
A Study of Peer-to-Peer
Systems

JIA, Lu

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Master of Philosophy
in

Information Engineering

The Chinese University of Hong Kong
August 2009

Abstract of thesis entitled:
A Study of Peer-to-Peer Systems

Submitted by JIA, Lu
for the degree of Master of Philosophy
at The Chinese University of Hong Kong in June 2009

Peer-to-peer (P2P) systems have evolved rapidly and become
immensely popular in Internet. Users in P2P systems can share
resources wi th each other and in this way the server loading is
reduced. P2P systems' good performance and scalability attract
a lot of interest in the research community as well as in industry.

Yet, P2P systems are very complicated systems. Building a
P2P system requires carefully and repeatedly thinking and ex-
amining architectural design issues. Instead of setting foot in
all aspects of designing a P2P system, this thesis focuses on two
things: analyzing reliability and performance of different tracker
designs and studying a large-scale P2P file sharing system, Xun-
lei.

The "tracker" of a P2P system is used to lookup which peers
hold (or partially hold) a given object. There are various designs
for the tracker function, from a single-server tracker, to DHT-
based (distributed hash table) serverless systems. In the first
part of this thesis, we classify the different tracker designs, dis-
cuss the different considerations for these designs, and provide
simple models to evaluate the reliability of these designs.

Xunlei is a new proprietary P2P file sharing protocol that has
become very popular in China. Xunlei is interesting because it
supports multiple protocols simultaneously - BitTorrent, eMule,

FTP and HTTP, and as well as a proprietary protocol that
achieves very fast downloading speed. Its versatility expands the
reach of its eco-system. Its speed makes one curious of its traffic
engineering tricks. In the second part of this thesis, we study
it by reverse-engineering: through a series of specially-designed
experiments and careful dissecting of protocol messages, we dis-
cuss and speculate on the design of this popular protocol.

11

嘀 要

近来，点对点系统（peer-to-peer systems)在互联网上得至

了快速的发展并且获得了广泛的普及。点对点系统中的用户可

以相互共享资源，这种方式减轻了传统服务器的工作负担。鉴

于点对点系统的良好性能及可扩展性，很多专家学者以及工业

界人士都对其产生了浓厚的兴趣。

然而，点对点系统是非常复杂的。建立一个点对点系统通

常需要反复地仔细思考并检测系统设计的各个方面。在本文中

我们并没有对点对点系统设计的每一个领域都有所涉及，而是

将研究重点放在两个方面：分析点对点系统中不同”tracker”设

计的性能，以及研究迅雷（Xunle i)这个典型的大规模点对点

文件共享系统。

点 i点系统中的 t r acke r—般被用来查找拥有或部分拥有某

一资源的节点（或用户）。从单一服务器的 t racker到基于分

布式哈希表（DHT)的 t racker，点对点系统中的 t racker设计

可以釆取很多种不同的形式。在本文的第一部分，我们对

不同的 t racker设计方法进行了归类，分析了这些方法所需考

虑的实际系统问题，在此基础上提出了可以用来分析并且检

验tracker设计性能的简单数学模型。

迅雷是一款在中国非常流行的私有的P2P文件共享协议。迅

雷可以同时支持多种下载协议，如BitTorrent，eMule，FTP等

等。在此基础之上，迅雷还采用了一款私有协议，可以获得极

高的下载速度。同时，迅雷的多功能性扩大了其综合系统的用

户覆盖率。迅雷的高速使得很多专家学者对于其工程设计的具

体细节产生了浓厚的兴趣。在本文的第二部分，我们对迅雷进

行了反向工程研究：通过一系列特别设计的实验和对私有协议

消息类型的探究，我们对这一流行协议的具体设计细节进行了

推测与讨论。

111

Acknowledgement

I would like to thank Professor Dah Ming Chiu, my supervisor,
for his advice, help, encouragement, kindness and forgiveness
throughout these two years. Prof.Chiu is such a nice, gentle
and reputable professor that far beyond I deserve. I t is him who
has introduced and guided me into the world of P2P network
research: inspiring my interests of study, teaching me hand-by-
hand detailed mathematical techniques, helping me improve my
English wri t ing for papers over and over again...Looking back,
from a fresh undergraduate student wi th few technical experi-
ence, to a graduating master who is getting ready for an overseas
journey of research, I have learned so much from Prof.Chiu, not
only in gaining abilities to do research, but also in holding an
correct att i tude towards research, and life. The time while I
have Prof.Chiu as my supervisor, wi l l definitely be a precious
experience for my whole life.

I also appreciate very much the time and discussion I have
had wi th my friends and colleagues in CUHK. They have in-
spired me many research ideas. Besides, w i th their accompany
(working, spending leisure time together), I have spent very
pleasant two years in Hong Kong.

Last but not least, thanks to my family
love, care and tolerance.

for their incredible

IV

Contents

Abstract i

Acknowledgement iv

1 Introduction 1

2 Background Study 7

3 Analysis of P2P Tracker Designs 11
1 Tracker design in P2P systems 11

1.1 A taxonomy of tracker designs 11
1.2 Design considerations 14

2 A reliability model for DHT-based tracker design 15
2.1 DHT basics 15
2.2 Model preliminaries and assumptions . . . 16
2.3 Model description 18

3 Reliability analysis 25
3.1 Related parameters 25
3.2 Simulation setup 27
3.3 Results 30
3.4 Observations from modeling work 35
3.5 Methods of DHT stabilization 37

4 A Black-Box Study of Xunlei 44
1 An Overview of Xunlei and its key components . 44

1.1 An overview 44

V

1.2 Key components 46
2 Participating into other swarms: Xunlei's multi-

protocol downloading strategy 47
2.1 Bit Torrent and eMule basics 47
2.2 Bit Torrent and eMule in Xunlei 48
2.3 Multi-protocol downloading 52

3 Xunlei servers 54
4 Understanding Xunlei's private protocol 56

4.1 Exchanging peer lists 56
4.2 Exchanging file data 58
4.3 Error control and congestion control . . . 62

5 Further discussions 65
5.1 Proximity of content 65
5.2 Active swarm peers 66
5.3 UDP-based data transmission 69

5 Conclusion 74

Bibliography 76

VI

List of Figures

2.1 System structure of DHT-based tracker design . . 18
2.2 Peer's on-off status and lookup arrival 20
2.3 Chord finger table example 23
3.4 Influence of peer's lifetime 31
3.5 Influence of system population 32
3.6 Influence of stabilization interval 33
3.7 Influence of lookup rate 34
3.8 Comparison of system performance of Exponen-

tial and Pareto distributed lifetime 36
3.9 Numerical results: different stabilization methods 40
3.10 Numerical results: different stabilization meth-

ods (large interval) 42

1.1 Xunlei overview 45
2.2 A BitTorrent DHT flow captured in a Xunlei client 49
2.3 A BitTorrent client-to-client file exchange flow

captured in a Xunlei client 50
2.4 A Kad flow captured in a Xunlei client 51
2.5 An eMule client-to-client file exchange flow cap-

tured in a Xunlei client 51
2.6 Getting a file part via H T T P 52
2.7 Examples of download percentage from Xunlei

and Bittorrent networks for B T tasks 54
4.8 Xurilei's message structures for exchanging peer

lists 57
4.9 Xunlei’s message structures for exchanging file. . . 59

Vll

4.10 An example for file data exchange process of Xun-
lei's private protocol 61

4.11 An example for Xunlei's error control mechanism 63
4.12 A Xunlei UDP upload flow 65
5.13 User experiences of file downloading speed (out-

side China) 66
5.14 The evolvement of number of peers a Xun le i /BT

client downloads resources from 67
5.15 Experiment setup 69
5.16 Xunlei's influence: large link capacity for the com-

paring TCP flow 70
5.17 Comparison of TCP flow's throughput: large link

capacity for the comparing TCP flow 71
5.18 Xunlei's influence: small l ink capacity for the

comparing TCP flow 72

Vlll

List of Tables

1.1 User experiences in file downloading (BT tasks,
in Hong Kong) 4

3.1 Parameters' range and default value . 30

4.1 Examples of B T tracker servers that Xunlei clients
contact 49

4.2 Information about some Xunlei servers 55

IX

Chapter 1

Introduction

In the past few years, peer-to-peer (P2P) systems have rapidly
evolved and become an important part of the existing Internet
culture. P2P systems' applications have covered many popu-
lar aspects of nowadays internet users' interests: file sharing,
streaming, video-on-demand (VoD) and so on. To fulf i l l a P2P
application, there are mainly three steps:

1. Finding target objects^

2. Finding swarm peers^

3. Exchanging resources^ wi th other swarm peers

Specific designs of above three parts consist the design of a
P2P system. There are usually several different methods to fin-
ish each step. To find the target object, we can use web search
(as BitTorrent [20] does), DHT-based search (as eMule [12] does)
or simply go through the resource lists provided by deployed
servers (as PPLive [24] does). To find swarm peers, we can
use deployed servers (such as BitTorrent's trackers), DHT-based

lean be a file in P2P file sharing application, a channel in P2P streaming application,
or a video in P2P VoD application.

