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Abstract 
The classical Black-Scholes model is known for its shortcomings in modeling em-

pirical price dynamics in daily markets, which reveals volatility smiles and heavy 

tails. In the recent decade, the jump-diffusion models have arisen as remedies 

for Black-Scholes. The present work concerns numerical computation of option 

prices under jump-diffusion models, namely numerical solution to partial integro 

differential equations and Monte Carlo method. 

In the first part of the thesis, we propose a novel parallel Talbot method 

(PTM) for solving jump-diffusion equations on option prices. After using stan-

dard spatial discretization, we represent the formal solution to the semidiscretized 

problem as a summation of (/?-functions. To numerically approximate the matrix-

valued (^-functions, wc construct a Talbot quadrature based on the Dimford-

Cauchy integral. Moreover, we derive strategy for optimal parameterization of 

parabolic Talbot contours. The above PTM yields a geometric convergence in 

temporal direction, and therefore outperforms traditional time-marching meth-

ods. We report the effectiveness of PTM in the numerical experiments, particu-

larly in a parallel computing environment. 

In the second part, we use the least squares method (LSM) to price American 

options under Levy models. Essentially, LSM estimates the continuation value for 

cach simulated path by least squares regression, and makes backward(-in-time) 

induction on exercising the option or not. The drawback of LSM in implementa-

tion is that its memory requirement grows like 〇(mn), where m is the number of 

time steps and n is the number of simulated paths. We propose a new simulation 

method with memory requirement 0{m + n). The total computational cost is 

always less than twice of that of the traditional method. In the numerical exper-

iments, we illustrate the efficiency of our method by pricing American options 

under several typical Levy models. 
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摘 要 

由於日常的市場價格呈現出“波動微笑”和“長尾”等特征，經典的Blaclc-Scholes 

模型在模擬市場價格時存在缺陷。在最近的十年裡，“跳躍擴散模型”被提出以彌補 

Black-Scholes模型的缺陷。這篇論文關注的是基於跳躍擴散模型的期權定價中的數 

值計算。具體來說，這裡的數值計算方法有偏微分方程數值計算和蒙特卡洛模擬。 

在第一部分的論文中，我們提出新的“並行Talbot方法”來計算期權價格的跳躍 

擴散方程。在標准的空間離散後，我們可以把方程的解在形式上表示為一系列“cp函 

數”的和。為了對這樣的形式解作數值逼近，我們基於Dunford-Cauchy積分構造了 

並行Talbot方法。另外，我們還提出了對抛物Talbot路徑的最優參數化方案。以上的 

並行Talbot方法在時間方向上可以達到幾何收斂，因此優於傳統的時間推進方法。 

在數值實驗中，我們記錄了並行Talbot方法的有效性，尤其在考慮並行計算的情況 

下。 

在第二部分中，我們使用“最小二乘法”來計算Levy模型下的美式期權價格。從 

本質上講，最小二乘法通過最小二乘回歸來估計每條模擬路徑上的持有價值，然後 

(在時間上）向後歸納得出是否行使期權。最小二乘法在算法實現中的缺點是它對 

內存需求的增長為0(mn)�這裡m是時間步數，而n是模擬路徑數。我們提出了新的 

模擬方法，使得内存需求減少為0(m+n)的，而總計算量被控制在小於兩倍的傳統 

方法。在數值實驗中，我們展示了新方法可以有效處理幾種典型Levy模型下的美式 

期權定價問題。 
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Chapter 1 

Background and Organization 

Ever since the seminal work by Black and Scholcs in 1973 [8], the principle of 

arbitrage-free (or risk-neutral) pricing for financial derivatives has become the 

cornerstone in the field of mathematical finance. Their work was later connected 

and expanded with the theory of martingale, first due to Harrison and Pliska [25 . 

We refer to standard textbooks [58, 7’ 50, 19] for more background on risk-neutral 

option pricing. 

Briefly speaking, in a market consisting of risky assets and options written on 

those assets, the market is arbitrage-free if and only if there is a risk-neutral prob-

ability measure equivalent to the physical probability measure, see e.g. [19, The-

orem 3.5.1]. Suppose such a risk-neutral measure exists, then the arbitrage-free 

price (or the risk-neutral price) of an option is given by the discounted expectcd 

payoff under a (generally nonunique) risk-neutral measure, see e.g. [19, Theo-

rem 4.5.1]. The present thesis falls into the general framework of arbitrage-free 

pricing. 

In the thesis, wc consider jump-diffusion models that have been popularized 

ill financial modeling during the past decade, cf. [14]. The classical Black-Scholes 

model [8] is criticizcd for its oversimplification, as the asset price in the Black-

Scholcs model follows a geometric Brownian motion. However, the empirical 
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observation in real financial trading reveals that the implied volatility surface 

often displays a volatility smile [36]. Moreover, the distribution of the asset 

return, assumed to be Gaussian in the Black-Scholes model, exhibits a. heavy 

tail [13], i.e. large moves of the market have decent probabilities to occur. As 

remedies for Black-Scholes, the jump-diffusion models (or more generally the Levy 

models) contain discontinuous jumps in addition to the classical diffusion, so that 

the phenomena of the volatility smiles and the heavy tails can be generically 

accounted for [14]. 

It is worth noting that jump-diffusion models are (linear) models for an in-

complete market, where no unique risk-neutral measure (or no perfect hedging 

strategy) exists. We refer to the reference [14] for further background on modeling 

aspects of jump-diffusion models, such as how to choose the pricing risk-neutral 

measure under jump-diffusion models (so called "model calibration"). 

Along with the new models come the new challenges on numerical (pricing) as-

pects. The present thesis concerns numerical computation of option prices under 

jump-diffusion models. The rest of the thesis divides into two major method-

ologies: numerical solution to partial (integTO-)differential equations for Chapter 

2 and Monte Carlo simulation for Chapter 3. Each chapter is self-contained, 

with introduction, problem formulation, methodology, numerical experiments, 

and conclusion therein. 
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Chapter 2 

Parallel Talbot method for 

solving partial integro-differential 

equations 

2.1 Introduction 

The option price, where the underlying asset price follows jump-diffusion pro-

cesses, is governed by partial integro-differential equation (PIDE) [14]. The valu-

ation of option prices via numerically solving PIDE has been considered by many-

authors [5, 3，15, 18，37，52，20]. However, most authors consider the method 

of lines, yielding a polynomial temporal convergence rate (usually up to 2nd-

order) due to stability constraints from the stiffness. Andersen and Andreasen [5] 

propose an alternating direction implicit (ADI) operator splitting method with 

a 2nd-order temporal accuracy; Almcndral and Oosterlee [3] use a 2nd-order 

backward differentiation formula (BDF2); Cont and Voltchkova [15] consider the 

implicit-explicit (IMEX) scheme, i.e. implicit for the differential operator (stiff 

part) and explicit for the integral operator (nonstiff part), with Ist-order accu-

racy; d'Halluin, Forsyth and Vctzal [18] consider Crank-Nilcoson time marching 
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schemc with 2nd-order accuracy; Toivanen [52] performs the implicit Rannacher 

time stepping with nonuniform grids; Feng and Linetsky [20] accclerate the IMEX 

scheme with Richardson extrapolation, attaining a temporal accuracy with arbi-

trary order. 

Since the pioneering work by Talbot [51], the time discretization, based on 

contour integration and the consequent quadrature rule, has been proposed and 

developed for parabolic problems, see e.g. [48, 49，21, 33，22, 31，34, 38，54， 

55，23, 57, 56]. After spatial discretization, the initial-boundary value problem 

(IBVP) is rcduced to the semidiscrete equation. Further after time integration, 

one is left to evaluate the solution formula consisting of so-called (/^-functions. 

These Talbot-typc methods numerically approximate the (/^-functions based on 

the Dunford-Cauchy integral representation with deformed Talbot contour (often 

parameterized as a parabola, a hyperbola, or a cotangent contour). Then one dis-

cretizes the integral with trapezoidal rule and truncates the infinite series. This 

proccss, named Talbot quadrature, implicitly constructs a rational approximation, 

which attains a geometric convergence rate. A promising feature of the Talbot-

type methods lies in its two levels of parallelism, i.e. with respect to various time 

points and with respect to the summands in the Talbot quadrature formula. For 

this reason, wc refer to this approach as "parallel Talbot method" (PTM) in the 

present work. Notably, the performance of the PTM can be much improved by op-

timized parameterization for the aforementioned contours, cf. [55’ 34，57]. Thus, 

we see potential applications of PTM for high-performance computing purpose, 

e.g. in option pricing. 

Surprisingly, such applications are not yet widely seen in the literature. The 

obstacles arc the followings. First of all, the problems from applications, such 

as the scmidiscrotized jump-diffusion equation, are often nonnormal. In this sce-

nario, the contour in [57] could break down, see e.g. [56] for convection-diffusion 

problems. Secondly, although the Talbot contours for sectorial operators are con-
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sidered for nonnormal operators, see e.g. [49, 31, 34], the translation from the 

assumptions to the specific problems remains largely unclear. We aim to bridge 

the gap by applying PTM to the nonnormal jump-diffusion problems in finance. 

