula of characteristic function. In basic asset network setup, the discretized 

values are set to be evenly distributed with grid size AA. The continuous value 

of A is approximated by A^ if A is fallen into the bin [A^ — AA/2, A^ + AA/2). 

Therefore, the transition probability to Aj given current value A^ is 

7T{i,j) = Fv{A{t) G [Aj - AA/2, Aj + A^/2)|^(0) = A^}. 

When the characteristic function of A{t), ¢^(^), is given, the density function 

fA{x) can be evaluated using inversion formula, 

fA{x) = ^ re-'^^^A{z)dz. 
27T J_oo 

t 
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Since A{t) is a real valued function having support [0,oo), the characteristic 

function ^A{z) is symmetric, 

fA{x) = - � e — g ^ ^ z ) d z . 
7T Jo 

FFT is an efficient algorithm for computing the sum 

N 

X{k) = Y^ e — ^ ( L i ) ¥ : r ( n ) for k = 1,. •.，N， 

n = l 

where N is an integer of power 2. Applying Simpson's rule, the integral in 

inversion formula is discretized into a sum which can be evaluated by FFT, 

fA{x,) 二 i T 6 - 帅 - 1 ) 义 - " $ ( 知 ) 钟 + ( - i r - ^n-l], 
7T 乙~^‘ o 

n = l 

where rj is partition size of numerical integration, b indicates the truncation 

point of the integral meaning the range of integral is from —b to b, 5n is the 

Kronecker delta function which is 1 for n = 0 and zero otherwise. 

After obtaining the numerical density function, Simpson's rule is applied 

again to solve for the probabilities, 

A/4 
7T(Z,J) 二 — {fA{Aj^l) + 6 A ( A , ) + /A (4 . + 1)). 

4.1.2 Example in American option pricing 

Let ~A be an n x 1 vector collecting the discretized values of the asset price 

such that 

~A - [A i , v42 , . . . , ^n - l ,^nr e � x l . 

The vector of prices of American put option, T^putW，can be approximated by 

f p u t W = max{max[iO — X 5 ] , e " n f p u t ( t + 1)]} 

where the terminal payoff is 

^put(T)=max{KI-J,0}. 

i 
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The “max(.)，，operator here is a vector operator comparing the elements inside 

the vector one by one. 0 is an 股几乂1 vector with all elements 0. I is 脱几父1 vector 

with all elements 1. 

Early exercise is not optimal at anytime in American call options for non-

dividend paying stocks. The checking of earlier exercise can be omitted. Hence 

the pricing formula of American can get rid of the recursive operation and can 

be simplified in to 

T^eaii(0) = e _ " n T m a x { ^ — K, 0} 

which is the same as its European counterpart. 

4.2 Extended Network for Participating Con-

tract 

Making use of the Markov property of Levy processes, we can construct the 

underlying dynamics as mentioned in the previous section. A similar approach 

has been used for pricing path-dependent options by extending the network 

into higher dimensions, see Wong and Guan (2010) [18], Numerical methods 

like lattice exotic derivative pricing was addressed by Kwok (2009) [17]. This 

section is to demonstrate an extension of the network approach to price par-

ticipating contracts which have stronger path-dependence feature. Let's look 

at a simpler form of participating contracts by ignoring lapse and mortality. 

As discussed in Chapter 2, there are two extra path depending variables 

P{t) and P*{t), namely participating account and unsmoothed asset share, in 

valuating participating policies. Although the unsmoothed asset share is not 

directly accounted for the terminal payoff, the participating account depends 

on unsmoothed asset share for every time steps. Note that the only randomness 

is from the underlying asset. 

/ 
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To accommodate participating contracts, we extend the network states 

from only the underlying reference asset to a triplet of all depending variables 

(y l ( t ) ,P* ( f ) ,P ( t ) ) . Here we use n：, ri2 and n3 different values to approximate 

the underlying asset, unsmoothed asset share and the participating account 

respectively, 

A{t) « A{t) e {Ai,^,...,^ni} 

P%t) ^ P*{t)e{P,\P;,...^P:j 

m ^ P{t) e {Pi,P2,...,i^n3}-

The discretized states of this extended network is a collection of all combina-

tions of discretized individual variables. 

( ^ W , P * W , P{t)) e {04 i , p ; , Pi), _. •, (Ani, Pn*2,Pn3)} 

where ni, ri2 and ri3 are some positive integers. We choose rii to be a power 

of 2 integer in order to use Fast Fourier Transform. 