2A swarm is consisted by peers participating in the same session: download-
ing/uploading the same file, watching the same channel, or the same video. For con-
venience, we call peers in the same swarm to be swarm peers.

^can be the target object, or its information.

CHAPTER 1. INTRODUCTION 2

trackers (as that used in eMule) or simply gossip peer lists wi th
other peers. To exchange resources wi th other swarm peers, in-
centive and download/upload policies are needed to decide peer
and chunk selection strategies (like choke/unchoke and rarest-
first policies used in Bit Torrent), which help ensure a fair and
efficient system performance.

A P2P system is a very complicated system. Its design con-
siderations include, but definitely not restrict to above discus-
sions. Instead of analyzing all aspects of P2P system designs,
this thesis focuses on two things: analyzing reliability and per-
formance of finding swarm peers (or the tracker function) in
different P2P systems, and studying Xunlei, a popular multi-
protocol P2P file sharing system, based on reverse engineering
and measurement work.

In P2P systems, the term tracker originated from the design
of the popular file sharing system Bit Torrent [20]. A tracker is
a server that is used to bootstrap a P2P system, an otherwise
entirely distributed system. The most critical function provided
by a tracker is to introduce other peers engaged in the same ac-
t iv i ty to a requesting peer. In order to perform this function, a
tracker keeps track of peers as soon as they make a request. A
tracker may also perform other related peer management func-
tions. For example, peers may be required to periodically re-
port to the tracker for keeping other statistics. Furthermore, a
tracker can also be used to authenticate peers before providing
them any service.

Subsequently, many other P2P content distribution systems,
including many P2P streaming and Video-on-Demand (VoD)
systems such as [24], adopted similar architectures as BitTor-
rent. A l l these P2P content distribution systems divide the
content into many pieces and distribute them through differ-
ent dynamically formed peer trees based on what pieces of con-
tent different peers are holding. This approach is referred to

CHAPTER 1. INTRODUCTION 3

as data-driven, or unstructured P2P content distribution algo-
rithms. Its surprisingly good performance and adaptability in
the face of peer churn and heterogeneous resource availability is
attracting a lot of interest in the research community. This is
particularly the case for the distributed algorithms for forming
the peer overlay (peer selection algorithms in BT's terminol-
ogy) and for scheduling the piece exchange among peers (piece
selection algorithm in BT's terminology).

In the first part of this thesis, we focus on the design of the
tracker function, which is a key enabler in this architecture. We
use the word tracker to mean the service (provided by a B T
tracker) rather than the server itself. There are two main ap-
proaches in tracker design, one is based on using deployed servers
(we call server-based approach), and the other is based on us-
ing the peers themselves (we call peer-based approach). Based
on these two approaches, there are many variants in the design,
supporting scalability in the number of objects (e.g. files) and
scalability in the number of peers simultaneously accessing the
same object. For example, distributed hash table (DHT) [36, 30
and replication may be applied in tracker design. Our contribu-
t ion is to provide a systematic description of the different designs
of the tracker function, give a general discussion of the pros and
cons of the different approaches, and present a simple model for
DHT-based tracker design.

The chapter for this part is organized as follows. In section 1,
we provide a taxonomy of different tracker designs and discuss
the merit of different designs. In section 2, we present a simple
model for DHT-based tracker design. In sections 3 we analyze its
reliability by setting up simulations and comparing simulation
and model results. We also derive some general observations
from the model and the system parameters.

In the second part of this thesis, we study a popular mult i-
protocol file sharing system, Xunlei. According to Wikipedia [8

CHAPTER 1. INTRODUCTION 15

Xunlei is a popular Chinese download manager and file sharing
client that supports Bit Tor rent, eDonkey, Kad, and FTP. I t
is developed by Xunlei Networking Technologies, a Shenzhen
(China) startup formerly known as Sandai Technologies. At the
end of 2008, Xunlei has been used by 228 millions users and the
amount of downloading has reached 5056TB per day [1 .

Why has Xunlei attracted so many users? An example of
user experience shown in Table. 1.1 gives us the likely answer:
Xunlei has very high downloading speed.

Table 1.1: User experiences in file downloading (BT tasks, in Hong Kong)
No. file size client i time avg. i speed avg. 1 speed
1 350MB Xunlei(5.8.10) 10m58s 545.91KB/S 51.73KB/S

BitTorrent(6.1.2) 59m47s 99.9KB/S 32.8KB/S
2 169.61MB Xunlei(5.8.10) 24m51s 116.48KB/S 33.99KB/S

BitTorrent(6.1.2) 45m04s 64KB/S 42.9KB/S
3 192MB Xunlei(5.8.10) 22m44s 144.26KB/S 63.41KB/S

BitTorrent(6.1.2) 16in44s 195.7KB/S 5.2KB/S
4 137.25MB Ximlei(5.8.10)

BitTorrent(6.1.2)
14m09s
> l h

165.54KB/S 181.12KB/S

5 84.95MB Xunlei(5.8.10)
BitTorrent(6.1.2)

16m29s
> l h

87.96KB/S 2.32KB/S

6 347MB Xunlei(5.8.10) 23m56s 247.89KB/S 13.11KB/S
BitTorrent(6.1.2) 40m00s 148.1KB/S 4.1KB/S

7 347.27MB Xunlei(5.8.10) 23m29s 252.38KB/S 47.44KB/S
BitTorrent(6.1.2) 52m27s 112.9KB/S 19.5KB/S

8 175MB Xunlei(5.8.10) 27m04s 110.45KB/S 3.28KB/S
BitTorrent(6.1.2) 9m29s 315.2KB/S 2.7KB/S

9 349MB Xunlei(5.8.10) 18m34s 321.54KB/S 64.54KB/S
BitTorrent(6.1.2) 30m52s 193KB/S l.OKB/s

10 350.79MB Xunlei(5.8.10) 18m05s 331.07KB/S 7.74KB/S
BitTorrent(6.1.2) 59m47s 99.9KB/S 32.8KB/S

CHAPTER 1. INTRODUCTION 5

Besides the well-known P2P file downloading product, Xunlei
also provides its users Xunlei portal for a variety of information
source, plus Gougou search for searching video, music and other
entertainment resources, Xunlei Kankan for P2P VoD applica-
tion, Xunlei youyou for updating and downloading games and
Weh Xunlei [16, 13, 9]. I t is interesting to note that 1) most
of these products are based on Xunlei's P2P file downloading
technology and 2) they are not isolated from each other. These
products work together and form the Xunlei Ecosystem.

Instead of studying the whole Xunlei ecosystem, we focus
only on its P2P file downloading application. Our study is based
on reverse engineering and measurement work, which consist
of several steps. Mainly we want to understand the following
questions:

1) What is Xunlei? 2)Being a multi-protocol system for P2P
file downloading, how does a Xunlei client inter-operate with
swarms that are speaking different languages (protocols)? 3) In
Xunlei network, what functions do its servers provide! 4) Why
does Xunlei achieve high downloading speed? Does it adopt any
private (non BitTorrent or eMule compatible) protocols? How
do they work?

