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Peer-to-peer (P2P) systems have evolved rapidly and become 
immensely popular in Internet. Users in P2P systems can share 
resources wi th each other and in this way the server loading is 
reduced. P2P systems' good performance and scalability attract 
a lot of interest in the research community as well as in industry. 

Yet, P2P systems are very complicated systems. Building a 
P2P system requires carefully and repeatedly thinking and ex-
amining architectural design issues. Instead of setting foot in 
all aspects of designing a P2P system, this thesis focuses on two 
things: analyzing reliability and performance of different tracker 
designs and studying a large-scale P2P file sharing system, Xun-
lei. 

The "tracker" of a P2P system is used to lookup which peers 
hold (or partially hold) a given object. There are various designs 
for the tracker function, from a single-server tracker, to DHT-
based (distributed hash table) serverless systems. In the first 
part of this thesis, we classify the different tracker designs, dis-
cuss the different considerations for these designs, and provide 
simple models to evaluate the reliability of these designs. 

Xunlei is a new proprietary P2P file sharing protocol that has 
become very popular in China. Xunlei is interesting because it 
supports multiple protocols simultaneously - BitTorrent, eMule, 



FTP and HTTP, and as well as a proprietary protocol that 
achieves very fast downloading speed. Its versatility expands the 
reach of its eco-system. Its speed makes one curious of its traffic 
engineering tricks. In the second part of this thesis, we study 
it by reverse-engineering: through a series of specially-designed 
experiments and careful dissecting of protocol messages, we dis-
cuss and speculate on the design of this popular protocol. 
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嘀 要 

近来，点对点系统（peer-to-peer systems)在互联网上得至 

了快速的发展并且获得了广泛的普及。点对点系统中的用户可 

以相互共享资源，这种方式减轻了传统服务器的工作负担。鉴 

于点对点系统的良好性能及可扩展性，很多专家学者以及工业 

界人士都对其产生了浓厚的兴趣。 

然而，点对点系统是非常复杂的。建立一个点对点系统通 

常需要反复地仔细思考并检测系统设计的各个方面。在本文中 

我们并没有对点对点系统设计的每一个领域都有所涉及，而是 

将研究重点放在两个方面：分析点对点系统中不同”tracker”设 

计的性能，以及研究迅雷（Xunle i )这个典型的大规模点对点 

文件共享系统。 

点 i点系统中的 t r acke r—般被用来查找拥有或部分拥有某 

一资源的节点（或用户）。从单一服务器的 t racker到基于分 

布式哈希表（DHT)的 t racker，点对点系统中的 t racker设计 

可以釆取很多种不同的形式。在本文的第一部分，我们对 

不同的 t racker设计方法进行了归类，分析了这些方法所需考 

虑的实际系统问题，在此基础上提出了可以用来分析并且检 

验tracker设计性能的简单数学模型。 

迅雷是一款在中国非常流行的私有的P2P文件共享协议。迅 

雷可以同时支持多种下载协议，如BitTorrent，eMule，FTP等 

等。在此基础之上，迅雷还采用了一款私有协议，可以获得极 

高的下载速度。同时，迅雷的多功能性扩大了其综合系统的用 

户覆盖率。迅雷的高速使得很多专家学者对于其工程设计的具 

体细节产生了浓厚的兴趣。在本文的第二部分，我们对迅雷进 

行了反向工程研究：通过一系列特别设计的实验和对私有协议 

消息类型的探究，我们对这一流行协议的具体设计细节进行了 

推测与讨论。 

111 



Acknowledgement 

I would like to thank Professor Dah Ming Chiu, my supervisor, 
for his advice, help, encouragement, kindness and forgiveness 
throughout these two years. Prof.Chiu is such a nice, gentle 
and reputable professor that far beyond I deserve. I t is him who 
has introduced and guided me into the world of P2P network 
research: inspiring my interests of study, teaching me hand-by-
hand detailed mathematical techniques, helping me improve my 
English wri t ing for papers over and over again...Looking back, 
from a fresh undergraduate student wi th few technical experi-
ence, to a graduating master who is getting ready for an overseas 
journey of research, I have learned so much from Prof.Chiu, not 
only in gaining abilities to do research, but also in holding an 
correct att i tude towards research, and life. The time while I 
have Prof.Chiu as my supervisor, wi l l definitely be a precious 
experience for my whole life. 

I also appreciate very much the time and discussion I have 
had wi th my friends and colleagues in CUHK. They have in-
spired me many research ideas. Besides, w i th their accompany 
(working, spending leisure time together), I have spent very 
pleasant two years in Hong Kong. 

Last but not least, thanks to my family 
love, care and tolerance. 

for their incredible 

IV 



Contents 

Abstract i 

Acknowledgement iv 

1 Introduction 1 

2 Background Study 7 

3 Analysis of P2P Tracker Designs 11 
1 Tracker design in P2P systems 11 

1.1 A taxonomy of tracker designs 11 
1.2 Design considerations 14 

2 A reliability model for DHT-based tracker design 15 
2.1 DHT basics 15 
2.2 Model preliminaries and assumptions . . . 16 
2.3 Model description 18 

3 Reliability analysis 25 
3.1 Related parameters 25 
3.2 Simulation setup 27 
3.3 Results 30 
3.4 Observations from modeling work 35 
3.5 Methods of DHT stabilization 37 

4 A Black-Box Study of Xunlei 44 
1 An Overview of Xunlei and its key components . 44 

1.1 An overview 44 

V 



1.2 Key components 46 
2 Participating into other swarms: Xunlei's multi-

protocol downloading strategy 47 
2.1 Bit Torrent and eMule basics 47 
2.2 Bit Torrent and eMule in Xunlei 48 
2.3 Multi-protocol downloading 52 

3 Xunlei servers 54 
4 Understanding Xunlei's private protocol 56 

4.1 Exchanging peer lists 56 
4.2 Exchanging file data 58 
4.3 Error control and congestion control . . . 62 

5 Further discussions 65 
5.1 Proximity of content 65 
5.2 Active swarm peers 66 
5.3 UDP-based data transmission 69 

5 Conclusion 74 

Bibliography 76 

VI 



List of Figures 

2.1 System structure of DHT-based tracker design . . 18 
2.2 Peer's on-off status and lookup arrival 20 
2.3 Chord finger table example 23 
3.4 Influence of peer's lifetime 31 
3.5 Influence of system population 32 
3.6 Influence of stabilization interval 33 
3.7 Influence of lookup rate 34 
3.8 Comparison of system performance of Exponen-

tial and Pareto distributed lifetime 36 
3.9 Numerical results: different stabilization methods 40 
3.10 Numerical results: different stabilization meth-

ods (large interval) 42 

1.1 Xunlei overview 45 
2.2 A BitTorrent DHT flow captured in a Xunlei client 49 
2.3 A BitTorrent client-to-client file exchange flow 

captured in a Xunlei client 50 
2.4 A Kad flow captured in a Xunlei client 51 
2.5 An eMule client-to-client file exchange flow cap-

tured in a Xunlei client 51 
2.6 Getting a file part via H T T P 52 
2.7 Examples of download percentage from Xunlei 

and Bittorrent networks for B T tasks 54 
4.8 Xurilei's message structures for exchanging peer 

lists 57 
4.9 Xunlei’s message structures for exchanging file. . . 59 

Vll 



4.10 An example for file data exchange process of Xun-
lei's private protocol 61 

4.11 An example for Xunlei's error control mechanism 63 
4.12 A Xunlei UDP upload flow 65 
5.13 User experiences of file downloading speed (out-

side China) 66 
5.14 The evolvement of number of peers a Xun le i /BT 

client downloads resources from 67 
5.15 Experiment setup 69 
5.16 Xunlei's influence: large link capacity for the com-

paring TCP flow 70 
5.17 Comparison of TCP flow's throughput: large link 

capacity for the comparing TCP flow 71 
5.18 Xunlei's influence: small l ink capacity for the 

comparing TCP flow 72 

Vlll 



List of Tables 

1.1 User experiences in file downloading (BT tasks, 
in Hong Kong) 4 

3.1 Parameters' range and default value . 30 

4.1 Examples of B T tracker servers that Xunlei clients 
contact 49 

4.2 Information about some Xunlei servers 55 

IX 



Chapter 1 

Introduction 

In the past few years, peer-to-peer (P2P) systems have rapidly 
evolved and become an important part of the existing Internet 
culture. P2P systems' applications have covered many popu-
lar aspects of nowadays internet users' interests: file sharing, 
streaming, video-on-demand (VoD) and so on. To fulf i l l a P2P 
application, there are mainly three steps: 

1. Finding target objects^ 

2. Finding swarm peers^ 

3. Exchanging resources^ wi th other swarm peers 

Specific designs of above three parts consist the design of a 
P2P system. There are usually several different methods to fin-
ish each step. To find the target object, we can use web search 
(as BitTorrent [20] does), DHT-based search (as eMule [12] does) 
or simply go through the resource lists provided by deployed 
servers (as PPLive [24] does). To find swarm peers, we can 
use deployed servers (such as BitTorrent's trackers), DHT-based 

lean be a file in P2P file sharing application, a channel in P2P streaming application, 
or a video in P2P VoD application. 

2A swarm is consisted by peers participating in the same session: download-
ing/uploading the same file, watching the same channel, or the same video. For con-
venience, we call peers in the same swarm to be swarm peers. 

^can be the target object, or its information. 
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trackers (as that used in eMule) or simply gossip peer lists wi th 
other peers. To exchange resources wi th other swarm peers, in-
centive and download/upload policies are needed to decide peer 
and chunk selection strategies (like choke/unchoke and rarest-
first policies used in Bit Torrent), which help ensure a fair and 
efficient system performance. 

A P2P system is a very complicated system. Its design con-
siderations include, but definitely not restrict to above discus-
sions. Instead of analyzing all aspects of P2P system designs, 
this thesis focuses on two things: analyzing reliability and per-
formance of finding swarm peers (or the tracker function) in 
different P2P systems, and studying Xunlei, a popular multi-
protocol P2P file sharing system, based on reverse engineering 
and measurement work. 

In P2P systems, the term tracker originated from the design 
of the popular file sharing system Bit Torrent [20]. A tracker is 
a server that is used to bootstrap a P2P system, an otherwise 
entirely distributed system. The most critical function provided 
by a tracker is to introduce other peers engaged in the same ac-
t iv i ty to a requesting peer. In order to perform this function, a 
tracker keeps track of peers as soon as they make a request. A 
tracker may also perform other related peer management func-
tions. For example, peers may be required to periodically re-
port to the tracker for keeping other statistics. Furthermore, a 
tracker can also be used to authenticate peers before providing 
them any service. 

Subsequently, many other P2P content distribution systems, 
including many P2P streaming and Video-on-Demand (VoD) 
systems such as [24], adopted similar architectures as BitTor-
rent. A l l these P2P content distribution systems divide the 
content into many pieces and distribute them through differ-
ent dynamically formed peer trees based on what pieces of con-
tent different peers are holding. This approach is referred to 
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as data-driven, or unstructured P2P content distribution algo-
rithms. Its surprisingly good performance and adaptability in 
the face of peer churn and heterogeneous resource availability is 
attracting a lot of interest in the research community. This is 
particularly the case for the distributed algorithms for forming 
the peer overlay (peer selection algorithms in BT's terminol-
ogy) and for scheduling the piece exchange among peers (piece 
selection algorithm in BT's terminology). 

In the first part of this thesis, we focus on the design of the 
tracker function, which is a key enabler in this architecture. We 
use the word tracker to mean the service (provided by a B T 
tracker) rather than the server itself. There are two main ap-
proaches in tracker design, one is based on using deployed servers 
(we call server-based approach), and the other is based on us-
ing the peers themselves (we call peer-based approach). Based 
on these two approaches, there are many variants in the design, 
supporting scalability in the number of objects (e.g. files) and 
scalability in the number of peers simultaneously accessing the 
same object. For example, distributed hash table (DHT) [36, 30 
and replication may be applied in tracker design. Our contribu-
t ion is to provide a systematic description of the different designs 
of the tracker function, give a general discussion of the pros and 
cons of the different approaches, and present a simple model for 
DHT-based tracker design. 

The chapter for this part is organized as follows. In section 1, 
we provide a taxonomy of different tracker designs and discuss 
the merit of different designs. In section 2, we present a simple 
model for DHT-based tracker design. In sections 3 we analyze its 
reliability by setting up simulations and comparing simulation 
and model results. We also derive some general observations 
from the model and the system parameters. 