We control the (pseiido)spectrum of the nonnormal jump-diffusion operator by a 

parabola, based on which we propose a parabolic contour with optimal param-

eterization. In addition, our proposed Talbot quadrature works for general (/?-

functions using so-called common poles, which greatly reduces the computational 

cost. In the numerical experiments, we verify the optimality of the proposed 

contour and show the competiveness of PTM against the extrapolation IMEX 

method (ext-IMEX) on parallel machine. 

The remaining sections in this chapter are organized as follows. We formulate 

the initial-boundary value problem for option pricing in Section 2, and semidis-

crctizc the problem in Section 3. We present PTM in details in Section 4. The 

numerical results are provided in Section 5. Section 6 concludes the chapter. 

2.2 Initial-boundary value problem 

Under a given risk-neutral measure, the price of a stock is modeled as St = Ke^^ 

such that E[S't|S'o] = where <S"o is the current stock pricc, K is the strike 

price at maturity, and is a (finite-activity) jump-diffusion process [14] 

satisfying Xq = \og{So/K) and at time 力〉 0， 

1 f Nt \ 
dXt = (r 一 q — - XHi)di + adWt + d ^ . 

\n=l / 

Here r > 0 is the risk-free interest rate, g > 0 is the continuous dividend yield, 

cr > 0 is the stock return volatility, Wt is a standard Brownian motion, Nt is a 

Poisson proccss with intensity rate A > 0, (Jn)nLi is a sequence of independent 

identically distributed random variables from a given distribution f [ x ) , and k 二 

/狀(e^ — l)f(x)dx is the compensation rate of a Poisson jump. 
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As in [3, 15, 18, 52], the value of an option u(t, x) on the stock can be obtained 

by solving the initial-boundary value problem (IBVP) on the computational do-

main [0’ T ] x n 

石 = � 2 @ + cii— + aoU-\-X J u { t , x)f(x - y)dy, (r, x) G (0’ T] x O; (2.1) 

u{0, x) = i l ; { x ) , X e M; u(t, x) = R{x), ( t , x) e [0’ T] x (R\Q). ( 2 . 2 ) 

Here T = T — t, a。= (H = r _ q — <7̂ /2 — Xk, clq = —r — A, ip{x) is the 

payoff function, e.g. ip{x) = max{Ke^ — K, 0) for a call, and the rebate function 

R{x) is imposed wherever x G 

Note that the IBVP (2.1)-(2.2) is a localized problem, as we only need to solve 

?i(r, x) on the bounded time-space domain [0, T] x Q. This IBVP framework is 

robust in handling European options and exotic barrier options. For a European 

option, we introduce a change of variable ii(r, x) = x — rr), and then solve 

(2.1)-(2.2) with modified coefficients ai — ai— r, do = ao-{-r. For computation, 

wc take := [x.x] to be the localization domain and impose the asymptotical 

boundary condition R{x) := i / j { x ) . As x —oo and x oo, the localization 

error dccays exponentially with the size of the domain O, cf. [15]. For another 

example, consider an iip-and-oiit barrier option with upper barrier U. Different 

from the European option, we do not need the change of variable for u. Besides, 

wc take X = U, B.{x) = 0 for x > U, and B.{x) = for x < U. We remark 

that with appropriate change of variable, we have that R is r-independent. 

2.3 Spatial discretization and semidiscrete prob-

lem 

We discretize the PIDE in space by finite difference as considered in [3, 15，18’ 52]. 

Let Xrnin = 3：0 < 工1 < ... < Xm =工max，Ax = (̂ max — Q = [x, xj = 

[xiniii + Aa;/2, Xrnax — Ax/2], and x) be semidiscretizcd into the vector u(r) 
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with (u(r))j 三 u(j,Xj). In the following, we shall omit "(•)" after u and u given 

no confusion. 

For the differential operators, we use the 2nd-order finite difference 

/ _ Uj+i - 2uj + Uj-i / � U j + i - Uj-i 

V ^ y , 、 石 人 , ^ ^ . 
For the integral operator, wc split the integral into two parts 

[{•)dy= [{•)dy+ [ [.)dy. 
JR Jfi JR\il 

We approximate the integral over Q. with a trapezoidal rule 

» M-l 
/ u(丁, y)f(y - Xj)dy ^ Ax^^ nkf{xk - x j ) . 

k=i 

In matrix form, we write 

n 上 • 」 . r di 2a2 X ai 1 , . 

D = tndiag + 一卜入 _ 一 ‘ j ’ （2.3) 
- /(O) f{Ax)…/((M —2)A:r) 

/ ( -Ax-) • • • . . . ; … � 
J = XAx ^ ^ , (2.4) 

• • • . • . 
/ ( - ( M —2)A:/;) /(O) 

and let A := D + J. 

Assumption 2.3.1. We use the following assumptions as in [3，18] that 

(1) r > 0; 

(2) a2 > |aiA:c|，. 

(3) max. EfcJ.fc) < A. 

Note that in practice the mesh size A a; is often small so that the condition 

2.3.1(2) holds. Beside, siiicc J^k^jk is the trapezoidal approximation of an in-

tegral of the probability density f { x ) over a truncated domain, the condition 
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2.3.1(3) also holds. With Assumption 2.3.1，the matrix —D — AI is diagonally 

dominant M-matrix, and that the matrix —J + AI is a diagonally dominant M-

matrix. Therefore, the matrix —A is a diagonally dominant M-matrix [6], i.e. 

A计 SO, Vj; Kjk > 0, Vj ^ k. 
k 

For the integral over R\Q, denoted by CW, we plug in the boundary condition 

《:,;）=a/ R ( y ) f ( y - x ) d y , (2.5) 
JR\Q 

which can be calculatcd analytically or numerically [3]. This is referred to as the 

truncation of large jumps, according to Cont and Voltchkova [15]. 

Then we combinc all the boundary terms into the vector b, i.e. 

‘ + - if j = 0; 

bj = ( ( x j ) + + a,(Ax)-'], if j - M ; 

^{xj), otherwise. 
V 

Thus, we arc left with the semidiscretized problem 

^ u ( r ) = Au(r) + b, 0 < r < T; (u(0)),- = ^(xj). (2.6) 

By performing the time integration on (2.6), wc have the formal solution 

u(T) = <po(A)u(0) + <p,(A)h. (2.7) 

The functions (po and cpi are defined by 

V^o(A) = e^A，外 (A) = A — _ i). (2.8) 

It is the goal of Section 2.4 to develop an efficient method to evaluate the solution 

formula (2.7), or so-called (p-functions. 
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2.4 Parallel Talbot method 

2.4.1 functions and Talbot quadrature 

The family of (/?-fuiictions arises from the exponential time differencing methods 

for first-order semilinear problems [16, 29, 40]. The (^-functions，with scalar 

arguments, can be defined by the integral representation 

仍(z— f \ ( T - f o r I > 1 ; 仰 ( z ) = (2.9) 
Jo -丄）！ 

or defined by the recurrence 

灼 � = “ ) - T � - i / ( / - l ) ! 灼 ( 0 ) = r for z > 1 ; 仰 ⑷ = e - . 

(2.10) 

Observe that these (/^-functions can be regarded as the regular part of the Laurent 

series of e^^/z' 
pTz 之 r p k 

+ (2.11) 

The formulae (2.9)-(2.11) for the scalar-valued (/^-functions extend naturally to 

matrix-valued eases using the Jordan canonical form, cf. [28，26 . 

We begin by evaluating (/7o(A)v for a given vector v. The evaluation is based 

on the Dunford-Cauchy integral 

(^o(A)v = ^ - A ) - i v riz, (2.12) 

where F is a Talbot contour encircling the origin and the spectrum of A in an-

ticlockwise sense. These Talbot-type methods are effective mainly because the 

integrand in (2.12) decays exponentially fast as Re 2； —> -00. In the following, we 

dcscribc how to construct the Talbot quadrature based on the contour integral 

(2.12). 

Wc parameterize the contour r : z{0), and rewrite the formula (2.12) as 

1 

V^o(A)v = / ； ^ e ? 溯 [ z � I - A ] - V ( 0 ) v 撒 (2.13) 
J-oo 27", 
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Then we apply a midpoint rule to the integral on an equispaced grid 9j :— (j + 

1/2)"，j e Z, i.e. 

(^o(A)v 记 h f2 • e T补叫 z ( � ) I - A j - i z ' ( � V . (2.14) 
j—-oo 

Finally wc truncate the infinite sum 

^o(A)v ^ h 它去e了响)[z(�j)I - A ] - i / ( � � v . (2.15) 
j=-N 

Observe that the Talbot quadrature (2.15) implicitly constructs a rational ap-

proximation with poles and weights (cj� ) ) ^ 

N-l 

j=-N 
where 

Now we turn to the evaluation of general ipi{A)v for / > 1. It leads to poor 

convergcncc rate if we dircctly apply the Talbot quadrature. This is because the 

functions {ipi{z))i>i are known to be of algebraic decay as Re z 一 - c o . More 

precisely, this algebraic decay is due to the principal part (or the summation 

on right hand side) in (2.11). Fortunately, we are allowed to ignore this term, 

guaranteed by the following theorem. 

