
Numerical Methods for Option Pricing under

Jump-Diffusion Models

WU, Tao

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

.Master of Philosophy

in

Mathematics

The Chinese University of Hong Kong

July 2010

統系馆書圖

M 19 AUG 2012 j l j

SYSTEMy^J

Thesis/Assessment Committee

Professor Nan Chen (Chair)

Professor Raymond H. Chan (Thesis Supervisor)

Professor Eric T. Chung (Committee Member)

Professor Qiang Zhang (External Examiner)

Abstract
The classical Black-Scholes model is known for its shortcomings in modeling em-

pirical price dynamics in daily markets, which reveals volatility smiles and heavy

tails. In the recent decade, the jump-diffusion models have arisen as remedies

for Black-Scholes. The present work concerns numerical computation of option

prices under jump-diffusion models, namely numerical solution to partial integro

differential equations and Monte Carlo method.

In the first part of the thesis, we propose a novel parallel Talbot method

(PTM) for solving jump-diffusion equations on option prices. After using stan-

dard spatial discretization, we represent the formal solution to the semidiscretized

problem as a summation of (/?-functions. To numerically approximate the matrix-

valued (^-functions, wc construct a Talbot quadrature based on the Dimford-

Cauchy integral. Moreover, we derive strategy for optimal parameterization of

parabolic Talbot contours. The above PTM yields a geometric convergence in

temporal direction, and therefore outperforms traditional time-marching meth-

ods. We report the effectiveness of PTM in the numerical experiments, particu-

larly in a parallel computing environment.

In the second part, we use the least squares method (LSM) to price American

options under Levy models. Essentially, LSM estimates the continuation value for

cach simulated path by least squares regression, and makes backward(-in-time)

induction on exercising the option or not. The drawback of LSM in implementa-

tion is that its memory requirement grows like 〇(mn), where m is the number of

time steps and n is the number of simulated paths. We propose a new simulation

method with memory requirement 0{m + n). The total computational cost is

always less than twice of that of the traditional method. In the numerical exper-

iments, we illustrate the efficiency of our method by pricing American options

under several typical Levy models.

2

摘 要

由於日常的市場價格呈現出“波動微笑”和“長尾”等特征，經典的Blaclc-Scholes

模型在模擬市場價格時存在缺陷。在最近的十年裡，“跳躍擴散模型”被提出以彌補

Black-Scholes模型的缺陷。這篇論文關注的是基於跳躍擴散模型的期權定價中的數

值計算。具體來說，這裡的數值計算方法有偏微分方程數值計算和蒙特卡洛模擬。

在第一部分的論文中，我們提出新的“並行Talbot方法”來計算期權價格的跳躍

擴散方程。在標准的空間離散後，我們可以把方程的解在形式上表示為一系列“cp函

數”的和。為了對這樣的形式解作數值逼近，我們基於Dunford-Cauchy積分構造了

並行Talbot方法。另外，我們還提出了對抛物Talbot路徑的最優參數化方案。以上的

並行Talbot方法在時間方向上可以達到幾何收斂，因此優於傳統的時間推進方法。

在數值實驗中，我們記錄了並行Talbot方法的有效性，尤其在考慮並行計算的情況

下。

在第二部分中，我們使用“最小二乘法”來計算Levy模型下的美式期權價格。從

本質上講，最小二乘法通過最小二乘回歸來估計每條模擬路徑上的持有價值，然後

(在時間上）向後歸納得出是否行使期權。最小二乘法在算法實現中的缺點是它對

內存需求的增長為0(mn)�這裡m是時間步數，而n是模擬路徑數。我們提出了新的

模擬方法，使得内存需求減少為0(m+n)的，而總計算量被控制在小於兩倍的傳統

方法。在數值實驗中，我們展示了新方法可以有效處理幾種典型Levy模型下的美式

期權定價問題。

3

Acknowledgements
I am most grateful to my supervisor Prof. Raymond Chan for creating me an

inspiring academic environment for the past two years. His enthusiasm and vision

in mathematics enlightens me and other people around him. In particular, I

would like to thank him for introducing me the subject of this thesis and for his

motivation and encourage throughout my thesis work.

I would also like to thank all faculty members at our math department, for

their devotion in teaching and their sharing of expertise during my six years at

the Chinese University.

My special gratitude goes to Prof. I-Liang Chern for his endless insights, and

to Prof. Michael Hintermiiller for his influence on my future research interests.

The technical support from Prank Ng and Stephan Chan on parallel computing

is also gratefully acknowledged.

Finally, I thank all TOTS teammates for their support all the time. I am

proud to be part of you.

4

Contents

1 Background and Organization 7

2 Parallel Talbot method for solving partial integro-

difFerential equations 9

2.1 Introduction 9

2.2 Initial-boundary value problem 11

2.3 Spatial discretization and semidiscrete problem . . . 12

2.4 Parallel Talbot method 15

2.4.1 (/^-functions and Talbot quadrature 15

2.4.2 Control on nonnormality and feasibility con-

straints 18

2.4.3 Optimal parameterization of parabolic Talbot

contour 22

2.5 Numerical experiments 26

2.6 Conclusion 32

3 Memory-reduction Monte Carlo method for pricing

American options 37

5

3.1 Introduction 37

3.2 Exponential Levy processes and the full-storage method 39

3.3 Random number generators 41

3.4 The memory-reduction method 43

3.5 Numerical examples 45

3.5.1 Black-Scholes model 46

3.5.2 Merton's jump-diffusion model 48

3.5.3 Variance gamma model 50

3.5.4 Remarks on the efficiency of the memory-reduction

method 52

3.6 Conclusion 53

3.7 Appendix 54

6

Chapter 1

Background and Organization

Ever since the seminal work by Black and Scholcs in 1973 [8], the principle of

arbitrage-free (or risk-neutral) pricing for financial derivatives has become the

cornerstone in the field of mathematical finance. Their work was later connected

and expanded with the theory of martingale, first due to Harrison and Pliska [25 .

We refer to standard textbooks [58, 7’ 50, 19] for more background on risk-neutral

option pricing.

Briefly speaking, in a market consisting of risky assets and options written on

those assets, the market is arbitrage-free if and only if there is a risk-neutral prob-

ability measure equivalent to the physical probability measure, see e.g. [19, The-

orem 3.5.1]. Suppose such a risk-neutral measure exists, then the arbitrage-free

price (or the risk-neutral price) of an option is given by the discounted expectcd

payoff under a (generally nonunique) risk-neutral measure, see e.g. [19, Theo-

rem 4.5.1]. The present thesis falls into the general framework of arbitrage-free

pricing.

In the thesis, wc consider jump-diffusion models that have been popularized

ill financial modeling during the past decade, cf. [14]. The classical Black-Scholes

model [8] is criticizcd for its oversimplification, as the asset price in the Black-

Scholcs model follows a geometric Brownian motion. However, the empirical

7

observation in real financial trading reveals that the implied volatility surface

often displays a volatility smile [36]. Moreover, the distribution of the asset

return, assumed to be Gaussian in the Black-Scholes model, exhibits a. heavy

tail [13], i.e. large moves of the market have decent probabilities to occur. As

remedies for Black-Scholes, the jump-diffusion models (or more generally the Levy

models) contain discontinuous jumps in addition to the classical diffusion, so that

the phenomena of the volatility smiles and the heavy tails can be generically

accounted for [14].

It is worth noting that jump-diffusion models are (linear) models for an in-

complete market, where no unique risk-neutral measure (or no perfect hedging

strategy) exists. We refer to the reference [14] for further background on modeling

aspects of jump-diffusion models, such as how to choose the pricing risk-neutral

measure under jump-diffusion models (so called "model calibration").

Along with the new models come the new challenges on numerical (pricing) as-

pects. The present thesis concerns numerical computation of option prices under

jump-diffusion models. The rest of the thesis divides into two major method-

ologies: numerical solution to partial (integTO-)differential equations for Chapter

2 and Monte Carlo simulation for Chapter 3. Each chapter is self-contained,

with introduction, problem formulation, methodology, numerical experiments,

and conclusion therein.

8

Chapter 2

Parallel Talbot method for

solving partial integro-differential

equations

2.1 Introduction

The option price, where the underlying asset price follows jump-diffusion pro-

cesses, is governed by partial integro-differential equation (PIDE) [14]. The valu-

ation of option prices via numerically solving PIDE has been considered by many-

authors [5, 3，15, 18，37，52，20]. However, most authors consider the method

of lines, yielding a polynomial temporal convergence rate (usually up to 2nd-

order) due to stability constraints from the stiffness. Andersen and Andreasen [5]

propose an alternating direction implicit (ADI) operator splitting method with

a 2nd-order temporal accuracy; Almcndral and Oosterlee [3] use a 2nd-order

backward differentiation formula (BDF2); Cont and Voltchkova [15] consider the

implicit-explicit (IMEX) scheme, i.e. implicit for the differential operator (stiff

part) and explicit for the integral operator (nonstiff part), with Ist-order accu-

racy; d'Halluin, Forsyth and Vctzal [18] consider Crank-Nilcoson time marching

9

schemc with 2nd-order accuracy; Toivanen [52] performs the implicit Rannacher

time stepping with nonuniform grids; Feng and Linetsky [20] accclerate the IMEX

scheme with Richardson extrapolation, attaining a temporal accuracy with arbi-

trary order.

Since the pioneering work by Talbot [51], the time discretization, based on

contour integration and the consequent quadrature rule, has been proposed and

developed for parabolic problems, see e.g. [48, 49，21, 33，22, 31，34, 38，54，

55，23, 57, 56]. After spatial discretization, the initial-boundary value problem

(IBVP) is rcduced to the semidiscrete equation. Further after time integration,

one is left to evaluate the solution formula consisting of so-called (/^-functions.

These Talbot-typc methods numerically approximate the (/^-functions based on

the Dunford-Cauchy integral representation with deformed Talbot contour (often

parameterized as a parabola, a hyperbola, or a cotangent contour). Then one dis-

cretizes the integral with trapezoidal rule and truncates the infinite series. This

proccss, named Talbot quadrature, implicitly constructs a rational approximation,

which attains a geometric convergence rate. A promising feature of the Talbot-

type methods lies in its two levels of parallelism, i.e. with respect to various time

points and with respect to the summands in the Talbot quadrature formula. For

this reason, wc refer to this approach as "parallel Talbot method" (PTM) in the

present work. Notably, the performance of the PTM can be much improved by op-

timized parameterization for the aforementioned contours, cf. [55’ 34，57]. Thus,

we see potential applications of PTM for high-performance computing purpose,

e.g. in option pricing.

