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Abstract 

Communication complexity, introduced by Yao in 1979, deals w i th the mini-

mization of the number of bits to be exchanged between two parties, Alice and 

Bob, for computing a Boolean function where x and y are n-b i t strings 

held by Alice and Bob respectively. I t is assumed that the two parties have 

unbounded computational power, i.e. there is no restriction on the number of 

computation steps, or the size of the computer memory used; the only resource 

in concern is communication. 

This survey paper gives a detailed discussion on different aspects of commu-

nication complexity including deterministic, nondeterministic and randomized 

protocols based on the existing foundations. We also present known techniques 

of obtaining upper and lower bounds in different models. 
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摘 要 

通信複雜性理論由姚期智教授於一九七九年創立，用以探討在處理分佈計 

算問題時各方如何達致最優協議，從而使要傳送的位元數目為最少。各方在計 

算步驟以至在所使用的計算機内存的大小等方面均沒有任何限制；整套理論唯 

一關注的是通信量。 

本文將深入討論確定性、不確定性與隨機通信模型，並闡述在上述模型下 t 

為通信複雜度求上下界的一些己知技巧。 

) 
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Chapter 1 

Introduction 

This thesis is about the active research area of communication complexity. We 

begin wi th the basic deterministic communication model, followed by some tech-

niques to obtain bounds on communication complexity. Variant models including 

the nondeterministic and randomized models are also discussed. 

We first give the historical background in Section 1.1. Section 1.2 suggests 

several reasons why communication complexity is of research interest. The main 

ideas and results in this thesis are summarized in Section 1.3, and Section 1.4 

mentions some of the recent development in this field. Lastly, Section 1.5 explains 

the structure of this thesis. 

1.1 Historical background 

Communication complexity was introduced by Yao [39] as a mathematical theory 

for studying communication processes. A first motivation is that deterministic 

communication complexity dominates the ^T^-complexity of VLSI chips [20]. 

Some of the early results are from Yao [39] (relating communication protocols 

to t i l ing of Boolean matrices), Melilhorn and Schmidt [27] (introducing the rank 

lower bound) and Alio, Ullman and Yannakakis [2] (relating the deterministic 

6 
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model to nondeterminism; the nondeterministic communication model was first 

introduced by Lipton and Sedgewick [21]). 

For the randomized model, also defined in [39], the most important results are 

attr ibuted to Newman [28] (comparing the private coin and public coin models) 

and Yao [40] (introducing distributional complexity). 

The book by Kushilevitz and Nisan [17] is considered 'the reference' in this 

field. I t includes all the above results, plus a number of interesting applications. 

1.2 Why study communication complexity? 

Communication complexity, though defined in an abstract manner, is by no means 

impractical. Consider the case where two parties are far away and communication 

is slow when compared to local computation. I t is then wise to minimize the 

number of bits transmitted between them. This situation is captured exactly by 

the model of communication complexity. 

Communication complexity is strongly related to many other fields in com-

puter science in addition to VLSI chip design. The complexity of certain com-

munication problems known as Karchmer- Wigderson games gives the minimum 

depth of Boolean circuits [12]. Other examples of applications include streaming 

complexity [3], instance complexity [25] and proof complexity [6]. 

In a mathematician's view, this research area is interesting and challenging. 

The study of communication complexity is a beautiful integration of mathemat-

ics and computer science. Different mathematical techiques, including Fourier 

analysis [33] and generalization of matrix ranks and norms [15’ 38], have been 

extensively used to establish results in communication complexity. In the other 

direction, problems in communication complexity often have mathematical sig-

nificance. The log-rank conjecture, for example, is closely related to chromatic 

numbers in graph theory [23]. On another paper devoted to the conjecture [29], 
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Nisan and Wigderson have proved that low rank of a Boolean matr ix implies large 

discrepancy, i.e. every submatrix is 'highly unbalanced', a result independent of 

communication. 

1.3 Main ideas and results 

Deterministic communication complexity considers the scenario where two 

players, Alice and Bob, both with unlimited processing power, each holds an n-bit 

binary input string x and y respectively. Between them there is a channel which 

can be used for data transmission. They would like to cooperatively compute 

where the function f : {0，1广 x {0,1}" {0,1} is known to both 

beforehand. The goal is to minimize the number of bits needed to be transferred 

for the worst-case choice of x,y. This quantity is denoted as D(J). 

xe{0 , l } " y€{0, l }" 
channel “ “ 

Alice Bob 

Figure 1.1: The deterministic communication model 

We can associate the channel with several descriptive words: 

• I t is a bit channel, meaning that only traditional binary bits can be sent. 

• I t is a bidirectional channel, meaning that data transfer can go in both 

directions along the channel. 

• I t is a noiseless channel, meaning that no error is introduced by the channel. 

E x a m p l e 1.1. The very first example in Yao's paper is the PARITY function: 

PARITY{x,y) :== 0 | + M ) m o d 2 
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I t is easy to see that two bit transmissions suffice: Alice computes s := |2；| mod 

2 and sends s to Bob, then Bob can compute PARITY{x, y) = (s + |y|) mod 2. 

Hence, 

D(PARITY) = 0 ( 1 ) . 

Remark 1.1. The above PARITY is not exactly a function, but rather & family of 

functions on different input lengths. To be more rigorous we can write PARITYn 

for the function on n-bit strings, and the result in Example 1.1 would read: 

D{PARITYn) = 0 ( 1 ) . 

We omit the subscript just for simplicity of notation when no confusion occurs. 

This convention applies throughout the thesis. 

E x a m p l e 1.2. Let EQ be the equality function: 

{ 1 a X = y 

0 otherwise 

I t can be shown that the trivial protocol of letting Alice send all her n bits to 

Bob is the best that we can do in this case. So, 

D{EQ) = e(n). 

Yao [39] demonstrated that any deterministic protocol of f induces a monochro-

matic t i l ing of its matrix. Hence we have the tiling lower bound: 

T h e o r e m 1.1. D { f ) > [ l o g 2 x ( / ) l , where x { f ) is the number of monochromatic 

rectangles in the optimal tiling of the matrix. 

Mehlhorn and Schmidt [27] observed that x [ f ) can be lower-bounded by the 

rank of the matrix for f. This gives rise to the rank lower hound: 

T h e o r e m 1.2. For / 孝 0, D ( / ) > [ l o g 2 r a n k ^ f ) ] , the logarithm of the rank of 

the corresponding matrix over the reals. 
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Theorems 1.1 and 1.2 can both be used to obtain the result in Example 1.2. 

Under the nondeterministc model, instead of letting Alice and Bob com-

municate, an extra nondeterministic input string z £ { 0 , i s provided, which 

should be able to 'convince' the players in the case of f { x , y) = 1. The minimum 

value of k that makes i t possible is called the nondeterministic complexity N \ f ) . 

Alice ~ ^ ^ ~ Bob 
R i r v ^ m r 

Figure 1.2: The nondeterministic model 

A moment's thought reveals that nondeterministic protocols are related to 

monochromatic rectangle covering of the matrix for f . Indeed, the name of a 

l-rectangle containing the {x, y)-entry serves as a proof that f{x,y) = 1. Hence: 

T h e o r e m 1.3. N'^{f) =「logs ， �e r e C^{f) is the number of 1-rectangles 

in the optimal covering of the matrix. 

Aho, Ullman and Yannakakis [2] have shown a strong relationship between 

deterministic and nondeterministic complexities: 

T h e o r e m 1.4. D { f ) = 0 { N \ f ) N \ f ) ) , where f is the negation o f f . 

Under the (private coin) randomized model, instead of just looking at 

his input string, a player may also toss random coins whenever he makes a move. 

Hence, for the same input pair ix ,y) , the execution of protocol may result in 

different paths because of the different results of coin tosses. We even allow the 

protocol to make errors with a small probability. The (private coin) randomized 

communication complexity of f is denoted by R(J). 
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An alternative randomized model assumes that the two players share a com-

mon random string. The complexity measure in this public coin model is 

denoted by 

ta e R 't'B e R r e R 

/ \ 
Alice Bob Alice Bob 

x -€ {o , i r ye {0,1}" ？/€{o,ir 

Figure 1.3: The private coin (left) and public coin (right) randomized models 

Examp le 1.3. Rabin and Yao suggested a private coin protocol for EQ that 

takes O(logn) bit transmissions, using fingerprinting with random primes. This 

protocol turns out to be asymptotically optimal, which gives: 

R{EQ) = Q{logn). 

In the public coin model we can do better using inner product. Only two bit 

transmissions are required, which implies: 

R—[EQ) = 6 ( 1 ) . 

Quite surprisingly, a result by Newman [28] shows that the two randomized 

models do not differ very much: 

T h e o r e m 1.5. R(f) < R—(J) + O(logn). 

Yao also introduced the distributional model in [40]. Let fihea, probability 

distribution over the inputs, and e be the probability of error over (i. Yao has 

shown a beautiful relationship between { / i , e)-distributional complexity Dl^(f) and 

public coin randomized complexity 

T h e o r e m 1.6. E F � ( J ) = max^ 
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1.4 Recent development 

As mentioned in Section 1.2, exploration of new bounding methods and applica-

tions has always been a main concern in this field. 

Another focus of research is the quantum communication model, again 

introduced by Yao [41]. Here the bit channel is replaced by a quantum one, and 

the quantum communication complexity Q{f) is defined accordingly. Some basic 

results have been established in [16]; for instance, Q{f) < R{f), i.e. quantum 

protocols are at least as powerful as randomized ones. There are functions whose 

quantum complexity is significantly smaller than its randomized complexity [1]. 

