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Abstract 

This thesis deals with the problem of ontology learning. Ontology, specifica­

tion of the objects, properties and relations that one would encounter in a 

particular domain of discourse, is the basis component of the Semantic Web. 

Since constructing ontologies is a tirne consuming job for domain experts, much 

research is conducted on autornatically extracting ontologies frorn texts. \tVith 

the development of folksono1ny or collaborative tagging system, more and more 

researchers realize that folksono1I1Y is a better knowledge source for construct­

ing ontologies than texts. Although SOlne works have already been proposed 

to extract ontologies frolIl folksono1nies , they consider little on what is a rnore 

acceptable and applicable ontology for users and lack an principle to supervise 

the ontology extraction frolIl a human's perspective. In cognitive psychology, 

there is a farl1ily of concepts named basic level concepts which are frequently 

used by people in their daily life , and most hUlIlan knowledge is organized with 

basic level concepts. In this thesis, inspired by studies in cognitive psychol­

ogy, we try to extract ontologies with basic level concepts from folksonomies . 

To the best of our knowledge, it is the first work on discovering basic level 

concepts in folksonolIlies and using them to construct ontologies. Using Open 

Directory Project (ODP) as the benclnnark, we dernonstrate that the ontology 

extracted by our method is reasonable and consistent with human thinking. 

In addition, we also discuss the irnpact of context in ontology learning. In cog­

nitive psychology, context plays an important role in human cognitive process 

including basic level concepts detection. The basic level concepts in the sarne 



domain are different under different contexts. vVe demonstrate the existence of 

context effect on categorization and concept learning in folksonornies through 

different evaluation n1ethods. The effectiveness of our method in modeling 

context is also discussed in this thesis. Our Inotivation is to Inodel hunlan 

cognitive process especially ontology learning process so that we can explore 

the implicit senlantics' in folksononlies. 
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摘要

本論文探討了關於本體學習的問題。本體是語義網的基本組成部分。由於構造本

體對於領域專家來說是一項相當耗時的工旭目前的許多研究都致力於從文件中

直接提取本體。隨著大眾分類法的發展，越來越多的研究者意識到對於本體學習

來說大眾分類系統是一個比文本文件更好的知識庫。雖然已經有許多關於從大眾

分類系統中提取本體的方法，他們基本沒有考慮什麼樣的本體才是一個更容易被

用戶接受和重用的本體，同時他們缺少一種從人類思維方式出發的監督本體學習

的原理。在認知心理學中，存在一系列被稱為基本概念的概念，他們被人們頻繁

的應用於日常生活中，同時大部分人類的知識都可以用基本概念來組織。在本論

文中，通過對認知心理學的學習，我們嘗試從大眾分類系統中提取由基本概念構

成的本體。根據我們的了解，這是第一次有人嘗試從大眾分類系統中提取基本概

念，並用它們來構造本體。我們通過使用開放式分類目錄搜宗系統作為基本標

準，證明了通過我們的方法構造的本體符合人們的預期。另外，我們也討論了語

境對本體學習的影響。在認知心理學中，語境對人類的認知過程有及大的影響，

特別是在基本概念的學習中。在同一個領域中，不同的語境，會產生不同的基本

概急通過不同的實驗我們證明了語境對分類和概念學習的影響是確實存在的。

..... ••• 

且• 

..... 



我們同樣也討論了我們方法在模擬語境上的有效性。我們研究的根本動機就是通

過對人類認知過程的模擬特別是本體學習過程的模擬達到提取大眾分類系統中

的語義並加以應用的目的。
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Chapter 1 

Introduction 

1.1 Ontologies and Folksonomies 

I'v1etadata, known as "data about data" , is structured inforInation of resources 

such as docurnents , books, articles , photographs or other itelTIs . It helps sys­

telns and users find relevant and useful information. The generation of meta­

data can be approached in three ways [3]: firstly, metadata is created by 

professionals traditionally. In libraries and other organizations , creating rueta­

data has been the don1ain of professionals working with complex rule sets and 

vocabularies. Generally ontologies constructed by dornain experts, describ­

ing a certain reality with specific vocabulary are considered as this type of 

lIletadata. An alternative approach is creating rnetadata by authors. Original 

creators of the resources provide the metadata. Both of these approaches have 

the sarue pro blelIl: the intended and unintended users of the inforrnation are 

disconnected from the process, and it is hard for them to use the metadata 

without special training. The third approach which appears in recent years 

is creating metadata by its users. In folksonolnies, users create and manage 

t ags to annotate web resources. These tags are considered as user created 

metadata. Folksonolnies have many advantages over controlled vocabularies 

or formal t axonomy [4]. There are no complicated vocabularies need to be 

learned. Users sirnply create and apply tags freely. In addition, fo lksonornies 

1 



ChapteT 1 Introducl'ion 2 

are inherently open-ended and therefore respond quickly to changes and inno­

vations in the way users categorize and describe resources. Al-Khalifa et al. [5] 

demonstrated that folksonomy tags agree more closely with human thinking 

than those automatically extracted frolll texts. 

The advantages of folksonornies are as follows. There are no complicated, 

hierarchically organized vocabularies need to be learned in folksonomies . Users 

simply create and apply tags freely. Folksonolllies directly reflect the vocab­

ulary of users which can be used in further study of the conlIYlunity. It can 

also help 'you find the users w-ith the same interesting and useful resources. 

Browsing the systenl and its interlinked related tag sets is wonderful for find­

ing things unexpected in a general area. Ho,vever, the problems inherent in 

an uncontrolled vocabulary lead to a nUlllber of lirni tations and weaknesses 

in folksonoluies, such as ambiguity, synonyms and noise tags . The biggest 

problenl of folksonoluies is that there is no hierarchy, and no directly speci­

fied parent-child or sibling relationships between tags. It cannot be used for 

machines and implementation of knowledge representation systems. 

On the other hand, with the developlllent of semantic vveb, ontology plays 

an iluportant role in providing a \-vay to give semantics to web resource. On­

tologies with a hierarchical structure which is similar to a taxonOIYlY are the 

basis and enabling technology of semantic web, for information sharing and 

rnanipulation. However , as we know, the weaknesses of ontologies are that 

the data users are disconnected frolu the design of ontology, and it is hard 

for thern to use it without special training. Extracting ontologies fronl folk­

sonomies is a ,vay to cOlllbine the advantages of ontologies and folksonomies . 

These ontologies represent rnost users' latest opinions about how to describe 

a web resource. These ontologies will benefit both social tagging systenls and 

the developrnent of semantic web. 

Sonle researches have been already conducted on autoluatically extracting 

ontologies frorn folksonomies. For exarnples, Nlika [6] extract broader/narrower 
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tag relations using set theory. Zhou et a1. [7] apply Deterministic Annealing 

for clustering tags and build tags hierarchical structure. However, these works 

focus on hierarchy construction only and they consider little on what is a better 

ontology for users. As an ontology provides a way to model a domain of hunlan 

knowledge, it is necessary to take people's thinking and cognitive process into 

consideration. 

1.2 Motivation 

1.2.1 Semantics in Folksonomies 

After inspecting the tags in folksononlies, people can find that tags have a 

lot of information about the resource. Actually, there is an assulnption that 

user defines a tag to annotate the resources based on some special purpose. 

User will use tags which they think are irnportant to identify the resource for 

thernselves. C~onsequently, different types of tags can be identified depending 

on its purpose [8]: 

• Identify "what or who it is about". These tags are used to identify what 

the content is or who the content is about. 

• Identify "what it is" . These tags indicate the type of the annotated 

resource such as blog, book, etc. 

• Identify "who owns it". These tags are used to establish who is the 

author or the proprietary of the content. 

• Identify "categories" . SOlne users use particular tags to sinlulate hierar­

chies such as sorne nurnbers. 

• Identify "Qualities and characteristics of the content". These tags are 

usually adjectives (funny, bored, etc.) representing the opinion of the 

user who annotates the content. 
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• Self reference. Such tags represent the relationship between the user and 

the content. Usually they begin with "my" . For example, my things , 

rnyjob , rnycomlllents, etc. 

• Organize "tasks". Such tags are used to silllulate content classification 

in order to organize the work. Tags that fit into this class are toread, 

todo, search-work, etc. 

Through the discovery of different purposes or semantic of tags, there is 

an assuHlption about the frequency of different tags associated with the sarne 

resource. If the frequency of a tag is higher , which means more people have 

sorne purpose to use the tag and think the tag is useful and irnportant to iden­

tify the resource, the tag is more important to the resource in the community. 

Most types of tags can be considered as identifying different features of the 

resource for the comlllunity. Other types of tags (identify "categories" , self ref­

erence and organize "tasks") appear rarely. They can be considered as noise 

in the features space of the resource. Actually, because of the uncontrolled 

vocabulary, there are many different kinds of noise tags. If we consider the 

tags associated with a resource as its features, we can use the frequency of 

tags to reduce the impact of the noise, because the frequency of the noise tags 

is very low. In addition, in the experiment on delicious.com data, Colder [8] 

demonstrated that the conlbined tags of many users) bookmarks gave rise to 

a stable pattern in which the proportions of each tag were nearly fixed (after 

about 100 booklnarks) . The reason is that the number of ideas or the features 

of the web page that are represented through tags and the irnportance of the 

feature is stable. The stable proportion also demonstrates that the commu­

nity's linguistic custorn is stable where the proportion of users used different 

synonYlllS to tag the resource is approximately fixed. 

In addition, Al-Khalifa [5] constructed a systern to autolllatically COlllpare 

the overlap between folksonomy tags, Yahoo TE [9]which is a famous keyword 
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extraction tool and human indexer keywords. The result of their experilnents 

shows that folksononlY tags agree more closely with the human generated words 

than those auton1atically generated. Folksonorny tags have Inore semantics, 

and then are considered as a potential source for generating semantic metadata 

for web resources. 

In conclusion, we find that folksonomies , including implicit selnantics, is a 

potential knowledge source. How to extract the in1plicit semantics and Inake 

use of thern deserve further research. Our objective is extracting the sernantics 

in folksonomies and use them to build ontologies. 

1.2.2 Ontologies with basic level concepts 

Although SOlne results have already been reported on generating ontologies 

from folksonolnies, most of them do not consider what a rnore acceptable 

and applicable ontology for users should be. Previous research on ontology 

generation from folksonomies focused on hierarchy construction of tags and 

lacked a principle for supervising the process frorn a hurnan 's perspective [6] . 

Since an ontology provides a vocabulary shared by users to model a don1ain , 

it is necessary to construct ontologies frorn users' perspective (i. e., taking how 

people define and use concepts into consideration). In cognitive psychology, 

psychologists find that there is a falIlily of categories narned basic level cate­

gories. People can identify category melnbers faster and easier in basic level 

categories , and such a level Inost faithfully lIlirrors natural kinds [10] . These 

categories represent the nlost natural level ; neither too general nor too specific. 

People most frequently prefer to use basic level concepts which is the abstrac­

tion of basic level categories in their daily life. For example, when people see 

a car, rnost people would call it as a "car" , even though we also can call it as a 

"vehicle" or a "sedan". Thus, we consider that constructing an ontology with 

basic level concepts for a domain can be more acceptable and applicable for 
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users (rnore consistent with human thinking and reused easily). 

1.2.3 Context and Context Effect 

Inspired by studies in cognitive psychology, we try to model hurnan cognitive 

process in folksonornies. Context plays an irnportant role in cognitive process 

of human especially in basic level concepts detection. The basic level concepts 

in the sarne dornain are different in different contexts [11] . For exarnple, for 

all con1puter science conferences, people rnay consider "data mining confer­

ences", "sernantic web conference", "graphics conferences" and so on as the 

basic level concepts in the context of subrnitting a paper. However, in the 

context of measuring a researcher 's publications, the basic level concepts for 

all COlllputer science conferences lllay be "rank one conferences", "rank two 

conferences" and so on . Hence, it is necessary to take context into consider­

ation while detecting basic level concepts. In this thesis, our objective is to 

demonstrate the existence of context effect in hurnan categorization process 

and ba..'3ic level concepts detection process. We want to discuss the irnportance 

of taking context into consideration. 