We answer the first question in section 1 of this chapter by
giving an overview of Xunlei and its key components. Then we
focus on Xunlei's multi-protocol strategy for file downloading
and we explain its detailed process in section 2, where we show,
through a number of experiments, that how a Xunlei client par-
ticipates in BitTorrent or eMule network, gets peer information
in swarms and exchanges resources wi th them (which answers
the second question), from which we notice that besides those
popular open-source P2P protocols, Xunlei also takes advan-
tages of UDP's light-weight and flexibility: i t designs a data
transmission algorithm and frequently uses it during the file
downloading process. For our th i rd step, we study Xunlei's

CHAPTER 1. INTRODUCTION 6

UDP-based private protocol, including but not restricting to
its message types, data structures, error control and congestion
control mechanisms. We further analyze the reasons for Xurilei's
good performance based on a number of measurement studies.
We believe our results wi l l be a useful resource for the under-
standing and analysis of Xunlei and other P2P designs.

A l l of our experiments about Xunlei are performed via Wire-
shark [15] and the results are derived from packet level analysis.

This thesis is organized as follows. In chapter 2 we introduce
the background study of P2P tracker designs and previous work
related to Xunlei. In chapter 3 we give an analysis of different
tracker designs in P2P systems. In chapter 4 we present our
results about the study of Xunlei and the conclusion is given in
chapter 5.

• End of chapter.

Chapter 2

Background Study

The tracker function, mostly finding swarm peers, is a key com-
ponent of P2P system design. The inherent "distributed" prop-
erty of P2P networks requires their users to find more swarm
peers more efficiently to gain a better system performance. When
Bit Torrent protocol was first brought forward, the concept of
"tracker" also emerged. At that time, a tracker was referred as
a deployed server who kept a record of peers in the same swarm
and replied a subset to requesting peers. The way to implement
a tracker server and the messages used for peers and trackers to
communicate wi th each other were well defined in Bi t Torrent's
original design [21.

Later, Bi t Torrent, as well as many other P2P clients, enabled
DHT to fulf i l l tracker function in a distributed way. Again, the
way to implement a DHT tracker and the message types were
introduced and well defined in Bi t Torrent design [29 .

Although the technology of implementing trackers (both server-
based and DHT-based trackers) is quite mature, few researchers
focus on analyzing why implementing trackers in these ways, not
mention to summarize or classify different tracker designs and
design considerations.

The server-based tracker adopts tradit ional client-server mode.
Both the research theories and implementation considerations
related to i t have been well-studied for many years. DHT-based

CHAPTER 2. BACKGROUND STUDY 8

system (including DHT-based tracker), however, is a new com-
ing technology whose concept was only brought forward a few
years ago.

In the early days when D H T was first introduced (from 2002
to around 2004), researchers paid more attention to design and
improve D H T algorithms. During that time, many different
D H T algorithms were brought forward and compared [36, 30,
33, 2, 42]. Different design parameters were analyzed to im-
prove system performance (latency, lookup ratio, bandwidth us-
age .etc) [28，23:.

Later after that, the population of P2P systems increased
so quickly that the scalability became the most important re-
quirement for system design. Researchers and system design-
ers began to utilize D H T in real P2P applications (file sharing,
video-on-demand .etc). Generally speaking there are three lev-
els for uti l izing D H T in P2P systems, namely finding swarm
peers, publising/searching files and storing file chunks, among
which finding swarm peers is the most wildly-used D H T applica-
tion, although there do exist some system designers who would
like to explore more about D H T and utilize it for file publish-
ing/searching, or even file/chunk storage [40 .

How about the performance of DHT-based systems? Re-
cently D H T modeling also attracts many scholars' attention. A
number of models about D H T performance have been brought
forward and most of them are based on reliabil ity theory, w i th
considerations of peer churn in P2P systems [19, 39, 38, 27 .
Nowadays D H T systems are mainly used for P2P applications,
so D H T modeling can be classified into two parts.

• Modeling peer churn.

Being a basic property of P2P systems, peer churn is the
foundation for D H T modeling. Most of D H T modeling papers
share some similarities in this part. They model the peer churn

CHAPTER 2. BACKGROUND STUDY 9

as a renewal process wi th lifetime (or residual lifetime) and re-
pair time (death time) distributions. Lifetime is mostly heavy-
tailed distributed (i.e. Pareto), as observed in real P2P systems
by [18]. But exponential distribution is also used for startup as
well as simplicity, which turns out to be a performance lower
bound [27]. There are also some measurement work that focus
on identifying peer behaviors in P2P networks [35, 37, 18 .

• Modeling DHT behaviors.

Isolation probabil i ty/t ime and query success ratio are typical
metrics for DHT performance modeling. Due to the importance
of successor, authors in [39] study DHT's successor isolation
probability, especially that in Chord. According to Chord's al-
gorithm to keep successors, they model i t as a node keeping a
constant number of neighbors and define the isolation as a node
losing all its neighbors.

For query success ratio, Guang Tan et al. provide a simple
model for it in [38]. Upon deriving residual lifetime, they pro-
vide a straightforward formula for query success ratio, under the
assumption that the path length remains unchanged even when
a certain intermediate node fails.

Finding swarm peers is only one part of a P2P system design,
yet one of the most important parts. Besides analyzing differ-
ent tracker designs, we also perform a reverse engineering and
measurement study of Xunlei, a multi-protocol P2P file sharing
system. This study can help us know more about P2P system
design details.

Xunlei is a proprietary P2P file downloading system target-
ing at Chinese users. Although it is very popular (has attracted
over 200 mil l ion users) and achieves good performance (high file
downloading speed), i t has not been much studied and under-
stood. The only paper about Xunlei [41] is a short paper that
briefly discusses the general functions of Xunlei servers and some

CHAPTER 2. BACKGROUND STUDY 10

preliminary measurement work.
The methodology of our work about Xunlei is inspired by the

reverse engineering study of Skype [34]. Through analysis of
traces of Skype's messages, i t was able to deduce many aspects
of Skype's system design. Gu et al [22] introduce and study
a special designed UDP-based data transfer mechanism wi th a
series of analysis and measurement work about TCP and UDP,
which influenced our thinking about Xunlei UDP flows' influence
to other flows, and to the network. [24] provides a measurement
study of a large-scale P2P VoD system, covering many aspects
of architectural design issues, which is a useful reference for our
measurement work about Xunlei.

• End of chapter.

Chapter 3

Analysis of P2P Tracker
Designs

1 Tracker design in P2P systems

1.1 A taxonomy of tracker designs

For the data-driven P2P content distribution architecture, i t
is necessary for each peer to discover other peers engaged in
the same content distribution session, as well as what pieces of
content these peers have. The tracker usually only supports the
discovery of peers. The discovery of what pieces peers hold is
normally accomplished by gossip [20], in other words, by a peer
directly querying its neighboring peers. What pieces peers hold
changes frequently wi th time, so in most scenarios only gossip
can provide the most timely information without overburdening
a server and incurring excessive network overheads. While i t
is possible, broadly speaking, to consider this (providing piece
information) also part of the tracker function, we take a narrower
view. That is, the tracker only maps an object (distribution
activity) to a set of peers (partially) holding this object.

Therefore, the tracker needs to deal wi th only two kinds of in-
formation: (a) objects, and (b) peers; and provide the mapping
between them. Objects are the files (in P2P file sharing or VoD)

11

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 12

or video channels (in P2P streaming). A tracker should be able
to serve multiple objects simultaneously. Peers are the users
downloading the objects. Each peer registers wi th the tracker
for the object it is downloading; and requests for a set of other
peers downloading the same object. Although a broader view
of the tracker can include additional interactions between the
tracker and the peers (e.g. statistics collection), we assume the
minimum responsibility for the tracker in this study. Tracker
design can be classified by the following three dimensions:

Who provide the tracker function? There are basically
two choices: using deployed servers (DS), or using peers (P).
In the latter case, it is possible to rely on only a subset of the
more powerful peers known as supernodes.

How are objects assigned to tracker nodes? In the
same P2P system, there may be many objects made available
for sharing. Instead of having one tracker node serving all these
objects, multiple tracker nodes (whether DS or peers) can share
the load. The assignment can be by manual configuration (M) ,
or via a distributed hash table (D H T) .