In the second part of this thesis, we study a popular mult i-
protocol file sharing system, Xunlei. According to Wikipedia [8 
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Xunlei is a popular Chinese download manager and file sharing 
client that supports Bit Tor rent, eDonkey, Kad, and FTP. I t 
is developed by Xunlei Networking Technologies, a Shenzhen 
(China) startup formerly known as Sandai Technologies. At the 
end of 2008, Xunlei has been used by 228 millions users and the 
amount of downloading has reached 5056TB per day [1 . 

Why has Xunlei attracted so many users? An example of 
user experience shown in Table. 1.1 gives us the likely answer: 
Xunlei has very high downloading speed. 

Table 1.1: User experiences in file downloading (BT tasks, in Hong Kong) 
No. file size client i time avg. i speed avg. 1 speed 
1 350MB Xunlei(5.8.10) 10m58s 545.91KB/S 51.73KB/S 

BitTorrent(6.1.2) 59m47s 99.9KB/S 32.8KB/S 
2 169.61MB Xunlei(5.8.10) 24m51s 116.48KB/S 33.99KB/S 

BitTorrent(6.1.2) 45m04s 64KB/S 42.9KB/S 
3 192MB Xunlei(5.8.10) 22m44s 144.26KB/S 63.41KB/S 

BitTorrent(6.1.2) 16in44s 195.7KB/S 5.2KB/S 
4 137.25MB Ximlei(5.8.10) 

BitTorrent(6.1.2) 
14m09s 
> l h 

165.54KB/S 181.12KB/S 

5 84.95MB Xunlei(5.8.10) 
BitTorrent(6.1.2) 

16m29s 
> l h 

87.96KB/S 2.32KB/S 

6 347MB Xunlei(5.8.10) 23m56s 247.89KB/S 13.11KB/S 
BitTorrent(6.1.2) 40m00s 148.1KB/S 4.1KB/S 

7 347.27MB Xunlei(5.8.10) 23m29s 252.38KB/S 47.44KB/S 
BitTorrent(6.1.2) 52m27s 112.9KB/S 19.5KB/S 

8 175MB Xunlei(5.8.10) 27m04s 110.45KB/S 3.28KB/S 
BitTorrent(6.1.2) 9m29s 315.2KB/S 2.7KB/S 

9 349MB Xunlei(5.8.10) 18m34s 321.54KB/S 64.54KB/S 
BitTorrent(6.1.2) 30m52s 193KB/S l.OKB/s 

10 350.79MB Xunlei(5.8.10) 18m05s 331.07KB/S 7.74KB/S 
BitTorrent(6.1.2) 59m47s 99.9KB/S 32.8KB/S 
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Besides the well-known P2P file downloading product, Xunlei 
also provides its users Xunlei portal for a variety of information 
source, plus Gougou search for searching video, music and other 
entertainment resources, Xunlei Kankan for P2P VoD applica-
tion, Xunlei youyou for updating and downloading games and 
Weh Xunlei [16, 13, 9]. I t is interesting to note that 1) most 
of these products are based on Xunlei's P2P file downloading 
technology and 2) they are not isolated from each other. These 
products work together and form the Xunlei Ecosystem. 

Instead of studying the whole Xunlei ecosystem, we focus 
only on its P2P file downloading application. Our study is based 
on reverse engineering and measurement work, which consist 
of several steps. Mainly we want to understand the following 
questions: 

1) What is Xunlei? 2)Being a multi-protocol system for P2P 
file downloading, how does a Xunlei client inter-operate with 
swarms that are speaking different languages (protocols)? 3) In 
Xunlei network, what functions do its servers provide! 4) Why 
does Xunlei achieve high downloading speed? Does it adopt any 
private (non BitTorrent or eMule compatible) protocols? How 
do they work? 

We answer the first question in section 1 of this chapter by 
giving an overview of Xunlei and its key components. Then we 
focus on Xunlei's multi-protocol strategy for file downloading 
and we explain its detailed process in section 2, where we show, 
through a number of experiments, that how a Xunlei client par-
ticipates in BitTorrent or eMule network, gets peer information 
in swarms and exchanges resources wi th them (which answers 
the second question), from which we notice that besides those 
popular open-source P2P protocols, Xunlei also takes advan-
tages of UDP's light-weight and flexibility: i t designs a data 
transmission algorithm and frequently uses it during the file 
downloading process. For our th i rd step, we study Xunlei's 
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UDP-based private protocol, including but not restricting to 
its message types, data structures, error control and congestion 
control mechanisms. We further analyze the reasons for Xurilei's 
good performance based on a number of measurement studies. 
We believe our results wi l l be a useful resource for the under-
standing and analysis of Xunlei and other P2P designs. 

A l l of our experiments about Xunlei are performed via Wire-
shark [15] and the results are derived from packet level analysis. 

This thesis is organized as follows. In chapter 2 we introduce 
the background study of P2P tracker designs and previous work 
related to Xunlei. In chapter 3 we give an analysis of different 
tracker designs in P2P systems. In chapter 4 we present our 
results about the study of Xunlei and the conclusion is given in 
chapter 5. 

• End of chapter. 



Chapter 2 

Background Study 

The tracker function, mostly finding swarm peers, is a key com-
ponent of P2P system design. The inherent "distributed" prop-
erty of P2P networks requires their users to find more swarm 
peers more efficiently to gain a better system performance. When 
Bit Torrent protocol was first brought forward, the concept of 
"tracker" also emerged. At that time, a tracker was referred as 
a deployed server who kept a record of peers in the same swarm 
and replied a subset to requesting peers. The way to implement 
a tracker server and the messages used for peers and trackers to 
communicate wi th each other were well defined in Bi t Torrent's 
original design [21. 

Later, Bi t Torrent, as well as many other P2P clients, enabled 
DHT to fulf i l l tracker function in a distributed way. Again, the 
way to implement a DHT tracker and the message types were 
introduced and well defined in Bi t Torrent design [29 . 

Although the technology of implementing trackers (both server-
based and DHT-based trackers) is quite mature, few researchers 
focus on analyzing why implementing trackers in these ways, not 
mention to summarize or classify different tracker designs and 
design considerations. 

The server-based tracker adopts tradit ional client-server mode. 
Both the research theories and implementation considerations 
related to i t have been well-studied for many years. DHT-based 
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system (including DHT-based tracker), however, is a new com-
ing technology whose concept was only brought forward a few 
years ago. 

In the early days when D H T was first introduced (from 2002 
to around 2004), researchers paid more attention to design and 
improve D H T algorithms. During that time, many different 
D H T algorithms were brought forward and compared [36, 30, 
33, 2, 42]. Different design parameters were analyzed to im-
prove system performance (latency, lookup ratio, bandwidth us-
age .etc) [28，23:. 

Later after that, the population of P2P systems increased 
so quickly that the scalability became the most important re-
quirement for system design. Researchers and system design-
ers began to utilize D H T in real P2P applications (file sharing, 
video-on-demand .etc). Generally speaking there are three lev-
els for uti l izing D H T in P2P systems, namely finding swarm 
peers, publising/searching files and storing file chunks, among 
which finding swarm peers is the most wildly-used D H T applica-
tion, although there do exist some system designers who would 
like to explore more about D H T and utilize it for file publish-
ing/searching, or even file/chunk storage [40 . 

How about the performance of DHT-based systems? Re-
cently D H T modeling also attracts many scholars' attention. A 
number of models about D H T performance have been brought 
forward and most of them are based on reliabil ity theory, w i th 
considerations of peer churn in P2P systems [19, 39, 38, 27 . 
Nowadays D H T systems are mainly used for P2P applications, 
so D H T modeling can be classified into two parts. 

• Modeling peer churn. 

Being a basic property of P2P systems, peer churn is the 
foundation for D H T modeling. Most of D H T modeling papers 
share some similarities in this part. They model the peer churn 
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as a renewal process wi th lifetime (or residual lifetime) and re-
pair time (death time) distributions. Lifetime is mostly heavy-
tailed distributed (i.e. Pareto), as observed in real P2P systems 
by [18]. But exponential distribution is also used for startup as 
well as simplicity, which turns out to be a performance lower 
bound [27]. There are also some measurement work that focus 
on identifying peer behaviors in P2P networks [35, 37, 18 . 

• Modeling DHT behaviors. 

Isolation probabil i ty/t ime and query success ratio are typical 
metrics for DHT performance modeling. Due to the importance 
of successor, authors in [39] study DHT's successor isolation 
probability, especially that in Chord. According to Chord's al-
gorithm to keep successors, they model i t as a node keeping a 
constant number of neighbors and define the isolation as a node 
losing all its neighbors. 

For query success ratio, Guang Tan et al. provide a simple 
model for it in [38]. Upon deriving residual lifetime, they pro-
vide a straightforward formula for query success ratio, under the 
assumption that the path length remains unchanged even when 
a certain intermediate node fails. 

Finding swarm peers is only one part of a P2P system design, 
yet one of the most important parts. Besides analyzing differ-
ent tracker designs, we also perform a reverse engineering and 
measurement study of Xunlei, a multi-protocol P2P file sharing 
system. This study can help us know more about P2P system 
design details. 

Xunlei is a proprietary P2P file downloading system target-
ing at Chinese users. Although it is very popular (has attracted 
over 200 mil l ion users) and achieves good performance (high file 
downloading speed), i t has not been much studied and under-
stood. The only paper about Xunlei [41] is a short paper that 
briefly discusses the general functions of Xunlei servers and some 
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preliminary measurement work. 
The methodology of our work about Xunlei is inspired by the 

reverse engineering study of Skype [34]. Through analysis of 
traces of Skype's messages, i t was able to deduce many aspects 
of Skype's system design. Gu et al [22] introduce and study 
a special designed UDP-based data transfer mechanism wi th a 
series of analysis and measurement work about TCP and UDP, 
which influenced our thinking about Xunlei UDP flows' influence 
to other flows, and to the network. [24] provides a measurement 
study of a large-scale P2P VoD system, covering many aspects 
of architectural design issues, which is a useful reference for our 
measurement work about Xunlei. 

• End of chapter. 



Chapter 3 

Analysis of P2P Tracker 
Designs 

1 Tracker design in P2P systems 

1.1 A taxonomy of tracker designs 

For the data-driven P2P content distribution architecture, i t 
is necessary for each peer to discover other peers engaged in 
the same content distribution session, as well as what pieces of 
content these peers have. The tracker usually only supports the 
discovery of peers. The discovery of what pieces peers hold is 
normally accomplished by gossip [20], in other words, by a peer 
directly querying its neighboring peers. What pieces peers hold 
changes frequently wi th time, so in most scenarios only gossip 
can provide the most timely information without overburdening 
a server and incurring excessive network overheads. While i t 
is possible, broadly speaking, to consider this (providing piece 
information) also part of the tracker function, we take a narrower 
view. That is, the tracker only maps an object (distribution 
activity) to a set of peers (partially) holding this object. 

Therefore, the tracker needs to deal wi th only two kinds of in-
formation: (a) objects, and (b) peers; and provide the mapping 
between them. Objects are the files (in P2P file sharing or VoD) 

11 
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or video channels (in P2P streaming). A tracker should be able 
to serve multiple objects simultaneously. Peers are the users 
downloading the objects. Each peer registers wi th the tracker 
for the object it is downloading; and requests for a set of other 
peers downloading the same object. Although a broader view 
of the tracker can include additional interactions between the 
tracker and the peers (e.g. statistics collection), we assume the 
minimum responsibility for the tracker in this study. Tracker 
design can be classified by the following three dimensions: 

Who provide the tracker function? There are basically 
two choices: using deployed servers (DS), or using peers (P). 
In the latter case, it is possible to rely on only a subset of the 
more powerful peers known as supernodes. 

How are objects assigned to tracker nodes? In the 
same P2P system, there may be many objects made available 
for sharing. Instead of having one tracker node serving all these 
objects, multiple tracker nodes (whether DS or peers) can share 
the load. The assignment can be by manual configuration (M) , 
or via a distributed hash table ( D H T ) . 

How are peers assigned to tracker nodes? A large num-
ber of peers may be accessing the same object simultaneously, 
causing too much load for a single tracker node to handle the 
load. There may be other locality and reliability reasons for 
having multiple tracker nodes serve a single object. In this case, 
the assignment depends on whether the tracker nodes are de-
ployed servers or peers. In the former case, the assignment can 
be based on user choice, if tracker nodes are explicitly adver-
tised to users (U), or can be automatic (A), if the tracker node 
must be found by a D H T mechanism. In the latter case, the 
assignment has to be automatic (A) . 