For an introduction to the quantum models, please refer to [7] and [37]. 

More recent results can be found in the survey by Lee and Shraibman [19]. 

1.5 Structure of the thesis 

In Chapter 2, we introduce the deterministic model. The notion of protocol tree 

is introduced, and methods for obtaining bounds are discussed. 

In Chapter 3, we talk about the nondeterministic model, and prove the im-

portant theorem by Aho, Ullman and Yannakakis. 

In Chapter 4，we discuss the randomized model. We wil l prove the famous 

Yao 's Minimax Principle on distributional complexity. 

In Chapter 5，we define communication complexity classes) analogous to those 

in traditional computational complexity theory. 

In Chapter 6，we conclude our thesis wi th a list of further topics. 



Chapter 2 

Deterministic Communication 

Complexity 

This chapter deals w i th the deterministic communication model. We give the 

necessary definitions in Section 2.1. The t i l ing lower bound, the fooling set bound 

and the rank lower bound are introduced in Sections 2.2, 2.3 and 2.4 respectively. 

I n Section 2.5 we compare these bounds by their tightness and computational 

efficiency. 

2.1 Definitions 

As mentioned in Chapter 1，the deterministic model deals w i th the scenario where 

two players, Alice and Bob, have to cooperately compute f { x , y ) , where f : 

{ 0 , X {0, l}"" — {0 ,1 } is a function known before communication, and x,y 

are n-b i t input strings held by Alice and Bob respectively. To give a formal 

definition, we introduce the notion of protocol trees: 

D e f i n i t i o n 2 .1 . A deterministic communication protocol is represented by a bi-

nary tree. Each intermediate vertex v is labelled w i th py € {0 ,1 } indicating which 

player is responsible for this turn, and a function Cy : { 0 , 1 } " -)• { 0 ,1 } indicating 

13 
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what bit is to be sent according to that player's own input. Each leaf node I is 

labelled wi th a value vi e {0,1} . The cost of the protocol is the height of the 

tree. 

Every input pair (x, y) induces a path in the protocol tree. We start w i th the 

root node r. The bit Pr indicates which player is to send the first bit. I f Alice is 

to go first, she sends the bit Cr{x) to Bob, and the execution of protocol proceeds 

wi th the left subtree if Cr{x) = 0, or the right otherwise. The situation is similar 

if Pr indicates that Bob is to go first, in which case he computes c,.(y) and does 

the respective steps. This goes on unti l a leaf node I is reached, and vi is the 

output of the protocol. The maximum number of bits exchanged over all possible 

{x,y) is thus the length of the longest path, i.e. the height of the tree. 

E x a m p l e 2.1. We draw in Figure 2.1 the tree representation of the protocol for 

PARITY that we proposed in Example 1.1. We label Alice's nodes wi th p = 0, 

and Bob's wi th p = 1. The function c : { 0 ,1 } " -)• {0 ,1} is defined as: 

c{x) -.= mod 2. 

Intermediate vertices are represented by rectangles, and leaf nodes are represented 

by circles. 

1 , c 1 , c 

Figure 2.1: A protocol tree for PARITY 

Remark 2.1. The definition we give above slightly differs from Yao's original 

one. First, in Yao's definition, each player is to send one bit in turn. Also, the 
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protocol can stop when any party (not necessarily both) knows the output. Such 

differences leave the number of bits transferred unchanged asymptotically. 

Remark 2.2. Protocol trees of high cost can be complicated to draw. (See Ex-

ample 2.2.) Nevertheless, the properties of trees are often useful when proving 

bounds in communication complexity, for example Theorem 2.2. 

Remark 2.3. I t is possible to define communication complexity without notions 

of protocol trees at all. Arora and Barak define in their recent book [4] a com-

munication protocol as a sequence of functions. Their definition would be more 

complete if they mention the prefix-freeness property, i.e. messages exchanged 

should be self-delimiting, and no extra end-of-message symbol is required. (See 

[11, 32], for instance.) 

Let P{x, y) be the value vi of the leaf node reached for input {x, y). A protocol 

defines a function f : {0’ 1 广 x {0 ,1} " {0,1} , where f i x , y ) := P{x,y). As 

mentioned earlier, we are more interested in the opposite direction, i.e. we first 

have a function / , and then we find corresponding protocols. 

De f i n i t i on 2.2. A deterministic protocol P computes f if P{x,y) = f{x,y) 

for every i n p u t pa i r (x,y). The deterministic communication complexity of / , de-

noted by D(J ) , is the minimum cost over all deterministic protocols that compute 

/ : 

D{f) •= min {cost(P)} 
P : protocol that computes f 

A usual way to obtain an upper bound for D(f) is to give one possible protocol 

that computes f . Since D ( / ) is defined as the minimum cost, i t must be smaller 

than the cost of the proposed protocol. 

Examp le 2.2. Consider the following trivial protocol of cost n + 1 which works 

for any / : Alice sends all her n bits to Bob, and then with both x and y in hand, 

Bob computes f{x,y) and sends the result to Alice. Thus we have 

D ( f ) < n + 1 for all f . 
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For completeness, we draw out the tree representation of the tr ivial protocol 

on n = 1,2,3 in Figure 2.2. As in Example 2.1, Alice's nodes are labelled wi th 

p = 0, and Bob's are labelled with p = 1. The functions a“ b^ ： { 0 , { 0 ， 1 } 

(1 < i < n, a: € {0,1}^) are defined as follows: 

ai{x) := rci 二 the z-th bit of x, and 

bx{y) ••= f { x , y ) . 

n — n 
0, (H i_ I r - 1 

^ ^ r — I I I 
•Lk, i.i., ~ ^ r ^ 11 ^ n r ~ K J t J L ^ 

'' y O 1 1」"：H I r g r a ra ra Q Q Q Q 
©O® © 

Figure 2.2: The trivial protocol for n = 1’ 2’ 3 

We see that the number of nodes is roughly doubled when n increases by 1. 

That means the size of the tree grows exponentially in n. 

Examp le 2.3. On the other hand, we have seen a two-bit protocol for the 

PARITY function in Example 1.1, which implies that 

D {PARITY) = 2. 

The > direction follows from the fact that none of the players can deduce the 

function output alone, and therefore some message from the other side is needed. 

2.2 Tiling lower bound 

The results in this section, unless otherwise stated, are introduced by Yao [39]. 

D e f i n i t i o n 2 .3 . Denote N := 2\ The communication matrix Mj is the N-hy-N 

Boolean matrix whose (2;,y)-th entry is f{x,y). Note that there is a one-to-one 

correspondence between Boolean functions f and communication matrices Mf. 
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A very first observation on communication protocols is that a protocol parti-

tions Mf into disjoint monochromatic rectangles. Here by rectangle (or combina-

torial rectangle) we mean a submatrix M of Mf corresponding to 5" x T , where 

5,T C {0,1广.The rectangle is monochromatic if for all a: G S' and y eT, f { x , y) 

is the same. 

Remark 2.4. For simplicity, we sometimes make an abuse of notation of treating 

M and S x T as the same thing. For instance, we say that {x,y) € M when we 

mean i t belongs to S xT. 

T h e o r e m 2.1. A protocol for f partitions Mf into monochromatic rectangles. 

Proof. For a node v in the protocol tree，denote Ry as the set of inputs {x, y) that 

reach v while following their respective paths. We shall show that Ry corresponds 

to a submatrix My of Mf. Then we conclude that {Mi | I : leaf} is the part i t ion 

we want. 

We use induction. Clearly, for the root r , Rr corresponds to the entire matrix 

Mf. Now for any other node v ^r^ suppose its parent w satisfies the proposition 

that R^ induces a rectangle, i.e. H^ = S x T foi some 5 , T C {0’ 1}"-. Suppose 

further that v is the left child of w, and Pw indicates that i t is Alice's turn. Then, 

R, = { S x T ) n {(x,y) I c^W = 0} = (6'n{x | = 0}) x T 

so H^ corresponds to a rectangle M幻.The other cases (right child, Bob's turn 

etc.) are similar. 

Now Ml is monochromatic because each leaf I is labelled wi th a value vi e 

{0 ,1 } . Each entry of Mf belongs to exactly one Mi since each input pair {x,y) 

has a unique path that leads to one of the leaves. • 

E x a m p l e 2.4. Let us illustrate the situation wi th PARITY2, the PARITY 

function wi th n = 2. The first round of the proposed protocol induces a parti-

t ion of the matr ix into two rectangles, corresponding to {00，11} x {0,1}"" and 
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{01,10} X { 0 ’ l } n respectively. The second round further splits each rectangle 

into two. At the end of the protocol, we get a partition into four monochromatic 

rectangles. (See Figure 2.3.) 

00 01 1,0 11 00 01 10 11 00 01 11 
00 f o 1 1 0] nn m ‘ i 、i m oo jUD 丨》》他1 cm" 

11 Lo 1 1 o j "i i~lin 1 1 oil 11 ta Kl. q Q3L 

Figure 2.3: Monochromatic t i l ing for PARITY2 

Remark 2.5. I t is important to note that the converse of Theorem 2.1 is not true. 

Figure 2.4 shows a communication matrix with an optimal t i l ing which does not 

correspond to any protocol. Indeed, any horizontal cut violates a 1-rectangle, 

and any vertical cut violates a 0-rectangle. 