How are peers assigned to tracker nodes? A large num-
ber of peers may be accessing the same object simultaneously,
causing too much load for a single tracker node to handle the
load. There may be other locality and reliability reasons for
having multiple tracker nodes serve a single object. In this case,
the assignment depends on whether the tracker nodes are de-
ployed servers or peers. In the former case, the assignment can
be based on user choice, if tracker nodes are explicitly adver-
tised to users (U), or can be automatic (A), if the tracker node
must be found by a D H T mechanism. In the latter case, the
assignment has to be automatic (A) .

Let us now consider some examples of these different designs
below.

In the classic BitTorrent, the tracker is a server and the bind-

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 13

ing of the tracker node to the object is advertised in a meta-file
(the "torrent" file) [20]. A user (peer) can choose the tracker
based on which meta-file i t selects to use (or a specific tracker in
a meta-file wi th multiple trackers). The peer then contacts the
tracker to find other peers downloading the same object. We
can refer to this design as (DS+M+U) .

Another popular file sharing system, eMule, uses D H T to let
the tracker function be shared by peers themselves. I t uses a
particular D H T algorithm known as Kademlia [30, 19]. The ba-
sic idea of any DHT algorithm is that i t provides a mapping
from an object name to a target node^ that keeps some infor-
mation about the object of interest. In reaching this node, the
lookup process may have to traverse several intermediate nodes.
A well-designed DHT also provides some redundancy (via repli-
cation) in the paths reaching any object. The mapping from
the object to the set of trackers for the object is then stored at
the target node. In our taxonomy, this design can be labeled
(P + D H T + A) .

A th i rd example is the PPLive VoD system. According to
the designers [24], the tracker function is provided by several
deployed servers, and a D H T is used to allocate the objects
(video files) to this set of servers. This design can be labeled as
(DS+DHT+A) .

I t is interesting to note that it is not uncommon for a P2P
system to simultaneously rely on two different mechanisms to
support the tracker function, wi th one of the mechanisms used
as a back-up. For example, some versions of Bi t Torrent also use
(P + D H T + A) as a back-up; whereas eMule is also able to use
a (DS+M+U)2 in parallel. In the PPLive VoD system, a more
recent version also includes a DHT to avoid server filtering, a
simple technique to disable a P2P service.

iHere we do not differentiate the term node and peer. We use them iteratively through-
out this thesis.

^Known as ED2K.

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 14

1.2 Design considerations

In designing the tracker function, there are many considerations.
Many of them are not quantifiable. We discuss them briefly here.

Ease of implementation: A simple client server model should
be simpler than DHT，and this can be the reason for the original
tracker design.

Legal liability or management responsibility: There may be
legal l iabi l i ty in running a tracker. I t also incurs management
chores. So a serverless (based on DHT) design is very desirable.

Costs: There are also some costs associated w i th running a
tracker, e.g. the server and bandwidth costs. W i t h a serverless
tracker, these costs are absorbed by the peers.

Flexibility: Implementing tracker in servers certainly gains
more control for the content distributor (in the case when con-
tent comes from distributor rather than from the peers them-
selves). For example, the content provider may make peers in
different networks/countries use different trackers and form dif-
ferent sessions.

Security: On the one hand, server-based tracker can be sub-
jected to DoS attacks; or the access to the tracker can be easily
filtered out (for example by an ISP who wants to disable the
P2P system). On the other hand, server-based tracker can be
used to implement some access control policies.

While the above considerations are all important and could
decide the tracker design, another important consideration is the
reliabil ity which directly affects user perception. This metric can
be quantitatively evaluated, by a system model presented in the
next section.

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 15

2 A reliability model for DHT-based tracker
design

2.1 DHT basics

The basic principle of DHT (distributed hash table) is mapping
each object and node into the identifier space { 0 , 1 , — 1}^
using constant hashing. For each node or object, its identifier is
unique and is also the only resource to identify itself. To avoid
confusion, we call the object's identifier to be the key and the
node's identifier to be the ID. W i t h the key, an object can be
mapped to their responsible node that is in charge of this object
and its information. Basically an object can be assigned to an
node wi th the ID closest to the key of this object. Methods
to define "closest" are different from protocols. Chord defines
"closest" node as the first node whose ID is larger than the
key in the clockwise direction along Chord ring[36]. Kademlia
defines it as the node wi th the smallest distance based on XOR
metric [30 .

Two basic functions performed by any D H T algorithm are
put (key) and get (key). Given the key, we can find the responsible
nodes and assign an object into D H T network wi th the function
put (key) and later we can retrieve it by finding the responsible
nodes wi th get (key). I t is easy to see that finding the responsible
nodes is a basic process in both put (key) and get (key). This
process is named lookup in DHT, where lookup messages are
forwarded from the original requesting node to the responsible
node hop by hop. One of DHT's important achievements is that,
i t exponentially decreases the lookup length by each hop while
keeping the ID of next-hop intermediate node closer and closer
to the key of the object. DHT table is an application-layered
routing table that contains information of a subset of nodes in

^k is usually a sufficiently large value that can make sure no identifiers conflict among
different nodes or objects.

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 16

the network, including node ID, its IP address arid some other
information which can be used for advanced features.

To handle churn, which is a typical peer behavior in P2P
networks, DHT adopts certain mechanisms. Stabilization is a
method widely used in many DHT algorithms. I t refreshes
DHT table entries according to a constant or randomized pe-
riod, which allows D H T to detect and to replace failed nodes,
as well as to note and to add new-joined nodes. Some D H T
algorithms also adopt more casual and flexible ways to do re-
freshment. Kademlia[30] refreshes the information via refresh
upon lookup. As its name implies, Kademlia refreshes its DHT
table entries by each received lookup message.

2.2 Model preliminaries and assumptions

As discussed in previous subsections, DHT-based tracker design
uses lookup message to perform tracker function and we define
the success of lookup process as, given the key, eventually find-
ing the responsible peer. A responsible peer is in charge of a
particular range in D H T identifier space. The mechanism used
to decide the responsible range depends on specific protocols.
For example, Chord defines the responsible range of a peer as
the ID range between its proceeding node (the nearest counter-
clockwise node in the Chord ring) and itself.

For a particular lookup message, i t traverses a path of inter-
mediate peers, where each peer has several other peers serving
as backups or redundancies. Here the need for redundancy in
each hop is due to the dynamic behavior of P2P systems. Peer's
join and departure are happening every time when users start or
terminate a P2P application. Each peer (with a unique ID) first
enters into the system, starts a number of P2P sessions and then
stays in the system for some time. During this time, this peer
is called to be alive and correspondingly the period i t spent or

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 17

i t is alive in the system is called peer's lifetime. When sessions
are finished, this peer wi l l leave the system wi th or without no-
tification. Peers can also leave the system in the middle of a
session voluntarily, or due to some uncontrollable reasons, such
as link failure.

The most significant influence introduced into P2P systems
by peer churn is the stale information, which affects system per-
formance in many ways. Without further detection and repair,
stale information may direct lookup messages to failed inter-
mediate peer(s) which causes lookup failure. Another influence
introduced by peer churn is the dynamic system population. Ex-
periments in [24] show that system population changes wi th the
time of a day. But when the system has been evolved for a long
time and if we look into a particular time slot, like around 8:00
pm, system population stays around a particular level without
large fluctuation. This is the steady state where rates of peer's
join and of peer's departure are almost the same. Throughout
this thesis, we only consider this steady state. To simplify anal-
ysis, we further assume a constant system population, which is
achieved by the implementation that once a peer fails, i t rejoins
the system immediately as a brand new peer w i th a new ID.

To handle problems caused by peer churn, most D H T al-
gorithms introduce refreshment mechanisms. Each time when
DHT performs a refreshment, peer's liveness is verified and failed
peers are replaced. Here we assume that DHT's refreshment
mechanism is stabilization w i th a constant interval, for the rea-
son that periodic stabilization is the most wi ldly used refresh-
ment method in DHT systems (as discussed in last subsection).
Stabilization is a process performed by each peer individually
and no central control or central clock is used here. Besides
of these, we further assume that each peer starts a number of
lookups for randomly chosen keys during their lifetimes, and
the lookup interval is exponentially distributed. Hence, for a

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 18

k units

Figure 2.1: System structure of DHT-based tracker design

particular peer, lookup arrival is a poisson process.
From above analysis we may see that the operation of a real

DHT system is very complicated. Analyzing the system by con-
sidering all the details is neither realistic nor necessary. Hence
instead of giving a complicated model capturing all the aspects
of the system, we set up a simple model that captures the ba-
sic features of DHT-based tracker design, which is discussed in
following subsections.