1.3 Contributions 

This thesis presents our research work which investigates the problem of on­

tology learning, and proposes a novel idea to explore the illlplicit semantics in 

folksonomies and use thern to build ontologies. Our work cOlnbines thorough 

background research, psychology analysis and experirnents on real world data 

sets. We sumrnarize the contributions of our research work as follows . 

• We carry out a thorough study of folksonornies including the lnain corn­

ponents of folksonomies, the advantages of folksonoll1ies and semantics 
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in folksonomies. In addition, vve also investigate current research in folk­

sonomles. 

• We investigate the nature of hunlan cognitive process and concept learn­

ing process. We Inainly study the research on basic level categories (con­

cepts) and their ilnplementation. 

• We propose an algorithm for constructing ontology with basic level con­

cepts. To the best of our knowledge, it is the first work on discovering 

basic level concepts in folksonolnies and using theln to construct ontolo­

gies. We conduct experiInents to evaluate our Inethod using del.icio. us 

data set and cornpare the extracted ontology with ODP concept hierar­

chy. Experiments show that the ontologies extracted using our method 

are 1110re consistent with hurnan thinking than that of other cornpared 

methods. 

• vVe propose a novel basic level concepts detection algorithm to take con­

text into consideration. \Ne rnodel context in folksonomies and dernon­

strate the existence of context on basic level concept detection. VVe also 

ask students and experts to evaluate the results we get frorn different 

context. rrhe evaluation results justify the context effect on basic level 

concepts detection. 

• We also discuss the metric to characterize basic level categories. The 

original metric is category utility. Based on category utility, we take the 

effect of folksonomies into consideration and give a modified category 

utility. Sin1ilarly, we also give a contextual category utility to consider 

context effect . 

In conclusion, inspired by studies in cognitive psychology, we try to extract 

ontologies with basic level concepts froln folksonomies. An algorithnl for con­

structing ontology with basic level concepts is proposed. In addition, we also 
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discuss the context and context effect on ontology learning. While previous 

methods represent a concept in an ontology by only one tag, our method pro­

vides a novel way to represent a concept by a set of tags. Figure 1.1 gives 

an exarnple of the ontology explored through our approach. In the ontology, 

concepts are represented by the COlInnon tags of a category of resources. The 

tags of a concept are inherited by its sub-concepts and a concept has all in­

stances of its descendants. Such a representation can keep more information 

and properties of concepts. We expect that this work can benefit the future 

developn1ent of ontology learning and folksonomies , and can be used to en­

hance knowledge representation in the Sernantic Web. We hope that our work 

can invoke future research in cOlnbining cognitive psychology and data mining 

technology. 

Figure 1.1 The Ontology Generated by Our Approach. 

1.4 Structure of the Thesis 

This thesis is structured as follows: 

Following this introductory section, Chapter 2 reviews the basic knowledge 

of the topics involved in this thesis firstly. These include the background of 

the Sernantic Web, ontologies, folksonorny and related concepts in cognitive 

psychology. Then the chapter also mentions previous research on the topic of 
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ontology learning and sernantics in folksonorny. 

Chapter 3 describes the details of the approach of ontology extraction from 

folksonornies. We start frolll the basic ideas in modeling of instances, concepts 

and properties, and then go on to describe the metric of basic level categories. 

Experirnental results are given out in this chapter. Through quantitative anal­

ysis and qualitative analysis, we dClllonstrate the effectiveness of our n1cthod 

in generating ontologies from folksonolllies. In the experimental part , we use 

Open Directory Project (ODP) 1 as the gold standard. 

Chapter 4 Inainly discusses the context effect on our nlethod. We investi­

gate the problern of context and the contextualization of ontologies and nIodel 

context in folksonomies. We also describe how different contexts constitute 

different results. A new approach of basic level concepts learning taking con­

text into consideration is presented in this chapter. In the experin1ent part , 

we Inainly use questionnaires (asking students and experts to evaluate the 

results) to discuss the existence of context in ontology learing and its effect. 

Experirnents demonstrate the importance of taking context into account and 

effectiveness of our n1ethod. 

Finally, Chapter 5 discusses the potential applications of the approach dis­

cussed in this thesis. This approach can be used in categorization of web 

resources and benefit the developlnent of selnantic web. Chapter 6 draws con­

clusions , highlights the rnain research issues and _ rnajor contributions of this 

research work. In addition , we present son1e future research directions. 

Ihttp:j /www.drnoz.org/ 



Chapter 2 

Background Study 

2 .1 Semantic Web 

The Semantic Web is an extension of the World Wide Web which derives from 

W3C director Tiln Berners-Lee's vision of the Web as a universal lnediurn for 

data, infoI'Ination and knowledge exchange where web resources are n1ade not 

only for hUlnans to read but also for rnachines to understand and automati­

cally process [12] . T hrough using technical standards and ontological ruarkup 

languages to describe semantics of a certain web resource , resources in the 

Senlantic Web are rnachine-readable . 

Currently, web pages are mainly lnarked up by HTML (Hypertext I\1arkup 

Language) . HTML is lirnited in describing the content of a docurnent. Unless 

using advanced natural language processing algorithms [13], the semantics of 

the web pages cannot be understood without hurnan inspection. Hence, it is 

difficult to let agents such a.s search engines process the docurnents and extra 

useful inforrnation for users. 

T he Senlantic Web addresses the problem by using ontologies [14] which are 

specified in descriptive languages such as RDF (Resource Description Frarne­

work) and OW L (Web Ontology Language) [15]. These descriptive languages 

are based on the custornizable lnarkup language XNIL (eXtensible Nlarkup 

Language). The standardized rnachine readable descriptions allovv content 

10 
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Inanagers to add nleaning to the content, thereby facilitating automatic infor­

mation gathering and research. 

Figure 2.1 shows the architecture of the Sernantic \\leb proposed by Berners­

Lee. 1 The layers refer to different components of the Senlantic Web. In the 

Sernantic \iVeb, each resource is given an URI (Uniform Resource Identifier , a 

compact string of characters used to identify or nalne a resource). The UR,L 

of a web site (e.g. http://\\Tww.selnanticfocus.con1) is a popular exalnple of a 

URI. URI and Unicode consist of the bottoll1level of the architecture. Unicode 

is the universal standard encoding systen1 and provides a unified systen1 for 

representing textual data. On the top of bottorn level, we find Xl'v1L which 

allows users to define their own vocabulary, and RD F which allows users to 

specify relations between resources. As we go up the layer , there are rnore 

expressive and powerful ontology languages, and also a logic framework which 

provides reasoning services on the concepts and properties defined in ontolo­

gies. Finally the trust layer implen1ents conlponents, such as digital signature, 

\\Thich is used to ensure security and quality. 

Although the Semantic Web facilitates automatic information gathering 

and research, it faces nIany different challenges. Existing technology has not 

yet been able to eliminate all senIantically terms. There are nIany logical 

contradictions which \\Till arise during the development of large ontologies, 

and when ontologies frorn separate sources are cornbined. In addition, the 

prod ucer of the infonnation sOlnetimes is intentionally misleading the user 

of the inforrnation. There is also a challenge froll1 irnprecise concepts such 

as "young" or "tall" . These concepts impede the process of Inatching query 

terms of users to provider tenns and trying to cornbine different knovvledge 

bases with overlapping. This challenge is considered as vagueness and the 

most COlnmon technique for dealing \\Tith vagueness is fuzzy logic. 

1 http://www.w3.org/2000/Talks/1206-xrn12k-tbl/slidelO-O.htrnl. 
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Figure 2.1 The Layered Structure of the Semantic \Veb proposed by Berners­
Lee 

Since this thesis concerns the problem of ontology learning fronl folk­

sonc)lnies , we rnainly deal with the ontology layer of the Senlantic Web. 1\10re 

about knowledge representation in the Selnantic Web and ontologies vvill be 

presented in the next section. 

2.2 Ontology 

"Ontology" is originally a philosophical terrn, a 111ajor and fundarnental branch 

of metaphysics, which studies the problenl of being or existence and their basic 

categorizations and relationships [15]. The terrn "ontology" has been adopted 

into cOlnputer science, especially by researchers in artificial intelligence and 

knowledge rnanagernent , to refer to the specification of the objects, properties 

and relations that one would encounter in a particular domain of discourse 

[12] . 

Considering description logic as the theoretical support of logical reasoning 

services provided in ontologies, an ontology in computer science is defined as 

an explicit and formal specification of conceptualization. An ontology consists 

of a hierarchical taxonolny of concepts. The hierarchy is indeed a taxonornic 

(subclass) hierarchy [15]. In other words, if concept A is a subclass of concept 
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Figure 2.2 Definitions written in RDF [1] 

<rdts: Cl.ass rot: ID="l.ecturer" > 

<rdts: cooroen.t> 

The cJ..ass ot l.ec turers 
hl. l.ecturers are acaderoi c statt mefJ'lbers. 

</rdts: ccrrmemt> 
<rdts : subCJ..as:sOt ro t : resource="#:acaderni cSi::at:tMember " I> 

</rdts : CJ..ass> 

<rdts : Cl.a...-=:s rot: ID =" c ourse" > 

<rd ts: c ooroen.t>TIte c J..ass ot C01.1I:'SeS< /rd ts: cooroen.t> 

</rdts : Cl.ass> 

<rdt : property rot: ID=" in.volves" > 

<rd ts: c Cfl1I'IeJ'L t> 
It rel.a tes on.l.y c 0'IJrSeS to l.e CM ers . 

</rd ts: cooroen.t> 
<rdts: dooIain. rot: resource="~course" I> 
<rdts: range rot: resource="~cturer" I> 

</D1ts : Property> 

13 

B, every instances of A lnust be an instance of B and every property state­

n1ent holds for instances of B must also apply to instances of A. Throughout 

the history of the development of ontologies, there have been quite a nUlnber of 

definitions of ontology [16] . To facilitate the discussions in this thesis, referring 

to [17], we formally define an ontology as a four-tuple: 

Definition 2.1 An Ontology is a tuple 0 = (C, P, I, S) where C, P and 

I aTe finite sets, whose elernents ar-e called concepts, pr-oper-t'ies and instances, 

respectively, and S is a set of rules, propositions or axiom,s that specify the 

relations among concepts, proper-ties and instances. 

Ontologies can be used in the Semantic Web to provide selnantics to resources 

making them n1achine-readable. Agents are then able to access resources and 

COlnrrlunicate with one another based on the shared specification of concepts. 



ChapteT 2 BackgTound Study 14 

In the Sen1antic 'iVeb, different markup languages, such as RDF and RDF 

ScheIna, DAIVIL+OIL and O\tVL, are available for coding of ontologies [15]. 

RDF stands for Resource Description Fralnework. It is a recommendation of 

the W3C and is intended for describing resources on the World Wide Web ,vith 

meta-data. RDF is based on the idea that every object is related to each other 

through a binary relation. For exaInple, referring to figure 2.2 which shows 

an ontology adapted fron1 [1], it includes a relation between a course and a 

lecturer. 

For niore details on ontology developlnent, readers can refer to the thor­

ough review paper [16]. In conclusion, ontology is an engineering artifact 

which describes a certain reality with specific vocabulary. Ideally, ontology is 

constructed by dornain experts with rnarkup language so as to rnake ontology 

as a acceptable vocabulary for machine and human users. However , it is a 

time consuming job for hunlan to construct an ontology. Accordingly, sorne 

researches are conducted on automatically extracting ontologies froln texts , 

\\Thich we will discuss in section 2.6.1. 