Surprisingly, such applications are not yet widely seen in the literature. The

obstacles arc the followings. First of all, the problems from applications, such

as the scmidiscrotized jump-diffusion equation, are often nonnormal. In this sce-

nario, the contour in [57] could break down, see e.g. [56] for convection-diffusion

problems. Secondly, although the Talbot contours for sectorial operators are con-

10

sidered for nonnormal operators, see e.g. [49, 31, 34], the translation from the

assumptions to the specific problems remains largely unclear. We aim to bridge

the gap by applying PTM to the nonnormal jump-diffusion problems in finance.

We control the (pseiido)spectrum of the nonnormal jump-diffusion operator by a

parabola, based on which we propose a parabolic contour with optimal param-

eterization. In addition, our proposed Talbot quadrature works for general (/?-

functions using so-called common poles, which greatly reduces the computational

cost. In the numerical experiments, we verify the optimality of the proposed

contour and show the competiveness of PTM against the extrapolation IMEX

method (ext-IMEX) on parallel machine.

The remaining sections in this chapter are organized as follows. We formulate

the initial-boundary value problem for option pricing in Section 2, and semidis-

crctizc the problem in Section 3. We present PTM in details in Section 4. The

numerical results are provided in Section 5. Section 6 concludes the chapter.

2.2 Initial-boundary value problem

Under a given risk-neutral measure, the price of a stock is modeled as St = Ke^^

such that E[S't|S'o] = where <S"o is the current stock pricc, K is the strike

price at maturity, and is a (finite-activity) jump-diffusion process [14]

satisfying Xq = \og{So/K) and at time 力〉 0，

1 f Nt \
dXt = (r 一 q — - XHi)di + adWt + d ^ .

\n=l /

Here r > 0 is the risk-free interest rate, g > 0 is the continuous dividend yield,

cr > 0 is the stock return volatility, Wt is a standard Brownian motion, Nt is a

Poisson proccss with intensity rate A > 0, (Jn)nLi is a sequence of independent

identically distributed random variables from a given distribution f [x) , and k 二

/狀(e^ — l)f(x)dx is the compensation rate of a Poisson jump.

11

As in [3, 15, 18, 52], the value of an option u(t, x) on the stock can be obtained

by solving the initial-boundary value problem (IBVP) on the computational do-

main [0’ T] x n

石 = � 2 @ + cii— + aoU-\-X J u { t , x)f(x - y)dy, (r, x) G (0’ T] x O; (2.1)

u{0, x) = i l ; { x) , X e M; u(t, x) = R{x), (t , x) e [0’ T] x (R\Q). (2 . 2)

Here T = T — t, a。= (H = r _ q — <7̂ /2 — Xk, clq = —r — A, ip{x) is the

payoff function, e.g. ip{x) = max{Ke^ — K, 0) for a call, and the rebate function

R{x) is imposed wherever x G

Note that the IBVP (2.1)-(2.2) is a localized problem, as we only need to solve

?i(r, x) on the bounded time-space domain [0, T] x Q. This IBVP framework is

robust in handling European options and exotic barrier options. For a European

option, we introduce a change of variable ii(r, x) = x — rr), and then solve

(2.1)-(2.2) with modified coefficients ai — ai— r, do = ao-{-r. For computation,

wc take := [x.x] to be the localization domain and impose the asymptotical

boundary condition R{x) := i / j { x) . As x —oo and x oo, the localization

error dccays exponentially with the size of the domain O, cf. [15]. For another

example, consider an iip-and-oiit barrier option with upper barrier U. Different

from the European option, we do not need the change of variable for u. Besides,

wc take X = U, B.{x) = 0 for x > U, and B.{x) = for x < U. We remark

that with appropriate change of variable, we have that R is r-independent.

2.3 Spatial discretization and semidiscrete prob-

lem

We discretize the PIDE in space by finite difference as considered in [3, 15，18’ 52].

Let Xrnin = 3：0 < 工1 < ... < Xm =工max，Ax = (̂ max — Q = [x, xj =

[xiniii + Aa;/2, Xrnax — Ax/2], and x) be semidiscretizcd into the vector u(r)

12

with (u(r))j 三 u(j,Xj). In the following, we shall omit "(•)" after u and u given

no confusion.

For the differential operators, we use the 2nd-order finite difference

/ _ Uj+i - 2uj + Uj-i / � U j + i - Uj-i

V ^ y , 、 石 人 , ^ ^ .
For the integral operator, wc split the integral into two parts

[{•)dy= [{•)dy+ [[.)dy.
JR Jfi JR\il

We approximate the integral over Q. with a trapezoidal rule

» M-l
/ u(丁, y)f(y - Xj)dy ^ Ax^^ nkf{xk - x j) .

k=i

In matrix form, we write

n 上 • 」 . r di 2a2 X ai 1 , .

D = tndiag + 一卜入 _ 一 ‘ j ’ （2.3)
- /(O) f{Ax)…/((M —2)A:r)

/ (-Ax-) • • • . . . ; … �
J = XAx ^ ^ , (2.4)

• • • . • .
/ (- (M —2)A:/;) /(O)

and let A := D + J.

Assumption 2.3.1. We use the following assumptions as in [3，18] that

(1) r > 0;

(2) a2 > |aiA:c|，.

(3) max. EfcJ.fc) < A.

Note that in practice the mesh size A a; is often small so that the condition

2.3.1(2) holds. Beside, siiicc J^k^jk is the trapezoidal approximation of an in-

tegral of the probability density f { x) over a truncated domain, the condition

13

2.3.1(3) also holds. With Assumption 2.3.1，the matrix —D — AI is diagonally

dominant M-matrix, and that the matrix —J + AI is a diagonally dominant M-

matrix. Therefore, the matrix —A is a diagonally dominant M-matrix [6], i.e.

A计 SO, Vj; Kjk > 0, Vj ^ k.
k

For the integral over R\Q, denoted by CW, we plug in the boundary condition

《:,;）=a/ R (y) f (y - x) d y , (2.5)
JR\Q

which can be calculatcd analytically or numerically [3]. This is referred to as the

truncation of large jumps, according to Cont and Voltchkova [15].

Then we combinc all the boundary terms into the vector b, i.e.

‘ + - if j = 0;

bj = ((x j) + + a,(Ax)-'], if j - M ;

^{xj), otherwise.
V

Thus, we arc left with the semidiscretized problem

^ u (r) = Au(r) + b, 0 < r < T; (u(0)),- = ^(xj). (2.6)

By performing the time integration on (2.6), wc have the formal solution

u(T) = <po(A)u(0) + <p,(A)h. (2.7)

The functions (po and cpi are defined by

V^o(A) = e^A，外 (A) = A — _ i). (2.8)

It is the goal of Section 2.4 to develop an efficient method to evaluate the solution

formula (2.7), or so-called (p-functions.

14

2.4 Parallel Talbot method

2.4.1 functions and Talbot quadrature

The family of (/?-fuiictions arises from the exponential time differencing methods

for first-order semilinear problems [16, 29, 40]. The (^-functions，with scalar

arguments, can be defined by the integral representation

仍(z— f \ (T - f o r I > 1 ; 仰 (z) = (2.9)
Jo -丄）！

or defined by the recurrence

灼 � = “) - T � - i / (/ - l) ! 灼 (0) = r for z > 1 ; 仰 ⑷ = e - .

(2.10)

Observe that these (/^-functions can be regarded as the regular part of the Laurent

series of e^^/z'
pTz 之 r p k

+ (2.11)

The formulae (2.9)-(2.11) for the scalar-valued (/^-functions extend naturally to

matrix-valued eases using the Jordan canonical form, cf. [28，26 .

We begin by evaluating (/7o(A)v for a given vector v. The evaluation is based

on the Dunford-Cauchy integral

(^o(A)v = ^ - A) - i v riz, (2.12)

where F is a Talbot contour encircling the origin and the spectrum of A in an-

ticlockwise sense. These Talbot-type methods are effective mainly because the

integrand in (2.12) decays exponentially fast as Re 2； —> -00. In the following, we

dcscribc how to construct the Talbot quadrature based on the contour integral

(2.12).

Wc parameterize the contour r : z{0), and rewrite the formula (2.12) as

1

V^o(A)v = / ； ^ e ? 溯 [z � I - A] - V (0) v 撒 (2.13)
J-oo 27",

15

Then we apply a midpoint rule to the integral on an equispaced grid 9j :— (j +

1/2)"，j e Z, i.e.

(^o(A)v 记 h f2 • e T补叫 z (�) I - A j - i z ' (� V . (2.14)
j—-oo

Finally wc truncate the infinite sum

^o(A)v ^ h 它去e了响)[z(�j)I - A] - i / (� � v . (2.15)
j=-N

Observe that the Talbot quadrature (2.15) implicitly constructs a rational ap-

proximation with poles and weights (cj�)) ^

N-l

j=-N
where

Now we turn to the evaluation of general ipi{A)v for / > 1. It leads to poor

convergcncc rate if we dircctly apply the Talbot quadrature. This is because the

functions {ipi{z))i>i are known to be of algebraic decay as Re z 一 - c o . More

precisely, this algebraic decay is due to the principal part (or the summation

on right hand side) in (2.11). Fortunately, we are allowed to ignore this term,

guaranteed by the following theorem.

Theorem 2.4.1. [47, Theorem 4.2.4] Suppose that a simple contour F encircles

the origin and the spectrum A . Then

<fii{A)v = ^ ^ ^ (z l - A) - iv dz. (2.16)

Consequently, in analogy with (2.13)-(2.15) we have
TOO 1 Tz{0)

釣(A)v = J d9 (2.17)

^ h £ 去i 令 (Z j I — A)-、％)v (2.18)
j = —oo 3
N-l

« h Y^ c f \ z j I - A) - ' v , (2.19)
j=-N

16

with poles and weights given by

一 j) , (2.20)

Now we see the significance of Theorem 2.4.1. Provided that

I 厂'1 = 0(1)， (2.21)

the Talbot quadrature with poles (and the corresponding error estimate)

applies to general (•pi functions, see (2.17)-(2.19). For this reason, we call such

poles the common poles.