2.3 Model description

As shown in Fig. 2.1, we model DHT-based tracker design as
a serial set of units where each unit is composed of a parallel
set of sub-units. The serial units are lookup hops and paral-
lel sub-unites are redundant peers for each hop in D H T table
entries. The number of unites is the hop length for a lookup
and the number of sub-unites in each unit is the number of re-
dundancies in each lookup hop. We measure system reliability
by a simple criterion: lookup success ratio, which is determined
by the system structure and single peer (sub-units in Fig. 2.1)
reliability.

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 19

Single peer reliability

We consider single peer reliabil i ty to be the probabil i ty that
the corresponding peer is alive when a lookup message arrives.
Obviously, single peer reliabil ity depends on peer's liveness and
peer's liveness depends on its remaining lifetime, or formally
residual lifetime. Originally, peers，s lifetime L is determined
by lifetime distr ibut ion F{x). When D H T performs stabiliza-
tion, peer's liveness is verified and its remaining lifetime wi l l be
changed. Since stabilization is an individual behavior for each
peer, i t is not possible for us to know when it happened previ-
ously. Hence we assume it to be uniformly distr ibuted wi th in
each peer's lifetime. Therefore peer's remaining lifetime after
stabilization can be derived based on following residual lifetime
theorem [32]:

Lemma 2.1 Let F{x) be the CDF of peer's lifetime L, then the
CDF of peer，s residual lifetime is given by:

1
FR[X) = P[R<X) = — J (1 — F{z))dz (2.1)

'0
Real world experiment[18] shows that P2P user's lifetime has

long-tailed behavior and i t is approximately pareto distributed.
Together w i th exponential distribution's memoryless property,
we use pareto and exponential (for comparison) as lifetime distri-
butions to validate our model and simulation results throughout
this thesis. And this analysis is based on following lemma:

Lemma 2.2 The CDF of residuals for Exponential lifetimes with
F{x) = 1 — is given by:

FR{X) = P{R <X) = L - e-A工 （2.2)

and the CDF of residuals for Pareto lifetimes with F{x)=
1 — > I is given by:

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 20

on I off I on (ofT 丨 i off
山 —W

-H f——

‘ s

^ + f-
丨 T 丨 T I ！

Lookup arrives

Figure 2.2: Peer's on-off status and lookup arrival

FR(X) = < ：̂) = 1 -(学)-(-1) (2.3)

Lemma 2 is not a surprising outcome. Under memory less
exponential distribution, peer's lifetime is refreshed after sta-
bilization. For "long-tailed" Pareto distribution, residuals can
gain a longer tail, which means that the mean value of resid-
ual lifetime is longer than that of the original lifetime. This is
consistent wi th the fact that in most P2P systems, users who
survive in the system for some time are likely to remain on-line
for longer period than the new arriving users.

In DHT-based P2P systems each participating peer is in
charge of a particular range of DHT structure and we call this
peer responsible peer. For a particular key, the responsibility can
be re-allocated from one peer to another (due to peer's churn)
according to DHT's stabilization mechanism. I f the original
responsible peer is failed, DHT's stabilization can detect this
failure and replace it wi th a new one. Hence from each key's
point of view, the corresponding responsible peer possess two
status: on and off. The time it stays in the status on after sta-
bilization is determined by its residual lifetime. After this peer
fails, the status switches to off unti l next stabilization replaces
it wi th a new responsible peer and switches the status back to
on. Fig. 2.2 shows the on-off process of a particular responsible
peer. Similar on-off process also happens to intermediate peers

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 21

for a particular lookup message.
Upon deriving the on-off model, we examine lookup arriving

process within a certain stabilization interval, which is shown
in Fig. 2.2. S is the time interval between lookup's arrival and
last stabilization. Since we previously assumed a memoryless
exponential distributed lookup interval, it is refreshed after sta-
bilization and S is exponentially distributed. Therefore for a
peer to be alive when a lookup arrives, its residual lifetime need
to be longer than S.

Above analysis provides the basis for following proposition:

Proposition 2.3 Let FR{X) he the CDF of peer's residual life-
time R and T he the constant stabilization interval. With an
exponential(X') distributed lookup arrival interval and alternate
on-off status, single peer reliability p is given by:

、00
p = Pr{R 2 Pr{R > x} x fs{x)dx

Jo , \
fT 入/已-入‘工 （ 2 . 4)

二 / (1 - FR{X)) X dx
Jo /o X'e-^vdy

For exponential and pareto distributed lifetime, single peer
reliability is given in following corollary:

Corollary 2.4 Assume peer's lifetime is exponential(\) distributed,
then single peer reliability is given by:

P 二 + (2.5)

and for Pareto (a, (3) lifetime distribution, single peer reliability
is given by:

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 22

/Qa-l \f rT

v= , / + (a—办
1 一 e—A" JQ

—/3�-iA'eA'" ^ {-XT (T + 广—时2 _ pn-a-,2
- 1 — e -打 ^ ~~n\ n - a + 2 n = 0

(2.6)

System reliability

As shown in Fig. 2.1, we model the DHT-based tracker design
as a series of units and each unit is composed by some sub-
unites. Let k represent for the number of the serial units, namely
the number of hops for each DHT lookup. Let m i , m2”‘.mk
represent for the number of sub-units, namely the number of
available serving peers in each hop. Based on reliability theory,
we can calculate the system reliability as shown in following
proposition.

Proposition 2.5 For a DHT-based P2P system, the probability
that a particular lookup will be successful is given by:

i=l

and the system reliability is given by:

m,- (2.7)

EIUdht] = E[(l - (l - p r (2.8)

h i
where k is the lookup length and mi，m/2，...mk is the number of
available serving peers in each hop, andp is single peer reliability
given by Proposition 2.3.

Now the key questions for completing the model become:

• How many hops do we have for each lookup?

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 23

N51

N36+1 N42

N36+2 N42

N36+4 N42

N36+8 N48

N36+16 N1

N36+32 N8

.N33 N32

Finger table

N32+1 N33

N32+2 N34

N32+4 N36

N32+8 N42

N32+16 N48

N32+32 N1

Finger table

N8+1 N9

N8+2 NIO

N8+4 N14

N8+8 N21

N,S+16 N32

N8+32 N42

Figure 2.3: Chord finger table example.

• How many redundancies do we have for each hop?

We use Chord [36] for example to answer above questions,
since the design of Chord shows DHT's basic principles without
introducing too many advanced features [36 .

To answer the first question, we assume that nodes are uni-
formly distributed among the ID space^ and lookup keys are ran-
domly chosen from the key space. Since lookup lengths in DHT-
based P2P systems are bounded by logs N, where N is system
population, and the lookup keys are randomly chosen, we fur-
ther assume that the mean value of lookup length is (log? N)/2.

To answer the second question, Fig. 2.3 shows the basic struc-
ture of a Chord ring and the D H T tables of node N8, N32 and
N36. Suppose that at the beginning N8 starts a lookup for key
38. According to Chord's algorithm, the lookup message wi l l be

4This is also a property of constant hashing.

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 24

forwarded from N8 to N32, N36 and N42 hop by hop. Know-
ing that N42 is the responsible node for key 38, this lookup is
finished successfully at N42.

Problems happen when one of the above intermediate nodes
is not alive. Suppose N8 finds that N32 is unreachable when
it tries to forward the lookup message to N32. Then N8 needs
the redundancies in this hop to continue the lookup. According
to [36], alternative nodes, or the redundancies for a hop, can
be easily found in the table entries preceding that of the failed
node. So in our example, when N32 fails, N8 sti l l has N9, NIO,
N14 and N21 as alternative nodes, which are 4 redundancies for
this hop.

From above example, we may have two observations about re-
dundancy: l) the number of redundancies in each hop depends
on the ID distance between the intermediate node and the key;
2)the number of redundancy decreases by each hop. These ob-
servations can be intuit ively understood based on DHT's basic
principle: forwarding the lookup messages closer and closer to
the target key in each hop.