2.3 Folksonomy 

The ternl folksonorny is generally attributed to Srnith Gene [18]. It is a port­

manteau of the words folk and taxonomy, so a folksonomy is a user generated 

taxonorny. Recently, folksonornies have beconle rnore and rnore popular on 

the Web as part of social annotation systellls such as social bookmarking (e.g. , 

delicious.com)2 and photograph annotation (e.g., flickr)3 . A folksonorny is 

generally considered as a systelTI of classification derived from the practice 

of collaboratively creating and managing tags to annotate and categorize re­

sources. There are millions of users in these systelns recently. According to 

2http ://delicious.cOIn 
3http://www.fiickr.com 
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[19], a folksonorny is defined as follows: 

Definition 2.2 A folksonolny is a tuple IF :== (U, T, R, Y) where U, T and 

R are finite sets, whose elements are called users, tags and resources, respec­

tively, and Y is a ternary relation betuJeen them, i. e. Y C U x T x R. 

In the definition, users are typically described by their user ID , and tags may 

be arbitrary strings. The type of resources in a folksonorny depends on the 

social annotation systeln. In delicious.com, resources are web pages and in 

Flickr resources are pictures. As an exarnple, in the social annotation web site 

delicious.com, when a user booklnarks a web page, he can use any \vord to 

annotate it. These words are narned tags and this action is defined as a post. 

The fornlal definition of a post is as follows: 

Definition 2.3 A post is a triple (u, ~j"r' r) 'with u E U, r E R, and a set 

Tu,r :== {t E TI(u, t, r) E V}. 

Actually, a folksonomy consists of a set of posts. In a post, a user u assIgns 

some related tags to a resource r. 

Folksonomies have many advantages. A social annotation system allows its 

user to search for the resources that the user has _ tagged based on his vocab­

ulary. Because users with similar interests tend to have a shared vocabulary, 

tags created by one user rnay be useful to others. In addition, collabora­

tive tagging systems assist navigation through providing dynaInic hyperlinks 

arnong tags, docurnents and users that help overcorne searches ' lirnitations. 

For instance , navigation allows casual browsing and leads to serendipitous dis­

coveries. Through tag-based navigation users can discover who created a given 

tag and see the other tags this person has created. In this way a folksonomy 

user can discover other users with similar interests and other useful resources. 
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Accordingly, it helps users in not only retrieving information but also social­

izing with others. Furthermore, when a user is tagging a resource, the tags 

for this resource frorn other users can be provided for references. As soon as 

users a.'3sign a tag to a resource, he can see the cluster of resources with the 

sarne tag. If that is not what he expected, the user can change the tag or add 

another tag. 

Ho,vever , the problems in an uncontrolled vocabulary lead to a number of 

lirnitations and weaknesses in folksonornies. Arnbiguity of the tags can ernerge 

as users cipply the same tag in different ways. On the other hand , the lack of 

synonyrn control can lead to different tags being used for the SalTle concept. 

Additionally, there are many noise tags "rhich have no meaning in folksonon1ies , 

such as "to do" . 

An irnportant aspect of folksonornies which is very different frorIl ontologies 

is that they are comprised of tern1S in a fiat namespace [18]: there is no hi­

erarchy, and no directly specified parent-child or sibling relationships between 

these terms . This is unlike fonnal taxonomies and classification schelnes where 

multiple kinds of explicit relationships between terms exist . These relation­

ships include broader, narrower, as well as related terrns. Accordingly, the 

metadata of folksonomy is hard for machines to use. If ontologies can be built 

based on folksonomies, these ontologies will represent most users ' latest opin­

ion. As a result, the rnetadata of folksonornies becornes useful for rnachines as 

the form of ontologies. 
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2.4 Cognitive Psychology 

2.4.1 Category (Concept) 

Concepts are abstract representation of objects. The general view of concept 

held among psychologists suggested that concepts are defined by singly nec­

essary and jointly sufficient properties. This view is novv generally referred to 

as the classical view [20]. The idea of this view can actually be traced back to 

the t irne of Aristotle's philosophically oriented studies of categories [21], which 

requires instances of concepts to meet a set of pre-defined conditions . The 

classical Aristotelian view claims that categories are discrete entities charac­

terized by a set of properties which are shared by their members. In analytic 

philosophy, these properties are assurned to establish the conditions which are 

both necessary and sufficient conditions to capture rneaning. For exalllple, the 

truth or falsity of "Rachel is a wildebeest" is sornething that can be determined 

by referring to the definition: Does Rachel have all the properties listed in the 

definition - four legs, horns and so on? 

2.4.2 Basic Level Categories (Concepts) 

In cognitive psychology, in a hierarchical category structure such as a taxonomy 

of plant , there is one level nallled the basic level at which the categories are 

cognitively basic. The basic level categories, defined by Rosch et a1. [10], 

carry the lnost information and are the nlost differentiated froln one another. 

They are the categories easier than others to be learned and recalled by hun1an 

as concepts. In psychology, generally speaking, a concept holds the comlllon 

features of a category of instances and is the abstraction of that category. 

Basic level concepts are the abstraction of basic level categories. Objects are 

identified as belonging to basic level categories and recognized as basic level 

concepts faster than others. For example, in classifying life fonns, basic level 
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categories tend to be at the level of the genus (maple, dog etc .). When we 

see a tree, vve could call it a "plant" , a "rnaple" and a "sugar maple", but 

rnost people will identify it as "lnaple". The concept "rnaple" is a basic level 

concept. 

To characterize basic level categories, psychologists give the rnetric narned 

category utility [22] . Through nlany experilnents, they dernonstrate that the 

character of basic level categories is that they have the highest category util­

ity. It provides a norrnative inforrnation-theoretic rneasure of the predictive 

advantage gained by the person who possesses knowledge of the given category 

structure over the person \vho does not possess this knowledge. 

Category utility can be vievved as a function that rewards traditional virtues 

held in clustering generally: sirnilarity of objects within the sarne category and 

dissilnilarity of objects in difI'erent ca.tegories [23]. Category utility is a trade­

off' between intra-class similarity and inter-class dissin1ilarity of objects, where 

objects are described by a set of properties. Intra-class sirnilarity is reflected 

by conditional probabilities of the forrn P(fi !ck) where fi is a feature and Ck is 

a category. The larger this probability, the greater the proportion of category 

rnernbers sharing the property. Inter-class sirnilarity is a function of p( Ck I fJ . 

The larger this probability is , the fewer the objects in contrasting categories 

that share this value. These probabilities are dispositions of properties, and 

they can be cornbined to give an overall rneasure of partition quality, where 

a partition is a set of n1utually-exclusive object categories, Cl, C2 , ... , Cm. The 

cornbination of intra-class and inter-class sirnilarity is as follows : 

1n 

L LP(fi)p(filck)p(Cklfi) (2.1) 
k=l i= l 

It is a tradeoff' bet\vecn intra-class sirnilarity (through p(fdck))) and inter-class 

dissiInilari ty (through p( Ck I Ji)) that is sumlTIed across all categories (k) and 

properties ('i). According to Bayes rule (P(fi)P(CkIJi) = p(ck)p(fdck)) , it can 
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be changed to: 

m 

LP(Ck) LP(!ilck)2 (2.2) 
k=l 'i=l 

In other words, L i=l p(!ilck)2 is the expected nurnber of propertie that can 

be correctly guessed for an arbitrary member of category Ck. This expecta­

tion assurnes a guessing strategy that is probability rnatching, rneaning that 

a property is guessed with a probability equal to its probability of occurring. 

Thus, it assumes that a property is guessed with probability P(!i ICk) and that 

this guess is correct with the same probability. 4 

Finally, category utility is considered as the increase in the expected nurn­

ber of properties that can be correctly guessed (P(Ck) L i=l P(filck)2) given a 

partition Cl , ... , Cm over the expected nUlnber of correct guesses \vith no such 

knowledge (L -i=l P(!i)2). In addition, It can also be considered as the increase 

in the inter-class and intra-class sin1ilarity \vhen people do the categorization. 

The forrnal definition of category utility is as follows: 

(2.3) 

where C is the set of categories, F is the set of features , f i is a feature, p(!ilck) 

is the probability that a rnernber of category Ck has the feature ! i, P(Ck) is the 

probability that an instance belongs to category Ck , P(!i) is the probability 

that an instance has feature !i, n is the total number of features, 'm is the 

total nurnber of categories. The denorninator, rn, is the nurnber of categories 

in a partition. Averaging over categories allows cOlllparison of different size 

4Probability matching can be contrasted with probability maximizing. The latter strat­
egy assumes t he most frequently occurring h is always guessed. While this strategy Inay 
seem superior at a cursory level, it is not sensitive to the distribution of all properties and 
is not as desirable for heuristically ordering object partitions. Psychologist demonstrate 
probability matching are the best strategy in hunlan categorization process [10] . 
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partitions. 

2.4.3 Context and Context Effect 

Context refers to the general conditions (circumstances) in which an event or 

action takes place. The context of sornething consists of the ideas, situations, 

judgments, and knowledge related to it . In cognitive psychology [24], the term 

"context effect" is used to refer to the influence of context in different cognitive 

tasks. Fo~ exarnple, Roth and Shoben [25] investigate the effect of context in 

categorization, and suggest that, if the prototype view of concepts is applied, 

context causes a reweighing of the importance of the properties of a concept, 

thus resulting in a different categorization and concepts. In addition, Tanaka 

and Taylor [11] find out that the dornain knowledge in different context has 

an effect on finding basic level concepts. The experts \vith particular donlain 

knowledge tend to treat different concepts as basic level concepts carnpared 

with non-experts. 

Elernents of context can be classified into internal conte;J;t and e;J;ternal 

context [26] [27]. Internal context refers to the subjective aspects of an agent 

(user). For example, in the categorization, the goal of using a concept and 

knowledge of the user are some subjective aspects of users. These aspects have 

a strong effect on forrning perspectives to handle tasks. When a particular 

context is perceived by an agent, the agent fornls a certain perspective. A 

perspective is a certain viewpoint on the concepts and objects encountered by 

the agent. It refers to a set of relevant aspects that one takes into consideration 

when accornplishing a particular task. The user will use such a perspective 

to handle a specific task. Thus, for different users , they rnay fonn different 

perspectives based on their subjective aspects for a particular task, and the 

results of handling the task Inay be different. For internal context , its effects 

on a task are achieved by applying perspectives to the task. External context 
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refers to objective aspects in the environment, i.e., the ground facts (e.g., 

concepts and objects) that happen to exist in a situation. External context 

has an effect on a task because it can impose constraints for obtaining more 

relevant information (i.e., information of the task context) for the task. For 

different external contexts, their relevant inforn1ation for the task is different. 

There is nUlnerous ,york on context in AI conlmunity. For instance, among 

all of these, McCarthy [28] is the first one to prolnote fonnalizing context in 

intelligent systerns. He introduces the notation 'lst( c, p) to denote the assertion 

that the proposition p is true in context c. [29] [30] and so on are subsequent 

efforts in forrnalizing context in logics. Cuha et al. [31] present a context rnech­

anism for the Semantic vVeb that is adequate to handle the data aggregation 

tasks . Besides, contexts are critical and useful in rnany other tasks [32]. 

2.5 Fl Evaluation Metric 

Figure 2.3 An exalnple of categorization or clustering [2] 

'['''l> t (-'11 t 
• -1 n's ' ,..-1 user Second Cluster 

In this thesis, to conlpare the generated ontology with the standard, we 

chose to use the F1 score as the evaluation rnetric [33]. F1 score is a llleasure of 

a categorization result 's accuracy according to the standard. It is the harmonic 

mean of precision and recall. In this thesis, precision and recall are cornputed 
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over pairs of resources or instances. Fl score is used to cornpare the category 

structure of ontologies. 