Thus, our approximation to the solution formula (2.7) becomes

N-l N-1
u(T) E A)-iu(0) + /i E —A)- ib (2.22)

j=-N j=-N
N-l

= h J 2 (^jl - A) - i [cf^u(O) + c f b l (2.23)
j=-N

= R c (2/1 g (勺 I - A) - i [cfu(O) + cj'^b] I . (2.24)

Notice that by using the common poles we reduce the computational cost by half.

Due to the symmetry that z{Oj) = and z'(Oj) = z'(6Lj._i)，the summands

in (2.23) come in conjugate pairs, leading to another reduction of cost by half.

Thus, the remaining task is to solve N independent linear systems in the formula

(2.24), which adopts a parallel implementation.

Nevertheless, we have not touched upon how to choose the Talbot contour F

in (2.16) properly. This is the focus of the remaining of this chapter. In Sub-

section 2.4.3, we shall devise optimal strategy on how to parameterize parabolic

Talbot contour. Before that we need preparation on spectrum estimation for non-

normal jump-diffusion operator, which leads to feasibility constraints in contour

paramctrization.

17

2.4.2 Control on nonnormality and feasibility constraints

Wcideman and Trcfethcn [57] devised the optimal parameterization of Talbot

contour as a parabola. Yet they assume that the spectrum of A is restricted on

the negative real axis. Such a parabolic contour can fail for nonnormal operators,

e.g. in convection-diffusion problems, cf. [56], and also in jump-diffusion problems,

sec e.g. Figure 2.4 in Section 2.5. In this subsection, we investigate how to

control the nonnormal effect, and how such control leads to (explicit) feasibility

constraints in constructing parabolic Talbot contour for jump-diffusion problems.

We denote the infinitesimal generator of the jump-diffusion equation (2.1) by

A\=T> J , where

T^u 二 + ai— + aou, Ju = X j u(x + y) f (y) d y .

When acting on (a dense subspace of) the operator A can be diagonalized

by Fourier modes and is normal. However, it bccomes nonnormal after being

localized, truncated, and discretizcd into A, sec (2.1), (2.5)，and (2.3)-(2.4) re-

spectively. Due to the nonnormality, the eigenvalues of A are ill-conditioncd and

can move off the negative real axis into the left half complex plane. See the loca-

tion of the eigenvalues of A in Figure 2.2 for example. While the behavior of a

normal operator is often completely governed by its eigenvalues, it is difficult (and

meaningless) to analyze the eigenvalues of a nonnormal operator. Instead, it is

more meaningful to analyze the pseudospectra for nonnormal operators, cf. [53].

To estimate the pseudospectra, we employ techniques based on the symbol

curve and the associated winding number, as in [43，44, 56，53j. The symbol

curvc of A is given by

= -(i2UJ^-\-iaiUJ-\-do + \J'(uj), a; G E, where f(uj) = / f(y�c—dy. (2.25)
JR

Note that the symbol curve is not dosed. As in [53], we define

the winding number z) as follows. Let be completed

18

‘ Z - 一 … 、 、

1.5- \ / \
1. \ ？ \ \ Z2 �

0.5 • \ \

- � • - o X ^ ；

-0.5 • ^ ！

-1.5. / \ /

� Z
- 2 - 、 — — - 一

I I , ,, , . I 1 I I I I I

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Rez

Figure 2.1: For example, let the symbol curve be given by the solid curve. By

completing the symbol curvc (for large enough cJ) with a semicirclc, denoted by

the dashed curve, we find the winding number for the complex number Zi, Z2 and

zs to be 2, 1 and 0，respectively.

by a semicirclc centered at the origin, and then we have the winding number

z) for this closed curve. The winding number z) is taken

to be the limit of Z) for large enough uJ. See Figure 2.1 for illus-

tration.

With the symbol curve and the winding number, we can now define the critical

region of the jump-diffusion operator A by

For example, in Figure 2.2 the critical region is given by the shaded area. The

critical region is significant, as it characterizes the region where the resolvent

norm \\{zX- is large and the region where the resolvent norm is small (the

19

threshold is roughly 1)，cf. [43, 44, 56]. This is also illustrated by Figure 2.2.

Therefore, in order for the validity of Dunford-Cauchy integral (2.16), a feasible

Talbot contour F should enclose the critical region i.e. T C C\closure(E^).

-10 -8 -6 -4 -2 0
Re z

Figure 2.2: We plot the rightmost eigenvalues of A by the pluses. The contour

plot of the resolvent norm \\{zX—A)~^\\ are marked by the solid lines. The contour

levels, from left to right, represent 10®,..., lO�. The symbol curve 歪乂(o;) is

marked by the dashed line, and the associated critical region E^ is marked by

the shaded area.

However, it remains iinclcar how the above feasibility constraint can be ex-

plicitly imposed on the parameters of parabolic Talbot contours. To answer this

question, we need Theorem 2.4.2 in the following. Let Be denote the unit ball of

radius e centered at the origin.

Theorem 2.4.2. Suppose 0 < 6 < a2. Then there exists a parabola

^(u) = -(a2 — + iaiu + ao + p, u eR, (2.26)

20

with p> X, so that its critical region E^ = { z G C : / (^ ' (R) ; z) ^ 1} satisfies

+ C Svp,

for some e > 0.

Proof. Denote by the symbol ciirvc of V, i.e.

二 一020；2 + iaiuj + a。，uj € M.

Let 0 < (5 < (22 be given. We claim that there exists p > X so that the parabola

^'(a;) of the form (2.26) satisfies

min -屯(0；2)| > A + £, (2.27)

for some £ > 0.

Wc have

mill — 屯(0；2)|2

= m i n {a\{uJi — U2Y + [al{ujl - col) + + p]^}

> mill {aja^ + (a^a/? + Scu^ + pf] (a 三 a;! - U2, 三 a;i + UJ2)

= m i l l { + a? a + V ^ o ^ 2 一 A m ^ 2 + P + H ? c^.^Mz 1 L alP^ + af J a^jJ^ + af J

> mm ^ 2 r • take a = ^ 2
[a^P^ + af J V a妒 + a{ /

Without losing generality, assume 0 < Wi < uj2- Let L > 0 be fixed, then

(i) If U2 < L,

â P^ 4- a? — 4L2a4 + af'

(ii) Uuj2 > L,

4(3^ + al - 4a|a;| + afL-̂ o；!

二 4a| + afL-^
2p6

- 4 a | + afL-2'

21

Combining (i) and (ii), we have

； � - ’ 2) | 2 > - { j ^ ^ ， .

Hencc we can choose large enough p so that (2.27) holds. The claim is proved.

Moreover, since

max|<l>^(a;)-$pH|=m£ocA [办 <X [\ f (y) \ d y = X,
Y … JR

we have

C + Bx.

Together with the claim, we conclude that

^A + Bg： C S p + Bx+e C

•

In the following, we shall require a feasible Talbot contour F to enclose the

critical region E^ associated with the parabola 屯(a;) in Theorem 2.4.2. This is

sufficient to ensure that the Talbot contour encloses the original critical region

E^. The effectiveness of this nonnormality control is illustrated by Figure 2.3 in

the numerical experiments. Now we proceed onto how to parameterize a near-

optimal parabolic Talbot contour among all feasible ones.

2.4.3 Optimal parameterization of parabolic Talbot con-

tour

In this siibscction, wc devise optimal parameterization of parabolic Talbot con-

tour. As in [57], this relies on the error estimate of the Talbot quadrature (2.19)

in evaluating {(pi{A)v)i>o. To ease our discussion, we introduce the following

notations for (2.17)-(2.19)

/
oo oo N - 1

9(0)de, = 9(0j), GH,N = hJ2 9{0J).

j=-oo

22

Let ED and E^ denote the discretization error and the truncation error

ED 二 — G J ， E T = IIG, - GHMI (2.28)

The estimation on discretization error is given in the following theorem.

Theorem 2.4.3. [57, Theorem 2.1] Let w = 0 ic, with 0,c e R. Suppose

(j{w) is analytic in the strip —d_ < c < for some d+ > 0, d— > 0， and

g{w) 0 uniformly as |'u;| — oo in that strip. Suppose further that for some

M+ > 0， M- > 0，the function (j{w) satisfies

roo foo
/ \\g(e + ic+)\\de<M+, / \\g{9-hic.)\\d9<M.,

J — oo J — oo

for all 0 < c+ < d+ and -d- < c_ < 0. Then

where

ED — D =

Finally, the truncation error E? can be estimated by the magnitude of the

integrand evaluated at the boundary of the truncation domain [57], i.e.
E'^ = 0{\\g{hN)\\), asiV —oo. (2.29)

Now we are ready to parametrize the Talbot contour F as a parabola. Consider

the holomorphic mapping

2： = ^{iw + 1)2 + 7， where ^ > 0. (2.30)

The image of the horizontal line w 二 0 + ic, - o o < d < oo, under (2.30), is

z = /i[(l - c)2 一 02] + 7 + 2i^9{l - c). (2.31)

The contour F is given by the parabola (2.31) with c = 0. Weideman and Tre-

fcthen [57] considered the parameterization (2.30) with 7 = 0 and allows 一 1.

23

Here wc propose to add a horizontal shift 7 in (2.30) for the following two reasons.

First, the shift 7 allows the parabola to satisfy the feasibility constraint that F

encloses the critical region E^, see Theorem 2.4.2. Secondly, the shift 7 allows

\z~''\ = 0(1) so that the common-pole approximation to (^i)i>o is valid.

To apply Theorem 2.4.3’ let us consider (2.31) with 0 < c < d+. As d+

increases from 0 to 1, the parabola closes and degenerates into the negative real

axis. In the limiting case, a feasible parabola should enclose the critical region

S屯,see Theorem 2.4.2. This implies two constraints: one for the opening of the

parabola and the other for the horizontal shift 7. The constraints are given

explicitly as

4 M 1 - � 2 - ” � 1 , (2.32)

/ i (l - d +) 2 + 7 > ao + p, (2.33)

for some valid p in Theorem 2.4.2. On the other hand, the condition 二 (9(1)

for the common-pole approximation, sec (2.21), implies that p should be bounded

away from the origin. Note that as p increases from 0，we will sacrifice a fraction

of accuracy in approximation of (fo, but we will be compensated significantly with

the accuracy in approximation of {(pi)i>i- In our numerical experiment in Section

2.5，we will see that an appropriate p is available to strike a balance. In practice,

wc can choose p = 0(1) as suggested by Schmelzer [47].

