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SUBDIFFERENTIALS OF DISTANCE FUNCTIONS IN BANACH SPACES 

Abstract 

This thesis discusses the generalized differential properties of several distance func

tions defined on Banach spaces, which are of paramount importance 'in variational 

analysis, optimization and many other areas. It is well recognized that the standard 

distance function, which measures the distance from a moving point to a fixed subset, 

is intrinsically nonsmooth, rendering the machinery of classical differential calculus in

sufficient for a comprehensive study. Among the various generalized differential devices 

invented to study such nonsmooth functions are the Frechet subdifferential, the prox

imal subdifferential, a family of sub differentials due to Mordukhovich, and their dual 

normal constructions. With a wealth of new tools , the generalized differential proper

ties of the standard distance function have been thoroughly studied in the literature. 

However, there are a number of less acquainted generalizations of the standard distance 

function, including the generalized distance function, which denotes the distance from 

a moving point to a moving subset, and the perturbed distance function, which signi

fies the perturbe~. distance from a moving point to a fixed subset. Mainly based on 

the publications of Mordukhovich and Nam, together with the work of Wang, Li and 

Xu, estimates and alternative characterizations of various sub differentials and normal 

o~jects related to these generalizations of the standard distance function are delineated 

and studied systematically in the thesis. A slight improvement of a theorem established 

by Wang, Li and Xu is also included. 
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Introd uction 

Modern variational analysis may be regarded as an outgrowth of the traditional sub

jects of calculus of variations and mathematical programming. Nonsmo~th functions, 

sets with nonsmooth boundaries and set-valued mappings, which arise naturally and 

ubiquitously in mathematics, are predominant in the framework of variational analy

sis. Conforming to the historical approach to optimization, which relies heavily on the 

theory of classical differential calculus, generalized differentiation lies at the heart of 

variational analysis. 

The primary goal of this thesis is to explore the generalized differential properties 

of several distance functions defined on arbitrary Banach spaces. Distance functions 

are vital in optimization and variational analysis. They often appear in nonlinear pro

gramming and constrained optimization problems even with smooth initial data. For 

instance, distance functions were used to establish notable multiplier existence theo

rems in constrained optimization in [10] and to devise efficient algorithms for solving 

systems of nonlinear equations in [11] and [13]. Such results were mostly obtained via 

perturbation, penalization and approximation techniques. 

Over the years, tremendous effort has been continually devoted to investigating the 

generalized differential properties of the standard distance function d(·, n) : X -+ 1R 

defined by 

d(x, n) := inf{llx - wll : wEn}, 

which measures the distance from a moving point in a Banach space X to a fixed 

nonempty subset n c X (see, for example, [4, 9, 12, 15, 25, 33, 38]). In spite of its 

intrinsic nonsmoothness, its global Lipschitz continuity has proved to be helpful in its 

study. Estimates and representations of its many sub differentials frequently employ 

corresponding normal objects, enlargements and projections. 

One possible extension of the standard distance function is the generalized distance 
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function p : dom F x X ---t 1R defined by 

p(z, x) := d(x, F(z)) = inf{lIx - wll : w E F(z)}, 

where Z and X are both Banach spaces, and the set-valued mapping F : Z =4 X 

serves to produce different subsets of X. The generalized distance function signifies the 

distance from a moving point in X to a moving subset of X. It was Rockafellar who first 

considered the generalized distance function at points belonging to gph F and proved in 

[32] that the local Lipschitz continuity of the generalized distance function is equivalent 

to the local Lipschitz-like property of F. In stark contrast to the standard distance 

function, the generalized distance fun~tion is in general neither locally Lipschitz nor 

locally lower semicontinuous, which has led to a lot of difficulties in its study. Estimates 

and representations of its subdifferentials do not only involve dual normal constructions, 

enlargements and projections, but often also perturbed projections and coderivatives. 

Whether the point of interest belongs to gph F affects the generalized differential 

properties of the generalized distance function significantly. Some results pertaining 

to the 'case in which the point of interest belongs to gph F were proved by Thibault 

in [36], while an inconsiderable collection of formulae concerning the case in which the 

point of interest lies out of gph F are available in [6] and [7]. Proceeding further, an 

instructive observation is that the generalized distance function indeed belongs to a 

more general class of functions known as generalized marginal functions, which are in 

many instances drawn on to develop central theorems in duality theory of minimization 

problems (see [34]). Descriptions of sub differentials of the generalized distance function 

and the generalized marginal function ascertained in [26] and [27] are surveyed in this 

thesis, covering whenever possible both the case in which the point of interest lies in 

gph F and that in which the point lies out of gph F. 

Besides the generalized distance function, another popular extension of the standard 

distance function is the perturbed distance function dJ ( " n) : X ---t 1R defined by 

dJ (x, n) := inf{llx - wll + J(w) : w EO}, 
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which indicates the perturbed distance from a moving point in a Banach space X to 

a fixed nonempty subset n eX, with the perturbation generated by a lower semicon

tinuous function J : n -+ JR. The perturbed distance function was first analyzed in [1] 

by Baranger, who proved that the set of points in a uniformly convex Banach space 

for which the perturbed minimization problem has a solution is a dense Go-subset, 

provided that J is bounded below. Since then, a multitude of existence results have 

been discovered (see [16, 17]) and applied to tackle optimal control problems governed 

by partial differential equations (see [2, 20, 28]). It should be noted that the convexity 

of n plays a principal role in the study of the perturbed distance function. Conclusions 

about subdifferentials of the perturbed distance function communicated in [37], which 

embrace both the case in which n is convex and that in which n is nonconvex, are 

examined systematically in this thesis. 

The rest of the thesis is comprised of five chapters. Chapter 1 gives a brief overview 

of the preliminary materials to prepare for subsequent chapters. Chapter 2 gathers 

some fundamental estimates and alternative representations of Fnkhet-like, limiting 

and singular sub differentials of the generalized distance function. A major motivation 

in Chapter 2 is to characterize sub differentials of the generalized distance function by 
., 

means of dual normal constructions. Estimates of Fn§chet-like and limiting subdif-

ferentials are developed via their dual normal objects, enlargements, projections and 

perturbed projections while those of singular sub differentials are acquired via coderiva

tives. Special assumption3 utilized in this chapter are the criteria for well-posedness of 

the best approximation problem, and a simple sufficient condition for fulfilling one of 

the criteria is supplied. With the use of intermediate points, Chapter 3 continues to 

investigate other estimates of various sub differentials of the generalized distance func

tion, a number of which may be viewed as extensions of the analogous results obtained 

via projections in Chapter 2. A prominent establishment in Chapter 3 pertain~ to 

limiting subdifferentials of the generalized distance function in a Hilbert space setting 

and provides efficient conditions to guarantee the nonemptiness of projection sets as a 

IX 
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by-product. Chapter 4 turns to study singular subdifferentials of the marginal func

tion and the generalized marginal function, with an emphasis on reducing results to 

the corresponding ones for the standard distance function and the generalized distance 

function. As in Chapter 2, mixed coderivatives are employed in the derivation of upper 

estimates. Chapter 5 deals with the perturbed distance function. While reasonable 

estimates may be given generally for a few sub differentials of the perturbed distance 

function, exact formulae are available at points which are self-solutions to the per

turbed minimization problem, provided that some mild assumptions are satisfied. As 

in Chapter 4, reduction to the analogous results for the standard distance function is 

highlighted. This concludes the outline .of the thesis. 

x 



Chapter 1 

Preliminaries 

In this chapter, basic definitions and notations to be used throughout the thesis are 

introduced. Most of these are standard in nonsmooth analysis and variational analysis. 

1.1 Basic Notations and Conventions 

Unless otherwise stated, X is always a real Banach space with dual space X* . The 

norm on X and that on X* are denoted by 11 . Ilx and 11 . Ilx* respectively. When 

the meaning is clear from the context, both norms are conveniently denoted by 11 . 11. 

The canonical pairing on X* x X is represented by (.,.) and the evaluation x*(x ) is 

represented by (x*,x) . Adopting the usual notations, B x and B x * stand for the closed 

unit balls, while S x and S x* stand for the unit spheres, in X and X* respectively. In 

gener!1l, the closed balls in X and X* with radius r > 0 centered at x are denoted by 

B x(x, r ) and B x* (x, r) respectively. The symbols S x(x, r) and S x* (x , r) are defined 

similarly. When two or three Banach spaces are involved, unless otherwise specified, Y 

and Z also denote real Banach spaces. 

Let Xl, X 2 ,' . . , Xn be Banach spaces. The product space Il X := Xl xX2 x· .. xXn 

is equipped with the el-norm defined by 

Note that IT X is also a Banach space with respect to the el-norm. For convenience, 

1 
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the closed ball and the sphere in IT X with "radius" r > 0 centered at (Xl,' .. ,Xn ) are 

defined slightly differently from the above, namely 

BnX((Xl,'" ,xn),r):= {(Xl,'" ,xn) E Xl X ",Xn: IIxi -xiii ~ r, 

BnX((Xl,'" ,xn),r) := {(Xl,'" ,xn) E Xl X .. ,Xn: IIxi - xiII = r, 

Bn x := Bn x(O, 1), and Bn x := Bn x(O, 1). 

i = 1 ... n} , , , 

i = 1 ... n} , , , 

Let ffi. denote the set of all real numbers, ffi.+ denote the set of all positive real 

numbers and ffi. := ffi.U{ ±oo} denote the extended real line. Moreover, N := {I, 2, 3, ... } 

stands for the set of all natural numbers. 

At this point, it is convenient to in~roduce the basic topological and geometrical 

notations that are needed later. For any subset n eX, the notations cl n, int n, 

co nand bd n respectively stand for the closure, the interior, the convex hull and the 

boundary of n with respect to the norm topology of X. Likewise, w-cl n indicates the 

weak closure of n, the closure of n with respect to the weak topology of X. The conical 

hull of n is defined by cone n := {ax EX: a ~ 0 and x E X}. In particular, the apex 

o E cone n and cone n is nonempty. Conforming to the practice in convex analysis, n is 

said to be a cone if n = cone n. Furthermore, for any subset A c X*, the symbol cl* A 

signifies the weak * closure of A, the closure of A with respect to the weak* topology of 

X*. 

As for convergence, there are several notations indicating different types of conver

gence. While "~,, and "w*-lim" denote weak* convergence, "~,, and "w-lim" 

mean weak convergence. In addition, "~" and "lim" stand for the ordinary norm 

convergence, which is sometimes emphasized by the notation" ll". If n c X and 

X E cl n, then x ~ X means x ~ x with x E n. Let f : X ~ ffi. and x EX. The 

notation x L x means x ~ x with f(x) ~ f(x); the strengthened version x ~ x 

means x ~ x with f(x) ~ f(x) and f(x) ~ f(x). 

Let f : X ~ ffi. be an extended real-valued function. The effective domain of f is 

given by dom f : = {x EX: f (x) < oo}. f is called a proper function if dom f i=- 0 

and f(x) i=- -00 for all x E X. f is described as improper if it is not proper. 

2 
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Throughout the disquisition, arithmetic involving the empty set 0 and the extended 

real numbers ±oo is inevitable. Regarding the empty set, below are some of the most 

customary conventions: 

0+0 = 0; 0·0= {O}; a . 0 = 0 for all a E 1R \ to}; 

inf 0 = 00; sup 0 = -00; 

Regarding i~finity, the following common conventions are adopted: 

o . 00 = 00 . 0 = 0; o . (-00) = (-00) ·0 = 0; - (-00) = 00; 

x + 00 = 00 + x = 00 and x - 00 = (-00) + x = -00 for all x E 1R; 

x . 00 = 00 . x = 00 and x . (-00) = (-00) . x = -00 for all x > 0; 

x . 00 = 00 . x = -00 and x . ( - 00) = (-00) . x = 00 for all x < O. 

00 
. The expressions 00 - 00, (- (0) + 00 and are undefined. 

00 
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1.2 Fundamental Results in Banach Space Theory and 

Variational Analysis 

This section presents a few standard theorems in Banach space theory and variational 

analysis. 

Ekeland's Variational Principle is commonly regarded as the first published general 

variational principle. It turns out to be a characterization of complete metric spaces. A 

proof may be found in any standard text on nonsmooth analysis or variational analysis, 

such as [15] and [25]. 

Theorem 1.2.1 (Ekeland's Variational Principle). Let (X, d) be a metric space. 

(a) Assume that X is complete and that f : X -t ~ is a proper lO'lper semicontinuous 

function bounded below. Suppose there exist Xo E X and c > ° satisfying 

f(xo) :::; inf f(x) + c. 
xEX 

Then for any A > 0, there exists x E X such that 

(i) f(x) :::; f(xo), 

(ii) d(x, xo) :::; A, and 

c 
(iii) f(x) + >.d(x, x) > f(x) for all x =1= x. 

(b) Conversely, X is complete if for every Lipschitz continuous function 

f : X -t ~ bounded below and every c > 0, there exists x E X such that 

(i') f(x),:::; inf f(x) + c, and 
xEX 

(iii') f(x) + cd(x, x) > f(x) for all x =1= x. 

Entailed below are two basic results in the theory of Banach spaces. The first one 

points to the lower semicontinuity of the norms 11 . Ilx and. 11 . Ilx* with respect to the 

weak topology of X and the weak* topology of X* respectively; the second one is a 

4 
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useful characterization of reflexive spaces. Both results, together with their proofs, may 

be found in [22]. 

Theorem 1.2.2. (a) Let {Xa}aEI be a net in X such that Xa ~ £ for some £ E X. 

Then lim inf IIXa 11 2:: Ilxll· In other words, 11 . Ilx is lower semicontinuous with 
a 

respect to the weak topology of X. 

w'" 
(b) Let {x~} aEI be a net in X* such that x~ ---+ £* for some £* E X*. Then 

lim inf Ilx~ 11 2:: 11£* 11. In other words, 11 . Ilx ... is lower semico.ntinuous with respect 
a 

to the weak* topology of X* . 

Remarks 1.2.3. (i) If X is finite dimensional, then its weak topology and its norm 

topology coincide. It follows that 11 . Ilx is continuous with respect to the weak 

topology of X. 

(ii) If X is finite dimensional, then the weak* topology and the norm topology of X* 

coincide. It follows that 11 . Ilx ... is continuous with respect to the weak* topology 

of X*. 

Theorem 1.2.4. A normed space is reflexive if and only if each of its bounded sequences 

has a weakly convergent subsequence. 

5 
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1.3 Set-Valued Mappings 

This section introduces set-valued mappings, which are in stark contrast to the usual 

single-valued functions. Since the investigation in this section does not draw on any 

norm structure, X and Y may be taken as mere topological spaces. 

As suggested by the terminology, a set-valued mapping or multifunction F between 

X and Y, denoted by F : X ~ Y or F : X ~ P(Y), is a mapping from X into the 

power set P(Y) of Y. 

Just as to single-valued functions, 'the following specifications are fundamental to 

set-valued mappings. 

Definition 1.3.1. Let F : X ~ Y be a set-valued mapping, n c X. and 8 C Y. 

(a) The domain of F is domF := {x EX: F(x) ~ 0}. 

(b) The range of F is rangeF := {y E Y : y E F(x) for some x EX}. 

(c) The image of n under F is F(n) := {y E Y : y E F(x) for some x En}. 

(d) The inverse image of 8 under F is F- l(8) := {x EX: F(x) n 8 ~ 0}. 

(e) The graph of F is gphF:= {(x,y) E X x Y: y E F(x)}. 

Definition 1.3.2. Let F : X ~ Y be a set-valued mapping. 

(a) F is said to be closed-valued (respectively convex-valued) if F(x) is closed 

(respectively convex) for all x EX. 

(b) F is said to be closed-graph if gph F is closed. 

As the basic building blocks in the development of a full calculus, limit concepts form 

an integral part of the theory of set-valued mappings. Howe¥er, limit concepts for set

valued mappings are much 'more complicated than their counterparts for single-valued 

6 
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functions. Although only upper limits are needed in the forthcoming disquisition, other 

related limits are also covered below for the sake of completeness. 

Definition 1.3.3. Let x E X and F : X =4 Y be a set-valued mapping. 

(a) The sequential Painleve-Kuratowski upper or outer limit of F as x -+ x 

is defined by 

LimsupF(x) := {Y E Y : there exist sequences {Xk}~l C X and 
x-x 

{Yk}~l C Y with Xk -+ x and Yk -+ Y 

such that Yk E F(Xk) for all kEN}. 

(b) The sequential Painleve-K uratowski lower or inner limit of F as x -+ x 

is defined by 

Limi_nf F(x) := {Y E Y : for any sequence {Xk}~l C X with 
x-x 

Xk -+ x, there exists a sequence 

that Yk E F(Xk) for all kEN}. 

(c) Suppose LimsupF(x) = LimLnf F(x). The sequential Painleve-Kuratowski 
x-x x-x 

limit of F as x -+ x is defined by 

LiIJ! F(x) := LimsupF(x) = LimLnf F(x). 
x-x x-x x-x 

Remark 1.3.4. Analogous to the familiar inequality involving the usual upper limit and 

lower limit for single-valued functions, a conspicuous relation between the upper limit 

and the lower limit for set-valued mappings defined above is 

Limi_nf F(x) C LimsupF(x). 
x-x x-x 

7 
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1.4 Enlargements and Projections 

The investigation in subsequent chapters employs extensively the devices of enlarge

ments and projections, which are the subjects of this section. 

Definition 1.4.1. Let 0 c X be a nonempty subset. The standard distance func

tion dC, 0) : X -t IR associated with 0 is defined by 

d(x,O) := inf{llx - wll : w EO}. 

Remark 1.4.2. An immediate consequence of the above definition is that d(·,O) 

dC , cl 0). 

Definition 1.4.3. Let 0 c X be a nonempty subset, x E X and r ~ o. 

(a) The r-enlargement of 0 is defined by 

Or : = {x EX: d (x, 0) ~ r }. 

(b) The r-thickening of 0 is defined by 

0;:= 0 +rBx. 

( c) The projection set of x onto 0 is defined by 

II(x, 0) := {w EO: IIw - xii = d(x, O)} . 

(d) The r-perturbed projection set of x onto 0 is defined by 

IIr (x, 0) : = {w EO: 11 w - x II ~ d (x, 0) + r } . 

Remark 1.4.4. While Or, II(x, O) and IIr(x, 0) are necessarily closed, O~ is not closed 

in general. 

In many applications, it is important to have nonempty projection sets. In this 

light, a simple sufficient condition to ensure nonvoid projection sets is hereby included. 

8 
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Proposition 1.4.5. Let X be reflexive and D c X be a nonempty weakly closed subset. 

Then for any x E X, II(x, D) =1= 0. 

Proof. Let x E X. For each kEN, there exists Wk E D such that 

(1.1) 

Then IIWk II ~ Ilxll + d(x, D) + 1 for all kEN and {Wk}~l is a bounded sequence in 

D. In view' of the reflexivity of X, Theorem 1.2.4 implies that {Wk}~l has a weakly 

convergent subsequence. By passing to this subsequence if necessary, assume that 

Wk ~ iD for some iD E X. Since D is weakly closed, iD E D and hence d(x, D) ~ Ilx-iDll. 

In light of the lower semicontinuity of II . II with respect to the weak topology of X, it 

follows from (1.1) that 

d(x,D) = liminf (d(x,D) + -k
1

) ~ liminf Ilx - wkll ~ Ilx - iDll. 
k-oo '" k-oo 

By definition, iD E II(x, D) =1= 0. D 

It is evident from Definition 1.4.3 that enlargements and thickenings are closely 

related concepts. Their precise relationship is stated in the next result. 

Proposition 1.4.6. (cf. [29" Lemma 27]) Let D c X be a nonempty subset and r ~ O. 

Then 

(b) Dr = D; if and only if II(x, D) =1= 0 for all x E X with d(x, D) = r. 

Proof· (a) Let x E D;. By definition, x = W + ru for some wED and u E Bx. 

Then d(x, D) ~ Ilx - wll = Ilrull ~ r and x E Dr. Hence Dr ~ D; and Dr ~ clD; 

follows from noting that Dr is closed. 

Consider the opposite inclusion. Let x E Dr. By definition, d(x, n) ~ r. 

For any c > 0, there exists Wc E D such that r + c ~ d(x, D) + c > Ilx - Wc 11. 

9 
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It follows that IIxr~:E: 11 ~ 1 and xr+~& E B x . Take Ye = We + r ( xr+~& ). Then 

Ye E D + rBx = D~. Moreover, observe that 

IIYe -xII = IIwe+ r (xr~:e ) - xii = Ir :c - llllx - well 

~ C:c)(r+c)=c 
and hence Ye E Bx(x,c). Consequently, Ye E Bx(x ,c) n D~ =I 0 for any c > 0 

and x E cl D~. Thus Dr C cl D~. The desired equality holds. 

(b) Suppose Dr = D~. Let x E X with d(x , D) = r. Then x E Dr = D~. By definition, 

x = W + ru for some wED and u E B x . It follows that Il x - wll = Ilrull ~ r = 

d(x , D). On the other hand, wED implies that Ilx - wll 2:: d(x , D). As a result, 

wE II(x, D) =I 0. 

Suppose II( x , D) =I 0 for all x E X with d(x, D) = r. Let x E D~. There exist 

wED and U E Bx such that x = w + ru. Thus d(x, D) ~ Ilx - wll = Ilrull ~ r 

.and x E Dr , implying D~ C Dr. Conversely, let x E Dr. By definition, d(x , D) ~ r. 

If d(x , D) = r, then II(x, D) =I 0 by assumption and Ilx - wIll = d(x, D) = r for 

some WI E D. If d(x , D) < r, then Ilx - w211 < d(x, D) + 8 < r for some 8 > 0 and 

W2 E D. In both cases, there exist wED and u E B X such that x - w = ru or 

x = w + ru. Therefore x E D~ and Dr C D~. As a result, Dr = D~. D 

Corollary 1.4.7. ([29, Lemma 27]) Let X be reflexive, D C X be a nonempty weakly 

closed subset and r 2:: O. Then Dr = D~. 

Proof. Since X is reflexive and D C X is a nonempty weakly closed subset, Proposition 

1.4.5 implies that II(x, D) =I 0 for all x E X. The conclusion then follows from 

Proposition 1.4.6(b) immediately. D 

10 
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1.5 Subdifferentials 

This section focuses on a number of popular derivative-like constructions in variational 

analysis devised for the study of nonsmooth functions. 

Recall the subdifferential in convex analysis, which was originally introduced for 

convex functions, and the proximal subdifferential in nonsmooth analysis, which was 

first intended for proper lower semicontinuous functions. 

Definition 1.5.1. Let f : X -+ 1R be finite at x E X. 

(a) The subdifferential (in the sense of convex analysis) of f at x is defined by 

()Cf(x):= {x* E X* : f(x) ~ f(x) + (x*,x - x) for all x EX}. 

The elements of this set are known as subgradients of f at X. 

(b) The proximal subdifferential of f at x is defined by 

()P f(x) := {x* E X* : there exist <5 > 0 and 'r/ > 0 such that 

(x*, x - x) ::; f(x) - f(x) + 'r/ llx - xl1 2 

for all x E B x ( x, <5) } . 

The elements of this s~t are known as proximal subgradients of f at X. 

Rerr:ark 1.5.2. Observe that ()C f(x) is closed and convex. In particular, if X is reflexive, 

then BC f(x) is weakly*-closed. On the other hand, ()P f( x) is convex but not necessarily 

closed. 

While the aforementioned subdifferentials have been extensively studied in the lit

erature, another class of subdifferentials has been more recently developed by Mor

dukhovich and his collaborators to provide alternative approximating instruments. See 

the comprehensive two-volume mo~ograph [25] for further discussion. 

11 
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Definition 1.5.3. Let f : X --+ 1R be finite at x E X and c ~ O. The (Frechet-like) 

c-subdifferential of f at x is defined by 

~f(-)'={ *EX*'l' . ff(x)-f(x)-(x*,x-x) >-} 
Vc x. x . lm I!). II _11 _ c . 

x~x X - X 

The elements of this set are known as (Frechet-like) c-subgradients of f at X. In 

particular, 8 f(x) := 80f(x) is called the Frechet subdifferential of f at x and its 

elements are known as Frechet subgradients of f at x. 

Remarks 1.5.4. (i) Observe that 8c f(x) is closed and convex. In particular, if X is 

reflexive, then 8c f(x) is weakly*-closed. 

(ii) Note the monotone property of 8c f(x) with respect to c: if 0 ::; Cl ::; C2, then 

8c 1 f(x) c 8C2 f(x). 

The above definition gives a paramount characterization of 8c f(x). 

Proposition 1.5.5. Let f : X --+ 1R be finite at x E X and c ~ O. Then x* E 8c f(x) if 

and only if for any, > 0, there exists 6 > 0 such that for all x E X with Ilx - xii::; 6, 

(x*,x - x) ::; f(x) - f(x) + (c +,)llx - xii· 

In other words, x* E 8c f(x) if and only if for any, > 0, the function 'ljJ : X --+ 1R 

defined by 'ljJ(x) = f(x) - f(x) - (x*,x - x) + (c + 'Y)llx - xii attains a local minimum 

at x. 

Proof. Consider the first assertion of the proposition. Assume x* E 8c f(x). By 

definition, 

IJ • f ' f(x) - f(x) - (x*, x - x) l' . f f(x) - f(x) - (x*, x - x) 
(. := sup In _ = lml!). _ ~ -c. 

0>0 o<lIx-xll~o Ilx - xii x~x Ilx - xii 
Let 'Y > O. Suppose f is finite. There exists 61 > 0 such that for all x E X with 

_f (-'--x-'--) _-_f.-..;...( x.-..;...)_-_(_x_* ,_x_-_x_) > f _ 'Y > _ c _ rv 

Ilx - xii - I - " 

that is, (x*,x - x) ::; f(x) - f(x) + (c + 'Y)llx - xii· (1.2) 

12 
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Otherwise f = 00. There exists 02 > 0 such that for all x E X with 0 < Ilx - xii ~ 02, 

f(x) - f(x) - (x*,x - x) > 0 
Ilx-xll - , 

which, upon rearrangement, produces 

(x*,x - x) ~ f(x) - f(x) ~ f(x) - f(x) + (c: +,)llx - xii. (1.3) 

In both cases, in view of (1.2) and (1.3), there exists 0 > 0 such that the same inequality 

holds for all x E X with 0 < Il x - xii ~ o. Moreover, equality trivially holds for x = x. 

This proves one implication. 

For the opposite implication, let , > O. By assumption, there exists 0 > 0 such 

that for all x E X with Il x - xii ~ 0, 

(x* ,x - x ) ~ f(x) - f(x) + (c: + ,)llx - xii. (1.4) 

In particular, for all x E X with 0 < Ilx - xii ~ 0, rearranging (1.4) shows 

f(x) - f(x) - (x*,x - x) 
IIx - xii ~ -c: -, . 

. ' . . f( x) - f(x) - (x* , x - x) 
Passing to the limIt , one sees that hm I!J.f 11 _11 ~ -c: - " which, 

x-x x - x 

since, > 0 is arbitrary, reduces to 

. .' f (x) - f (x) - (x*, x - x) 
hm I!J.f 11 - 11 ~ -c:. x-x X - X 

By definition, x* E 8c f(x) and the other implication holds. 

The second assertion of the proposition follows from the first by noting that 'ljJ(x) = O. 

o 

For the purpose of the subsequent exposition, c:-subgradients of the standard dis-

tance function are of special interest. 

Proposition 1.5.6. Let f : X ~ 1R be finite at x E X and c: ~ O. Suppose f is locally 

Lipschitz at x with rank f ~ O. Then Ilx*11 ~ f + c: for all x* E 8c f(x). 



SUBDIFFERENTIALS OF DISTANCE FUNCTIONS IN BANACH SPACES 

Proof. Let x* E 8cf(x). Since f is locally Lipschitz at x with rank .e, there exists 

51 > 0 such that for all x E X with IIx - xII ::; 51, 

If(x) - f(x) I ::; .ellx - xii· (1.5) 

Let TJ > O. In light of Proposition 1.5.5, there exists 51 ;::: 52 > 0 such that for all x E X 

(x*,x - x) ::; f(x) - f(x) + (c + TJ)llx - xii 

::; .ellx - xii + (c + TJ)llx - xii 

= (.e .+ c + TJ) II x - xii, 

where the second inequality follows from (1.5). Using the linearity of x*, one has 

Ilx* II = sup (x*, x ~ x) = sup (x*, x ~ x) ::;.e +-c + TJ. 
x-:px Ilx - xii O<llx-xll~62 Ilx - xii 

Since TJ > 0 is arbitrary, Ilx* II ::; .e + c. This completes the proof of the assertion. 0 

Proposition 1.5.7. (cf. [18, Proposition 1.5]) Let D c X be a nonempty subset, x E X 

and c ;::: O. Then for any x* E 8cd(x, D), 

(a) Ilx* II ::; 1 + c; 

(b) 1 - c ::; Ilx* II ::; 1 + c if it is further supposed that x ~ ~l D. 

Proof. (a) The conclusion follows from Proposition 1.5.6 readily by noting that 

dC, D) is Lipschitz with rank 1. 