An exarnple is given in figure 2.3 [2]. Two categories are shown, and each 

resource is denoted by its category: A for "Arts", G for "Garnes", R for 

"Recreation". For exarrlple, A2 denotes a resource which is in the category 

"Arts)' and the clustering algorithm has decided to put it in the second cluster. 

We think of pairs of resources as being either the same category or differing 

category (according to our standard), and we think of the clustering algorithrrl 

as predicting vvhether any given pair has the sarne or differing cluster. The 

clustering result shown in figure 2.3 has predicted that (AI,A2) are in the sarne 

cluster and that (R2,R4) are in different clusters. In figure 2.3 , \ve find out 

that there are four cases of different resource pairs : 

5 
13 . 

• True Positives (TP): The clustering algorithm placed the two re-

sources in the pair into the same cluster, and our standard has them 

in the san1e category. For example, (RI,R3). There are 5 true positives . 

• False Positives (FP): The clustering algorithm placed the two re-

sources in the pair into the sarne cluster, but our standard has therrl in 

differing categories. For example , (RI ,G2). rrhere are 8 false positives. 

• True Negatives (TN): The clustering algorithm placed the tvvo re-

sources in the pair into differing clusters , and our standard has t hern in 

differing categories. For example, (R2,Al) . rrhere are 12 true negatives. 

• False Negatives (FN): The clustering algorithm placed the two re­

sources in the pair into differing clusters, and our standard has thern in 

the sarne category. For exarnple, (R2,R4) . There are 3 false negatives. 

Then we can calculate precision, recall and F1 score. Precision == r::FP == 

Recall = T:~'N = ~. Precision can be considered as a measure of 

exactness or fidelity, whereas Recall is a rneasure of con1pleteness. F1 score 
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\\Thich is the harmonic rnean of precision and recall takes advantages of precision 

and recall. PI == 2 xp1'e,c'i,sion x recall ~ 0.476. FI balances the need to place 
pTec'tswn+recall 

similar resources together while keeping dissimilar resources apart. 

2.6 State of the Art 

2.6.1 Ontology Learning 

Ontology research is primarily concerned with the definition of concepts and 

relations between them [34]. As constructing ontologies by hUInan is a time 

consurning and tough job, rnuch research is conducted on ontology learning. 

Ontology learning also known as ontology extraction, ontology generation or 

ontology acquisition is a subtask of inforrnation extraction. The objective of 

ontology learning is to (semi-) autolnatically extract relevant concepts and 

relations froln a given text or other kinds of data sets. Ontology learning 

actually contains six different aspects of learning tasks: 

• Terms: Terms are linguistic realization of dornain-specific concepts. 

Terms extraction is a prerequisite for all aspects of ontology learning. 

Previous research provides rnany examples of terms extraction rnethods 

that could be used as a first step in ontology learning frorn text. Most of 

these are based on information retrieval rnethods for ternl indexing [35]. 

Other methods take inspiration froln terrninology [36]. 

• Synonyms: The synonym learning addresses the acqu' sition of semantic 

terrIl variants in and between languages, where the latter in fact concerns 

the acquisition of term translations. Much of the work in this area has 

focused on the integration of WordNet 5 for the acquisition of English 

synonyms [37]. In contrast to using available synonym sets, researchers 

5WordNet is freely accessible fron1 http://wordnet.princeton.edu 
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have also worked on algorithms for the dynamic acquisition of synonyms 

by clustering and related techniques [38]. There seems to be a current 

trend to use statistical information rneasures to detect synonyrns [39]. 

• Concepts: The extraction of concepts from text is controversial as it is 

not clear what constitutes a concept. IVlost of the research in concept 

extraction addressed the question from a linguistic perspective, regarding 

concepts as clusters of related terrns. Concepts learning includes the 

ext~'action or acquisition of fonnal and informal definitions. An infornlal 

definition rnight be a textual description. A forrnal definition includes 

the extraction of concept properties, part of which is the extraction of 

relations between a particular concept and other concepts. 

• Taxonomy: Taxonomy is a hierarchical structure of concepts. The re­

lationship between different level concepts is the is-a relation. There 

are currently three Inain paradigms exploited to induce taxonomies from 

textual data. The first one is the application of lexico-syntactic pat­

terns to detect hyponyrny relations as proposed by [40]. In the second 

paradigrn, people rnainly exploited hierarchical clustering algorithrns to 

automatically derive tern1 hierarchies from text , e.g. [41], The third 

paradigrn sterns frorn the inforrnation retrieval cornnlunity and relies on 

a doculnent-based notion of term subsumption, for example [42] . 

• Relations (non-hierarchical): Relations extraction from text, other 

than the is-a relation discussed above, has been addressed prirnarily 

\vithin the biolnedical field as there are very large text collections avail­

able for this area of research. The goal of this work is to discover new 

relationships between knovvn concepts by analyzing large quantities of 

biomedical scientific articles [43]. 
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• Rules: The extraction of rules is probably the least addressed research 

area in ontology learning. Initial blueprints for this task can be found in 

[44]. 

The rnain component of ontology learning is the taxonomy part. As the 

reason that in the secolld paradignl of taxonomy learning, people Inainly ex­

ploited hierarchical clustering algoritlnns to automatically derive term hier­

archies from text, hierarchical clustering algorithrn plays an ilnportant role 

in ontology leaTning which is the rnain focus of this thesis. In general, hier­

archical clustering algorithrn can be further classified into agglornerative and 

divisive hierarchical clustering approaches, depending on whether the hierarchy 

is fOflTled in a bottorn-up or top-do\\Tn rnanner. The agglomerative approach, 

such as AGNES [45], is a bottoln-up method. It begins with each object form­

ing a separate group and then rnerges the rnost sirnilar groups, until all of the 

groups are n1erged into one, or a termination condition holds, e.g. the simi­

larity between the most sirnilar groups is lower than a threshold. There are 

rnany different rnethods to cornpute the sirnilarity between groups for exarnple 

single linkage, centroid , cornplete linkage , etc. The divisive approach, such as 

DIANA [46], is a top-down approach. It starts vvith all objects in the same 

cluster and then splits a cluster into smaller clusters in each iteration until 

tern1ination condition holds, e.g. I( clusters remain. 

In addition, Fisher [23] presented an increlnental conceptual clustering al­

gorithm, COBWEB, which creates a hierarchical structure in the forrn of classi­

fication tree through maxiInizing an evaluation measure called category utility 

in every incrernental step. In every incrernental step, the algorithrn adds an 

instance or objects into the classification tree. There are four basic opera­

tions COBWEB employs in building the classification tree depending on the 

category utility of the classification achieved by applying it. The operations 

include rnerging two nodes, splitting a node, inserting a new node and passing 
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an object down the hierarchy (a node is a cluster of objects). This rnethod is 

extended to CLASSIT, by Gennari et al. [47], which is used for incremental 

clustering of continuous data. 

Considering folksononlies as another source for ontology learning, next sec­

tion will introduce previous research on folksonomies and discuss the implicit 

selllantics in folksonomies. 

2.6.2 Semantics in Folksonomy 

In these years , folksonomy or social annotation becomes a hot topic , on which 

much research has been conducted. There are luany research areas to enhance 

the capability of folksonomy, such as corrnnunity identification, user and doc­

ument reconlmendation, ontology learning and so orl. 

Comlnunity identification means to find the interests of people or \vhich 

cornmunity one user belongs to. Diederich [48] used SOlIle tags related to a 

user to build the user's profile and feed them to a recomlnendation system, 

especially to identify related persons in the cornrnunity. Wu [4] presented a 

spectral lnethod to identify global comlllunities using authorship and usage of 

tags and docurnents. All docurnents, tags and users are considered as nodes 

in a network. A link is added frolll each tag to every associated document . A 

link is also added frorn each user to every tag the user has created or accessed, 

and the documents accessed through the tag. 

The ability to find high-quality resources, whether documents or peo­

ple, is important to overcoming inforn1ation overload. Recommendation sys­

tems identifying high quality resources and related users based on individ­

ual's knowledge are very useful. Hotho etc [49] gave out an algorithm called 

FolkR.ank based on the PageR.ank algorithln [50] to retrieve topically related 

iterns for any given set of highlighted tags , users or resources. Abbasi [51] 
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presented a systern T-ORG, vvhich provides a mechanisrn to organize web re­

sources by classifying the tags att~ched to thelTI into predefined categories. 

!v1aking use of semantics under the tag space of folksonornies is an im­

portant research topic. Ramage et al. [2] compared the clustering results of 

using traditional words extracted fronl the text and using folksonorny tags . 

Their experiments delllonstrated that using folksonorny tags can improve the 

clustering result. Au Yeung et a1. [52] developed an effective method to dis­

arnbiguate tags by studying the tripartite structure of folksonornies. He also 

proposed a k-nearest-neighbor Inethod [53] for classifying web search results 

based on the data in folksonornies. !vloreover, sorne researches focus on corn­

bining ontologies and folksonolllies. Specia et a1. [54] presented an approach 

for rnaking explicit the sernantics and hierarchy behind the tag space through 

mapping folksonomies to existent ontologies so that this collaborative organi­

zation can enlerge in the fornl of groups of concepts and partial ontologies. 

!v1ika [6] extracted broader/narrower tag relations using set theory and pro­

posed an approach to extend the traditional bipartite rnodel of ontologies with 

the social annotations. J aschke et a1. [55] [49] [56] defined a new data mining 

task , the ll1ining of frequent tri-concepts, and presented an efficient algorithm 

to discover these in1plicit shared conceptualizations. Zhou et a1. [7] proposed 

a Inethod to build the hierarchical structure of tags in a top-doV\Tn ,vay using 

Deterrninistic Annealing algorithrn. 



Chapter 3 

Ontology Learning from 

Folksonomies 

In this chapter, we discuss how to generate ontologies vvith basic level con­

cepts from folksonomies . To the best of our knowledge, it is the first \vork 

on discovering basic level concepts from folksonornies and using thern to con­

struct ontologies [57]. VVe perform experiments to evaluate our lnethod using 

delicious.com data set and cornpare the generated ontology with ODP concept 

hierarchy. Experirnents sho,Y that ontologies generated using our method are 

more consistent with human thinking than that of other compared rnethods. 

In our approach, concepts are represented by the common tags of a category of 

resources . For example, tags "java:' and "programming" together represents 

a concept about java programrning. The tags of a concept are inherited by 

its sub-concepts and a concept has all instances of its descendants . Such a 

representation can keep rnore inforrnation and properties of concepts and is 

consistent with the definition of concepts in psychology. 