According to Theorem 2.4.3, we have E^ = Since we aim to

minimize E^ (or to maximize d+), wc push (5-^0+ and take the equality for

(2.32), i.e.

= 1 - (2.34)
+ �)

Thus, we have

五 + � + P [- ? (1 - 命]) ， a s " " ^ � .
Again consider (2.31) with —d— < c < 0. As d- increases from 0, the parabola

widens and shifts towards right. Note that the growth of ê ^ contributes to the

24

bound M一, i.e. M一(cL) = 0 (e� (i+q2+7j) . Then by Theorem 2.4.3, we have

E? = 0 I exp 7>(l + d_)2 + T7 — ^ .
V L �</

When d_ = 7r/{Tiih) — 1, EE attains the minimum

= exp + T7 + — , as " — 0.
V L T̂ ih? /1�乂

Finally, the truncation error E^ is estimated according to (2.29) as

ET = 0 (exp [T/i(l - h^N'^) + T7]) , as h 0 .

Sincc we are minimizing E^ and E'̂ (or minimizing 7), we take the equality for

(2.33). Together with (2.34), we have

a?
J = ao-h p -

4a2
As in [57], we treat the min-max problem

approximately by balancing the asymptotical rates

- f (1 — = = T K I - 師 E m (2.35)

Solving the scalar equations (2.35), e.g. by the Matlab routine solve, we obtain

the optimal parameters, //, and /?-*, for the parabolic Talbot contour.

Thus, given the parameterization of the Talbot contour, we can obtain the

poles and the weights in (2.20), plug into the quadrature formula (2.24), and

compute the numerical solution of the option price. We remark that the cost for

computing the optimal parameters is negligible, compared with the main cost of

solving N large linear systems in (2.24). However, the parameterization is crucial

for accuratc numerical solution, as wc will see in the numerical experiments, see

e.g. Figure 2.7.

25

2.5 Numerical experiments

Example 1

In the first example, we test the proposed parallel Talbot method (PTM) on

a European call option under Merton's lognormal model [39], where the jump

distribution f{x) in (2.1) is given by

, 1 ((.7； - /1)2\
/ M e — ⑷ =

The following parameters are used: K = 100, r = 0.05, q = 0.02, a —

0.1，T = 1, X = 2, jl = -0.3, a 二 0.4, and k = 斤 — 1 . We take the

truncation boundary :Cmin 二 - 3 , rCmax = 3 and the mesh size A:c = 10"^ (or

M = 6,000). We are interested in the option price at Sq = K. Except for Figure

2.5，all the errors in the numerical approximation arc calculated with the exact

price 24.503308 (by analytical formula [39]).

In Figure 2.3, we verify our estimation for the critical region S儿 see Theorem

2.4.2. Observe that the eigenvalues of A move off the negative real axis. We

remark that in our experiment the condition p> X'ls sufficient and necessary for

the parabola 屯(cu) to enclose E乂.

Figure 2.4 reveals the failure of the Talbot contour in [57], as it intersects the

critical region E^ and traverses the spectrum of A. Our remedy is to include

a shift 7 in (2.30) and impose the feasibility constraints, sec (2.32)-(2.33). The

devised Talbot contour is plotted by the solid line with 16 quadrature nodes

marked with dots.

In Figure 2.5，wc further the comparison of the contour in [57] and the contour

wc propose. We test the scalar approximations by the two contours to (po(z) and

(pi(z), see (2.19), on the vertical line Rc z = - 5 . Our observation is that the

accuracy by the contour in [57] is higher when z lies on the negative real axis, but

soon dccreascs as z moves away from the real axis. To the contrary, the accuracy

26

251 1 1 1 ‘—

E 0 --，〜': + ^ -
� + i /

-5 人
上++++十 + -一

-15 一 + + _

- 2 0 -

-251 ‘ ‘ ‘ ‘~
-20 -15 -10 -5 0

Rez

Figure 2.3: We plot the rightmost eigenvalues of A by the pluses, the symbol curve

(I>_4(a;) by the solid line, its asymptotical approximation by the dashed line

(which coincides with the symbol curve asymptotically), the critical region E^

by the shaded area, and the parabola ^'(a;) in Theorem 2.4.2, with p — \ and

(5 = 0+，by the dash-dotted line.

by our contour is more uniform (as the curves are almost flat in the figure) inside

the region Evp, or |c| < 13.84 according to Figure 2.4. This observation provides

a heuristic explanation on why our proposed contour is superior to that in [57

for the nonnormal problem.

Back to PTM for the option pricing problem, Figures 2.6-2.8 conccrn opti-

mal parameter selection and error estimate (for option prices). Recall that the

common-polc approximation for (po and (pi require p = 0(1). As p increases from

0, we sacrificc the accuracy in approximation of cpo, but gain the accuracy in

approximation of As p becomes even larger, the accuracy in both approxima-

tions will drop as expected. In Figure 2.6, we find that it strikes a good balance

27

25 1 1~ 1 1 1

2 0 - 、 、 ： 々 、 、 、 、 、

. 一 - 一 — \ Z -

- 2 。 一 " - ^ ^
一251 1 1—-S— 1 1 1——
-20 -15 -10 -5 0 5

Rez

Figure 2.4: The pluses and the dash-dotted line are the same as in Figure 2.3.

The parabolic contour proposed in [57] is plotted by the line marked with circle.

The parabolic contour wc propose for nonnormal problem is plotted by the line

marked with dot. In the limiting case, the parabola (2.31) with c = see (2.34),

is plotted by the dashed line. The dotted vertical line is Re 2； = - 5 .

to take p = 2 (marked by the cross) for Example 1.

Figure 2.7 accredits our strategy to estimate the optimal parameters and

h*. In the left part of the figure, or for small ",’ the error E^ dominates; in the

northeast sections, the error EE dominates; and in the south and southeastern

sections, ET dominates. Although our estimate in Section 2.4.3 is asymptotical,

the resulted parameters, = 10.2419 and h* = 0.1430，are indeed near-optimal

for small N{= 8).

Figure 2.8 illustrates the convcrgencc of PTM. Note that we can calculate

E(N) by solving fi and h in (2.35) for each positive integer N. Then we have a

priori error estimate given as 0(6—五'(")"）’ where E'(N) ^ E{N) - E(N - 1) =

28

—1.5014 in this example. We observe that our priori estimate is consistent with

the experiment data.

Example 2

We address the issues of implementation and complexity with a second example,

where we test PTM on an up-and-out put option under Kou's double exponential

model [30]. The jump distribution f { x) in (2.1) is given by

, , 、 [m e - ” J , iix>0-,
/kou � = <

[(1-p)772e”2x，if a； < 0.

As wc will compare the performance of our method and that of the extrapolation-

implicit-explicit method (ext-IMEX) in Feng and Linetsky [20], we use the pa-

rameter set therein: K = 100, r = 0.05，q = 0.02，(j 二 0.1, T = 1, A =

3, p = 0.3, T]i = 40, 7/2 = 12, the upper knock-out barrier U = 120, and

hi = - 1) —1 - (1 - p)(r}2 + l) - i . In this example, we set x^in = 一2’ aĵ ax =

\og{U/K), p = 1. Again, we are interested in the option price at SQ = K’ for

which the exact pricc is 5.75775 (by standard Crank-Nicolson method).

In PTM, we need to solve N independent linear systems, see (2.24). In our ex-

periment, cach linear system is solved by the generalized minimal residual method

(GMRES) with left preconditioner Zjl - B. Given the spatial discretization in

Section 2.3, wc construct the tridiagonal matrix B by matching the tridiagonals

of A. The effectiveness of this simple preconditioning strategy is illustrated by

Table 2.1. For a fixed residual tolerance the iteration numbers of precon-

ditioned GMRES for N(=S~) linear systems are independent with the matrix size

M. Sincc cach matrix-vector multiplication is of complexity 0{M log M) due to

fast Fourier transform (FFT), and since the inversion of a tridiagonal system can

be done with 0(M) operations by sparse matrix solvers, the total complexity of

PTM is therefore 0{NM log M).

29

Tabic 2.1: Iteration numbers of preconditioned GMRES

the j-th linear system

M 1 2 3 4 5 6 7 8

682 14 14 13 12 12 11 10 9

1364 14 13 13 12 11 11 10 9

2728 13 13 12 12 11 10 10 9

5456 13 12 12 11 11 10 9 9

10912 12 12 11 11 10 9 9 8

21824 12 11 11 10 10 9 8 8

In the following, we compare the performance of PTM and that of ext-IMEX

[20]. For both methods, we assume the same spatial discretization with fixed

mesh size Ax = lO—�or M = 10912, yielding a minimal error around 2 x

In the s-level ext-IMEX, we use the Ist-order implicit-cxplicit Eiiler scheme with

initially 10 time steps. For the j-th level, j = 1,..., s, we do the time marching

with 10j times steps. The last step is to combine the results at all s levels and

complete the extrapolation tableau. Note the total number of time steps in ext-

IMEX n ^ s^/2 and the error .fext-iMEX = 0(e-Civ^i�g")’ cf. [20]. As the runtime

冗xt-iMEX is proportional to n, wc have the following estimate for ext-IMEX

^ext-IMEX = 0(exp[—(72(7;xt-IMEX)lZ2log(7;xt-IMEX)])- (2-36)

In PTM, wc balance the approximation error of Talbot quadrature and that

of GMRES iteration. Our choice is to take the number of preconditioned GMRES

iterations m, to be proportional to iV + where N is the number of quadrature

nodes and (3 is some positive integer. Note that the total amount of work is

0{mN), or + (3N). Therefore, the complexity of 7^aib�t(A0 is at almost

quadratic. Nevertheless, it can also be estimated as a power function Traibot =

0[N(、), where 1 < a < 2. Together with the exponential convergence of Talbot

30

quadrature, we have the following estimate for PTM

^̂Talbot = C)(CXp[-C3(7ralbot 产]).