00 01 10 11 00 Gl 10 11 ,.001 01 10 111 
00 阳 卜 料 0 0 判 00 ti^Q^ESi 
01 l | / 0 _ ' o T v i M ^ t ^ ' M 〜 丨 同 0 1 1 、©/丨 10、； PI 
10 | i j | ' ' o 二b i i l F l i i h - 0 - • .J0~M~ 10 u、JQ .-/Q • ai ^ 
11 llo 0 0 11311 11 llQ '0 • Q ibl l 11 lio f 0 f 0 1 l - i 

Figure 2.4: An optimal ti l ing which does not correspond to any protocol 

Def i n i t i on 2.4. We use Xzif) to denote the minimum number of disjoint z-

rectangles needed to cover all z-entries in M / , z € {0,1} . Define also x i f ) '•= 

Xoif) + X i i f ) to be the minimum number of rectangles in any monochromatic 

t i l ing of MF. 

With these notations, we state the tiling lower bound (also known as the 

partition bound): 

T h e o r e m 2.2. D ( f ) > \ l o g , x i f ) ] =「log2(X。(/) + X i ( / ) )1 . 
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Proof. Theorem 2.1 shows that the number of leaves of a protocol is bounded 

below by xif)- The claim then follows from the fact that the height of a tree is 

at least the logarithm (base 2) of the number of leaves. • 

The following theorem shows that the ti l ing lower bound is at least quadrati-

cally close to the deterministic communication complexity: 

Theo rem 2.3. [2] D(f) < 

This is a corollary of Aho-Ullman-Yannakakis Theorem, which wil l be proved 

in the next chapter. 

As an application of Theorem 2.2，we show that the tr ivial protocol given in 

Example 2.2 is asymptotically optimal for most functions: 

Coro l la ry 2.4. D(f) = 0 (n) for almost all f . 

Proof. The upper bound is obvious due to the existence of the tr ivial protocol. 

The lower bound follows from a counting argument. There are at most 

rectangles in an N-hy-N matrix. Thus the number of functions f : {0, l}"" x 

{0 ,1 } " {0’ 1} with x i f ) < A; is at most 

Take k = 2"-2’ then the fraction of functions with x i f ) > is at least 

1 ^ ~ " “ 二 1 - 2 , 2 1 - 2 

which is very close to 1. Hence, for most of the functions, 

• 

Another simple corollary of the ti l ing bound is the rectangle size lower 

bound. Let mono(f) be the maximum of over all monochromatic rectangles 

M of Mf. ( |M| denotes the number of entries in M.) 
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C o r o l l a r y 2.5. D(f) >「-log? mono ( / ) l . 

P �f . X i f ) > 二 | M , | = ； T h e n use Theorem 2.2. • 

A sl ightly better lower bound can be obtained by considering the 0-entries 

and l-entr ies of Mf separately, noting that entries of different values cannot be 

in the same monochromatic rectangle: 

C o r o l l a r y 2.6. D{f) >「log2(饥。丄(/) + 爪 二 ( / ) ) " ! , —ere m o n o � denotes the 

fraction of z-entries in Mf covered by the largest z-rectangle, z € {0,1}. 

These lower bounds may give very poor results: 

E x a m p l e 2.5. Consider the greater-than function: 

I 1 if X > y (treating them as binary integers) 
GT{x,y):= 

0 otherwise 

V 

Both monoo{GT) and monoi(GT) are at least so w i th the rectangle size 

technique there is no hope of getting a lower bound better than D{GT) > 0(1) . 

However, as we shall show in Example 2.9，D{GT) = 0 (n ) . 

00 01 10 11 DO 01 1.0 11 
00 [0 0 W m M 00 P I 1 1 1" 
01 1__0 尋 Q' 01 ^ 0 1 _ 0 
10 | % T 1 •o 10 i 1 ho 敏 101 
11 i k s y 1 o j n i l 0 1,10〜 

Figure 2.5: Matrices for GT2 (left) and DISJ2 (r ight) 

I n many other cases, however, (asymptotically) optimal bounds can be ob-

tained: 

E x a m p l e 2.6. Let EQ be the equality function defined in Example 1.2. MEQ is 

the ident i ty matr ix , whose largest 1-rectangle has size 1. Hence, 

D{EQ) >「log2(l + 2n)l = n + l . 
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Recall that the t r iv ia l protocol gives D{EQ) < n + 1. Hence, we get the deter-

ministic communication complexity of EQ exactly: 

D(EQ) = n + l. 

E x a m p l e 2.7. Another example is the disjointness function: 
• 

0 if Xi = yi = I for some 1 <i <n 
DISJ{x,y) •= 

I 1 otherwise 

I t is not hard to prove that the number of 1-entries in MDISJ is 3打，and the 

maximum size of a l-rectangle is 2". Therefore, 

DiDISJ) > log2(l +芸)>log2^-n-Q(n). 

A n even weaker method uses the concept of discrepancy: 

D e f i n i t i o n 2.5. The (uniform) discrepancy of a Boolean function f is given by 

, � : = m a x 
M : submatrix of MF 

where M^ denotes the set of input pairs corresponding to the z-entries in M , 

2 ; g { 0 ’ 1 } . 

L e m m a 2.7. disc{f) > mono(f). 

Proof. The largest monochromatic rectangle in Mf has discrepancy mono{f). • 

C o r o l l a r y 2.8. D(f) >「-log? d isc ( / ) l . 

I t turns out that discrepancy is a useful tool in the study of randomized 

communication complexity. More details are given in Chapter 4. 

2.3 Fooling set lower bound 

In this section we introduce the idea of fooling sets, again suggested in [39]. 
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D e f i n i t i o n 2.6. A z-fooUng set for / is a set 5 C {0 ,1 广 x { 0 ,1 } " , satisfying: 

1. For every {x,y) G 5, f{x,y) 二 z. 

2. For every two distinct pairs (x i ,y i ) , {x2,y2) € 5, either /(a；!,2/2) ^ z 01 

+ 么， 

The above definition requires that any two distinct pairs in a fooling set do 

not belong to the same monochromatic rectangle. Hence, the min imum number 

of rectangles x ( / ) cannot be less than the size of any fooling set. 

D e f i n i t i o n 2.7. We use fool,{f) to denote the size of the largest z-fooling set, 

z € {0 ,1 } . Define fool(f) := max{f oolo(f), fooh(f)} to be the maximum size 

of any fooling set for f . 

We have arrived at the following fooling set lower bound: 

C o r o l l a r y 2 .9 . D(J) >「log2(/^W/) + /ooW/))l > f o o l { f ) ] . 

E x a m p l e 2.8. MEQ is the identity matrix, w i th the diagonal entries forming a 

1-fooling set of size 2". Hence, 

D{EQ) >「log2(l + 2")l 二 n + 1 . 

Again, w i th the tr iv ial protocol, we get exactly 

D{EQ)=n + l . 

E x a m p l e 2.9. For M g t , the 0-fooling set induced by the diagonal entries and 

the 1-fooling set induced by the entries just below them gives foolo{GT) = 2打 

and fooli{GT) = 2 ^ - 1 . (The < direction holds because fook{f) cannot exceed 

the number of rows in M f containing z-entries.) Thus as in Example 2.8, 

D{GT)=n+l. 
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E x a m p l e 2.10. Similarly, the anti-diagonal entries of MDISJ give a O-fooling set 

w i th 2" elements, so again we have 

D{DISJ) = n + l. 

E x a m p l e 2.11. Let HP denote the relatively-prime function: 

I 1 if x,y (treated as binary integers) are relatively prime 

0 otherwise 
\ 

The diagonal elements { (x , x) | x : pr ime} form a fooling set of size 

Ct {VN) . Hence also 

D{RP) > n{\ogVN) = n{n). 

The rectangle size bound and the fooling set bound can be considered as 

special cases of a more general theorem: 

T h e o r e m 2.10. (See [17].) Let be a probability distribution over { 0 , 1 } " x 

{ 0 , 1 } " . If every monochromatic rectangle M has measure fi{M) < 6, then 

D { f ) > \ - l o g , 6]. 

Proof. There must be at least | rectangles in any par t i t ion of Mf. Hence the 

t i l ing lower bound implies the claim. • 

From Theorem 2.10 we get the rectangle size lower bound by taking /x as 

the uni form distr ibut ion over all input pairs. The fooling set lower bound is 

obtained as follows: given a O-fooling set SQ and a 1-fooling set 5"i，let S be 

the disjoint union Sq U Si. Define (i as the uniform distr ibut ion over S (and 

(j,{x, y) = 0 for all other i x ^ y ) � S). Since any monochromatic rectangle can 

contain at most one element in 5 , its weight cannot exceed =丨创丄丨即.Thus, 

|5oH5i| 二「log2(l<S"。| + I'S'iDl, which gives our fooling set bound 

in Corollary 2.9. 
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2.4 Rank lower bound 

Here we give an algebraic way to lower-bound the communication complexity of 

f . The following results are introduced by Mehlhorn and Schmidt [27]. 

Recall that the rank of a matr ix is the dimension of its row space. We extend 

this notat ion and define the rank of a Boolean function: 

D e f i n i t i o n 2.8. 

rank(f) := rank{Mf) over the reals, and 

rank2{f) � = rank{Mf) over GF{2). 

L e m m a 2 .11 . x i f ) > rank{f) > rank2[f). 