Without lost of generality, we assume the interval of evaluation dates of 

participation contracts are equal through out the period. Denote the Markov 

transition probability matrix by n* . The elements 7r̂ ^̂ 2?3jij2j3 is the transition 

probability from state with value ( A “ , P* ,̂ Pi^) to (74力 ’ P* ,̂ Pj,^). The elements 

are ordered as follows: 

/ \ 
兀111，111 7Tlll,112 . . . 7^lll,n1n2n3 

7Tll2,lll 7r112,li2 . . . 7r112,n1n2n3 
11 = . • • • 

. • • 

y ^nin2n3,lll 兀711712几3，112 • • • ^n1n2n3,n1n2n3 j 

One can note that there are maximum n\ non-zero elements in a row because 

given a state of {Ai^, P-*, Pi^), there is only one possible resultant state if Aî  

goes to Aj^, With the terminal payoff function given in (2.3), denote the payoff 

as a function of underlying asset value, A{T), and participating policy account, 

^ 
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F ( T ) as follows: 

C,{A{T), P{T)) = A{T) + (7 - 1) max (^ (T ) — P ( T ) , 0 ) . 

Hence, an rii x ri2 x ri3 vector, ^ ( T ) , representing the terminal payoff at 

different states is 

(0^(A,Pi)� 

(^{A,) \ C,(A,Pn3) 

d{T) = f ( . A ) ， w h e r e 2 ( 為 ) = :• e M ^ s x i . 
• • 
专 • 

V 概 ) ； C , ( A , F : ) 

\ Cy(^A{,Pn3) 

Note that there are ri2 repeating elements for each state inside the vector. It 

is because we expanded the network according to unsmoothed asset share, F*, 

which is not taken into account for the terminal payoff. 

The price of participating policy under this network approach is 

"^W = e - " T - � n T - ^ T ) . 

In the network construction, we can take the current value of underlying asset, 

unsmoothed asset share and participating account be A^, P* and Pk respec-

tively, the current price of the participating policy is the {i,j, A:)-th element of 

the price vector ~^{t). 

4.3 Practical network construction 

The Markov approximation is described in the previous sections. We will 

look at how the transition probabilities are calculated and some difficulties 

encountered in practical implementation of the network in this section. 

/ 



Chapter 4 Network methodology 23 

4.3.1 Modified network-drift offsetting 

Recall the asset value is discretized into rii different values in creating the 

network. It is necessary to truncate the asset value at a large value to capture 

as much information as possible. There exist a trend in the underlying asset 

process called the drift term. The problem is amplified in pricing long-term 

products which are very common in insurance market. The upward drift of the 

underlying asset requires setting a large value for the maximum value in the 

approximation which will lower the accuracy and efficiency. To prevent this 

happen, we build a Markov chain based on a shifted network iri which the state 

of the next time step is shifted according to the drift of the asset dynamics. 

Under risk-neutral measure, the drift follows risk-free rate, the levels in time 

t > 0 are chosen to be 

A{t) « A[t) e {e^M1,e^M2,...,e^'^nJ. 

An illustrative modified network is shown in figure 4.2. 

The same drifting problem appears in the other two pricing variables. Part 

of the drifts can be solved by expanding the account values. From equation 

(2.1)，the unsmoothed asset share can be expressed as 

P\t) 二 ( l + rpWt)P*(0) 

= ( l + max(rG,/3r^W)0^*(0) 

= ( 1 + rnax(/3'r^(^) — rc ) t + rG^)P*(0) 

> ( l + rG^)P*(0). 

The variation of unsmoothed asset share is mainly given by the return of the 

underlying asset, r^(^) and captured in the grid. The minimum drift of P*{t) 

is (1 + Tot), i.e. 

P\t) ^ P^{t) e { (1 + rat )P*, (1 + r c t ) P ^ •.. , (1 + r c t ) P : j . 

f 
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The drift cannot be evaluated explicitly by expressing P{t). Since there are 

only upward movement in unsmoothed asset share and participating account, 

we shift up the grid in participating account by the minimum upward move-

ment. The participating account defined in equation (2.2) can be expressed 

as 

P{t) 二 a P * W + ( l - a ) P ( 0 ) 

= a ( l + r p _ P * ( 0 ) + ( l - a ) P ( 0 ) 

=P{0){a{l^rp{t)t)^{l-a)) 

= P ( 0 ) ( l + a ( ( l + 7 v _ - l ) ) 

> P ( 0 ) ( l + QTGt). 