Figure 2.9(a) shows the experiment results on a single-processor machine. In

this experiment, wc find approximately a = 1.2838, or 1/a = 0.7790 > 0.5.

Although PTM is more favorable in terms of the theoretical estimate, the figure

shows that ext-IMEX outperforms PTM before both two are close to attain the

minimum error around 10—6.

Now we consider the parallel implementations with minimum communication

for both ext-IMEX and PTM. We assume that both methods attain reasonably

good accuracy with s (for cxt-IMEX) and N (for PTM) less than the maximum

number of processors available. For ext-IMEX, we distribute totally s indepen-

dent levels of time marching schemes to s nodes. After all time marching schemes

finish, we collect the results from each computing node and complete the extrap-

olation tableau. Note that the error estimate (fext-iMEX 二 O(e-Civ^iogn) remains

valid, but the runtime T̂ xt-iMEX becomes proportional to s, since it is determined

by the level with the most time steps. With n = s^/2, the estimate (2.36) changes

accordingly

<^ext-IMEX = 0(cxp[—C47^xt-IMEX log(7^xt-IMEx)l)•

For PTM, we solve totally N independent linear systems by preconditioned

GMRES iteration on N computing nodes separately, and then sum the results

as in the formula (2.24). Since the work is distributed evenly to N nodes, the

runtime T̂ aibot rcduccs to a multiple oi N + So

^Talbot = 0(cxp[—Cs^Talbot + CefJ]).

In Figure 2.9(b), we observe that for the error less than around 10"^, PTM

outperforms ext-IMEX. In fact, the slope (in magnitude) of the log-error for PTM

nearly doubles that for ext-IMEX. Due to the effect of the intercept ext-IMEX

is more suitable for low-accuracy computation.

31

The experiments are implemented on the Linux Cluster—Organon [1], with

cach computing node installed with Matlab v7.1.0.183 (R14) Servicc Pack 3 and

MatlabMPI [2].

2.6 Conclusion

In this chapter, we introduce a novel parallel Talbot method (PTM) for solv-

ing the initial-boundary value problem arising from the jump-diffusion model

in option pricing. PTM yields a geometrically convergent time quadrature, and

therefore outperform traditional time-marching schemes of polynomial-order con-

vergence. In particular, we devise optimal parameterization of parabolic Talbot

contour, by balancing the asymptotical error decay with feasibility constraints.

Our contributions are twofold: first, we derive explicit conditions on the con-

trol of the (pseiido)spectriim of nonnormal jump-diffusion operators; second, we

consider common-polc approximation for general (/̂ -functions, thus greatly sav-

ing computational cost. In the numerical experiment, we see that the optimal

parameterization of Talbot contour is effective,and that PTM is competitive on

parallel machine.

32

⑶中0
1 J 1

10。-

1 。 - 2 ： ^ Z .
/ 2 /

0) 10 . /
/

/
/

1 0 - 6 .；
/ . / M

10"°- ‘ • •
0 5 10 15 20

-5+ic

(b) (})i

1 0 ° -

广〜〜一
/

10-2- / z

s / X
态 10-4 / Y -

/ /

10-6- / -——

10"°' ‘ • •
0 5 10 15 20

-5+ic

Figure 2.5: We plot the errors of scalar problems (rather than option pricing) for

approximating + ic) in (a) and (fi(-5 + ic) in (b), where 0 < c < 20 for

both. Ill each figure, the dashed line is the error for the contour in [57] and the

solid line is that for our proposed contour.

33

10-3j . . .

讓，

10-60 ^ 2 3 4

P

Figure 2.6: We plot the error as the shift parameter p varies. The optimal choice

p 二 2 is marked by the cross.

0.3pn \ ‘

5 10 15

Figure 2.7: This is the contour plot of logio |̂ TalbotI, with N = 8, p = 2, for

different choices of // and h. Our parameter estimate that fi* = 10.2419, h* =

0.1430, see (2.35)，is marked by the cross.

34

10�I . . • •

10 ‘ ‘ ‘ ‘
⑴ 0 2 4 6 8 10

N

Figure 2.8: The error, with optimal choice of parameters, /j*〔N) and h*{N), is

plotted by the solid line. The priori error estimate 0 (e - i . 5 � i s plotted by the

dash-dotted line.

35

(a) single-processor

6 \ 10 -e-ext - IMEX •
I 一丨MEX

10� IQI
runtime

(b) multi-processor

'�.• I
1 0 " ®] - ^ PTM v ^ ^ .

0 0.5 1 1.5 2 2.5
runtime

Figure 2.9: We plot the runtime (in sccond) vs the error for the parallel Talbot

method (TV = 1,...,7), those for ext-IMEX (s 二 1，...，7)，and those for the 1st-

order IMEX method (only in (a)). The experiment on a single-proccssor machine

is shown in (a) and that on a multi-proccssor machine (with a maximum of eight

processors) is shown in (b).

36

Chapter 3

Memory-reduction Monte Carlo

method for pricing American

options

3.1 Introduction

It is well known, sec e.g. [24], that with the arbitrage-free principle the option price

is given by the discounted expected payoff under certain risk-neutral measure.

This leads to option pricing by the Monte Carlo method, for which the first

application was made by Boyle [9] in 1977. Sincc then, Monte Carlo method

has been a popular tool in pricing financial derivatives [24]. Yet, Monte Carlo

method is known to have difficulties in handling American-style options with

early exercise feature. In 2001, Longstaff and Schwartz [32] proposed a practical

algorithm, named least squares method (LSM), to price American options. Their

method is based on a backward-in-time induction, where at cach time step the

continuation value of the option is estimated by least squares regression.

However, one drawback of LSM is that, in order to compute the intermediate

exorcise prices at all time steps, it requires the storage of all asset prices at all

37

time steps for all simulated paths. Thus the total storage requirement grows like

0(mn) where m is the number of time steps and n is the number of simulated

paths. The plain Monte Carlo method, referred as the full-storage method in

this chapter, is therefore computationally inefficient since the accuracy of the

simulation is severely limited by the storage requirement.

This storage problem can be alleviated by "bridge methods" such as the Brow-

nian bridge [12], the inverse Gaussian bridge [45], and the gamma bridge [46] —

where the memory requirement can be reduced to O(nlogm). Nevertheless, one

drawback is that a specific bridge method can only work on the corresponding

model that the price of the underlying asset follows. Thus the Brownian bridge is

suitable for Brownian motion, the gamma bridge for the variance gamma process,

and so on. That is to say, all bridge methods are model-dependent, which limits

their use in applications.

In this chaptcr, we develop a mcmory-rcduction method, which does not re-

quire storing of all intermediate asset prices. The storage is significantly reduced

to 0(m + n). Coupled with the least squares method proposed in [32], our

memory-reduction method is applicable to the general class of exponential Levy

processes. The main idea of our method is to first generate the price process

forward until the expiration time, and to store only the seeds of the random num-

ber sequences at each time step. When computing the option prices backwardly,

we recompute the just-in-time asset prices using the corresponding seeds. Since

the prices arc recomputed cxactly, the memory-reduction method gives the same

result as the full-memory method. The additional computational cost is the cost

of regenerating the random numbers corresponding to the asset prices. The to-

tal computational cost is therefore always less than twice that of the full-storage

method.

The remainder of the chapter is organized as follows. Section 2 reviews the

exponential Levy processes as well as the full-storage method. Section 3 gives

38

the background of random number generators and the concept of seeds. Section

4 introduces our mcmory-reduction method. In Section 5, we show how the

memory-reduction method is applied to specific models — viz. the Black-Scholes

model, Merton's jump-diffusion model and the variance gamma model. Numerical

results are provided there to show the efficiency and accuracy of our method,

by comparing it with methods from other well-known approaches. Concluding

remarks are drawn in Scction 6.

3.2 Exponential Levy processes and the full-storage

method

Let the risk-neutral price dynamics be modeled by the exponential Levy process

St = SoCxp{rL-i-Lt). (3.1)

with the risk-free rate r and a Levy proccss Lf A Levy process Lt is a stochastic

proccss with stationary independent increments, continuous in probability, having

sample paths that arc right-continuous with left limits ("cadlag"), and satisfying

LQ = 0. We note that the increments, L^-LT for any s > T, are independent if the

increments Ls — Lt and L^ — Ly are independent random variables whenever the

two time intervals [力’ s] and [v, u] do not overlap. The increments are stationary

if the distribution of any increment Ls - Lt only depends on s — t\ and therefore

increments with equally long time intervals are identically distributed.

We first review the Monte Carlo simulation for computing American-style

options. First the time horizon is discretized into m time steps with equal length

A 力 (T - tQ)lm as to < t^ < ... < Un = T, or tj = to + jAt, where to is

the current time and T is the expiration date of the option. Let Ljj denote the

realization of Lt on the i-th path at time t j . They are computed by adding the

increment AL^j ：二 Li’j — Li’j_i to recursively at each time step. Thus

39

the whole path simulation process is to simulate the random numbers that give

ALij. We will denote by Sj j = {e'^jj^tfi the ordered set of [0,1] uniform random

numbers used in generating ALjj. Here rjij is the number of random numbers

required to generate AL^j. It is different for different process. The outline for a

general of path simulation procedure is given below:

Algorithm 3.2.1. (Path simulation)

For-loop: i = 1,2,..., n

Set Li’o — 0

For-loop: j = 1,2, . . . ,m

1. Get the increment ALi’j by generating E^j

忍 . L i j — h j - i + ALij

End for-loop

End for-loop

Algorithm 3.2.1 simulates the paths and then stores all intermediate asset

prices Sij for later computation of the option prices, hence the storage require-

ment grows like 0(mn). We call this the full-storage method. Once we have all

the intermediate asset prices Sij, we can price Amcrican-style options using the

least square method (LSM) suggested by [32]. Let us recall it here. At the final

cxcrcise date T, the optimal cxercise strategy for an American option is to exer-

cise it if it is in the money. This can be done as the terminal asset prices Si’m are

available for cach path i. However, prior to T the optimal strategy is to compare

the immediate exercise value with the expected cash flows from continuing, and

then exorcise if immediate excrcise is more valuable. In the full-storage method,

the intermediate asset prices Si’j are available for each path i and at each time

step j . Thus the key to optimally exercising an American option is to identify

the conditional expectcd value of continuation. In [32], the cross-sectional in-

formation in the simulated paths is used to identify the conditional expectation

40

function. This is done by regressing the cash flows from continuation on a set

of basis functions depending on the current asset prices Sij. The fitted function

from this regression is an efficient unbiased estimate of the conditional expec-

tation functions, from which one can estimate an optimal stopping rule for the

option.