Let us now consider some examples of these different designs 
below. 

In the classic BitTorrent, the tracker is a server and the bind-
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ing of the tracker node to the object is advertised in a meta-file 
(the "torrent" file) [20]. A user (peer) can choose the tracker 
based on which meta-file i t selects to use (or a specific tracker in 
a meta-file wi th multiple trackers). The peer then contacts the 
tracker to find other peers downloading the same object. We 
can refer to this design as (DS+M+U) . 

Another popular file sharing system, eMule, uses D H T to let 
the tracker function be shared by peers themselves. I t uses a 
particular D H T algorithm known as Kademlia [30, 19]. The ba-
sic idea of any DHT algorithm is that i t provides a mapping 
from an object name to a target node^ that keeps some infor-
mation about the object of interest. In reaching this node, the 
lookup process may have to traverse several intermediate nodes. 
A well-designed DHT also provides some redundancy (via repli-
cation) in the paths reaching any object. The mapping from 
the object to the set of trackers for the object is then stored at 
the target node. In our taxonomy, this design can be labeled 
( P + D H T + A ) . 

A th i rd example is the PPLive VoD system. According to 
the designers [24], the tracker function is provided by several 
deployed servers, and a D H T is used to allocate the objects 
(video files) to this set of servers. This design can be labeled as 
(DS+DHT+A) . 

I t is interesting to note that it is not uncommon for a P2P 
system to simultaneously rely on two different mechanisms to 
support the tracker function, wi th one of the mechanisms used 
as a back-up. For example, some versions of Bi t Torrent also use 
( P + D H T + A ) as a back-up; whereas eMule is also able to use 
a (DS+M+U)2 in parallel. In the PPLive VoD system, a more 
recent version also includes a DHT to avoid server filtering, a 
simple technique to disable a P2P service. 

iHere we do not differentiate the term node and peer. We use them iteratively through-
out this thesis. 

^Known as ED2K. 
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1.2 Design considerations 

In designing the tracker function, there are many considerations. 
Many of them are not quantifiable. We discuss them briefly here. 

Ease of implementation: A simple client server model should 
be simpler than DHT，and this can be the reason for the original 
tracker design. 

Legal liability or management responsibility: There may be 
legal l iabi l i ty in running a tracker. I t also incurs management 
chores. So a serverless (based on DHT) design is very desirable. 

Costs: There are also some costs associated w i th running a 
tracker, e.g. the server and bandwidth costs. W i t h a serverless 
tracker, these costs are absorbed by the peers. 

Flexibility: Implementing tracker in servers certainly gains 
more control for the content distributor (in the case when con-
tent comes from distributor rather than from the peers them-
selves). For example, the content provider may make peers in 
different networks/countries use different trackers and form dif-
ferent sessions. 

Security: On the one hand, server-based tracker can be sub-
jected to DoS attacks; or the access to the tracker can be easily 
filtered out (for example by an ISP who wants to disable the 
P2P system). On the other hand, server-based tracker can be 
used to implement some access control policies. 

While the above considerations are all important and could 
decide the tracker design, another important consideration is the 
reliabil ity which directly affects user perception. This metric can 
be quantitatively evaluated, by a system model presented in the 
next section. 
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2 A reliability model for DHT-based tracker 
design 

2.1 DHT basics 

The basic principle of DHT (distributed hash table) is mapping 
each object and node into the identifier space { 0 , 1 , — 1}^ 
using constant hashing. For each node or object, its identifier is 
unique and is also the only resource to identify itself. To avoid 
confusion, we call the object's identifier to be the key and the 
node's identifier to be the ID. W i t h the key, an object can be 
mapped to their responsible node that is in charge of this object 
and its information. Basically an object can be assigned to an 
node wi th the ID closest to the key of this object. Methods 
to define "closest" are different from protocols. Chord defines 
"closest" node as the first node whose ID is larger than the 
key in the clockwise direction along Chord ring[36]. Kademlia 
defines it as the node wi th the smallest distance based on XOR 
metric [30 . 

Two basic functions performed by any D H T algorithm are 
put (key) and get (key). Given the key, we can find the responsible 
nodes and assign an object into D H T network wi th the function 
put (key) and later we can retrieve it by finding the responsible 
nodes wi th get (key). I t is easy to see that finding the responsible 
nodes is a basic process in both put (key) and get (key). This 
process is named lookup in DHT, where lookup messages are 
forwarded from the original requesting node to the responsible 
node hop by hop. One of DHT's important achievements is that, 
i t exponentially decreases the lookup length by each hop while 
keeping the ID of next-hop intermediate node closer and closer 
to the key of the object. DHT table is an application-layered 
routing table that contains information of a subset of nodes in 

^k is usually a sufficiently large value that can make sure no identifiers conflict among 
different nodes or objects. 
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the network, including node ID, its IP address arid some other 
information which can be used for advanced features. 

To handle churn, which is a typical peer behavior in P2P 
networks, DHT adopts certain mechanisms. Stabilization is a 
method widely used in many DHT algorithms. I t refreshes 
DHT table entries according to a constant or randomized pe-
riod, which allows D H T to detect and to replace failed nodes, 
as well as to note and to add new-joined nodes. Some D H T 
algorithms also adopt more casual and flexible ways to do re-
freshment. Kademlia[30] refreshes the information via refresh 
upon lookup. As its name implies, Kademlia refreshes its DHT 
table entries by each received lookup message. 

2.2 Model preliminaries and assumptions 

As discussed in previous subsections, DHT-based tracker design 
uses lookup message to perform tracker function and we define 
the success of lookup process as, given the key, eventually find-
ing the responsible peer. A responsible peer is in charge of a 
particular range in D H T identifier space. The mechanism used 
to decide the responsible range depends on specific protocols. 
For example, Chord defines the responsible range of a peer as 
the ID range between its proceeding node (the nearest counter-
clockwise node in the Chord ring) and itself. 

For a particular lookup message, i t traverses a path of inter-
mediate peers, where each peer has several other peers serving 
as backups or redundancies. Here the need for redundancy in 
each hop is due to the dynamic behavior of P2P systems. Peer's 
join and departure are happening every time when users start or 
terminate a P2P application. Each peer (with a unique ID) first 
enters into the system, starts a number of P2P sessions and then 
stays in the system for some time. During this time, this peer 
is called to be alive and correspondingly the period i t spent or 
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i t is alive in the system is called peer's lifetime. When sessions 
are finished, this peer wi l l leave the system wi th or without no-
tification. Peers can also leave the system in the middle of a 
session voluntarily, or due to some uncontrollable reasons, such 
as link failure. 

The most significant influence introduced into P2P systems 
by peer churn is the stale information, which affects system per-
formance in many ways. Without further detection and repair, 
stale information may direct lookup messages to failed inter-
mediate peer(s) which causes lookup failure. Another influence 
introduced by peer churn is the dynamic system population. Ex-
periments in [24] show that system population changes wi th the 
time of a day. But when the system has been evolved for a long 
time and if we look into a particular time slot, like around 8:00 
pm, system population stays around a particular level without 
large fluctuation. This is the steady state where rates of peer's 
join and of peer's departure are almost the same. Throughout 
this thesis, we only consider this steady state. To simplify anal-
ysis, we further assume a constant system population, which is 
achieved by the implementation that once a peer fails, i t rejoins 
the system immediately as a brand new peer w i th a new ID. 

To handle problems caused by peer churn, most D H T al-
gorithms introduce refreshment mechanisms. Each time when 
DHT performs a refreshment, peer's liveness is verified and failed 
peers are replaced. Here we assume that DHT's refreshment 
mechanism is stabilization w i th a constant interval, for the rea-
son that periodic stabilization is the most wi ldly used refresh-
ment method in DHT systems (as discussed in last subsection). 
Stabilization is a process performed by each peer individually 
and no central control or central clock is used here. Besides 
of these, we further assume that each peer starts a number of 
lookups for randomly chosen keys during their lifetimes, and 
the lookup interval is exponentially distributed. Hence, for a 
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k units 

Figure 2.1: System structure of DHT-based tracker design 

particular peer, lookup arrival is a poisson process. 
From above analysis we may see that the operation of a real 

DHT system is very complicated. Analyzing the system by con-
sidering all the details is neither realistic nor necessary. Hence 
instead of giving a complicated model capturing all the aspects 
of the system, we set up a simple model that captures the ba-
sic features of DHT-based tracker design, which is discussed in 
following subsections. 

2.3 Model description 

As shown in Fig. 2.1, we model DHT-based tracker design as 
a serial set of units where each unit is composed of a parallel 
set of sub-units. The serial units are lookup hops and paral-
lel sub-unites are redundant peers for each hop in D H T table 
entries. The number of unites is the hop length for a lookup 
and the number of sub-unites in each unit is the number of re-
dundancies in each lookup hop. We measure system reliability 
by a simple criterion: lookup success ratio, which is determined 
by the system structure and single peer (sub-units in Fig. 2.1) 
reliability. 
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Single peer reliability 

We consider single peer reliabil i ty to be the probabil i ty that 
the corresponding peer is alive when a lookup message arrives. 
Obviously, single peer reliabil ity depends on peer's liveness and 
peer's liveness depends on its remaining lifetime, or formally 
residual lifetime. Originally, peers，s lifetime L is determined 
by lifetime distr ibut ion F{x). When D H T performs stabiliza-
tion, peer's liveness is verified and its remaining lifetime wi l l be 
changed. Since stabilization is an individual behavior for each 
peer, i t is not possible for us to know when it happened previ-
ously. Hence we assume it to be uniformly distr ibuted wi th in 
each peer's lifetime. Therefore peer's remaining lifetime after 
stabilization can be derived based on following residual lifetime 
theorem [32]: 

Lemma 2.1 Let F{x) be the CDF of peer's lifetime L, then the 
CDF of peer，s residual lifetime is given by: 

1 
FR[X) = P[R<X) = — J (1 — F{z))dz (2.1) 

'0 
Real world experiment[18] shows that P2P user's lifetime has 

long-tailed behavior and i t is approximately pareto distributed. 
Together w i th exponential distribution's memoryless property, 
we use pareto and exponential (for comparison) as lifetime distri-
butions to validate our model and simulation results throughout 
this thesis. And this analysis is based on following lemma: 

Lemma 2.2 The CDF of residuals for Exponential lifetimes with 
F{x) = 1 — is given by: 

FR{X) = P{R <X) = L - e-A工 （2.2) 

and the CDF of residuals for Pareto lifetimes with F{x)= 
1 — > I is given by: 
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Figure 2.2: Peer's on-off status and lookup arrival 

FR(X) = < ：̂) = 1 -(学)-(-1) (2.3) 

Lemma 2 is not a surprising outcome. Under memory less 
exponential distribution, peer's lifetime is refreshed after sta-
bilization. For "long-tailed" Pareto distribution, residuals can 
gain a longer tail, which means that the mean value of resid-
ual lifetime is longer than that of the original lifetime. This is 
consistent wi th the fact that in most P2P systems, users who 
survive in the system for some time are likely to remain on-line 
for longer period than the new arriving users. 

In DHT-based P2P systems each participating peer is in 
charge of a particular range of DHT structure and we call this 
peer responsible peer. For a particular key, the responsibility can 
be re-allocated from one peer to another (due to peer's churn) 
according to DHT's stabilization mechanism. I f the original 
responsible peer is failed, DHT's stabilization can detect this 
failure and replace it wi th a new one. Hence from each key's 
point of view, the corresponding responsible peer possess two 
status: on and off. The time it stays in the status on after sta-
bilization is determined by its residual lifetime. After this peer 
fails, the status switches to off unti l next stabilization replaces 
it wi th a new responsible peer and switches the status back to 
on. Fig. 2.2 shows the on-off process of a particular responsible 
peer. Similar on-off process also happens to intermediate peers 
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for a particular lookup message. 
Upon deriving the on-off model, we examine lookup arriving 

process within a certain stabilization interval, which is shown 
in Fig. 2.2. S is the time interval between lookup's arrival and 
last stabilization. Since we previously assumed a memoryless 
exponential distributed lookup interval, it is refreshed after sta-
bilization and S is exponentially distributed. Therefore for a 
peer to be alive when a lookup arrives, its residual lifetime need 
to be longer than S. 