Theorem 2.4.1. [47, Theorem 4.2.4] Suppose that a simple contour F encircles 

the origin and the spectrum A . Then 

<fii{A)v = ^ ^ ^ ( z l - A) - iv dz. (2.16) 

Consequently, in analogy with (2.13)-(2.15) we have 
TOO 1 Tz{0) 

釣(A)v = J d9 (2.17) 

^ h £ 去i 令 ( Z j I — A)-、％)v (2.18) 
j = —oo 3 
N-l 

« h Y^ c f \ z j I - A ) - ' v , (2.19) 
j=-N 
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with poles and weights given by 

一 j ) , (2.20) 

Now we see the significance of Theorem 2.4.1. Provided that 

I 厂'1 = 0(1)， (2.21) 

the Talbot quadrature with poles (and the corresponding error estimate) 

applies to general (•pi functions, see (2.17)-(2.19). For this reason, we call such 

poles the common poles. 

Thus, our approximation to the solution formula (2.7) becomes 

N-l N-1 
u(T) E A)-iu(0) + /i E —A)- ib (2.22) 

j=-N j=-N 
N-l 

= h J 2 (^jl - A) - i [cf^u(O) + c f b l (2.23) 
j=-N 

= R c (2/1 g ( 勺 I - A) - i [cfu(O) + cj'^b] I . (2.24) 

Notice that by using the common poles we reduce the computational cost by half. 

Due to the symmetry that z{Oj) = and z'(Oj) = z'(6Lj._i)，the summands 

in (2.23) come in conjugate pairs, leading to another reduction of cost by half. 

Thus, the remaining task is to solve N independent linear systems in the formula 

(2.24), which adopts a parallel implementation. 

Nevertheless, we have not touched upon how to choose the Talbot contour F 

in (2.16) properly. This is the focus of the remaining of this chapter. In Sub-

section 2.4.3, we shall devise optimal strategy on how to parameterize parabolic 

Talbot contour. Before that we need preparation on spectrum estimation for non-

normal jump-diffusion operator, which leads to feasibility constraints in contour 

paramctrization. 
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2.4.2 Control on nonnormality and feasibility constraints 

Wcideman and Trcfethcn [57] devised the optimal parameterization of Talbot 

contour as a parabola. Yet they assume that the spectrum of A is restricted on 

the negative real axis. Such a parabolic contour can fail for nonnormal operators, 

e.g. in convection-diffusion problems, cf. [56], and also in jump-diffusion problems, 

sec e.g. Figure 2.4 in Section 2.5. In this subsection, we investigate how to 

control the nonnormal effect, and how such control leads to (explicit) feasibility 

constraints in constructing parabolic Talbot contour for jump-diffusion problems. 

We denote the infinitesimal generator of the jump-diffusion equation (2.1) by 

A\=T> J , where 

T^u 二 + ai— + aou, Ju = X j u(x + y ) f ( y ) d y . 

When acting on (a dense subspace of) the operator A can be diagonalized 

by Fourier modes and is normal. However, it bccomes nonnormal after being 

localized, truncated, and discretizcd into A, sec (2.1), (2.5)，and (2.3)-(2.4) re-

spectively. Due to the nonnormality, the eigenvalues of A are ill-conditioncd and 

can move off the negative real axis into the left half complex plane. See the loca-

tion of the eigenvalues of A in Figure 2.2 for example. While the behavior of a 

normal operator is often completely governed by its eigenvalues, it is difficult (and 

meaningless) to analyze the eigenvalues of a nonnormal operator. Instead, it is 

more meaningful to analyze the pseudospectra for nonnormal operators, cf. [53]. 

To estimate the pseudospectra, we employ techniques based on the symbol 

curve and the associated winding number, as in [43，44, 56，53j. The symbol 

curvc of A is given by 

= -(i2UJ^-\-iaiUJ-\-do + \J'(uj), a; G E, where f(uj) = / f(y�c—dy. (2.25) 
JR 

Note that the symbol curve is not dosed. As in [53], we define 

the winding number z) as follows. Let be completed 
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‘ Z - 一 … 、 、 

1.5- \ / \ 
1. \ ？ \ \ Z2 � 

0.5 • \ \ 
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-0.5 • ^ ！ 

-1.5. / \ / 

� Z 
- 2 - 、 — — - 一 

I I , ,, , . I 1 I I I I I 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 
Rez 

Figure 2.1: For example, let the symbol curve be given by the solid curve. By 

completing the symbol curvc (for large enough cJ) with a semicirclc, denoted by 

the dashed curve, we find the winding number for the complex number Zi, Z2 and 

zs to be 2, 1 and 0，respectively. 

by a semicirclc centered at the origin, and then we have the winding number 

z) for this closed curve. The winding number z) is taken 

to be the limit of Z) for large enough uJ. See Figure 2.1 for illus-

tration. 

With the symbol curve and the winding number, we can now define the critical 

region of the jump-diffusion operator A by 

For example, in Figure 2.2 the critical region is given by the shaded area. The 

critical region is significant, as it characterizes the region where the resolvent 

norm \\{zX- is large and the region where the resolvent norm is small (the 
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threshold is roughly 1)，cf. [43, 44, 56]. This is also illustrated by Figure 2.2. 

Therefore, in order for the validity of Dunford-Cauchy integral (2.16), a feasible 

Talbot contour F should enclose the critical region i.e. T C C\closure(E^). 

-10 -8 -6 -4 -2 0 
Re z 

Figure 2.2: We plot the rightmost eigenvalues of A by the pluses. The contour 

plot of the resolvent norm \\{zX—A)~^\\ are marked by the solid lines. The contour 

levels, from left to right, represent 10®,..., lO�. The symbol curve 歪乂(o;) is 

marked by the dashed line, and the associated critical region E^ is marked by 

the shaded area. 

However, it remains iinclcar how the above feasibility constraint can be ex-

plicitly imposed on the parameters of parabolic Talbot contours. To answer this 

question, we need Theorem 2.4.2 in the following. Let Be denote the unit ball of 

radius e centered at the origin. 

Theorem 2.4.2. Suppose 0 < 6 < a2. Then there exists a parabola 

^(u) = -(a2 — + iaiu + ao + p, u eR, (2.26) 
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with p> X, so that its critical region E^ = { z G C : / (^ ' (R) ; z) ^ 1} satisfies 

+ C Svp, 

for some e > 0. 

Proof. Denote by the symbol ciirvc of V, i.e. 

二 一020；2 + iaiuj + a。，uj € M. 

Let 0 < (5 < (22 be given. We claim that there exists p > X so that the parabola 

^'(a;) of the form (2.26) satisfies 

min -屯(0；2)| > A + £, (2.27) 

for some £ > 0. 

Wc have 

mill — 屯(0；2)|2 

= m i n {a\{uJi — U2Y + [al{ujl - col) + + p]^} 

> mill {aja^ + (a^a/? + Scu^ + pf] (a 三 a;! - U2, 三 a;i + UJ2) 

= m i l l { + a? a + V ^ o ^ 2 一 A m ^ 2 + P + H ? c^.^Mz 1 L alP^ + af J a^jJ^ + af J 

> mm ^ 2 r • take a = ^ 2 
[ a^P^ + af J V a妒 + a{ / 

Without losing generality, assume 0 < Wi < uj2- Let L > 0 be fixed, then 

(i) If U2 < L, 

â P^ 4- a? — 4L2a4 + af' 

(ii) Uuj2 > L, 

4(3^ + al - 4a|a;| + afL-̂ o；! 

二 4a| + afL-^ 
2p6 

- 4 a | + afL-2' 
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Combining (i) and (ii), we have 

； � - ’ 2 ) | 2 > - { j ^ ^ ， . 

Hencc we can choose large enough p so that (2.27) holds. The claim is proved. 

Moreover, since 

max|<l>^(a;)-$pH|=m£ocA [ 办 <X [ \ f ( y ) \ d y = X, 
Y … JR 

we have 

C + Bx. 

Together with the claim, we conclude that 

^A + Bg： C S p + Bx+e C 

• 

In the following, we shall require a feasible Talbot contour F to enclose the 

critical region E^ associated with the parabola 屯(a;) in Theorem 2.4.2. This is 

sufficient to ensure that the Talbot contour encloses the original critical region 

E^. The effectiveness of this nonnormality control is illustrated by Figure 2.3 in 

the numerical experiments. Now we proceed onto how to parameterize a near-

optimal parabolic Talbot contour among all feasible ones. 