Recall Proposition. 2.5 that the system reliability is the mean
value of a stochastic function related to m i , m2,...mk, k and
single peer reliability p. Nevertheless, instead of analyzing the
stochastic behavior of the system, we focus on system's mean
performance in this model. So instead of calculating the mean
value of a complicated stochastic function, we simplify this by
approximating the mean of a function to be equal to the function
of the mean. More precisely, we approximate that:

~ 五[爪 1], [7712]...五丨肌

and this approximation wi l l be evaluated later by simulations.
To complete the model, we need to decide the mean values of

m i , 7712,...ruk and k. Stil l using Chord for example, i t contains

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 25

log2 N entries in each routing table and since lookup keys are
randomly chosen among identifier space, we further assume that
on average the number of available severing peers in the node
who starts the lookup, namely E[mi]^ is log2 N/2. I t is inter-
esting to note that, E[mi] is equal to the average path length
E[k] (both are equal to (log2 7V)/2, as discussed previously). To-
gether wi th the fact that the number of redundancies decreases
by each hop, we are trigged to assume that on average the num-
ber of redundancies decreases by one in each hop. W i t h these
assumptions and analysis, the system reliability of a Chord-like
DHT system can be derived as shown in following corollary:

Corollary 2.6 For a Chord-like DHT system with a constant
population N in steady state, the system reliability can be ap-
proximated to:

log2 N

E I U d h t] - 1 1 (1 — (1 - P) ") (2.9)
k=l

where p is single peer reliability given by Proposition 2.3.

In next section, we'll set up simulations to do more analysis
zhout system reliability. The numerical results of Corollary 2.6
wi l l also be calculated and compared wi th simulation results in
next section.

3 Reliability analysis

3.1 Related parameters

From Proposition 2.5, the only criterion we used to measure re-
l iabil i ty of D H T systems, namely lookup success ratio, is related
to system population and single peer reliability. From Theorem
2.3, this single peer reliability further depends on peer's life-
time, system population, stabilization interval and lookup rate.

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 26

Therefore, for the reliability of DHT-based tracker design we
have four related parameters, which are discussed respectively
as follows:

Peer's lifetime is a determinant parameter for churn rate in
P2P systems. Peer's churn may produce stale information and
consequentially deteriorate system's performance. The churn
rate, somehow decides to what degree it can deteriorate system
performance. For system designers, they always prefer peers in
their systems to stay as long as possible. Unfortunately, the in-
herent properties of dynamic and self-organization for P2P sys-
tems make it almost impossible for designers to control peer's
churn behavior. So instead, some system designers choose to
deploy more stable super nodes to weaken the influence of peer
churn. Besides the mean value of peer's lifetime, its distribu-
t ion is also an influence. W i t h the same mean value, different
distributions may have different effects on system performance.

System population directly reflects system's popularity.
While designers are glad to observe a large population in their
systems, they also need to handle the problems caused by it,
such as the workload, especially when there are certain bottle-
necks in the system. As discussed in previous section, system
population is dynamic due to peer's join and departure. A larger
peer join rate can increase system population while a larger peer
departure rate can shrink it. W i t h the same join-and departure
rate, systems wi l l stay at the steady state wi th population keep-
ing at a certain level without large fluctuation.

Stabilization interval determines the rate for D H T to do
stabilization. Intuit ively the system can gain a better perfor-
mance wi th a smaller stabilization interval. Methods for stabi-
lization usually depend on system implementations. Right unti l
here, we always assume a constant stabilization in our model.

Lookup rate shows the popularity for a particular object
(e.g. a file) and all together determine system's workload. For

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 27

each alive peer in the system, it performs several lookups wi th
randomized lookup interval. Throughout this paper we assume
this interval to be exponentially distributed.

3.2 Simulation setup

In this subsection, we analyze the system reliability by setting
up simulation experiments wi th real implemented D H T algo-
rithms. These experiments can be used to evaluate the related
parameters discussed in last subsection, as well as our theory
model.

Simulation methodology

About P2P simulations and simulators, methodology and tools
have always been discussed and questioned [31]. Generally speak-
ing, there are three main methodologies for simulating P2P net-
works: 1)packet-level; 2)overlay-level and 3)model-level.

Due to the popularity of some packet-level simulators like
NS-2[10] and 0PNET[14]，some scholars take advantage of their
well-organized and update-in-progress documents and use them
as P2P simulators wi th or without modifications[43, 26]. Packet-
level information helps simulations to resemble real world appli-
cations very well, but i t also aggravates simulator's workload
at the same time. Hence it is almost impossible to simulate
large-scaled P2P networks wi th packet-level simulators.

Model-level simulation is always the favorite choice for many
researchers due to the simpleness to write some codes that sim-
ulate model principles. And since they only simulate the models
(or the algorithms), they can always get good results showing
the similarity between their model and simulation results. But
model-based simulation's lack of considerations of real network
details also makes any claims on results hard to be validated
and further to be believed wi th confidence by other researchers.

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 28

Wi th so many disadvantages of above two kinds of simulators,
overlay-level simulator is hence a good choice for simulating P2P
networks. [31] have done a survey about existing overlay-level
simulators for P2P networks, and 9 of them are well-studied and
compared. Among them, we choose P2PSIM[11, 28], a discrete-
event simulator for structured P2P networks, for the reason that
it implements the original designs of many DHT algorithms and
it also adopts the K ING topology^ to model the lower-layer
network performance. Moreover, i t has already included peer
churn pattern. Among all the DHT algorithms implemented in
P2PSIM, we choose Chord as the DHT prototype for simula-
t ion model, for the reason that Chord grabs all basic principles
of DHT without introducing too many advanced features.

Comparison of theory and simulation model

In both theory or simulation models, operations of DHT-based
system are decided by three main modules, namely peer behav-
ior, protocol behavior and network behavior.

Peer behavior: In this part, theory and simulation models
adopt exactly the same scene: Peer's ID is uniformly distributed
among ID space. Each peer spends some time in the system and
during this time it starts several lookups for randomly chosen
keys, wi th exponential distributed lookup intervals. And peer's
life time is exponential (A) or Pareto(a,/^) distributed. At a cer-
tain time it crashes, then re-joins the network immediately as a
new node wi th a new ID. This behavior also ensures a constant
population for the system.

Protocol behavior: D H T protocol behaviors include sev-
eral parts: ini t ial state, dealing wi th lookup, handling node
join/fai lure and periodic stabilization. We do not consider the
init ial state either in our theory model or in the simulation, for

^KING topology is a pairwise latency matrix derived from measuring the inter-node
latencies of 1024 DNS servers using the KING method.

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 29

the reason that instead of the highly dynamic init ial state, we
concern more about DHT's steady state behavior.

For dealing wi th lookup, in both models lookup messages
are forwarded from one peer to another and finally to the one
who is responsible for it. There are several redundancies in
each hops and these redundancies come from D H T table entries.
The difference between theory and simulation models is that, in
theory model we t ry to model the overall average performance
while the simulation is consisted by many single lookup cases.

In both models node failure is handled by constant stabiliza-
t ion wi th the same interval. In theory model we have assumed
that after each stabilization, peer's life is refreshed immediately.
But in simulation, under the real implementation of DHT, i t
takes a short period from the beginning of stabilization unt i l
peers are refreshed, which can be seen as a quick transit status.

When a new node joins, in simulation it performs DHT's
join function. W i t h this operation, take Chord[36] for example,
it is possible to induce: 1) correct successor pointer and finger
table; 2) correct successor pointer but incorrect finger table; 3)
incorrect successor pointer. Among all these three cases, only
the last one wi l l yield incorrect lookup and the probability for
this is quite small. Hence we omitted this influence of new node
join process in theory model.

Network behavior: Although P2PSIM is an overlay-based
simulator, i t adopts K ING topology to model network's RTT
latency. So in simulation model, i t is possible for a lookup to
fail under a very large RTT latency®. But in theory model we
assume that as long as a peer is alive, its neighbors can always
reach it.

6if. the RTT latency is larger than the timeout

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 30

3.3 Results

In this subsection, we present model and simulation results. We
examine system reliability under different peer's lifetimes, differ-
ent system populations, different stabilization intervals and dif-
ferent lookup rates (four related parameters as discussed above).
Each result is derived by averaging five rounds of simulations and
each simulation runs for six hours of simulated time. The ranges
and default values of parameters used in model and simulation
are summarized in Table 3.1.