Above analysis provides the basis for following proposition: 

Proposition 2.3 Let FR{X) he the CDF of peer's residual life-
time R and T he the constant stabilization interval. With an 
exponential(X') distributed lookup arrival interval and alternate 
on-off status, single peer reliability p is given by: 

、00 
p = Pr{R 2 Pr{R > x} x fs{x)dx 

Jo , \ 
fT 入/已-入‘工 （ 2 . 4 ) 

二 / (1 - FR{X)) X dx 
Jo /o X'e-^vdy 

For exponential and pareto distributed lifetime, single peer 
reliability is given in following corollary: 

Corollary 2.4 Assume peer's lifetime is exponential(\) distributed, 
then single peer reliability is given by: 

P 二 + (2.5) 

and for Pareto (a, (3) lifetime distribution, single peer reliability 
is given by: 
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(2.6) 

System reliability 

As shown in Fig. 2.1, we model the DHT-based tracker design 
as a series of units and each unit is composed by some sub-
unites. Let k represent for the number of the serial units, namely 
the number of hops for each DHT lookup. Let m i , m2”‘.mk 
represent for the number of sub-units, namely the number of 
available serving peers in each hop. Based on reliability theory, 
we can calculate the system reliability as shown in following 
proposition. 

Proposition 2.5 For a DHT-based P2P system, the probability 
that a particular lookup will be successful is given by: 

i=l 

and the system reliability is given by: 

m,- (2.7) 

EIUdht] = E[ ( l - ( l - p r (2.8) 

h i 
where k is the lookup length and mi，m/2，...mk is the number of 
available serving peers in each hop, andp is single peer reliability 
given by Proposition 2.3. 

Now the key questions for completing the model become: 

• How many hops do we have for each lookup? 
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Figure 2.3: Chord finger table example. 

• How many redundancies do we have for each hop? 

We use Chord [36] for example to answer above questions, 
since the design of Chord shows DHT's basic principles without 
introducing too many advanced features [36 . 

To answer the first question, we assume that nodes are uni-
formly distributed among the ID space^ and lookup keys are ran-
domly chosen from the key space. Since lookup lengths in DHT-
based P2P systems are bounded by logs N, where N is system 
population, and the lookup keys are randomly chosen, we fur-
ther assume that the mean value of lookup length is (log? N)/2. 

To answer the second question, Fig. 2.3 shows the basic struc-
ture of a Chord ring and the D H T tables of node N8, N32 and 
N36. Suppose that at the beginning N8 starts a lookup for key 
38. According to Chord's algorithm, the lookup message wi l l be 

4This is also a property of constant hashing. 
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forwarded from N8 to N32, N36 and N42 hop by hop. Know-
ing that N42 is the responsible node for key 38, this lookup is 
finished successfully at N42. 

Problems happen when one of the above intermediate nodes 
is not alive. Suppose N8 finds that N32 is unreachable when 
it tries to forward the lookup message to N32. Then N8 needs 
the redundancies in this hop to continue the lookup. According 
to [36], alternative nodes, or the redundancies for a hop, can 
be easily found in the table entries preceding that of the failed 
node. So in our example, when N32 fails, N8 sti l l has N9, NIO, 
N14 and N21 as alternative nodes, which are 4 redundancies for 
this hop. 

From above example, we may have two observations about re-
dundancy: l ) the number of redundancies in each hop depends 
on the ID distance between the intermediate node and the key; 
2)the number of redundancy decreases by each hop. These ob-
servations can be intuit ively understood based on DHT's basic 
principle: forwarding the lookup messages closer and closer to 
the target key in each hop. 

Recall Proposition. 2.5 that the system reliability is the mean 
value of a stochastic function related to m i , m2,...mk, k and 
single peer reliability p. Nevertheless, instead of analyzing the 
stochastic behavior of the system, we focus on system's mean 
performance in this model. So instead of calculating the mean 
value of a complicated stochastic function, we simplify this by 
approximating the mean of a function to be equal to the function 
of the mean. More precisely, we approximate that: 

~ 五[爪 1], [7712]...五丨肌 

and this approximation wi l l be evaluated later by simulations. 
To complete the model, we need to decide the mean values of 

m i , 7712,...ruk and k. Stil l using Chord for example, i t contains 
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log2 N entries in each routing table and since lookup keys are 
randomly chosen among identifier space, we further assume that 
on average the number of available severing peers in the node 
who starts the lookup, namely E[mi]^ is log2 N/2. I t is inter-
esting to note that, E[mi] is equal to the average path length 
E[k] (both are equal to (log2 7V)/2, as discussed previously). To-
gether wi th the fact that the number of redundancies decreases 
by each hop, we are trigged to assume that on average the num-
ber of redundancies decreases by one in each hop. W i t h these 
assumptions and analysis, the system reliability of a Chord-like 
DHT system can be derived as shown in following corollary: 

Corollary 2.6 For a Chord-like DHT system with a constant 
population N in steady state, the system reliability can be ap-
proximated to: 

log2 N 

E I U d h t ] - 1 1 ( 1 — ( 1 - P ) " ) (2.9) 
k=l 

where p is single peer reliability given by Proposition 2.3. 

In next section, we'll set up simulations to do more analysis 
zhout system reliability. The numerical results of Corollary 2.6 
wi l l also be calculated and compared wi th simulation results in 
next section. 

3 Reliability analysis 

3.1 Related parameters 

From Proposition 2.5, the only criterion we used to measure re-
l iabil i ty of D H T systems, namely lookup success ratio, is related 
to system population and single peer reliability. From Theorem 
2.3, this single peer reliability further depends on peer's life-
time, system population, stabilization interval and lookup rate. 
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Therefore, for the reliability of DHT-based tracker design we 
have four related parameters, which are discussed respectively 
as follows: 

Peer's lifetime is a determinant parameter for churn rate in 
P2P systems. Peer's churn may produce stale information and 
consequentially deteriorate system's performance. The churn 
rate, somehow decides to what degree it can deteriorate system 
performance. For system designers, they always prefer peers in 
their systems to stay as long as possible. Unfortunately, the in-
herent properties of dynamic and self-organization for P2P sys-
tems make it almost impossible for designers to control peer's 
churn behavior. So instead, some system designers choose to 
deploy more stable super nodes to weaken the influence of peer 
churn. Besides the mean value of peer's lifetime, its distribu-
t ion is also an influence. W i t h the same mean value, different 
distributions may have different effects on system performance. 

System population directly reflects system's popularity. 
While designers are glad to observe a large population in their 
systems, they also need to handle the problems caused by it, 
such as the workload, especially when there are certain bottle-
necks in the system. As discussed in previous section, system 
population is dynamic due to peer's join and departure. A larger 
peer join rate can increase system population while a larger peer 
departure rate can shrink it. W i t h the same join-and departure 
rate, systems wi l l stay at the steady state wi th population keep-
ing at a certain level without large fluctuation. 

Stabilization interval determines the rate for D H T to do 
stabilization. Intuit ively the system can gain a better perfor-
mance wi th a smaller stabilization interval. Methods for stabi-
lization usually depend on system implementations. Right unti l 
here, we always assume a constant stabilization in our model. 

Lookup rate shows the popularity for a particular object 
(e.g. a file) and all together determine system's workload. For 
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each alive peer in the system, it performs several lookups wi th 
randomized lookup interval. Throughout this paper we assume 
this interval to be exponentially distributed. 

3.2 Simulation setup 

In this subsection, we analyze the system reliability by setting 
up simulation experiments wi th real implemented D H T algo-
rithms. These experiments can be used to evaluate the related 
parameters discussed in last subsection, as well as our theory 
model. 

Simulation methodology 

About P2P simulations and simulators, methodology and tools 
have always been discussed and questioned [31]. Generally speak-
ing, there are three main methodologies for simulating P2P net-
works: 1)packet-level; 2)overlay-level and 3)model-level. 

Due to the popularity of some packet-level simulators like 
NS-2[10] and 0PNET[14]，some scholars take advantage of their 
well-organized and update-in-progress documents and use them 
as P2P simulators wi th or without modifications[43, 26]. Packet-
level information helps simulations to resemble real world appli-
cations very well, but i t also aggravates simulator's workload 
at the same time. Hence it is almost impossible to simulate 
large-scaled P2P networks wi th packet-level simulators. 

Model-level simulation is always the favorite choice for many 
researchers due to the simpleness to write some codes that sim-
ulate model principles. And since they only simulate the models 
(or the algorithms), they can always get good results showing 
the similarity between their model and simulation results. But 
model-based simulation's lack of considerations of real network 
details also makes any claims on results hard to be validated 
and further to be believed wi th confidence by other researchers. 
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Wi th so many disadvantages of above two kinds of simulators, 
overlay-level simulator is hence a good choice for simulating P2P 
networks. [31] have done a survey about existing overlay-level 
simulators for P2P networks, and 9 of them are well-studied and 
compared. Among them, we choose P2PSIM[11, 28], a discrete-
event simulator for structured P2P networks, for the reason that 
it implements the original designs of many DHT algorithms and 
it also adopts the K ING topology^ to model the lower-layer 
network performance. Moreover, i t has already included peer 
churn pattern. Among all the DHT algorithms implemented in 
P2PSIM, we choose Chord as the DHT prototype for simula-
t ion model, for the reason that Chord grabs all basic principles 
of DHT without introducing too many advanced features. 

Comparison of theory and simulation model 

In both theory or simulation models, operations of DHT-based 
system are decided by three main modules, namely peer behav-
ior, protocol behavior and network behavior. 

Peer behavior: In this part, theory and simulation models 
adopt exactly the same scene: Peer's ID is uniformly distributed 
among ID space. Each peer spends some time in the system and 
during this time it starts several lookups for randomly chosen 
keys, wi th exponential distributed lookup intervals. And peer's 
life time is exponential (A) or Pareto(a,/^) distributed. At a cer-
tain time it crashes, then re-joins the network immediately as a 
new node wi th a new ID. This behavior also ensures a constant 
population for the system. 

Protocol behavior: D H T protocol behaviors include sev-
eral parts: ini t ial state, dealing wi th lookup, handling node 
join/fai lure and periodic stabilization. We do not consider the 
init ial state either in our theory model or in the simulation, for 

^KING topology is a pairwise latency matrix derived from measuring the inter-node 
latencies of 1024 DNS servers using the KING method. 
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the reason that instead of the highly dynamic init ial state, we 
concern more about DHT's steady state behavior. 

For dealing wi th lookup, in both models lookup messages 
are forwarded from one peer to another and finally to the one 
who is responsible for it. There are several redundancies in 
each hops and these redundancies come from D H T table entries. 
The difference between theory and simulation models is that, in 
theory model we t ry to model the overall average performance 
while the simulation is consisted by many single lookup cases. 

In both models node failure is handled by constant stabiliza-
t ion wi th the same interval. In theory model we have assumed 
that after each stabilization, peer's life is refreshed immediately. 
But in simulation, under the real implementation of DHT, i t 
takes a short period from the beginning of stabilization unt i l 
peers are refreshed, which can be seen as a quick transit status. 

When a new node joins, in simulation it performs DHT's 
join function. W i t h this operation, take Chord[36] for example, 
it is possible to induce: 1) correct successor pointer and finger 
table; 2) correct successor pointer but incorrect finger table; 3) 
incorrect successor pointer. Among all these three cases, only 
the last one wi l l yield incorrect lookup and the probability for 
this is quite small. Hence we omitted this influence of new node 
join process in theory model. 

Network behavior: Although P2PSIM is an overlay-based 
simulator, i t adopts K ING topology to model network's RTT 
latency. So in simulation model, i t is possible for a lookup to 
fail under a very large RTT latency®. But in theory model we 
assume that as long as a peer is alive, its neighbors can always 
reach it. 

6if. the RTT latency is larger than the timeout 
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3.3 Results 

In this subsection, we present model and simulation results. We 
examine system reliability under different peer's lifetimes, differ-
ent system populations, different stabilization intervals and dif-
ferent lookup rates (four related parameters as discussed above). 
Each result is derived by averaging five rounds of simulations and 
each simulation runs for six hours of simulated time. The ranges 
and default values of parameters used in model and simulation 
are summarized in Table 3.1. 