2.4.3 Optimal parameterization of parabolic Talbot con-

tour 

In this siibscction, wc devise optimal parameterization of parabolic Talbot con-

tour. As in [57], this relies on the error estimate of the Talbot quadrature (2.19) 

in evaluating {(pi{A)v)i>o. To ease our discussion, we introduce the following 

notations for (2.17)-(2.19) 

/
oo oo N - 1 

9(0)de, = 9(0j), GH,N = hJ2 9{0J). 

j=-oo 
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Let ED and E^ denote the discretization error and the truncation error 

ED 二 — G J ， E T = IIG, - GHMI (2.28) 

The estimation on discretization error is given in the following theorem. 

Theorem 2.4.3. [57, Theorem 2.1] Let w = 0 ic, with 0,c e R. Suppose 

(j{w) is analytic in the strip —d_ < c < for some d+ > 0, d— > 0， and 

g{w) 0 uniformly as |'u;| — oo in that strip. Suppose further that for some 

M+ > 0， M- > 0，the function (j{w) satisfies 

roo foo 
/ \\g(e + ic+)\\de<M+, / \\g{9-hic.)\\d9<M., 

J — oo J — oo 

for all 0 < c+ < d+ and -d- < c_ < 0. Then 

where 

ED — D = 

Finally, the truncation error E? can be estimated by the magnitude of the 

integrand evaluated at the boundary of the truncation domain [57], i.e. 
E'^ = 0{\\g{hN)\\), asiV —oo. (2.29) 

Now we are ready to parametrize the Talbot contour F as a parabola. Consider 

the holomorphic mapping 

2： = ^{iw + 1)2 + 7， where ^ > 0. (2.30) 

The image of the horizontal line w 二 0 + ic, - o o < d < oo, under (2.30), is 

z = /i[(l - c)2 一 02] + 7 + 2i^9{l - c). (2.31) 

The contour F is given by the parabola (2.31) with c = 0. Weideman and Tre-

fcthen [57] considered the parameterization (2.30) with 7 = 0 and allows 一 1. 
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Here wc propose to add a horizontal shift 7 in (2.30) for the following two reasons. 

First, the shift 7 allows the parabola to satisfy the feasibility constraint that F 

encloses the critical region E^, see Theorem 2.4.2. Secondly, the shift 7 allows 

\z~''\ = 0(1) so that the common-pole approximation to (^i)i>o is valid. 

To apply Theorem 2.4.3’ let us consider (2.31) with 0 < c < d+. As d+ 

increases from 0 to 1, the parabola closes and degenerates into the negative real 

axis. In the limiting case, a feasible parabola should enclose the critical region 

S屯,see Theorem 2.4.2. This implies two constraints: one for the opening of the 

parabola and the other for the horizontal shift 7. The constraints are given 

explicitly as 

4 M 1 - � 2 - ” � 1 , (2.32) 

/ i ( l - d + ) 2 + 7 > ao + p, (2.33) 

for some valid p in Theorem 2.4.2. On the other hand, the condition 二 (9(1) 

for the common-pole approximation, sec (2.21), implies that p should be bounded 

away from the origin. Note that as p increases from 0，we will sacrifice a fraction 

of accuracy in approximation of (fo, but we will be compensated significantly with 

the accuracy in approximation of {(pi)i>i- In our numerical experiment in Section 

2.5，we will see that an appropriate p is available to strike a balance. In practice, 

wc can choose p = 0(1) as suggested by Schmelzer [47]. 

According to Theorem 2.4.3, we have E^ = Since we aim to 

minimize E^ (or to maximize d+), wc push (5-^0+ and take the equality for 

(2.32), i.e. 

= 1 - (2.34) 
+ � ) 

Thus, we have 

五 + � + P [ - ? ( 1 - 命 ] ) ， a s " " ^ � . 
Again consider (2.31) with —d— < c < 0. As d- increases from 0, the parabola 

widens and shifts towards right. Note that the growth of ê ^ contributes to the 
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bound M一, i.e. M一(cL) = 0 (e� ( i+q2+7j ) . Then by Theorem 2.4.3, we have 

E? = 0 I exp 7>(l + d_)2 + T7 — ^ . 
V L �</ 

When d_ = 7r/{Tiih) — 1, EE attains the minimum 

= exp + T7 + — , as " — 0. 
V L T̂ ih? /1�乂 

Finally, the truncation error E^ is estimated according to (2.29) as 

ET = 0 (exp [T/i(l - h^N'^) + T7]) , as h 0 . 

Sincc we are minimizing E^ and E'̂  (or minimizing 7), we take the equality for 

(2.33). Together with (2.34), we have 

a? 
J = ao-h p -

4a2 
As in [57], we treat the min-max problem 

approximately by balancing the asymptotical rates 

- f ( 1 — = = T K I - 師 E m (2.35) 

Solving the scalar equations (2.35), e.g. by the Matlab routine solve, we obtain 

the optimal parameters, //, and /?-*, for the parabolic Talbot contour. 

Thus, given the parameterization of the Talbot contour, we can obtain the 

poles and the weights in (2.20), plug into the quadrature formula (2.24), and 

compute the numerical solution of the option price. We remark that the cost for 

computing the optimal parameters is negligible, compared with the main cost of 

solving N large linear systems in (2.24). However, the parameterization is crucial 

for accuratc numerical solution, as wc will see in the numerical experiments, see 

e.g. Figure 2.7. 
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2.5 Numerical experiments 

Example 1 

In the first example, we test the proposed parallel Talbot method (PTM) on 

a European call option under Merton's lognormal model [39], where the jump 

distribution f{x) in (2.1) is given by 

, 1 ( (.7； - /1)2\ 
/ M e — ⑷ = 

The following parameters are used: K = 100, r = 0.05, q = 0.02, a — 

0.1，T = 1, X = 2, jl = -0.3, a 二 0.4, and k = 斤 — 1 . We take the 

truncation boundary :Cmin 二 - 3 , rCmax = 3 and the mesh size A:c = 10"^ (or 

M = 6,000). We are interested in the option price at Sq = K. Except for Figure 

2.5，all the errors in the numerical approximation arc calculated with the exact 

price 24.503308 (by analytical formula [39]). 

In Figure 2.3, we verify our estimation for the critical region S儿 see Theorem 

2.4.2. Observe that the eigenvalues of A move off the negative real axis. We 

remark that in our experiment the condition p> X'ls sufficient and necessary for 

the parabola 屯(cu) to enclose E乂. 

Figure 2.4 reveals the failure of the Talbot contour in [57], as it intersects the 

critical region E^ and traverses the spectrum of A. Our remedy is to include 

a shift 7 in (2.30) and impose the feasibility constraints, sec (2.32)-(2.33). The 

devised Talbot contour is plotted by the solid line with 16 quadrature nodes 

marked with dots. 

In Figure 2.5，wc further the comparison of the contour in [57] and the contour 

wc propose. We test the scalar approximations by the two contours to (po(z) and 

(pi(z), see (2.19), on the vertical line Rc z = - 5 . Our observation is that the 

accuracy by the contour in [57] is higher when z lies on the negative real axis, but 

soon dccreascs as z moves away from the real axis. To the contrary, the accuracy 
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Figure 2.3: We plot the rightmost eigenvalues of A by the pluses, the symbol curve 

(I>_4(a;) by the solid line, its asymptotical approximation by the dashed line 

(which coincides with the symbol curve asymptotically), the critical region E^ 

by the shaded area, and the parabola ^'(a;) in Theorem 2.4.2, with p — \ and 

(5 = 0+，by the dash-dotted line. 

by our contour is more uniform (as the curves are almost flat in the figure) inside 

the region Evp, or |c| < 13.84 according to Figure 2.4. This observation provides 

a heuristic explanation on why our proposed contour is superior to that in [57 

for the nonnormal problem. 

Back to PTM for the option pricing problem, Figures 2.6-2.8 conccrn opti-

mal parameter selection and error estimate (for option prices). Recall that the 

common-polc approximation for (po and (pi require p = 0(1). As p increases from 

0, we sacrificc the accuracy in approximation of cpo, but gain the accuracy in 

approximation of As p becomes even larger, the accuracy in both approxima-

tions will drop as expected. In Figure 2.6, we find that it strikes a good balance 
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Figure 2.4: The pluses and the dash-dotted line are the same as in Figure 2.3. 

The parabolic contour proposed in [57] is plotted by the line marked with circle. 

The parabolic contour wc propose for nonnormal problem is plotted by the line 

marked with dot. In the limiting case, the parabola (2.31) with c = see (2.34), 

is plotted by the dashed line. The dotted vertical line is Re 2； = - 5 . 

to take p = 2 (marked by the cross) for Example 1. 

Figure 2.7 accredits our strategy to estimate the optimal parameters and 

h*. In the left part of the figure, or for small ",’ the error E^ dominates; in the 

northeast sections, the error EE dominates; and in the south and southeastern 

sections, ET dominates. Although our estimate in Section 2.4.3 is asymptotical, 

the resulted parameters, = 10.2419 and h* = 0.1430，are indeed near-optimal 

for small N{= 8). 