Table 3.1: Parameters' range and default value
Parameters Range Default value
Peers' average life time 10-60 minutes 30 minutes
System population 64-8192 1024
Average DHT stabilization interval 1.5—10 minutes 1.5 minutes
Average lookup rate 1 — 10 times per life 30 minutes

The way we choose the range for different parameters is based
on the considerations of real world situation. In our theory and
simulation models, peer's average lifetime is ranging from 10
minutes to 1 hour. This is reasonable since it is only the mean
value. For different distributions, i.e. exponential or pareto
distribution, we may have some peers wi th lifetimes much longer
(or much shorter) than this mean value. And the lookup rate
is ranging from 1 time per life to 10 times per life, which is
also reasonable since 10 times per peer life is a frequency large
enough for real P2P applications. Stabilization interval is set to
be from 1.5 to 10 minutes. The reason why we didn't evaluate
results wi th a very large stabilization interval is that, for D H T
algorithms that don't refresh DHT tables by lookup messages,
stabilization interval can not be set too large. Otherwise the
system may be merged wi th too many stale information to work
normally. System population is set to be from 64 to 8192. 8192

0.2
0.1

Q

-©"Model
-H-Simulation

0 15 20 25 30 35 40 45 50 55 60
Peer's average lifetime(minute)

Figure 3.4: Influence of peer's lifetime

is an on-line population large enough for P2P systems and an
larger population introduces too much workload that may slow
down or even crash the simulator.

We show and discuss the theory model and simulation results
respectively in following subsections.

Influence of peer's lifetime

Consistent wi th our intuit ion, as peer's average life t ime in-
creases, lookup success ratio increases in both model and simula-
t ion results (see Fig. 3.4). I t is interesting to note that, although
we haven't performed model-level simulation, we sti l l get good
results here. Model and simulation results match each other
quite well, w i th only negligible differences. Two observations
can be gained from these results:

• Model results are always slightly better than simulation
results.

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 31

Pareto lifetime distribution
一a ri 由 fl fl

7
 6

 5

 4

 3

n
-
 n
-

 n
-

 n
-

 n
-

o
-
l
e
j

 S
s
9
8
n
s

 d
n
y
o
o
n

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 32

Pareto lifetime distribution

0.9

-e-Model
Simulation

64 128 256 512 1024 2048 4096 8192
Peer number

Figure 3.5: Influence of system population

We believe this is due to the fact that we have omitted stabi-
lization's transit status and lower-layer network influence (RTT)
in our theory model (as described previously). And both of these
two cases may deteriorate the lookup success ratio to some ex-
tend.

• The difference between model and simulation results in-
creases wi th a higher churn rate.

We believe this is due to the fact that we didn't consider
the new node jo in influence in our theory model. Although as
discussed before, wi th a very low probability that a new node
join may fail a lookup, when the churn rate is really high, the
highly frequent new node join does affect the lookup success
ratio. Hence, as shown in Fig. 3.4, the stabler these peers are,
the better model results resemble simulation results.

o
q
 7

 c
q

 5

 4

 3

 2

n
-
 n
-

 n
-

 n
-

 n
-

 n
^

 n
-

o
!
j
e
j

 S
s
9
0
3
n
s

 d
n
Y
O
O
-
l

0.2
0

命 Model
-X-Simulation

4 5 6 7 8
Stabilization interval(minute)

9 10

Figure 3.6: Influence of stabilization interval

Influence of system population

In this subsection we examine the influence of system popula-
tion. Results are shown in Fig. 3.5.

From Fig. 3.5 we may see that lookup success ratio almost
keeps at a stable level wi th different system populations, which
shows the scalability of DHT-based system. Theoretically, this
scalability is gained from the fact that DHT distributes workload
to every participating peer. Hence, although workload increases
wi th system population, so does the number of peers that can
share the burden.

Influence of stabilization interval

To analyze the influence of stabilization, we change its interval
from 1.5 minutes to 10 minutes, while keeping other parameters
as constants. Both model and simulation results are shown in
Fig. 3.6. -

From Fig. 3.6, i t is easy to see that lookup success rate de-

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 33

Pareto lifetime distribution

9
 8

 7

 6

 5

 4

 3

c
i
 c
i

 c
i

 c
i

 c
i

 d

 c
i

o
l
l
r
o
j

 W
W
山
o
o
n
w

 0
3
^
0
0
1
-

0.2
0.1

0

-e-Model
-H-Simulation

3 4 5 6 7 8
Lookup rate(times per life)

Figure 3.7: Influence of lookup rate

9 10

creases as stabilization interval increases in both model and sim-
ulation results. This is not a surprising outcome and is just
consistent wi th our intuition: if we refresh D H T routing tables
more frequently, we may have more fresh and correct informa-
tion, which ensures a higher lookup success ratio.

Influence of lookup rate

To analyze the influence of lookup rate, we change it from 1
times per peer's lifetime to 10 times per peer's lifetime while
keeping other parameters as constants. Both model and simu-
lation results are shown in Fig. 3.7.

I t is surprising to see that, although we have already set the
lookup rate large enough to 10 times per peer's lifetime, lookup
success ratio sti l l stays quite stable. This result again shows the
scalability of DHT, but in a much larger degree comparing to
that shown by system population. W i t h an increasing system
population, we claimed that scalability is gained from the in-

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 34

Pareto lifetime distribution

'51- 办 角 ft 供

0.9

0.8

7
 6

 5

 4

 3

c
i
 c
i

 c
i

 c
i

 c
i

o
l
i
e
j

 S
s
9
0
0
n
s

 d
n
>
|
o
o
-
i

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 35

creasing number of peers sharing the burden. For the increasing
of lookup rate, system workload increases while population is
unchanged. Scalability in this part is gained from the fact that
totally distributed DHT system almost holds no bottlenecks for
workload [25

3.4 Observations from modeling work

In last subsection, we set up simulation experiments to: 1) ana-
lyze parameters' influences to system reliability; 2) evaluate the-
ory model's performance. From this work, we find that peer's
lifetime and DHT stabilization interval influence system relia-
bil i ty more than system population and lookup rate do. Mean-
while, the fact that theory model results resembling simulation
results very well shows that, although we haven't modeled all
the details of DHT systems, we have captured the most impor-
tant aspects in our model. I t can also be seen as a solid basis
for using simple equations to predict reliability of a DHT-based
system. Wi th this theory model, we wil l also be able to know
how to choose system parameters (i.e. stabilization interval)
to fulfil l reliability requirements when we design a DHT-based
system.

Besides of above applications, previous analysis also helps us
to find out an interesting phenomena: the reliability (lookup
success ratio) of system with exponential distributed peer life-
time is always an lower bound for that wi th pareto distributed
lifetime (with the same mean value, as shown in Fig. 3.8). We
analyze this phenomena theoretically on the basis of following
corollary:

Corollary 3.1 Under the same DHT system structure and with
the same mean value =全 ,0；〉1 ,/?>0,入�0人 pareto (a, (3)
distributed lifetime can gain a higher single peer reliability and
further a higher system reliability than exponential(\) distributed

•*-Simulation:Pareto
H&~Simulation: Exponential

10 15 20 25 30 35 40 45 50 55 60
Peer's average lifetime(nninute)

Different peer average life time

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 36

0.2

0.1
•Simulation: Exponential
•Simulation: Pareto

64 128 256 512 1024 2048 4096 8192
Peer number

(b) Different peer number

Figure 3.8: Comparison of system performance of Exponential and Pareto
distributed lifetime

o
q
 7

 6

 5

 4

 3

c
5
 c
i

 c
i

 d

 c
i

 c
i

 c
i

o
j
l
B
」
s
s
9
3
3
n
s
 d
n
^
j
o
o
-
1

I
i
 G-i

9
 8

 7

 6

 5
 4

 3

c
i
 d

 c
i

 c
i

 c
i

 d

 c
i

o
j
l
B
J

 s
s
①
o
u
n
s

 d
n
>
|
o
o
-
|

\
—
/

H
I
"

+

1
 1

(

>

•1)

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 37

lifetime.