(b) Let x* E 8cd(x, D) and TJ > O. By (a), Ilx*11 ::; 1 + c. It suffices to show that 

Ilx* II ;::: 1 - c. Using Proposition 1.5.5, there exists 5 > 0 such that for all x E X 

with Ilx - xii::; 5, 

(x*, x - x) ::; d(x, D) - d(x, D) + (c + TJ) Ilx - xii. (1.6) 

Note that x ~ clD implies d(x, D) > O. Let 0 < t < min {I, 2d(tn)}' Then 

(1 + t 2 )d(x, D) > d(x, D) implies (1 + t 2 )d(x, D) > Ilx - Wtll > 0 for some Wt E D, 

14 
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or equivalently, d(x, D) > 11~~~i". Let Yt = (1 - t)x + tWt. Check that 

x - Yt = t (x - Wt), Yt - Wt = (1 - t)( x - Wt), and 

_ _ 611x - Wtll 511x - Wtll 611x - Wtll 
IIYt - xii = tllx - Wtll < 2d(x, D) < (1 + t2 )d(x, D) < Ilx _ Wtll = 5. 

Putting x = Yt in (1.6) yields 

(x * , t (Wt - x)) = (x * ,Yt - x) 

::; d(Yt, D) - d(x, D) + (c + 'f]) IIYt - xii 

::; IIYt - Wtll - d(x, D) + (c + 'f]) IIYt - xii 

Ilx - Wtll 
::; (1 - t)llx - Wtll - 1 + t2 + (c + 'f])tllx - Wtll 

= (-t
3 

+ t
2

2 - t) Ilx - Wtll + (c + 'f])tllx - Wtll, 
l+t 

which can be rearranged as 

In view of of this inequality, 

* _ (x*, u) (x*, X - Wt) > t2 
- t + 1 

Ilx II - ~~~ ~ 2:: Ilx _ Wtll - 1 + t2 - (c + 'f]). (1.7) 

Since'f] > 0 is arbitrary, letting t ~ 0 in (1.7) shows that Ilx*11 2:: 1 - c. The 

result is verified. o 

~he next proposition"states one of the most significant relationships of the preceding 

subdifferentials. The reader may refer to [34, Proposition 9.1.9] for more details. 

Proposition 1.5.8. Let f : X ~ ffi. be finite at x EX. Then BC f(x) c BP f(x) C 

fj f(x). If f is further supposed to be locally Lipschitz at x with rank .e 2:: 0, then 

BC f(x) C BP f(x) C fj f(x) c fBx*. 

At this point, it is worthwhile to digress from the introduction of subdifferential 

constructions to consider a special class of Banach spaces and an essential topological 

property. 

15 
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Definition 1.5.9. A Banach space X is said to be an Asplund space if every con-

tinuous convex function defined on a nonempty open convex subset D c X is Frechet 

differentiable at each point of some dense G8 subset of D. 

An equivalent characterization is that an Asplund space is a Banach space whose 

separable subspaces have separable duals. Asplund spaces are not rare. Indeed, the class 

of all Asplund spaces is large enough to include all reflexive spaces and in particular, 

all Hilbert spaces. 

Definition 1.5.10. Let n c X be a nonempty subset and x E X. n is said to be 

locally closed at x if there exists a ~eighbourhood U of x such that Un n is closed. 

One of the most important calculus rules for c-subdifferentials is. the so-called fuzzy 

sum rule, a version of which is catered for Asplund spaces. A proof may be found in 

[25, Theorem 2.33]. 

Theorem 1.5.11 (Semi-Lipschitz Fuzzy Sum Rule for c-subdifferentials). Let 

X be an Asplund space, 'Pi : X ---+ 1R be proper functions, where i = 1,2, and x E 

dom 'PI n dom 'P2. Suppose 'PI is locally Lipschitz at x and 'P2 is lower semicontinuous 

on a neighbourhood of x. Then for any c ~ 0 and 7] > 0, 

8e ('PI + 'P2)(X) C U {8'PI(XI) + 8'P2(X2) + (c + 7])Bx* : Xi E" Bx(x, 7]), 

16 

I 'Pi (Xi) - 'Pi (x) I ~ 7], i = 1, 2} . 

The last two derivative-like constructions considered in this section are limiting ones 

built upon c-subdifferentials. 

Definition 1.5.12. Let f : X ---+ 1R be finite at x E X. 

(a) The limiting subdifferential or basic subdifferential of f at x is defined by 

8f(x) := Limsup8ef(x). 
xLx 
dO 
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The elements of this set are known as limiting subgradients or basic subgra-

dients of f at x. 

(b) The singular subdifferential of f at x is defined by 

[)OO f(x) := Limsup >"ficf(x). 

x~x 
c,Al0 

The elements of this set are known as singular subgradients of f at x. 

Remark 1.5.13. If X is an Asplund space and f is lower semicontinuous on a neigh

bourhood of x, then the limiting subdifferential and the singular subdifferential of f at 

x admit the simpler representations 

[)f(x) = Limsup 8f(x) and [)OO f( x) = Limsup >,,8f(x). 

17 
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1.6 Sets of Normals 

In this section, normal objects dual to the derivative-like constructions in the previous 

section are considered. 

Definition 1.6.1. Let 0 C X and x E o. 

(a) The normal cone (in the sense of convex analysis) to 0 at x is defined by 

NC(x;O) := {x* E X* : (x*,x - x) ::; 0 for all x EO}. 

The elements of this set are known as normals to 0 at x. 

(b) The proximal normal cone to 0 at x is defined by 

NP(x; 0) := {x* E X* : there exist 5 > 0 and TJ > 0 such that 

The elements of this set are known as proximal normals to 0 at x. 

Remarks 1.6.2. (i) If x E cl 0, it is a conspicuous consequence of the above definitions 

(ii) Observe that NC(x; 0) is closed and convex. In particular, if X is reflexive, 

then NC(x; 0) is weakly*-closed. On the other hand, NP(x; 0) is convex but not 

necessarily closed. 

(iii) Note the monotone property of NC(x; 0) and NP(x; 0) with respect to set inclu

sion: if x E 0 1 C02, then NC(x; O2) C NC(x; 0 1) and NP(x; O2) C NP(x; 0 1). 

Definition 1.6.3. Let 0 C X with x E 0 and c 2:: O. The set of (Frechet-like) 

c -normals to 0 at x is defined by 

........ (- n) {* * 1. (x* , x - x) } Ne x; H:= x EX: Imns~p Ilx _ xii ::; c . 
x---+x 

The elements of this set are known as (Frechet-like) c-normals to 0 at x. In 

particular, N(x; 0) := No(x; 0) is called the Frechet normal cone to 0 at x and its 

elements are known as Frechet normals to 0 at x. 

18 
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Remarks 1.6.4. (i) If x E cl n, it is a conspicuous consequence of the above definition 

that Nc:(x; n) = Nc:(x; cl n). 

(ii) Observe that Nc:(x; n) is closed and convex. In particular, if X is reflexive, then 

Nc:(x; n) is weakly*-closed. 

(iii) While N(x; n) is a cone, Nc:(x; n) is not a cone for any E > O. 

(iv) Note the monotone properties of Nc:(x; n) with respect to € and with respect to 

set inclusion: 

• If 0 ~ El ~ E2, then Nc:! (x; n) c NC:2 (x; n) . 

• If x E n1 C n2, then Nc:(x; n2) C Nc:(x; n1). 

(v) The counterpart of the subdifferential inclusion relation in Proposition 1.5.8 holds 

for the dual normal objects: NC(x; n) c NP(x; n) c N(x; n). 

One also has a principal description of Nc:(x; n) analogous to that of E-subdifferentials 

as a direct consequence of the preceding definition. 

Proposition 1.6.5. Let n c X with x E nand E ~ O. Then x* E Nc:(x; n) if and only 

if for any, > 0, there exists 6 > 0 such that for all x E n with Ilx - xII ~ 6, 

In other words, x* E Nc:(x; n) if and only if for any, > 0, the function ( : n ~ ffi. 

defined by ((x) = -(x*, x - x) + (E + ,)lIx - xII attains a local minimum at X. 

Proof· Consider the first assertion of the proposition. Assume x* E Nc:(x; n). By 

definition, 

(x*, x - x) l' (x*) x - x) 
J! := inf sup = Imsup < € 

6>0 xEO IIx-xll n _ IIx-xll - . 
0<lIx-xll~6 x~x 
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Let 1 > O. Suppose.e is finite. There exists 61 > 0 such that for all x E n with 

(x*, x - x) 
Ilx - xii ~.e + 1 ~ c: + 1, 

which implies (x*,x-x) ~ (C:+1)llx-xll. (1.8) 

Otherwise .e = -00. There exists 62 > 0 such that for all x E n with 0 < Ilx - xii ~ 62, 

which gives 

(x*, x - x) < 0 
Ilx-xll - , 

(x*,x - x) ~ 0 ~ (c: + 1)llx - xii· (1.9) 

In both cases, in view of (1.8) and (1.9), there exists 6 > 0 such that the same inequality 

holds for all x E n with 0 < Ilx - xii ~ 6. Moreover, equality trivially holds for x = x. 

This proves one implication. 

For the opposite implication, let 1 > O. By assumption, there exists 6 > 0 such 

that for all x E n with Ilx - xii ~ 6, 

(1.10) 

In particular, for all x E n with 0 < Ilx - xii ~ 6, rearranging (1.10) shows 

(x*, x - x) 
Ilx - xii ~ c: + 1· 

Passing to the limit, one sees that limns~p (~I~ ~ ~I~) :s; E + "I, which, since "I > 0 is 
x--+x 

arbitrary, reduces to 

By definition, x* E Nc(x; n) and the other implication holds. 

The second assertion of the proposition follows from the first by noting that ((x) = o. 

o 

Proposition 1.6.6. Let n c X with x E nand c: ~ O. Then for any a > 0, x* E 

Nc(x; n) if and only ifax~ E NCtc(x; n). 
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Proof. Let, > 0 and a > O. Suppose x* E NeUc; n). Owing to Proposition 1.6.5, 

there exists fJ > 0 such that for all x E n with IIx - xii ~ fJ, 

(x*,x - x) ~ (c +~) Ilx - xii, 

and hence (ax*,x - x) ~ a (c +~) Ilx - xii = (ac + ,)llx - xii. 

Using Proposition 1.6.5 again, ax* E No:c: (x; n). 

Conver~ely, suppose ax* E No:c: (x; n). The above implies that 

The result is verified. o 

Definition 1.6.7. Let n c X and x E n. The limiting normal cone or basic 

normal cone to n at x is defined by 

N(x; n) := LimsupNc:(x; n). 
n 

x~x 

c:10 

The elements of this set are known as limiting normals or basic normals to n at 

x. 

Remarks 1.6.8. (i) Clearly, N(x; n) c N(x; n). 

(ii) If x E cl n, it is a conspicuous consequence of the above definition that N(x; n) c 

N(x; cln). 

(iii) If X is an Asplund space and n is locally closed at x, then the limiting normal 

cone to n at x admits the simpler representation 

N(x; n) = LimsupN(x; n). 
n 

x~x 

On the other hand, if X is a Hilbert space, then the limiting normal cone to n at 

x admits the simpler representation 

N(x; n) = LimsupNP(x; n). 
n 

x~x 
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One of the most recognized relationships between these normal objects and their 

dual sub differentials is provided by indicator functions. 

Definition 1.6.9. Let 0 c X. The indicator function On : X -4 1R of 0 is defined 

by 

(

0 if x E 0, 
on(x):= 00 

if x ~ o. 

Proposition 1.6.10. Let 0 c X and x E O. Then Ne(x; 0) 

(Ne,oe) stands for (NC, OC), (NP,oP) or (iV, 8). 

oeOn(x), where 

Proof. (a) Let x* E NC(x; 0). By definition, (x*, x - x) ~ ° for all x E O. This 

implies for all x E 0, in view of on(x) = on(x) = 0, that on(x) 2:: on(x) + 

(x*, x - x). On the other hand, for all x ~ 0, on(x) = 00 and the inequality 

On(x) 2:: On(x) + (x*,x - x) trivially holds. With the inequality valid for all 

x E X, one sees that x* E OCon(x) and NC(x; 0) c 8Con(x) . 

. Consider the reverse inclusion. Let x* E 8Con(x). For all x E X, the inequality 

On(x) 2:: On(x) + (x*,x - x) holds. In particular, for all x E 0, with On(x) = 

On(x) = 0, the inequality simplifies to (x*, x - x) ~ 0. Hence x* E NC(x; 0) and 

NC(x; 0) ~ 8Con(x). This proves the first equality. 

(b) Let x* E NP(x; 0). By definition, there exist 0 > ° and "7] > ° such that for all 

x E Bx(x,o) nO, (x*,x - x) ~ 7]llx - xl1 2 = on(x) - on(x) + 7]llx - x11 2
, since 

On(x) = On(x) = 0. On the other hand, for all x E Bx(x,o)\O, On(x) = 00 

and the inequality (x*, x - x) ~ on(x) - on(x) + 7]llx - xl1 2 trivially holds. With 

the inequality valid for all x E B x(x, 0), one has x* E 8Pon(x) and NP(x; 0) c 

oPon(x). 

Consider the reverse inclusion. Let x* E 8Pon(x). Then for all x E B x (x, 0), 

there holds (x*,x - x) ~ on(x) - on(x) + 7]llx - x11 2. In particular, for all x E 

B x(x, 0) no, since on(x) = on(x) = 0, the inequality reduces to (x* , x - x) ~ 
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1]llx - x11 2 . Thus x* E NP(x; 0) and NP(x; 0) :=) 8P8n(x). This establishes the 

second equality. 

(c) Let x* E N(x; 0) and, > O. Using Proposition 1.6.5, there exists A > 0 such 

that for all x E 0 with Ilx - xii :s; A, 

(x*, x - x) :s; ,llx - xii. (1.11) 

Fix a~y x E X with Ilx - xii :s; A. Suppose x E O. Then 8n(x) = 8n(x) = O. It 

follows from (1.11) that 

(x*, x - x) :s; 8n(x) - 80(x) + ,llx - xii. (1.12) 

Otherwise x ~ 0 and hence 80(x) = 00. Thus inequality (1.12) trivially holds. 

In both cases, Proposition 1.5.5 implies that x* E 880(x) and N(x; 0) c 880(x). 

Consider the reverse inclusion. Let x* E 880(x) and, > O. Employing 

Proposition 1.5.5 again, there exists 1] > 0 such that for all x E X with Ilx-xll :s; 1], 

(x*, x - x) :s; 80(x) - 80(x) + ,llx - xii. (1.13) 

Fix any x E 0 with Ilx - xii :s; 1]. Note that 80(x) = 80(x) = 0, reducing (1.13) 

to 

(x*,x - x) :s; ,llx - xii· 

By virtue of Proposition 1.6.5, x* E N(x; 0) and N(x; 0) :=) 880(x). This justifies 

the third equality. o 

Indeed, the same duality relation also holds for sets of c-normals and limiting normal 

cones. The reader may consult Section 1.3.1 and Section 1.3.2 of [25] for details. 

Proposition 1.6.11. Let 0 c X and x E O. Then Nc:(x; 0) = 8c8n(x) for any c ~ 0, 

and N(x; 0) = 880(x). 
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1.7 Coderivatives 

While a number of derivative-like constructions have been introduced for single-valued 

functions, this section describes several less acquainted derivative-like constructions 

for set-valued mappings. Collectively known as coderivatives, these constructions are 

natural extensions of the classical adjoint derivative operators of smooth single-valued 

functions and allow pointwise approximation of set-valued mappings using elements of 

dual spaces. 

Definition 1. 7.1. Let F X =4 Y be a set-valued mapping with dom F =F 0 and 

(x, y) E gph F. 

(a) Let c ~ O. The c-coderivative of F at (x , y) is the multifunction D;F(x, y) : 

y* =4 X* defined by 

D;F(x,y)(y*) := {x* E X* : (x*, -y*) E Nc:((x,y);gphF)}. 

In particular, D* F(x, y) := DoF(x, y) is called the Frechet coderivative of F 

at (x, y). 

(b) The normal coderivative of F at (x, y) is the multifunction DNF(x, y) : Y* =4 

X* defined by 

DNF(x, y)(y*):= Limsup D;F(x, y)(y*). 
(x,y)-+(x,y) 

w* 
y* ---;y* 

c:10 
That is, x* E DNF(x, y) (y*) if and only if there exist sequences {ck }~l C 

ffi.+, {(Xk ' Yk)}~l C X X Y and {(xk'Yk)}~l C X* X y* such that Ck 1 0, 

( ) 
gph F (_ _) w* ..-. 

Xk,Yk ~ x,y, (xk ,yk) ---; (x*,y*) and (xk,-yk) E NC:k ((XbYk);gphF) 

for all kEN. 

(c) The mixed coderivative of F at (x, y) is the multifunction DMF(x, y) : Y* =4 

X* defined by 

DMF(x, y)(y*):= Limsup D;F(x, y)(y*). 
(x,y)-+(x,y) . 

_* 11 · " * y ---;y 
c:10 
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That is, x* E D"MF(x, y)(y*) if and only if there exist sequences {ck}~l C 

JR+, {(Xk'Yk)}~l C X X Y and {(xk'Yk)}~l C X* X y* such that Ck 1 0, 

( ) gphF (- -) * w* * * 11 ·11 * d (* *) N....... (( ) h) Xk, Yk ----+ x, Y , xk ----t X , Yk ----t Y an xk, -Yk E Ck Xk, Yk ; gp F 

for all kEN. 

Remarks 1.7.2. (i) Clearly, D* F(x, y)(y*) C D"MF(x, y)(y*) C DNF(x, y)(y*) for 

any y* E Y*. 

(ii) Observe that the normal coderivative may be alternatively .characterized by the 

serviceable description 

DNF(x,y)(y*) = {x* E X* : (x*, -y*) E N((x,y);gphF)}. 

This shows that the normal coderivative is uniquely determined by the limiting 

normal cone to gph F and explains the name of the coderivative. 

(iii) The primary difference between the definition of the normal coderivative and that 

of the mixed coderivative is that weak* convergence is used for both X* and y* in 

the definition of the normal coderivative, while weak* convergence is used for X* 

and norm convergence is used for Y* in the definition of the mixed coderivative. 

This justifies the choice of the terminology mixed coderivative. 

(iv) If X and Y are Asplv:nd spaces and gph F is locally closed at (x, y), then the 

mixed coderivative of F at (x, y) admits the simpler representation 

D"MF(x, y)(y*) = Limsup 15* F(x, y)(y*). 
(x,y)-t(x,y) 

_* 11 · 11 * 
y ----ty 

That is, x* E D"MF(x, y)(y*) if and only if there exist sequences {(Xk, Yk)}~l C 

X X Y and {(xk'Yk)}~l C X* X y* such that (Xk,Yk) ~ (x,y), xk ~ x*, 

Yk ~ y* and (xk' -yk) E N((Xk' Yk); gphF) for all kEN. 

A number of further properties of coderivatives are needed in later chapters and 

are included here without proof. Details are available in [25, Theorem 1.41] and [25, 

Theorem 1.43 & Theorem 1.44] respectively. 
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Definition 1.7.3. Let F : X =4 Y be a set-valued mapping with domF =f. 0. 

(a) Let U c X and V c Y be nonempty subsets. F is said to be Lipschitz-like on 

U relative to V with rank R ~ 0 if for all x, u E U, 

F(x) n V c F(u) + Rllx - ullB y . 

(b) Let (x, y) E gph F. F is said to be locally Lipschitz-like or pseudo-Lipschitz 

or Aubin at (x, y) with rank R ~ 0 if there exist neighbourhoods U of x and V 

of y such that F is Lipschitz-like on U relative to V with rank R. 

As pointed out in [25], the local Lipschitz-like property can be regarded as a lo

calization of Lipschitz behaviour not only relative to a point of the domain but also 

relative to a particular point of the image set y E F(x), and admits an efficient charac

terization in terms of the local Lipschitz continuity of the generalized distance function, 

which is the focus of the next chapter. 

Theorem 1.7.4. Let F : X =4 Y be a set-valued mapping and (x, y) E gph F. Then F 

is locally Lipschitz-like at (x, y) if and only if p : dom F x Y ---t 1R defined by 

p(x, y) := d(y, F(x)) = inf{lly - wll : w E F(x)} 

is locally Lipschitz at (x, y) . 

Theorem 1. 7.5. Let F : X =4 Y be a set-valued mapping and (x , y) E gph F. Suppose 

F is locally Lipschitz-like at (x, y) with rank R ~ O. The following statements hold: 

(a) Let c ~ 0. · Then there exists TJ > 0 such that for all x E Bx(x, TJ) , y E F(x ) n 

By(y, TJ), and y* E Y*, 

sup {llx*11 : x* E D;F(x,y)(y*)} ::; Rlly*11 + c(1 + R). 

(b) DMF(x , y)(O) = {O}. 
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Chapter 2 

The Generalized Distance 

Function - Basic Estimates 

While the standard distance function measures the distance from a moving point to 

a fixed destination set, it is natural to consider the distance from a moving point 

to a moving destination set as a generalization. This gives rise to a function of two 

variables, the generalized distance junction, which is the subject of this chapter. Most 

of the results cover~d in this chapter first appeared in [26]. 

2.1 Elementary Properties of the Generalized Distance 

Function 

D efinition 2.1.1. Let F : Z ~ X be a set-valued mapping with domF f- 0. The 

generalized distance fun ction p : dom F x X ~ 1R associated with F is defined 

by 

p(z, x) := d(x , F(z)) = inf{llx - wll : w E F(z)} . 

The generalized distance function allows the destination set to vary by employing a 

set-valued mapping F. As a generalization of the standard distance function, it may be 

reduced easily to the latter, which concerns a fixed nonempty destination set n c X , 
by taking F == n. 
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An elementary property of the generalized distance function is used repeatedly in 

the subsequent exposition. 

Proposition 2.1.2. Let F : Z =4 X be a set-valued mapping and (z, x ) ~ gph F with 

z E domF. Suppose gphF is locally closed at (z,x). Then p(z,x) > O. 

Proof. Suppose p(z, x) = o. For each kEN, there exists Wk E F(z) such that 

(2.1 ) 

Since gph F is locally closed at (z, x), there exists 6 > 0 such that B zxx (ez, x), 6) n 

gph F is closed. By considering the tail of {Wk}k::l if necessary, assume that Ilwk -x ll :::; 6 

for all kEN. Then {(Z,Wk)}k::l is a sequence in the closed set Bzxx((z,x), 6)ngphF. 

On the other hand, letting k ~ 00 in inequality (2.1) yields Wk ~ x. It follows from 

(z, Wk) ~ (z, x) that (z, x) E B zxx( (z, x), 6) n gph F. In particular, (z, x) E gph F, 

which contradicts the initial assumption. Thus p(z, x) > O. o 

Building upon the generalized distance function, some more definitions are made. 

Definition 2.1.3. Let F : Z =4 X be a set-valued mapping with dom F =1= 0, (z, x) E 

Z x X and r ~ o. 

(a) The r-enlargement of F is the set-valued mapping Fr : dom F =4 X defined by 

Fr(z) := {x EX: d(x, F(z)) :::; r}. 

(b) The r-generalized distance function Pr : dom F x X ~ lR associated with 

F is defined by 

Pr(z,x):= d(x, Fr(z)) = inf{llx - wll : W E Fr(z)}. 

( c) The r -perturbed projection set of (z, x) onto gph F is defined by 

8[(z, x) := {(v , u) E gphF : Ilv - zll :::; rand Ilu - x ii:::; p(z, x) + r}. 
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Remark 2.1.4. A moment's reflection on the definition of the r-enlargement of F reveals 

that dom F = dom Fr. 

In order to avoid trivial statements, all set-valued mappings F : Z ~ X 

considered in the rest of this chapter are conveniently assumed to satisfy 

dom F = Z -=1= 0. In the same light, all subsets n c X in this chapter are 

presumed to be nonempty. 

The r-generalized distance function Pr has some obvious relationships with the 

generalized distance function p. Two of these are included here. 

Proposition 2.1.5. (cf. [9, Lemma 3.1]) Let F : Z ~ X be a set-valued mapping, 

r ~ ° and (z,x) ~ gphFr . Then Pr(z,x) = p(z,x) - r . 

. Proof. Let v E Fr(z) and € > 0. By definition, d(v, F(z)) :::; r. There exists Wc E F(z) 

such that IIv - Well < d(r, F(z)) + € :::; r + €. It follows that 

Ilv - xii ~ Ilx - well-Ilwe - vii 

> d(x, F(z)) - (r + €) 

= p(z, x) - r - €. 

Since € > ° and v E Fr(z) are arbitrary, Ilv - xii > p(z, x) - r for all v E Fr(z). 

Consequently, Pr(z,x) = d(x,Fr(z)) ~ p(z, x) - r. 

Conversely, let y E F(z). Since (z, x) ~ gph Fr , x ~ Fr(z) and d(x, F(z)) > r. 

Define h : [0,00) -t [0,00) by 

h(s) = d(sx + (1 - s)y, F(z)). 

It follows that h is continuous, h(O) = ° and h(l) > r. By the intermediate value 

theorem, there exists So E [0,1) such that h(so) = r. Take W = sax + (1 - so)y so that 

w, x and y are collinear. Then h(so) = d(w, F(z)) = rand w E Fr(z). Note that 

Ilx - yll = Ilx - wll + Ilw - yll ~ d(x, Fr(z)) + d(w, Fr(z)) = Pr(Z, x) + r. 
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Since y E F(z) is arbitrary, Ilx - yll 2: Pr(z, x) + r holds for all y E F(z), which implies 

that p(z, x) = d(x, F(z)) 2: Pr(z, x) + r. Equivalently, Pr(z, x) ::; p(z, x) - r. The 

assertion is ascertained. D 

Proposition 2.1.6. Let F : Z =t X be a set-valued mapping, r 2: 0 and (z, x) E Z x X. 

If P is locally Lipschitz at (z, x) with rank f 2: 0, then Pr is also locally Lipschitz at 

(z, x) with rank f. 

Proof. Since P is locally Lipschitz at (z, x) with rank f, there exists 0 > 0 such that 

for all (Zi' Xi) E Z x X with .llxi - xii::; 0 and IIZi - zll ::; 0, where i = 1,2, 

(2 .2) 

There are three different cases: 

Case 1: Xl E Fr(ZI) and X2 E Fr(Z2). 

Note that Pr(ZI,XI) = Pr(Z2,X2) = O. It follows that 

Case 2: Xl tJ. Fr(ZI) and X2 tJ. Fr(Z2). 

For k = 1,2, noting that (Zk, Xk) tJ. gph Fr and applying Proposition 2.1.5, one sees 

that Pr(Zk, Xk) = p(Zk' Xk) - r. Employing (2.2), 

IPr(ZI, Xl) - Pr(Z2, x2)1 = I(p(zl' Xl) - r) - (p(Z2' X2) - r)1 

= Ip(ZI' Xl) - p(Z2' x2)1 

::; f(IIxI - x211 + IIZI - Z211)· 

Case 3: Xi tJ. Fr(Zi) and Xj E Fr(zj), where i =1= j and 1 ::; i,j ::; 2. 

Observe that Pr(Zj, Xj) = 0 and p(Zj, Xj) = d(xj, F(zj)) ::; r. Moreover, (Zi' Xi) tJ. 

gphFr . By Proposition 2.1.5 again, Pr(Zi, Xi) = p(Zi' Xi) - r. Using (2.2), 

IPr(ZI, Xl) - Pr(Z2, x2)1 = Pr(ZI, Xl) = p(ZI' Xl) - r 

::; p(ZI' Xl) - p(Z2' X2) ::; f(IIxI - X211 + IIZI - Z211). 

In all three cases, Pr i~ locally Lipschitz at (z, x) with rank e. D 
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As suggested heuristically by celebrated theorems in convex analysis, normal cones 

and sets of c-normals to enlargements are integral ingredients of estimates and char

acterizations of their dual sub differentials of the generalized distance function. That 

these normal cones and sets of c-normals to enlargements are all well-defined is a rather 

obvious fact. 

Proposition 2.1.7. Let F : Z :::::t X be a set-valued mapping, (z, x) E Z x X and 

r = p(z,x). Then (z,x) E gphFr . 

Proof. Note that d(x, F(z)) = p(z, x) = r implies x E Fr(z) and hence (z, x) E 

gphFr . o 

Remark 2.1.8. This proposition ensures that the normal objects NC((z,x);gphFr ), 

NP((z, x); gphFr ), Nc((z, x); gph Fr), N((z, x); gph Fr) and the coderivatives B;Fr(z, x), 

D'NFr(z, x), DMFr(z, x) are all well-defined. 

The rest of the chapter presents a collection of estimates of Frechet-like and limit

ing subdifferentials of the generalized distance function. These estimates are not only 

fundamental in the theory of the generalized distance function but are also readily re

ducible as special cases to the analogous results pertaining to the standard distance 

functio~, which are often ·of independent interest and are hence entailed in this the

sis separately as corol~aries. Most of these corollaries follow immediately from their 

preceding results concerning the generalized distance function by taking Z = {z} and 

F == n. Only corollaries which involve other technicalities are proved individually. 
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2.2 Frechet-Like Subdifferentials of the Generalized Dis

tance Function 

In the influential paper On the Clarke subdifferential of the distance function of a closed 

set [12], Burke, Ferris and Qian exhibited a collection of elegant estimates of Clarke 

sub differentials of the standard distance function by means of thickenings and projec

tions defined in Section 1.4. This has motivated endeavours to produce fundamental 

estimates of F'rechet-like sub differentials of the generalized distance function via the 

comparable tools of enlargements and projections. As emphasized in [12], results re

garding the standard distance functlon at points situated in the underlying set are 

notably different from those at points lying out of the set; similar distinction is also 

relevant in the analysis of the generalized distance function. While subdifferentiation 

of the generalized distance function at points lying in gph F has been investigated to 

a certain extent by Thibault in [36], little has been known about that at points lying 

out 9f gph F. In this section, both cases are dealt with whenever possible. 