Figure 2.8 illustrates the convcrgencc of PTM. Note that we can calculate 

E(N) by solving fi and h in (2.35) for each positive integer N. Then we have a 

priori error estimate given as 0(6—五'(")"）’ where E'(N) ^ E{N) - E(N - 1 ) = 
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—1.5014 in this example. We observe that our priori estimate is consistent with 

the experiment data. 

Example 2 

We address the issues of implementation and complexity with a second example, 

where we test PTM on an up-and-out put option under Kou's double exponential 

model [30]. The jump distribution f { x ) in (2.1) is given by 

, , 、 [ m e - ” J , iix>0-, 
/kou � = < 

[(1-p)772e”2x，if a； < 0. 

As wc will compare the performance of our method and that of the extrapolation-

implicit-explicit method (ext-IMEX) in Feng and Linetsky [20], we use the pa-

rameter set therein: K = 100, r = 0.05，q = 0.02，(j 二 0.1, T = 1, A = 

3, p = 0.3, T]i = 40, 7/2 = 12, the upper knock-out barrier U = 120, and 

hi = - 1) —1 - (1 - p)(r}2 + l ) - i . In this example, we set x^in = 一2’ aĵ ax = 

\og{U/K), p = 1. Again, we are interested in the option price at SQ = K’ for 

which the exact pricc is 5.75775 (by standard Crank-Nicolson method). 

In PTM, we need to solve N independent linear systems, see (2.24). In our ex-

periment, cach linear system is solved by the generalized minimal residual method 

(GMRES) with left preconditioner Zjl - B. Given the spatial discretization in 

Section 2.3, wc construct the tridiagonal matrix B by matching the tridiagonals 

of A. The effectiveness of this simple preconditioning strategy is illustrated by 

Table 2.1. For a fixed residual tolerance the iteration numbers of precon-

ditioned GMRES for N(=S~) linear systems are independent with the matrix size 

M. Sincc cach matrix-vector multiplication is of complexity 0{M log M) due to 

fast Fourier transform (FFT), and since the inversion of a tridiagonal system can 

be done with 0(M) operations by sparse matrix solvers, the total complexity of 

PTM is therefore 0{NM log M). 
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Tabic 2.1: Iteration numbers of preconditioned GMRES 

the j-th linear system 

M 1 2 3 4 5 6 7 8 

682 14 14 13 12 12 11 10 9 

1364 14 13 13 12 11 11 10 9 

2728 13 13 12 12 11 10 10 9 

5456 13 12 12 11 11 10 9 9 

10912 12 12 11 11 10 9 9 8 

21824 12 11 11 10 10 9 8 8 

In the following, we compare the performance of PTM and that of ext-IMEX 

[20]. For both methods, we assume the same spatial discretization with fixed 

mesh size Ax = lO—�or M = 10912, yielding a minimal error around 2 x 

In the s-level ext-IMEX, we use the Ist-order implicit-cxplicit Eiiler scheme with 

initially 10 time steps. For the j-th level, j = 1,..., s, we do the time marching 

with 10j times steps. The last step is to combine the results at all s levels and 

complete the extrapolation tableau. Note the total number of time steps in ext-

IMEX n ^ s^/2 and the error .fext-iMEX = 0(e-Civ^i�g")’ cf. [20]. As the runtime 

冗xt-iMEX is proportional to n, wc have the following estimate for ext-IMEX 

^ext-IMEX = 0(exp[—(72(7;xt-IMEX)lZ2log(7;xt-IMEX)])- (2-36) 

In PTM, wc balance the approximation error of Talbot quadrature and that 

of GMRES iteration. Our choice is to take the number of preconditioned GMRES 

iterations m, to be proportional to iV + where N is the number of quadrature 

nodes and (3 is some positive integer. Note that the total amount of work is 

0{mN), or + (3N). Therefore, the complexity of 7^aib�t(A0 is at almost 

quadratic. Nevertheless, it can also be estimated as a power function Traibot = 

0[N(、), where 1 < a < 2. Together with the exponential convergence of Talbot 
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quadrature, we have the following estimate for PTM 

^̂Talbot = C)(CXp[-C3(7ralbot 产]). 

Figure 2.9(a) shows the experiment results on a single-processor machine. In 

this experiment, wc find approximately a = 1.2838, or 1/a = 0.7790 > 0.5. 

Although PTM is more favorable in terms of the theoretical estimate, the figure 

shows that ext-IMEX outperforms PTM before both two are close to attain the 

minimum error around 10—6. 

Now we consider the parallel implementations with minimum communication 

for both ext-IMEX and PTM. We assume that both methods attain reasonably 

good accuracy with s (for cxt-IMEX) and N (for PTM) less than the maximum 

number of processors available. For ext-IMEX, we distribute totally s indepen-

dent levels of time marching schemes to s nodes. After all time marching schemes 

finish, we collect the results from each computing node and complete the extrap-

olation tableau. Note that the error estimate (fext-iMEX 二 O(e-Civ^iogn) remains 

valid, but the runtime T̂ xt-iMEX becomes proportional to s, since it is determined 

by the level with the most time steps. With n = s^/2, the estimate (2.36) changes 

accordingly 

<^ext-IMEX = 0(cxp[—C47^xt-IMEX log(7^xt-IMEx)l)• 

For PTM, we solve totally N independent linear systems by preconditioned 

GMRES iteration on N computing nodes separately, and then sum the results 

as in the formula (2.24). Since the work is distributed evenly to N nodes, the 

runtime T̂ aibot rcduccs to a multiple oi N + So 

^Talbot = 0(cxp[—Cs^Talbot + CefJ]). 

In Figure 2.9(b), we observe that for the error less than around 10"^, PTM 

outperforms ext-IMEX. In fact, the slope (in magnitude) of the log-error for PTM 

nearly doubles that for ext-IMEX. Due to the effect of the intercept ext-IMEX 

is more suitable for low-accuracy computation. 
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The experiments are implemented on the Linux Cluster—Organon [1], with 

cach computing node installed with Matlab v7.1.0.183 (R14) Servicc Pack 3 and 

MatlabMPI [2]. 

2.6 Conclusion 

In this chapter, we introduce a novel parallel Talbot method (PTM) for solv-

ing the initial-boundary value problem arising from the jump-diffusion model 

in option pricing. PTM yields a geometrically convergent time quadrature, and 

therefore outperform traditional time-marching schemes of polynomial-order con-

vergence. In particular, we devise optimal parameterization of parabolic Talbot 

contour, by balancing the asymptotical error decay with feasibility constraints. 

Our contributions are twofold: first, we derive explicit conditions on the con-

trol of the (pseiido)spectriim of nonnormal jump-diffusion operators; second, we 

consider common-polc approximation for general (/̂ -functions, thus greatly sav-

ing computational cost. In the numerical experiment, we see that the optimal 

parameterization of Talbot contour is effective,and that PTM is competitive on 

parallel machine. 
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Figure 2.5: We plot the errors of scalar problems (rather than option pricing) for 

approximating + ic) in (a) and (fi(-5 + ic) in (b), where 0 < c < 20 for 

both. Ill each figure, the dashed line is the error for the contour in [57] and the 

solid line is that for our proposed contour. 
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Figure 2.6: We plot the error as the shift parameter p varies. The optimal choice 

p 二 2 is marked by the cross. 
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Figure 2.7: This is the contour plot of logio |̂ TalbotI, with N = 8, p = 2, for 

different choices of // and h. Our parameter estimate that fi* = 10.2419, h* = 

0.1430, see (2.35)，is marked by the cross. 
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Figure 2.8: The error, with optimal choice of parameters, /j*〔N) and h*{N), is 

plotted by the solid line. The priori error estimate 0 ( e - i . 5 � i s plotted by the 

dash-dotted line. 
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Figure 2.9: We plot the runtime (in sccond) vs the error for the parallel Talbot 

method (TV = 1,...,7), those for ext-IMEX (s 二 1，...，7)，and those for the 1st-

order IMEX method (only in (a)). The experiment on a single-proccssor machine 

is shown in (a) and that on a multi-proccssor machine (with a maximum of eight 

processors) is shown in (b). 
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Chapter 3 

Memory-reduction Monte Carlo 

method for pricing American 

options 

3.1 Introduction 

It is well known, sec e.g. [24], that with the arbitrage-free principle the option price 

is given by the discounted expected payoff under certain risk-neutral measure. 

This leads to option pricing by the Monte Carlo method, for which the first 

application was made by Boyle [9] in 1977. Sincc then, Monte Carlo method 

has been a popular tool in pricing financial derivatives [24]. Yet, Monte Carlo 

method is known to have difficulties in handling American-style options with 

early exercise feature. In 2001, Longstaff and Schwartz [32] proposed a practical 

algorithm, named least squares method (LSM), to price American options. Their 

method is based on a backward-in-time induction, where at cach time step the 

continuation value of the option is estimated by least squares regression. 

However, one drawback of LSM is that, in order to compute the intermediate 

exorcise prices at all time steps, it requires the storage of all asset prices at all 
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time steps for all simulated paths. Thus the total storage requirement grows like 

0(mn) where m is the number of time steps and n is the number of simulated 

paths. The plain Monte Carlo method, referred as the full-storage method in 

this chapter, is therefore computationally inefficient since the accuracy of the 

simulation is severely limited by the storage requirement. 