28 
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3.1 Generating Ontologies with Basic Level Con-

cepts from Folksonomies 

3.1.1 Modeling Instances and Concepts in Folksonomies 

In folksonolnies, tags are given by users to annotate a resource and describe 

its characters. Naturally, the tagged resources are considered as instances in 

the definition of ontology. For the reason that each resource is described and 

represented by tags, we consider these tags as properties of instances. Accord­

ingly, an instance is represented as a vector of tag-value pairs: 

Definition 3.1 An instance, Ti , is represented by a vector of tag:vallle pa'irs, 

\vhere n is the number of unique tags assigned to resource Ti, V'i,k is the weight 

of tag ti,k in resource ri. The weight Vi,k detennines the ilnportance of the tag 

ti ~ k to resource ri' vVe consider that a tag assigned by more users to a resource 

is rnore irnportant because rnore users think the tag is useful to describe the 

resource. Although different users may annotate a resource in different aspects 

and sorne rnay even randornly assign tags, Colder [8] dernonstrated that, in 

delicious.com, in a resource the occurrence frequency of a tag becon1es a nearly 

fixed nurnber after enough bookrnark. The fixed nurnber reflects the irnpor­

tance of a tag in the resource. Accordingly, the weight of a tag t,i ~ k is defined as: 

(3.1) 

where Nti, k is the number of users using the tag ti,k to annotate the resource 

Ti and Nri is the total nurnber of users assigning tags to ri. In the ca.<)e that 

all users annotate ri with ti,k, the weight Vi,k is 1. 
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A concept is the abstraction of a category of' instances and holds the com­

mon properties of them, Accordingly, we construct a concept through extract­

ing comrnon tags of a category of' instances. These COlnrnon tags are considered 

as the properties of the concept. The weights of these tags are their Inean val­

ues among all instances in a category. Accordingly, the definition of a concept 

is as follo,vs: 

Definition 3.2 A concept , Ci, is represented by a vector of tag:value pairs, 

Ci = (ti, l : Vi,l, t i ,2 : Vi,2, ... ,ti,n : Vi ,n) with ti ,k E T,O < Vi,k < 1, 1 < k < n . 

where n is the nunlber of unique tags, ti ,k IS a common tag of a category 

of resources , Vi,k is the weight of the tag ti ,k . 

3.1.2 The Metric of Basic Level Categories (Concepts) 

To characterize basic level categories, psychologists [22] give a metric named 

category utility. Through rnany experinlents, they denlonstrate that the char­

acter of basic level categories is that they have the highest category utility. 

Category utility was intended to supersede rnore lirnited rneasures of category 

goodness such as cue validity. It provides a normative information-theoretic 

rneasure of the predictive advantage gained by a person who possesses knowl­

edge of the given category structure over a person who does not possess this 

knowledge . Given a set C of categories and a set F of features, the category 

utility is defined as follows : 

(3.2) 

where P(!i !ck) is the probability that a Inen1ber of category Ck has the feature 

!i, p(Ck) is the probability that an instance belongs to category Ck, p(]i) is the 
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probability that an instance has feature fi., n is the total nurnber of features, 

m is the total number of categories. 

Features of instances are represented by tags in folksonomies. Accordingly, 

in the definition of category utility, the tag set T is used as the feature set 

F and a tag ti is used as a feature fi. As we Illodel, the importance of tags 

are different in folksonornies. To take the differences of tag irnportance into 

account, vve Inodify the definition and add the \veight W i of tag t i into the 

defini tion: 

(3.3) 

V\rhere W 'i is the weight of the tag t oi , nk is the number of unique tags in cluster 

Ck , n is the number of all unique tags. To reflect the mean weight of a tag, 'Wi 

is defined as: 

(3.4) 

where Nti is the nurnber of resources annotated by tag ti and Vj ,i is the weight 

of the tag t'i in resource rj. 10 differentiate it frorn the original definition, we 

consider it as the weighted category utility. 

3.1.3 Basic Level Concepts Detection Algorithm 

Because basic level categories (and concepts) have the highest category util­

i ty, the pro blern of finding basic level categories (and concepts) becornes an 

optimization problem using category utility as the objective function. The 

value of category utility is influenced by the intra-category sirnilarity which 

reflects the similarity alnong Inembers of a category. Categories with higher 

intra-category siIllilarity have higher value of category utility. Accordingly, we 
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put the rnost sirnilar instances together in every step of our method until the 

decrease of category utility. Vlhile it is possible to have different functions 

for similarity rneasure of two instances T'i and T'j, we argue that the function 

sirn(T'i' T'j) should satisfies the following axiorns: 

Axiom 3.1 0 < sim(T'i' T'j) < 1,sim(T'i, rj) == 0 if ri and rj have no com­

mon tags, sirn(ri ' rj) == 1 ~f Vi,k == Vj,k, for all k=l , ... ,n. 

Axiom 3.2 sim(ri, rj) > sim(ri ,rl) , ~fO < Vi ,k < Vj ,k < Vl ,k or 0 < Vl,k < 

Vj,k < Vi,k and Vl :m == Vj ,m foT' all rn i:- k . 

Axiorn 3.1 specifies the boundary cases of sirnilarity rneasure. Axiorn 3.2 spec­

ifies the influence of tag weight. The deviation of the weight of tag is larger, 

the sirnilarity is lower. In cornmonly used methods of computing similarity 

between tvvo vectors, cosine coefficient is a suitable rnethod to satisfy these 

conditions, which computes the cosine angle between two vectors. In addi­

tion, we find that tags appearing in fewer documents are more important for 

categorization than those appearing in more documents [58]. Accordingly, the 

similarity rneasure nletric is defined as follows : 

(3.5) 

where ri, rj are two instances , n is the total number of unique tags describing 

them, and Vi, k is the value of' tag ti,k in instance ri, if r i does not have the tag, 

the value is O. idf(tk ) is the inverse document frequency of the tag tk' 

(3.6) 
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where N is the total nurnber of resources and Ntk is the number of resources 

annotated by tag tk, 0 < id!(tk ) < 1. id!(tk ) gets the value 0, when the tag 

tk is assigned to all resources. In this case, all resources have this tag, the tag 

is useless for categorization and identification. id! (tk) gets the value 1, when 

only one resource annotated by tag tk . 

In our algorithln [59], firstly, vve consider every single instance itself as a 

concept. This type of concept which only includes one instance is considered as 

the bottom level concepts. Secondly, we compute the sinlilarity betvveen each 

pair of concepts and build the sirnilarity rnatrix. Thirdly, the rnost sirnilar pair 

in the n1atrix is identified and n1erged into a new concept. The new concept 

contains all instances of the two old concepts and holds their cornrnon proper­

ties . After that we reconsider the silnilarity matrix of the relnaining concepts. 

We apply this Inerging process until only one concept is left or the similarity 

between the rnost sin1ilar concepts is O. We then deternline the step where 

the categories have the highest category utility \\Thich is the local optirrnlln of 

category utility. These categories are considered as the basic level categories 

and the concepts are considered as the basic level concepts. For example, in 

the left part of figure 3.1, 23 instances are classified into 3 categories (concepts) 

represented by circles, pentagons and triangles respectively. In every step, the 

rnost sirrlilar instances are rnerged into one concept. In figure 3.1, finally all 

instances are merged into one concept and the process is silnilar to building 

a dendrograrn. The category utility of the result after every rnerging step is 

shown in the right part of figure 3.1. The category utility gets the highest 

value when only 3 concepts left as shown by the red dashed line, which is the 

result of our algorithrn. The detail of this algorithm is given in algorithm 1, 

and the tirne corrlplexity is O(N21og N) where N is the number of resources. 
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Figure 3.1 An example of algorithm 1 

CategOf)' Utility 

3.1.4 Ontology Generation Algorithm 

Using algorithm 1, vve can extract basic level concepts from a set of instances. 

For the reason that basic level concepts are considered cognitively basic (learned 

by hurnan easily and quickly), building the ontology with basic level concepts 

is our objective. The ontology built through our method has the psychologi­

cal character that every concept in the ontology is basic level concept, which 

differentiates the ontology built through our method to the ontology built in 

previous ontology learning research. To achieve our goal, we build the ontol­

ogy in a top-down way based on algorithln 1. We first generate a root concept 

including all instances. After using algorithm 1 to find the basic level concepts , 

we add the basic level concepts to the ontology as sub-concepts of the root. 

Then, we apply algorithm 1 iteratively to the instances of those sub-concepts 

and add their sub-concepts until they are the bottonl level concepts . After 

several iteration , the ontology are built . The detail of this ontology generation 

nlethod is given in algorithm 2. 



Chapter 3 ()ntology Learning jro'm FolksonoTnies 35 

Algorithm 1 Basic Level Concepts Detection 

1: Input: R" a set of instances (resources) 
2: Initialize C, C is an n dirnensions vector C = (Cl,C2, ... ,cn ) where its ele­

nlent Ci is the bottom level concept. C size is equal to the nunlber of elelnents 
in C. Set sirn[n][n] as the sirnilarity rnatrix of C, siTn[i][j] == siTn(ci' Cj). 
S == (SI, S2, ... , Sn), Si is used to record the clustering result of step i. 

3: Set 81 == C, step==l, 
4: while Csi,ze > 1 do' 
5: step++ 
6: Find the lllost silnilar concepts in C and define a new concept include 

all instances of thern. 
7: Delete the nlost similar concepts fronl C, and add the new concept into 

C. 
8: Update the similarity matrix. 
9: Csize == Csize - 1 

10: R,ecord the result, Sstep == C 
11: Compute the category utility of this step Cllstep 

12: end while 
13: Find the step with the highest category utility c'ama:r , define the record of 

this step Smax as the basic level categories. 
14: Define the concept of each basic level category. The concept include all 

instances of the category and the properties of the concept are the comrnon 
features (tags) of the instances. 

15: Output these concepts. 

3.2 Evaluation 

3.2.1 Data Set and Experiment Setup 

Experirnents are perforrned on three genres of reaJ world data: PROGRA1V[-

MING LANGUAGE, SPORT and GA1V[E. The PROGRAMlvlING LANGUAGE 

data set consists of 1087 resources. The SPORT data set consists of 552 re-

sources. The GArv1E data set consists of 645 resources. These data sets are 

crawled frorn delicious. corn. As Colcier [8] dernonstrated, in delicious. corn, each 

tag's occurrence frequency become fixed after a resource is bookluarked 100 

times . The fixed frequency reflects the importance of a tag. To Inake sure that 

the frequency is nearly fixed, the web pages in our data sets are the ones which 
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Algorithm 2 Ontology Generation 

1: Input: Concept c 
2: Use algorithrl1 1 to explore basic level concepts froIll instances in c. 
3: if the size of Smax > 1 then 
4: for every element Ci in Smax do 
5: Set Ci as the sub-concept of c 
6: Use algorithrn 2 with input Ci . 

7: end for 
8: end if 
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are bookmarked Illore than 100 tirl1es in delicious. corn. In addition, the web 

pages in our data sets must appear in both delicious. corn and Open Directory 

Project (ODP) I because we use ODP as the gold standard to evaluate the 

ontology built by our method. 

ODP is a user-maintained hierarchical web directory. Each directory in 

ODP has a label describing its name (e.g. "Arts" or "Python") and is a cate­

gory of web pages. To derive the gold standard category structure frorn ODP, 

we first choose a category in the hierarchy of ODP, for example "Program­

rning Languages" and then include all its sub-categories and their descendants 

into the category structure. These categories in ODP are created , verified and 

edited by thousands of users. ODP is considered as an user-generated ontol­

ogy. The label of each directory is the name of the concept and the \\reb pages 

in the directory are considered as the instances of this concept. 

Furthenl1ore, to filter the noise tags, \ve preprocessed each data set by (a) 

rernoving stop words and tags whose weight is less than the threshold q; (b) 

down casing the obtained tags. 

3.2.2 Quantitative Analysis 

"Using C)DP as the gold standard for evaluation, vve apply FI score [33] to 

COlnpare the ontology built by our approach with ODP. FI score is a n1easure 

Ihttp://www.dmoz.org/ 
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Table 3.1 Statistics of the extracted ontologies 
Data Set #Resources # Tags #Users #Concpets #Levels 

PROGRAMMING LANGUAGE 1087 39475 57976 422 6 
SPORT 552 18776 31741 273 5 
GAME 645 20352 39224 :31:3 5 

of a categorization result's accuracy according to the standard , which is the 

harmonic 111ean of precision and recall. If the ontology is more similar to ODP, 

the Fl score will be higher, which means the ontology is rnore consistent with 

lnllnan thinking. Experirnents are first carried out on the PR.OGRA~1MING 

LANGUAGE data set with different values of threshold q. Figure 3.2 presents 

the Fl scores of the results obtained by using different values of q. vVe find 

that if we do not filter any tags (q == 0), the clustering results will be the worst 

(0.011). A1110ng different values of q, 0.02 gives the best result. Accordingly, 

we set q == 0.02 in our experirnents first. 