Proof. Suppose we have found an optimal monochromatic t i l ing for Mf. Let Bi 

be the N-hy-N matr ix whose 1-entries are exactly those in the i - t h 1-rectangle 

in the t i l ing. Then we have 
Xlif) 

M f = Y , Bi. 
1=1 

Hence, by subaddit ivi ty of rank, 

Xlif) 

rank{Mf) < ^ rank(Bi) 
i=l 

Xlif) 

= E l 
i=l 

二 X l i f ) 

< x i f ) . 

For the second part of inequality, let r i , • • • ， d e n o t e the N rows of Mf. We 

first find a basis of k := rank2{f) vectors S := { r i ” . . • , r^^} for the row space 

over GF{2) out of the vectors { r i , . . . ,?•>}. This set is linearly independent not 

only over GF{2), but also over the reals. Hence, 

rank2{f) 二 /c S rank(f). 
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• 

This lemma, together wi th Theorem 2.2, suggests the following rank lower 

bound: 

T h e o r e m 2.12. D{f) >「log。ran/c(/)] >「log? ran/c2(/)l for f ^ 0. 

Note that log2 rank{f) is well-defined only when rank{f) > 0, i.e. / ^ 0. 

A better bound is obtained by considering also the 0-rectangles: 

C o r o l l a r y 2.13. D(f) >「log〗(2ran/c(/) - 1)1 for / 关 0. 

Proof. Consider / , the negation of / . Mf = J — Mf, where J is the all-one 

matrix. This gives 

rank(Mf) < 1 + rank(Mj). 

Similar argument as in the lemma shows that 

Xo(/) > rank{Mf). 

Hence, 

x i f ) = X。(/) + Xi(/) 

> rank{Mf) + rank{M/) 

> {rank{Mf) 一 1) + rank{Mf) 

> 2rank{Mf) - 1. 

Here, log2(2ran/c(/) — 1) is only defined when rank{f) > i.e. again f , 

0. • 

E x a m p l e 2.12. We demonstrate the use of the above theorem wi th GT. The 

rank of MQT is - 1, so 

D{GT) > [log2(2(2"-l)-l)l =e(n). 

The theorem also gives similar conclusions for EQ and DISJ. 
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Remark 2.6. The rank lower bound gives yet another reason why the tr ivial 

protocol is asymptotically optimal for most functions. Komlos [14] has proved 

that most Boolean matrices have full rank, hence D(f) > 「log。ranA;(i\<f/)]= 

Q(n) for most f . 

C o r o l l a r y 2 .14 . If all the rows of Mf are distinct, then D ( f ) > flogs • 

Proof. In view of the rank lower bound, it suffices to show that 

rank2{f) > n if all the rows of Mf are distinct. 

Indeed, if there is a basis wi th less than n vectors for the row space of Mf over 

GF{2), then the number of vectors in the row space {— the span of the basis) is less 

than 2打’ which is the number of distinct rows in Mf, This is a contradiction. • 

We may also upper-bound the communication complexity using the rank: 

T h e o r e m 2 .15 . D { f ) < rank2(f) + 1 < rank{f) + 1. 

Proof. We explicitly give a protocol for f wi th cost ran/c2(/) + 1. Before com-

munication, Alice and Bob agree on any basis . . . , v^} for the row space of 

Mf over GF{2). To determine the message to be transmitted, Alice first finds 

her row r^ in Mf. There is a unique way to write 

k 

= ^ O'iVi 
i=l 

where â  G {0,1} and the addition is done in GF{2). Alice then sends the a?s 

to Bob. On receiving the a^'s, Bob can recover r^ and hence determine the 

value of f { x , y) by looking at the corresponding entry. The total number of bits 

transmitted by Alice is /c = ran/c2(/). • 

I t is an open question whether there is a constant c > 1 such that D ( / ) < 

0(logC ran/c(/)) for every function f. This is commonly known as the log-rank 

conjecture. (See, for instance, [29, 34].) 
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2.5 Comparison of the bounds 

Among all the above-mentioned bounds, the t i l ing bound is the tightest, since all 

the other bounds are derived from it. The comparison between the fooling set 

bound and the rank lower bound is more interesting. There are cases where the 

fooling set bound works better, but there are also functions where the rank gives 

much tighter bounds. ~ 

E x a m p l e 2.13. Define the ALL function as follows: 
f 

1 if re = 2/ = r 
ALL{x,y)= 

I 0 otherwise 

I t has a 0-fooling set of size 2 and a 1-fooling set of size 1, so the fooling set 

bound says D(ALL) > 2. (And indeed, D(ALL) 二 2.) However, the rank of 

MALL is only 1, so the rank lower bound gives D(ALL) > 0，which is completely 

meaningless. 

Dietzfelbinger, Hromkovic and Schnitger [9] have made a thorough investi-

gation of the two lower-bounding techniques. They have shown that the lower 

bound obtained by the rank method, ignoring the constant factors, is always at 

least as strong as the fooling set bound. I t is not difficult (but a bi t lengthy) to 

show the following inequality: 

L e m m a 2 .16 . f o o l i { f ) < rank2{Mf 0 M / ^ ) = ( ran/c2(/))2, where 0 denotes 

the Kronecker product. 

Apply ing the lemma to / gives 

fookU) < (rank2(f)Y < (rar>Mf) + 

Hence, we conclude that 

fooloif) + foohif) < 2(ran/c2(/) + i f 
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i.e. 

「log2(ran/c2(/))l > a(log(/oo/o(/) + foohif))). 

On the other hand, there are cases where the rank lower bound gives expo-

nential ly better results than the fooling set method: 

E x a m p l e 2.14. Define the inner-product function as follows: 

IP{x,y) = '^Xiyi mod 2 

I t is known that rank{IP) = 2" - 1, hence D{IP) = G(n). On the other hand, 

rank2{IP) = n, which implies that fook(IP) + fooh[IP) < 2(n + 1)2. Thus, 

the rank method gives an optimal bound for IP, while the bound given by the 

fooling set technique is exponentially weaker. 

Another measure for comparison is the diff iculty of computing the related 

quantities. The rank of a matr ix can be efficiently computed using Gaussian 

elimination. For the other methods, however, no polynomial-t ime algorithm is 

known. Even the computation of mono[f), though seemingly simple, is NP-

complete [26]. 



Chapter 3 

Nondeterministic 

Communication Complexity 

In this chapter we study the nondeterministic communication model. Section 

3.1 contains the formal definitions. The largest possible gap between the deter-

ministic and nondeterministic complexities is explored in Section 3.2. Finally, 

the famous Aho-Ullman-Yannakakis Theorem, which relates the two models, is 

proved in Section 3.3. 

3.1 Definitions 

The materials presented in this section can be found in [19]. 

D e f i n i t i o n 3 .1 . T h e nondeterministic communication complexity of / , denoted 

by N ^ i f ) , is defined by: 

N \ f ) := mm{k \3A,B: {0 , I f x {0 , l } ' ^ { 0 , 1 } s.t. 

f i x , y) = lc^3ze { 0 , 1 } ' s.t. A{x, z) = B{y, z) = 1} 

z is often referred to as a witness, proof, or certificate. Intuitively, i t gives 

sufficient information to the players to conclude independently, w i th their own 

inputs, that f { x , y ) = 1. 

29 
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D e f i n i t i o n 3.2. The co-nondeterministic communication complexity of f , de-

noted by iV ° ( / ) , is defined by: 

N ' i f ) . . = � 

As mentioned in Chapter 1, nondeterministic communication complexity is 

related to rectangle covers (not partit ions), where overlaps are allowed: 

D e f i n i t i o n 3.3. C^ is defined as the min imum number of 2;-rectangles required 

to cover all z-entries of Mf, z G {0,1}. 

T h e o r e m 3.1. N ' ( f ) = flogs 

Proof. I t suffices to show that 

N ' { f ) = \ l o g , C \ f ) ] 

The case z = 0 then follows by considering / . 

We first prove the < direction. Let k := Alice and Bob first agree 

on an opt imal rectangle covering of Mf. Each of the 1-rectangles in the cover is 

given a unique index from {0, l , . . . , / c - 1}, which takes [logs bits. The witness 

z can then be the index of a 1-rectangle that contains (2:, 2/). Let A return 1 if 

and only if the 2 - th 1-rectangle intersects w i t h row x, and similarly let B return 

1 i f f that rectangle intersects w i th column y. Note that if f { x , y ) = 1，we can 

always find a z such that A(x,z) = B{y,z) = 1. However, if f { x , y ) = 0’ then 

{x,y) is not contained in any 1-rectangle, so for every z either A{x,z) = 0 or 

B{y,z) = 0. Hence, N \ f ) <「logsAf]. 

For the opposite direction, we write k := N^{f) and t r y to find a 1-covering 

w i t h at most 2赴 rectangles. Now for z G {0 ,1 }^ , take 

R. �= {(:r’;y) I 二 B(y，z) 二 1} 

= { x \ A ( x , z ) = l } x { y \ B { y , z ) = l ] 

Each R^ induces a rectangle M,. The collection {M^ \ z e {0,1”} covers all 

1-entries by definit ion of and this covering has size < 2''. • 
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C o r o l l a r y 3 .2 . D ( / ) > m3x{N^{f), N^{f)}. 