This storage problem can be alleviated by "bridge methods" such as the Brow-

nian bridge [12], the inverse Gaussian bridge [45], and the gamma bridge [46] — 

where the memory requirement can be reduced to O(nlogm). Nevertheless, one 

drawback is that a specific bridge method can only work on the corresponding 

model that the price of the underlying asset follows. Thus the Brownian bridge is 

suitable for Brownian motion, the gamma bridge for the variance gamma process, 

and so on. That is to say, all bridge methods are model-dependent, which limits 

their use in applications. 

In this chaptcr, we develop a mcmory-rcduction method, which does not re-

quire storing of all intermediate asset prices. The storage is significantly reduced 

to 0(m + n). Coupled with the least squares method proposed in [32], our 

memory-reduction method is applicable to the general class of exponential Levy 

processes. The main idea of our method is to first generate the price process 

forward until the expiration time, and to store only the seeds of the random num-

ber sequences at each time step. When computing the option prices backwardly, 

we recompute the just-in-time asset prices using the corresponding seeds. Since 

the prices arc recomputed cxactly, the memory-reduction method gives the same 

result as the full-memory method. The additional computational cost is the cost 

of regenerating the random numbers corresponding to the asset prices. The to-

tal computational cost is therefore always less than twice that of the full-storage 

method. 

The remainder of the chapter is organized as follows. Section 2 reviews the 

exponential Levy processes as well as the full-storage method. Section 3 gives 
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the background of random number generators and the concept of seeds. Section 

4 introduces our mcmory-reduction method. In Section 5, we show how the 

memory-reduction method is applied to specific models — viz. the Black-Scholes 

model, Merton's jump-diffusion model and the variance gamma model. Numerical 

results are provided there to show the efficiency and accuracy of our method, 

by comparing it with methods from other well-known approaches. Concluding 

remarks are drawn in Scction 6. 

3.2 Exponential Levy processes and the full-storage 

method 

Let the risk-neutral price dynamics be modeled by the exponential Levy process 

St = SoCxp{rL-i-Lt). (3.1) 

with the risk-free rate r and a Levy proccss Lf A Levy process Lt is a stochastic 

proccss with stationary independent increments, continuous in probability, having 

sample paths that arc right-continuous with left limits ("cadlag"), and satisfying 

LQ = 0. We note that the increments, L^-LT for any s > T, are independent if the 

increments Ls — Lt and L^ — Ly are independent random variables whenever the 

two time intervals [力’ s] and [v, u] do not overlap. The increments are stationary 

if the distribution of any increment Ls - Lt only depends on s — t\ and therefore 

increments with equally long time intervals are identically distributed. 

We first review the Monte Carlo simulation for computing American-style 

options. First the time horizon is discretized into m time steps with equal length 

A 力 ( T - tQ)lm as to < t^ < ... < Un = T, or tj = to + jAt, where to is 

the current time and T is the expiration date of the option. Let Ljj denote the 

realization of Lt on the i-th path at time t j . They are computed by adding the 

increment AL^j ：二 Li’j — Li’j_i to recursively at each time step. Thus 
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the whole path simulation process is to simulate the random numbers that give 

ALij. We will denote by Sj j = {e'^jj^tfi the ordered set of [0,1] uniform random 

numbers used in generating ALjj. Here rjij is the number of random numbers 

required to generate AL^j. It is different for different process. The outline for a 

general of path simulation procedure is given below: 

Algorithm 3.2.1. (Path simulation) 

For-loop: i = 1,2,..., n 

Set Li’o — 0 

For-loop: j = 1,2, . . . ,m 

1. Get the increment ALi’j by generating E^j 

忍 . L i j — h j - i + ALij 

End for-loop 

End for-loop 

Algorithm 3.2.1 simulates the paths and then stores all intermediate asset 

prices Sij for later computation of the option prices, hence the storage require-

ment grows like 0(mn). We call this the full-storage method. Once we have all 

the intermediate asset prices Sij, we can price Amcrican-style options using the 

least square method (LSM) suggested by [32]. Let us recall it here. At the final 

cxcrcise date T, the optimal cxercise strategy for an American option is to exer-

cise it if it is in the money. This can be done as the terminal asset prices Si’m are 

available for cach path i. However, prior to T the optimal strategy is to compare 

the immediate exercise value with the expected cash flows from continuing, and 

then exorcise if immediate excrcise is more valuable. In the full-storage method, 

the intermediate asset prices Si’j are available for each path i and at each time 

step j . Thus the key to optimally exercising an American option is to identify 

the conditional expectcd value of continuation. In [32], the cross-sectional in-

formation in the simulated paths is used to identify the conditional expectation 

40 



function. This is done by regressing the cash flows from continuation on a set 

of basis functions depending on the current asset prices Sij. The fitted function 

from this regression is an efficient unbiased estimate of the conditional expec-

tation functions, from which one can estimate an optimal stopping rule for the 

option. 

Numerical illustration of LSM for pricing American put options under the 

Black-Scholes framework can be found for instance in [32]. The computational 

complexity of the full-storage method is 0{mn). 

3.3 Random number generators 

In Step 1 of Algorithm 3.2.1’ in order to get AL^j we need to generate a set of 

[0,1] uniform random numbers {S^j} for each time step j on each path i. Most 

programming softwares already have built-in functions to generate [0，1] uniform 

random numbers. In MATLAB, we can initialize the pseudorandom number 

generator with seed d by the command randC'seed' ,d), and then generate a 

pseudorandom sequence {e^} by repeatedly using the command rand. In MAT-

LAB, {ejt} is generated by a simple multiplicative congrucntial generator [41, 

Chapter 9] 

do = d, 4 = adk-i + c mod M, for A; > 1; Ek = d ^ / M . (3.2) 

The parameters in (3.2) are chosen as a = 16807, c 二 0, M 二 - 1’ due to 

Park and Miller [42], 

Thus a pseudorandom sequence is actually not random but deterministic, in 

the sense that it is generated according to some formula and hence can be regen-

erated cxactly if the seed do is known. For example, the MATLAB commands 

rand( 'seed' ,d)； 

e=rand; 
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will output different e if the seed d is changing every time, but output the same 

e if d is fixed. By extracting and remembering a proper seed, we can regenerate 

part of a pseudorandom sequence as we desire. More specifically, suppose we 

have already generated a sequence {saJLi, and then we want to regenerate only 

{£k}k=q： i.e. the part of the scqucnce beginning at £g. All we need is to extract 

the seed after generating Eq-i. The secd-extracting command in MATLAB is 

rand( 'seed' ) . Thus given the sequence {£a;}�=i generated by 

randn randn c=randn('seed') . , , randn randn 
> e i . . . > £q-i > extract seed c > Sq . . . 

wc can regenerate {skjl^p by 

randn('seed',c) , , randn randn randn randn 
)• set seed c > ê  > £q+i ^ £p 

Some computer languages only provide [0,1] uniform random numbers. When 

we simulate Levy processes, we will also need to generate non-uniform random 

variables such as the standard normal random variables, Poisson random vari-

ables, and the gamma random variables. Various kinds of methods, say the 

inverse transform method and the acceptance-rcjection method, can be used to 

obtain non-uniform random variables based on [0,1] uniform random numbers. 

For standard normal random numbers, the most commonly used method is the 

Box-Muller transformation [17, pp. 235]. For Poisson random variables, the in-

verse transform method is a standard method [24, pp. 128]. For completeness, 

we provide the Best's generator for the gamma random variables in the Ap-

pendix, cf. [17, pp. 410 and pp. 420]. We will be using these methods to generate 

the needed random variables. In the following, we will use Z � A / ^ O , 1) and 

£ � Z ^ O , 1] to denote random numbers Z and e distributed as standard normal 

and [0,1] uniform respectively. 
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3.4 The memory-reduction method 

In this scction, we present our memory-reduction method which does not require 

one to store the intermediate asset prices when computing the option 

prices. In this method, each increment AL^j is generated twice without being 

stored while the corresponding intermediate asset price Sij is generated only once 

in the backward pricing of the option. 

As in the full-storage method, we compute Lij — Li’j-i + AL^j by using 

the increments AL^j. But in our memory-reduction method, we use a different 

way to generate the set of random numbers S � t o obtain ALjj—we generate 

them time-wise. More precisely, we obtain the increments AL̂ î by generating 

the random numbers in Eĵ i on each path i, i = 1,..., n, for the time step j = 1 

first. Then we obtain ALi,2 by generating Ei,2 on all paths for j = 2，etc. For 

cach time step j , at the last path, i.e. path n, we extract and save the current 

seed dj for later use. Given an arbitrary seed di, the procedures can be illustrated 

as follows (cf. Phase 2 in the following Algorithm 3.4.1): 

set seed di — ALi’i(Si’i) — AL2,i(E2,i)—……—AL„,i(S„,i) 一 

extract seed ck 一 八Z/i’2(Ei,2) 一 AL2,2(22,2) 一 ……AL„’2(S„，2) 

extract seed 而— 

extract seed dm ALi’爪(Si，爪)一 AL2,m{^2,m)—……一 ALn，m(2n’m) 

Note that we need an m-vcctor to hold and an n-vector to hold {!/《，)• }�=i. 