Figure 3.2 The i111pact of threshold q. 
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Table 3.1 shows the statistics of the ontologies extracted froIn the three 

data sets. The hierarchy of the ontology extracted froIn the PROGRAJVl­

rvlING LANGUAGE data set has 6 levels from the root concept to the bottorn 

level concepts and contains 422 concepts (except bottOlll level concepts). The 

hierarchy of the ontology extracted froIn the SPORT data set has 5 levels and 

contains 273 concepts (except bOttOlll level concepts). The hierarchy of the 
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ontology extracted from the GA11E data set has 5 levels and contains 313 

concepts (except bottonl level concepts). 

In previous research of ontology learning from folksonomies [6] [7] , researchers 

ignore the instances and categories. They define tags as concepts and only ex­

plore the relationship between these tags. There is not any category structure 

in the ontology generated by previous approaches. Their rnethods cannot or­

ganize instances into a category structure as ours. Accordingly it is impossible 

to cornpare the category structure of the ontology generated by our rnethod 

\\rith thel11. As commonly used clustering methods, K-means and concept 

clustering algorithrn C()B\iVEB can cluster instances into different categories . 

We compare the category structure built by our n1ethod with that built by 

K-rneans (when K is equal to the nurnber of categories in ODP and Euclidean 

metric is used to determine the distance of tw"O instances) and COBWEB to 

demonstrate the effectiveness of our approach on categorization. 

In Figure 3.3, we sho\\' Fl scores of the results using different algorithrns in 

the three data sets (PROGRAMMING LANGUAGE, SPORT and GAME). 

It is observed that our algorithm performs better than others especially in the 

sports data set (0.855) that means the category structure built by our rnethod 

is more consistent with ODP than others. In sports domain, the basic level 

categories are explicit so that they can easily be detected. Basketball, football , 

running and other types of sports forrn the basic level categories in this dornain 

(referring to table 3.2). In addition, the content of web pages in sports domain 

is unarnbiguous and the noise tags are fewer than in other dornains . The result 

in the GAME data set is not as good as others because the ODP categories in 

this dornain do not lay on the basic levels in our opinion. The Fl score of the 

results using our approach in the PR,OGR,AlVIl\1ING data set is 0.604 which 

is about 50% higher than the results using K-means. K-Ineans has problerns 

when clusters are of differing sizes, densities and non-globular shapes which 

is the situation of real world data set especially web resources. In this sense, 
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our approach is much better than I(-rneans. \Ve also compare 011r approach 

\vith COBWEB [23] which is an incremental conceptual clustering algorithm 

also aiming to maximize category utility as our approach. In COBWEB, they 

use a incremental strategy to add instances to the category structure one by 

one. Although this strategy is flexible, the limitation is that the structure de­

termined in previous steps cannot be rebuild later. Accordingly, the order of 

the instances will impact the quality of the result which make the quality un-

certain. To solve this problern and irnprove the quality, our approach consider 

the whole data set first and always merge the lnost similar ones together. This 

strategy makes sure that we are finding the basic level categories in the whole 

data set. In addition , our method performs better using weighted category 

utility as the rnetric than using category utility in the three data sets because 

weighted category utility considers the difference of tags which is the situation 

in folksonolnies. 

Figure 3.3 Fl-scores of the category structure built by different algorithn1s 
in the three data sets. 
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In this section, we will discuss the quality of the ontologies generated by our 

rnethod . The ontology generated by our nlethod is similar to ODP ontology. 
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Figure 3.4 Percentage of Different Relations 
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Table 3.2 shows the similar pairs between ODP concepts and concepts in the 

ontologies generated by our n1ethod. Concepts generated by our method are 

described in the forrn (tag:value) ... ,). Concepts in ()DP are described in the 

form (label) . The tags from super-concepts are not shown in the table be­

cause of the lirnit of space, e.g. the concept (. net:O. 349) should be (program­

Tning:O.415) .net:O.349). lV'Iost sub-concepts of (prograTnming:O.3) are about 

programming languages in this data set, such as Java, Python and Ruby. This 

is consistent with the basic level concepts of prograrnrning language dornain in 

human thinking. As shown in table 2, Properties of these concepts are related 

with labels of ()DP concepts. There are totally 15 sirnilar pairs (47% of the 

sub-concepts) . In addition, in the SPORT data set , there are 12 similar pairs 

(23% of the sub-concepts) and in the GA11E data set, there are 6 sirnilar pa.irs 

(37.5o/c) of the sub-concepts) . l'able 3.2 also shows the sin1ilar concepts in differ­

ent levels of t he ontology such as the sub-concepts of the concept (java:O. 730). 

These concepts do not seem as good as previous ones because in these levels the 

number of resources or the instances are not enough to support t he ontology. 

These similar concepts and the relations between concepts demonstrate that 

our n1ethod is effective on generating ontologies with basic level concepts and 

the genera.ted ontologies are rneaningful and consistent with human t hinking. 

According to the research of Zhou et al. [7] , we notice that the relations 
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Table 3.2 Sin1ilar Concepts between ODP and Ontology extracted by Our 
Ivlethod 

ODP Ontology extracted by Our Method 
sub-concepts of (progra.mming) sub-concepts of (programming:0.3) 

1 (c-sharp) (.net:0.349) 
2 (assembly) (assembly:0.508, asm:0.244, assembler:0.256 , development:0.105) 
3 (c++) (c++:0.641, development:0.155) 
4 (c) (c:0.522) 
5 (pl-sql) (database:0.450, development:O . .1 00) 
6 (sql) ( erlang:0.889) 
7 (java) (java:0.730) 
8 (javascript) (javascript:0.704) 
9 (lisp) (lisp:0.661) 
10 (per!) (perl:O.800) 
11 (php) (php:0.745) 
12 (python) (python:0.853) 
13 (ruby) (ruby:O.690) 
14 (scripting) (scripting:0.280) 
15 ( delphi) (software:0.173, development:O . .l78, delphi:O.743) 

sub-concepts of (sports) sub-concepts of (sport:0.498) 
1 (Baseball) (baseball :O.736) 
2 (B asket ball) (basketball:0 .535 ) 
3 (Boxing) (boxing:O.695) 
4 (Cricket) ( cricket:0.698) 
5 (Cycling) (cycling:O.425 , bike:O.;~95) 
6 (foot ball) (soccer:0 .397, football:0.459) 
7 (golf) (golf:0.809) 
8 (hockey) (hockey:O . 60~~) 

9 (rvlartiaLArts) (martialart:O.299, martiaLart:0.136) 
10 (Motorsports) (racing:O.325 , new:O.215, motorsport:O.266) 
11 (running) (running:0.708, fitness :0.229) 
12 (vVateLSports) (surf:0.448 , surfing:0.454) 

sub-concepts of (games) sub-concepts of (game:0.417) 
1 (online) (free:O.184 , online:O.065) 
2 (gambling) (gambling:0.337) 
3 (card_games) (poker:O.883) 
4 (roleplaying) (rpg:0.442) 
5 (puzzles) (puzzle :0.421 ) 
6 (board_games ) ( chess:0.802) 

sub-concepts of (python) sub-concepts of (python:0~853) 
1 (vVWW) (web:0.320) 
2 (Development Tool) (development:O . .l62 , software:O . .115 , tool:0.1.09) 

sub-concepts of (java) sub-concepts of (java:0.730) 
1 (FAQs, Help, and Tutorials) (tutorial:O.204, reference:0.15:3) 
2 (Development Tools) (software:0.107, tool:0.288) 
:3 (Applications) (opensource:O . ~H 7, software:O.152) 
4 (Personal Pages) (development:0.138, blog:O.347) 

sub-concepts of (Soccer) sub-concepts of (soccer:O. :397, football:O .459) 
1. (Video Games) (video:O.491) 
2 (Statistics) (statistic:O.245, stat:0.1~~6) 
3 (News and Media) (news:0.284) 

... . .. 
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between different tags or concepts mainly include three types. (1) B is the 

sub-type of A. (e.g. "java" is sub-type of "prograluming") (2) B is a related 

aspect of A. (e.g. "development" is related with "progralnming") (3) B is par­

allel to A. (e.g. "java" is parallel to "python"). According to the definition 

of ontologies, the relations between concepts of different levels should be type 

1. To dClTIOnstrate the effectiveness of our approach on generating hierarchical 

structure of ontologies, we COlnpare the relations between first level concepts 

and second level concepts in the ontology generated by our rnethod with that 

generated by Zhou's method. The result is shown in figure 3.4. The result 

shows that the percentage of type 1 (sub-type) relation in the ontology gen­

erated by our method (79%) is much higher than that generated by Zhou '8 

lllethod (30%). The percentage of type 2 relation is 21 % and 70% respec­

tively. In addition in this situation, there is no type 3 relation. The result 

delTIOnstrates that the hierarchical structure in the ontology generated by our 

rnethod, to some extent, is better than that generated by Zhou'8 method. 



Chapter 4 

Context Effect on Ontology 

Learning from Folksonomies 

Inspired by studies in cognitive psychology, we try to rnodel hurnan cognitive 

process in folksonolnies so that we can explore the implicit selnantics and 

build rnore hurnan acceptable and applicable concepts (ontology) . In cognitive 

psychology, basic level concepts are frequently used by people in daily life , and 

lllost hurnan knowledge is organized with thern. In addition, contexts play an 

important role in concept learning. The basic level concepts will shift based 

on different contexts and categorization. Taking contexts into consideration 

will make our proposed n1ethod n10re completed and applicable. 

In this chapter, we discuss the context effect on ontology learning from 

folksonomies especially basic level concepts detectiDn and a metric named con­

textual category utility is proposed to take context into account [60]. Based 

on the contextual category utility, we propose a rnethod to detect basic level 

concepts in different contexts. To the best of our knowledge, it is the first 

\vork on detecting basic level concepts in different contexts frorn folksonornies. 

We conduct experinlents to evaluate our method using a real-vvorld data set 

and cornpare the detected concepts with ODP concepts. Experirnent results 

demonstrate that our method can detect basic level concepts in different con­

texts effectively. 

43 
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4.1 Context-aware Basic Level Concepts De­

tection 

4.1.1 Modeling Context in Folksonomies 

According to the studies in cognitive psychology, contexts play an important 

role in lnuTlan cognitive process. In such a process, there is a set of persons 

in a context and some subjective aspects of thenl should be considered as a 

part of context (e.g. the goal of using a concept , the knowledge of persons) . 

According to the research finished by Tananka and Taylor [11] , there is one 

very interesting cognitive psychology phenomenon: the shifting of the basic 

level. People with different dOlnain knowledge have different considerations of 

the basic level. The domain knovvledge has an eff'ect on where the basic level 

lies . This difference is considered as the effect of contexts. As we rnentioned 

above, a folksonomy consists of a set of resources, a set of tags and a set of 

users. lJsers \vith different dOlnain knowledge annotate the resources with dif­

ferent tags. These tags naturally represent users subjective aspects including 

purposes and knowledge. Thus, we define a context x as a collection of relevant 

subjective aspects of users. 

Definition 4.1. A context, denoted by x , is a tuple, which consists of a 

subset of users and tags, ;c =< JVu , Nt > , where Nu is a set of users and N t is 

a set of tags which represents the subjective aspects of users . 

In a particular context, some tags are more important than others [26]. In 

our model, the ilnportance of each tags is indicated by a real nurnber (i.e., 

weight of a tag) whose value is between 0 and 1. If a tag is absolutely iln­

portant for a task in a specific context, then its "veight is 1. If a tag is not 

important at all for a task in a specific context, then its weight is O. We define 
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a tag weight vector which reflects irnportance of tags in a context. 