The first proposition provides upper estimates of c-subdifferentials of the generalized 

distance function via enlargements. 

Proposition 2.2.1. ([26, Proposition 3.1]) Let F : Z =4 X be a set-valued mapping, 

(z, x) E Z x X and r = p(z, x). For any c ~ 0, the following statements hold: 

(a) Bc:p(z,x) c {(z*,x*) ENc:((z,x);gphFr): IIx*ll:S; l+c}. 

(b) If r > 0, then 

Bc: P ( z, x) c {( z* , x *) E Nc: ( ( z, x) ; gph Fr) : 1 - c :s; 11 x * 11 :s; 1 + c } . 

Proof. (a) Let c ~ 0, (z*, x*) E Bc:p(z, x) and, > 0. By Proposition 1.5.5, there 

exists 8 > ° such that for all (z, x) E Z x X with IIz - zll :s; 8 and IIx - xII :s; 8, 

(z*,z - z) + (x*,x - x):S; p(z,x) - p(z,x) + (c +1')(lIz - zll + IIx - xII). (2.3) 
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Fix any (z, x) E gph Fr with Ilz - zll ~ 6 and Ilx - xii ~ 6. Then x E Fr(z) 

and hence p(z, x) = d(x, F(z)) ~ r = p(z, x), reducing (2.3) to 

(z*, z - z) + (x*,x - x) ~ (c + ,)(llz - ill + Ilx - xiI). 

Applying Proposition 1.6.5, one sees that (z*,x*) E Nc((z,x);gphFr). 

Moreover, by taking z = z in (2.3), one has for all x E X with Ilx - xii ~ 6, 

(x*, x - x) ~ p(z, x) - p(z, x) + (c + ,)llx - .xll 

= d(x, F(z)) - d(x, F(z)) + (c + ,)llx - xii. 

Proposition 1.5.5 implies x* E ikd(x, F(z)). In view of Proposition 1.5.7(a), 

Ilx* II ~ 1 + c. The assertion is verified. 

(b) Let c 2:: 0 and (z*,x*) E 8cp(z, x). By (a), (z*,x*) E Nc((z,x);gphFr) and it has 

also been shown that x* E 8cd(x, F(z)). It follows from d(x, F(z)) = p(z, x) = 

r > 0 that x ~ clF(z). Employing Proposition 1.5.7(b) gives l-c ~ Ilx*11 ~ l+c. 

This completes the proof of the proposition. o 

Corollary 2.2.2. Let n c X, x E X and r = d(x, n). For any c 2:: 0, the following 

statements hold: 

If p is locally Lipschitz at (z, x), it is also possible to obtain lower estimates. Note 

that an extra constant which depends on the local Lipschitz rank of p is involved. 

Theorem 2.2.3. (ef. [26, Theorem 3.2]) Let F : Z =4 X be a set-valued mapping, 

(z, x) E Z x X and r = p(z, x). Suppose p is locally Lipschitz at (z, x) with rank e 2:: O. 

The following statements hold: 
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(a) If r = 0, then for any c 2:: 0, 

{ (z*, x*) E Nc: ( (i, x); gph Fo) : Il x* II :S 1 + c} C 8(2f+ l )c: p( i, x). 

(b) If r > 0, then for any c 2:: 0, 

{( z*,x* ) E Nc: (( i,x );gphFr ) : 1 - c:s Il x* 11 :S 1 + c} C 8(2f+ l) c: p( i, x). 

Proof. Since p is locally Lipschitz at (i, x) with rank f, by Proposition 2.1.6 , Pr is also 

locally Lipschitz at (i, x) with rank f for any r 2:: 0. Hence there exists 51 > ° such 

t hat for any (Zi' Xi ) E Z x X with Il zi - i ll :S 51 and Il xi - xii :S 51 , where i = 1, 2, 

Ip(Zl ' Xl) - p(Z2' x2)1 :S f(llxl - x2 11 + Il zl - z211) , and (2 .4) 

IPr (zl , Xl ) - Pr (Z2, x2)1 :S f (llxl - x211 + Il zl - z211) · (2 .5) 

(a) Let c 2:: 0, , > ° and (z*,x* ) E Nc: (( i, x); gphFo) with Il x* 11 :S 1 + c. Owing to 

Proposition 1.6.5, there exist s 51 2:: 52 > ° such that for all (z, x) E gph Fo wit h 

·llz - ill :S 52 and Ilx - xii :S 52 , 

(z*, z - i ) + (x*, X - x) :S (c + ,)(llz - i ll + Ilx - xii). (2.6) 

Take .o3 = min { 4dil)' ~ } > 0. Fix any (z, x) # (i , x) with Il z - i ll :S 53 and 

Ilx - xi i :S 53· If (z, x) E gphFo , then x E Fo(z) and p(z, x) = d(x, F(z» = ° = 

p(i, x). Thus (2.6) is equivalent to 

(z*, z - z) + (x*, x - x) :S p(z, x ) - p(i, x) + (c + , )(llz - i ll + Il x - xiI). (2.7) 

Ot herwise (z,x) ~ gphFo. Note that (11 z - i ll + Ilx - xll)2 > 0. Choose 

Xl E F(z) such t hat 

Ilx - xIII < p(z, x) + (11 z - i ll + Ilx - xll)2 

= (p(z, x) - p(i, x» + (11 z - i ll + Ilx - xll)2 

:S f (llx - xii + Il z - i ll) + Il z - i ll + Ilx - xii 
252 5 

:S 2 (f + 1) 53 :S (f + 1) A ( /l , ; \ = ~ 

(2.8) 
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Check that IlxI - xii ~ Il xI - xii + Ilx - xii ~ ~ + 63 ~ ~ + 4dil) ~ 62 and 

Ilz - zl l ~ 63 ~ 62· Moreover, since Xl E F(z), one has d(XI' F(z)) = O. This 

implies Xl E Fo(z) and (z, Xl) E gph Fa. It follows from (2.6) that 

(z*, z - z) + (x*, Xl - x) ~ (c + ,)(llz - zll + IlxI - xiI). (2.9) 

Using estimates (2.4), (2.8) and (2.9), one sees that 

(z*, z - z) + (x*, X - x) 

= (z*,z - z) + (X*,XI - x) + (x*,x - Xl) 

~ (c + ,)(llxI - xii + Ilz - zll) + (x*, X - Xl) 

~ (c + ,)(llz - zll + Ilx - xii + Ilx - xIII) + Ilx*llllx - XIII 

~ (c +, + Il x*ll)llx - xIII + (c + ,)(llz - zll + Ilx - xii) 

~ (2c +, + l)(p(z, X) + (11x - xii + Ilz - zll)2) 

+ (c + ,)(llz - zll + Ilx - xiI) 

~ (2c +, + l)(llx - xii + Ilz - zll)2 + (c + ,)(llz - zll + Ilx - xii) 

+ p(z, X) - p(z, x) + (2c + ,)(p(z, X) - p(z, x)) 

~ p'(z, X) - p(z, x) + (2c +, + l)(llx - xii + Ilz - zl1)2 

+ (c + ,)(llz - zll + Ilx - xii) + £(2c + ,)(llx - xii + Ilz - zll) 

= p(z, X) - p(z, x) + (2c +, + l)(llx - xii + Ilz - zll)2 

+ ((2£ + l)c + (£ + l),)(llz - zll + Ilx - xii). 

Rearranging inequalities (2.7) and (2.10), there holds 

p(z, x) - p(z, x) - ((z*, x*), (z, x) - (z, x)) 
II(z, x) - (z, x)11 

(2.10) 

{ 

-(c + ,) if (z, x) E gph Fa, 

~ -(2£ + l)c: - (l! + l)r - (2c: + 'Y + l)(llz - ill + Ilx - xli) if (z, x) rj. gph Fo. 

Since, > 0 is arbitrary, passing to the limit, one has 

liminf p(z,x) - p(z,x) - ((z*,x*), (z,x) - (z,x)) 
(z,x)~(z,x) II(z,x) - (z,x)11 ~ -(2£ + l)c. 
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By definition, (Z*, X*) E 8(2f+1)cP(Z, x). The assertion holds. 

(b) Let c 2: 0, rJ > 0 and (z*,x*) E Nc((z,x);gphFr) with 1- c:::; Ilx*II :::; 1 +c. Due 

to Proposition 1.6.5, there exists 61 2: 64 > 0 such that for all (z, x) E gph Fr 

with IIz - zll :::; 64 and IIx - xII :::; 64, 

(z*, z - z) + (x*, x - x) :::; (c + rJ)(IIz - zll + IIx - xII). (2.11) 

On the other hand, d(x, F(z)) = p(z, x) = r implies x E Fr(z) and Pr(z, x) = 

d(x, Fr(z)) = O. Note also that Fr == (Fr)o. Applying the result of (a) to Fr and Pr 

in place of F and P respectively reveals that (z*, x*) E 8(2f+1)cPr(Z, x). Employing 

Proposition 1.5.5, there exists 04 2: 05 > 0 such that for all (z, x) E Z x X with 

IIz - zll :::; 05 and IIx - xII :::; 05, 

(z*, z - z) + (x*, x - x) 

:::; Pr ( Z, X) - Pr ( Z, X) + (( 2£ + 1) c + rJ) ( 11 z - z 11 + 11 x - xii) 

= Pr(z, x) + ((2£ + l)c + rJ)(llz - zll + Ilx - xii)· (2.12) 

Take 06 = 2ft1 > O. Fix any (z, x) =1= (z, x) with IIz - zll :::; 06 and IIx - xII :::; 06· 

If (z,x) ~ gphFr, then Proposition 2.1.5 implies Pr(z,x) = p(z,x) - r. In light 

of (2.12), one has 

(z*, z - z) + (x*, x - x) 

:::; p(z, x) - r + ((2£ + l)c + rJ)(llz - zll + Ilx - xii) 

= p(z, x) - p(z, x) + ((2£ + l)c + 'r})(llz - zll + Ilx - xii). (2.13) 

If (z,x) E gphFr, then x E Fr(z) and p(z,x) = d(x,F(z)) :::; r = p(z,x). 

Choose Xo E X with IIxoll = 1 such that 1-c-rJ:::; IIx*II -rJ < (x*,xo). Take 
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x = x + (p(Z, x) - p(Z, x))xo. Note that 

d(x, F(z)) = inf Ilx - yll 
YEF(z) 

= inf Ilx + (p(z, x) - p(z, x))xo - yll 
YEF(z) 

~ inf Ilx - yll + II(p(z, x) - p(z, x))xoll 
YEF(z) 

= d(x, F(z)) + p(z, x) - p(z, x) 

= p(z,x) +r - p(z,x) = r, 

which implies x E Fr(z) and (z, x) E gph Fr. Moreover, 

Ilx - xII ~ IIx - xII + IIx - xII 

= lI(p(z,x) - p(z,x))xoll + IIx - xII 

= Ip(z, x) - p(z, x)1 + IIx - xII 

~ f(lIz - zll + IIx - xII) + Ilx - xii 

~ (2f + 1 )66 = 65 ~ 64 

and IIz - zll ~ 66 ~ 64. It follows from (2.11) and the above estimates that 

(z*, z - z) + (x*, x - x) 

= (z*, z =- z) + (x*, X - x) + (x*, x - x) 

~ (c·+ 1])(llz - zll + Ilx - xli) + (x*, (p(z, x) - p(z, x))xo) 

~ (c + 1])(llz - zll + f(llz - zll + Ilx - xii) + Ilx - xli) 

+ (p(z, x) - p(z, x))(1 - c -1]) 

~ (c + 1])(f + 1)(llz - zll + Ilx - xli) + p(z, x) - p(z, x) 

+ (c + 1])(p(z, x) - p(z, x)) 

~ (c + 1])(f + l)(llz - zll + Ilx - xii) + p(z, x) - p(z, x) 

+ f(c + 1])(llx - xii + Ilz - zll) 

= (2f + 1)(c + 1])(llz - zll + Ilx - xii) + p(z, x) - p(z, x). (2.14) 

37 



SUBDIFFERENTIALS OF DISTANCE FUNCTIONS IN BANACH SPACES 38 

Rearranging inequalities (2.13) and (2.14) yields 

p(z, x) - p(:z, x) - ((z*, :*~, (z, x) - (:z, x)) ~ {-(2f + l)(c + 17) if (z , x) E gph FT ' 

II(z,x) - (z,x)11 -((2f+ l)c+17) if (z ,x) ~ gphFr. 

Since 17 > ° is arbitrary, passing to the limit, one sees that 

liminf p(z, x) - p(:z, x) - ((z*, :*~, (z, x) - (:z, x)) ~ - (2f + l)c. 
(z,x) -+ (z,x) II(z,x) - (z,x)11 

By definition, (z*, x*) E 8(2f+l)cP(:Z' x). This proves the desired inclusion. 0 

Corollary 2.2.4. Let D c X, ,x E X and r = d(x, D). The following statements hold: 

(a) If r = 0, then for any c ~ 0, Nc(x; Do) n (1 + c)Bx* c 83cd(x, D). 

(b) If r > 0, then for any c ~ 0, Nc(x; Dr) n [1 - c, 1 + c]Sx* c 83cd(X , D). 

Corollary 2.2.5. Let F : Z =t X be a closed-graph mapping, (:z, x) E Z x X and 

r = p(:z, x). Suppose p is locally Lipschitz at (:z, x). The following statements hold: 

(a) Ij (:z,x) E gphF, then 8p(:Z,x) = {(z*,x*) E N((:z,x);gphF) : Ilx*11 :::; I}. 

(b) If (:z, x) ~ gph F, then 8p(:Z, x) = { (z*, x*) E N( (:z, x); gph Fr) : Ilx* 11 = 1 }. 

Proof. By assumption, F is closed-graph. If (:z,x) E gphF, then r = d(x,F( :Z )) = ° 
and gphFr = gphF. On the other hand, if (:z,x) ~ gphF, then r = d(x,F( :Z )) > 0. 

The first equality follows by taking c = ° in Proposition 2.2.1(a) and Theorem 2.2.3(a). 

Similarly, the second equality follows by taking c = ° in Proposition 2.2.1 (b) and 

Theorem 2.2.3(b). o 

Corollary 2.2.6'. Let D c X be closed, x ~ D and r = d(x, D). Then 

Another equality connecting Fn§chet sub differentials of the generalized distance 

function and Frechet normal cones to gph Fr further sheds light on the duality between 

these two families. 
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Proposition 2.2. 7. (cf. [26, Proposition 3.4]) Let F : Z :::4 X be a set-valued mapping, 

(z,x) E Z x X and r = p(z,x). Suppose p is locally Lipschitz at (z,x). Then 

N((z,x);gphFr) = U ).}jp(z, x). 
A~O 

Proof. Let (z*,x*) E N((z,x);gphFr). Suppose x* f- O. Then.x:= Ilx*11 > O. 

Noting that N((z,x);gphFr ) is a cone, one has i(z*,x*) E N((z,x);gphFr ). Invoking 

Theorem" 2.2.3(a) and (b) with c = 0, one sees that i(z*,x*) E 8p(z,x) and hence 

(z*,x*) E .x8p(z, x). Otherwise x* = O. Observe that d(x,F(z)) = p(z,x) = r implies 

x E Fr(z) and (z, x) E gph Fr. Since p is locally Lipschitz at (z, x), it follows from 

Proposition 2.1.6 that Pr is also locally Lipschitz at (z, x). By virtue of Theorem 1.7.4, 

Fr is Lipschitz-like at (z, x) with some rank e 2:: O. Applying Theorem 1.7.5 yields 

sup {llz*11 : (z*,O) E N((z,x);gphFr )} = sup {llz*11 : z* E D*Fr(z,x)(O)} ~ O. 

Hence Ilz* 11 = 0 and z* = o. Consequently, (z*, x*) = (0,0) EO· 8p(z, x). In both 

cases, the inclusion N((z,x);gphFr ) C U .x8p(z,x) is valid. 
A~O 

Consider the opposite inclusion. By Proposition 2.2.1, 8p(z, x) c N( (z , x); gph Fr). 

Since N((z,x);gphFr ) is a cone, .x8p(z,x) c N((z,x);gphFr ) for all.x 2:: 0 and hence 

U .x8p(z, x) c N((z, x); gph Fr). Thus the desired equality holds. 
A~O 

Corollary 2.2.8. Let 0 C X, x E X and r = d(x, 0). Then 

N(x; Or) = U .x8d(x, 0). 
A~O 

o 
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The next proposition provides upper estimates of c-subdifferentials via projections 

introduced in Definition 1.4.3. 

Proposition 2.2.9. (cf. [26, Proposition 3.5]) Let F : Z :::4 X be a closed:graph 

mapping, (z, x) ~ gph F with ll(x, F(z)) f- 0, and c 2:: o. Then for any y E IT(x, F(z)), 

8"p(z, x) c { (z', x*) E N,,( (z, ji); gph F) : 1 - E: :c; Ilx' 11 :c; 1 + E: } • 
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Proof. Let y E II(x, F(i)), (z*, x*) E 8cp(i, x) and 'T/ > O. Thus y E F(i), which 

implies (i,y) E gphF and Nc((i,y);gphF) is well-defined. Using Proposition 1.5.5, 

there exists 6 > 0 such that for all (z, x) E Z x X with IIz - ill ~ 6 and Ilx - xii ~ 6, 

(z*, z - i) + (x*, x - x) ~ p(z, x) - p(i, x) + (c + 'T/)(llz - ill + IIx - xII). (2.15) 

Fix any (z, x) E gphF with IIz - ill ~ 6 and IIx - yll ~ 6. Then x E F(z) 

and hence p(z, x) = d(x, F(z)) = O. Note that IIx - yll = d(x, F(i)) = p(i, x) and 

11 (x - y + x) - xII = IIx - yll ~ 6. Employing (2.15), one has 

(z*, z - i) + (x*, X - y) 

= (z*, z - i) + (x*, (x - y + x) - x) 

~ p(z,x - y + x) - p(i,x) + (c + 7])(IIz - ill + 11 (x - y + x) - xII) 

~ p(z, x) + IIx - yll - IIx - yll + (c + 7])(IIz - ill + IIx - yll) 

= (c + 7])(IIz - ill + IIx - Yll)· 

In light of Proposition 1.6.5, (z*,x*) E Nc((i,y);gphF). 

Moreover, by taking z = i in (2.15), one sees that for all x E X with IIx - xII ~ 6, 

(x*,x - x) ~ p(i,x) - p(i,x) + (c + 'T/)IIx - xII 

= d(x, F(i)) - d(x, F(i)) + (c + 7])IIx - xII. 

By Proposition 1.5.5 again, x* E 8cd(x, F(i)). Since F is closed-graph, F(i) is closed; 

(i,x) ~ gphF implies that x ~ F(i) = clF(i). Applying Proposition 1.5.7(b) yields 

1 - c ~ IIx* 11 ~ 1 + c. This completes the proof of the proposition. 0 

Corollary 2.2.10. Let D c X be closed, x ~ D with II(x, D) =I 0, and c 2:: O. Then 

for any y E II(x, D), 

8cd(x, D) C Nc(Y; D) n [1 - c, 1 + c]Sx*. 

However, the requirement that the projection set be nonempty is often too stringent 

for application. It is desir~ble to obtain an analogue of the previous proposition without 

40 



SUBDIFFERENTIALS OF DISTANCE FUNCTIONS IN BANACH SPACES 

using projections. Indeed, similar but more involved estimates may be obtained by 

means of Ekeland's Variational Principle and perturbed projections stated respectively 

in Theorem 1.2.1 and Definition 2.1.3. 

Theorem 2.2.11. ([26, Theorem 3.6]) Let F : Z =i X be a closed .. graph mapping, 

(z, x) ~ gph F and E: 2: O. Then for any 'rJ > 0, 

8eP(z,x) C U {(z*,x*) E Ne+7J((v,u);gphF): 1- E::::; Ilx*ll:::; 1 +E:}. 
(v,u)E G~(z,x) 

Proof. Let 'rJ > 0, (z*, x*) E 8eP(z, x) and 0 < , < l Using Proposition 1.5.5, there 

exists 6 > 0 such that for all (z, x) E Z x X with IIz - zll :::; 6 and IIx - xII :::; 6, 

(z*, z - z) + (x*, x - x) :::; p(z, x) - p(z, x) + (E: + ,)(IIz - zll + IIx - xII). (2.16) 

Let 0 < if < min {,,~, 1}. There exists y E F(z) such that 

IIx - yll < d(x, F(z)) + if = p(z, x) + if. (2.17) 
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Let W = gph F n B z x x (( z, y), 6), which is a closed and hence complete metric space. 

Define <.p : W -7 lR by 

<.p(z, x) = -(z*, z - z) - (z*, x - y) + (E: + ,)(IIz - zll + IIx - yll) + if. 

Then <.p is continuous and in particular lower semi continuous on W. For any (z, x) E W, 

one has x E F(z) and hence p(z, x) = d(x, F(z)) = O. Moreover, IIz - zll :::; 6 and 

Ilx - yll :::; 6, from which 11 (x - y + x) - xII = IIx - yll :::; 6 follows. In view of (2.16) and 

(2.17), one sees that 

(z*, z - z) + (x*, x - y) 

= (z*, z - z) + (x*, (x - y + x) - x) 

:::; p(z, x - y + x) - p(z, x) + (E: + ,)(IIz - zll + 11 (x - y + x) - xII) 

< (p(z, x) + IIx - yiD ~ (IIx - yll - if) + (E: + ,)(IIz - zll + IIx - yiD 

= if + (E: + ,)(IIz - zll + IIx - YID· (2.18) 
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Rearranging (2.18) yields <p(z, X) > 0 = <p(Z,y) - rr for all (z,x) E W, which implies 

(z,~)~W <p(z, x) ~ <p(z, y) - if, 

and <p is bounded below. Employing Ekeland's Variational Principle (Theorem 1.2.1) , 

there exists (v, u) E W with Ilv - zll ::; 'if and Ilu - yll ::; 'if such that for all (z, x) E W, 

<p(z, x) + 'if(llv - zll + Ilu - xiI) ~ <p(v, u), which is equivalent to 

(z*, z - v) + (x*, x - u) 

::; (c: + 1')(llz - zll - Ilv - zll + Ilx - yll - Ilu - yl l) + 'if(l lv - z ll + Il u - x ii) 

::; (c: + 1')(llz - vii + Ilx - ull) + 'if(llz - vii + Ilx - ull) 

::; (c: + 21')(llz - vii + Ilx - ull) 

::; (c: + 7])(llz - vii + Ilx - ull)· (2.19) 

Fix any (z, x) E gph F with Ilz - vii ::; 'if and Ilx - ull ::; 'if. Note that Ilz - z ll ::; 

Ilz - vii + Ilv - zll ::; 2'if ::; 6 and IIx - yll ::; Ilx - ull + Ilu - YlI ::; 2'if ::; 6. Hence 

(z,x) E-gphFnBzxx((v,u),6) = W. It follows from (2.19) that for any A > 0, 

(z*, z - v) + (x*, x - u) ::; (c: + 7])(llz - vii + Ilx - ull) 

::; ((c: + 7]) + A)(llz - vii + Ilx - u ll )· 

In light of Proposition 1.6.5, (z*,x*) E NC:+17((V,U);gphF), which is well-defined since 

(v, u) E gphF. 

Moreover, in view of (2 .17), 

Ilu - xii::; Ilu - yll + Ily - xii::; 'if + p(z, x) + if 

< p(z, x) + 2'if < p(z, x) + 21' 

< p(z, x) + 7] 

and Ilv - zll ::; 'if < 7], which imply (v, u) E 8; (z, x). Owing to the assumptions that 

F is closed-graph and (z,x) tt gphF, F(z) is closed and x tt F(z) = clF(z). Invoking 

Proposition 1.5. 7(b) again, one has 1 - c: ::; Ilx* 11 ::; 1 + c:. Consequently, the assertion 

is substantiated. o 
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Remark 2.2.12. Unlike in Proposition 2.2.9, the projection set II(x, F(z)) is not as

sumed to be nonempty in this theorem. While II(x, F(z)) may be empty, the per

tur bed projection set e~ (z, x) is guaranteed by Ekeland' s Variational Principle to be 

nonempty. 

Corollary 2.2.13. Let 0 c X be closed, x i 0 and E ~ O. Then for any TJ > 0, 

8cd(x, O) c U (Nc+7J (x; 0) n [1 - E, 1 + E]SX*) . 
xEIIT}(x,O) . 
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2.3 Limiting and Singular Subdifferentials of the Gener

alized Distance Function 

This section is devoted to developing estimates of limiting and singular subdifferentials 

of the generalized distance function via limiting normal cones and mixed coderiva-

tives first discussed in Definition 1.6.7 and Definition 1.7.1 respectively. Results of the 

previous section prove to be essential tools in this section. 

Recall from Corollary 2.2.8 that Frechet normal cones to gph Fr can be delineated 

as unions of nonnegative multiples of Frechet sub differentials of the generalized dis-

tance function. Indeed, it was proved by Thibault in [36] using Ekeland's Variational 

Principle that the same relation holds for limiting normal cones to gph F and limiting 

sub differentials of the generalized distance function at points belonging to gph F. 

Theorem 2.3.1. ([36, Proposition 2.7]) Let F : Z ~ X be a closed-graph mapping and 

(2, x) E gph F. Then 

N((2,x);gphF) = U A8p(2, x). 
>'~O 

A primary motivation for the study in this section is to attempt to extend the 

preceding equality to points not belonging to gph F. However, it turns out that limiting 

sub differentials of the generalized distance function at such points are too large for the 

equality to hold. For this reason, smaller limiting constructions are needed. The reader 

is suggested to refer to [25] for further development. 

Definition 2.3.2.· Let! : X -+ 1R. be finite at x EX. 

(a) The right-sided limiting subdifferential of ! at x is defined by 

a~!(x) := Limsup8c!(x). 
f+ _ 
x~x 

dO 

The elements of this set are known as right-sided limiting subgradients of f 

at X. 
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(b) The right-sided singular subdifferential of f at x is defined by 

or f(x) := Limsup >,,8c: f(x). 
f + x ---tx 

c,>'lO 

The elements of this set are known as right-sided singular subgradients of 

f at X. 

Remarks 2.3.3. (i) It follows immediately that 8f(x) C o>f(x) C of (x ) and 8~ f( x ) C 

(ii) An important observation is that o~f(x) = of (x) if f attains a local minimum 

at X. In particular, o~d(x, n) = 8d(x , n) for any n c X with x E n. 

In nonsmooth calculus problems, it is often necessary to impose additional compact-

ness requirements in order to arrive at interesting results. One such requirement which 

ensures equivalence between weak* convergence and norm convergence of sequences in 

sets of c-normals to zero is especially relevant to the subsequent exposition. A more 

elaborate explanation of this property is available in [25]. 

Definition 2.3.4. Let X, Xl,'" ,Xn be Banach spaces. 

(a) A subset n c X is (Said to be sequentially normally compact at x E n if for 

any sequences {ck}~l C ~+, {Xk}~l C n and {xtJ~1 C X* such that Ck 1 0, 

(b) A subset n c X I X ... X Xn is said to be sequentially normally compact 

with respect to Xi, where 1 ::; i ::; n, at (XI,'" ,xn ) E n if for any sequences 

{ck}~l C ~+, {(xl,'" 'Xk)}~l C nand {(xl*,··· ,xk*)}~l c Xi x '" x X~ 

such thatck 10, (xl, .. ' ,xk) --+ (Xl,'" ,xn), (xl*, .. · ,xk*) E NCk((xl, ... ,xk);n) 
. w * . 

for all kEN and xk* ---t 0, one has Ilxk* 11 --+ 0. 

Remarks 2.3.5. (i) If X E cln c X, then the sequential normal compactness of cln 

at x implies that of n at X. 
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(ii) If X is finite dimensional, then 0 c X is automatically sequentially normally 

compact at any x E O. 

(iii) If Xi is finite dimensional, then 0 C Xl X ... X Xn is automatically sequentially 

normally compact with respect to Xi at any (Xl,' .. , Xn) E O. 

Drawing on the tool of enlargements defined in Definition 2.1.3 as in the last section, 

the next theorem provides important upper estimates of right-sided limiting sub differ

entials of the generalized distance function under various assumptions. 

Theorem 2.3.6. (ef. [26, Theorem 4.3J) Let F : Z =4 X be a set-valued mapping, 

(z, x) ~ gph F and r = p(z, x). Suppose gph F is locally closed at (z, x) and gph Fr is 

closed. The following statements hold: 

(a) 8"2P(z,x) c {(z*,x*) E N((z,x);gphFr) : Ilx*1I ~ I}. 

(b) If gph Fr C Z x X is sequentially normally compact with respect to X at (z, x), 

then 

8?p(z,x) C {(z*,x*) E N((z,x);gphFr): 0 < Ilx*11 ~ I}. 