Proof. We just need to note that a partition can be viewed as a special case of 

covering (which has no overlapping), which implies 

c%f)<xM)-

Hence, 

N ' i f ) = [ log2C^(/) l 

< 「 l o & 2 X “ / ) l 

< r iog2x( / ) i 

< Dif) 

• 

Remark 3.1. As the name suggests, we could have defined nondeterministic com-

munication complexity as the lowest cost of protocols that can take nondetermin-

istic steps, and have at least one accepting path for every input pair satisfying 

f{x,y) = 1. However, the quantity derived in this way may not always be equal 

to our N\f). For the ALL function defined in Example 2.13, C^{ALL) = 1, so 

N ^ ( A L L ) =「log2 1] = 0. But certainly, being a non-constant function, ALL can-

not be computed by a protocol that involves no communication at all. Nonethe-

less, the values under the two definitions differ only by at most one. 

3.2 Gaps between iV�(/), N\f) and D{f) 

This section deals wi th the difference of nondeterministic and deterministic com-

plexities. The results are mentioned in [17]. 

We observe that the proof of Theorem 2.10 (concerning measures of monochro-

matic rectangles) works not only for rectangle partition, but also for covers. This 
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means that the familiar techniques of fooling set and rectangle size lower bounds 

stil l work under the nondeterministic model. 

Examp le 3.1. Recall the GT function defined in Example 2.5. As mentioned in 

Example 2.9, i t has a 0-fooling set of size and a 1-fooling set of size — 1. 

That implies 

C\GT) > 2" 

C\GT) > 

Hence, 

N^{GT) >「log2 = n 

N\GT)>\\og,{2--l)]=e{n). 

E x a m p l e 3.2. Recall the EQ function defined in Example 1.2. As shown in 

Example 2.8, fooh(EQ) = 2"，so C\EQ) = 2〜i.e. 

i V 询 ) = 「 l o g 2 2 ” 二 n. 

For the co-nondeterministic communication complexity, an obvious choice of wit-

ness z for f{x,y) = 0 is a position i , 1 < i < n, followed by a bit indicating 

whether {xi = 0 and i/i = 1) or {xi = 1 and yi = 0). In terms of rectangle cover, 

each of the two cases gives n 0-rectangles. (See Figure 3.1.) Hence C^{EQ) < 2n, 

i.e. 

7 V 。 _ 口 l og2 2nl 二「logsnl + 1. 

We see that there is an exponential gap between N^{EQ) and N\EQ) (and also 

D{EQ)). 

E x a m p l e 3.3. Next we look at the DISJ function defined in Example 2.7. Again 

the fooling set argument shows that 

N^{DISJ) = n. 
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00 01 10 11 00 01 10 11 
00 [1 _ p iiiQii 00 r i 1 1 1' 
01 M l 01 i 回 1 [ 1 
10 r ^ i i a 10 1 1 
11 _ _ i J 11 i i m t t v i i i 

Figure 3.1: Communication matrix for EQ2 (left) and DISJ2 (right) 

For the 0-entries, we take the witness 2; to be a position i, 1 < i < n, such that 

Xi = yi = 1. In the language of covering, this corresponds to a 0-covering of n 

rectangles. Hence C^(DISJ) < n, i.e. 

N'{DISJ) < ["log^nl. 

We have an exponential gap between N\DISJ) and N\DISJ) (and D{DISJ)). 

The gaps in Examples 3.2 and 3.3 are essentially the largest that we can get 

for any function, as the following theorem shows: 

T h e o r e m 3.3. D(f) < 2 ” ⑴ + 1, z G {0，1}. 

Proof. Again i t suffices to prove the claim for 2 = 1. Write k For each 

z G {0,1}知，Alice sends the bit A{x,z) to Bob. After that, Bob computes the 

B{y, zys and announces that f{x, y) = 1 iff for some z both z) 二 B(y, z) = 1. 

Correctness of this protocol follows from the definition of N \ f、 . The number of 

bits sent by Alice is = ⑴ . 口 

3.3 Aho-Ullman-Yannakakis Theorem 

This section is devoted to the important theorem by Aho, Ullman and Yan-

nakakis [2], which states that the deterministic communication complexity of 

f is dominated asymptotically by the product of the nondeterministic and co-

nondeterministic communication complexities: 

T h e o r e m 3.4. (Aho- Ullman- Yannakakis Thm.) D{f) = 0{N\f)N\f)). 
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Proof. The main insight is that a 0-rectangle cannot intersect w i th a 1-rectangle 

both in rows and in columns. (See Figure 3.3.) Hence, given any set of 1-

rectangles, a 0-rectangle either intersects in rows w i th < | of them, or intersects 

in columns w i th < | of them (or both). 

z ^ r m rrn^ r ^ 
0 0 0 0 ^ 

(a) (b) (c) (d) 

Figure 3.2: Intersecting (a) in rows, (b) in columns, and (c) no intersection (note 

that (d) is impossible) 

Figure 3.4 shows a protocol for Alice and Bob. Before communication, they 

first agree on an optimal rectangle cover, and give each of the 0-rectangles an 

index. 

Here we give a detailed explanation of the protocol. A is for 'alive', meaning 

that only the rectangles in A may contain {x,y). A ini t ial ly contains all 1-

rectangles in the cover, and is updated only in Lines 11 and 18. For Line 11’ since 

the R found by Alice intersects w i th row x, those rectangles not intersecting in 

rows w i th R cannot intersect w i th row x and therefore can be safely removed. 

For similar reasons, the removal of rectangles in Line 18 is also safe. 

Next we shall analyse its correctness, i.e. all values returned are correct. The 

only value-returning instructions are in Lines 4 and 20. On reaching Line 4, A is 

empty, meaning that (x, y) is not contained in any 1-rectangle. So, i t is correct to 

deduce that f { x , y ) = 0. On reaching Line 20，both Alice and Bob fail to find an 

R, which means (by the 'main insight') that no 0-rectangle intersects w i th row x 

and column y at the same time. Thus, f { x , y ) = 1. 

Now, we need to show that the protocol indeed stops and returns an output. 

We observe that every rectangle-removal instruction (Lines 11 and 18) reduces 

the size of ^ by > Hence, the process must stop in「logs = i V i ( / ) + l 
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Line no. Instruction 

1 I n i t i a l i z e : = tke s et of a l 1-rectangles in the co ver 
2 Repeat lines 3-20: 

3 empty, 

4 Coadude t h a t取 j ) = 0 and the protocol is fMshed 
5 Otherwise, 
6 Alice tries to find a O-rectangle R in the cover snck that: 
7 I t intersects with, row x, and 
8 I t intersects in rows wit i i < of the 1 -rectangles in 
9 I f such, an i? is foimcL 

10 AEce sends tke index of 及 to Bob, and 
11 Rectangles NOT intersecting in rows with R are removed from A-
12 Otherwise^ 

1 3 Alice asks Bob to find a O-rectaagle i? m tbc cover sadi that: 
14 I t intersects witk colimm》', and 
15 I t intersects in columns vwtk < Yi of tlie 1-rectangles m^. 

16 I f fo imd: 
17 Bob sends the index of R to Alice: and 

18 Rectangles NOT intersecting in columns with R are removed 
from./^. 

19 Otlierwise, 

20 Condiide tliatX-^s J) = 1 and tlie process is fimslied. 

Figure 3.3: The protocol for Aho-Ullman-Yannakakis Theorem 

rounds. 

Finally, we determine the cost of the protocol. With in each round, it takes 1 

bit for each player to indicate whether he or she succeeds in finding an R, and 

another N°{f) bits for the index of R. Hence the cost is bounded above by 

[ N \ f ) + 2 ) { N \ f ) + 1) = 0 { N \ f ) N \ f ) ) . 

• 
Coro l l a r y 3.5. D ( / ) 〈 0[\og^x{f))-



Some Results in Communica.tion Complexity 36 

Proof. We simply note that N ' ( f ) <「log2X(/)"l. (See Corollary 3.2.) • 

We conclude this chapter by showing that any one of the iV之(/) in the above 

theorem can be replaced by the logarithm of the rank: 

T h e o r e m 3.6. [22j D(f) = 0 { N ' { f ) logrank{f)), z G {0，1}. 

Proof. Once again we only prove i t for 2 二 1. The key observation this t ime 

is as follows: suppose we have a Boolean matr ix R of rank t. Suppose M is a 

O-rectangle corresponding to 5 x T , and let MA be the submatrix of R consisting . 

of only the rows 5, and MB be the submatrix consisting of only the columns T. 

(See Figure 3.4.) I t is easy to see that rank{MA) + rankiMs) < t. This implies 

that either rank [MA) < | or rank (MB) < 

HT—I f-T-H 
1 1 [ I 
I 

mj 
Figure 3.4: Meaning of MA and MB in the proof of Theorem 3.6 

A protocol for Alice and Bob is presented in Figure 3.6. Note that i t is 

essentially the same as that for Theorem .3.4’ only w i th the set of rectangles A 

replaced by t. Analysis as in Theorem 3.4 proves our claim. 