Definition 4.2. A tag weight vector in a context x, denoted by V~r: , is 

represented by a vector of tag:vaz,ue pairs, VX == (tl : v~; , t2 : v2, .. . ,tn : v~), 

o < Vi ,k < 1, vvhere n is the number of relevant tags and vf is the weight of 

tag t i in context x. 

Based on subjective aspects, users can forrn a perspective so as to obtain a 

set of weights for tags in a context. We formally define a perspective as follows: 

Definition 4.3. A perspective, denoted by 7rx, maps a set of users and 

CL set of tags to a tag 'weight vector, 7rX(Nu, Nt ) == V X, where VX is a tag weight 

vector, Nu is a set of users and Nt is a set of tags. 

For the reason that a perspective is fonned based on subjective aspects of 

users, we consider that such a mapping is accornplished by the users in a con­

text and the weight vector is given by the users. For example, people \vho 

are interested on programlning languages lllay give a tag weight vector as: 

v:r == (java : 1, ... , css : 0.5) . It means that the tag "java" is absolutely iln­

portant and "css" is less important in the context. People nlay have different 

perspectives in contexts and give different property weight vectors with respect 

to their own perspectives. 

4.1.2 Context Effect on Category Utility 

In folksonomies, features of instances are represented by tags. Accordingly, in 

the definition of category utility, the features set F should be changed to the 

tags set T , and feature fi should be changed to tag ti , where fi E F , ti E T . 

In cognitive psychology, under different contexts the basic level concepts are 
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different . Accordingly, we should consider the effect of contexts on category 

utility. The irnportances of tags are different in folksonornies under different 

contexts. To consider the differences in tag importance, we add the tag weight 

vector VJ: of context x to the definition of category utility. Considering the 

context , the metric of predicting performance should be positively correlated 

with the tag \veight in a certain context. So we change the metric of pre­

dicting perfonnance from the correctness p( ti )2 to vf . p( t i )2 . Furthern1ore, in 

folksonornies each resource has different nurnber of tags, and we hope category 

utility will not be affected by this difference. As a result, we consider the 

irnpact of one tag on average in category utility and 2::~1 p(fi)2 is changed 

to L~l V! .p(t i )2 . Accordingly, the contextual category utility is then defined as 

fo11o"vs: 

1 rn [ ~nk :c (t I ) 2 ~n x (t) 2 ] . (C T .) = _ ~ ( ) L...ti=l Vi P -i Ck _ L...ti=l Vi P i 
CU , ,X, L...t P Ck 

m nk n 
k=l 

(4.1) 

where C is the set of categories, T is the set of tags , x; is the context. nk is the 

number of unique tags in cluster Ck and n is the number of all unique tags. vf 

is defined as the value of tag ti in VX which is the tag weight vector of context 

x. 

4.1.3 Context-aware Basic Level Concepts Detection Al­

gorithm 

Referring to algorithn1 1, to detect the basic level concepts we put the most 

similar instances together in every step of our method until the decrease of 

category utility. To cOlnpute the similarity, we use the cosine coefficient which 

is a comrnonly used rnethod of cornputing similarity between two vectors in 

inforrrul.tion retrieval. In addition, taking the context effect into consideration 

(the metric should be positively correlated with the tag weight) , we add the 
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tag weight into the definition of cosine coefficient. Accordingly, the similarity 

metric is defined as follows: 

~n x 
L....Jk=l Vi . Va ,k . Vb,k 

si rn ( a, b, x) == --;=========---;:========== 

j'LZ=l V~,k . j'LZ=l V~,k 
(4.2) 

where a, bare t\VO concepts, n is the total nUlnber of unique tags describing 

thenl, and Va ,k is the value of tag ta ,k in concept CL, if a does not have the tag, 

the value is O. vt is defined as the value of tag tk in 11x \vhich is the tag weight 

vector of context ;r . 

The algorithm of context-avvare basic level concepts detection is similar to 

algoritlnn 1. Firstly, we construct bottOlll level concepts where each concept 

only includes one instance. Secondly, we compute the similarity between each 

pair of concepts and build the similarity Inatrix. Thirdly, the Inost silnilar 

pair in the rnatrix is generated and rnerged into a new concept . The new con­

cept contains all instances of the two old concepts and holds their comlnon 

properties. We apply this nlerging process until the decrease of category util­

ity. Taking context into consideration, the detail of this 11lethod is shown in 

algorithrYl 3. 

4.2 Evaluation 

4.2.1 Data Set and Experiment Setup 

Our experiments are conducted on a real world data set (the PROGRAMMING 

LANGUAGE data set in chapter 3): 1087 web pages which are associated vvith 

39475 tags and 57976 users . These web pages are all in the programlning do­

rnain. Golder [8] dernonstrated that, in delicious.com, in a resource each tag 's 

frequency becomes a nearly fixed proportion of the total frequency of all tags 

after the resource is bookrnarked 100 tirnes. The fixed proportion reflects the 

real value of a tag in the resource. To make sure that the proportion is nearly 
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Algorithm 3 Context-aware Basic Level Concepts Detection 

1: Input: R , a set of instances (resources); VX, the tag weight vector of 
context x 

2: Initialize C, C is an n dimensions vector C == (Cl,C2, . .. ,cn ) where its ele­
IIlent Ci is the bottorn level concept. Csize is equal to the rnuIlber of elernents 
in C. Set sirn[n][n] as the sirnilarity matrix of C, sirn[i][j] == sim(ci' Cj, x). 
S == (51,52, ... , 5 n ), 5i is used to record the clustering result of step i. 

3: Set 51 == C, step==l, 
4: while Csi ze > 1 do 
5: step+-+ 
6: Find the rnost sinlilar concepts in C and define a new concept include 

all instances of thelTI. 
7: Delete the lllost sinlilar concepts fron1 C, and add the new concept into 

C. 
8: Update the similarity matrix. 
9: Csize == CS'ize - 1 

10: Record the result, Sstep == C 
11: Compute the contextual category utility of this step CUstep 

12: end while 
13: Find the step with the highest category utility CUmax , define the record of 

this step S max as the basic level categories. 
14: Extract concepts of basic level categories. A concept includes all instances 

of a category and the properties of the concept are the common features 
(tags) of the instances. 

15: Output these concepts. 

fixed, the \veb pages in our data sets are the ones which are bookmarked lllore 

than 100 tirnes in delicious.com . In addition, the web pages in our data sets 

appear in both delicious.com and Open Directory Project (ODP) 1 because 

we use ODP as the gold standard. ODP is a user-rnaintained \veb directory. 

Each directory is considered as a concept in ODP. To derive the gold standard 

concepts froll1 ODP, we first choose a certain directory (e.g. progralnming) in 

ODP and then consider all its sub-directories as the gold standard concepts. 

These concepts in ODP are created, verified and edited by experts around the 

world and accepted by lllany users. For evaluation, we apply F1 score which 

is the aggregation of recall and precision [33] to compare concepts detected by 

Ihttp://www.dmoz.org/ 
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our approach with ODP concepts on their category structures. In addition, we 

ask people to evaluate our experinlent results through questionnaires. To filter 

the noise tags, we also preprocess the data set by ( a) rernoving tags whose 

weight is less than the threshold q == 0.02; (b) down casing the obtained tags. 

4.2.2 Result Analysis 

As we Inentioned, we model a context in folksonomies through a tag \veight 

vector VX in \vhich different tags have different values according to their irnpor­

tance in the context. In our experinlents, we use questionnaires to get people's 

consideration on tag weights in different contexts. In the questionnaire , we 

ask 20 people to give weights to different tags given the context infor1l1ation 

( we ask them to give marks to tags where "0" rneans the tag is not related to 

the context, "I" Ineans a little bit related to the context, "2" Ineans moderate 

and "3" 111eans highly related). The value of a tag in the tag weight vector of 

a context is the average mark of the 20 people after norn1alizing to the range 

frorn 0 to 1. If we are not given any inforrnation about the context (i.e., we do 

not take context into consideration), the weights of all tags are the same and 

equal to 1. We use two traditional categorization 111ethods as baselines, which 

are K-means clustering and a concept clustering algorithnl named COBWEB 

[23] . For the reason that the traditional categorization rnethod do not take 

context into consideration and no information about the context are given, we 

cornpare our rnethod with traditional Inethods without context infonnation 

first. 

In figure 4.1, we show the results obtained by different methods in our 

data set without context information. The F1 score of the result using the 

traditional K-lneans algorithln (when K is equal to the nlunber of categories in 

OD P and Euclidean rnetric is used to deterrnine the distance of two instances) 

is 0.393. Our approach outperforms K-means by about 50% and the F1 score 
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Figure 4.1 Comparison of different methods without context information 
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of our method is about 0.599. In addition, our method outperform COBWEB 

by more than 100% on F1 score. In the result of COB\VEB, most of vveb pages 

are classified to one concept which is not reasonable so the value of recall is 

nearly 1 but the precision is only 0.127 and the F1 score is only 0.237. On 

precision, our proposed luethod also has the highest value (i.e., about 0.463). 

In our n1ethod, we take context into consideration and make our method 

to be context-avvare for categorization and concept learning. To indicate our 

rnethod is context-avvare, we discuss two contexts (vvhich are denoted by Cpl 

and Cos respectively) in our experiments for the same 1087 web pages \vhich 

are in the prograrnnling ciornain. In the context Cpl , people whose interests 

are on programming languages are trying to classify these web pages. In the 

context Cos , people whose interests are on operation systerns are trying to 

classify these web pages. 

Result Analysis for Context Cpl. 

In context Cpl , users try to classify web pages based on the interest of them­

selves. As rnentioned, the interest of users in this context is programming 

languages. To lnodel this context, we ask 20 students n1ajoring in computer 

science to give weights to tags based on the interests in C·pl ' The tag weight 

vector of this context is (java:0.9, mac:O.l, llnix:0.3, c: 1.0, . net.·O. 75, rllby:0.6, 
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Figure 4.2 Result of our lllethod with (out) context information 
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window:0.3, web:0.4 , blog:O.O, .. .). Tags v/hich are related with progran1ming 

languages have high weights such as "java" and "c" whose weight are 0.9 and 

1.0 respectively. Tags which are not quite related with progran1ming languages 

have low \\Teights such as "unix" whose weight is only 0.3. 

"Ve cornpare the detecting ba..c;ic level concepts using our rnethod in this 

context with sub-concepts of "progralnming languages" in ODP. According 

to figure 4.2, while we take the context inforrnation into consideration, the 

categorization results and the concepts \\Till be ilnproved. The Fl score is 

0.599 without the context inforrnation, and while given the information the 

Fl score increase to 0.912. For our method, the Fl score obtained by given 

the context information outperform that without context inforrnation about 

50%. In addition, given the context information, our method also dominates 

on recall and precision. As discussed in previous chapter, our rnethod without 

context infornlation is already an effective one especially on putting sirnilar 

resources together. Accordingly, the precision score is already good (0.865). 

However , without context infonnation it is hard to detect which kind of basic 

level concepts we are expecting or which clusters should be combined together. 

Many srnall clusters are not rnerged without context inforrnation so that the 

value of recall is low (0.463). The value of recall is greatly improved (from 

0.463 to 0.911) given context inforrnation that rneans rnore sirnilar clusters 
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are cornbined, which is consistent with the standards. The detected concepts 

through our method are ahnost the same as gold standard concepts which 

demonstrates our assumption. We show the detected basic level concepts using 

our Inethod in table 4.1. In table 4.1, concepts are represented by the form 

(tag: value) , for example (java: 0.6'80) where 0.680 is the average weight of 

the tag "java" in instances of the concept. In addition, we also ask 20 students 

to evaluate the basic level concepts detected in Cpl and the result is shown in 

table 4.2. People evaluate the results using the score frorn 0 to 10 where 10 

means that people think the result is perfect under certain context. According 

to table 4.2 , the average evaluation score given by people on the result of 

our method in context Cpl is 8.16. Such a score means that, given the tag 

weight vector in Cpl , our rnethod can detect the basic level concepts which 

is consistent with people's expectation. \Ve also can find that the detected 

concepts are not good with a nluch slnaller evaluation score 4.22 without the 

context inforrnation. Such a result demonstrates the rationality of our context 

Inodeling approach and the efficiency of our context-aware basic level concept 

detection Inethod. 