That n-vector can be re-used for every time step j . 

When computing the option price we move backward in time, and compute on 

cach path i the corresponding asset prices Si�j 二 Sq exp(77 A/, + Lij) at each time 

step j . This requires L^j. Given Lij+i, to obtain L i j , wc only need to regenerate 

ALi’j+i. This can be done by reproducing the random number sequence in S � j + i 

using the seed dj+i, i.e. 
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set seed dj — ALij+i(Eij+i) ……一 

Once we get all the Si，j for the time step j , we can compute the option prices on 

all paths at time step j by using the LSM method in [32]. We summarize our 

memory-reduction method in Algorithm 3.4.1 below: 

Algorithm 3.4.1. 

Phase 1 (path simulation): 

Set Lq 0 for i = 1, 2,..., n 

For-loop: j = 1,2,..., m 

1. Extract the current seed dj 

For-loop: i = 1, 2,..., n 

2. Get the increment ALij by generating S j j 

3- Lij 卜 Lij-i + ALij 

End for-loop 

End for-loop 

Phase 2 (price computation): 

For-loop: j = m,..., 1 

If j < m, 

4- Recall the seed dj+i 

For-loop: i = 1 ， 2 , n 

5. Get the increment ALij+i by regenerating ^ij+i 

6. Lij — Lij+i - ^Lij+i 

7. Si,j^Soexp{rjAt-^Lij) 

End for-loop 

End if 

Compute the current option price on all paths using the LSM method 

End for-loop 
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We note that our memory-reduction approach requires only three vectors: 

an m-vector for storing the seeds {dj}^^^ in Steps 1 and 4, an n-vector to hold 

{Li ’ j } t i for the current time-step j in Steps 3 and 6 and an n-vector to hold 

{5"i，j}^i for the current time-step j in Step 7. The additional computational 

burden is Steps 1-4 in Phase 1, where we generate the paths and remember 

the seeds. Since in Phase 2 we are regenerating the exact paths as in the full-

storage method, it is clear that the results obtained by the full-storage method 

and the mcmory-reduction method are exactly the same. Moreover, since path 

generation is only one part of all the computations required in the algorithm (the 

other part—the major part—being the least-squares methods of [32])，we see that 

the total cost of our method is less than twice that of the full-storage method. 

Wc will illustrate these facts numerically in Section 3.5. We note that in order 

to use our Algorithm 3.4.1 for different kinds of option, we only need to specify 

how AZ/ij in Step 2 are generated. 

3.5 Numerical examples 

In this section, we apply our method to different models in the class of expo-

nential Levy processes. In Subsection 3.5.1’ we consider the Black-Scholes model 

and compare our mcmory-reduction method with the Brownian-bridge method 

and also the Crank-Nicolson method. In Subsections 3.5.2 and 3.5.3，numeri-

cal results are reported for both finite-activity and infinite-activity jump pro-

cesses, respectively. We compare our results with a binomial tree method and an 

integro-differential equation method. Regarding the LSM WG used, we estimate 

the continuing values of an option on those "in-the-money" samples and choose 

the first three Lagiierre polynomials plus a constant term as our basis functions 

throughout the section. 

45 



3.5.1 Black-Scholes model 

As an illustration for how to use the memory-reduction method, we begin with 

the Black-Scholcs model: 
1 n 

-^=rdt-\- adWu (3.3) 

where r is the risk-free rate, a is the volatility, and Wt is the standard Wiener 

Proccss. The memory-reduction method for this simple case was considered in 

10’ 11], but we repeat it here as an introduction to our method. By Ito's lemma, 

the Lt in (3.1) becomes Lt = + aWt and hencc 

AL^j 二 一秦A亡 + aV^tZi j (3.4) 
Zi 

where Zi�j �AAfO, 1]. By the Box-Muller transformation [17, pp. 235], a pair 

of Zi’j can be generated by a pair of Sij �A/"[0,1]. Hence here the set S^j in 

Algorithm 3.4.1 has only one element Sij. Now we can apply Algorithm 3.4.1 by 

specifying the procedures in Step 2 as follows: 

Algorithm 3.5.1 (Black-Scholcs). 

1. Generate Zi’j � A / " ( 0 , 1 ) using eij ~ U[0,1] 

2. A Li J <——ifj^A^ + o\rKtZ、i 

Next we compare our memory-reduction method with the Brownian-bridge 

method in [12) and the Crank-Nicolson method on pricing American put options 

under model (3.3). Note that the results obtained by the full-storage method 

and the memory-rcduction method are exactly the same, since the same paths 

are used to price the option. In our test, we choose the risk-free rate r 二 0.1’ the 

volatility cr = 0.4’ and the expiration date T == 0.5 year. In Table 3.1, "CNM" 

stands for the results computed by the Crank-Nicolson method. The means and 

the standard deviations after 25 trials are shown under "Mean" and "STD" for 

both the memory-rcduction method and the Brownian-bridge method. The two 
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Table 3.1: Black-Scholes model with n = 10̂  (50,000 plus 50,000 antithetic) and 

m = 64. 

Memory-rcduction Brownian- bridge 

SQ CNM Mean STD Error Mean STD Error 

6 4.0000 3.99220 0.00002 —0.00780 3.99220 0.00005 -0.00780 

8 2.0951 2.09459 0.00192 -0.00051 2.09311 0.00226 -0.00199 

10 0.9211 0.92117 0.00167 0.00007 0.92059 0.00232 -0.00051 

12 0.3622 0.36190 0.00208 -0.00030 0.36181 0.00231 —0.00039 

14 0.1320 0.13225 0.00125 0.00025 0.13184 0.00127 -0.00016 

Table 3.2: CPU time in scconds and memory requirement when .So = 10. 
m 32 32 64 128 Memory 

n 20,000 40,000 80,000 20,000 requirement 

Full-storage 4.25 8.59 17.19 4.25 8.50 16.98 n(m +1) 

Mcmory-reduction 4.37 8.87 17.74 4.37 8.78 17.53 m + 2n 

Brownian-bridgc 4.58 9.22 18.53 4.58 9.21 18.43 n(log2m + l) 

"Error" columns represent the difference between the corresponding "Mean" and 

"CNM". We observe that the accuracy is almost the same for all methods. Table 

3.2 presents the average CPU times for five consecutive trials of each method. We 

see that our method brings about slight additional cost, but significantly reduces 

the storage requirement when compared with the other two methods. We also 

observe from Table 3.2 that, for all three methods there, the CPU time increases 

linearly with respect to m and n if either one is fixed. This is as expected, since 

the CPU times should be increasing like 0(mn). 
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3.5.2 Merton's jump-diffusion model 

Merton's jump-diffusion process [39] can be described by the following stochastic 

differential equation under risk-neutral measure Q (generally not unique): 
J O 

- ^ = rdt + adWt + dJt - wdt. (3.5) 
ST-

Here t— denotes the instant immediately before time t, Jt = 一 1) rep-

resents sudden jumps in price evolution, Nt is a Poisson counting process with 

intensity A, and {logVijf丄i are independent and identically distributed A/"(a’ 約 

numbers. Also in (3.5), 

zu = XE l̂Yk - 1 1 - A [exp ( a + � - l ] (3.6) 
L \ 2 � 

is the compensator such that E^[exp(-rt)St] = SQ. Rewriting (3.5) as (3.1), we 

have 
Nt 

Lt 二 - 力 + aM/̂  + l o g ( n ) -如 . (3.7) 
fc=i 

Thus for Merton's juinp-difFiisioii model, Step 2 in Algorithm 3.4.1 is 

Algorithm 3.5.2 (Merton). 
1. Generate Nij 〜Poisson(XAt) using the inverse method [24, VP-

2. Generate Z l j ~ 

3. If Nij > 0，generate Z f j � 1 ) 

4- al,,,- — — + aVMZl^ + aNij + 

Now we test our method on an American put option under Merton's jump-

diffusion model. The underlying stock price SQ at the currcnt time is $40. The 

parameter values are r = 8%, a = \/0.05, A — 5, and (5 二 \/0.05. We let 

a = such that 二 1. The numerical results arc reported in Table 3.3， 

where the columns "Mean" and "STD" are the means and the standard deviations 
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Table 3.3: Morton's model with n 二 lO^ and m = T/0.01. 
Strike K Amin's Mean STD Error 