The minimum upward movement of participating account is (1 + arct ) . The 

new approximation is 

P{t) « P{t) e { (1 + arGt)Pi, (1 + arGt)P2,... ’ (1 + arct)Pns}. 

The whole network is then modified to cope with the drift of the tracking 

variables. This method is equivalent to considering an adjusted dynamics of 

asset which drift is removed. Doing the same on unsmoothed asset share and 

participating account is valid because the grid values are shifted according to 

the support of the continuous counterparts. These shifts are summarized in 

table 4.1. 

Variable Shifting factor 
A{t) exp{rt} 

~P^{t) {l + rct) 
~P{t) (l + arct) 

Table 4.1: Shifting size of modified network 
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4.3.2 Logarithmic scale network 

Under exponential Levy process, the underlying asset moves iii an exponential 

manner. It is sensible to define the grids of the network in logarithmic scale. 

Define the logarithmic asset a{t) as 

a{t) = lnA{t) 

=ln(v4(QK'+^)) 

=a(0) + rt + X(t). 

The new approximation using rij different values with equal grid size, Aa , is 

a(t) ^ a(t) e {ao, a � + A a , . . . ， a � + (ni — l ) A a } • 

The corresponding approximation of unsmoothed asset share and participating 

account are 

p'(t) = l n P * W « p-*(t) e {pS,pS + A p * , . . . ,p'o + K - l ) A p * } , 

p(t) 二 lnP(0a^0e{p。，p�+ Ap,...’p�+ (n3 — l)Ap}. 

The setup of this logarithmic scale network is the same as the previous one 

except the shifting factors are taken natural log which become rt, rot and arct 

respectively. 

The risk-neutral price of participating contract with maturity time T at 

time 0 under this scheme is 

C(0) = £(一2，几3)[广�0飞(鄰)，尸們)|_，尸*(0),户(0)] 

二 e - ^ n r C V ( e a j i , e & 3 ) 

where the transition probability matrix H is defined under new grids. 
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4.4 Incorporating surrender rights and mor-

tality 

We discussed pricing of simple contracts under different asset model assump-

tions in the previous sections. There may be some special features specified 

by the insurance company or the policy holder. We will show how early re-

demption, which is the most common feature can be incorporated in network 

pricing. As an insurance product, mortality has to be taken into account for 

the pricing scheme. In this section, we will also talk about how mortality can 

be adopted in our network pricing scheme. 

4.4.1 Surrender right 

In some participating policies, policy holders are allowed to stop the policy 

and redeem the cash value of the contract. We call this feature as surrender 

rights. This rights can occur in different time points. If one can exercise this 

right anytime before maturity, this right is said to be American. If one can 

exercise the right in some specified time before maturity, we call it Bermudan 

right. One can notice if exercise time points allowed in Bermudan type policies 

goes to infinity, the policies become American. 

The criteria for one to surrender is rather subjective. We adopt a usual 

criteria saying surrender occurs if the cash value of the policy is higher than the 

expected value of holding the contract, meaning that surrender occurs when 

C ( A ( r ) , P * ( r ) , P ( r ) ) > e - f -4E[C(y l (T) ,P* (T)，P(r ) )|7；] 

where r 6 T and T is the set of tirne when surrender is allowed. 

Assume surrender rights are Bermudan and can be exercised in time T , 

where 

丁 = { � 1 , 7"2, . . . , Tn}. 
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In the network construction, we include T in time domain T, i.e. 

T = {ti，力2，. . . , tm} ’ 

such that U = Tj for some i G {1, 2, . •, ’ m} and all j G {1, 2 , . . . , m} and tm is 

the policy maturity. 

Under the proposed network approach, participating policy with surrender 

rights is valuated backwardly by 

C{A{U),P*{U)^P{U)) 

‘ m a x [ / ( ^ ( ^ , ) , P * ^ ) , ^ f e ) ) , 

二 < e—m^-“)n“，“+iC;(z(t̂ i),p*fe+i)，p(t̂ i))] if u e r , 
e - ^ + i - “ ) n“，“+ i C ( ^ t w ) , P*(t,+i) , P f e + i ) ) otherwise 

\ 

where 

C{A{tm),P^{tm), P[tm)) = f{A{tm). P*(t^),P(^m)) 

and / ( . , . , . ) is the terminal payoff function. This is to check whether sur-

render is worthy by comparing the expected value of holding and the value of 

unwind instantly, i.e. receiving terminal payoff, at every time points which 

allows surrender. 