( c) If X is finite dimensional, then 

8?p(z,x) c {(z*,x*) E N((z,x);gphFr ) : Ilx*11 = I}. 

(cl) If p is locally Lipschitz at (z, x), then 

{(z*, x*) E N( (z, x); gph Fr) : 0 < Ilx* 11 ~ I} c U A8?p(z, x). 
A>O 

Proof. (a) Let (z*,x*) E 8"2P(z,x). By definition, there exist sequences {Ek}~l C 

lR+, {(Zk' Xk) }~l c Z X X and {(zk' xk) }~l c Z* X X* such that 

(2.20) 

(2.21 ) 

(2.22) 
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p(Zk' Xk) ~ p(Z, x) for all kEN, and 

(zZ, xk) E 8c k P(Zk, Xk) for all kEN. 

(2.23) 

(2.24) 

Since gph F is locally closed at (z, x) and (z, x) t/:. gph F, by Proposition 2.1.2, 

r = p(z , z) > O. In view of (2.23), for all kEN, d(Xk, F(Zk)) = p(Zk' Xk) > 0, 

which implies Xk t/:. F(Zk) and (Zk' Xk) t/:. gph F. 

Suppose there are infinitely many (Zk, Xk) such that p(Zk' Xk) = r. By passing 

to this subsequence of {(Zk' Xk) }~1 together with the con:esponding subsequences 

of {ck}~l and {(zZ,xk)}~l if necessary, assume that d(Xk,F(Zk)) = p(Zk,Xk) = 

r and hence (Zk' Xk) E gph Fr for all kEN. By virtue of (2.21), (Zk' Xk) ~ 

(z, x). For each kEN, employing (2.24) and Proposition 2.2.1(b), one sees that 

(zZ, Xk) E NCk ((Zk' Xk); gph Fr) and 1 - Ck ~ IIxk 11 ~ 1 + Ck. (2.25) 
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Otherwise, by considering the tail of {(Zk' Xk) }~1 together with the corre

sponding terms of {ck}~l and {(zZ, xk)}~l if necessary, assume that d(Xk' F(Zk)) 

= p(Zk' Xk) > r and hence (Zk' Xk) t/:. gph Fr for all kEN. Let, > O. Employing 

(2.24) and Proposition 1.5.5, for each kEN, there exists 6k > 0 such that for all 

(z, x) E Z 'x X with Ilz - zkll ~ 6k and IIx - xkll ~ 6k, 

(zZ, Z-Zk) + (Xk' X-Xk) ~ p(z, x) - p(Zk' Xk)+ (ck+,)(llz- zkll + Ilx-xkll). (2.26) 

Using Proposition 2.1.5, p(Zk' Xk) = Pr(Zk, Xk) + r. Fix any k E N and (z, x) E 

Z x X with Ilz - zkll ~ 6k and Ilx - xkll ~ 6k· If (z, x) E gph Fr, then x E Fr(z ), 

which implies p(z, x) = d(x, F(z)) ~ rand Pr(z , x) = d(x , Fr( z )) = O. Hence 

p(z,x) ~ Pr(z,x) +r. If (z ,x) t/:. gphFr, due to Proposition 2.1.5 again, p(z, x) = 

Pr(z, x) + r. In both cases, it follows from (2.26) that 

(ZZ, Z - Zk) + (Xk' x - Xk) 

~ p(z, x) - p(Zk, Xk) + (ck + ,)(llz - zkll + Ilx - xkll) 

~ (Pr(z, x) + r) - (Pr(Zk, Xk) + r) + (ck + ,)(llz - zkll + Ilx - xkll) 

~ Pr( z , x) - Pr(Zk, Xk) + (ck + ,)(llz - zkll + Ilx - xkll). 
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Owing to Proposition 1.5.5, (zk,xkJ E 8ckPr(Zk,Xk). For all kEN, let 7Jk = 

Pr(Zk, Xk) = p(Zk, Xk) - r > O. In view of (2.21), TJk 1 o. For each kEN, 

applying Theorem 2.2.11 to Fr and Pr in place of F and P respectively, there 

exists (Vk, Uk) E e~; (Zk, Xk) such that 

Then (Vk,Uk) E gphFr , Ilzk-Vkll :::; 7Jk and Ilxk-Ukll :::; Pr(Zk,Xk)+7Jk = 2TJk· Note 

that Ilvk-zll:::; Ilvk-Zkll+llzk-zll and Iluk-xll :::; Iluk-Xkll+llxk-xll. It follows 

from TJk,Ck 10 and (Zk,Xk)~ (z,x) that Ck +TJk 10 and (Vk,Uk) ~ (z,x). 

In both cases, (z*, x*) E N( (z, x); gph Fr). Using the lower semicontinuity of 

11 . 11 with respect to the weak* topology of X* in connection with the second 

relation of both (2.25) and (2.27) yields 

Ilx* 11 :::; lim inf Ilxk 11 :::; lim inf(l + ck) = 1. 
k~oo k~oo 

Hence 8~p(z,x) c {(z*,x*) E N((z,x);gphFr): Ilx*11 :::; I} holds. 

(b) Let (z*,x*) E 8>p(z,x). By (a) , (z*,x*) E N((z,x);gphFr) and IIx*1I :s; 1. It 

suffices to show that IIx* 11 > O. Suppose Ilx* 11 = O. Then x* = 0 and (2.22) 

implies xk ~ O. Since gph Fr is sequentially normally compact with respect to 

X at (z, x), one has IIxkll ~ O. On the other hand, owing to the second relation 

of both (2.25) and (2.27) and ck 1 0, IIxkll ~ 1, which is a contradiction. This 

shows that IIx* 11 > 0 and completes the proof. 

(c) Let (z*,x*) E a~p(z,x). By (a), (z*,x*) E N((z,x);gphFr ). It suffices to show 

that 11 x* 11 = 1. Since X is finite dimensional, 11 . 11 is continuous with respect to 

the weak* topology of X*. Letting k ~ 00 in the second relation of both (2.25) 

and (2.27) gives Ilx* 11 = lim IIxk 11 = 1. The result follows. 
k~oo 

(cl) Let (z*,x*) E N((z,x);gphFr) with 0 < IIx*1I :s; 1. By definition, there exist 

sequences {ck}~l C JR+, {(Zk,Xk)}~l C Z X X and {(zk,xk)}~l C Z* X X* ., 
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such that 

( ) 
gph Fr (_ _) Zk, Xk ----7 z, X , 

(Zk' xtJ ~ (Z*, x*), and 

(2.28) 

(2.29) 

(2.30) 

(2.31 ) 

Suppose P is locally Lipschitz at (z, x) with some rank f ~ O. There exists 

f/ >0 such that P is locally Lipschitz on B zxx ((z,x),6') with rank f. Let 

o < 6 < 6'. Owing to (2.29), by considering the tail of {( Zk, x k) } k:: 1 together 

with the corresponding terms of {Ek}k::l and {(zk' xtJ}k::l if necessary, assume 

that for all kEN, (Zk,Xk) E Bzxx((z,x),6), so that p is locally Lipschitz at 

(Zk' Xk) with rank f. 
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Since 11· 11 is lower semicontinuous with respect to the weak* topology of X*, it 

follows from (2.30) that i31 := lim inf 11 xi;; 11 ~ Ilx* 11 > O. There exists KEN such 
k--+oo 

that Ilxi;;11 ~ i31 - ~llx*11 ~ ~llx*11 := i32 > 0 for all k ~ K. Again, by considering 

the tail of {(Zk' Xk)}k::l together with the corresponding terms of {Ek}k=l and 

{ (zk' xk) } k:: 1 if necessary, assume that 11 xi;; 11 ~ i32 > 0 for all kEN. Then for 

each kEN, it follows from (2.31) and Proposition 1.6.6 that 

-11 1*11 (zk,xi;;) E { (z*,x*) E N+((zk,xk);gphFr): Ilx*11 = 1} 
x k . IIxkll 

C {(z*,x*) E Nr,((Zk,Xk);gphFr ) : Ilx*11 = I}, 
which upon applying Theorem 2.2.3(b) yields 

II:kll (z;;, xk) E a(2l~~)'k p(Zk, Xk). 

Note that (2f~~)C:k 1 0 due to (2.28). 

In view of (2.29), (Zk,X~) E gphFr, which implies Xk E Fr(Zk) and P(Zk,Xk) = 

d(Xk' F(Zk)) ::; r = p(z, x). Suppose p(Zk' Xk) < r for infinitely many kEN. 

With regard to (2.28), there exists MEN such that EM < i32 and p(ZM,XM) < r. 
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Let, > O. Invoking (2.31) and Proposition 1.6.5, there exists 8> 0 such that for 

all (z, x) E gph Fr with IIz - zM11 ~ 8 and Ilx - xM11 ~ 8, 

(ZM' Z - ZM) + (XM' x - XM) ~ (EM + ,)(llz - ZMII + IIx - xMII)· (2.32) 

Let fj = min{8, r - p(ZM' XM)} > O. For all x E X with Ilx - xM11 ~ fj, 

d(x,F(ZM)) ~ Ilx-XMII +d(XM,F(ZM)) 

~ fj + d(XM, F(ZM)) ~ r - p(ZM' XM) + p(ZM' XM) = r 

and (ZM'X) E gphFr, implying by (2.32) that 

(XM' x - XM) ~ (EM + ,) Ilx - xMII· 

In light of the linea~ity of xM' one sees that 

11 * 11 (xM' x - XM) (xM' x - XM) xM = sup = sup 11 ~ EM + f. 
X=/=XM Ilx - xM11 O<llx-XMII~1} Ilx - XM 

Since, > 0 is arbitrary, IlxM11 ~ EM < rh, which contradicts the earlier statement 

that 11 xl:: 11 ~ (32 for all kEN. Hence p( Zk, x k) = r for sufficiently large kEN. 

Once again, by considering the tail of {(Zk' Xk) }~1 together with the correspond

ing terms of {Ek}~l and {(zk' xl::) }~1 if necessary, assume that p(Zk' Xk) = r for 

all kEN. In particular, it follows from (2.29) that (Zk' Xk) '~ (z, x). 

Moreover, the convergence of {Xk}~l implies that {llxkll}~l is a bounded se-

quence in 1R and has a convergent subsequence by Bolzano-Weierstrass theorem. 

By further passing to this subsequence of {(Zk' Xk) }k=l together with the cor

responding subsequences of {Ek}~l and {(zk' xl::) }~1 if necessary, assume that 

11 xl:: 11 -+ J-L for some J-L ~ (31 > O. Owing to (2.30), II x1
kll (zk' xl::) ~ ~(z*, x*). 

Therefore ~(z*, x*) E a~p(z, x) and hence 

(Z*, x*) E J-La~p(z, x) c U A8~p(z, x). 
>'>0 

The conclusion is established. o 
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Indeed, the main argument used in the proof of Theorem 2.3.6(a) is also crucial 

in the proof of a forthcoming key result. The conClusion of the argument is hereby 

advantageously restated as a separate lemma. 

Lemma 2.3.7. Let F: Z =t X be a set-valued mapping, (z,x) ~ gphF. andr = p(z,x) . 

Suppose gph F is locally closed at (z, x) and gph Fr is closed. Assume further that 

{ck}~l C ffi.+, {(Zk,Xk)}~l C Z X X and {(zk,xtJ}~l C Z* X X* are sequences 

satisfying Ck 1 0, (Zk' Xk) ~ (z, x), p(Zk' Xk) ~ p(z, x), and (zk' xk) E 8ck P(Zk, Xk) for 

all kEN . . Then there exist two sequences {rk}~l C ffi.+, {(Vk , Uk)}~l C Z X X and 

a subsequence {(zk' xk) }~1 of {(zk' xk) }~1 such that for all kEN, 

and rk 10, ( ) 
gph Fr (_ _) Vk, Uk ----+ Z, x . 

Having established Theorem 2.3.6, the desired alternative description of limiting 

normal cones to gph Fr may be derived without much difficulty. 
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Corollary 2.3.8. (cf. [26, Corollary 4.4]) Let F : Z =t X be a set-valued mapping, 

(z, x) ~ gph F and r = p(z, x). Suppose gph F is locally closed at (z, x) and gph Fr 

is closed. Assume further that gph Fr C Z x X is sequentially normally compact with 

respect to X at (z, x) ana p is locally Lipschitz at (z, x). Then 

N((z,x);gphFr) = U )..a~p(z,x). 
A~O 

Proof. By Theorem 2.3.6(a), N((z,x);gphFr) => a~p(z,x). Since N((z,x);gphFr) is 

a cone, N((z,x);gphFr) => )..a~p(z,x) for all)" ~ 0, which justifies the inclusion 

N((z,x);gphFr) => U )..a~p(z,x). 
A~O 

Consider the reverse inclusion. Let (z*,x*) E N((z,x);gphFr). Suppose x* =I- 0. 

Then Ilx*11 > 0. Noting that N(tz,x);gphFr) is a cone, one has 

1 
Ilx*11 (z*,x*) E {(z*,x*) E N((z,x);gphFr) : ° < Ilx*11 ~ I}. 
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1 
An application of Theorem 2.3.6( d) yields Ilx* 11 (z*, x*) E U >"0"2p(i, x) and hence 

>'>0 

(z*, x*) E U >"0"2p(i, x). 
>'>0 

Otherwise x* = O. By definition, there exist sequences {ck}~l C 1R+, {(Zk, Xk) }~1 c 

Z X X and {(zk' xk)}~l C Z* X X* such that 

Ck 10, 
gphFr 

(Zk,Xk) ~ (i,15), 

(Zk' xk) ~ (z*, 0), and 

(Zk,Xk) E Nck((Zk,Xk-);gphFr) for all kEN. 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

Since p is locally Lipschitz at (i, x), by Proposition 2.1.6, Pr is also locally Lipschitz 

at (i, x). Moreover, d(15, F(i)) = p(i, x) = r implies that x E Fr(i) and (i, x) E gph Fr. 

In light of Theorem 1.7.4, Fr is locally Lipschitz-like at (i, x) with some rank f 2:: O. 

For each kEN, employing Theorem 1.7.5(a), there exists TJk > 0 independent of xk 

such that-for all (z,x) E gphFr with Ilz - ill::; TJk and Ilx - xii::; TJk, 

that is, 

sup {llz*11 : z* E DckFr(z, x)( -Xk)} ::; fll- xkll + ck(l + f), 

sup {llz*1I : (Z*,Xk) ENck((z,x);gphFr)} ::;fllxkll+ck(l+f). (2.37) 

In view of (2.34), (Zk' Xk) E gph Fr for all kEN, and by passing to a subse

quence of {(Zk' Xk) }~1 together with the corresponding subsequences of {ck}~l and 

{(zk,xk)}~l if necessary, assume that IIZk - ill ::; TJk and IIXk - xii::; TJk for all kEN. 

It follows from (2.36) and (2.37) that for each kEN, 

IIZkll::; sup {lIz*11 : (z*,Xk) E Nck((zk,Xk);gphFr)}::; fllxkll +ck(l +f). (2.38) 

Note that (2.35) and the sequential normal compactness of gph Fr with respect to X 

at (i, x) imply that Ilxkll ~ O. Together with (2.33) and (2.38), one sees that Ilzk I1 ~ O. 

Invoking the lower semicontinuity of 11·11 with respect to the weak* topology of Z* gives 

IIz* 11 ::; lim inf Ilzk 11 = O. 
k~oo 
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Therefore Ilz* 11 = 0 and z* = O. Hence (z*, x*) = (0,0) EO· a~p(z, x) c U )..a~p(z , x). 

In both cases, the reverse inclusion 

N((z,x);gphFr) C U )..a~p(z,x) 
A~O 

is valid. The proof of the corollary is complete. 

A~O 

D 

Corollary 2.3.9. Let D C X be closed, x tJ. D and r = d(x, D). Suppose Dr is also 

closed. The following statements hold: 

(b) If Dr is sequentially normally compact at x, then 

( c) If X is finite dimensional, then 

(d) N(x; Dr) n (Bx*\{O}) c U )..a~d(x, D). 
A>O 

(e) N(x; Dr) = U )..a~d(x, D). 
A~O 
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'Proof. As in most c.orollaries, (a) , (b), (c) and (d) follow from Theorem 2.3.6(a), 

(b), (c) and (d) respectively by taking Z = {z} and F == D. It suffices to prove (e). 

Note that (a) implies a~d(x, D) c N(x; Dr). Due to the fact that N(x; Dr) is a cone, 

)..a~d(x, D) c N(x; Dr) for all ).. ~ 0 and hence 

N(x; Dr) :> U )..a~d(x, D). 
A~O 

Consider the opposite inclusion. Let x* E N(x; Dr)\{O}. Then Ilx*11 > O. Using the 

fact that N(x; Dr) is a cone again; II~:II E N(x; Dr )n(B x* \ {O}). In light of (d), one has 
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x* . 
Ilx*II E U A8?d(x, [2) and thus x* E U A8?d(x, [2). Moreover, {O} = o· 8?d(x, 0) c 

A>O A>O 

U A8?d(x, [2). Consequently, there holds 
>'?O 

N(x; Or) C U A8?d(x, [2). 
A?O 

D 

Remark 2.3.10. Unlike Corollary 2.3.8, Corollary 2.3.9(e) does not impose any sequen-

tial normal compactness assumption. 

The next key theorem contends that singular subdifferentials of the geperalized 

distance function at points belonging to gph F may be described in terms of mixed 

co derivatives introduced in Section 1.7. Since the proof is rather involved, the theorem 

is established using the following lemma, which is also of independent interest. 

Lemma 2.3.11. (cf. [26, Lemma 4.6]) Let F : Z :::t X be a set-valued mapping and 

(z,x) E gphF. Suppose p is upper semicontinuous at (z,x). Then for any E 2:: 0, "y > 0 

and (z*, ~*) E Ne ( (z, x); gph F), 

(z*,x*)E(llx*II+€+"Y)8 e p(z,x). 
IIx* lI+e+'Y 

Proof· Let € 2:: 0, "y > 0 and (z*,x*) E Ne((z,x);gphF). Fix 0 < 'f] < "y. By 

Proposition 1.6.5,there exists 0 < 61 < 1 such that for all (z, x) E gphF with Il z-zll :::; 

61 and Ilx - xii:::; 61, 

(z*, z - z) + (x*, x - x) :::; (€ + 'f])(IIz - zll + Ilx - xiI). (2.39) 

Since (z, x) E gph F, x E F(z) and p(z, x) = d(x, F(z)) = O. In view of the upper 

semi continuity of p at (z, x), there exists 62 > 0 such that for all (z, x) E Z x X with 

6 
p(z, x) = p(z, x) - p(z, x):::; ;. (2.40) 

Take 6 = min {~, 62 } > O. Fix any (z, x) i- (z, x) with IIz- zll :::; 6 and IIx - xll :::; 6. 

If (z, x) E gph F, then x E F(z) and p(z, x) = d(x, F(z)) = O. Thus (2.39) becomes 

(z*, z- z)+ (x*, x - x) :::; (€:J-'f]) (lIz-zll + Ilx-xll )+(lIx* II +€+"Y) (p(z, x) -- p(z, x)). (2.41) 
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Otherwise (z, x) ~ gph F. Note that (11z - zll + Ilx - xll)2 > O. In light of (2.40), it 

possible to choose Xl E F(z) such that 

Ilx - xIII < d(x, F(z)) + (11z - zll + Ilx - xl1)2 

= p(z, X) + (11z - zll + Ilx - xl1)2 
8 8 82 

< .J. + 482 < .J. + -1 - 4 - 4 4 
81 81 81 < -+- =-. 

- 4 4 2 

(2.42) 

Moreover, IlxI -- xii ~ Ilxl - xii + Ilx - xii ~ ~ + 8 ~ ~ + ~ ~ 61. Using estimates 

(2.39) and (2.42), 

(z*, z - z) + (x*, x - x) 

= (z*, z - z) + (x*, Xl - x) + (x*, X - Xl) 

~ (c + 'I})(llz - zll + IlxI - xii) + (x*, X - Xl) 

~ (c + 'I})(llz - zll + Ilx - xii + Ilx - xIII) + Ilx*llllx - XIII 

~ (1Ix*11 + c + 'I}) Ilx - XIII + (c + 'I})(llz - zll + Ilx - xii) 

~ (1I x* 11 + c + ry)(p(z, x) + (11z - zll + Ilx - xll)2) 

+ (c + 'I})(l lz - zll + Ilx - xiI) 

~ (1Ix*11 + c + ry)(llz - zll + Ilx - xl1)2 + (c + 'I})(llz - zll + Ilx - xiI) 

+ (1Ix*11 + c + ry)(p(z,x) - p(z,x)). 

Rearranging inequalities (2.41) and (2.43), there holds 

p(z, x) - p(z, x) - \ Ilx*lI~c+'Y (z*, x*), (z, x) - (z, x)) 

II(z, x) - (z, x)11 

{
-"x*i,"t1+'Y if (z,x) E gphF, 

> IIx.II:.1+Y - (11z - ill + Ilx - xii) if (z,x) <t. gphF. 

Since 0 < 'I} < r is arbitrary, passing to the limit, one has 

(2.43) 

.. p(z,x) - p(z,x) - \lIx*lI~c+'Y(z*,x*), (z,x) - (z,x)) 
hmlnf _ _ > . 

(z,x)-( z,x) 11 (z, x) - (z, x) 11 - Ilx* 11 + c + r 
c 
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By definition, 11 *"~c+'"Y (Z*, X*) E 8 F: p(z, x) and hence 
x IIx*II+F:+"Y 

(Z*,x*)E(llx*II+E+,)8 F: p(z,x). 
IIx*II+F:+"Y 

o 

Theorem 2.3.12. ([26, Theorem 4.7]) Let F : Z ~ X be a closed-graph mapping and 

(z, x) E gph F. Suppose p is upper semicontinuous at (z, x). Then 

aoo p(z, x) = {(z*, 0) E Z* x X* : z* E DMF(z, x)(o)} . 

Proof. Let (z*,x*) E aOOp(z, x). By definition, there exist sequences {Ek}~l C lR+, 

{Ak}~l C lR+, {(Zk,Xk)}~l C Z .x X and {(zk,xk)}~l C Z* X X* such that 

Ek 1 0, Ak 1 0, 

(Zk' Xk) ~ (z, x), 

Ak(zk, xk) ~ (z*, x*), and 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

Suppose there are infinitely many (Zk' Xk) such that p(Zk' Xk) = 0. By passing to this 

subsequence of {(Zk, Xk) }~1 together with the corresponding subsequences of {Ek}~l' 

{Ak}~l and {(zk,xk)}~l if necessary, assume that for all kEN, d(xk,F(zk)) = 

p(Zk' Xk) = 0, which implies Xk E F(Zk) and (Zk, Xk) E gph F, since gph F is closed. 

Note also that Fo == F. For each kEN, using (2.47) and Proposition 2.2.1(a), 

(2.48) 

Applying Proposition 1.6.6 to the first relation of (2.48), one sees that for all kEN, 

(2.49) 

. ~F 
In lIght of (2.44) and (2.45), AkEk 1 ° and (Zb Xk) -----t (z, x). 

Otherwise, by considering the tail of {(Zk' Xk)}~l together with the corresponding 

terms of {Ek}~l' {Ak}~l and {(zk' xk) }~1 if necessary, assume that for all kEN, 

d(xb F(Zk)) = p(Zb Xk) > 0, which implies Xk tt. F(Zk) and (Zk' Xk) tt. gph F. Let rJk = 

p(Zk' Xk) > ° for all kEN. Since (z, x) E gph F, x E F(z) and p(z, x) = d(x, F(z)) = 0. 
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In view of (2.45), 'rlk 1 o. For each kEN, by virtue of (2.47) and Theorem 2.2.11 , there 

exists (Vk' Uk) E e~k (Zk' Xk) such that 

Proposition 1.6.6 to the first relation of (2.50), one sees that for all kEN, 

(2.51 ) 

Note that Ilvk - zl l ~ Ilvk - zkll + Ilzk - zll and Iluk - xii ~ Iluk - xkll + Ilxk - xii. It 

follows from (2.44) and (2.45) that Ak(ck + ryk) 1 0 and (Vk' Uk) ~ (z, x). 

Owing to the second relation of both (2.48) and (2.50) and Ck 1 0, {llxkll}~l is a 

bounded sequence in ffi. . With Ak 1 0, one has IIAkXkl1 = Akllxkll -? 0, hence AkXk -? 0 

and in turn -AkXk -? O. Thus in both cases, z* E DMF(z, x)(O). 

Using the lower semicontinuity of 11 . 11 with respect to the weak* topology of X* 

yields 

Ilx*1I ~ liminf IIAkxkl1 = O. 
k-+oo 

Therefore Ilx* 11 ~ 0 and x* = O. The inclusion 

800 p(z, x) c {(z*, 0) E Z* x X* : z* E DMF(z, x)(O)} 

is established. 
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Consider the reverse inclusion. Let z* E DMF(z, x)(O). By definition, there exist 

sequences {ck}~l C ffi.+, {(Zk,Xk)}~l C Z X X and {(zk,xk)}~l C Z* X X* such 

that 

* w· * * zk ~ Z, . xk -? 0, and 

(2.52) 

(2.53) 

(2.54) 

(2.55) 
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In light of (2.53), for all kEN, (Zk' Xk) E gph F, which implies Xk E F(Zk) and 

thus p(Zk' Xk) = d(xk, F(Zk)) = O. It follows that (Zk, Xk) ~ (z, x). Observing that 

P 2:: 0 and p(z, x) = 0, the upper semicontinuity of p at (z, x) implies the existence of 

8> 0 such that p is upper semicontinuous on Bz x x((z,x),8). Due to (2.53) again, by 

considering the tail of {(Zk' Xk) }k::l together with the corresponding terms of {ck}k::l 

and {(zk,xk)}k::l if necessary, assume that for all kEN, (Zk,Xk) E Bz x x((z,x),8) 

and hence p is upper semicontinuous at (Zk, Xk). For each kEN, employing (2.55) and 

Lemma 2.3.11 yields 

(2.56) 

For all kEN, let Ak = Ilxkll+ck+yIck, fk = Ilxkll+~~+J€k' and (Zk, xk) = }k (zk' xk)· 
It follows from xk --* 0 that Ilxkll --* O. In view of (2.52), (2.54) and (2.56), 

By definition, (z*, 0) E 800 p(z, x). This establishes 

a60 p(z, x) ~ {(z*, 0) E Z* x X* : z* E DMF(z, x)(O)} 

and completes the proof of the equality. o 

At points not belonging to gph F, instead of an equality, there is only an analogous 

inclusion involving enlargements. Moreover, right-sided singular sub differentials are 

used in place of singular subdifferentials. 

Theorem 2.3.13. (cf. [26, Theorem 4.8]) Let F : Z ::::t X be a set-valued mapping, 

(z, x) ~ gph F and r = p(z, x). Suppose gph F is locally closed at (z, x) and gph Fr is 

closed. Then 

ar p(z, x) c {(z*, 0) E Z* x X* : z* E DMFr(z, x)(O)} . 
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Proof. Let (z*,x*) E arp(z,x). By definition, there exist sequences {ck}~l C ~+, 

{Ak}~l C ~+, {(Zk' Xk)}~l C Z X X and {(zk' xkJ}~l C Z* X X* such that 

(Zk' Xk) ~ (z, x), 

Ak(Zk, Xk) ~ (z*, x*), 

p(Zk' Xk) ~ p(z, x) for all kEN, and 

(zk' xk) E 8ck P(Zk, Xk) for all kEN. . 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

(2.61 ) 

In view of the assumptions and using _ Lemma 2.3.7, there exist two sequences 

{rk}~l C ~+ and {( Vk, Uk) }~1 c Z X X which, by passing to appropriate sub

sequences of {Ak}k::l and {(zk' xk) }k::l if necessary, may be assumed to satisfy the 

aforementioned conditions Ak 1 0 and Ak(zk' xk) ~ (z*, x*), as well as the additional 

d · . 1 0 ( ) gph Fr (- -) con ltions rk ,Vk,Uk ~ Z,X , 
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for all kEN. In light of the first relation of (2.62) and Proposition 1.6.6, one sees that 

for each kEN, 

.Note that, due to (2.57), Akrk 1 o. Moreover, the second relation of (2.62) and rk 1 0 

reveal that {llxkll}k::l is a bounded sequence in~. With Ak 1 0, one has IIAkXkl1 = . 

Akllxkll --+ 0, hence AkXk --+ 0 and in turn -AkXk --+ O. Thus z* E DMFr(z, x)(O). 

Using the lower semicontinuity of 11 . 11 with respect to the weak* topology of X* 

yields 

Ilx*11 ~ liminf IIAkXkl1 = o. 
k-+oo 

Therefore Ilx* 11 = 0 and X* = O. This justifies 

a?: p(z, x) c {(z*, 0) E Z* x X* : z* E DMFr(z, x)(O)}. o 
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The rest of this section collects a few upper estimates of limiting and singular 

sub differentials of the generalized distance function via projections. At this point , it is 

necessary to state certain criteria for well-posedness of the best approximation problem. 