Table 3.1: Parameters' range and default value 
Parameters Range Default value 
Peers' average life time 10-60 minutes 30 minutes 
System population 64-8192 1024 
Average DHT stabilization interval 1.5—10 minutes 1.5 minutes 
Average lookup rate 1 — 10 times per life 30 minutes 

The way we choose the range for different parameters is based 
on the considerations of real world situation. In our theory and 
simulation models, peer's average lifetime is ranging from 10 
minutes to 1 hour. This is reasonable since it is only the mean 
value. For different distributions, i.e. exponential or pareto 
distribution, we may have some peers wi th lifetimes much longer 
(or much shorter) than this mean value. And the lookup rate 
is ranging from 1 time per life to 10 times per life, which is 
also reasonable since 10 times per peer life is a frequency large 
enough for real P2P applications. Stabilization interval is set to 
be from 1.5 to 10 minutes. The reason why we didn't evaluate 
results wi th a very large stabilization interval is that, for D H T 
algorithms that don't refresh DHT tables by lookup messages, 
stabilization interval can not be set too large. Otherwise the 
system may be merged wi th too many stale information to work 
normally. System population is set to be from 64 to 8192. 8192 
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Figure 3.4: Influence of peer's lifetime 

is an on-line population large enough for P2P systems and an 
larger population introduces too much workload that may slow 
down or even crash the simulator. 

We show and discuss the theory model and simulation results 
respectively in following subsections. 

Influence of peer's lifetime 

Consistent wi th our intuit ion, as peer's average life t ime in-
creases, lookup success ratio increases in both model and simula-
t ion results (see Fig. 3.4). I t is interesting to note that, although 
we haven't performed model-level simulation, we sti l l get good 
results here. Model and simulation results match each other 
quite well, w i th only negligible differences. Two observations 
can be gained from these results: 

• Model results are always slightly better than simulation 
results. 
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Pareto lifetime distribution 
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Figure 3.5: Influence of system population 

We believe this is due to the fact that we have omitted stabi-
lization's transit status and lower-layer network influence (RTT) 
in our theory model (as described previously). And both of these 
two cases may deteriorate the lookup success ratio to some ex-
tend. 

• The difference between model and simulation results in-
creases wi th a higher churn rate. 

We believe this is due to the fact that we didn't consider 
the new node jo in influence in our theory model. Although as 
discussed before, wi th a very low probability that a new node 
join may fail a lookup, when the churn rate is really high, the 
highly frequent new node join does affect the lookup success 
ratio. Hence, as shown in Fig. 3.4, the stabler these peers are, 
the better model results resemble simulation results. 
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Figure 3.6: Influence of stabilization interval 

Influence of system population 

In this subsection we examine the influence of system popula-
tion. Results are shown in Fig. 3.5. 

From Fig. 3.5 we may see that lookup success ratio almost 
keeps at a stable level wi th different system populations, which 
shows the scalability of DHT-based system. Theoretically, this 
scalability is gained from the fact that DHT distributes workload 
to every participating peer. Hence, although workload increases 
wi th system population, so does the number of peers that can 
share the burden. 

Influence of stabilization interval 

To analyze the influence of stabilization, we change its interval 
from 1.5 minutes to 10 minutes, while keeping other parameters 
as constants. Both model and simulation results are shown in 
Fig. 3.6. -

From Fig. 3.6, i t is easy to see that lookup success rate de-
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Figure 3.7: Influence of lookup rate 

9 10 

creases as stabilization interval increases in both model and sim-
ulation results. This is not a surprising outcome and is just 
consistent wi th our intuition: if we refresh D H T routing tables 
more frequently, we may have more fresh and correct informa-
tion, which ensures a higher lookup success ratio. 

Influence of lookup rate 

To analyze the influence of lookup rate, we change it from 1 
times per peer's lifetime to 10 times per peer's lifetime while 
keeping other parameters as constants. Both model and simu-
lation results are shown in Fig. 3.7. 

I t is surprising to see that, although we have already set the 
lookup rate large enough to 10 times per peer's lifetime, lookup 
success ratio sti l l stays quite stable. This result again shows the 
scalability of DHT, but in a much larger degree comparing to 
that shown by system population. W i t h an increasing system 
population, we claimed that scalability is gained from the in-
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creasing number of peers sharing the burden. For the increasing 
of lookup rate, system workload increases while population is 
unchanged. Scalability in this part is gained from the fact that 
totally distributed DHT system almost holds no bottlenecks for 
workload [25 

3.4 Observations from modeling work 

In last subsection, we set up simulation experiments to: 1) ana-
lyze parameters' influences to system reliability; 2) evaluate the-
ory model's performance. From this work, we find that peer's 
lifetime and DHT stabilization interval influence system relia-
bil i ty more than system population and lookup rate do. Mean-
while, the fact that theory model results resembling simulation 
results very well shows that, although we haven't modeled all 
the details of DHT systems, we have captured the most impor-
tant aspects in our model. I t can also be seen as a solid basis 
for using simple equations to predict reliability of a DHT-based 
system. Wi th this theory model, we wil l also be able to know 
how to choose system parameters (i.e. stabilization interval) 
to fulfil l reliability requirements when we design a DHT-based 
system. 

Besides of above applications, previous analysis also helps us 
to find out an interesting phenomena: the reliability (lookup 
success ratio) of system with exponential distributed peer life-
time is always an lower bound for that wi th pareto distributed 
lifetime (with the same mean value, as shown in Fig. 3.8). We 
analyze this phenomena theoretically on the basis of following 
corollary: 

Corollary 3.1 Under the same DHT system structure and with 
the same mean value =全 ,0；〉1 ,/?>0,入�0人 pareto (a, (3) 
distributed lifetime can gain a higher single peer reliability and 
further a higher system reliability than exponential(\) distributed 
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Figure 3.8: Comparison of system performance of Exponential and Pareto 
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lifetime. 

Proof: According to Proposition 2.3, single peer reliability 
�oo p = JQ Pr{R k X} X fs(x)dx. W i t h the same distribution of S 

and 0： > 0, 0 < fs{x) < 1,0 < Pr{R > x} <1, p monotonously 
increases wi th Pr{R > x}. Meanwhile, 

Pr{Rpareto > x} {{P + x)/ 
H
i
c
r
x
 

e
 

t-1) 

always holds when x > 0, a > 1 , > 0. Consequently, Pr{Rpareto 
x} > Pr{Rea;p > x} and further ppareto〉Pexp holds. According 
to Corollary 2.5, system reliability only depends on single peer 
reliability p under the same system structure, therefore above 
corollary holds. • 

Intuit ively we can understand above corollary like this: for 
DHT-based systems, peer's liveness is refreshed by stabilization. 
Instead of pure lifetime, the system can only observe peer's resid-
ual lifetime, which determines how long this peer wi l l be alive 
from now on. For exponential distribution, i t has the memo-
ryless property and its residual lifetime is sti l l exponential dis-
tr ibuted wi th the same mean value. On the other hand, pareto 
distribution has long-tailed behavior, and its residual lifetime is 
sti l l a pareto distribution, but wi th a larger mean value. This ex-
plained why performance of system wi th exponential distributed 
lifetime is always an lower bound for that wi th pareto distributed 
lifetime. 

3.5 Methods of D H T stabilization 

In previous discussion, we have assumed a constant stabilization 
interval in D H T algorithms. But in original designs of many 

> 

(a Eoo 
n = 0 

(1 + 1 
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D H T algorithms, the way to do stabilization is not specified, or 
exactly defined. Generally speaking, one can specify stabiliza-
t ion interval to be a constant or a random value. For example, 
Chord's original version uses uniform distributed interval[4] and 
many modeling studies assume exponential stabilization inter-
vals to simplify analysis. W i t h all of this variations, few papers 
have discussed which one is optimal for D H T under certain con-
ditions. The most related work in this subject is done by Z. 
Yao et al[12], but they focus on the isolation problem in Chord. 
In this section, we t ry to analyze the performance of different 
stabilization methods based on lookup success ratio, which is a 
more general metric for D H T system performance. 

Similar to the analysis for Proposition 2.3, we provide follow-
ing proposition for randomized stabilization. 

Proposition 3.2 Let Fji{x) be the CDF of peer，s residual life-
time R, Ft{x) be the CDF of random stabilization interval T 
and Fs{x) be the CDF of exponentially distributed lookup arriv-
ing interval S(Fs{x) — 1 — then single peer reliability is 
given by: 

p = Pr{R > 
•00 

Pr{R >x}x fs'{x)dx 

广 n F M � X 綱 1 - F T � 

(3.10) 
dx 

where S' is the interval between lookup's arrival and last stabi-
lization, and for Exponential(X) distributed lifetime, we have: 

p = Pr{R > S'} = / Pr{R > x} x fs'{x)dx 
Jo 

_ /o⑷ AAV•(入—i^r⑷]血 
(3.11) 

Proof: 
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To get p, we need to decide the distr ibution of S'. Process is 
shown as follows: 

Pr�S' < X 

Pr{S < T} 

Pr{S<x,S<T] 

=Pr{S < <T] = 
Pr{S <x,S <T] 

PriS < T] 
' 0 0 ' 0 0 

'00 

Pr{S < 概 t ) d t = / F s { t ) f T { t ) d t 
Jo 

P r { S < x , S < t } f T { t ) d t 

•00 

Hence we have 

Pr\S' < X 

= / F s m T m + / F s i x 似 t ) d t 
Jo Jx 

pX 

=Fs{x)[l - FT{X)] + / Fs.•⑴dt 
Jo 

—Fs{x)[l - FT{x)] + J ^ ' F s { t ) f T { t ) d t 

�00 
JO F s { t ) f T { t ) d t 

By differentiating both sides we have 

fs{X)[l — FT{X] f s ' i x ) = 
f 『 F s [ t ) f T [ t ) d t 

together w i th Lemma 2.2, above proposition holds. 

Corollary 3.3 Assume stabilization interval is exponential(l/T) 
distributed, then single peer reliability is given by: 

P 
X'T+1 

(A + X')T + 1 (3.12) 

and for uniform[0,2T] distributed stabilization, single peer reli-
ability is given by: 

P 二 
(A? [2(A + y ) T + —工] 

(A + AO^ '2XT + e-狄 T — 1 (3.13) 
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Numerical results of Corollary 3.3 are shown in Fig. 3.9 where 
parameter are selected to be in the same range as in previous 
theory model and simulation experiments. From these numerical 
results, two main observations can be derived: 

• E[T] influences system performance more than T's distri-
bution FT{X) does (see Fig. 3.9(b)). 

• Wi th in our parameter range, constant stabilization always 
achieves the best performance and exponential distributed 
stabilization's performance is the worst. 

Although we have chosen parameter ranges based on the con-
siderations of real world P2P applications, above numerical re-
sults sti l l trigger us to think more about the relationship (related 
to system performance) between E[T] and FT{X), based on fol-
lowing questions: 

• Which one decides performance of stabilization? The sta-
bilization interval distribution itself or the mean value? 

• Does constant stabilization always be the optimal? 

• Once the mean value of stabilization interval is specified, 
can we determine the optimal method for stabilization? 

We answer above questions by comparing experiment results 
shown in Fig. 3.10. We may see from Fig. 3.10(a) that, keep-
ing other parameters unchanged, for small average stabilization 
interval, constant stabilization is the optimal; and for large av-
erage stabilization interval, exponential distributed stabilization 
is the optimal. Hence we may say that the optimal method for 
stabilization changes wi th its mean values. For the methods 
utilized a lot in real P2P application, i.e. small stabilization in-
terval, the optimal method is constant stabilization. Zhongmei 
Yao et al [39] derive a similar result which says that, as mean 
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Exponential lifetime distribution 
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Figure 3.10: Numerical results: different stabilization methods (large interval) 
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stabilization interval E[T] — 0，node isolation probabil i ty under 
constant stabilization interval is no greater than that under any 
random stabilization interval. We believe their result is part ial ly 
consistent w i th our results. 

For the other two questions, by comparing Fig. 3.9(a) and 
Fig. 3.10(b) we may see that, in Fig. 3.9(a) i t is always the con-
stant stabilization to be the optimal and in Fig. 3.10(b) i t is 
always the exponential distributed stabilization to be the op-
t imal. Hence, we may say that, keeping other parameters and 
network condition unchanged, once we deicide the average stabi-
l ization interval, optimal method is also determined (or at least 
wi th in our range of parameters, i t is determined). 

• End of chapter. 