4.4.2 Mortality 

Participating life insurance policies are not simply financial products. The 

policies will terminate on the mortality of policy holders. Here we demonstrate 

a method to incorporate mortality in the network pricing approach. 

Assume the payoff method at mortality is the same as at maturity, 

C ( A ( r ) , P * ( r ) , P ( r ) ) 二 / ( A ( r ) , P * ( r ) , P ( r ) )， 

where r is the time mortality occurs and / ( . , . , . ) is the terminal payoff 

function. Define p(r ) be the probability of death occurs at time r. This 
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probability can be found empirically frorn life table or mortality table. Assume 

mortality event is independent of underlying asset prices and contract values. 

Participating policy with mortality can be valuated backwardly by 

C{A{U)^P^{U),P{U)) 

二 p{U)f{A{u)^P*{U),P{U)) 

+ (1 — p(tAe—Ww—“)^,: ’ “+�C7(i(t2+i) ’ P*(^.+i), P(fz+i))， 

where 

C{A{tm), P^{tm),P{tm)) 二 f{A{tm), P^m), P(U). 

4.5 Proof of convergence 

Proposition 4.1. Suppose a non-negative real-valued continuous payoff func-

tion g{sT) is dominated by a real-valued function h[ST) such that E["(<S7^)] < 

c < oo. The expectation of g{sr) under FFT network converges to the true 

value 

lim lim E^[g{sT)]J^t] = E[g{sT)]J='t], 
s*^oo n^oo 

where the network time grid is T 二 {^o = t, ^i,,..，tm = T}，the computational 

domain [ŝ  — s*, St + s*] and number of discretized level n. 

Proof. From Proposition 3.6, a one time step progression in the network con-

verges to the true value, i.e. 

Jim lim E"[5<So+i)|jy = E[^J|7;J . 
s*">oo n^oo 

By Markovian property of Levy processes, the convergence can be proved re-

cursively in time domain and hence proves the proposition. • 
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Theorem 4.2. Consider a 'participating policy 'payoffg{Ar, Pr) dominated by 

a real-valuedfunction h{Ar) such that E[h{Ar)] < c < 00，under FFT network 

lim lim £礼吼几 3 [ ^乂了，户了 ) |万 ]二 E[g{AT,Pr)lJ^t], 
a,p*,p^oo ni ,n2,n3^00 

where the network time grid is 丁 = {to = t, ti,... ’ tm = T}, the computational 

domains and numbers of discretized level are {[at — a, at + a], [p* — p*,p* + 

P*]，bt —P,Pt + p]) and (n1,n2,n3) for asset, unsmoothed asset shares and 

participating account respectively. 

Proof. The transition probabilities used in FFT network are generated by 

FFT. This means the discretized random variables in the network converges 

in distribution to the continuous one as discretization level goes to infinity. 

Recall the payoff of participating policy iii (2.3), 

Cr = Ar + (7 - 1) max(.4T - Pr, 0) 
< Ar. 

The one step error under FFT network is 

mA^.PtJl^tm-A 一 lim r^i，n2’n3[w4m’Pd|A^—i] 
nl,n2,n3^00 

< nAj:Ft^J{Fi{A^ 孝 k-a,a, + a]) 
+ Pr(P;^ i [p： — p\p： + f ] ) + Fr{PtJ i \pt — P,pt + P]) 

— 0 as a, p*,p — 00 

The same argument holds for every time steps in the network. By backward 

induction in time domain, 

lim lim Eni’^2’n3[^XT,p^)|jrj = ^g{AT,PT)\J't . 
d,p*,p^oo ni ,n2,n3^00 

• 
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_ 
^n 

t = to t = ti t = ^n-l t = tn 

Figure 4.1: Network representation of asset dynamic 

/ 



Chapter 4 Network methodology 31 

/ e " " A n 

y e"-Mn� 
.• • . z • 

_ Y • • 
y^ e 1̂ 4̂ 1 • 

人1 e " " A i 

• e"^"-Mi/ 

• . / ^ 
• / • • • z 

e"Mi / 

L v ^ 
t = to = 0 t = ti t = tn-l t = tn 

Figure 4.2: Illustration of modified network 
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Chapter 5 