Definition 2.3.14. (a) Let F : Z =4 X be a set-valued mapping and (z, x) E Z x 

X. The first criterion for well-posedness of the best approximation 

problem from (z, x) to gph F via the generalized distance function (or 

simply the first criterion for well-posedness via the generalized distance function) 

is that, for any sequences {ck}~l C 1R+ and {( Zk, Xk)}~l C Z X X with Ck 1 0, 

(Zk' Xk) ~ (z, x) and 8ek P(Zk, Xk) i- 0 for all kEN, there exists a sequence 

{Yk}~l C X with Yk E II(xk' F(Zk)) for all kEN which has a convergent 

subsequence. 

(b) Let n c X and x EX. The first criterion for well-posedness of the best 

approximation problem from x to n via the standard distance function 

(or simply the first criterion for well-posedness via the standard distance function) 

is that, for any sequences {ck}~l C 1R+ and {Xk}~l C X with Ck 1 0, Xk ---+ x 

and 8ck d(xk, n) i- 0 for all kEN, there exists a sequence {Yk}~l C X with 

Yk E II(xk , n) for all kEN which has a convergent subsequence. 

Remarks 2.3.15. (i) If X and Z are Asplund spaces and P is lower semi continuous at 

(z, x), the first criterion for well-posedness via the generalized distance function 

can be simplified by taking Ck = 0 for all kEN. 

(ii) If X is an Asplund space and n is locally closed at x, the first criterion for well

posedness via the standard distance function can be simplified by taking C k = 0 

for all kEN. 

Definition 2.3.16. (a) Let F : Z =4 X be a closed-graph mapping, (z, x) E Z x X 

and p be lower semicontinuous at (z, x). The second criterion for well

posedness of the best approximation problem from (z, x) to gph F via 
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the generalized distance function (or simply the second criterion for well

posedness via the generalized distance function) is that, for any sequences 

{(Vk,Xk)}k::l C Z X X and {Uk}k::l C X such that Iluk - xkll- p(Vk, Xk) -+ 0, 

(Vk' Xk) ---t (2, x) and Uk E F( Vk) for all kEN, {Uk}k::l has a c~nvergent subse-

quence. 

(b) Let 0 c X be closed and x EX. The second criterion for well-posedness of 

the best approximation problem from x to 0 via the standard distance 

function (or simply the second criterion for well-posedness via the standard 

distance function) is that, for any sequ~nces {Xk}k::l C X and {Uk}k::l C 0 such 

that Iluk - xii ---t d(x, 0) and Xk ---t x , {Uk}k::l has a convergent subsequence. 

61 

Remarks 2.3.17. (i) The main difference between the two criteria for well-posedness 

via the generalized distance function is that, instead of imposing sequential com

pactness on the projection sequence {Yk}k::l with Yk E IT(Xk, F(Zk)) for all kEN 

in the first criterion, sequential compactness is imposed on the in-graph sequence 

{Uk}k::l with (Vk' Uk) E gph F for all kEN in the second criterion. 

(ii) The main difference between the two criteria for well-posedness via the standard 

distance function is that, instead of imposing sequential compactness on the pro

jection sequence {yic}k::l with Yk E IT(Xk'O) for all kEN in the first criterion, 

sequential compactness is imposed on the in-set sequence {Uk}k::l with Uk E 0 

for all kEN in the second criterion. 

Prior to stating the main theorems, it is beneficial to examine two simple conse

quences of the criteria for well-posedness via the generalized distance function. 

Lemma 2.3.18. Let F : Z =t X be a closed-graph mapping and (2, x) ~ .gphF. 

Suppose {ck}k::l c ffi.+, {( Zk,Xk)}k::l C Z X X and {( zk, xk)}k::l C Z* X X* are 

sequences satisfying ck 1 0, (Zk' Xk) ~ (2, x), and (zk' xk) E 8c k P(Zk, Xk) for all kEN. 

Assume further that the first criterion for well-posedness of the best approximation 
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problem from (z, x) to gph F via the generalized distance function is satisfied. Then 

there exist fj E II(x, F(z)), a sequence HJk}k::l C X and corresponding subsequences 

{Ek}k::l of {ck}k::l' {(Zk,Xk)}k::l of {(Zk,Xk)}k::l' {(zZ,xk)}k::l of {(zZ,xk)}k::l such 

that for all kEN, 

and 

Proof. Since the first criterion for well-posedness of the best approximation problem 

from (z, x) to gph F via the generalized distance function is satisfied, there exists a 

sequence {Yk}k::l C X with Yk E II(Xk' F(Zk)) for all kEN which has a conver

gent subsequence HJk}k::l with ilk ---t fj for some fj E X. Due to the assumptions 

about the sequences, by passing to the corresponding subsequences {Ek}~l of {ck}~l' 

{(Zk' Xk) }~1 of {(Zk' Xk) }~1 and {(zk' xk)}~l of {(zk' xtJ }~1 if necessary, one has 

(2.63) 

(2.64) 

(2.65) 

(2.66) 

For all kEN, it follows from (2.65) that Yk E F(Zk), which implies (Zk, Yk) E gph F, 

and 

(2.67) 

Owing to (2.64), letting k ---t 00 in (2.67) yields Ilx - fjll = p(z, x) d(x, F( z )). 

Moreover, (Zk' Yk) ~ (z, fj). Since {(Zk' Yk) }k::l is a sequence in gph F, which is 

closed, (z,fj) E gphF and hence fj E F(z). Thus fj E II(x,F(z)). 

Since gphF is closed and (z,x) ~ gphF, x ~ F(z) and p(z,x) = d(x,F(z)) > O. In 

view of (2.64), by considering the tail of {(Zk, Xk) }k::l together with the corresponding 

terms of {Ek}k::l' {Yk}k::l and {(zZ,xk)}k::l if necessary, assume that for all kEN, 
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d(xk' F(Zk)) = p(Zk' Xk) > 0, which implies Xk ~ F(Zk) and (Zk' Xk) ~ gph F. In light 

of (2.66) and Theorem 2.2.9, for each kEN, 

The conclusion is ascertained. o 

Lemma 2.3.19. Let F : Z =4 X be a closed-graph mapping and (z, x) ~ gph F. 

Suppose {ck}k::l C ~+, {(Zk,Xk)}k::l C Z X X and {(zk,xk)}k::l C Z* X X* are 

sequences satisfying Ck 1 0, (Zk,Xk) ~ (z,x), and (zk,xtJ E a£kP(Zk,Xk) for all 

kEN. Assume further that P is lower semicontinuous at (z, x) and the second cri

terion for well-posedness of the best approximation problem from (z, x) to gph F via 

the generalized distance function is satisfied. Then there exist U E II(x, F(z)), a se

quence {(Vk,Uk)}k::l C Z X X and corresponding subsequences {€k}k::l of {ck}k::l' 

{(Zk,Xk)}k::l of {(Zk, Xk)}k::l' {(zk,xk)}k::l of {(zk,xk)}k::l such that for all kEN, 

and (~ ~ ') gph F ( ) Vk,Uk -f Z,U, 
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Proof. Since gphF is cl?sed and (z,x) ~ gphF, x ~ F(z) andp(z,x) = d(x,F(z)) > 0. 

In view of the condition (Zk' Xk) ~ (z, x), by considering the tail of {(Zk, Xk)}k::l 

together with the cor~esponding terms of {ck}k::l and {(zk' xk) }k::l if necessary, assume 

that for all kEN, d(xk' F(Zk)) = p(Zk' Xk) > 0, which implies Xk ~ F(Zk) and (Zk' Xk) ~ 

gph F. In light of the assumption that (zk' xk) E a£kP(Zk, Xk) for all kEN and applying 

Theorem 2.2.11, for each kEN, there exists (Vk,Uk) E e~(Zk,Xk) such that 

(2.69) 
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Note that Uk E F(Vk) implies IIXk -ukll 2: d(Xk' F(Vk)) = p(Vk, Xk). Moreover, there 

holds Ilvk - zll ~ IIVk - zkll + IIZk - zll· Thus the conditions Ck 1 0 and (Zk' Xk) ~ (z, x) 

guarantee the convergence relations (Vk' Xk) -t (z, x) and 2ck 1 o. Invoking the lower 

semicontinuity of P at (z, x) yields 

p(z, x) ~ lim inf p( Vk, Xk). 
k-+oo 

(2.70) 

Owing to (2.69) and (2.70), 

o ~ liminf(lIxk - ukll- p(Vk,Xk)) ~ limsup(lIxk - ukll - p(Vk,Xk)) -
k-+oo . k-+oo 

~ limsup(p(Zk' Xk) + Ck - p(Vk,'Xk)) 
k-+oo 

~ lim p(Zk' Xk) + lim Ck - lim inf p( Vk, Xk) 
k-+oo k-+oo k-+oo 

= p(z, x) -liminf p(Vk' Xk) ~ O. 
k-+oo 

It follows that 

llmsup(lIxk - ukll - p(Vk' Xk)) = liminf(lIxk - ukll - p(Vk' Xk)) = 0, 
k-+oo k-+oo 

which implies lim (IIXk - ukll - p(Vk' Xk)) = O. Since the second criterion for well-
k-+oo 

posedness of the best approximation problem from (z, x) to gph F via the general

ized distance function is satisfied, {Uk}k::l has a convergent subsequence {Uk}k::l with 

Uk -t u for some u EX. Due to the assumptions about the sequences, by passing to 

the corresponding subsequences {Ek}k::l of {ck}k::l' {Vk}k::l of {Vk}k::l' {(Zk' Xk)}k::l 

of {(Zk' Xk) }k::l and {(zk' xZJ }k::l of {(zk' xhJ }k::l if necessary, one has for all kEN, 

and 

Observe that {(Vk,Uk)}k::l is a sequence in gphF and (Vk,Uk) ~ (z,u). Since 

gphF is closed, (z,u) E gphF. Note that u E F(z) gives IIx-ull2: d(x,F(z)). On the 
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other hand, employing (2.69) again, one obtains 

As a result, U E II(x,F(z)). This establishes the conclusion. o 

The criteria for well-posedness serve as the principal assumptions in the next two 

theorems and their corollaries. 

Theorem 2.3.20. ([26, Theorem 4.9]) Let F : Z ~ X be a closed-graph mapping and 

(z, x) ~ gph F. Suppose the first criterion for well-posedness of the best approximation 

problem from (z, x) to gph F via the generalized distance function is satisfied. The 

following statements hold: 

(a) 8p(z, x) c u {( z*,x*) E N((z,y);gphF): Ilx*ll:s; 1}. 
yEII(x,F(z)) 

(b) If gph FeZ x X is sequentially normally compact with respect to X at any 

(z, y) E Z x X with y E II(x, F(z)), then 

8p(z, x) c u {(z*,x*) E N((z,y);gphF) : 0 < Ilx*11 :s; 1}. 
YEII(x,F(z)) 

( c) If X is finite dimensional, then 

8p(z,x) c· U {(Z* ,x*) E N((z,y);gphF) : Ilx*11 = 1}. 
yEII(x,F(z)) 

(d) {)OO p(z, x) c u {( z*, O) E Z* x X*: z* E DMF(z,y)(O)}. 
yEII(x,F(z)) 

Proof. (a) Let (z*, x*) E 8p(z, x). By definition, there exist sequences {ck}k::l c 

IR+, {(Zk' Xk) }k::l c Z X X and {( zk' xk) }k::l c Z* X X* such that 

Ck 10, 

(Zk' Xk) ~ (z, x), 

(Zk' ;k) ~ (z*, x*), and 

(2.71) 

(2.72) 

(2.73) 

(2.74) 
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In view of the assumptions and employing Lemma 2.3.18, there exist y E 

II(x, F(z)) and a sequence {Yk}k::l C X which, by passing to appropriate subse

quences of {ck}k::l' {(Zk' Xk)}k::l and {(zk' xi;) }k::l if necessary, may be assumed 

to satisfy the aforementioned conditions (2.71), (2.72), (2.73) and (2.74), as well 

as the additional conditions (Zk' Yk) ~ (z, y), 

for all kEN. By definition, (z*,x*) E N((z,y);gphF), which is well-defined 

since y E F(z) and hence (2, y) E gph F. 

Using the lower semicontinuity of 11 . 11 with respect to the weak* topology of 

X* in connection with the second relation of (2.75) yields 

°llx* 11 ::; lim inf IlxZ: 11 ::; liill inf(1 + ck) = 1. 
k-+oo k-+oo 

This ascertains 

8p(z, x) c U {(z*,x*) E N((z,y);gphF): Ilx*ll::; 1}. 
yEII(x,F(z)) 

(b) Let (z*,x*) E 8p(z, x). By (a), (z*,x*) E N((z,y);gphF) for some y E II(x,F(z)) 

and Ilx* 11 ::; 1. It suffices to show that Ilx* 11 > O. Suppose Ilx* 11 = O. Then x* = 0 

and (2.73) implies xZ: ~ O. Since gph F is sequentially normally compact with 

respect to X at (z, y), one has IIxZ:1I ~ O. On the other hand, owing to the second 

relation of (2.75) and Ck 1 0, IIxZ:1I ~ 1, which is a contradiction. This shows that 

Ilx* 11 > 0 and completes the proof. 

(c) Let (z*,x*) E 8p(z,x). By (a), (z*,x*) E U N((z, y); gphF). It suffices 
yEII(x,F(z)) 

to show that Ilx* 11 = 1. Since X is finite dimensional, 11 . 11 is continuous with 

respect to the weak* topology of X*. Letting k ~ 00 in the second relation of 

(2.75) gives IIx* 11 = lim IIxZ: 11 = 1. The result follows. 
k-+oo 
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(d) Let (z*,x*) E aOOp(z,x) . By definition, there exist sequences {ck}k::l c JR+, 

{Ak}k::l c JR+, {(Zk' Xk)}k::l C Z X X and {(zk' xk)}k::l c Z* X X* such that 

(Zk' Xk) ~ (z, x), 

Ak(Zk, Xk) ~ (z*, x*), and 

(2.76) 

(2.77) 

(2.78) 

(2.79) 

As in the proof of (a), in view of the assumptions and employing Lemma 

2.3.18, there exist y E II(x, F(z)) and ~ sequence {Yk}k::l C X which, by passing 

to appropriate subsequences of {ck}k::l' {Ak}k::l' {(Zk' Xk)}k=l and {(zk' xk)}k::l 

if necessary, may be assumed to satisfy the aforementioned conditions (2.76), 

(2.77), (2.78) and (2.79), as well as the additional conditions (Zk, Yk) ~ (z, y), 

for all kEN. Using the first relation of (2.80) and Proposition 1.6.6, one sees 

that for all kEN, 

(2.81) 
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Note that, due to (2.76), Akck 1 o. Moreover, the second relation of (2.80) 

and Ck 1 0 reveal that {llxk 11 }k=l is a bounded sequence in JR. With Ak 1 0, 

one has IIAkxk11 '= Akllxkll --+ 0, hence AkXk --+ 0 and in turn -AkXk --+ O. Thus 

z* E D'MF(z, y)(O) , which is well-defined since y E F(z) and hence (z, y) E gph F. 

Owing to the lower semicontinuity of 11 ·11 with respect to the weak* topology 

of X*, 

Ilx* 11 ~ lim inf 11 AkXk 11 = o. 
k-+oo 

Therefore Ilx* 11 = 0 and x* = O. This substantiates 

aOOp(z,x)c U {(Z*,O)EZ*XX*:z*ED'MF(z,y)(O)}. 0 
yEIT(x,F(z)) 
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Theorem 2.3.21. (cf. [26, Remark 4.12]) Let F : Z ~ X be a closed-graph mapping 

and (z, x) ~ gph F. Suppose p is lower semicontinuous at (z, x) and the second crite

rion for well-posedness of the best approximation problem from (z, x) to gph F via the 

generalized distance function is satisfied. Then the conclusions of Theorem 2.3.20 hold. 

Proof. (a) Let (z*,x*) E op(z, x). By definition, there exist sequences {ck}~l C 

1R+, {(Zk' Xk)}~l C Z X X and {(zk' xk)}~l C Z* X X* such that 

* *) w* (* *) (zk' xk ---+ Z ,x ,and 

(zk' xtJ E 8ck P(Zk, Xk) for all kEN. 

(2.82) 

(2.83) 

(2.84) 

(2.85 ) 

In view of the assumptions and employing Lemma 2.3.19, there exist u E 

II(x, F(z)) and a sequence {( Vk, Uk) }~1 c Z X X which, by passing to appropriate 

subsequences of {ck}k::l' {(Zk' Xk) }~1 and {(zk' xk) }~1 if necessary, may be 

assumed to satisfy the aforementioned conditions (2.82), (2.83), (2.84) and (2.85), 

as well as the additional conditions (Vk, Uk) ~ (z, u), 

for all kEN. Note that 2ck 1 0 owing to (2.82). By definition, (z*, x*) E 

N((z,u);gphF), which is well-defined since u E F(z) and hence (z,u) E gphF. 

Using the lower semicontinuity of 11 . 11 with respect to the weak* topology of 

X* in connection with the second relation of (2.86) yields 

IIx* 11 ~ lim inf IIxk 11 ~ lim inf(l + ck) = l. 
k--+oo k--+oo 

This ascertains 

8p(z, x) c U {(z*,x*) E N((z,u);gph~): IIx*1I ~ I}. 
uEII(x,F(z)) 
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(b) Let (z*,x*) E 8p(z, x) . By (a), (z*,x*) E N((z,u);gphF) for some u E l1(x ,F(z)) 

and Ilx* 11 ::; 1. It suffices to show that IIx* 11 > O. Suppose IIx* 11 = O. Then x* = 0 

and (2.84) implies xic ~ O. Since gph F is sequentially normally compact with 

respect to X at (z, u), one has IIxicll ~ O. On the other hand, owipg to the second 

relation of (2.86) and ck 1 0, IIxicll ~ 1, which is a contradiction. This shows that 

IIx* 11 > 0 and completes the proof. 

(c) Let (z*,x*) E 8p(z,x). By (a), (z*,x*) E u N( (z, u); gph F). It suffices 
uEII(x,F(z)) 

to show that IIx* 11 = 1. Since X is finite dimensional, 11 . 11 is continuous with 

respect to the weak* topology of X*. -Letting k ~ 00 in the second relation of 

(2.86) gives II x* 11 = Hm IIxic 11 = 1. The result follows. 
k-+oo 

(d) Let (z*,x*) E 8°Op(z, x). By definition, there exist sequences {ck}~l C 1R+, 

{Ak}~l C 1R+, {(Zk' Xk)}~l C Z X X and {(zk' xic)}~l C Z* X X* such that 

(2.87) 

(2.88) 

(2.89) 

(2.90) 

As in the proof of (a), in view of the assumptions and employing Lemma 2.3.19, 

there exist U E II(x, F(z)) and a sequence {( Vk, Uk) }~1 c Z X X which, by passing 

to appropriate sub sequences of {ck}~l' {Ak}~l' {(Zk' Xk)}~l and {(zk' xic)}~l 

if necessary, may be assumed to satisfy the aforementioned conditions (2.87), 

(2.88), (2.89) and (2.90), as well as the additional conditions (Vk' Uk) ~ (z, u), 

for all kEN. Using the first relation of (2.91) and Proposition 1.6.6, one sees 

that for all kEN, 

(2.92) 
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Note that, due to (2.87), 2Akck 1 o. Moreover, the second relation of (2.91) 

and Ck 1 0 reveal that {llxk 11 }k::l is a bounded sequence in~. With Ak 1 0, 

one has IIAkXkl1 = Akllxkll -t 0, hence AkXk -t 0 and in turn - AkXk -t O. Thus 

z* E D'MF(z, u)(O), which is well-defined since u E F(z) and hence (z, u) E gphF. 

Owing to the lower semicontinuity of 11 . 11 with respect to the weak* topology 

of X*, 

Ilx* 11 ::; lim inf IIAkXk 11 = O. 
k-too 

Therefore Ilx* 11 = 0 and x* = O. This substantiates 

u {(z*,5) E Z* x X* : z* E D'MF(z, u)(O)}. o 
UEII(x,F(z)) 

Corollary 2.3.22. Let n c X be closed and x ~ n. Suppose the first or the second 

criterion for well-posedness of the best approximation problem from x to n via the 

standard distance function is satisfied. The following statements hold: 

(a) 8d(x, n) c U N(y; n) n Bx*. 
yEII(x,O) 

(b) If n is sequentially normally compact at any y E II(x, n), then 

8d(x,n) c U N(y;n)n(Bx*\{O}). 
yEII(x,O) 

( c) If X is finite dimensional, then 

8d(x, n) c U N(y; n) n Sx*· 
yEII(x,O) 

Theorem 2.3.20 and Theorem 2.3.21 demonstrate perceptibly the significance of the 

criteria for well-posedness. However, it is in general not easy to check whether these 

criteria are satisfied. The concluding result of this section exhibits a simple condition 

which guarantees the fulfillment of the first criterion for well-posedness. 

Definition 2.3.23. A normed space X is said to have the Kadets-Klee property or 

the Radon-Riesz property or property (H) if for any sequence {Xk}k::l C X and 

any x E X such that Xk ~ x and Ilxkll -t Ilxll, one has Xk -t x. 
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This is equivalent to saying that X has the Kadets-Klee property if norm convergence 

and weak convergence agree on S x. It is well-known that every locally uniformly convex 

space, and in particular every reflexive space, admits an equivalent Kadets-Klee norm. 

The first criterion for well-posedness is fulfilled under mild assumptions in a space 

possessing the Kadets-Klee property. 

Theorem 2.3.24. (cf. [26, Corollary 4.10]) Let X be a reflexive Banach space having 

the Kadets~Klee property and (z, x) E Z x X. Suppose F : Z =t X is a closed-graph 

mapping with respect to the normx weak topology of Z x X. Then the first criterion for 

well-posedness of the best approximation problem from (z, x) to gph F via the generalized 

distance function is satisfied. 
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Proof· Let {ck}k::l C 1R+ and {(Zk' Xk) }k::l C Z X X be sequences such that Ck 1 0, 

(Zk' Xk) ~ (z, x) and 8ck P(Zk, Xk) =1= 0 for all kEN. Since X is reflexive and F is 

closed-graph with respect to the norm x weak topology of Z x X, for all kEN, F(Zk) 

is weakly closed and hence II(xk, F(Zk)) =1= 0 in view of Proposition 1.4.5. For each 

kEN, let Yk E II(xk' F(Zk)). Then Yk E F(Zk), which implies (Zk' Yk) E gph F, and 

(2.93) 

It follows from the assumptions p(Zk, Xk) ---t p(z, x) and Xk ---t x that {Yk - Xk}k::l 

arid {Xk}k::l are both -bounded sequences in X and in turn {Yk}k=l is also a bounded 

sequence in X. Invoking Theorem 1.2.4, {Yk}k::l has a weakly convergent subsequence 

{Ykl}bl such that Ykl ~ Y for some y E X. It suffices to prove that Ykl ---t y. 

By passing to the corresponding sub sequences {ckl }bl of {ck}k=l and {(Zkl' Xkl) }bl 

of {(Zk,Xk)}k::l if necessary; one sees that Ckl 10, (Zkl'Xkl) ~ (z,x), 8CklP(Zkl'Xkl) =1= 0 

for alll E N. Note that {(ZkI'Ykl)}~l is a sequence in gphF, which is closed with 

respect to the norm x weak topology of Z x X, and (Zkl' Ykl) ---t (z, y) with respect to 

the same topology. Consequently, (z, y) E gph F and hence y E F(z). Thus 

IIx - yll ~ d(x,F(z)) = p(z,x). (2.94) 
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On the other hand, since Xkl - Ykl ~ X - iJ, using the lower semicontinuity of 11·11 with 

respect to the weak topology of X in connection with (2.93) reveals that 

Ilx - iJlI ::; liminf Ilxkl - Yklll = liminf P(Zkl' XkJ = p(z, x). (2.95) 
l----+oo l----+oo 

Inequalities (2.94) and (2.95) together yield Ilx - iJll = p(z, x). 

Check that, by virtue of (2.93) again, 

lim Ilxkl - Yklll = lim p(Zkl' XkJ = p(z, x) = Ilx - iJll· 
l----+oo l----+oo 

In light of the Kadets-Klee property of X, one has Xkl - Ykl ---+ X - iJ. As a result, 

lim Ykl = lim (Xkl - (Xkl - YkJ) = lim Xkl - lim (Xkl - YkJ = x - (x - iJ) = iJ· 
l----+oo l----+oo l----+oo l----+oo 

By definition, the first criterion for well-posedness of the best approxim.ation problem 

from (z, x) to gph F via the generalized distance function is fulfilled. o 

Remark 2.3.25. The conditions Ck 1 0 and 8ck P(Zk, Xk) =1= 0 for all kEN are indeed 

not needed in the above proof. 

Corollary 2.3.26. Let X be a reflexive Banach space having the Kadets-Klee property 

and x EX. Suppose n c X is weakly closed. Then the first criterion for well-posedness 

of the best approximation problem from x to n via the standard distance function is 

satisfied. 
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Chapter 3 

The Generalized Distance 

Function - Estimates via 

Intermediate Points 

This chapter continues to survey various sub differentials of the generalized distance 

funct ion. Having established some basic estimates, further results can be derived via 

intermediate poi'l}ts situated on line segments with endpoints being given points not 

belonging to gph F and their projections. The new approach adopted in this chapter, 

together with other mild assumptions, leads to more refined estimates. Many of these 

may be regarded as improved versions of the estimates via projections communicated 

in .the previous chapter, since projections are merely special intermediate points. 

The majority of the theorems presented in this chapter were again first ascertained 

by Mordukhovich and Nam in [26] and [27]. As in the previous chapter, all set-valued 

mappings F : Z =4 X in this chapter are presumed t o enjoy the serviceable 

property dom F = Z =1= 0 and all subsets n c X are assumed t o be nonempty . 

Moreover, most corollaries are results about the standard distance function which follow 

immediately from their counterpar.ts about the generalized distance function by taking 

Z = {z} and F == n. The proofs of such corollaries are omitted. 
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3.1 Frechet-Like and Limiting Subdifferentials of the Gen

eralized Distance Function via Intermediate Points 

This section collects a number of estimates of Fn§Chet-like and limiting sub differentials 

of the generalized distance function via intermediate points. 

The discussion commences with an elementary but essential lemma about interme

diate points. 

Lemma 3.1.1. (cf. [27, Lemma 3.1]) Let F : Z :::t X be a set-valued mapping and 

(z, x) E Z x X with IT(x, F(z)) i- 0. For any t E [0,1] and y E IT(x, F(z)), the following 

statements hold: 

(a) d(ty + (1- t)x,F(z)) = (1- t)lIy - xii = II(ty + (1- t)x) - Yll. 

(b) y E IT(ty + (1 - t)x, F(z)). 

Proof. Let t E [0,1] and y E IT(x, F(z)). By definition, Ilx - yll = d(x, F(z)) and 

y E F (z). It follows that 

d(ty + (1 - t)x, F(z)) = d(t(y - x) + x, F(z)) ~ d(x, F(z)) - tlly - xii 

= Ilx - yll - tlly - xii = (1 - t)11Y - xii· 

On the other hand, since y E F (z), 

d(ty + (1 - t)x, F(z)) ~ II (ty + (1 - t)x) - yll = (1 - t) Ily - xii. 

Combining the inequalities, d(ty+ (1- t)x, F(z)) = (l-t) Ily-xll = II (ty+ (l-t)x) -YII. 

Therefore y E IT(ty +- (1 - t)x, F(z)). The assertions are justified. D 

Corollary 3.1.2. Let n c X and x E X with IT(x, n) i- 0. For any t E [0,1] and 

y E IT (x, n), the following statements hold: 

(a) d (ty + (1 - t) x, n) = (1 - t) II y - xii = II (ty + (1 - t) x) - y 11. 

(b) y E IT(ty + (1 - t)x, n) . . 
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With intermediate points, it is possible to arrive at estimates of c-subdifferentials 

of the generalized distance function without using sets of c-normals. 

Proposition 3.1.3. (cf. [27, Proposition 3.2]) Let F : Z ~ X be a closed-graph 

mapping and (z,x) tJ. gphF with II(x,F(z)) #0. Then for any c 2:: '0, t E [0,1] and 

fj E II(x, F(z)), 

Bc P ( z, x) c {( z* , x *) E Bc P ( Z, tfj + (1 - t) x) : 1 - c :::; II x * II :::; 1 + c}. 

Proof. Let c 2:: 0, t E [0,1] and fj E II(x, F(z)). Then Ilx - fjll = d(x, F(z)) = p(z, x). 

Let (z*, x*) E Bcp(z, x) and rJ > 0. Employing Proposition 1.5.5, there exists fJ > ° 
such that for all (z, x) E Z x X with Ilz - zll :::; fJ and Ilx - xii:::; fJ, 

(z*, z - z) + (x*, x - x) :::; p(z, x) - p(z, x) + (c + rJ)(llz - zll + Ilx - xiI). (3.1) 

Define v = tfj+(l-t)x. Using Lemma3.1.1(a), p(z,v) = d(v,F(z)) = (l-t)llfj-xll. 