Chapter 4 

A Black-Box Study of Xunlei 

1 An Overview of Xunlei and its key compo-
nents 

1.1 An overview 

As claimed by the company and also as observed from our exper-
iments (details wi l l be discussed later), Xunlei supports differ-
ent methods for file downloading, including Bi t Torrent, eDon-
key, Kad, FTP and HTTP. These methods combined together, 
become Xunlei's multi-protocol strategy for file downloading. 
Fig. 1.1 shows a global view of Xunlei, which briefly introduces 
its system structure. 

Nowadays there are mainly two popular P2P file download-
ing networks which represent a majority of P2P file download-
ing application users, namely Bi t Torrent network and eMule 
network. While these two networks share many similarities in 
their P2P technologies, each has its own special designed prop-
erties. P2P users are more likely to use BitTorrent for sharing 
and downloading popular files, and to use eMule for searching 
and downloading rare resources. Xunlei has embedded both of 
them into its own client, which saves its users for having to run 
two different clients for different purposes. As shown in Fig. 1 . 1 , 
a Xunlei client can participate in both these two networks by 

44 
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BT 

server trackcr 
eMule 

ED2K. 

eMule 

Kad 

- BT protocol: TCP 

BT protocol: UDP 

Xiinlei 

-eMule protocol: TCP — 

• eMule protocol: UDP 

cMulc 缀 

TCP protocol (FTP or HTTP) 

Xunici private protocol: UDP 

像 Q ^ ^ BT clients 

Figure 1.1: Xunlei overview 

communicating wi th B T clients or eMule clients using their own 
protocols respectively. 

Besides these P2P networks, another popular, and also tradi-
tional way for users to get resources is via FTP or HTTP. The 
maturi ty of multi-threads and resuming downloading technolo-
gies makes it possible for a client to download a file in client-
server and P2P ways at the same time, which provides a solid 
foundation for Xunlei's multi-protocol downloading method. We 
believe Xunlei uses a certain mechanism to combine file parts 
(downloaded from different sources) into a complete file. But at 
present we are not clear about the details. 

Irrespective whether i t is BitTorrent network, eMule network, 
FTP or H T T P network, all of them already exist and are well 
developed for a long time. A Xunlei client participating in these 
network is more like a guest or a foreigner: i t needs to speak 
different languages if i t wants to stay in different countries (net-
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works). Then we may ask: what is Xunlei's mother tongue? 
We find that Xunlei clients also form a Xunlei network, where 

they communicate wi th each other using Xunlei private P2P 
protocol (as their mother tongue). This protocol is based on 
UDP, wi th special designed error control and congestion control 
mechanisms, and i t is frequently used for exchanging peer lists 
and file data during file downloading process. We wi l l discuss 
the details in section 4. 

1.2 Key components 

Connections: During the run of Xunlei, a client opens several 
TCP and UDP connections. TCP connections are used for: 1) 
contacting Xunlei servers to get resources used in user interface 
and to post user information; 2) contacting Bi t Tor rent's tracker 
server to get file information (if needed); 3) exchanging file data 
wi th a BitTorrerit/eMule client based on BitTorrent/eMule pro-
tocol, or downloading files from FTP servers. UDP connections 
are used for: 1) exchanging peer lists and file data (based on 
Xunlei's private protocol); 2) searching file information or swarm 
peers in D H T network (can be BitTorrent or Kad network). 

Ports:Usually three UDP ports are pre-assigned upon in-
stallation of a Xunlei client. One is for exchanging peer lists 
and file data (based on Xunlei's private protocol); the other 
two are for listening to Kad and eDonkey ne tworks、In ad-

dition, a new UDP port is randomly assigned for BitTorrent 
D H T lookup packets (if needed). For TCP connections (used to 
contact servers or to exchange messages wi th BitTorrent/eMule 
clients^), ports are usually randomly assigned. 

User interface components: Xunlei's user interface con-
tains several parts: advertisements, movie recommendations, 
hot movie list etc. A number of servers are deployed to de-

iKad and eDonkey are networks supported by eMule clients. 
2Both BitTorrent and eMule protocols use TCP for data transmission. 



CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 47 

liver these information. According to our observations, Xunlei 
servers have different responsibilities. There are usually several 
servers specially in charge of a particular function and usually 
these servers are located geographically near each other. 

Downloading history cache: Each Xunlei client keeps a 
record of its own downloading history. Besides the downloaded 
list shown in the user interface, clients also store BitTorrent's 
meta files (.torrent, .bt.dat and .bt.cfg) in their local cache if 
they have performed any BitTorrent downloading tasks. Later, 
this downloaded list and cached BitTorrent files can be used for 
resource sharing. 

2 Participating into other swarms: Xunlei's 
multi-protocol downloading strategy 

2.1 BitTorrent and eMule basics 

BitTorrent was designed by Bram Cohen in Apr i l 2001 and the 
first implementation was released on July 2, 2001 [4]. Subse-
quently numerous (more than 50) clients have been developed 
by different organizations based on the original BitTorrent pro-
tocol [3] and they form the BitTorrent network. While these 
clients each has its own features, they can communicate wi th 
each other using the original BitTorrent protocol as a common 
language. In BitTorrent network, file downloading processes 
are standard, by following rules and sequences: 1) download-
ing the metainfo file (.torrent) from torrent-discovery sites] and 
getting tracker information form it; 2)finding swarm peers from 
server tracker (via TCP) or serverless D H T tracker (via UDP); 
3) exchanging file chunks wi th other swarm peers based on pre-
defined messages (via TCP): choke, unchoke, interested, not in-
terested, have bitfield, request, piece, cancel [21 

^Mininova, Private Bay .etc 
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Unlike Bit Tor rent, eMule supports two networks: eDon-
key2000 (ED2K) network and Kad network. I t represents 
a large number of users in both ED2K network (more than 90 
percents) and Kad network (more than 95 percents, together 
wi th aMule and MLDonkey). Hence eMule can be seen as a 
representative for both of them. 

In ED2K network, clients connect to servers to search files 
and swarm peer information. Instead, clients in Kad network 
use D H T (Kademlia [6]) to fulfi l l these functions. I t is interest-
ing to note that most of Kad users are also connected to ED2K 
servers, which means Kad and ED2K networks overlap a lot. 
In other words, they are serving the same target users by pro-
viding similar services in different manners: ED2K is based on 
servers [17, 5] and Kad is based on D H T (and hence is total ly 
distributed). Once swarm peers are found and corresponding 
client-to-client connections are established, eMule does not dif-
ferentiate ED2K and Kad users: file exchanging always follows 
the same rule. 

2.2 Bit Torrent and eMule in Xunlei 

To study Bi t Torrent and eMule behaviors in Xunlei, we use a 
Xunlei client to perform several BitTorrent and eMule down-
loading tasks respectively. For each task, we first delete all the 
files about Xunlei, reboot the PC and install Xunlei again. Then 
we start the task and use Wireshark to monitor the whole down-
loading process. We close Xunlei immediately after the file is 
completely downloaded. 

By claiming a task to be a B T task, we first download a 
.torrent file and then use Xunlei to open it and to download the 
file contained in it. By claiming a task to be an eMule task, we 
observe an ED2K link (same as those used in eMule clients) in 
Xunlei's downloading task manager. 
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Table 4.1: Examples of BT tracker servers that Xunlei clients contact 
IP address Host Response 
121.14.243.98 tk.greenland.net none 
121.14.243.99 tk2.greenland.net none 
218.16.124.111 bt.romman.net return request interval and binary 

data(should be peer list) 
222.73.173.113 btfans.3322.org redirect me to 218.202.227.27:8085 
220.189.250.104 bt.ktkj.com 

bt.ai-sky.com 
failiire(unregistered) 

221.130.196.76 share.comoe.cn failure(unregistered) 
218.202.227.27 unknown exchange TCP messages 

(should be peer list) 

Xunlei client 
o 

ping 

-pmg-

• ping response • 
•ping response • 
ping response 

—flnd_node — 
— find—node — 
——find node—— 

nodes 
-nodes-
nodes 

.find—node-

—nodes — 

-find node-

morc than 
30 messages 

72.20.34,145 

79.24.252.64 

93.152.129.206 

72.20.34.145 

79.24.252.64 

93.152.129.206 

72.20.34.145 

79.24.252.64 

93.152.129.206 

repeated for 
many times 
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-get—peers-
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• get_pcers -

values 
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repeated for 
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more than 
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Figure 2.2: A BitTorrent DHT flow captured in a Xunlei client 
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We observe that our Xunlei client fully performs BitTorrent 
functions (as discussed in last subsection) during the file down-
loading process. We find a number of BitTorrent tracker servers 
that our Xunlei client has contacted^ (as shown in Table.4.1), 
and some UDP flows wi th message types consistent w i th Bit-
Torrent's DHT design (as shown in Fig. 2.2). We also find that 
our Xunlei client has exchanged file data and control info wi th 
other clients based on BitTorrent protocol (an example is shown 
in Fig. 2.3). We may conclude that, in this part Xunlei follows 
the original design of BitTorrent quite well. 

During the downloading process of an eMule task, our Xunlei 
client performs a number of eMule steps, including using Kad 

4lt is interesting to note that only some of these tracker servers have replied our Xunlei 
client's requests: two of them replied nothing and another two of them rejected our client 
directly. We believe the "no response" is due to the heavy work load of those tracker 
servers, and the rejection comes from the fact that our client is unregistered (as implied 
by the http messages we received.) 
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Figure 2.4: A Kad flow captured in a Xunlei client 
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Figure 2.5: An eMule client-to-client file exchange flow captured in a Xunlei 
client 
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、妇觀縦、4M1 毋 ？) •乂：J/, 
53671 
53672 

Frame 53670 (1414 bytes on wi re, 1414 bytes captured) 
Ethernet I I , Src: ca:c4:20:00:01:00 Cca:c4:20:00:01:00>, Dst: 
i n te rne t pro toco l , Src: 94.75.237.193 (94.75.237.193), Dst: 1： 
Transmission Control Protocol , src Por t : h t t p (80) , Dst Por t : 
[Reassembled TCP Segments (65909 bytes) : #53037(1360), #530381 

Partial 
sun, 26 Apr 2009 02:42:30 GMT\r \n 

Server: / I . 0 . 0 \ r \ n 
con ten t -descr ip t ion : f i l e t r a n s f e r \ r \ n 
Accept-Ranges: byte5\r\n 

ifi.Ft—-Ti'?巨.6"sTt+]TtTr"irffI?Fiii?iifr—fTTe nami="pr fs"on7'Erial< .417. 
i l content-Length: 

connect ion: c l o s e \ r \ n 
Cont ent -Type: appl i cat i on/down 1 oacl\r\n 
\ r \ n 

S Media Type 
Media Type: appl icat ion/download (65536 bytes) •. 

e Hypertext Transfer protocol 
S Data (731 bytes) 

natfl： A04n4 '̂)4fiQ'iFR7 '̂i74'i8R'i1^qFfiR79^ '̂i?FF'ilF'iRA?FrFF0... 

Figure 2.6: Getting a file part via HTTP 

to search swarm peers and using eMule protocol to exchange file 
data and control info. We show them in Fig. 2.4 and Fig. 2.5 
respectively. In this part, Xunlei follows eMule's original design 
quite well. More details about eMule can be found in [17 . 

2.3 Multi-protocol downloading 

From the subsections above, We know that Xunlei can communi-
cate wi th different clients from different networks using different 
protocols, and we have observed real flows related to Bi t Torrent 
and eMule protocols in Xunlei's downloading process. Since 
the mechanisms used in FTP and H T T P are well understood, 
we omit real flow demo about FTP or H T T P here. Generally 
speaking, by claiming a particular binary range, a Xunlei client 
can download any part of a file as i t wants via FTP or HTTP. 
We show a packet snapshot of this process in Fig. 2.6. To better 
understand the multi-protocol downloading, we further discuss 
the following questions: 
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How many networks does a Xunlei client usually participate 
in? 

A Xunlei client can and wi l l always participate in at least two 
networks for one downloading task: the one where the original 
source is located^ and Xunlei network. For some tasks (not 
all of them), we may also find a Xunlei client participates in 
more than two networks. For example, for some BitTorrent or 
eMule tasks, a Xunlei client may also get resources from FTP 
or H T T P servers at the same time. We believe Xunlei should 
adopt some multi-threads technologies, which helps its client 
collect resources from different networks at the same time. 

For simultaneous downloading tasks during the same run of 
a Xunlei client, the extreme case is that i t may participates in 
BitTorrent, eMule, FTP and H T T P networks at the same time 
when these tasks are of multiple types (BT, eMule and non-P2P) 
during one run. 