• 

Remark 3.2. Theorems 3.4 and 3.6 can also be proved by solving recurrence 

relations on the number of leaf nodes. See [17] for more details. 
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Line no. Instruction 

1 Initialize t — ranUj). 
2 Repeat lines 3-20: 

3 I f / = 0, 

4 Conclude that / x ^ j ) = 0 and the protocol is finislied 

5 Otherwise, 
6 Alice tries to find a O-rectangk R in the cover stick that: 

7 It intersects mtb.rowx, and 

8 RA Has rank < T 

9 If such. aniS is founds 

10 Alice sends index of R to Bob: and 
11 Set?.- rajikj^A)-

12 Otherwise: 
~13 Alice Bob to find a 0-rectangle ̂  in the cover siidi te: 

14 It intersects witli column 乂 and 

15 Jgj lias rank < 1 

16 If foimd, 

17 Bob sends the index of R to Alice, and 

18 S et. t := rank(R^ 

19 Otherwise: 
20 Coridiide tkslfx,}') = 1 and the process is finished. 

Figure 3.5: The protocol for Theorem 3.6 



Chapter 4 

Randomized Communication 

Complexity 

We turn our attention to the randomized communication model, where the players 

are allowed to 'toss random coins'. Two useful theorems are stated in Section 

4.1 as preliminaries. The rigorous definition of randomized protocols is given in 

Section 4.2. Section 4.3 shows that the exact value of the error constant in the 

definition is not important, and Section 4.4 talks about the largest possible gap 

between the deterministic and randomized complexities. In Section 4.5 the public 

coin communication model is introduced, and its relationship wi th distributional 

complexity is explained in Section 4.6. 

4.1 Preliminaries 

We first state two famous theorems that wil l be useful in later sections. 

T h e o r e m 4.1. (Chernoff bound) Let Xi，X2, ••• ,Xt be independent Poisson 

trials with P r [ X i = 1] = and P r [ X i = 0] = 1 - pi- Then for X := J^Xi and 

ji ：二 丑闪， f o r any 6 > 0, 

P r [ X 〉 ( l + % ] < ( ( i • 

38 
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Chernoff bound gives exponential falloff of the tail probability with distance 

from the mean. For our purpose, we shall use the following simplified version: 

C o r o l l a r y 4 .2 . With the assumptions in Theorem J^.l) for any 6 <2e — 1, 

Pr[X > (1 + S)fj] < e x p ( i 印 ) . 

The next theorem is one of the most important results in game theory: 

T h e o r e m 4.3. (Von Neumann's Minimax Theorem) For any finite two-

person zero-sum game, there exists a unique value V and a pair of mixed strategies 

fi and V such that: 

1. Player 1 can guarantee that the expected payoff is at least V by applying f i , 

no matter which strategy Player 2 uses, and 

2. Player 2 can guarantee that the expected payoff is not more than V by ap-

plying V, no matter which strategy Player 1 uses. 

The proof of Chernoff bound can be found in [10]. For an introduction to 

game theory, see [31]. 

4.2 Definitions 

Instead of tossing coins as they go as mentioned in Chapter 1, we may also let 

the players make all necessary coin tosses before communication. Having said 

that, we have implicit ly assumed that the number of random bits involved in a 

randomized protocol is finite. This assumption is reasonable because we expect 

a randomized protocol to have a cost no larger than the tr iv ial protocol, so we 

should not need too many random bits. 

Here we give a definition of randomized protocol trees analogous to Definition 

2.1 of deterministic protocols: 
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D e f i n i t i o n 4.1. Let R be the (finite) set of random strings, and �b be proba-

bi l i ty distributions over R. A randomized communication protocol is represented 

by a binary tree. Each intermediate vertex v is labelled with py e {0,1} indicating 

which player is responsible for this turn, followed by a function ĉ； : { 0 , 1 } ' ' x R ^ 

{0’ 1} indicating what bit is to be sent according to the player's input and his 

result of coin tosses. Each leaf node I is labelled with a value vi G {0,1} . The 

cost of the protocol is the height of the tree. 

The execution of randomized protocols resembles that of deterministic ones, 

except that now random strings are involved. We use TA and TB to denote the 

random strings for Alice and Bob respectively, TA is drawn from R according to 

UA, and TB is drawn according to VB- These are done independently before the 

players communicate. The action to be taken at each node v is determined by 

the value of py, and correspondingly Cy{x,rA) or c幻(y，rs). 

D e f i n i t i o n 4.2. A randomized protocol computes f with error e if for every input 

pair {x,y), i t returns f{x,y) with probability > 1 - e. Denote 

R ( f ) min {cost(V) | V computes f wi th error e} 
V : randomized protocol 

T h e randomized communication complexity of f is then defined as 

m ：二丑i/3(/)-

E x a m p l e 4.1. Recall that the EQ function defined in Example 1.2 satisfies 

D{EQ) = n + 1. We now give a randomized protocol due to Rabin and Yao 

whose cost is O(logn). 

Treat x, y as binary integers. Alice picks one of the first n? primes p uniformly 

randomly. She sends i t to Bob, followed by the value of x mod p. Bob then 

concludes that x = y iS x mod p = y mod p. 

The protocol errs only if x y and x mod p = y mod p, i.e. \x - y| is a 

non-zero multiple of the randomly chosen p. Since the number of prime factors 
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of \x-y\ cannot exceed log2 < n, the probability of error of the protocol is 

less than ^ = For the cost of the protocol, we recall the well-known fact that 

the number of primes less than Â  is Q ( y ^ ) , hence the n^-th prime is upper-

bounded by, say, That means its binary representation has O(logn) bits. 

The value of x mod p is less than p, so it also takes O(logn) bits. Over all, we 

have shown that 

Ri/n[EQ) < (9(logn) + O(logn) + 1 = O(logn). 

E x a m p l e 4.2. We also have 

i? (Gr ) 二 O(logn). 

Here we show a weaker upper bound of 0(log^ n). We do binary search on the 

most significant bit that x and y differs. For each phase of the search, Alice and 

Bob run the randomized EQ protocol on the first half of their input bits. If i t 

returns 0 (i.e. not equal), they go to the next phase wi th the first half of the bits; 

otherwise, they proceed wi th the second half. In each phase the number of bits 

involved is halved. The process stops when only < 8 bits are left, and the two 

players then exchange those remaining bits to determine their final output. The 

cost of this protocol is 

O(logn) • [ logn l =(9(log^ n). 

The probability of error comes from the error of the EQ protocol. I t is bounded 

above by 
1 1 1 1 + 2 + . . . + n/8 z n/4 1 
——I h … + - < < = 
n n/2 8 - n — n 4 

4.3 Error reduction 

A first-time reader may feel strange why we take e = | but not other values in 

the definition of randomized communication complexity. Here we show that the 
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actual value of e is not important, as long as 0 < e < This result is mentioned 

in [17]: 

T h e o r e m 4.4. For 0 < e' < e < ^ R^'if) = O ( H “ / ) . log 去）. 

Proof. Let P be a randomized protocol for f of cost k = R^if) wi th error e. The 

idea is to run the protocol t = 0 (log times, and take the majori ty result to 

be the final output. 

Let X i be the indicator of the event that the i - th tr ia l returns a wrong answer, 

l < i < t . Take J :二去一1，and t :二 ^*^，and apply Chernoff bound to upper-

bound the error of our scheme: 

Pr = Pr \ j 2 X i > { l + 5)et 
i/ JLI ^ "* 

< exp(-etJV4) 
( 4 In 去 , 2 . \ 

二 exp 卜 部 ） 

= e ' 

The cost of our scheme is at most 

4In A ( \\ 
kt < R.{f). , 1 "1、2 二 〇 U f ) - l o g - . 

• 

C o r o l l a r y 4.5. For 0 < e < R^f) = O {R{f) • log 全). 

The following corollary can be deduced by replacing e' by • in the proof of 

Theorem 4.4: 

C o r o l l a r y 4.6. i ? i / „ ( / ) 二 0 [ R [ f ) . logn). 

4.4 Exponential gap with D{f) 

Obviously, R{f) < D{f) for all / . In Example 4.1 we see that the gap between 

R(EQ) and D(EQ) is at least exponential. The following theorem from [17] 

shows that the gap cannot be larger than exponential: 
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Theorem 4.7. R(f) = Q(logB(f)). 

Proof. Let P be a randomized protocol of cost k = R{f) that computes f wi th 

error e =丄.We conduct a deterministic simulation of V with cost 0 ( 2 ” , hence 
3 

proving the claim. 

For each leaf node I oiV, Alice computes the probability of reaching it from 

her side: Alice locates all the intermediate nodes that correspond to her turns 

within the path leading to I, finds for each of those nodes the probability (over 

the random strings, wi th respect to her input x) of staying in that path, and 

computes their product. The value she finds is 

A ：二 pr e {0, l}"，rs G R s.t. the leaf I is reached | x]. 
7•广 IM 

Bob can similarly compute the probability pf from his side: 

pB Pr [3a： G {0,1 广’ ta e R s.t. the leaf I is reached | y]. 

The probability of reaching I for their input pair {x,y) is then 

vi=vt-pf-

By definition of P，the value z G {0,1} for which the sum ofp/'s over the z-labelled 

leaves is greater than | is the correct value of f{x,y). 

The only problem now is that we cannot send the exact value of real numbers 

which may take infinitely many bits. The remedy is to send only /c + 3 bits of 

accuracy. The rounding error for pi is bounded above by the rounding error of 

pf^ which is at most 2 - ( 科 � ） | •2"''. The number of leaves is at most so the 

total rounding error for the sum of probabilities is at most 2'= - • 2 — = This 

value, added to the error of P of e 二 is sti l l less than so Bob can get the 

final output correctly. The total number of bits transmitted by Alice is bounded 

above by 
:2、（/c + 3) = 0(2”：=C>(2^W). 

• 
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E x a m p l e 4.3. We have shown in Example 4.1 that R{EQ) = O( logn) . Together 

w i th the above theorem, we conclude that this bound is asymptotically t ight: 

R{EQ) = Q{\ogn). 