Fix any (z,x) E Z x X with Ilz-zll :::; fJ and Ilx-vll :::; fJ. Note that II(x-v+x) -xii = 

Ilx - vii:::; fJ and Ilv - xii = tllx - fjll· It follows from (3.1) that 

(z* ,·z - z) + (x*, x - v) 

= (z*, z - z) + (x*, (x - V + x) - x) 

:::; p(z,x - V + x) - p(z,x) + (c + rJ)(llz - zll + II(x - v + x) - xiI) 

:::; p(z, x) + Ilv - xii - Ilx - fjll + (c + rJ)(llz - zll + Ilx - vii) 

= p(z, x) + tllx - fjll - Ilx - fjll + (c + rJ)(llz - zll + Ilx - vii) 

= p(z, x) - (1 - t)lIx - fjll + (c + rJ)(llz - zll + Ilx - vii) 

= p(z, x) - p(z, v) + (c + rJ)(llz - zll + Ilx - vii). 
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In view of Proposition 1.5.5, (z*, x*) E Bcp(z, v). On the other hand, since F is ~losed

graph and (z, x) tJ. gph F, x tJ. F(z) and p(z, x) = d(x, F(z)) > 0. Applying Proposition 

2.2.1(b), one has 1- c :::; Ilx*11 :::; f+ c. The assertion holds. 0 
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Corollary 3.1.4. Let 0 c X be closed and x 1= 0 with II(x, 0) #- 0. Then for any 

c ~ 0, t E [0,1] and fj E II(x, 0), 

8c;d(x,O) C iid(tfj + (1 - t)x, 0) n [1 - c, 1 + c]Sx*. 

Likewise, estimates of limiting subdifferentials of the generalized distance function 

not involving limiting normal cones can be derived via intermediate points. However, 

for limiting sub differentials , it is necessary to further ensure that a criterion for well-

posedness of the best approximation problem is fulfilled. 

Theorem 3.1.5. (cf. [27, Theorem 3.7]) Let F : Z ~ X be a closed-graph mapping 

and (z, x) 1= gph F with II(x, F(z)) #- 0. Suppose the first criterion for well-posedness 

of the best approximation problem from (z, x) to gph F via the gener~lized distance 

function is satisfied. Then" for any t E [0, 1], 

op(z, x) c u {(z*, x*) E op(z, tfj + (1 - t)x) : Ilx* 11 :s; I}. 
yEII(x,F(z)) 

Proof. Let t E [0,1] and (z*, x*) E op(z, x). By definition, there exist sequences 

{ck}~l c 1R+, {(Zk,Xk)}~l c Z X X and {(zZ,xt)}~l C Z* X X* such that 

(Zk, Xk) ~ (z, x), 

( * *) w* (* *) and zk,xk ~ Z ,x , 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

In view of the assumptions and employing Lemma 2.3.18, there exist fj E II(x, F(z)) 

and a sequence {Yk}~l C X which, by passing to appropriate sub sequences of {ck}~l' 

{(Zk' Xk) }~1 and {(zZ, xi:) }~1 if necessary, may be assumed to satisfy the aforemen

tioned conditions (3.2), (3.3), (3.4) and (3.5), as well as the additional conditions 

(Zk' Yk) ~ (z, fj), (Zk' Xk) 1= gph F and Yk E II(Xk' F(Zk)) Jor all kEN. Note 

that Ilfj - xii = d(x, F(z)) = p.(z, x) and IIYk - xkll = d(xk' F(Zk)) = p(Zk, Xk) for all 
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kEN. In light of (3.5) and Proposition 3.1.3, for each kEN, one has 

By virtue of Lemma 3.1.1(a), one sees that 

p(Zk' tYk + (1 - t)Xk) = d(tYk + (1 - t)Xk' F(Zk)) 

= (1 - t)IIYk - xkll = (1 - t)p(Zk' Xk) and 

p(z, tfj + (1 - t)x) = d(tfj + (1 - t)x, F(z)) 

= (1 - t) Ilfj - xii = (1 - t)p(z, x). 

Then the convergence relations (Zk' Xk) ~ (z, x) and Yk ---+ fj together imply that 

(Zk' tYk + (1 - t)Xk) ~ (z, tfj + (1 - t)x). By definition, (z*, x*) E 8p(z, tfj + (1 - t)x). 

Using the lower semicontinuity of 11 . 11 with respect to the weak* topology of X* in 

connection with the second relation of (3.6) yields 

Ilx* 11 ~ lim inf Ilxk 11 ~ lim inf(l + ck) = 1. 
k-oo k-oo 

This establishes 
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8p(z, x) c u {(z*, x*) E 8p(z, tfj + (1 - t)x) : Ilx* 11 ~ I}. o 
YEIT(x,F(z) ) 

Corollary 3.1.6. Let 0 c X be closed and x ~ 0 with II(x,O) =1= 0. Suppose the 

fir~t criterion for well-posedness of the best approximation problem from x to 0 via the 

standard distance function is satisfied. Then for any t E [0,1]' 

8d(x, O) c U 8d(tfj + (1 - t)x, 0) n B x *. 

yEIT(x,O) 

In addition to intermediate points, the next couple of theorems also utilize enlarge

ments. The proofs of these theorems are largely similar and rely on a crucial argument 

which essentially forms the skeletons of the proofs. In order to avoid reproducing the 

tedious reasoning, it is desirable to establish this critical part independently. 
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Proposition 3.1.7. Let F : Z ~ X be a closed-graph mapping, (z, x) ~ gph F with 

fj E II(x ,F(z)) and t E (0,1]. Suppose {ck}~l C ~+, {Yk}~l C X, {(Zk,Xk)}~l C 

Z X X and {(zk , xtJ}~l C Z* X X* are sequences satisfying Ck 10, (Zk,Xk) ~ (z,x), 

(Zk' Yk) ~ (z, fj), Yk E II(xk' F(Zk)) and (zk' xtJ E 8ck P(Zk, Xk) for all kEN. 

Assume further that gphFty is closed, where tfj = p(z, tfj + (1 - t)x). Then there exist 

"a sequence {Vk}~l C X and corresponding subsequences {Ek}~l of {ck}~l' H;k}~l 

of {Yk}~l' {(Zk,Xk)}~l of {(Zk,Xk)}~l' {(zk,xk)}~l of {(zk,xk)}~l such that for 

all kEN, 

(ZZ, xk) E 8ek P(Zk, Xk) n 8ek Pty (Zk' Vk) n Nek ((Zk' Vk); gph Fty); 

and - 1 ° (- -) p (- -) (- -) gph F ( - -) Ck , Zk,Xk ~ Z,X, Zk,Yk -+ Z,Y , 

gphFty 
(Zk' Vk) ) (z, tfj + (1 - t)x). 

Proof. Since fj E II(x, F(z)), Ilfj - xii = d(x, F(z)) = p(z, x). Let v = tfj + (1 - t)x. 

Using Lemma 3.1.1(a), 

tfj = p(z, v) = d(v, F(z)) = (1 - t)llfj - xii = (1 - t)p(z, x). 

Since gph F is closed and (z, x) ~ gph F, x ~ F(z) and p(z, x) = d(x, F(z)) > 0. 

Then t E (0,1] guarantees that d(x, F(z)) = p(z, x) > (1 - t)p(z, x) = tfj. Thus 

x ~ Fty(z) and (z,x) ~ gphFty ' In view of (Zk,Xk) ~ (z,x), by considering the 

tail of {(Zk, Xk) }k::l together with the corresponding terms of {ck}k::l' {Yk}k::l and 

{(zk,xk)}k::l if necessary, assume that for all kEN, d(Xk,F(Zk)) = p(Zk,Xk) > tfj, 

which implies Xk ~ Fiy(Zk), hence (Zk,Xk) ~ gphFty , and in turn 

by virtue of Proposition 2.1.5. 

For each kEN, define 'Pk : [0, 1] ~ 1R by 
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which is obviously continuous. Moreover, Yk E F(Zk) since Yk E II(xk' F(Zk)). Check 

that 

<Pk(l) = d(Yk' F(Zk)) - ty = -ty ::; 0, and 

<Pk(O) = d(Xk' F(Zk)) - ty = p(Zk' Xk) - ty > 0. 

Then the intermediate value theorem guarantees the existence of Ak E (0,1] such that 

that is, 

d(AkYk + (1 - Ak)Xk, F(Zk)) - ty = <Pk(Ak") = 0, 

d(AkYk + (1 - Ak)Xk, F(Zk)) = ty = (1 - t)p(z, x). 

Since {Ak}k::l is a bounded sequence in lR, due to Bolzano-Weierstrass theorem, 

it has a convergent subsequence {)..k}k::l such that )..k --+ 5. for some 5. E [0,1]. By 

passing to the corresponding subsequences {€k}k::l of {ck}k::l' {Yk}k::l of {Yk}k=l' 

{(Zk, Xk)}k::l of {(Zk' Xk)}k::l and {(zk' xtJ}k::l of {(zk' xtJ}k::l if necessary, one has 

for all kEN, 
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(3.8) 

~Let Vk = )..kYk + (1 - )..k)Xk for all kEN. Since Yk E II(Xk, F(Zk)), IIYk - xkll = 

d(Xk' F(Zk)) = p(Zk' Xk)' Owing to Lemma 3.1.1(a) and (Zk' Xk) ~ (z, x), one obtains 

for all kEN, 

Comparing (3.8) and (3.9), one has (1- ~)p(z, x) = (1- t)p(z, x), and in parti~ular, 

t = ~. Thus Vk = )..kYk+(l-)..k)Xk:---+ ~y+(l-~)x = tY+(l - t)x = v. In light of (3.8), 

- D (-) d (- -) h D c gph Ft -Vk E .ctfi Zk an Zk,Vk E gp .ctfi lor all kEN. It follows that (Zk,Vk) 11) (z,v). 
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Due to (3.7), (3 .8) and (3.9), one sees that 

d(Xk' Fty(Zk)) = Pty(Zk, Xk) = p(Zk' Xk) - tfi = p(Zk' Xk) - d(Vk' F(Zk)) 

= IIYk - xkll - (1 - ~k)IIYk - xkll = ~klljh - xkll 

= Ilxk - (~kYk + (1 - ~k)Xk)11 = Ilxk - vk ll · 

Therefore Vk E I1(Xk' Fty(Zk)) for all kEN. 

Let, > O. For each kEN, since (zk' xk) E 8lkP(Zk, Xk), an application of Propo

sition 1.5.5 shows that there exists <Sf > 0 such that for all (z, x) E Z x X with 

Ilz - zkll ~ <Sf and IIx - xkll ~ <Sf, 

Fix any (z, x) E ZxX with IIZ-Zkll ~ <Sf and IIX-Xkll ~ <Sf. If (z, x) E gph Fty , then 

x E Fty(z), which implies Pt~(z,x) = d(x, Fty(z)) = '0 and p(z,x) = d(x,F(z)) ~ tfi = 

Pty (z, x) + tfi. If (z, x) ~ gph Fty , then p(z, x) = Pty (z, x) + tfi by virtue of Proposition 

2.1.5. In bo~h cases, there holds 

P ( z, x) ~ Pty ( z, x) + tfi · 

It follows from (3.7), (3.10) and (3.11) that 

~ (Pty(z, x) + tfi) - (Pty(Zk, Xk) + tfi) + (€k + ,)(lIz - zkll + IIx - xk ll ) 

~ Pty(z, x) - Pty(Zk, Xk) + (€k + ,)(IIz - zkll + IIx - xkll)· 

(3.11) 

Invoking Proposition 1.5.5, (zk' xk) E f%kPty (Zk' Xk) for all kEN. Since gph Fty is 

closed, applying Proposition 3.1.3, one obtains for each kEN, 

In view of the first relation of (3.12) and Proposition 1.5.5, there exists <S~ > 0 such 

that for all (z,x) E Z x X with IIz - zkll ~ <S~ and IIx - vkll ~ <S~, 

(Z'k, z - zkl + (xk' x - vkl ~ Pt~(i, x) - Pty (Zk, Vk) + (€k +,)( llz - Zk 11 + Ilx - vkll)· (3.13) 
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Fix any (z,x) E gphFty with Ilz - zkll :s; 8~ and Ilx - vkll :s; 8~. Then x E Fty(z) 

and Pty(z, x) = d(x, Fty(z)) = ° :s; Pty(Zk, Xk), reducing (3.13) to 

Using Proposition 1.6.5, one obtains for all kEN, (zk,xtJ E N€k((zk,vk);gphFty ), 

which is well-defined since (Zk' Vk) E gph Fty. This completes the proof of the proposi-

tion. D 

Utilizing intermediate points, the next theorem enhances the results of Theorem 

2.3.20(a) and Theorem 2.3.20(d). 
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Theorem 3.1.8. (cf. [27, Theorem 3.8 & Theorem 5.3]) Let F : Z =4 X be a closed

graph mapping and (z,x) ~ gphF. For any iJ E l1(x,F(z)) and t E (0,1]' assume 

that gphFty is closed, where ty = p(z,tiJ + (1 - t)x). Suppose further that the first 

criterion for well-posedness of the best approximation problem from (z, x) to gph F via 

the generalized distance function is satisfied. Then for any t E (0,1]' the following 

statements hold: 

(a) 8p(z,x) c U {( z*,x*) E N((z,tiJ+ (l-t)x);gphFty): Ilx*ll:S; 1}. 
yEII(x,F(z)) 

(b) aOOp(z,x)C U · {(z* ,0)EZ*XX*:z*EDMFty(z,tiJ+(1-t)x)(0)}. 
yEII(x,F(z)) 

Pr!}of. (a) Let t E (0,1] and (z*,x*) E 8p(z,x). By definition, there exist sequences 

{ck}T~~l C ffi.+, {( Zk' Xk) }k::l c Z X X and {(zk' xtJ }k::l c Z* X X* such that 

(Zk' xtJ ~ (z*, x*), and 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

In view of the assumptions and using Lemma 2.3.18, there exist iJ E l1(x, F(z)) 

and a sequence {Yk}k::l C X which, by passing to appropriate subsequences of 
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{Ck}~l' {(Zk' Xk) }~l and {(zk' xk) }~l if necessary, may be assumed to satisfy 

the aforementioned conditions (3.14), (3.15), (3.16) and (3.17), as well as the 

additional conditions (Zk' Yk) ~ (z, y) and Yk E II(xk' F(Zk)) for all k E 

N. Further employing Proposition 3.1. 7, there exists a sequence {v k} ~ 1 C X 

which, by passing to appropriate subsequences of {ck}~l' {Yk}~l' {(Zk, Xk)}~l 

and {(zk' xk) }~l again if necessary, may be assumed to satisfy all preceding 
gphFt-

conditions, as well as the new conditions (Zk' Vk) Y) (z, ty + (1 - t)x), 

for all kEN. Consequently, (z*, x*) E N((z, ty + (1 - t)x); gph Fty ). 

Invoking the lower semicontinuity of 11 . 11 with respect to the weak* topology 

of X* in connection with the second relation of (3.18) yields 

Ilx* 11 :::; lim inf Ilxk 11 :::; lim inf(1 + ck) = 1. 
k--+oo k--+oo 

This proves 

8p(z, x) c u {(z*, x*) E N((z, ty + (1 - t)x); gphFty ) : Ilx*11 :::; 1}. 
17EI1(x,F(z)) 

(b) Let t E (0,1]' and (z*, x*) E 800 p(z, x) . By definition, there exist sequences 

{ck}k::l c IR+, {Ak}k::l c IR+, {(Zk,Xk)}k::l c ZxX and {(zk·,xk)}k::l C Z*xX* 

such that 

(Zk' Xk) ~ (z, x), 

Ak(zk, Xk) ~ (z*, x*), and 

(3.19) 

(3.20) 

(3.21 ) 

(3.22) 

As in the proof of (a), in view of the assumptions and using Lemma 2.3.18, 

there exist y E II(x, F(z)) and a sequence {Yk}k::l C X .which, by passing to 

appropriate subsequences' of {ck}~l' {Ak}k::l' {(Zk,Xk)}k::l and {(zk,xk)}~l 
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if necessary, may be assumed to satisfy the aforementioned conditions (3.19), 

(3.20), (3.21) and (3.22), as well as the additional conditions (Zk' Yk) ~ (z, y) 

and Yk E II(xk' F(Zk)) for all kEN. Further employing Proposition 3.1.7, there 

exists a sequence {Vk}~l C X which, by passing to appropriate subsequences 

of {ck}~l' {Ak}~l' {Yk}~l' {(Zk' Xk)}~l and {(zk' xk)}~l again if necessary, 

may be assumed to satisfy all preceding conditions, as well as the new conditions 
gphFtfi 

(Zk' Vk) ) (z, ty + (1 - t)x), 

for all kEN. Using the first relation of (3.23) and Proposition 1.6.6, one sees 

that for all kEN, 

(3.24) 

Note that, due to (3.19), Akck 1 o. Moreover, the second relation of (3.23) and 

Ck 1 0 reveal that {llxkll}~l is a bounded sequence in JR. With Ak 1 0, one has 

IIAkXkl1 = Akllxkll -f 0, hence AkXk -f 0 and in turn -AkXk -f o. It follows that 

z* E D'MF(z, ty + (1 - t)x)(O). 
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Owing fo the lower semicontinuity of 11· 11 with respect to the weak* topology 

of X*, 

IIx*1I ~ liminf 11 AkXk 11 = o. 
k-+oo 

Therefore IIx* 11 = 0 and x* = O. This verifies 

800 p(z, x) c U {(z*, 0) E Z* x X* : z* E D'MFtfi(z, ty + (1 - t)x)(O)}. 0 
YEIl(x,F(z)) 

Remark 3.1.9. Taking t = 1 in the theorem, one has ty = 0, which implies Fty = F 

since F is closed-graph. Thus the conclusions reduce to the estimates via projections 

established in Theorem 2.3.20(a) and Theorem 2.3.20(d) respectively: 

8p(z, x) c U {(z*,x*) E N((z,y);gphF) : Ilx*11 ~ I}, and 
YEIl(x,F(z)) 

aoop(z,x) c U {(z*,O) E Z* x X* : z* E D'MF(z,y)(O)}. 
YEIl(x,F(z)) 
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Corollary 3.1.10. Let 0 c X be closed and x 1:. O. For any y E II(x, 0) and t E (0 , 1]' 

assume that Oty is closed, where ty = d(ty + (1- t)x, 0). Suppose further that the first 

criterion for well-posedness of the best approximation problem from x to 0 via the 

standard distance function is satisfied. Then for any t E (0,1]' 

od(x, 0) c U N(ty + (1 - t)x; Oty) n Bx*· 
yEI1(x,O) 

Remark 3.1.11. Taking t = 1 in the corollary, one has ty = 0, which implies Oty = 

o since 0 is closed. Thus the conclusion reduces to the estimate via projections in 
-

Corollary 2.3.22(a) established for the case in which the first criterion for well-posedness 

of the best approximation problem is assumed to be satisfied: 

od(x,O) c U N(y; 0) n Bx* . 
yEI1(x,O) 

The remaining part of this section focuses on a Hilbert space setting. 

Lemma 3.1.12. Let X be a Hilbert space, 0 C X and x E X with TI(x, 0) =I 0. The 

following statements hold: 

(a) For any t E (0,1] and yE TI(x, 0), 

TI(ty + (1 - t)x, 0) = {V}. 

(b) 1fO is closed, x 1:. 0 and 8d(x,O) =10, then TI(x, 0) is a singleton and 

O ....... d( - n) = X - TI(x, 0) 
x, H d(x,O). 

Proof. (a) Let t E (0,1] and y E TI(x, 0). By definition, Ilx - yll = d(x ,O) and 

iJ E O. Define v = ty + (1 - t)x. If v = x, then t =I ° implies y = x = v and 

TI(v, 0) = TI(y, 0) = {V}. Otherwise v =I x and hence Ilv - xii> 0. In view of 

Corollary 3.1.2, one has d(v, 0) = (l-t)lly-xll = Ilv-yll and y E TI(v, 0). Assume 

there exists u =I y such that u E TI(v, 0). Then Ilv - ull = d(v, 0) = (1- t)lly - xii 

and u E O. There are two possible cases: 
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Case 1: x, v and u are non-collinear. 

Since X is Hilbert and hence strictly convex, the strict triangle inequality 

holds for x, v and u. It follows that 

Ilx - ull < Ilx - vii + Ilv - ull 

which contradicts u E O. 

= tlly - xii + (1 - t)lly - xii 

= IIY - xII = d(x, 0), 

Case 2: x, v and u are collinear. 

There exists f3 E 1R such that u = f3v + (1 - (3)x. Using y = tv + (1 - t) x, 

one sees that 

11- ,Blllv - xII = IIv - ull = d(v,l1) = Ilv - ylI = G -1) IIv - xII· 

Therefore t -1 = 11- f31, or equivalently, t -1 = ±(1- (3). Suppose t -1 = f3-1. 

Then t = f3 and thus u = y, which contradicts the assumption u 1= y. Otherwise 

t - 1 = 1 - f3, which simplifies to f3 = 2 - t. Observe that 

1 
1f3ll1v - xII = lIu - xII ~ d(x, 0) = lIy - xII = -lIv - xII, _ t 

which gives 1f31 ~ t· If f3 ~ -t, then 2 ~ 0, which is a contradiction. If f3 ~ t, 

then t ~ 1. Since t .E (0,1]' it is only possible that t = 1 and in turn f3 = 1. 

Therefore u = y, which again contradicts the assumption u 1= y. Consequently, 

I1(v, 0) = {V}. 

(b) Let t E (0,1) and yE I1(x,n). By definition, IIx-yll = d(x, 0) and yE O. Define 

v = ty+ (l-t)x. By virtue of (a), I1(v, 0) = {V}. Moreover, x 1- 0 implies x 1= y 

and hence v 1- O. By assumption, 8d(x,O) 1= 0. Taking c = ° in Corollary 3.1.4 

yields 

01= 8d(x, 0) c 8d(v, 0). (3.25) 

Using [38, Theorem 5.3], one-has 

....... { v - y} {(I - t)(x - y)} {x - y } 
8d(v, 0) = IIv - yll = 11(1 - t)(x - y)1I = d(x, 0) . (3.26) 
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In view of (3.25) and (3.26), 8d(x, [2) = 8d( v, [2) = {d(;g) } is a singleton. Since 

y E II(x, [2) is arbitrary, 8d(x, [2) = {d(;h)} = {d(;g)} for all y E II(x, [2) and 

in turn II(x, [2) = {y} is also a singleton. It follows that 

O ........ d(- (1) = x - II(x, [2) 
X,H d(x,[2). o 

With this lemma, efficient conditions which guarantee the nonemptiness of pro-

jection sets and refined upper estimates of limiting subdifferentials of the generalized 

distance function may be supplied. 

Theorem 3.1.13. ([27, Theorem 6.1]) Let F : Z ~ X be a closed-graph mapping 

from an Asplund space Z to a Hilbert space X and (z, x) ~ gph F. Suppose P is lower 

semicontinuous on a neighbourhood of (z, x). The following statements hpld: 

(a) If {(z*, x*) E op(z, x) : Ilx* 11 = I} =1= 0, then II(x, F(z)) =1= 0. 

(b) {(z*,$*) E op(z,x): IIx*1I = I} 

c U {(z*,x*) E N((z,y);gphF) : x* = ~; %)}. 
yEII(x,F(z)) p , 

Proof. Let (z*, x*) E op(z, x) with IIx* 11 = 1. By virtue of the assumptions on Z 

and X, the product space Z x X is Asplund. In light of Remark 1.5.13, there exist 

sequences {(Zk' Xk) }k::l c Z X X and {(zZ, xk)}k::l C Z* X X* such that 

(Zk, Xk) ~ (z, x), 

( * *) w* (* *) and zk, xk ----t Z ,X , 

(3.27) 

(3.28) 

(3.29) 

Since gphF is closed and (z,x) ~ gphF, p(z,x) = d(x,F(z)) > O. In view of 

(3.27), by considering the tail of {(Zk' Xk)}k::l together with the corresponding terms 

of {(zZ, xt:) }k::l if necessary, assume that for all kEN, d(Xb F(Zk)) = p(Zk' Xk) > 0, 

which implies Xk ~ F(Zk) and (Zk' Xk) ~ gph F. 
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Let, > o. For each kEN, using (3.29) and Proposition 1.5.5, there exists 6k > 0 

such that for all (z, x) E Z x X with IIz - zkll :S 6k and Ilx - xkll :S 6k, 

Taking Z = Zk in (3.30), one sees that for all x E X with Ilx - Xk II :S 6k·, 

Invoking Proposition 1.5.5, xic E 8d(Xk' F(Zk)) =1= 0 for all kEN. Furthermore, F(Zk) 

is closed. Lemma 3.1.12(b) reveals that I1(Xk, F(Zk)) is a singleton and 

a--d( F()) = Xk - I1(Xk, F(Zk)) = { *} 
Xk, Zk d(Xk' F(Zk)) xk . (3.31) 

Let I1(xk,F(Zk)) = {Yk} for all kEN. Then Ilxk -Ykll = d(Xk,F(Zk)). It follows 

from (3.31) that 

(3.32) 

which implies Ilxicll = 1 and Yk = Xk-p(Zk, xk)xic for all kEN. Since X is Hilbert, X* is 

also Hilbert and hence possesses the Kadets-Klee property. Moreover, weak convergence 

and weak* convergence in X* are equivalent, so that (3.28) implies xic ~ x*. Owing 

to the observation Ilxicll = Ilx*11 = 1 for all kEN, the Kadets-Klee property of X* 

guarantees that xic ~ x*. Together with (3.27), this shows y:= lim Yk = x - p(z, x)x*, 
k-too 

which can be rearrang.ed as x* = p(~~). Then Ilx - yll = IIp(z, x)x*11 = p(z, x) = 

d(x, F(z)). Note that Yk E F(Zk) and hence (Zk' Yk) E gph F for all kEN. It follows 

that {(Zk,Yk)}k::l is a sequence in gphF with (Zk,Yk) ~ (z,y). Since gphF is 

closed, (z, y) E gphF and y E F(z). Therefore yE I1(x, F(z)) =1= 0 and N((z, Y)j gphF) 

is well-defined. 

From (3.29) and Proposition 2.2.9, one sees that (zk'xic) E N((zk,Yk)jgphF) for 

all kEN. Owing to Remarks 1.6.8(iii), (z*,x*) E N((z,y)jgphF). The inclusion 

{(z*,x*) E ap(z,x) : Ilx*11 = I} C · U {(z*,x*) E N((z,y)jgphF) : x* = x ~ E } 
i/EII(x,F(z)) p(z,x) 

is established. 0 
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Several consequences of the theorem should be highlighted. 

Corollary 3.1.14. Let X be a Hilbert space, n c X be closed and x t/: n. The following 

statements hold: 

(a) If 8d(x, n) n Sx* -# 0, then II(x, n) -# 0. 

_ _ x - II(x, n) 
-(b) 8?d(x, n) n Sx* c ad(x, n) n Sx* c d(x, n) . 

(c) If 8d(x, n) -# 0, then 

_ _ x - II(x, n) 
8?d(x, n) n Sx* = ad(~, n) n Sx* = d(x, n) 

is a singleton. 

( ) 
n (_) x-II(x,n) 

d If X = lR , then ad x, n = d (x, n) . 

Proof. (a) The result follows from Theorem 3.1.13(a) by taking Z = {z} and F == n. 

(b) Takin~ Z = {z} and F == n in Theorem 3.1.13(b) gives 8d(x, n)nsx* c x~~,rin). 

On the other hand, Remarks 2.3.3(i) implies 8?d(x, n) n S X* c 8d(x, n) n S X* . 

The assertion holds. 

(c) Since 8d(x, n) .-# 0, in light of Lemma 3.1.12(b), II(x, n) is a singleton and 

&1(x, n) = x~~,rin . Let II(x, n) = {y}. Then Ilx- YII = d(x, n) and 11 d(;fi) 11 = 1. 

This implies 8d(x, n) = {d(;fi)} = 8d(x, n)nS X*. By (b) and Remarks 2.3.3(i), 

one has 

{
X - Y} '" _ _ x - II(x, n) {x - Y } 

d(x, n) = 8d(x, n) n S X* c 8?d(x, n) n S x* c d(x, n) = d(x, n) . 

It follows that 

'" _ _ x - II(x, n) {x - Y } 
8d(x, n) n S X* = 8?d(x, n) n S X* = d(x, n) = d(x, n) , 

which is a singleton. 

(d) This is stated in [33, Example 8.53]. o 
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Remark 3.1.15 . For X = ]Rn, compared to the upper estimate U N(yjo')nsx* of 
yETI(x,n ) 

limiting sub differentials of the standard distance function given in Corollary 2.3.22(c) , 

the exact representation x~~~ri~) in (d) is a remarkable improvement. In general, there 

holds 

X~(~(~)fl) c U N(y;fl)nSx. ; 
x , yETI (x,n) 

the inclusion may be strict even for convex 0,. 
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3.2 Frechet and Proximal Subdifferentials of the Gener

alized Distance Function via Intermediate Points 

The use of intermediate points does not only produce new estimates of Frechet-like and 

limiting sub differentials , but also of the classical Frechet and proximal sub differentials 

of the generalized distance function. This section explores refined estimates of these 

classical sub differentials via intermediate points. 

The starting point is some elementary properties of proximal subdifferentials. 

Lemma 3.2.1. Let F : Z ~ X be a set-valued mapping, (z, x) E Z x X and r = p(z, x). 

Then BPp(z,x) c NP((z,x);gphFr ). 