Numerical illustration of LSM for pricing American put options under the

Black-Scholes framework can be found for instance in [32]. The computational

complexity of the full-storage method is 0{mn).

3.3 Random number generators

In Step 1 of Algorithm 3.2.1’ in order to get AL^j we need to generate a set of

[0,1] uniform random numbers {S^j} for each time step j on each path i. Most

programming softwares already have built-in functions to generate [0，1] uniform

random numbers. In MATLAB, we can initialize the pseudorandom number

generator with seed d by the command randC'seed' ,d), and then generate a

pseudorandom sequence {e^} by repeatedly using the command rand. In MAT-

LAB, {ejt} is generated by a simple multiplicative congrucntial generator [41,

Chapter 9]

do = d, 4 = adk-i + c mod M, for A; > 1; Ek = d ^ / M . (3.2)

The parameters in (3.2) are chosen as a = 16807, c 二 0, M 二 - 1’ due to

Park and Miller [42],

Thus a pseudorandom sequence is actually not random but deterministic, in

the sense that it is generated according to some formula and hence can be regen-

erated cxactly if the seed do is known. For example, the MATLAB commands

rand('seed' ,d)；

e=rand;

41

will output different e if the seed d is changing every time, but output the same

e if d is fixed. By extracting and remembering a proper seed, we can regenerate

part of a pseudorandom sequence as we desire. More specifically, suppose we

have already generated a sequence {saJLi, and then we want to regenerate only

{£k}k=q： i.e. the part of the scqucnce beginning at £g. All we need is to extract

the seed after generating Eq-i. The secd-extracting command in MATLAB is

rand('seed') . Thus given the sequence {£a;}�=i generated by

randn randn c=randn('seed') . , , randn randn
> e i . . . > £q-i > extract seed c > Sq . . .

wc can regenerate {skjl^p by

randn('seed',c) , , randn randn randn randn
)• set seed c > ê > £q+i ^ £p

Some computer languages only provide [0,1] uniform random numbers. When

we simulate Levy processes, we will also need to generate non-uniform random

variables such as the standard normal random variables, Poisson random vari-

ables, and the gamma random variables. Various kinds of methods, say the

inverse transform method and the acceptance-rcjection method, can be used to

obtain non-uniform random variables based on [0,1] uniform random numbers.

For standard normal random numbers, the most commonly used method is the

Box-Muller transformation [17, pp. 235]. For Poisson random variables, the in-

verse transform method is a standard method [24, pp. 128]. For completeness,

we provide the Best's generator for the gamma random variables in the Ap-

pendix, cf. [17, pp. 410 and pp. 420]. We will be using these methods to generate

the needed random variables. In the following, we will use Z � A / ^ O , 1) and

£ � Z ^ O , 1] to denote random numbers Z and e distributed as standard normal

and [0,1] uniform respectively.

42

3.4 The memory-reduction method

In this scction, we present our memory-reduction method which does not require

one to store the intermediate asset prices when computing the option

prices. In this method, each increment AL^j is generated twice without being

stored while the corresponding intermediate asset price Sij is generated only once

in the backward pricing of the option.

As in the full-storage method, we compute Lij — Li’j-i + AL^j by using

the increments AL^j. But in our memory-reduction method, we use a different

way to generate the set of random numbers S � t o obtain ALjj—we generate

them time-wise. More precisely, we obtain the increments AL̂ î by generating

the random numbers in Eĵ i on each path i, i = 1,..., n, for the time step j = 1

first. Then we obtain ALi,2 by generating Ei,2 on all paths for j = 2，etc. For

cach time step j , at the last path, i.e. path n, we extract and save the current

seed dj for later use. Given an arbitrary seed di, the procedures can be illustrated

as follows (cf. Phase 2 in the following Algorithm 3.4.1):

set seed di — ALi’i(Si’i) — AL2,i(E2,i)—……—AL„,i(S„,i) 一

extract seed ck 一 八Z/i’2(Ei,2) 一 AL2,2(22,2) 一 ……AL„’2(S„，2)

extract seed 而—

extract seed dm ALi’爪(Si，爪)一 AL2,m{^2,m)—……一 ALn，m(2n’m)

Note that we need an m-vcctor to hold and an n-vector to hold {!/《，)• }�=i.

That n-vector can be re-used for every time step j .

When computing the option price we move backward in time, and compute on

cach path i the corresponding asset prices Si�j 二 Sq exp(77 A/, + Lij) at each time

step j . This requires L^j. Given Lij+i, to obtain L i j , wc only need to regenerate

ALi’j+i. This can be done by reproducing the random number sequence in S � j + i

using the seed dj+i, i.e.

43

set seed dj — ALij+i(Eij+i) ……一

Once we get all the Si，j for the time step j , we can compute the option prices on

all paths at time step j by using the LSM method in [32]. We summarize our

memory-reduction method in Algorithm 3.4.1 below:

Algorithm 3.4.1.

Phase 1 (path simulation):

Set Lq 0 for i = 1, 2,..., n

For-loop: j = 1,2,..., m

1. Extract the current seed dj

For-loop: i = 1, 2,..., n

2. Get the increment ALij by generating S j j

3- Lij 卜 Lij-i + ALij

End for-loop

End for-loop

Phase 2 (price computation):

For-loop: j = m,..., 1

If j < m,

4- Recall the seed dj+i

For-loop: i = 1 ， 2 , n

5. Get the increment ALij+i by regenerating ^ij+i

6. Lij — Lij+i - ^Lij+i

7. Si,j^Soexp{rjAt-^Lij)

End for-loop

End if

Compute the current option price on all paths using the LSM method

End for-loop

44

We note that our memory-reduction approach requires only three vectors:

an m-vector for storing the seeds {dj}^^^ in Steps 1 and 4, an n-vector to hold

{Li ’ j } t i for the current time-step j in Steps 3 and 6 and an n-vector to hold

{5"i，j}^i for the current time-step j in Step 7. The additional computational

burden is Steps 1-4 in Phase 1, where we generate the paths and remember

the seeds. Since in Phase 2 we are regenerating the exact paths as in the full-

storage method, it is clear that the results obtained by the full-storage method

and the mcmory-reduction method are exactly the same. Moreover, since path

generation is only one part of all the computations required in the algorithm (the

other part—the major part—being the least-squares methods of [32])，we see that

the total cost of our method is less than twice that of the full-storage method.

Wc will illustrate these facts numerically in Section 3.5. We note that in order

to use our Algorithm 3.4.1 for different kinds of option, we only need to specify

how AZ/ij in Step 2 are generated.

3.5 Numerical examples

In this section, we apply our method to different models in the class of expo-

nential Levy processes. In Subsection 3.5.1’ we consider the Black-Scholes model

and compare our mcmory-reduction method with the Brownian-bridge method

and also the Crank-Nicolson method. In Subsections 3.5.2 and 3.5.3，numeri-

cal results are reported for both finite-activity and infinite-activity jump pro-

cesses, respectively. We compare our results with a binomial tree method and an

integro-differential equation method. Regarding the LSM WG used, we estimate

the continuing values of an option on those "in-the-money" samples and choose

the first three Lagiierre polynomials plus a constant term as our basis functions

throughout the section.

45

3.5.1 Black-Scholes model

As an illustration for how to use the memory-reduction method, we begin with

the Black-Scholcs model:
1 n

-^=rdt-\- adWu (3.3)

where r is the risk-free rate, a is the volatility, and Wt is the standard Wiener

Proccss. The memory-reduction method for this simple case was considered in

10’ 11], but we repeat it here as an introduction to our method. By Ito's lemma,

the Lt in (3.1) becomes Lt = + aWt and hencc

AL^j 二 一秦A亡 + aV^tZi j (3.4)
Zi

where Zi�j �AAfO, 1]. By the Box-Muller transformation [17, pp. 235], a pair

of Zi’j can be generated by a pair of Sij �A/"[0,1]. Hence here the set S^j in

Algorithm 3.4.1 has only one element Sij. Now we can apply Algorithm 3.4.1 by

specifying the procedures in Step 2 as follows:

Algorithm 3.5.1 (Black-Scholcs).

1. Generate Zi’j � A / " (0 , 1) using eij ~ U[0,1]

2. A Li J <——ifj^A^ + o\rKtZ、i

Next we compare our memory-reduction method with the Brownian-bridge

method in [12) and the Crank-Nicolson method on pricing American put options

under model (3.3). Note that the results obtained by the full-storage method

and the memory-rcduction method are exactly the same, since the same paths

are used to price the option. In our test, we choose the risk-free rate r 二 0.1’ the

volatility cr = 0.4’ and the expiration date T == 0.5 year. In Table 3.1, "CNM"

stands for the results computed by the Crank-Nicolson method. The means and

the standard deviations after 25 trials are shown under "Mean" and "STD" for

both the memory-rcduction method and the Brownian-bridge method. The two

46

Table 3.1: Black-Scholes model with n = 10̂ (50,000 plus 50,000 antithetic) and

m = 64.

Memory-rcduction Brownian- bridge

SQ CNM Mean STD Error Mean STD Error

6 4.0000 3.99220 0.00002 —0.00780 3.99220 0.00005 -0.00780

8 2.0951 2.09459 0.00192 -0.00051 2.09311 0.00226 -0.00199

10 0.9211 0.92117 0.00167 0.00007 0.92059 0.00232 -0.00051

12 0.3622 0.36190 0.00208 -0.00030 0.36181 0.00231 —0.00039

14 0.1320 0.13225 0.00125 0.00025 0.13184 0.00127 -0.00016

Table 3.2: CPU time in scconds and memory requirement when .So = 10.
m 32 32 64 128 Memory

n 20,000 40,000 80,000 20,000 requirement

Full-storage 4.25 8.59 17.19 4.25 8.50 16.98 n(m +1)

Mcmory-reduction 4.37 8.87 17.74 4.37 8.78 17.53 m + 2n

Brownian-bridgc 4.58 9.22 18.53 4.58 9.21 18.43 n(log2m + l)

"Error" columns represent the difference between the corresponding "Mean" and

"CNM". We observe that the accuracy is almost the same for all methods. Table

3.2 presents the average CPU times for five consecutive trials of each method. We

see that our method brings about slight additional cost, but significantly reduces

the storage requirement when compared with the other two methods. We also

observe from Table 3.2 that, for all three methods there, the CPU time increases

linearly with respect to m and n if either one is fixed. This is as expected, since

the CPU times should be increasing like 0(mn).