Does a Xunlei client fully perform all the functions when it 
participates in another network besides its own network? 

We believe it does. As shown in last subsection, when partic-
ipating in BitTorrent network, a Xunlei client acts exactly like a 
BitTorrent client: i t contacts tracker servers, i t performs D H T 
lookups and it communicates wi th other BitTorrent clients in 
original BitTorrent protocol. And same situation happens when 
it participates in eMule network. 

Does a Xunlei client have a preference for which protocol to 
use? 

Although we have not done a measurement to answer this 
question, we observe from previous experiments that a Xun-
lei client gets a large amount (sometimes even a majori ty) of 
a downloaded file from its own network, especially when down-
loading tasks are targeting at Chinese users (as shown in Fig. 2.7)6, 

5For a BT (eMule) task, original source is located in BitTorrent (eMule) network and 
for a non-P2P task, it is located in FTP or HTTP network. 

®The 10 torrents are the same as those used in Table. 1.1: the first five are downloaded 



鼸 from Xunlei network • from BitTorrent network 

Figure 2.7: Examples of download percentage from Xunlei and Bittorrent 
networks for BT tasks 

Instead of well-developed P2P networks, why does a Xunlei 
client get a large amount of resource from its own network? 
Recall Table. 1.1 we may further see that this choice reaches 
high downloading speed for Xunlei users. We conjecture that 
either Xunlei uses certain methods (or deploys many servers) to 
help its clients find more swarm peers (means more sources to 
get the target file), or i t designs some algorithms to improve the 
performance of file exchanging process. Both of these two parts 
are related to Xunlei's private protocol and we wi l l discuss them 
in the following sections. 

3 Xunlei servers 

Xunlei deploys a number of servers to perform certain functions, 
such as delivering recommendation and advertisements used in 
user interface, broadcasting desktop news, checking software up-
dates, collecting peer information and so on. Instead of finding 

from Gougou search (Xunlei's entertainment resources search engine), where Chinese users 
are the targets. 
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all the servers deployed by Xunlei (which is unnecessary and 
also a heavy work), we are more interested in classifying their 
functions, both in startup and file downloading processes. 

We use wireshark to monitor the whole process of opening a 
Xunlei client, downloading a file and closing the client. To get a 
general understanding, we repeated this process for many times. 

We summarize the information of some servers we captured in 
Table. 4.2, including their IP addresses, locations and functions. 
Most of these servers are located in different areas of China. For 
a certain function, its corresponding servers are usually located 
geographically near each other, e.g. servers that are responsible 
for dealing wi th clients' POST messages are usually located in 
Guangdong. 

Table 4.2: Information about some Xunlei servers 
IP addresses Location Function(s) 
58.251.57.86 ； 58.251.57.73 Shenzhen delivering desktop news 
221.203.179.6; 221.203.179.7 Liaoning 
60.19.64.46 ；60.19.64.52 Liaoning delivering recommendation 
60.19.64.62 ； 60.19.64.36 and news 
60.28.15.204 ； 60.28.15.208 Tianjin checking updates and 
60.28.178.196 ； 60.28.178.205 virus scan 
218.57.144.53 ； 218.59.144.53 Shandong delivering advertisements 
58.254.134.204 ； 58.254.134.205 Guangdong dealing with clients' POST 
58.254.134.206 ； 58.254.134.208 messages 
58.254.134.209 ； 221.4.246.73 
58.251.57.201 Shenzhen collecting and delivering 
60.28.13.153 ； 60.28.178.207 Tianjin requested file info 
60.28.178.224; 125.39.72.105 

Based on our observation, we classify Xunlei servers into three 
categories: initialization servers, POST servers and target file 
responsible servers. 

Init ial ization servers are contacted by Xunlei clients during 
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startup process to get resources used in user interfaces. Some 
of these servers are also hosts of Xunlei Portal, which shows the 
variety of one single Xunlei server's functions. Besides initializa-
t ion servers, a Xunlei client also contacts several POST servers 
during startup process, based on H T T P POST messages^. Con-
tents of these messages are of binary type (hence can not be de-
coded straightforwardly) and they are usually of different sizes. 
We conjecture that these POST servers may be used for collect-
ing client information, as login servers. During the downloading 
process, a Xunlei client further contacts several other servers for 
delivering and retrieving file information. For different down-
loading tasks, a client usually contacts different servers. That 
is why we call them target file responsible servers. To support 
a Xunlei client, these three types of servers need to cooperate 
wi th each other to fulfi l l all the needed functions. 

4 Understanding Xunlei's private protocol 

In this section, we give our results of the analysis of Xunlei's pri-
vate protocol, including but not restricting to its message types, 
data structures, error control and congestion control mecha-
nisms. Due to the fact that Xunlei is a proprietary protocol, 
our results are based on the analysis of binary data. Hence all 
the results given here are conjectures, rather than official de-
scriptions. 

4.1 Exchanging peer lists 

Besides existing methods (via tracker server or D H T lookup), 
Xunlei also uses its own UDP-based messages for exchanging 
peer list. We first show its message structure in Fig. 4.8. 

� T h a t ' s why we call these servers "POST servers". 
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Xunlei flags type 
my client ID 

31) 00 00 00 m 10 00 00 00 16 bytes client ID 

another peer's client ID 

10 00 00 00 16 bytes client ID 

(a) peer-exchange: type 

packet 

Xunlei flags 
type 

Mi 00 00 00 U 10 00 00 00 16 bytes client ID 

(b) peer-exchange: type 2 

Figure 4.8: Xunlei's message structures for exchanging peer lists. 

The first four bytes should contain the flags for Xurilei mes-
sages and the f i f th byte specifies the message type. The fol-
lowing 4 bytes (10 00 00 00) probably serve as a 'separator' for 
16 bytes client IDs. We conjecture that this type of message is 
used for exchanging swarm peers, for the reason that i t contains 
other clients' IDs, and upon receiving it, our client immediately 
sends a handshake message to another peer whose client ID is 
exactly the same as the one attached in it. We believe that the 
16 bytes client ID should contain information of corresponding 
peer's IP address and port number, which may be gotten by 
hashing them based on a particular hash function. Hence wi th 
this ID, our client can directly contact that peer. 

We also find that there are two types of messages for peer 
exchange, wi th type number equals to 03 and 04 respectively. 
At present we are not quite clear about their differences, but 
this wi l l not affect the following analysis. We guess type 04 
message may be a simple version of type 03 message, since it 
ignores packet sending peer's client ID in the data structure. 

Usually a Xunlei client keeps on exchanging this message wi th 
many IP addresses throughout the whole downloading process. 
We are not sure whether these IP addresses represent normal 
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peers or deployed servers. But we find that, most of the UDP 
ports at the other side are 8000. Unlike what we expected, we 
did not find any periodic behavior in this peer exchange process. 

4.2 Exchanging file data 

After finding a swarm peer, a Xunlei client directly establishes 
a UDP connection wi th i t to exchange file data. We discover 
several specific exchanges during this process and we show them 
in Fig. 4.9. I t should be noted that we don't capture all of these 
messages in a session, rather i t is a summary from multiple 
sessions throughout all our experiments. • 

Handshake and handshake ACK: handshake (31 bytes) 
is usually performed at the beginning of a client-to-client con-
nection. Upon receiving it , the other client replies a 39 bytes 
handshake ACK. A handshake message contains some basic in-
formation about the client and the connection, i.e. session flag, 
peer ID and packet ID^. 

Session flag is used for specifying a particular session (client-
to-client connection) and its direction. In Fig. 4.9, 00 00 dc 
97 and dc 97 00 00 are used respectively for the two directions 
of one connection. The 4 bytes peer ID is used to specify a 
particular peer, or client. I t is unique for the same peer, even 
in different sessions. Packet ID is used to specify a particular 
packet, which wi l l be frequently used later for exchanging file 
data. 

Self-introduction: this message (29 bytes) is usually per-
formed before or right after handshake message, for introducing 
16 bytes client ID to specify a client. After this self-introduction 
message, all subsequent packets wi l l only use 4 bytes peer ID to 
do this specification. We conjecture that Xunlei utilizes this 
method to reduce the length of its packet header. Session flag 

8A11 these field are named based on our conjectures. 
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pac 
Xunlei flags 

cet type my client ID | 4B session flag. 
32 00 00 00 05 10 00 00 00 16 bytes client ID 00 00 dc 97 

self-introduction session fla^ peer ID 
32 00 00 00 06 00 00 00 00 dc 97 00 00 94 e6 5b Oc 

4B piece ID 
handshake 

32 00 00 00 06 1)1 00 00 00 00 00 dc 97 34 87 eO 08 

4B picce ID 4B piece ID 
handshake / iCK session flag ^ peer ID 

32 00 00 00 07 dc 97 00 00 94 e6 5b Oc 

32 00 00 00 08 00 00 dc 97 34 87 eO 08 
ping 

32 00 00 00 12 dc 97 00 00 94 e6 5b Oc 4B packet ID 

4B session ID 8B unspecilled Seq# 
file data status flag 

32 00 00 00 1 ！ 00 00 dc 97 34 87 eO 08 00 00 01 00 

req pkt ID _ rev pkt ID Req g a p 

4B session【1) 4B packet TD 4B packet ID Seq# 000000 01 
file data ACK 
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p M 11•乂 l l tAl 

4B packet ID 4B new session ID 4B old session ID Seq# 
control info ACK 

Figure 4.9: Xunlei's message structures for exchanging file. 
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is the same as that used in handshake messages. 
Ping: this message (13 bytes) is performed when one client 

wants to re-connect to another client. I t is quite light-weighted 
since it only contains the information of session flags and peer 
ID. 

File data and its A C K : typically a file data packet is over 
1000 bytes, wi th a few exceptions which should correspond to 
pieces at the end of a file. Besides session flag and peer ID, this 
packet also contains a field we refer to as 'session ID' , which 
seems unique for a particular session, but i t can be changed 
by control info (will be discussed later). We conjecture that i t 
may be used for specifying a particular session (client-to-client 
connection), or for doing some security-related operations, such 
as error detection. The field 'seq#' (sequence number) is used 
to organize the sequence of packets. 

Upon receiving a file data packet, the receiver replies an ACK 
(usually of 37, 38 or 39 bytes), wi th the information of received 
packet ID, requesting packet ID, requesting packet seq# and 
gap size. This ACK message also contains a field of status flag, 
showing whether there is a gap in receiver's buffer or not. The 
gap is generated by out-of-ordered packet arriving (a common 
issue for UDP transmission) and gap size is calculated as largest 
packeLrev-seq^ — packeLreq_seq# (the largest sequence number 
of the received packets minus that of the requested packet). 

Control info and its ACK: Control info messages (89 
bytes) share the first 13 bytes common header w i th file data 
messages, which is followed by a 4 bytes old session ID and an-
other 4 bytes requesting packet ID. Upon receiving this control 
message, the client replies a 37 bytes ACK claiming the new 
session ID and the packet ID that wi l l be sent next. Session ID 
wi l l be changed to the new one in all subsequent packets, unt i l 
the client receives another control info. 

In Fig. 4.10, we show an example of Xunlei's private protocol 
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Figure 4.10: An example for file data exchange process of Xunlei's private 
protocol 
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flow, which introduces the typical process for Xunlei clients to 
exchange file data: 1) sending self-introduction and exchanging 
handshake messages to provide/retrieve information like session 
flag, client ID and peer ID; 2) using control info to make an 
agreement on session ID; 3)delivering file data or sending ACKs 
to request packets. 

4.3 Error control and congestion control 

A common issue for all UDP-based applications is that, while 
they take advantage of UDP's light-weight and flexibility, they 
need to design their own application-level error and congestion 
control mechanisms. Usually these mechanisms are performed 
via ACK messages. According to our observation, Xunlei adopts 
several mechanisms for uploaders to deal w i th ACKs and to 
decide packet sending policies. We consider them as Xunlei's 
error and congestion control mechanisms 

The way a Xunlei client sends an ACK message is different 
from that used in TCP or Go-Back-N (GBN). Here ACKs do 
not need to be sent in order: a client wi l l send an ACK imme-
diately after receiving a packet, no matter whether this packet 
arrives in order or out of order. So in some sense Xunlei's ACK 
is more like that used in Selective Repeat (SR) [7], except that 
it provides more information, such as requesting packet seq# 
(negative acknowledgement), which can be used for retransmis-
sion. 