Proof. Let (z*, x*) E BP p(z, x). By definition, there exist 6 > 0 and TJ > 0 such that 

for all (z, x) E Z x X with I/z - zl/ ~ 6 and Ilx - xii ~ 6, 

((z*,x*), (z,x) - (z,x)) ~ p(z,x) - p(z,x) + TJII(z,x) - (z,x)11 2
. (3.33) 

Fix any (z,x) E gphFr with I/z - zll ~ 6 and Ilx - xii ~ 6. Then x E Fr(z) and 

hence p(z, x) = d(x, F(z)) ~ r = p(z, x), reducing (3.33) to 

((z*,x*), (z,x) - (z,x)) ~ TJII(z,x) - (z,x)11 2
. 

Consequently, (z*, x*) E NP((z, x); gph Fr ), which verifies the assertion. o 

Lemma 3.2.2. (cf. [18, Proposition 1.5]) Let F : Z ~ X be a set-valued mapping 

and (z,x) ~ gphF. Suppose gphF is locally closed at (z,x). Then for any (z*,x*) E 

BPp(z, x), Ilx*11 = 1. 

Proof. Let (z*, x*) E BP p(z, x). By definition, there exist 6 > 0 and TJ > 0 such that 

for all (z, x) E Z x X with Ilz - zll ~ 6 and Ilx - xii ~ 6, 

((z*,x*),(z,x) - (z,x)) ~ p(z, x) - p(z,x) +TJII(z,x) - (z,x)11 2
. (3.34) 
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Since d(-, F(z)) is Lipschitz with rank 1, by putting z = z in (3.34), one sees that for 

all x =I x with Ilx - xii ~ 8, 

(x*, x - x) ~ p(z, x) - p(z, x) + 1Jllx - xl1 2 

~ d(x, F(z)) - d(x, F(z)) + 1Jllx - xl1 2 

~ Ilx - xii + 17llx - x11 2
, 

which, ~pon rearrangement, takes the form 

(x* x - x) 
, ~ 1 + 1Jllx - xii· 

On the other hand, by linearity of x*, for any r > 0, 

11 
* 11 (x* ,x - x) (x*, x - x) x = sup _ = sup _, 

xf;x Ilx - xii o<llx-xll~"( IIx - xII 

which implies 
( * -) ( * -) . x,x-x. x,x-x 

IIx*1I = Inf sup = hmsup . 
,,(>0 o<lIx-xll~')' IIx - xII x-+x IIx - xII 

Hence it follows from (3.36) that 

Ilx*11 = limsup (~I*'~ -=-I~) :s; limsllP(l + 17l1x - xII) = 1 
x-+x x x x-+x 

(3.35) 

(3.36) 

91 

Consider the opposite inequality. Since gph F is locally closed at (z, x) and (z, x) ~ 

gphF, applying Proposition 2.1.2, p(z,x) > O. Let 0 < t < min{1'2p(~,X)}. Then 

(1 + t2 )p(z, x) > p(z, x) = d(x, F(z)) implies (1 + t2)p(z, x) > IIx - Wtll for some 

Wt E F(z), or equivalently, p(z, x) > 11~~~tll. Note that x ~ F(z) and x =I Wt. Let 

Yt = (1 - t)x + tWt. Check that 

x - Yt = t (x - Wt), Yt - Wt = (1 - t) (x - Wt), Yt =I x, and 

11 -11 11- 11 811x - Wtll 811x - Wtll 811x - Wtll >: Yt - x = t x - Wt < < < = u. 
2p(z, x) (1 + t2)p(z, x) IIx - Wtll 

Putting x = Yt in (3.35) yields 

(x * , t (Wt - x)) = (x * , Yt - x) 

~ d(Yt, F(z)) - d(x, F(z)) + 1JIIYt - xl1 2 

~ IIYt - Wtll - ' p(z, x) + 1JIIYt - xll 2 

~ (1 - t)llx - Wtll- 11: ~ ~tll + 17t2 11x - Wt11 2, 
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which can be rearranged to give 

(x*, x - Wt) 1 ( 1 ) 
-llx---W-tll- ~ t t - 1 + -1 +-t2 - 7]tllx - Wtll 

t2 - t + 1 
~ 1 + t2 - 7]tllx - Wtll· 

In view of of this inequality, 

* (x*, u) (x*, X - Wt) t2 - t + 1 _ 
Ilx II = sup II II ~ 11- II ~ 2 -7]tllx - Wtll· (3.37) 

u¥:O u x - Wt 1 + t 

Letting t ---+ ° in (3.37) shows that Ilx* II ~ 1. This substantiates the assertion. 0 

The counterpart of Proposition 3.1.3 for Frechet and proximal sub differentials may 

be easily established by means of the preceding lemmas. 

Theorem 3.2.3. (cf. [27, Theorem 3.3]) Let F : Z ~ X be a closed-graph mapping 

and (z, x) ~ gphF with II(x, F(z)) i= 0. Then for any t E [0,1] and V E II(x, F(z)), 

ae p(z, x) c {(z*, x*) E ae p(z, tv + (1 - t)x) : Ilx* II = I} , 

where ae stands for a or ap . 

Proof. (a) Consider the inclusion for a. Taking c = ° in Proposition 3.1.3, the 

conclusion follows immediately. 

(b) Consider the inclusion for ap. Let t E [0,1], V E II(x,F(z)) and (z*,x*) E 

ap p( z, x). By definition, there exist 7] > ° and 8 > ° such that for all (z, x) E Z x X 

with IIz - zll ~ 8 and Ilx - xii ~ 8, 

(z*, z - z) + (x*, x - x) ~ p(z, x) - p(z, x) + 7](llz - zll + Ilx - x11)2. . (3.38) 

Define v = tv + (1 - t)x. Employing Lemma 3.1.1(a), p(z, v) = d(v, F(z )) = 

(1- t)llx - vii. Fix any (z,x) E Z x X with Ilz - zll ~ 8 and Ilx - vii ~ 8. Note 

that II (x - v + x) - xii = Ilx - vii ~ 8. Moreover, Ilx - vii = d(x, F(z)) = p(z, x) 
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and Ilv - xii = tllx - YII· By virtue of (3.38), 

(z*, z - z) + (x*,x - v) 

= (z*, z - z) + (x*, (x - V + x) - x) 

:::; p(z, x - V + x) - p(z, x) + 7](llz - zll + II(x - v + x) ~ xll)2 

:::; p(z, x) + Ilv - xii - Ilx - yll + 7](llz - zll + Ilx - vl1)2 

= p(z, x) + tllx - yll - Ilx - yll + 7](llz - zll + Ilx - vll)2 

= P ( z, x) - (1 - t) 11 x - y 11 + 7] ( 11 z - z 11 + 11 x - v'll) 2 

= p(z, x) - p(z, v) + 7](llz - zll + Ilx - v11)2. 
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By definition, (z*, x*) E oP p(z, v). Moreover, it follows from Lemma 3.2.2 that 

Ilx* 11 = 1. This completes the proof of 

ap p(z, x) c {(z*, x*) E ap p(z, ty + (1 - t)x) : Ilx* 11 = I} . 0 

Corollary 3.2.4. Let 0 c X be closed and x ~ 0 with II(x , 0) i= 0. Then for any 

t E [0,1] and yE II(x, 0), 

a· d(x, 0) c a· d(ty + (1 - t)x, 0) n Sx*, 

where a· stands for 8 or op. 

Theorem 3.2.3 also.relates Frechet and proximal subdifferentials of the generalized 

distance function to their respective normal objects. 

Proposition 3.2.5. (cf. [27, Corollary 1.1]) Let F : Z ~ X be a closed-graph mapping 

and (z, x) ~ gph F with 11(x, F(z)) i= 0. Then for any t E [0,1] and y E 11(x, F(z)), 

a·p(z,x) c {(z*,x*) E N·((z,ty+ (l-t)x);gphFty): Ilx*1I = I}, 

where tf} = p(z, ty + (1 - t)x) and (0·, N·) stands for (8, N) or (oP, NP). 

Proof. (a) Consider the inclusion for (8, N). Let t E [0,1]' Y E 11(x, F(z)) and 

(z*, x*) E 8p(z, x). Using Proposition 3.1.3 with c = 0, one sees that (z*, x*) E 
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8p(z, ty + (1 - t)x) and Ilx* 11 = 1. Then, applying Proposition 2.2.1 with c = 0 

and r = p(z, ty + (1 - t)x) = ty yields (z*, x*) E N((z, ty + (1 - t)x); gph Fty). 

This justifies 

8p(z, x) c {(z*, x*) E N((z, ty + (1 - t)x); gph Fty) : Ilx* 11 = 1 } . 

. (b) Consider the inclusion for (ap,NP). Let t E [0,1], yE l1(x,F(z)) and (z*,x*) E 

BP p(z, x). Theorem 3.2.3 implies (z*, x*) E BP p(z, ty + (1 - t)x) and Ilx* 11 = 1. 

Then, using Lemma 3.2.1 with r = p(z, ty + (1 - t)x) = ty, one has (z*, x*) E 

NP((z,ty+ (l-t)x);gphFty)' It follows that 

ap p(z, x) c {(z*, x*) E NP((z, ty + (1 - t)x); gph Fty) : Ilx* 11 = I} . 0 

Corollary 3.2.6. Let D c X be closed and x ~ D with l1(x, D) =I 0 . . Then for any 

t E [0,1] and y E l1(x, D), 

aed(x, D) c Ne(ty + (1 - t)x; Dty) n Sx*, 

where ty = d(ty + (1 - t)x, D) and (ae, Ne) stands for (8, N) or (BP, NP). 

Remark 3.2.7. Taking t = 1 in Proposition 3.2.5 and Corollary 3.2.6, one has ty = 0, 

which implies gph Fty = gph F and Dty = D, since F is closed-graph and D is closed. 

Thus the conclusions reduce to the following estimates via projections, with the ones 

for (8, N) already established in Proposition 2.2.9 and Corollary 2.2.10 respectively: 

aep(z,x) c {(z*,x*) E Ne((z,y);gphF): Ilx*11 = I}, and 

aed(x, D) c Ne(y; D) n Sx*. 
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Chapter 4 

The Marginal Function 

This chapter endeavours to extend earlier results regarding singular subdifferentials of 

the standard distance function and the generalized distance function to more general 

classes of functions, which include the standard distance function and the generalized 

distance function as illustrative examples. These extended results published by Mor

dukhovich and Nam in [27] may be used to derive efficient sub differential chain rules 

for compositions involving nonsmooth mappings. See [25] for more development. 

4.1 Singular Subdifferentials of the Marginal Function 

Indeed, the standard distance function belongs to a more general class of functions 

known as marginal fun~tions, which are prominent in variational analysis, optimization 

and control theory. In particular, they are intimately related to the study of Lagrange 

multipliers and sensitivity analysis. 

Definition 4.1.1. Let <p : X x Y -t ffi. be a lower semicontinuous function and G : 

X :::4 Y be a closed-graph mapping. Then J.L : X -t ffi. defined by 

J.L ( x) : = inf { <p ( x, y) : y E G ( x ) } 

is called the marginal function (or value function) generated by <p and G, and 
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S : X ~ Y defined by 

S(x) := {y E G(x) : <p(x, y) = p,(x)} 

is called the solution mapping associated with p,. 

In other words, the marginal function describes the optimal value in a parametric 

minimization problem of the form 

minimize <p(x, y) subject to y E G(x). 

It is for this reason that the marginal funGtion is also known as the value function. 

Akin to the standard distance function, the marginal function is nonsmooth and does 

not admit any classical derivative, even for smooth initial data. 

For any nonempty closed subset D eX, by considering the continuous function 

11.1 - .211x and the closed-graph mapping F == D, it is clear that the standard distance 

function d( :, D) : X ---t 1R defined by 

d(x, D) := inf{llw - xii: WED} = inf{llw - xii: w E F(x)} 

is the marginal function generated by 11.1 - .211x and F, and the projection mapping 

II(-, D) : X :::::t X defined by 

lI(x, D) := {w E D : Ilw - xii = d(x, D)} = {w E F(x) : Ilw - xii = d(x, D)} 

is the solution mapping associated with d(·, D). 

Definition 4.1.2. Let <p : X X Y ---t 1R be a lower semicontinuous function and G : 

X :::::t Y be a closed-graph mapping. Define p, : X ---t 1R to be the marginal function 

generated by <p and G, and S : X :::::t Y to be the solution mapping associated with p,. 

S is said to be 

(a) p,-inner semicontinuous at (x,y) E gphS if for any sequences {ck}~1 C 1R+ 

and {Xk}~1 C X with ck '1 0, Xk ~ x and 8ck P,(Xk) =1= 0 for all kEN, there exists 
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a sequence {Yk}k::l C Y with Yk E S(Xk) for all kEN which has a subsequence 

converging to y; 

(b) f.L-inner semicompact at x E X if for any sequences {ck}k=l C lR+ and 

{Xk}k::l C X with ck 1 0, Xk !!:..., x and 8c k f.L(Xk) =j=. 0 for all k E ·N, there exists 

a sequence {Yk}k::l C Y with Yk E S(Xk) for all kEN which has a subsequence 

converging to some yES (x). 

Remark 4.1.3. Obviously, the f.L-inner semicontinuity of S at (x y) implies the f.L-inner 

semicompactness of S at x. 
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In the context of the standard distance function d(-, n) associated with a nonempty 

closed subset n eX, the d(·, n)-inner semicompactness of the projection mapping 

IT ( " n) at x E X is precisely the first criterion for well-posedness of the best approxi

mation problem from x to n via the standard distance function. Indeed, both f.L-inner 

semicontinuity and f.L-inner semicompactness impose certain sequential compactness on 

the sequence {Yk}k::l with (Xk' Yk) E gph S for all kEN. This central idea behind the 

two notions produces an interesting result about mixed coderivatives of the generating 

set-valued mapping of the marginal function. 

Proposition 4.1.4. Let X and Y be Asplund spaces, <p : X x Y --+ lR be a lower 

semicontinuous function and G : X ~ Y be a closed-graph mapping. Define f.L : X --+ lR 

to be the marginal function generated by <p and G, and S : X ~ Y to be the solution 

mapping associated with f.L. Suppose {ck}k=l C lR+, {Ak}k::l C lR+, {Xk}k=l C X 

and {xk}k::l C X* are sequences satisfying ck 1 0, Ak 1 0, Xk !!:..., x for some x EX, 

AkXk ~ x* for some x* E X*, and x k E 8c k f.L(Xk) for all kEN. Assume further 

that there exists a sequence {Yk}k::l C Y with Yk E S(Xk) for all kEN which has a 

subsequence converging to some y E S(x), and <p is locally Lipschitz at (x, V) . . Then 

x* E DMG(x, y)(O). 

Proof· By passing to the convergent subsequence of {Yk}k::l together with the corre

sponding subsequences of {ck}k::l' {Ak}k::l' {Xk}k::l and {xk}k::l if necessary, assume 
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that Yk ·~ y. Suppose rp is locally Lipschitz at (x, y) with some rank R ~ O. There exists 

ci > 0 such that rp is finite and locally Lipschitz on Bxxy((x,y),a') with rank R. Let 

0< a < a'. Since Xk ~ x and Yk ~ y, by considering the tail of {Xk}~l and {Yk}~l 

together with the corresponding terms of {ck}~l' {Ak}~l and {xtJ~l if necessary, 

assume that for all kEN, (Xk' Yk) E B xxy((x, V), a), so that rp is finite and locally 

Lipschitz at (Xk' Yk) with rank R. Accordingly, for all kEN, there exists ak > 0 such 

that rp is finite and locally Lipschitz on BXxy((Xk,Yk),ak) with rank R. 

Let TJ > O. For each kEN, in light of xt: E 8ck J1(Xk) and Proposition 1.5.5, there 

exists ~k > 0 such that for all x E X with IIx - xkll ~ ~k, 

( 4.1) 

Let {3k = min {ak' ~k} > 0 for all kEN. Fix any kEN and (x, y) E X x Y with 

Ilx - xkll ~ {3k and Ily - Ykll ~ (3k· Note that rp(x·, y) is finite as Ilx - xkll ~ ak and 

Ily - Ykll ~ ak· Suppose (x, y) E gph G. Then Y E G(x) and 6gphC(X, y) = O. Thus 

J1(X) ~ rp(x, y) = rp(x, y) + 6gphC(X, y) = (rp + 6gphC)(X, y). 

Otherwise (x, y) ~ gph G. Then 6gph C (x, y) = 00 and there trivially holds 

J1{X) ~ rp(x, y) + 6gphC(X, y) = (rp + 6gphC)(X, y). 

In both cases, J1(x) ~ (rp+6gphC)(X, y). Since Yk E S(Xk) c G(Xk), (Xk' Yk) E gph G and 

hence 6gphC(Xk, Yk) = 0, which implies J1(Xk) = rp(Xk' Yk) = rp(Xk' Yk) + 6gphC(Xk, Yk) = 

(rp + 6gphC)(Xk, Yk). Using Ilx - xkll ~ ~k, it follows from (4.1) that 

~ J1(x) - J1(Xk) + (ck + TJ)llx - xkll 

~ (rp + 6gphC)(X, y) - (rp + 6gphC)(Xk, Yk) + (ck + TJ)(llx - xkll + Ily - Ykll)· 
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Let {'l7k}~l C JR+ be a sequence such that 'l7k < ak for all kEN and 'l7k 1 0. By 

virtue of the assumptions on X and Y, X x Y is an Asplund space. Since gph G is closed, 

6gph C is lower semicontinuous. Moreover, <P and 6gph C are both proper functions. 

Invoking the semi-Lipschitz fuzzy sum rule for c-subdifferentials (Theorem 1.5.11) , 

for each kEN, there exist (Xlk' Ylk), (X2k' Y2k) E B XxY((Xk' Yk), 'l7k), (xik' yrk) E 

8<p(Xlk,Ylk), (x2k 'Y;k) E 86gphC(X2bY2k) and (x3k 'Y3k) E Bx*xY* such that 

(Xk'O) = (xik' yrk) + (X2k' Y2k) + (ck + 'l7k)(x3k , Y3k), 

1<p(Xlk, Ylk) - <p(Xk, Yk)1 S; 'l7k, and 

16gphC(X2k, Y2k) - 6gphC(Xk, Yk)1 S; 'l7k· 

(4.2) 

(4.3) 

( 4.4) 

With regard to (x3k ' Y3k) E B X * xY*, there hold II x3k 11 S; 1 and IIY3k 11 S; 1. Rear

ranging (4.2), one sees that for all kEN, 

* * * ( ) * xk - xlk - x2k = Ck + 'l7k x3k and - yrk - Y;k = (ck + 'l7k)Y3k, 
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which imply Ilxk - xik - x2k ll S; ck + 'l7k and Ilyrk + Y2kll S; ck + 'l7k. On the other 

hand, observe that (Xlk' Ylk) E B XxY((Xk' Yk), 'l7k) C int B XxY((Xb Yk), ak). Thus <p is 

locally Lipschitz at (Xlk, Ylk) with rank f for all kEN. Since (xik' yrk) E 8<p(Xlk' Ylk), 

employing Proposition 1.5.8 gives 11 (xik' yrk) 11 S; f and hence {II (xik' yrk) 11 }k::l is a 

bounded sequence in JR. These estimates yield for all kEN, 

IIY2k 11 S; Ilyrk + Y2k 11 + Ilyrk 11 

S; Ilyrk + Y;k 11 + 11 (xik' yrk) 11 

S; Ck + 'l7k + f. 

Due to ck 1 ° and 'l7k 1 0, {llxk - xik - x2k ll}k::l and {IIY;kll}k::l are both bounded 

sequences in JR. With Ak 1 0, one has II AkY2kll = AkllY2kll ~ 0, hence AkY;k ~ ° and in 

turn 

-AkY;k ~ 0. (4.5) 

Similarly, IIAk(xik,yrk)11 = Akll(xik,yrk)11 ~ 0, so that Ak(xik,yrk) ~ (0,0), and in 

particular AkXik ~ 0. Applying the same argument gives IIAk(Xk - xik - x2k ) 11 = 
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w * 
together with AkX'k ---+ x*, produce 

For all kEN, owing to (4.4), 

implies 

IIx2k - xII ~ IIx2k - xkll + Ilxk ~ xii ~ 'T]k + Ilxk - xii, and 

IIY2k - yll ~ IIY2k - Yk II + IIYk - yll ~ 'T]k + IIYk - YII· 

It follows from Xk ~ x, Yk -: Y and 'T]k 1 0 that 

( ) 
gph G ( __ ) 

X2k, Y2k -------t x, Y . 

which is a cone, one arrives at 
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( 4.6) 

(4.7) 

With (4.5) , (4.6), (4.7), (4.8) and Ck 10, one obtains x* E D'MG(x,y)(O), which is 

well-defined since y E 8(x) C G(x) and thus (x, y) E gph G. o 

The theorem below, the validity of which relies heavily on Proposition 4.1.4, estab

lishes significant relati9nships between singular sub differentials of the marginal function 

and mixed coderivatives of its generating mapping in an Asplund space setting. 

Theorem 4.1.5. (cf. [27, Theorem 5.1])) LetX andY be Asplund spaces, c.p: XxY ~ 

1R be a lower semicontinuous function and G : X =4 Y be a closed-graph mapping. 

Define J.L : X ~ 1R to be the marginal function generated by c.p and G, and 8 : X =4 Y 

to be the solution mapping assoc.iated with J.L. The following statements hold: 



SUBDIFFERENTIALS OF DISTANCE FUNCTIONS IN BANACH SPACES 101 

(a) If S is J.1-inner semicontinuous at (x, y) E gph Sand <p is locally Lipschitz at 

(x, y), then 

(b) If S is J.1-inner semicompact at x E X and <p is locally Lipschitz Qlt (x, y) for all 

y E S(x), then 

800 J.1(x) c U DMG(x , y)(o). 
YES(x) 

Proof. (a) Let x* E 8OO J.1(x). By definition, there exist sequences {ckH;~=l C lR+, 

{Ak}~l C lR+, {Xk}~l C X and {xtJk=l C X* such that 

(4.9) 

(4.10) 

( 4.11) 

(4.12) 

Note that (x, y) E gph S is equivalent to y E S(x). Since S is J.1-inner semi

continuous at (x, y), there exists a sequence {Yk}k=l C Y with Yk E S(Xk) for 

all kEN which has a subsequence converging to y. Applying Proposition 4.1.4 

yields x* E DMG(x, y)(O). This substantiates 

800 J.1 ( x) c D M G ( x, y) (0) . 

(b) Let x* E 8OO J.1(x). By definition, there exist sequences {ck}k=l C lR+, {Ak}~l C 

lR+, {Xk}~l C X and {xtJk=l C X* satisfying (4.9) to (4.12). Since S is J.1-

inner semicompact at x, there exists a sequence {Yk}~l C Y with Yk E S(Xk) 

for all kEN which has a subsequence converging to some y E S(x). Applying 

Proposition 4.1.4 yields x* E DMG(x, y)(O). This verifies 

800 J.1(x) C U DMG(x , y)(O). 
yES(x) 

o 
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4.2 Singular Subdifferentials of the Generalized Marginal 

Function 

In order to include the generalized distance function in the framework, it is necessary to 

consider a slightly larger class of marginal functions which are related to minimization 

problems with moving sets of feasible solutions. 

Definition 4.2.1. Let <p : Y x Z -t ~ be a lower semicontinuous function and G : 

X ~ Z be a closed-graph mapping. Then J-L : X x Y -t ~ defined by 

J-L ( x, y) : = inf { <p (y, z) : z E G ( x )} 

is called the generalized marginal function (or generalized value function) gen

erated by <p and G, and S : X x Y ~ Z defined by 

S(x, y) := {z E G(x) : <p(y, z) = J-L(x, y)} 

is called the generalized solution mapping associated with J-L. 

Akin to the marginal function, the generalized marginal function describes the op

timal value in a parametric minimization problem of the form 

minimize <p(y, z) subject to z E G(x). 

This justifies the use of the alternative terminology generalized value function. 

By considering the continuous function 11-1 - -2 Ilx : X x X -t ~ and any closed

graph mapping F : Z ~ X, it is clear that the generalized distance function p 

dom F x X -t ~ associated with F defined by 

p(z, x) := d(x, F(z)) = inf{llw - xii: w E F(z)} 

is the generalized marginal function generated by 11-1 - -211x and F, and the projection 

mapping IT : dom F x X ~ X defined by 

ll(z, x) := IT(x, F(z)) = {w E F(z) : Ilw - xii = d(x, F(z)) = p(z, x)} 
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is the generalized solution mapping associated with p. 

Definition 4.2.2. Let <p : Y x Z ---+ 1R be a lower semicontinuous function and G : 

X ~ Z be a closed-graph mapping. Define p, : X x Y ---+ 1R to be the generalized 

marginal function generated by <p and G, and S : X x Y ~ Z to be the generalized 

solution mapping associated with M. S is said to be 

(a) p,-inner semicontinuous at ((x, y), z) E gph S if for any sequences {ck}~l C 

1R+' and {(Xk' Yk) }~1 c X X Y with Ck 1 0, (Xk, Yk) ~ (x, y) and 8ck P,(Xk, Yk) # 0 

for all kEN, there exists a sequence {Zk}~l C Z with Zk E S(Xk' Yk) for all kEN 

which has a subsequence converging to z; 

(b) p,-inner semicompact at (x, y) E X x Y if for any sequences {ck}~l C 1R+ 

and {(Xk' Yk) }~1 c X X Y with Ck 1 0, (Xk' Yk) ~ (x, y) and 8ck P,(Xk, Yk) # 0 

for all kEN, there exists a sequence {Zk}~l C Z with Zk E S(Xb Yk) for all 

kEN which has a subsequence converging to some z E S(x, y). 

Remark 4.2.3. Clearly, the p,-inner semicontinuity of S at ((x, y), z) implies the p,-inner 

semicompactness of S at (x, y). 

Again, both conditions impose some kind of sequential compactness on the sequence 

{Zk}k=l' with ((Xk' Yk), Zk) ' E gph S for all kEN. In the context of the generalized 

distance function p ass.ociated with a closed-graph mapping F : Z ~ X, the p-inner 

semicompactness of the projection mapping IT at (z, x) E Z x X is precisely the first 

criterion for well-posedness of the best approximation problem from (z, x) to gph F via 

the generalized distance function. 

Theorem 4.1.5 can be easily extended to hold for the generalized marginal function. 

Theorem 4.2.4. (cf. [27, Corollary 5.2]) Let X, Y and Z be Asplund spaces, <p : 

Y x Z ---+ 1R be a lower semicontinuous function and G : X ~ Z be a closed-graph 

mapping. Define p, : X x Y ---+ 1R to be the generalized marginal function generated by 
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c.p and G, and S : X x Y =4 Z to be the generalized solution mapping associated with 

J-L. The following statements hold: 

(a) If S is J-L-inner semicontinuous at ((x, y), z) E gph Sand c.p is locally Lipschitz at 

(y, z), then 

800 J-L(x, y) C {(x*, 0) E X* x Y* : x* E DMG(x, z)(O)}. 

(b) If S is J-L-inner semicompact at (x, y) E X x Y and c.p is locally Lipschitz at (y , z) 

for all z E S(x, y), then 

800 /-L(x, y) C U {(x*, 0) E X* x Y* : x* E DMG(x, z)(O)}. 
zES(x,y) 

Proof. By virtue of the assumptions on X and Y, X x Y is an Asplund space. Let 

G : X x Y =4 Z be defined by G(x, y) = G(x) and 'P : (X x Y) x Z -+ 1R be defined 

by 'P((x, y), z) = c.p(y, z). Since G is closed-graph and c.p is lower semicontinuous, G is 

also closed-graph and 'P is also lower semicontinuous. Then the generalized marginal 

function J-L : X x Y -+ 1R given by 

J-L( x, y) = inf { c.p(y, z) : z E G (x)} = inf { 'P( (x, y), z) : z E G (x, y) } 

may be regarded as the marginal function generated by 'P and G, and the generalized 

solution mapping S : X x Y =4 Z given by 

S(x, y) = {z E G(x) : c.p(y, z) = /-L(x, y)} 

= {z E G(x, y) : 'P((x, y), z) = J-L(x, y)} 

may be regarded as the solution mapping associated with J-L. 

In this extended setting, it is instructive to first demonstrate that for any (x, y) E 

X x Y and z E G (x), 

DMG((x,y),z)(O) C {(x*,O) E X* x Y*: x* E DMG(x,z)(O)}. (4.13) 
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Let (x, y) E X x Y and i E G(x). Since i E G(x) = C(x, y), (x, i) E gph G and 

((x, y), i) E gph C, which guarantee that DMG(x, i)(O) and DMC((x, y), i)(O) are both 

well-defined. 