4.5 The public coin model 

The discussion above assumes that Alice and Bob have their own private random 

coins, and they cannot see the other's result of coin tosses. Here we study the 

public coin model, in which the two players share a common random string. 

A neat way to study public coin protocols is to treat them as collections of 

deterministic protocols, and the public random string tells the players which one 

of them they are to use. Since the number of random bits is finite, the size of the 

collection is also finite. 

D e f i n i t i o n 4 .3. A public coin protocol V is a, collection of deterministic protocols 

{ P i , . . • , Pf.} associated wi th a probabil ity distr ibution u. The cost of V is defined 

by 

cost(V) � = m^{cost{Pi)}. 

We say t ha t V computes f with error e i f for al l {x,y), 

eTTf{V,x,y) -.= Pr [ P i { x , y ) � f i x , y ) ] < e. 

D e f i n i t i o n 4.4. 

R r \ f ) � = m i n {cost{V)丨 errf[V,:i:,y) < e for a l l 
V : public coin protocol 

The randomized communication complexity of f under the public coin model 

is then 

i?一⑴：=RP^llU). 
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I t is straightforward to check that these definitions correspond exactly to those 

of the private coin model, except that the players now jointly use one random 

string. We note that R p � � < R � because a private coin protocol can be 

turned into a public coin one by simply taking the concatenation of rA and r ^ as 

the public string. 

Example 4.4. Consider the following randomized protocol for EQ wi th a public 

random string z drawn from {0，1}" uniformly: Alice computes the inner product 

[x, z) over GF{2) and sends this one-bit result to Bob. Bob then announces x = y 

if and only if {x,z) = {y, z). 

This protocol fails only when x^y and {x, z) = (y, z). Note that 

Pr {{x,z) = {y,z) I 2；台 ) = i 
2'^uniform � 

Repeating the protocol with a different z reduces the error probability to = 

I . Hence, we conclude that 

RP�(EQ) 二 0(1). 

As expected, EQ (once again) demonstrates the largest possible gap between 

the two models of randomized communication. The following important theorem 

by Newman [28] says that we can turn a public coin protocol into a private coin 

one using only O(logn) extra bits: 

Theo rem 4.8. For 0 < e' < e < ^ with e + e' < 

< R r ' i f ) + O ( l ogn + log 去) . 

Proof. Let P be a public-coin protocol wi th cost BP�(J). For each deterministic 

protocol in the corresponding set { P i , … ’ Pfc}，for each {x,y), define Xi{x,y) as 

the error indicator: 

X � � , y ) � = 
0 otherwise 

V 
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The idea is to pick t of the Pi's randomly (possibly w i th repetit ion), and construct 

a private coin protocol wi th the resulting collection {只！，• • • ,Pi t } - Alice draws an 

integer j f rom { ! , • • • uniformly randomly, sends it to Bob, and then they run 

Pi. on {x,y). We need to show that there is some choice of t = and 

Pip …，Pit such that the probabil i ty of error for the corresponding construction 

is at most e + e'. 

Write (5 f Take t := Then for any 

- -丄 -
Pr - X i i x , y ) > e + e' = Pr - X , > (1 + (̂ )e 

L亡 � Li � 
< exp(—et沪/4) 

( Sen- In 2 「？/乂、 

= e x p -e rr • 0 /4 

V ^ / 
= e x p ( — 2 n In 2) 
二 

Pr[3(a:,?/) s.t. prob. of error > e + e'] < ^ ^ P r jXi{x,y) >€ + e' 
L 

< YX"" 

=2打.• 2-2" 

二 1 

This implies there is a non-zero probabil i ty that a random construction has the 

desired properties, so there must exist at least one satisfying construction. • 

C o r o l l a r y 4.9. R(f) < R—⑴ + O( logn) . 

4.6 Distributional complexity 

We tu rn our attention to the distr ibutional model, where randomness is intro-

duced in the input. 

D e f i n i t i o n 4.5. For a probabil i ty distr ibut ion over the inputs, for e > 0, define 
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the (/.i, e)-distributional communication complexity as 

D^(f) := m i n {cost{P) | MP{x,y) + f { x , y ) } ) < e}. 
P : deterministic protocol 

The celebrated Yao，s Minimax Principle [40] demonstrates a beautiful 

relationship between distributional complexity and randomized complexity: 

T h e o r e m 4.10. B P � ( J ) = max^ D ^ i f ) . 

Proof. The > direction: Let k := then there exists a randomized pro-

tocol V wi th cost k such that for all {x,y), the probabilitiy of error < e. Then 

for all 11, the expected error over all {x,y) is at most max^,^ errf{V,x,y) < e. 

That means we can find a deterministic protocol Pi in its collection such that the 

probability of error over ^ is < e. This Pi has cost < cost{V) = k. 

The < direction: Write k := max^ This implies for all /i, there exists 

deterministic protocol P of cost < k such that the probability of error according 

to /•i is at most e. Consider a two-person game where Player 1 is to pick an input 

pair {x,y) and Player 2 is to pick a deterministic protocol P of cost < k. Player 

1 gets a payoff of 1 from Player 2 if P{x, y) f { x , y), and gets 0 otherwise. Now 

we can apply von Neumann's Minimax Theorem (Theorem 4.3) to this finite two-

person zero-sum game and conclude that there exists a unique value and some 

distributions /i, such that 

1. If Player 1 picks his {x,y) according to , he can guarantee that the ex-

pected payoff is at least V", no matter what P is, and 

2. If Player 2 picks his P according to u ,he can guarantee that the expected 

payoff is at most 1/, no matter what (a:, y) is. 

The first point says that there exists a distribution / i such that for all deter-

ministic protocols P of cost < k, the probability of error is at least Hence, 

by definition of /c, we must have e > T/. Now the second point states that there 
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exists a distribution v on the collection of all deterministic protocols of cost < /c, 

so: 

k > > 

• 

An important result from this theorem is a tight bound of the randomized com-

munication complexity of the DISJ function defined in Example 2.7. Razborov 

[35] has explicitly given a distribution ^ for which D'^{DISJ) = Ct(n) for suffi-

ciently small e. This implies 

R{DISJ) = 0(n) . 

I t is interesting to note that the discrepancy method introduced in Chapter 2 

is related to L>f(/). 

Def in i t i on 4.6. Let M be a submatrix of Mf. Denote 

disc^iMJ) := \fi{Mo) - fi(Mi)\ 

where Mz is the set of input pairs corresponding to the ^-entries in M , z e {0,1} . 

T h e discrepancy of f according to j j , is 

discf•⑴�= max disc^{M, / ) . 
M : submatrix of Mf 

I t is clear that the uniform discrepancy disc{f) defined in Definition 2.5 cor-

responds to The followiiig theoiem, also proved in [17], shows that 

discrepancy provides a way to bound distributional complexity: 

T h e o r e m 4 .11 . For every distribution f j , and 0 < e < 

…y) ̂  h ( • ) . 
Proof. We recall the basic fact that a deterministic protocol for f partitions Mf 

into rectangles. Here since we allow errors, the resulting rectangles Mi of a leaf I 
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may not be monochromatic. We use Ri to denote the set of all inputs that reach 

I, as in the proof of Theorem 2.1. 

Let P be a deterministic protocol with cost k = D^ 一 J J ) and computes f 

with probability of error (according to /i) at most | - e. We have 

, f l \ f l \ 

< = n �- f ^ P ( � �y ) + 

= Y ^ y) = f i x , y), Or, y) G Ri} - y) ^ f ( x , y), [ x , y) € Ri]) 
I : leaf 

< ^ H f i x , y ) = P{x,y), {x,y) G Ri] - " { / (T ’ y ) {x,y) G Ri}\ 
I ： leaf 

= d i s c f { M i J ) 
I : leaf 

< E disdv") 
I : leaf 

< 2、discf(f) 

Hence, 

• 

We end this chapter with a proof of 

R(IP) = G(n) 

where the inner-product function IP is defined in Example 2.14. 

Examp le 4.5. [8] We shall show that cJiscun丨f。rm(/p) g and therefore 

「 广 2e、"！ 「n 1 1 1 
DpniP) > log2 j "̂  — logss + l . 

Construct a sign matrix H from Mjp through replacing each 0-entry by -1. 

This H is the famous Hadamard matrix under Sylvester's construction, which is 
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known to satisfy a number of nice properties. In particular, H H ^ = 2'^-l2n, whose 

only eigenvalue is 2", implying that ||iJ||2 = Now for any submatrix M 

corresponding to S xT,S,T C {0’ 1}", let x^ , XT ^ {〇’ 1 } ^ be the characteristic 

(row) vectors of S and T respectively. Then, 

c^iscunif_(M，LP) = Y^ H{x,y) 

xeS,yeT 

= 2 丸 Ixs.丑 

= 2 丸 v W ^ v l ^ 

< 2-2" • v ^ . V^ • V^ 

二 2 一 

Hence, 
^•^^uniform/jp) = mBX {M J P) < IT �� \ 

M 



Chapter 5 

Communication Complexity 

Classes 

In this chapter we categorize communication problems into different complexity 

classes. In Section 5.1 we define the classes, and in Section 5.2 we introduce the 

polynomial-time hierarchy in communication complexity. Section 5.3 gives the 

notions of reducibility and completeness. 

The theorems stated in this chapter, unless otherwise specified, are due to 

Babai, Frankl and Simon [5]. 

5.1 Basic classes 

We first define classes containing the functions 'efficiently solvable' in different 

models. We consider complexities of polylog{n) (i.e. O(log'^n) for some constant 

c), which is substantially smaller than the linear complexity of the tr iv ial protocol, 

as efficient. 