Based on the above understanding, we make some conjectures 
about Xunlei's error control and congestion control mechanisms. 
We list them as follows and use a real flow captured in Xunlei's 
file data exchange process shown in Fig. 4.11 as an example to 
explain them. 

• Xunlei wi l l do retransmission, either upon receiving triple 
duplicate ACKs or after a timeout. 
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Figure 4.11: An example for Xunlei's error control mechanism 
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To recognize an ACK to be a duplicate ACK, the receiver 
needs to confirm that: l ) th is ACK requests for the packet wi th 
the same seq# as last ACK has requested for; 2) this ACK shows 
a non-zero gap size. Hence in Fig. 4.11, our client retransmitted 
packet Ic immediately after receiving three duplicate ACKs^. 

Besides triple duplicate ACKs, retransmissions can also be 
triggered by timeout (similar to TCP). In Fig. 4.11, our client re-
transmits packet 08 at 109.414038s and packet Od at 111.44524s 
respectively, both due to the timeout, rather than triple dupli-
cate ACKs. According to our observation, this timeout is around 
1.5 seconds. 

• During a retransmission process, Xunlei wi l l retransmit all 
the packets falling in the gap [pkt_req, pkt—rev(largest)], 
except those that have already been ACKed. 

This retransmission mechanism is similar to that used in Se-
lective Repeat (SR). In Fig. 4.11, our client retransmits packet 
08 09 Ob Oc Od and Oe at 109.414038s, without packet Oa since Oa 
has already been ACKed at 107.747368s. This mechanism can 
reduce the work load and avoid unnecessary retransmissions. 

Besides error control, another interesting question is whether 
Xunlei provides congestion control to avoid overflowing the net-
work and flow control to avoid overflowing receiver's buffer. We 
show one Xunlei UDP upload flow in Fig. 4.12 to study and 
explain Xunlei，s congestion control mechanism. 

From Fig. 4.12, we find two typical behaviors of Xunlei's data 
sending policies, which share some similarities w i th those used in 
TCP and are also reasonable for all congestion control designs: 
l )when there is no retransmission (detection of error), data send-
ing rate wi l l be increased (see 15s to 20s in Fig. 4.12); 2) when 
there are retransmissions (indicated by duplicated packet ID), 

9During the calculation of duplicate ACKs, the one embedded in 89 bytes control 
message always accounts one. 
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Figure 4.12: A Xunlei UDP upload flow 

data sending rate wi l l be decreased (see 4s to 8s in Fig. 4.12). 
I t is not clear how Xunlei implements the increase and decrease 
functions, or whether a window size is used for flow and conges-
tion control. Meanwhile, the error control mechanism used in 
Xunlei seems to trigger flow control actions: the retransmission 
triggered by triple duplicate ACKs or by timeout can be used 
to slow down the sending rate, and hence avoids overflowing 
receiver's buffer. 

5 Further discussions 

In this section, we t ry to speculate on the reasons for Xunlei's 
good performance. 

5.1 Proximity of content 

The first guess is the proximity of content. Xunlei is originated 
from China and designed for mainly Chinese users. I f true, i t 
means most users are "close" to the content they t ry to down-
load. Does this mean Xunlei wi l l lose its speed advantage when 
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Figure 5.13: User experiences of file downloading speed (outside China) 

i t is used outside China? • 
The answer is no. We performed several experiments in 

Canada and America respectively. These experiments are per-
formed in Apr i l 09. Each time we use a Xunlei client (Xunlei 
5.8.10) and a BitTorrent client (BitTorrent 6.1.2, installed in 
the same PC) to download the file contained in the same tor-
rent one after another (to minimize the time influence). We 
repeated this process wi th six different torrents. The first three 
torrents (torrent a-c, as shown in Fig. 5.13) are discovered via 
gougou search [13] (targeting at Chinese users) and the other 
three are discovered via Mininova (a popular English-language 
torrent-discovery site). Results (average downloading speed) are 
shown in Fig. 4.13(a) and Fig. 4.13(b), which indicate that Xun-
lei sti l l achieves high downloading speed when i t is used outside 
China. 

5.2 Active swarm peers 

Another possible reason for Xunlei's high downloading speed 
is its multi-protocol downloading strategy. Running a Xunlei 
client is like running two clients respectively: one is getting re-
sources from the network where the original file is located, the 
other one is getting resources from the Xunlei network. Intu-
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(a) torrent i, average download speed: Xunlei321.54kB/s; Bit-
Torrent 193kB/s. 

Xunlei 5.8.10 
-BitTorrent 6.1.2 

1000 1500 2000 
t ime(s) 

2500 3000 

(b) torrent j, average download speed: Xunlei331.1kB/s; Bit-
Torrent99.9kB/s. 

Xunlei 5.8.10 
BitTorrent 6.1.2 

1000 1500 
t ime(s) 

2000 2500 

(c) torrent k, average download speed: Xunlei 116.48kB/s; Bit-
Torrent 64kB/s. 

Figure 5.14: The evolvement of number of peers a Xunlei/BT client down-
loads resources from 



CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 68 

itively, a Xunlei client can connect to more swarm peers, and 
hence it has more sources to get the file, which ensures its high 
downloading speed. 

We performed several experiments to evaluate our intuit ion. 
We use a Xunlei client and a Bi t Torrent client to download the 
file contained in the same torrent file respectively. To make a 
fair comparison, both these two clients are installed in the same 
PC and the experiments are performed one immediately after 
another. We show our results, the number of active swarm peers 
that upload file chunks to our clients, in Fig. 5.14. 

According to previous measurement results about file down-
loading speed (see Table. 1.1 and Fig. 5.13)，Xunlei and BitTor-
rent can both be the faster one. But usually Xunlei is faster. 
Consistent w i th our intuit ion, one of the reasons seems to be the 
number of altruistic (partially) seeding neighbors as indicated by 
Fig. 4.14(a) and Fig. 4.14(b): comparing to BitTorrent clients, 
Xunlei clients usually download file chunks from more swarm 
peers and also have higher downloading speed. Indeed there 
can be various reasons for Xunlei's fast downloading speed, es-
pecially when we focus on a particular downloading task instead 
of numerous ones. Simply the tracker returning some peers w i th 
large upload capacity can be one of the reasons. Fig. 4.14(c) can 
be seen as an example: in this downloading session, the Xun-
lei client only has active swarm peers w i th the number slightly 
larger then that of the BitTorrent client has, but i t reaches a 
downloading speed almost twice as much as the BitTorrent client 
does. 

While Xunlei's multi-protocol strategy provides its clients 
high downloading speed, it also puts a high upload burden on 
them, since in P2P networks total download capacity is approx-
imately the same as the total upload capacity. That is why in 
Table. 1.1, besides downloading speed, the Xunlei client also has 
higher uploading load. 
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^Xunlei client 
background traffic 麓 

Xunlei UDP flows 
PC's Ian - 〜 " ^ 哥 t e r 、 、 

TCP flow 

ftp server 
case 1: local, high path BAV 
case 2: remote, low path BAV 

Figure 5.15: Experiment setup 

5.3 UDP-based data transmission 

Another possible reason is due to Xunlei's packet transmission 
strategy: how aggressive is Xunlei's flow and congestion control 
relative to TCP. Just from observing a sequence of Xunlei pack-
ets, it is not clear at all if Xunlei implements any window or rate 
based control for packet transmission. I t appears Xunlei simply 
pushes packets out continuously unti l packet loses are detected 
by triple-duplicate-ack or timeout. In case of loses, Xunlei re-
transmits the (presumed) lost packets, and it is not clear the 
exact condition under which it resumes new data packet trans-
missions. 

What we can do is to experiment wi th scenarios wi th simul-
taneous Xunlei and TCP flows, and observe how each kind of 
traffic get affected by the other. Ideally, we would like to do con-
trolled experiments wi th Xunlei flow(s) and a TCP flow travers-
ing the same path, and compare the result to a Xunlei flow or 
a TCP flow alone. Unfortunately, i t is not easy to control the 
path Xunlei flows traverse, so we cannot get the TCP flow to 
share exactly the same path. Also, we cannot avoid possible 
background traffic. 
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Figure 5.16: Xunlei's influence: large link capacity for the comparing TCP 
flow 
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Figure 5.17: Comparison of TCP flow's throughput: large link capacity for 
the comparing TCP flow 

Instead, we pre-arrange two TCP flows. The source of the 
TCP flows is the same as Xunlei's flows, on the host where 
Xunlei is running. One of the TCP flow is destined for another 
host on campus; the other TCP flow is destined for a host far 
away (outside of campus). In other words, the local TCP flow 
traverses a high bandwidth path wi th a small number of hops; 
whereas the remote TCP flow traverses a long path wi th lower 
bandwidth. The situation is depicted in Fig. 5.15. Note, there is 
also likely to be some background traffic that we cannot control. 
To minimize the effect of the randomness of the background 
traffic, we perform the experiments several times to ensure we 
report a consistent effect. The results are shown in Fig. 5.16, 
Fig. 5.17 and Fig. 5.18. 

For the case wi th a local TCP flow (traversing a path of high 
bandwidth), the TCP flow achieves higher bandwidth than ei-
ther simultaneous B T flows, or simultaneous Xunlei flows, as 
shown in the first and second sub-figures of Fig. 5.16. But the 
co-existing Xunlei and TCP flows seem to be sightly worse-ofF 
compared to the co-existing BT and TCP flows. We speculate 
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(b) Comparison of TCP flow's throughput 

Figure 5.18: Xunlei's influence: small link capacity for the comparing TCP 
flow 
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that the reason for TCP being worse off is due to the aggressive-
ness of Xunlei in competing wi th the TCP flow for bandwidth. 
The reason for Xunlei to be also worse off seems to be due to the 
few neighbors i t is able to get, as shown in the th i rd sub-figure 
of Fig. 5.16. Figure 5.17 compares the throughput of the TCP 
flow wi th (a) no P2P flows, (b) wi th BT flows, and (c) wi th 
Xunlei flows. The relative throughput is (a) better than (b) and 
(b) better than (c). 

For the case wi th a remote TCP flow (traversing a longer 
path wi th lower bandwidth), the TCP flow achieves much less 
throughput than the simultaneous Xunlei flows. In this case, 
the instantaneous TCP rates also tends to fluctuate wildly, see 
Fig. 4.18(b). Due to the higher aggregate rate of Xunlei flows, 
the TCP flow has to respond more often to congestion signals, 
leading to much lower throughput. 

In the second sub-figure of Fig. 4.18(b), we compare the in-
stantaneous rate of the TCP flow wi th and without the Xunlei 
flows, and it is clear that the latter case is much less stable. 

• End of chapter. 



Chapter 5 

Conclusion 

In this thesis, we studied peer-to-peer systems.in two aspects -
we provided an analysis, as well as an evaluation of the design 
of trackers in P2P systems, and we studied a large-scale P2P file 
sharing system (Xunlei). 

The inherent distributed property of P2P systems require a 
participating peer to find more swarm peers to get a better per-
formance. The "tracker" function is hence a key enabler for all 
P2P systems. Traditional server-based trackers hold bottleneck 
and do not support well the scalability either in the number 
of objects (e.g. files), or in the number of simultaneous par-
ticipating peers. DHT-based trackers, however, are much more 
scalable. Our analysis shows that, the system reliabil ity of DHT-
based tracker design can be quite stable in the face of hetero-
geneous system population and resource popularity, owning to 
they distributing the workload of searching information to nor-
mal peers, and achieving another level of "distributed manner"-
P2P systems wi th DHT-based trackers are distributed not only 
in distributing contents, but also in searching information (e.g. 
file info and peer info). Further, our analysis of DHT-based 
tracker design shows that, among different system and network 
parameters, peer's average lifetime and the D H T stabilization 
interval influence its performance (reliability) most. 

Having attracted a vast user base (purportedly over 200 mil-

74 
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lion users), and achieved very good downloading performance 
compared to Bittorrent, Xunlei is a system worth closer exam-
ination. Yet, being proprietary means it is not easy to uncover 
its design details. In this thesis, we tried to study Xunlei the 
best we can using a black-box approach. We find that its multi-
protocol design, and the ability to tap into different networks 
simultaneously is probably the most important reason for its 
good performance. We believe our measurements and detective 
work is useful for other colleagues working on P2P algorithms 
as well. 

• End of chapter. 
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