Result Analysis for Context Cos. 

In context COS) users try to classify web pages based on the interest of them 

and their interest is operation systelns. The context is also given by the 20 

students and the basic level concepts detected in this context are shown in ta­

ble 4.1. (linux:0.406), (windows:O.362) , (rnac:O.410, osx:O.393, macosx:O.092) 

are all concepts about operation systerns include Linux, \Vindows and NlacOS. 

Under this situation, the evaluation results in table 4.2 show that given the 

context inforrnation (i.e., the tag weight vector), we can build the concepts 

which is consistent \vith people's expectation and the evaluation score with 

context information is 7.88 which is much better than the result \vithout the 

information (2.13). 
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Table 4.1 Basic level concepts detected in different contexts 
Context Basic Level Concepts 
context Cpl (xml:O.635) , (javascri pt: O. 599) , (smalltalk:O.651) , (htrnl:O.252) , 

(delphi:O. 743) , (sql:O.502 , database:O.4 76), ( cocoa:O.354, 
mac:O.213 ,apple:O.212,osx:O.226) , (haskell:O. 753), (python:O.812) , (ba-
sic:O.185) , (perl:O. 751) : (java:O.680), (lisp:O.633), (ruby:O.652) : (php:O.651), 
(c:O.238) , (c++:O.687, cpp:O.047) , (fortran:O.181) 

context Co s (linux:0.406) , (windows:O.362) , (mac:O.410, osx:O.393, macosx:O.092) 

Table 4.2 Evaluation of basic level concepts in Cpl and C08 

Cpl c os 

given context information : 8.16 7.88 
without context information: 4.22 2.13 

rrhese experirllents dernonstrate the existence of context and its effect on 

hUlnan concept learning process especially basic level concepts learning. In 

different contexts, the basic level concepts arc different . In addition, they 

also dernonstrate that, our rnethod outperforrns previous methods in detecting 

basic level concepts. The concepts detected by our method are approxilnate 

to hUlnan 's expectation. What is more , our method can detect different basic 

level concepts in different contexts while previous rnethods cannot. 



Chapter 5 

Potential Applications 

5.1 Categorization of Web Resources 

The exponentially increasing size of web pages creates a need of an efficient 

method to ca.tegorize and organize them. Hovvever categorizing web pages is 

a tinle consuming job for human as the reason that the content of web pages 

is various. In addition, there are many different types of resources in Internet 

such as photos (e.g., flickr l ), videos (e.g., youtube2 
) and rnovies (e.g. irndb3 

) . An efficient approach to categorize and organize web resources will benefit 

their future use. 

In this thesis , we provide an automatical approach to organize resources 

as a hierarchical category structure. The hierarchical category structure IS 

actually a taxonolnic (subclass) hierarchy. In other words , if category A IS 

a sub-category of category B, every instance of A IYlUst be an instance of B. 

This type of category structure is consistent with human thinking and an 

efficient structure for future sea.rching. Another character of our approach 

is that we do not require any training data. Given a set of resources , we 

can efficiently organize them in different categories. ()ur approach provides a 

possible solution of categorizing and organizing web pages and other resources 

1 http://www.flickr.com 
2http://www.youtube.com 
3http://www.imdb.com 
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such as photos, books and movies in Internet. 

5.2 Applications of Ontologies 

Ontologies have a lot of applications in the Serl1antic Web, 11lultiagent systems, 

information retrieval sy'stelns, etc. The ontology generation approach proposed 

in this thesis is designed to irnprove previous ontology learning rl1ethods and 

enhance the applicability of ontologies. In addition, ontologies generated by 

our approach have rnany irnrnediate applications, such as collaborative tagging, 

tag aided search and tag recolnmendation. 

Firstly, ontologies play an irnportant role in the Sernantic \Veb. The Se­

n1antic Web is a technological 1110vement \vhich tovvards a 11lore structured Web 

where resources are described by machine-readable ontologies. Accordingly, in 

the Se111antic Web agents can access infonl1ation automatically, resulting in 

more efficient and effective ini'orlnation processing. With ontologies, searching 

infonnation and resources froln the "Veb will becorne lnuch rnore efficient and 

effective because agents are able to understand the sem.antics of resources . In 

the Sen1antic Web, searching of infonnation is actually an action of querying 

an ontology to retrieve resources which satisfy some conditions[61] . 

Secondly, the sernantic relations between tags defined in ontologies can 

specify the searching and crawling process. As al~ example, if a search engine 

is asked to find sorne web pages about programrning languages, according to 

the ontologies generated in the PROGRAMl\1ING LANGUAGE data set, the 

engine will notice that the sub-concepts of "prograrnrning language" such as 

"Java", "C" and "PHP" are related vvith its target. These ontologies can 

also be used for knowledge representation in B2B interaction alnong sites and 

multi-agents communication. 

Thirdly, ontologies built based on selnantics in folksonornies will benefit 
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folksnornies and ilnprove the performance of collaborating systems. In folk­

sononlies, when user are choosing a tag to annotate ,;yeb resources or looking 

for resources related to a certain aspect (tag), through querying an ontology 

we can recomrnend some tags and resources for them to consider. 



Chapter 6 

Conclusion and Future Work 

6.1 Conclusion 

Ontology is essential for the Semantic Web and knowledge representation of 

Artificial Intelligence. As ontology building is a tilne consuming job for hunlan , 

much research is conducted on autolnatically extracting ontologies frorn texts 

and other resources. In this thesis , inspired by cognitive psychology especially 

basic level categories theory, we explore the rnajor problern of ontology learning 

froln folksonornies. This thesis presents a novel idea to make use of in1plicit 

sernantics in folksonornies. We present an algorithnl to generate ontologies 

with basic level concepts. This type of ontology is considered as cognitive 

basic and rnore acceptable and applicable by users. :rvloreover vve take context 

into consideration and successfully nl0del the effect of context on cognitive 

progress of human, especially concept learning. 

In our approach, we generate ontologies based on folksonomy tags which 

agree more closely with human thinking than those automatically extracted 

froln text . Folksonomies have many advantages over fornlal taxonomies [4] . No 

cornplicated vocabularies need to be learned for users. They create and apply 

tags freely. In addition, folksonomies are open-ended and therefore respond 

quickly to changes in the way users describe objects. These advantages attract 

a lot of users . Ontologies generated frorn folksonorny tags rnay represent rnost 
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users opinion about how to describe a web resource. We believe that these 

ontologies are easy to be accepted by others. However exploring ontologies 

frorn folksonornies faced many challenges due to following reasons: 

• Most existing ontology learning rnethods focus on learning from text 

of \\Tell-defined terms. However, tags are given by users freely which 

rnay not appear in a standard vocabulary. This uncontrolled nature of 

folksonon1Y tags causes many problems. One is ambiguity. People may 

use. the same word to present different rneanings. Another is synonYlU. 

Different words can express the same n1eaning. In addition, there are 

redundant noise tags that don't have any rneaning such as "todo" . 

• An ontology has a hierarchical structure. There are many relations be­

tween ontology terms such as hyponYluy and associative relations . How­

ever , tags in folksonornies are considered as in a fiat space. There are 

not any hierarchical relations anlong tags. 

Exploring ontologies from folksonoluies is not only valuable but also a chal­

lenging task. NI uch research has been conducted on this topic as we discussed 

in the background study chapter. However , their work focuses on hierarchy 

construction only, and they lack a principle for supervising the ontology extrac­

tion froln a human's perspective. In other words , they consider little on what 

is a rnore acceptable and applicable ontology for users . For the reason that an 

ontology provides a users' shared vocabulary to model a don1ain, we consider 

that it is necessary and benefit to construct ontologies frolu users ' perspec­

tive (i.e., taken how people thinking and using concepts into consideration). 

Compared vvith the previous research, our approach has three advantages as 

follows: 

• Our method provides an effective hierarchical categorization approach to 

organize large arnount of web resources. 



Chapter 6 Conclu8'ion and Puture Work 59 

• Our Inethod builds ontologies under a cognitive psychology theory, basic 

level categories [10]. The generated ontologies will be more consistent 

wi th hlllnan thinking and reused easily. 

• Our rnethod takes context into consideration. We formally rnodel con­

text in folksonornies and give a novel context aware rnethod for ontology 

learning. Context is an inlportant part in human cognitive process and 

have an effect on hurnan cognitive tasks. 

To the best of our knowledge, it is the first work on discovering basic 

level concepts in folksonomies and using them to construct ontologies. In 

experirnents , ontologies generated frorn three real-vvorld data sets dernonstrate 

the effectiveness of our approach on generating ontologies with basic level 

concepts. In addition, we consider the effect of context on concept learning and 

present a context-aware category utility to consider context in folksonon1ies. 

Through doing experiments on real world data set, we dernonstrate not only 

the existence of context effect but also the effectiveness of our Inethod on 

concept learning. 

6.2 Future Work 

This thesis presents a novel ontology learning approach. There are rnany po­

tential future directions of this work. 

Firstly, in this thesis, we present an ontology learning rnethod which is 

consistent with human cognitive behaviors. This method is inspired by the 

basic level category theory in cognitive psychology. The psychology character 

differentiates our Inethod from previous ontology learning Inethods. 'fhere still 

are a nUlnber of issues in cognitive psychology that can be used to enhance 

ontology learning and knowledge representation. As an exalnple, it is obvious 

that properties of concepts are correlated to each other and there are different 
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types of relations among properties. Ernpirical findings in cognitive psychology 

[20] [62] demonstrate that people do make use of this kind of inforn1ation in 

cognitive tasks . As a future research direction, we can further investigate 

this issue and ilnprove our approach. Moreover, the model of context in our 

algorithlll requires further development and enhancement. How to get contexts 

autonlatically should be taken into consideration. 

Secondly, taking fuzzy theory into consideration in our approach is valu­

able. Previous research on ontology has discussed the forInal lTlodel of fuzzy 

ontology ' [63]. According to fuzzy theory, an instance is not only categorized 

to one concept but has different typicality degree to different concepts. This 

consideration of ontologies is flexible and will benefit the searching process on 

the \f\Teb . In sorne dornains, such as searching for resources about fishes kept in 

an aquarium, user may not only be interested in fishes, but may also want to 

access information about other fish-like marine anirnals such as dolphins and 

whales, vvhich strictly speaking are not classified as fishes . 

Thirdly, using ontologies learned frorn folksonomies in real world applica­

tions is another important research topic. As an example, it would be useful 

to design a vveb search engine using these ontologies to assist its web searching 

task. The senlantic relations between tags can specify the searching task by 

recommending related super-concepts and sub-concepts for users when they 

input sorne concepts into the search engine. Designing nevv searching and 

ranking algorithms to use ontologies is essential for this type of application. 

We also can use context-aware rnethod to develop recornrnendation systerns 

which can recornmend different web resources to users ,vith different contexts. 

Finally, our algorithnl presented in this thesis is set to find out the local 

optimal of category utility and it would be interesting to use a global optirniza­

tion algorithrn such as genetic algorithrn and evolution algorithnl to optimize 

category utility in the ontology learning process. Because finding the global 

optimal result is a extremely time consuming job, how to design an efficient 
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algorithm to get close to the optimal result is also an interesting topic for 

future research. 
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