Numerical Results 

We tried three different asset dynamics models, representing different types of 

Levy processes discussed in Chapter 3，in our numerical analysis. A compari-

son will be made on pricing of participating policy using our proposed network 

approximation and Monte Carlo simulation. We assume there are no taxes, 

no transaction cost, no restrictions on borrowing or short selling and all secu-

rities are infinitely divisible. The participating policies priced in the following 

section have the same contract specifications as mentioned in Chapter 2 and 

the parameters are 

A{0) = 1; P*(0) = 1; P (0 ) = 1; r - 5%; 

rc = 4%; a = 0.6; /3 = 0.5; 7 = 0.7; T = lOyears . 

Average of one million paths in simulation were used as a reference. Logarith-

mic scale network is used in this numerical experiment. We used same number 

of discretization levels in partitioning A{t), P*{t) and P{t). The number of dis-

cretization levels N is chosen to be a power of 2 integer, i.e. N = 2", in order 

to use FFT. The pricing programs are written in C + + using C + + Standard 

Template Library(STL) and uses software library "Fastest Fourier Transform 

in the Wes t (FFTW)" for fast Fourier transformation. All computation is rnade 

on a 3,0GHz machine. 

32 
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5.1 The Black and Scholes model 

In Black and Scholes model(BS), we used 30% as the asset volatility a. Table 

5.1 summarized the results in BS model. The converging speed is not very fast 

but the computational time is about oiie-forth of using Monte Carlo simulation. 

No. of nodes Price Tirne(sec,) Diff. 
？ L ^ 0.0508 32.73% 
26 1.0255 0.9628 8.82% 
27 0.9648 11.9970 2.38% 
2 8 0.9438 165.639 0.15% 

MC 0.9424 617.2960 

Table 5.1: Results: The Black and Scholes model 

5.2 The Merton's Jump diffusion model 

Parameters used in Merton's jump diffusion model are 

a = 30%, Tj = 0, aj = 50%, A = 1.75， 

where rj and aj are the mean and standard derivation of the jump process and 

A is the poisson frequency of jumps. Prom table 5.2, we can see the converging 

speed is similar to the Black and Scholes model. 

No. of nodes Price Time(sec.) Diff. 
¥ 1.2318 0.0872 33.31% 
26 1.005 2 0.7744 8.79% 
2J 0.9457 10.3345 2,35% 
28 0.9258 149.5670 0.19% 

MC 0.9240 661.7290 一 

Table 5.2: Results: The Merton's Jump diffusion model 
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5.3 Variance gamma model 

Gamma distributed random variables are required in Monte Carlo simulation 

of variance gamma process. Therefore, the simulation tirne is rrmch longer than 

that in the previous two models. However, the network approach used less time 

than the previous two models. It is iriaiiily due to the leptokurtic behavior 

of variance gamma model. The non-zero elements in transition probability 

matrix is fewer than the other two models. Here are the parameters we used, 

a = 0.1213, " = 0 .1686 ,,没二—0.1436 . 

The results are shown in table 5.3. 

No. of nodes Price Time(sec.) Diff. 
？ r i l 4 9 0.0136 15.78% 
26 0.9075 0.0759 5.76% 
27 0.9920 0.4622 3.01% 
28 0.9644 24.4756 0.14% 

MC 0.9630 1271.32 

Table 5.3: Results: Variance gamma model 

j 



Chapter 6 

Conclusion 

This thesis has proposed a numerical method for pricing participating life insur-

ance policies. The network approach makes use of F F T to calculate transition 

probabilities in Markov approximation if characteristic function of the under-

lying asset dynamics is given. We proved the convergence of the network price. 

This network has been applied to the contracts with complex guarantees and 

option-like features embedded. Numerical examples showed the application on 

different types of Levy processes including pure diffusion, juinp-difFusion with 

finite activities and jump-diffusion with infinite activities. 

This network approach inherits the advantages from traditional lattice ap-

proach and solves the problems in tree approach. Since characteristic functions 

always exist in real-valued stochastic processes, the use of this network can be 

very extensive. We also provide some extensions on incorporating surrender 

rights and mortality. 

35 
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