47

3.5.2 Merton's jump-diffusion model

Merton's jump-diffusion process [39] can be described by the following stochastic

differential equation under risk-neutral measure Q (generally not unique):
J O

- ^ = rdt + adWt + dJt - wdt. (3.5)
ST-

Here t— denotes the instant immediately before time t, Jt = 一 1) rep-

resents sudden jumps in price evolution, Nt is a Poisson counting process with

intensity A, and {logVijf丄i are independent and identically distributed A/"(a’ 約

numbers. Also in (3.5),

zu = XE l̂Yk - 1 1 - A [exp (a + � - l] (3.6)
L \ 2 �

is the compensator such that E^[exp(-rt)St] = SQ. Rewriting (3.5) as (3.1), we

have
Nt

Lt 二 - 力 + aM/̂ + l o g (n) -如 . (3.7)
fc=i

Thus for Merton's juinp-difFiisioii model, Step 2 in Algorithm 3.4.1 is

Algorithm 3.5.2 (Merton).
1. Generate Nij 〜Poisson(XAt) using the inverse method [24, VP-

2. Generate Z l j ~

3. If Nij > 0，generate Z f j � 1)

4- al,,,- — — + aVMZl^ + aNij +

Now we test our method on an American put option under Merton's jump-

diffusion model. The underlying stock price SQ at the currcnt time is $40. The

parameter values are r = 8%, a = \/0.05, A — 5, and (5 二 \/0.05. We let

a = such that 二 1. The numerical results arc reported in Table 3.3，

where the columns "Mean" and "STD" are the means and the standard deviations

48

Table 3.3: Morton's model with n 二 lO^ and m = T/0.01.
Strike K Amin's Mean STD Error

Expiring time T = 0.25 year

30 0.674 0.6741 0.0064 0.0001

35 1.688 1.6872 0.0121 -0.0008

40 3.630 3.6248 0.0174 -0.0052

45 6.734 6.7288 0.0256 -0.0052

50 10.696 10.6867 0.0203 -0.0093

Expiring time T = 1 year

30 2.720 2.7191 0.0132 -0.0009

35 4.603 4.6064 0.0204 0.0034

40 7.030 7.0242 0.0199 —0.0058

45 9.954 9.9461 0.0326 -0.0079

50 13.318 13.3050 0.0326 -0.0130

Tabic 3.4: CPU time in scconds and memory requirement when T = 1, K = 40.
m 50 50 100 200 Memory

n 20,000 40,000 80,000 20,000 requirement

Pull-storage 22.05 43.86 87.77 22.05 43.52 86.88 n(m + l)

Memory-reduction 36.93 73.04 146.35 36.93 73.14 146.06 m + 2n

obtained after 25 trials. Wc use the 200-time-step discrete time binomial tree

model in [4] as a benchmark, and it is listed under the heading "Amin's" • We

observe that the two methods agree up to 2 decimals. Table 3.4 gives the average

CPU times for five consecutive runs of the methods. Again the CPU time by our

method is always less than twice of that by the full-storage method.

49

3.5.3 Variance gamma model

A variance gamma (VG) process [35] with parameters /i G M, cr > 0, and " > 0

can be represented as a time-changed Brownian motion. Let Bt = fit + aWt

be a Brownian motion with drift fj, and volatility cr. Define a gamma process

Gt with independent gamma increments of mean h and variance i^h over any

non-overlapping time intervals of length h, or Gt � 7 (6 ， ") � T h e n the

three-parameter VG process Xt is defined by Xt = Bct and its characteristic

function is

少乂 >) 二 ^XP(她)1 = “ . (3-8)

Accordingly, the asset price process St is modeled as

St = So exp((r - q)t + Xt - wt) (3.9)

under the risk-neutral measure Q (generally not unique) with a continuous div-

idend yield of q and a constant continuously compounded interest rate of r. In

model (3.9), the risk-neutral drift rate is r - q and the compensator w satis-

fies exp(tu) = E^[cxp(Xt)] such that E^[exp(-(r - q)t)ST] = SQ. By evaluating

(I>Xt(ii) at —i, wc have

•CO = - - l o g (l — (J,iy — • (3.10) i/ 乂 2 乂

Thus Step 2 in Algorithm 3.4.1 becomes:

Algorithm 3.5.3 (variance gamma).

1. Generate Zi’j �A^(0，1)

忍.Generate AGij 〜7(学)using Best's generator given in Algorithm 3.7.1

3. ALi’j — f i A C i j + — wAt

50

Table 3.5: Variance gamma model with n = 10̂ and m = 56.
Strike K PIDE Mean STD Error

1200 35.530 35.363 0.288 -0.167

1260 48.798 48.642 0.306 -0.156

1320 65.991 65.850 0.404 -0.141

1380 87.991 87.777 0.345 -0.214

Table 3.6: CPU time in seconds and memory requirement when K = 1320.
m 50 50 100 200 Memory
n 20,000 40,000 80,000 20,000 requirement

Full-storage 58.61 117.41 234.93 58.61 118.58 240.12 n(m +1)
Mcmory-reduction 112.53 225.34 450.73 112.53 229.05 462.36 m + 2n

Now consider an American put option with maturity T = 0.56164 written

on a stock with current price So = 1369.41. The VG parameters after model

calibration are given by r = 0.0541, q = 0.012’ d 二 0.20722, “ = 0.50215,

and 9 = -0.22898. Wc test our method on various strike prices K and with

m = 56 ^ 770.01. The results are presented in Table 3.5. For comparison,

results obtained by the partial integro-differential equation approach in [27] are

given under "PIDE". As usual, the "Mean" and "STD" are the means and the

standard deviations respectively, obtained after 25 trials. The difference between

"Mean" and "PIDE" are computed in the column "Error". Again, the numerical

results confirm the accuracy of our method. The average CPU times of five

consecutive trials are given in Table 3.6, and the CPU time by our method is

again bounded above by twicc that by the full-storage method.

51

3.5.4 Remarks on the efficiency of the memory-reduction

method

In the above three subsections, we have illustrated how to apply our memory-

reduction method to specific exponential Levy models. For both the full-storage

method and the memory-reduction method, the computational cost is composed

of two parts: the cost in path simulation and the cost in price computation.

Compared with the full-storage method, the cost in path simulation is almost

doubled in the memory-reduction method while the cost in price computation

of both methods are the same. Hence our method always uses less than twice

the time required by the full-storage method. In the following, we mention two

factors affecting this overhead cost.

In Tabic 3.7, we give the ratio of the timing between the two methods in

the "Ratio" rows for m 二 50 and n = 20,000. In the tabic, the number in

the square bracket [.] for each model is the average CPU time in seconds for

generating 1,000 sample paths with 50 time steps. Wc observe from the table

that the cost in path simulation in the Black-Scholes model is much less than

that in the variance gamma model. As a consequcncc, our memory-reduction

method almost produces no additional computational cost in the Black-Scholes

model, while in the variance gamma model the CPU time of our method nearly

doubles that of the full-storage method.

Another factor is the number of Sij that are in-the-money. The rows "In-the-

money (%)" in Tabic 3.7 count the average percentages of those "in-the-money"

Sij in the m • n samples in 5 trials. As the difference K - SQ goes up, the number

of "in-the-money" samples goes up, which leads to an increase in the cost of price

computation. Consequently, the ratio goes down.

52

Table 3.7: CPU time in seconds with m = 50’ n 二 20,000.
Black-Scholes model [0.0331:

So 6 8 10 12 14

"In-the-money" (%) 98.9 87.3 49.0 15.5 4.7

Full-storage 13.8 11.52 6.68 2.74 1.48

Memory-reduction 14.11 11.78 6.89 2.87 1.61

Ratio 1.022 1.023 1.031 1.047 1.088

Merton's model (T = 1) [1.62]

Strike K 30 35 40 45 50

"In-the-money" (%) 21.6 33.6 52.4 69.7 79.1

Full-storage 17.94 19.37 21.65 23.71 24.87

Memory-rcduction 32.31 33.86 36.02 38.11 39.29

Ratio 1.801 1.748 1.664 1.607 1.580

Variance gamma model [3.85]

Strike K 1200 1260 1320 1380

"In-the-money" (%) 11.8 16.3 23.1 37.2

Full-storage 57.90 58.51 59.37 61.04

Memory-reduction 112.47 113.18 113.91 115.61

Ratio 1.942 1.934 1.919 1.894

3.6 Conclusion

In this chapter, wc propose a new simulation technique for pricing American

options under exponential Levy processes. It reduces the storage requirement

to 0{m + n). For machines with limited memory, we can now enlarge m and

n to improve the accuracy of the pricing. Furthermore, our memory-reduction

method can easily be extended to pricing other path-dependent options with

carly-cxercisc features, such as Asian Bcrmiidan options or multi-asset American

options. Heiicc our method can be valuable in investigating option prices, espe-

53

dally those written on single or multiple assets with complex American triggers,

long-term options, or any combination of these properties. Wc also remark that

our memory reduction method has a natural extension to other relevant models

such as stochastic volatility models, as long as the forward-path method (with

no memory reduction) uses pseudorandom numbers in Monte Carlo simulation.

However, the implementation becomes somehow more subtle, as different levels

of randomness arise. We plan to consider such extensions in our future work.

3.7 Appendix

For completeness, here we give the algorithm for generating the gamma random

variables. We also give the commands in FORTRAN and MATHEMATICA for

finding the seeds of a sequence of random numbers.

Algorithm 3.7.1 below generates Gamma random variables 7(a) with density

咖 = W f ^

when a > 1. For a < 1, one uses the transformation 7(a) = 7(1 + with

U � 1] . See [17, pp. 410 and pp. 420] for a comprehensive discussion.