Let (x*, y*) E DMC((x, y), i)(O). Owing to Remarks 1.7.2(iv), there exist sequences 

{((Xk' Yk), Zk)}~l c (X X Y) X Z and {((xk' yZ), zZ)}~l c (X* X Y*) X Z* such that 

) ) 
gph G ( _ _ _) 

((Xk, Yk ,Zk -t (x, Y), Z , 

(Xk' YZ) ~ (x*, Y*), -zZ -t 0, and 

(4.14) 

(4.15) 

(4.16) 

Let '"'( > O. For all kEN, using (4.16) and Proposition 1.6.5, there exists 6k > 0 

such that for all ((x, Y), z) E gphC with Ilx-Xkll ~ 6k, IIY-Ykll ~ 6k and Ilz-Zkll ~ 6k, 

~ '"'((llx - xkll + Ily - Ykll + Ilz - zkll)· (4.17) 

Fix any (x, z) E gph G with Ilx - xkll ~ 6k and Ilz - zkll ~ 6k. Then Z E G(x) = 

C(X,Yk) and hence ((X,Yk),Z) E gphC. Putting Y = Yk in (4.17), one has 

Employing Proposition 1.6.5 again yields (xk,zZ) E N((xk,zk);gphG) for all kEN. In 

v.iewof (4.14), there hold (Xk,Zk) -t (x, i) and ((Xk,Yk),Zk) E gphC for all kEN. The 

latter implies Zk E C(Xk' Yk) = G(Xk) and (Xk' Zk) E gph G. Thus (Xk ' Zk) ~ (x, i). 

In light of Remarks 1.7.2(iv), x* E DMG(x, 2)(0). 

Note that Zk E G(Xk) = C(Xk,Y) is equivalent to ((Xk,y),Zk) E gphC for all yE Y. 

Putting x = Xk and Z = Zk in (4.17), for all Y E Y with IIY - Ykll ~ 6k, one arrives at 

It follows from the linearity of YZ .that 
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Since ,> 0 is arbitrary, Ilykll ~ 0 and hence Ilykll = 0 for all kEN. Invoking the lower 

semicontinuity of 11 . 11 with respect to the weak* topology of y* yields 

Ily* 11 ~ lim inf IIYk 11 = o. 
k--+oo 

Therefore IIY*II = 0 and y* = O. This proves (4.13) . 

. (a) Let (x*,y*) E aOOp,(x,y). The local Lipschitz property of rp at (y,z) implies that 

'P is locally Lipschitz at ((x, y), z). In view of the p,-inner semicontinuity of S 

at ((x, y), z), applying Theorem 4.1.5(a) gives (x*, y*) E D'MG((x, y), z)(O). It 

follows from (4.13) that (x*,j/) E {(x*,O) E X* x Y* : x* E D'MG(x,z)(O)}. 

Thus 

aOOp,(x,y) c {(x*,O) E X* x Y*: x* E D'MG(x,z)(O)}. 

(b) Let (x*, y*) E 800 p,( x, y). The local Lipschitz property of rp at (y, z) for all 

z E S(x,y) implies that 'P is locally Lipschitz at ((x,y),z) for all z E S(x,y). In 

view <?f the p,-inner semicompactness of S at (x, y), applying Theorem 4.1.5(b) 

gives (x*,y*) E D'MG((x,y),z)(O) for some z E S(x,y). It follows from (4.13) 

that (x*,y*) E {(x*,O) E X* x Y*: x* E D'MG(x,z)(O)}. Hence 

aOOp,(x,y)c U {(x*,O)EX*xY*:x*ED'MG(x,z)(O)}. 0 
zES(x,jj) 

Remark 4.2.5. In the context of the generalized distance function p associated with a 

closed-graph mapping F, (b) reduces specifically to Theorem 2.3.20( d). 



Chapter 5 

The Perturbed Distance .Function 

In previous chapters, the generalized distance function, which generalizes the standard 

distance function, and its extension, the generalized marginal function , have been stud

ied. This chapter concerns yet another generalization of the standard distance function, 

the perturbed distance function. 

5.1 Elementary Properties of the Perturbed Distance Func

tion 

Definition 5.1.1. Let n c X be a nonempty subset and J : n --t lR be a lower 

semicontinuous function. 'The J-perturbed distance Junction dJ C, n) : X --t lR 

associated with n is defined by 

dJ (x, n) := inf{llx - wll + J(w) : wEn}. 

Obviously, the perturbed distance function generalizes the standard distance func

tion by including a perturbation generated by J. If J == 0, the perturbed distance 

function dJ (', n) reduces immediately to the standard distance function d(· , n). 

The following are two elementary properties of the perturbed distance function. 

Proposition 5.1.2. Let n c X be a nonempty subset and J : n --t lR be a lower 

semicontinuous function . Then dJ (', n) is a Lipschitz function with rank 1. 
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Proof. Let x, y E X. Note that 

dJ (x, D) = inf{llw - xii + J(w) : wED} 

::; inf{llw - yll + Ily - xii + J(w) : WED} 

= inf{llw - yll + J(w) : WED} + Ily - xii 

= dJ(y, D) + Ily - xii· 
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Rearranging the inequality gives dJ (x, D)-dJ (y, D) ::; Ily- xll. Interchanging the roles of 

x and y, one sees that dJ (y, D)-dJ (x, D) ::; Ily-xll. Hence IdJ (y, D)-dJ (x, D) I ::; Ily-xll 

for all x, y E X. By definition, dJ C, D) is Lipschitz with rank 1. o 

Proposition 5.1.3. Let D c X be a nonempty convex subset and J : D -t 1R be a 

lower semicontinuous convex function. Then dJ (', D) is a convex function. 

Proof. Let x, y E X, t E (0,1) and c > O. Then there exist WI, W2 E D such that 

dJ(x,D) + c > Ilx - wIll + J(WI) and dJ(y,D) + c > Ily - w211 + J(W2)' Since J is 

convex, J(twI + (1 - t)W2) ::; tJ(WI) + (1 - t)J(W2)' Moreover, the convexity of D 

guarantees that tWI + (1 - t)W2 E D. Hence 

tdJ (x, D) + (1 - t)dJ (y, D) + c 

= t(dJ (x, D) + c) + (1 - t)(dJ (y, D) + c) 

> t(llx - wIll + J(WI)) + (1 - t)(lly - w211 + J(W2)) 

= Iltx - tWIll + II (1 - t)y - (1 - t)w211 + tJ( wr) + (1 - t)J( W2) 

~ II(tx + (1- t)y) - (twI + (1- t)w2)11 + J(twI + (1- t)W2) 

~ dJ (tx + (1 - t)y, D). 

Since c > 0 is arbitrary, tdJ(x,D)+(l - t)dJ(y,D) ~ dJ(tx+(l - t)y,D). By definition, 

dJ (', D) is convex. 0 

Closely associated with the perturbed distance function is the perturbed minimiza

tion problem. For any nonempty D C X and x EX, the perturbed minimization 
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.. 
problem at x on 0 is to find Xo E 0 which attains the infimum specified by the per-

turbed distance function, that is, to find Xo E 0 such that 

dJ (x, 0) = Ilx - xoll + J(xo). 

The perturbed minimization problem is not always solvable. It is heuri~tically clear that 

its solvability depends on a combination of factors, including in particular the choice of 

0, x and J. Points that solve the perturbed minimization problem at themselves are 

not only intriguing but also helpful in the analysis of the perturbed distance function. 

Definition 5.1.4. Let 0 c X be a nonempty subset and J : 0 -t 1R be a lower 

semicontinuous function. The self-solution set of the perturbed minimization 

problem on 0 is defined by 

8(0) := {x EO: dJ (x, 0) = J(x)}. 

Remark 5.1.5. While the inequality dJ (x, 0) ::; J(x) evidently holds for all x E 0, the 

opposite inequality may fail to hold at every point in 0 and hence 8(0) may be empty. 

As in most minimization problems, the perturbed minimization problem may be 

conveniently ta<:.kled using minimizing sequences. 

Definition 5.1.6. Let x EX, 0 C X be a nonempty subset and J : 0 -t 1R be a 

lower semicontinuous function. A sequence {Xk}~l C 0 is said to be a minimizing 

sequence of the perturbed minimization problem at x on 0 if 

Remark 5.1.7. Trivially, if Xo E 0 is a solution to the perturbed minimization problem 

at x on 0, then the constant sequence {Xk}~l C 0 with Xk = Xo for all kEN is 

a minimizing sequence which converges to Xo. Thus every solution to the perturbed 

minimization problem at x on 0 has a minimizing sequence which converges to it. 

The notion of well-posedness was first formulated for the perturbed minimization 

problem in [21]. 
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Definition 5.1.8. Let x E X, n c X be a nonempty subset and J : n ---* IR be a 

lower semicontinuous function. The criterion for well-posedness of the perturbed 

minimization problem at x on n is that there is a unique solution Xo E n, to which 

every minimizing sequence converges. The perturbed minimization problem is said to 

be well-posed if such criterion for weU-posedness is satisfied. 

With regard to the decisive role played by the convexity of n in the study of the 

generalized differential properties of the perturbed distance function, the case in which 

n is convex and that in which n is nonconvex are examined separately. The next two 

sections exhibit a number of results about Frechet-like and proximal subdifferentials of 

the perturbed distance function originally communicated by Wang, Li and Xu in [37], 

which generalize the respective ones in [9, 12, 25] concerning the standard distance 

function. Most of these extended results utilize the ' function J + 60, which is formally 

not globally defined since J is only defined on n. This moderate hindrance may be 

easily surmounted by a compromising definition. 

Definition 5.1.9. Let n c X be a nonempty subset and J : n ---* 1R. be a lower 

semicontinuous function. The function J + 60 : X ---+ IR is defined by 

{

J(X) 
(J + on) (x) := 00 

if x E n, 

if x ~ n. 
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5.2 The Convex Case - Subdifferentials of the Perturbed 

Distance Function 

This section is devoted to the study of sub differentials of the perturbed distance func

tion for convex n. Among the many sub differentials available, it is natural to use the 

classical sub differential in convex analysis in view of the convexity of O. 

Theorem 5.2.1. (cf. [37, Theorem 3.1]) Let 0 c X be a nonempty convex subset 

and x EX. Suppose J : 0 ----1 1R is lower semicontinuous ana convex. The following 

statements· hold: 

(a) If X. E 0, then [)CdJ (x, 0) ~ [)C(J + 80)(x) n Bx •. 

(b) If x E 5(0), then [)CdJ (x, 0) C [)C( J + 8n)(x) n Bx • . 

Proof. (a) Let x* E [)C(J + 80)(x) n Bx •. Since x* E Bx., Ilx*11 ::; 1 and hence for 

all x,y E X, 

Ily - xii ~ Ilx*lllly - xii ~ (x*,y - x) = (x*,y - x) + (x*,x - x). (5.1) 

By assumption, x E n. Using x* E [)C(J + 80)(x), for all x E 0, 

J(x)~' (J + 8n)(x) ~ (J + 8n)(x) + (x*,x - x) = J(x) + (x*,x - x). (5.2) 

Thus for all x E nand y E X, by adding (5.1) and (5.2), one has 

Ily - xii + J(x) ~ (x*,y - x) + (x*,x - x) + J(x) + (x*,x - x) 

= (x*,y - x) + J(x). (5.3) 

On the other hand, dJ (x, n) ::; J(x) owing to x E O. It follows from (5.3) that 

for all y E X, 

dJ (y, n) ~ dJ (y, n) + dJ (x , n) - J(x) 

= inf{lly - xii + J(x) : x E O} + dJ (x , 0) - J(x) 

= ((x*, y - x) + J(x» - J(x) + dJ (x, 0) 

= dJ(x ,O) + (x*,y - x). 
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By definition, x* E BCdJ (x, 0,). This completes the proof. 

(b) Let x* E BCdJ (x, 0,). Since x E S(n) c 0" dJ (x, 0,) = J(x) = (J + (0)(x). Then 

for all x E X, 

dJ (x, 0,) ~ dJ (x, 0,) + (x*, x - x) = (J + (0)(x) + (x*, x - x). (5.4) 

In particular, for all x E 0" it follows from (5.4) that 

(J + (0)(x) = J(x) ~ dJ (x, 0,) ~ (J + (0)(x) + (x*, x - x). 

On the other hand, for all xtj: 0" (J + (0)(x) = 00 and 

(J + (0)(x) ~ (J + (0)(x) + (x*, x - x) 

trivially holds. With the inequality valid for all x E X, x* E ~C(J + (0)(x). 

Moreover, since dJ (,,0,) is Lipschitz with rank 1, invoking Proposition 1.5.8 yields 

x* E B x •. This justifies the conclusion. o 

The well-known description (see [12, 15, 25]) of sub differentials of the standard dis

tance function may be regarded as a noticeable consequence of the preceding theorem. 

Corollary 5.2.2. Let 0, c X be a convex subset and x E n. Then 

Proof. Let J == O. Then J is trivially convex and lower semicontinuous. Moreover, 

dJ(·,n) reduces to d(-,n) and S(n) = {x En: d(x,n) = O} = 0" which implies 

x E s(n). Applying Theorem 5.2.1(a) and (b), one sees that 

o 
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5.3 The Nonconvex Case - Frechet-Like and Proximal Sub-

differentials of the Perturbed Distance Function 

This section proceeds to explore the generalized differential properties of the perturbed 

distance function for nonconvex O. In absence of convexity, Frechet-l~ke and proximal 

subdifferentials are more appropriate tools than the subdifferential in convex analysis. 

The results of this section make use of a couple of weakened versions of the usual 

Lipschitz property extensively. 

Definition 5.3.1. Let 0 c X and f : X -+ IR be finite at x E O. 

(a) f is said to be centrally Lipschitz at x on 0 with rank .e ~ 0 if for all x E 0 , 

If(x) - f(x)1 ~ .ellx - xii· 

(b) f is said to be locally centrally Lipschitz at x on 0 with rank .e ~ 0 if there 

exists p > 0 such that for all x E B x(x, p) nO, 

If(x) - f(x)1 ~ .ellx - xii· 

( c) The sharp local central Lipschitz rank of f at x on 0 is defined by 

.ex := inf sup If(x) - f(x)1 
p>O xE(Bx(x,p)\{x})nn Ilx - xii 

Remarks 5.3.2. (i) Obviously, if f is centrally Lipschitz at x on 0 with some rank .e, 

then f is locally centrally Lipschitz at x on 0 with rank .e and .ex ~ .e. 

(ii) Note that f is locally centrally Lipschitz at x on 0 if and only if .ex < 00. 

The main results of this section rely on a lemma. 

Lemma 5.3.3. ([37, Lemma 3.1]) Let 0 c X, x E 8(0) and J : 0 -+ IR be a lower 

semicontinuous function. Suppose the perturbed minimization problem at x on 0 is 

well-posed. Then for any ry > 0 and p > 0, there exists 0 < r < 1 such that Ily - xii < p 

holds whenever x E Bx(x, r) and y E 0 satisfy Ilx - yll + J(y) ~ dJ (x, n) + ryllx - xii. 
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Proof. Suppose, on the contrary, that there exist T'o > 0 and Po > 0 such that for all 

0< r < 1, 

for some Xr E B x(x, r) and Yr E O. Then for each kEN, there exist Xk E B x (x, k!l) 

and Yk E 0 such that 

Note that Xk E Bx (x, k!l) implies Ilxk-xll ~ k!l for all kEN and hence Xk ~ x. 

This together with the continuity .of dJ (., 0) guarantees that 

lim dJ (Xk' 0) = dJ (x, 0) = lim (dJ (Xk' 0) + T'ollxk - xii). 
k-oo k-oo 

Thus letting k ~ 00 in the first inequality of (5.5) yields lim (1lxk - Ykll + J(Yk)) = 
k-oo 

dJ (x, 0). On the other hand, observe that for all kEN, 

Using Xk ~ x again and letting k ~ 00 in (5.6), one has lim (1Ix-Ykll-llxk -YkID = O. 
k-oo 

It follows that 

By definition, {Yk}k::l C 0 is a minimizing sequence of the perturbed minimization 

problem at x on 0, which is assumed to be well-posed. Then x E 8(0) must be the 

unique solution and hence Yk ~ x, which contradicts the second inequality of (5.5). 

Thus the assertion holds. o 

Theorem 5.3.4 below is the analogue of Theorem 5.2.1 for Frechet-like subdifferen

tials. This result was first stated for Frechet subdifferentials by Wang, Li and Xu in 

[37, Theorem 3.2]. Theorem 5.3.4, which reduces to their result as a special case for 

c = 0, is established by adapting their proof. 
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Theorem 5.3:4. Let n eX, x E S(n) and J : n ---t 1R be a lower semicontinuous 

function. For any c ~ 0, the following statements hold: 

(b) Suppose the perturbed minimization problem at x on n is well-posed. If J is locally 

centrally Lipschitz at x on n with .ex < 1, then 

Proof. (a) Let c ~ 0, x* E 8cdJ (x, n) and'Y > O. In view of Proposition 1.5.5, there 

exists a > 0 such that for all x E X with Ilx - xii ~ a, 

Fix any x E X with Ilx - xii ~ a. Note that dJ (x, n) = J(x) = (J + 8n)(x) is 

finite as x E S(n) c n. Suppose x E n. Then dJ (x, n) ~ J(x) = (J + 8n)(x). It 

follows from (5.7) that 

(x*,x - x) ~ (J + 8n)(x) - (J + 8n)(x) + (c + 'Y)llx - xii. 

Otherwise x ~ n. Then (J + 8n)(x) = 00 and the same inequality trivially holds. 

With the inequality valid for all x E X with Ilx - xii ~ a, by virtue of Proposition 

1.5.5 again, x* E 8c (J + 8n)(x). Moreover, since dJ (', n) is Lipschitz with rank 

1, Proposition 1.5.6 implies Ilx*11 ~ 1 + c. This ascertains 

(b) Let c ~ 0, x* E 8c(J +8n)(x)nBx* and'Y > O. In light of x* E 8c(J +8n)(x) and 

Proposition 1.5.5, there exists PI > 0 such that for all x E X with Ilx - xii ~ PI, 

(x*, x - x) ~ (J + 8n)(x) - (J + 8n)(x) + (c + 'Y)llx - xii. (5.8) 

Since .ex < 1, one sees that .ex < lift 1 < 1. Then there exists P2 > 0 such that 

for all x E B x(x, P2) n n, 

( .e-+1) IJ(x) - J(x)1 ~ T Ilx - xii· (5.9) 
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Let P = min{pl, P2} > O. Since the perturbed minimization problem at x on 

n is well-posed, invoking Lemma 5.3.3, there exists 0 < r < 1 such that for all 

x E Bx(x,r) and yEn satisfying IIx - yll + J(y) ~ dJ(x,n) + ,llx - xii, there 

holds 

Ily - xii < p. (5.10) 

Fix any x E B x(x, r)\ {x}. Then Ilx - xii> 0 and there exists Yx E n such 

that 

Ilx - Yxll + J(yx) < dJ (x, n) + ,llx - xii ~ J(x) + (1 + ,)llx - xii, _ (5.11) 

which implies by (5.10) that Ilyx - xii < p ~ PI. In view of (5.8), one has 

(x*,Yx - x) ~ (J + on)(yx) - (J + on)(x) + (c +,)llyx - xii 

. = J(yx) - J(x) + (c +',)llyx - xii· (5.12) 

Moreover, Ilyx - xii < p ~ P2 and Yx E n together imply Yx E B x(x, P2) n n. It 

follows from (5.9) that 

(
f - + 1) IJ(yx) - J(x)1 ~ --T Ilyx - xii· 

Employing (5.11) and (5.13), one obtains 

Ilyx - xii ~ Ilyx - xii + Ilx - xii 

~ J(x) + (1 +,) Ilx - xll- J(yx) + Ilx - xii 

~ IJ(yx) - J(x)1 + (2 + ,)llx - xii 

(
f- + 1) ~ --T IIYx-xll+(2+,)llx-xll, 

which can be rearranged to give 

( 2 +, ) (4 + 2,) Ilyx - xii ~ 1 _ ¥ Ilx - xii = 1 _ fx Ilx - xii· 

(5.13) 

(5.14) 
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Since "x E S(D) and x* E B x*, dJ (x, D) = J(x) and IIx* II ::; 1. Owing to 

estimates (5.11), (5.12) and (5.14), one arrives at 

(x*, x - x) 

= (x*, x - Yx) + (x*, Yx - x) 

::; Ilx*llllx - Yxll + (J(yx) - J(x) + (c + ,)llyx - xii) 

:0: Ilx - Yxll + (J(Yx) - J(x) + Cc: + ~~~: 21')) IIx - XII) 

::; (d J (x, D) + ,llx - xii - J(yx)) 

+ (J(Yx) - dJ (x, SI) + ((c: + ~)~~: 21')) IIx - XII) 

= dJ (x, SI) - dJ (x, SI) + (1' + .(c: + ~~~: 21')) Ilx - xii 

J J (4c (2, + 2c + 4) ) = d (x, D) - d (x, D) + 1 _ £x +, 1 + 1 _ £x Ilx - xii· 

On the other hand, for x = x, equality trivially holds in 

J J (4c (2, + 2c + 4)) (x*,x-x)::;d (x,D)-d (x, D) + 1-£x +, 1+ 1-£x Ilx-xll· 

With the inequality valid for all x E B X (x, r), by virtue of Proposition 1.5.5 

again, x* .. E a~dJ (x, D). This justifies 
1-ex 

........ J ........ 
8~d (x, D) :J 8E;(J + (0)(15) n Bx*. 

1-ex 
o 

Indeed, the counterpart of Theorem 5.2.1 for proximal sub differentials also holds. 

As in Theorem 5.3.4, the perturbed minimization problem at x on D is required to 

be well-posed and J is required to be locally centrally Lipschitz at x on D in order to 

compensate for the nonconvexity of D. 

Theorem 5.3.5. (cf. [37, Theorem 3.3]) Let D eX, x E S(D) and J : D --+ IR be a 

lower semicontinuous function. The following statements hold: 

(a) 8PdJ (x, D) c 8P(J + (0)(15) n B x *. 
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(b) Suppose the perturbed minimization problem at x on n is well-posed. If J is locally 

centrally Lipschitz at x on n with Rx < 1, then 

Proof. (a) Let x* E 8PdJ (x, n). By definition, there exist a > 0 and 7] > 0 such 

that for all x E B x(x, a), 

(5.15) 

Fix any x E Bx(x,a). Note that dJ(x,n) = J(x) = (J + on)(x) is tinite as 

x E 8(n) en. Suppose x E n. Then dJ(x,n)::; J(x) = (J + on)(x). It follows 

from (5.15) that 

(x*, x - x) ::; (J + on)(x) - (J + on)(x) + 'T7llx - x11 2
• 

Otherwise x ~ n. Then (J + on)(x) = 00 and the same inequality trivially holds. 

Wit!). the inequality valid for all x E Bx(x, a), by definition, x* E 8P(J + on)(x). 

Moreover, since d(·, n) is Lipschitz with rank 1, Proposition 1.5.8 implies x* E 

B x •. This ascertains 

8PdJ (x, n) c 8P(J + on)(x) n B x · . 

(b) Let x* E 8P(J + on)(x) n Bx •. In light of x* E 8P(J + on)(x), there exist PI > 0 

and 7] > 0 such that for all x E B x ( x, PI), 

(x*,x - x) ::; (J + on)(x) - (J + on)(x) + 'T7llx - x11 2
. (5 .16) 

Let Rx < R < 1. Then there exists P2 > 0 such that for all x E B x(x, P2) n n, 

IJ(x) - J(x)1 ::; Rllx - xii. (5.17) 

Let P = min{pl, P2} > O. Since the perturbed minimization problem at x on 

n is well-posed, invoking Lemma 5.3.3, there exists 0 < r < 1 such that for all 
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x E Bx(x,r) and yEn satisfying Ilx - yll + J(y) :::; dJ(x,n) + Ilx - xii, there 

holds 

Ily - xii < p. (5.18) 

Fix any x E B x(x, r)\ {x}. Then 0 < Ilx - xii:::; r < 1 and there exists Yx E n 

such that 

Ilx - Yx 11 + J(yx) < dJ (x, n) + Ilx - xl1 2 

< dJ (x, n) + Ilx - xii, 

(5.19) 

(5.20) 

which implies by (5.18) that Ilyx - xii < p :::; Pl and Yx E B x(x, Pl). In view of 

(5.16), one sees that 

(x*, Yx - x) :::; (J + 6n)(Yx) - (J + 6n)(x) + 7Jllyx - xl1 2 

= J(yx) - J(x) + 7Jllyx - x11 2
. (5.21) 

Moreover, Ilyx - xii < P :::; P2 and Yx E n together imply Yx E Bx(x, P2) n n. It 

follows from (5.17) that 

IJ(yx) - J(x)1 :::; £llyx - xii· 

Employing (5.20) and (5.22), one obtains 

Ilyx - xii:::; Ilyx - xii + 11x - xii 

:::; dJ (x, n) + Ilx - xii - J(yx) + IIx - xII 

:::; IIx - xII + J(x) + Ilx - xII - J(yx) + IIx - xII 

:::; IJ(yx) - J(x)1 + 311x - xII 

:::; £lIyx - xii + 311x - xII, 

which can be rearranged to give 

IIYx-xll:::; C:t) Ilx-xll· 

(5.22) 

(5.23) 
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Since x E 8(D) and x* E B x. , dJ (x, D) = J(x) and Ilx* 11 :::; 1. Owing to 

estimates (5.19), (5.21) and (5.23), one arrives at 

(x*, x - x) 

= (x*, x - Yx) + (x*, Yx - x) 

:::; Ilx*llllx - Yxll + (J(yx) - J(x) + 77llyx - x11
2

) 

::; IIx - Yx 11 + (J(Yx) - J(x) + Cl ~7Je)2 ) Ilx - X1l2) 

::; (dJ (x, 0) + Ilx - xll2 - J(yx)) + (J(Yx) - dJ (x, 0) + ((1 ~7Je)2 ) Ilx - xll2 ) 

= dJ (x, 0) - dJ (x, 0) + (1 + (1 ~7Je)2 ) Ilx - xl12 

On the other hand, for x = x, equality trivially holds in 

With the inequality valid for all x E B x (x, r), by definition, x* E BP dJ (x, D). 

This justifies 

D 

While the perturbed minimization problem at x on D is required to be well-posed 

in both Theorem 5.3.4 and Theorem 5.3.5, verifying whether this requisite is fulfilled 

is in general not an easy task. In this light, it is instructive to have a simple sufficient 

co'ndition to guarantee the well-posedness of the perturbed minimization problem. 

Lemma 5.3.6. (cf. [37, Lemma 3.4]) Let D eX, x E 8(D) and J : D -t ~ be a 

lower semicontinuous function. Suppose J is centrally Lipschitz at x on D with rank 

o ~ £ < 1. Then the perturbed minimization problem at x on D is well-posed. 

Proof. Since x E 8(D), it is a self-solution to the perturbed minimization problem 

and there holds J (x) = dJ (x, D). Let {x k} ~1 c D be any minimizing sequence of the 

perturbed minimization problem at x on D. Since J is centrally Lipschitz at x on D 
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with rank f, 1J'(xk) - J(x) I :s; fllxk - xii for all kEN. Observe that 

Ilxk - xii + J(x) = (1lxk - xii + J(Xk)) + (J(x) - J(Xk)) 

:s; (1lxk - xii + J(Xk)) + fllxk - xiI, 

which, upon rearrangement and in view of the assumption 0 :s; f < 1,. produces 

121 

(5.24) 

As a minimizing sequence, {Xk}k::l satisfies lim (1lxk - xii + J(Xk)) = dJ (x, 0) = J(x). 
k-+oo 

Letting k~ 00 in (5.24), one has 

(1 - f) lim Ilxk - xii + J(x) = liIll ((1 - f)llxk - xii + J(x)) = J(x). 
k-+oo k-+oo 

It follows that lim Ilxk-xll = 0, or equivalently, Xk ~ x. Consequently, any minimizing 
k-+oo 

sequence of the perturbed minimization problem converges to x, which, by Remark 

5.1.7, implies that x is the only solution to the perturbed minimization problem. Hence 

the criterion for well-posedness of the perturbed minimization problem at x on 0 is 

satisfied. o 

Below is an immediate consequence of Theorem 5.3.4 and Theorem 5.3.5, which is 

readily reducible as a special case to a familiar result (see [9]) concerning the standard 

distance function. 

Corollary 5.3.7. ('cf. [37, Corollary 3.2]) Let ne X, x E S(n) and J: n ~ IR be a 

lower semicontinuous function. Suppose J is centrally Lipschitz at x on 0 with rank 

o ::; f < 1. Then 

where ae stands for a or BP. 

Proof. Since x E S(O) and J is centrally Lipschitz at x on n with rank 0 -:s; f < 1, 

Lemma 5.3.6 implies the well-posedness of the perturbed minimization problem at x 

on n. Moreover, in view of the central Lipschitz assumption, J is automatically locally 
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centrally Lipschitz at x on n with fx ::; f < 1. Taking c = 0 in Theorem 5.3.4(a) and 

(b), one obtains adJ (x, n) = a( J + 60) (x) n B x •. Moreover, the inclusions in Theorem 

5.3.5(a) and (b) give (JPdJ(x,n) = oP(J + 60)(x) nBx. immediately. o 

Corollary 5.3.8. Let n c X and x E n. Then 

where (oe, Ne) stands for (a, N) or ((JP, NP). 

Proof. Let J == O. Then J is trivially lower semicontinuous and centrally Lipschitz 

at x on n with arbitrary rank f ;::: ' O. More~ver, dJ C, n) reduces to d(·, n). Note that 

S(n) = {x En: d(x, n) = O} = n and hence x E S(n). Applying Corollary 5.3.7 gives 

ad(x, n) = a60(x) n B X. = N(x; n) n B x., and 

oPd(x, n) = OP60(x) n B X. = NP(x; n) n B x •. o 
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