Expiring time T = 0.25 year 

30 0.674 0.6741 0.0064 0.0001 

35 1.688 1.6872 0.0121 -0.0008 

40 3.630 3.6248 0.0174 -0.0052 

45 6.734 6.7288 0.0256 -0.0052 

50 10.696 10.6867 0.0203 -0.0093 

Expiring time T = 1 year 

30 2.720 2.7191 0.0132 -0.0009 

35 4.603 4.6064 0.0204 0.0034 

40 7.030 7.0242 0.0199 —0.0058 

45 9.954 9.9461 0.0326 -0.0079 

50 13.318 13.3050 0.0326 -0.0130 

Tabic 3.4: CPU time in scconds and memory requirement when T = 1, K = 40. 
m 50 50 100 200 Memory 

n 20,000 40,000 80,000 20,000 requirement 

Pull-storage 22.05 43.86 87.77 22.05 43.52 86.88 n(m + l) 

Memory-reduction 36.93 73.04 146.35 36.93 73.14 146.06 m + 2n 

obtained after 25 trials. Wc use the 200-time-step discrete time binomial tree 

model in [4] as a benchmark, and it is listed under the heading "Amin's" • We 

observe that the two methods agree up to 2 decimals. Table 3.4 gives the average 

CPU times for five consecutive runs of the methods. Again the CPU time by our 

method is always less than twice of that by the full-storage method. 
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3.5.3 Variance gamma model 

A variance gamma (VG) process [35] with parameters /i G M, cr > 0, and " > 0 

can be represented as a time-changed Brownian motion. Let Bt = fit + aWt 

be a Brownian motion with drift fj, and volatility cr. Define a gamma process 

Gt with independent gamma increments of mean h and variance i^h over any 

non-overlapping time intervals of length h, or Gt � 7 ( 6 ， " ) � T h e n the 

three-parameter VG process Xt is defined by Xt = Bct and its characteristic 

function is 

少乂 > ) 二 ^XP(她)1 = “ . (3-8) 

Accordingly, the asset price process St is modeled as 

St = So exp((r - q)t + Xt - wt) (3.9) 

under the risk-neutral measure Q (generally not unique) with a continuous div-

idend yield of q and a constant continuously compounded interest rate of r. In 

model (3.9), the risk-neutral drift rate is r - q and the compensator w satis-

fies exp(tu) = E^[cxp(Xt)] such that E^[exp(-(r - q)t)ST] = SQ. By evaluating 

(I>Xt(ii) at —i, wc have 

•CO = - - l o g ( l — (J,iy — • (3.10) i/ 乂 2 乂 

Thus Step 2 in Algorithm 3.4.1 becomes: 

Algorithm 3.5.3 (variance gamma). 

1. Generate Zi’j �A^(0，1 ) 

忍.Generate AGij 〜7(学)using Best's generator given in Algorithm 3.7.1 

3. ALi’j — f i A C i j + — wAt 
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Table 3.5: Variance gamma model with n = 10̂  and m = 56. 
Strike K PIDE Mean STD Error 

1200 35.530 35.363 0.288 -0.167 

1260 48.798 48.642 0.306 -0.156 

1320 65.991 65.850 0.404 -0.141 

1380 87.991 87.777 0.345 -0.214 

Table 3.6: CPU time in seconds and memory requirement when K = 1320. 
m 50 50 100 200 Memory 
n 20,000 40,000 80,000 20,000 requirement 

Full-storage 58.61 117.41 234.93 58.61 118.58 240.12 n(m +1) 
Mcmory-reduction 112.53 225.34 450.73 112.53 229.05 462.36 m + 2n 

Now consider an American put option with maturity T = 0.56164 written 

on a stock with current price So = 1369.41. The VG parameters after model 

calibration are given by r = 0.0541, q = 0.012’ d 二 0.20722, “ = 0.50215, 

and 9 = -0.22898. Wc test our method on various strike prices K and with 

m = 56 ^ 770.01. The results are presented in Table 3.5. For comparison, 

results obtained by the partial integro-differential equation approach in [27] are 

given under "PIDE". As usual, the "Mean" and "STD" are the means and the 

standard deviations respectively, obtained after 25 trials. The difference between 

"Mean" and "PIDE" are computed in the column "Error". Again, the numerical 

results confirm the accuracy of our method. The average CPU times of five 

consecutive trials are given in Table 3.6, and the CPU time by our method is 

again bounded above by twicc that by the full-storage method. 
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3.5.4 Remarks on the efficiency of the memory-reduction 

method 

In the above three subsections, we have illustrated how to apply our memory-

reduction method to specific exponential Levy models. For both the full-storage 

method and the memory-reduction method, the computational cost is composed 

of two parts: the cost in path simulation and the cost in price computation. 

Compared with the full-storage method, the cost in path simulation is almost 

doubled in the memory-reduction method while the cost in price computation 

of both methods are the same. Hence our method always uses less than twice 

the time required by the full-storage method. In the following, we mention two 

factors affecting this overhead cost. 

In Tabic 3.7, we give the ratio of the timing between the two methods in 

the "Ratio" rows for m 二 50 and n = 20,000. In the tabic, the number in 

the square bracket [.] for each model is the average CPU time in seconds for 

generating 1,000 sample paths with 50 time steps. Wc observe from the table 

that the cost in path simulation in the Black-Scholes model is much less than 

that in the variance gamma model. As a consequcncc, our memory-reduction 

method almost produces no additional computational cost in the Black-Scholes 

model, while in the variance gamma model the CPU time of our method nearly 

doubles that of the full-storage method. 

Another factor is the number of Sij that are in-the-money. The rows "In-the-

money (%)" in Tabic 3.7 count the average percentages of those "in-the-money" 

Sij in the m • n samples in 5 trials. As the difference K - SQ goes up, the number 

of "in-the-money" samples goes up, which leads to an increase in the cost of price 

computation. Consequently, the ratio goes down. 
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Table 3.7: CPU time in seconds with m = 50’ n 二 20,000. 
Black-Scholes model [0.0331: 

So 6 8 10 12 14 

"In-the-money" (%) 98.9 87.3 49.0 15.5 4.7 

Full-storage 13.8 11.52 6.68 2.74 1.48 

Memory-reduction 14.11 11.78 6.89 2.87 1.61 

Ratio 1.022 1.023 1.031 1.047 1.088 

Merton's model (T = 1) [1.62] 

Strike K 30 35 40 45 50 

"In-the-money" (%) 21.6 33.6 52.4 69.7 79.1 

Full-storage 17.94 19.37 21.65 23.71 24.87 

Memory-rcduction 32.31 33.86 36.02 38.11 39.29 

Ratio 1.801 1.748 1.664 1.607 1.580 

Variance gamma model [3.85] 

Strike K 1200 1260 1320 1380 

"In-the-money" (%) 11.8 16.3 23.1 37.2 

Full-storage 57.90 58.51 59.37 61.04 

Memory-reduction 112.47 113.18 113.91 115.61 

Ratio 1.942 1.934 1.919 1.894 

3.6 Conclusion 

In this chapter, wc propose a new simulation technique for pricing American 

options under exponential Levy processes. It reduces the storage requirement 

to 0{m + n). For machines with limited memory, we can now enlarge m and 

n to improve the accuracy of the pricing. Furthermore, our memory-reduction 

method can easily be extended to pricing other path-dependent options with 

carly-cxercisc features, such as Asian Bcrmiidan options or multi-asset American 

options. Heiicc our method can be valuable in investigating option prices, espe-
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dally those written on single or multiple assets with complex American triggers, 

long-term options, or any combination of these properties. Wc also remark that 

our memory reduction method has a natural extension to other relevant models 

such as stochastic volatility models, as long as the forward-path method (with 

no memory reduction) uses pseudorandom numbers in Monte Carlo simulation. 

However, the implementation becomes somehow more subtle, as different levels 

of randomness arise. We plan to consider such extensions in our future work. 

3.7 Appendix 

For completeness, here we give the algorithm for generating the gamma random 

variables. We also give the commands in FORTRAN and MATHEMATICA for 

finding the seeds of a sequence of random numbers. 

Algorithm 3.7.1 below generates Gamma random variables 7(a) with density 

咖 = W f ^ 

when a > 1. For a < 1, one uses the transformation 7(a) = 7(1 + with 

U � 1 ] . See [17, pp. 410 and pp. 420] for a comprehensive discussion. 

Algorithm 3.7.1 (Best's generator). 

1. 6 一 0, — 1，c 一 3a — I 

Repeat 

2. Generate random variables U,V 〜 1 

3. W^ U(1 — U), Y 卜 - I ) , x - 6 + y 

4. If X < 0，go to Repeat 

5. Z ^ GiW^V^ 

Until log(Z) < 2 6 1 o g ( f - y ) 

Return X 
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In FORTRAN 90, the command to get a 1] number is rand(). The 

commands to set the seed to d are: 

cal l random_seed(size=k) 

seedd :k)=d 

cal l random_seed(put=seed(1: k)) 

where k is the number of 32-bit words used to hold the seed. The commands to 

extract the current seed d are: 

cal l random_seed(get=current (1: k)) 

d=current(l:k) 

In MATHEMATICA, the seeds are set by "SeedRandom [d] “. To extract the 

current seed, use "c=$RandomState". MATHEMATICA provides W[0，1] numbers 

with the command "Random[]". 
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