Algorithm 3.7.1 (Best's generator).

1. 6 一 0, — 1，c 一 3a — I

Repeat

2. Generate random variables U,V 〜 1

3. W^ U(1 — U), Y 卜 - I) , x - 6 + y

4. If X < 0，go to Repeat

5. Z ^ GiW^V^

Until log(Z) < 2 6 1 o g (f - y)

Return X

54

In FORTRAN 90, the command to get a 1] number is rand(). The

commands to set the seed to d are:

cal l random_seed(size=k)

seedd :k)=d

cal l random_seed(put=seed(1: k))

where k is the number of 32-bit words used to hold the seed. The commands to

extract the current seed d are:

cal l random_seed(get=current (1: k))

d=current(l:k)

In MATHEMATICA, the seeds are set by "SeedRandom [d] “. To extract the

current seed, use "c=$RandomState". MATHEMATICA provides W[0，1] numbers

with the command "Random[]".

55

Bibliography

[1] ht tp : / /www.cuhk.edu .hk / i t sc / compenv /research-comput ing /organon/ .

[2] ht tp : / /www. l l .mit .edu /Mat labMPI / .

[3] A. Almcndral and C. W. Oosterlee. Numerical valuation of options with

jumps in the underlying. Appl. Numer. Math., 53:1-18, 2005.

[4] K. I. Ainiii. Jump diffusion option valuation in discrete time. Journal of

Finance, 48:1833-1863, 1993.

[5] L. Andersen and J. Andreasen. Jump-diffusion processes: volatility smile

fitting and numerical methods for pricing. Review of Derivatives Research,

4:231-262，2000.

.6] A. Bermon and R. J. Plemmons. Nonnegative Matrices in the Mathematical

Sciences. SIAM, 1994.

[7] N. H. Bingham and R. Kiesel. Risk-Neutral Valuation: Pricing and Hedgeing

of Financial Derivatives. Springer-Verlag, 2nd edition, 2004.

[8] F. Black and M. Scholes. The pricing of options and corporate liabilities.

Journal of Political Economy, 81:637-654, 1973.

[9j P. P. Boyle. Option: a Monte Carlo approach. Journal of Financial Eco-

nomics, 4:323-338, 1977.

56

http://www.cuhk.edu.hk/itsc/compenv/research-computing/organon/
http://www.ll.mit.edu/MatlabMPI/

[lOj R. H. Chan, Y. Chen, and K. M. Yeiing. A memory reduction method in pric-

ing American options. Journal of Statistical Computation and Simulation,

74:501-511, 2004.

11] R. H. Chan, C. Y. Wong, and K. M. Yeung. Pricing multi-asset American-

style options by memory reduction Monte Carlo methods. Applied Mathe-

matics and Computation, 179:535—544, 2006.

[12] S. K. Chaudhary. American options and the LSM algorithm: quasi-random

sequences and Brownian bridges. The Journal of Computational Finance,

8:101-115, 2005.

.13] R. Cont. Empirical properties of asset returns: stylized facts and statistical

issues. Quantitative Finance, 1:1-14, 2001.

14] R. Cont and P. Tankov. Financial Modelling with Jump Processes. Chapman

& Hall/CRC, 2004.

[15] R. Cont and E. Voltchkova. A finite difference scheme for option pricing

in jump diffusion and exponential Levy models. SIAM J. Numer. Anal,

43:1596-1626, 2005.

[16] S. M. Cox and P. C. Matthews. Exponential time differencing for stiff sys-

tems. J. Comput. Phys., 176:430-455, 2002.

[17] L. Devroyc. Non-Uniform Random Variate Generation. Springer-Verlag,

1986.

[18] Y. d'Halluin, P. A. Forsyth, and K. R. Vetzal. Robust numerical methods

for contingent claims under jump diffusion processes. IMA J. Numer. Anal,

25:87-112，2005.

[19] R. J. Elliott and P. E. Kopp. Mathematics of Financial Markets. Springer-

Verlag, 2nd edition, 2005.

57

[20] L. Feng and V. Linetsky. Pricing options in jump-diffusion models: an ex-

trapolation approach. Operations Research, 56:304-325, 2008.

21j I. P. Gavrilyuk and V. L. Makarov. Algorithms without accuracy saturation

for evolution equations in Hilbert and Banach spaces. Math. Comp., 74:555-

583, 2004.

[22] I. P. Gavrilyuk and V. L. Makarov. Exponentially convergent algorithms for

the operator exponential with applications to inhomogeneous problems in

Banach spaccs. SI AM J. Numer. Anal., 43:2144-2171, 2005.

23] I. P. Gavrilyuk and V. L. Makarov. An exponentially convergent algorithm

for nonlinear differential equations in Banach spaces. Math. Comp., 76:1895-

1923, 2007.

[24] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer-

Vcrlag, 2003.

25] J. M. Harrison and S. R. Pliska. Martingale and stochastic integrals in the

theory of continuous trading. J. Econom. Theory, 11:215-260，1981.

26] N. J. Higham. Functions of Matrices: Theory and Computation. SI AM,

2008.

27] A. Hirsa and D. B. Mad an. Pricing American options under variance gamma.

The Journal of Computational Finance, 7:63-80, 2003.

[28] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge

University Press, UK, 1994.

29] A.-K. Kassam and L. N. Trefethen. Fourth-order time-stepping for stiff

PDEs. SI AM J. Sci. Comput, 26:1214-1233, 2005.

58

[30] S. G. Koii. A jump-diffusion model for option pricing. Management Science,

48:1086-1101，2002.

31] J. Lee and D. Sheen. A parallel method for backward parabolic problems

based on the Laplace transformation. SI AM J. Numer. Anal., 44:1466-1486,

2006.

[32] F. A. Longstaff and E. S. Schwartz. Valuing American options by simulation:

a simple least-squares approach. The Review of Financial Studies, 14:113-

147, 2001.

33] M. Lopez-Fernandez and C. Palencia. On the numerical inversion of the

Laplacc transform of ccrtain holomorphic mapping. Appl. Numer. Math.,

51:289-303, 2004.

34] M. Lopez-Fernandez, C. Palencia, and A. Schadle. A spectral order method

for inverting sectorial Laplacc transforms. SI AM J. Numer. Anal., 44:1332-

1350，2006.

[35] D. B. Madan, P. Carr, and E. C. Chang. The variance gamma process and

option pricing. European Finance Review, 2:79-105, 1998.

[36] B. Mandelbrot. The variation of certain speculative prices. Econometrica,

31:757-758, 1963.

[37] A. Matache, C. Schwab, and T. Wihler. Fast numerical solution of parabolic

integrodifferential equations with applications in finance. SI AM J. Sci. Corn-

put, 27:369-393，2005.

[38] W. McLcan, I. Sloan, and V. Thomee. Time discretization via Laplace

transformation of an integro-difFerential equation of parabolic type. Numer.

Math., 102:497-522，2006.

59

[39] R. C. Merton. Option pricing when underlying stock returns are discontin-

uous. Journal of Financial Economics, 3:125-144, 1976.

40] B. V. Minchev and W. M. Wright. A review of exponential integrators

for first order semi-linear problems. Technical Report 2/2005, Norwegian

University of Science and Technology, 2005.

[41] C. Moler. Numerical Computing with MATLAB. SIAM, 2004.

[42] S. K. Park and K. W. Miller. Random number generators: good ones are

hard to find. Communications of the ACM, 31:1192-1201, 1988.

[43] S. C. Rcddy. Pseiidospectra of Wiener-Hopf integral operators and constant-

coefficient differential operators. J. Integral Equations Appl, 5:369-403,

1993.

[44] S. C. Reddy and L. N. Trefethen. Pseiidospectra of the convection-diffusion

operator. SIAM J. Appl. Math., 54:1634-1649, 1994.

[45] C. Ribeiro and N. Webber. A Monte Carlo method for the normal inverse

Gaussian option valuation model using an inverse Gaussian bridge. Technical

report, City University, 2003.

[46] C. Ribeiro and N. Webber. Valuing path-dependent options in the vari-

ance gamma model by Monte Carlo with a gamma bridge. The Journal of

Computational Finance, 7:81-100, 2004.

[47] T. Schmelzer. The fast evaluation of matrix functions for exponential inte-

grators. PhD thesis, University of Oxford, 2007.

48] D. Sheen, I. Sloan, and V. Thomee. A parallel method for time-discretization

of parabolic prolerns based on contour integral representation and quadra-

ture. Math. Com,-p., 69:177-195, 2000.

60

[49] D. Sheen, I. Sloan, and V. Thomee. A parallel method for time discretiza-

tion of parabolic equations based on Laplace transformation and quadrature.

IMA J. Numer. Anal, 23:269-299, 2003.

[50] S. E. Shreve. Stochastic Calculus for Finance II: Continuous-Time Models.

Springer-Verlag, 2004.

[51] A. Talbot. The accurate numerical inversion of Laplace transforms. IMA J.

Numer. Anal, 23:97—120，1979.

52] J. Toivanen. Numerical valuation of European and American options under

Kou，s .jump-diffusion model. SI AM J. Sci. Comput, 30:1949-1970, 2008.

53] L. N. Trcfethcn and M. Embree. Spectra and Pseudospectra: The Behavior of

Nonnormal Matrices and Operators. Princeton University Press, New Jersey,

2005.

[54] L. N. Trcfcthcn，J. A. C. Weideraan, and T. Schmelzcr. Talbot quadratures

and rational approximations. BIT, 46:653-670, 2006.

[55] J. A. C. Weideman. Optimizing Talbot's contours for the inversion of the

Laplace transform. SI AM J. Numer. Anal, 44:2343-2362, 2006.

[56] J. A. C. Weideman. Improved contour integral methods for parabolic PDEs.

IMA J. Numer. Anal, 30:334-350, 2010.

[57] J. A. C. Weideman and L. N. Trefethen. Parabolic and hyperbolic contours

for computing the Bromwich integral. Math. Comp., 76:1341-1356, 2007.

[58] P. Wilmott, S. Howison, and J. Dewynnc. The Mathematics of Financial

Derivatives. Cambridge University Press, 1998.

61

,

•
• •

CUHK L i b r a r i e s

_ I _ I P I | |
0 0 4 7 7 9 4 2 5