51 
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D e f i n i t i o n 5.1. 

pec := {f � D { f ) = polylogin)} 

iVpcc {f � N \ f ) = polylog(n)} 

coNPcc := {/ ： N^{f)=Volylog{n)} 

丑ppcc _ {/ ： R{f) = polylog{n)} 

We see that Aho-Ullman-Yannakakis Theorem (Theorem 3.4) implies that: 

p e c = ^pcc 门 c o i v p c c . 

The three functions EQ, DISJ and GT, wi th their negations, show that 

pcc, Npcc、coNPcc and BPPc。are all different. 

5.2 Polynomial-time hierarchy 

We can also define analogs of the polynomial-time hierarchy. The motivation 

comes from the definition of N \ f、 (De f in i t i on 3.1): 

N\f) := min{/c I 3式 B : { 0 ’ i : r x {0，1广 ~>{0， l }s . t . 

f { x , y ) = 1 ^ 3 z e { 0 , l } ' ' s.t. A{x, z) = B{y, z) = 1} 

In other words, f e NP'" if and only if Bk = polylog{n), 3A,B : { 0 ,1 } " x 

{0, {0 ,1 } such that 

f i x , y) = 1^3ze {0，1}知 s.t. A{x, z) = B(y,z) = l 

We extend this definition and say that a function f is in S f if 3/ci, • • • , h = 

-polylogin), 3A,B : { 0 ,1 } " x {0) 1}知i x . . . x {0,1}'=^ -> {0 ,1 } such that 

f{x,y) = l 分 3216{0，1产,於2€{0，1产，3么3€{0,1产’... 

s.t. A(x , • •. ’ = B{y , 21,. . . ’ Zi) = 1. 
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Define Uf as coEf, i.e. the negations / of functions f in E f . The E f s and 

n f s form the polynomial-time hierarchy in communication complexity, some-

times denoted by PH。。. 

Here we give a formal definition using notations of communication matrix 

based on the above discussion: 

Def in i t i on 5.2. Let S『be the set of functions that are 0 on some rectangle M 

and 1 everywhere else) and n『：二 coHf be the collection of their negations. Now 

define: 
2polylog{n) 

S f •.= \ f : f = V 卜 and 

, 、 
2po£y£os(n) 

n r : = / : / = A 力 

The following is immediate from the definition (as expected): 

E f - iVPcc) and n 『 = c o S f for any i. 

I t is interesting to note that the idea of the proof of Gacs-Sipser Theorem 

(Theorem 7.15 in [4]) stil l works here. Hence we have the following result that 

relates BPF。。to the polynomial-time hierarchy: 

Theo rem 5.1. BPP� C S f n Uf. 

I t is an open question whether Y^f = T l f I t is also not known whether IP is 

in PHcc. Figure 5.1 shows our current 'world picture'. 

5.3 Reducibility and completeness 

Now we give the concepts of reducibility and completeness, which are useful in 

the study of the 'relative hardness' of different functions: 
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• TP 一 .、 

、、. 
I 。2 /' ‘、,、、 么 
\ / • 、 、 . 、 / 
\ / 、、、•、， / \ / 、、•、、、 / \ 、、、、 : 

\ , 一....、.•、‘、\ \ / 

\ \ / BPP^ \ \ / 
\ \ , � . rT V""" \ \ / 

/ , > : 、 : ， \ • 牛 Y / 
\ l , Z ' P 、 ) M l ^ J / 

Figure 5.1: The current 'world picture' in communication complexity 

D e f i n i t i o n 5.3. / is reducible to g (denote / < i f there exists m = polylog{n) 

and h” hy : {0,1 广 — { 0 , s u c h that 

/0，y) = 1 咖 ⑷ ’ hy[y)) = 1. 

The following properties are easily verified: 

L e m m a 5.2. If f < g and g < h, then f < h. 

L e m m a 5.3. If f < g and g £ P"；，仇en f G P江 also. 

Proof. The claims follow directly from the fact that 

m(log2 二 rnk\log2 n产=polylog{n). 

• 

Remark 5.1. We may replace P。。with NP。。etc. in Lemma 5.3, and the result 

st i l l holds. 

D e f i n i t i o n 5.4. For a class C, g is C-complete if g e C and 

f <gior all f eC. 

Intuit ively, C-complete functions are the 'hardest' among all functions in C. 
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T h e o r e m 5.4 . DISJ is coNP""、complete. 

Proof. We have proved in Example 2.3 that N^{DISJ) <「logs^l. I t remains 

to show that every f e coiVPcc reducible to DISJ. Write m := N\f、= 

polylogin). By definition of co-nondeterministic complexity, we can cover all 0-

entries of Mf wi th 0-rectangles. Now define ha, : {0，1 广 — { 0 ， s u c h that 

the i-th bit of K{x) is 1 if and only if row 3； intersects wi th the i-th 0-rectangle. 

Define hy similarly on columns. Then, 

DISJ{h^{x), hy(y)) = 1 ^ jBi s.t. the i - th bits of K{x) and hy{y) are both 1 

no 0-rectangle intersects wi th both row x and column y 

{x,y) is not contained in any 0-rectangle 

^ /0，"）= 1 

• 

L e m m a 5.5. DISJ is not reducible to EQ. 

Proof. Suppose otherwise, i.e. we can find Jhc, hy such that 

DISJ{x,y) = 1 "a：⑷=hy{y). 

Note that DISJ((y\y) = 1 for all y, hence 

W O " ) = hy(y) for all y. 

By symmetry, we also have 

h^{x) 二 hy((r) for all X. 

These imply, in particular, 

h “ r ) = hyion = = h y { r ) 

which is incorrect since _D/SJ(1 〜 1 ” 1- 口 

We have shown that DISJ is coÂ P'̂ -̂complete but EQ is not; in this sense 

DISJ is 'relatively harder' than EQ. 



Chapter 6 

Further topics 

This concluding chapter lists some topics in communication complexity which the 

author finds interesting. 

6.1 Quantum communication complexity 

In this model, the players are allowed to transfer qubits instead of classical bits. 

The quantum communication complexity Q{f) is defined accordingly wi th error 

probability just as before. 

I t has been proved in [16] that Q{f) < R{f), and for most functions Q{f) 二 

0(n) . (This implies R{f) is also linear for almost all functions.) In particular, 

Q(JP") = Q(n), so quantumness does not help for the inner-product function. 

Nevertheless, there are many interesting cases where quantum protocols out-

perform their randomized counterparts significantly. I t has been recently shown 

in [1] that Q(DISJ) = 0 ( V n ) , which is quadratically better than R{DISJ)= 

e(n). 
The following table shows the asymptotic behavior of the communication com-

plexities of EQ, DISJ and GT under different models: 

56 
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/ ~ ~ ^ DISJ GT 

D { f ) e(n) e(n) e(n) 
N \ f ) G(n) e(n) e(n) 
N\f) G(logn) 0(logn) e(n) 

R{f) e( logn) e ( n ) e ( l o g n ) 

Q[f) 9(logn) 9(v^) e(logn) 

Table 6.1: Asymptotic behaviour of the complexities of EQ, DISJ and GT 

6.2 More techniques for bounds 

Various mathematical tools have been used in the study of communication com-

plexity. In [33], Raz has suggested using Fourier analysis to give bounds in 

randomized communication complexity. Klauck [13] has shown that similar tech-

niques give lower bounds for the quantum model as well. Moreover, Shi and Zhang 

[36] have proved recently, using Fourier analysis, that D{f) = Q{logrank{Mf)) 

for al l symmetric XOR functions. These include the Hamming distance function 

HAMd(x, y) which gives 1 if and only if \x®y\ > d. This result implies that the 

class of symmetric XOR functions satisfies the log-rank conjecture. 

Another common technique is generalizing matr ix rank and norms. To name a 

few examples, Yannakakis [38] has shown that the logari thm of nonnegative rank 

is an upper bound on nondeterministic communication complexity, and Krause 

[15] has proved that approximate rank can be used to lower-bound randomized 

complexity. 

6.3 Complexity of communication complexity 

We finish this thesis w i th a discussion about the following decision problem: 
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I n p u t : An iV X N{0, l } -mat r ix Mf, and a non-negative integer K. 

O u t p u t : Is D{f) < K1 

I t is not difficult to see that this decision problem is in NP: the proof can 

be a protocol of cost t < mm{K, n + 1}, whose representation takes 0{N^) bits. 

The verifier needs only to check whether it is indeed a valid protocol that returns 

f{x,y) correctly for every {x,y). This takes at most steps. 

I t is somewhat contrary to the common impression to note that the problem 

of whether th is communication complexity computation problem is NP-haid is ac-

tually sti l l open. I t has been proved, however, that assuming the intractabil i ty of 

factoring, there is no polynomial-time algorithm to approximate the deterministic 

communication complexity within a certain factor [18]. 

On the other hand, we know that computing the nondeterministic commu-

nication complexity on a given communication matrix is iVP-complete, (This 

is related to the biclique cover problem [30]. See Figure 6.1.) I t has also been 

proved that even approximating N'^(f) is hard unless P = NP [24]. 

00 01 10 11 
00 [0 0 0 01 。 。 

01 0 [ g 0 [ S V Z 
10 0 0 c - C x ^ 

11 [0 m [iM ^^ 
Figure 6.1: Relating nondeterministic complexity to biclique cover 
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