Proof: According to Proposition 2.3, single peer reliability
�oo p = JQ Pr{R k X} X fs(x)dx. W i t h the same distribution of S

and 0： > 0, 0 < fs{x) < 1,0 < Pr{R > x} <1, p monotonously
increases wi th Pr{R > x}. Meanwhile,

Pr{Rpareto > x} {{P + x)/
H
i
c
r
x

e

t-1)

always holds when x > 0, a > 1 , > 0. Consequently, Pr{Rpareto
x} > Pr{Rea;p > x} and further ppareto〉Pexp holds. According
to Corollary 2.5, system reliability only depends on single peer
reliability p under the same system structure, therefore above
corollary holds. •

Intuit ively we can understand above corollary like this: for
DHT-based systems, peer's liveness is refreshed by stabilization.
Instead of pure lifetime, the system can only observe peer's resid-
ual lifetime, which determines how long this peer wi l l be alive
from now on. For exponential distribution, i t has the memo-
ryless property and its residual lifetime is sti l l exponential dis-
tr ibuted wi th the same mean value. On the other hand, pareto
distribution has long-tailed behavior, and its residual lifetime is
sti l l a pareto distribution, but wi th a larger mean value. This ex-
plained why performance of system wi th exponential distributed
lifetime is always an lower bound for that wi th pareto distributed
lifetime.

3.5 Methods of D H T stabilization

In previous discussion, we have assumed a constant stabilization
interval in D H T algorithms. But in original designs of many

>

(a Eoo
n = 0

(1 + 1

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 38

D H T algorithms, the way to do stabilization is not specified, or
exactly defined. Generally speaking, one can specify stabiliza-
t ion interval to be a constant or a random value. For example,
Chord's original version uses uniform distributed interval[4] and
many modeling studies assume exponential stabilization inter-
vals to simplify analysis. W i t h all of this variations, few papers
have discussed which one is optimal for D H T under certain con-
ditions. The most related work in this subject is done by Z.
Yao et al[12], but they focus on the isolation problem in Chord.
In this section, we t ry to analyze the performance of different
stabilization methods based on lookup success ratio, which is a
more general metric for D H T system performance.

Similar to the analysis for Proposition 2.3, we provide follow-
ing proposition for randomized stabilization.

Proposition 3.2 Let Fji{x) be the CDF of peer，s residual life-
time R, Ft{x) be the CDF of random stabilization interval T
and Fs{x) be the CDF of exponentially distributed lookup arriv-
ing interval S(Fs{x) — 1 — then single peer reliability is
given by:

p = Pr{R >
•00

Pr{R >x}x fs'{x)dx

广 n F M � X 綱 1 - F T �

(3.10)
dx

where S' is the interval between lookup's arrival and last stabi-
lization, and for Exponential(X) distributed lifetime, we have:

p = Pr{R > S'} = / Pr{R > x} x fs'{x)dx
Jo

_ /o⑷ AAV•(入—i^r⑷]血
(3.11)

Proof:

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 39

To get p, we need to decide the distr ibution of S'. Process is
shown as follows:

Pr�S' < X

Pr{S < T}

Pr{S<x,S<T]

=Pr{S < <T] =
Pr{S <x,S <T]

PriS < T]
' 0 0 ' 0 0

'00

Pr{S < 概 t) d t = / F s { t) f T { t) d t
Jo

P r { S < x , S < t } f T { t) d t

•00

Hence we have

Pr\S' < X

= / F s m T m + / F s i x 似 t) d t
Jo Jx

pX

=Fs{x)[l - FT{X)] + / Fs.•⑴dt
Jo

—Fs{x)[l - FT{x)] + J ^ ' F s { t) f T { t) d t

�00
JO F s { t) f T { t) d t

By differentiating both sides we have

fs{X)[l — FT{X] f s ' i x) =
f 『 F s [t) f T [t) d t

together w i th Lemma 2.2, above proposition holds.

Corollary 3.3 Assume stabilization interval is exponential(l/T)
distributed, then single peer reliability is given by:

P
X'T+1

(A + X')T + 1 (3.12)

and for uniform[0,2T] distributed stabilization, single peer reli-
ability is given by:

P 二
(A? [2(A + y) T + —工]

(A + AO^ '2XT + e-狄 T — 1 (3.13)

- o - Stabilization:Constant
各 Stabilization:Exponential
-^Stabi l izat ion: Uniform

-o - Stabilization:Constant 90s
各 Stabilization:Exponential(1/90s)
-H- Stabilization:Uniform[0,180s]

‘ 1 . 5 3 4 5 6 7 8 9 10
Stabilization interval(average, minute)

(b) Influence of stabilization interval

Figure 3.9: Numerical results: different stabilization methods

10 15 20 25 30 35 40 45 50 55 60
Peer's average lifetime(minute)

(a) Influence of peer's lifetime

Exponential lifetime distribution

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 40

Exponential lifetime distribution

©
 4

 2

 9

 8

Q
^
 9

 9

 n
^

 8

d
 i
d

 c
!

 c
i

o
!
l
e
」
S
s
9
0
3
n
s
 d
n
乂
o
o
n

0.98

0.96

I 0.94

% 0.92 S >
^ 0.9
CO

^0.8&
8 0.86

0.84

0.82

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 41

Numerical results of Corollary 3.3 are shown in Fig. 3.9 where
parameter are selected to be in the same range as in previous
theory model and simulation experiments. From these numerical
results, two main observations can be derived:

• E[T] influences system performance more than T's distri-
bution FT{X) does (see Fig. 3.9(b)).

• Wi th in our parameter range, constant stabilization always
achieves the best performance and exponential distributed
stabilization's performance is the worst.

Although we have chosen parameter ranges based on the con-
siderations of real world P2P applications, above numerical re-
sults sti l l trigger us to think more about the relationship (related
to system performance) between E[T] and FT{X), based on fol-
lowing questions:

• Which one decides performance of stabilization? The sta-
bilization interval distribution itself or the mean value?

• Does constant stabilization always be the optimal?

• Once the mean value of stabilization interval is specified,
can we determine the optimal method for stabilization?

We answer above questions by comparing experiment results
shown in Fig. 3.10. We may see from Fig. 3.10(a) that, keep-
ing other parameters unchanged, for small average stabilization
interval, constant stabilization is the optimal; and for large av-
erage stabilization interval, exponential distributed stabilization
is the optimal. Hence we may say that the optimal method for
stabilization changes wi th its mean values. For the methods
utilized a lot in real P2P application, i.e. small stabilization in-
terval, the optimal method is constant stabilization. Zhongmei
Yao et al [39] derive a similar result which says that, as mean

-e - Stabilization:Constant
各 Stabilization:Exponential
-*-Stabilization:Uniform

.5 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Stabilization interval(average, minute)

(a) Influence of stabilization interval: large range

Exponentail lifetime distribution

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 42

Exponential lifetime distribution

0•知 15 20 25 30 35 40 45 50 55 60
Peer's average lifetime(minute)

(b) Influence of peer's lifetime: large stabilization interval

Figure 3.10: Numerical results: different stabilization methods (large interval)

-e~ Stabilization:Constant 1200s
-A- Stabilization:Exponential(1/1200s)
-*-Stabilization:Uniform[0,2400s]

88

86

84

82

O
R
;
©
 4

 2

 9

9

9

9

9

^

c

i

c

i

c

i

c

i

c

i

c

i

c

i

c

i

o
!
i
E
J

 S
s
9
3
0
n
s

 d
n
^
l
o
o
-
1

o
^
 8

 7

 c
^

n
-
 n
-

 n
-

 n
-

o
!
}
e
j

 s
s
a
o
o
n
s

 d
n
>
|
o
o
n

CHAPTER 3. ANALYSIS OF P2P TRACKER DESIGNS 43

stabilization interval E[T] — 0，node isolation probabil i ty under
constant stabilization interval is no greater than that under any
random stabilization interval. We believe their result is part ial ly
consistent w i th our results.

For the other two questions, by comparing Fig. 3.9(a) and
Fig. 3.10(b) we may see that, in Fig. 3.9(a) i t is always the con-
stant stabilization to be the optimal and in Fig. 3.10(b) i t is
always the exponential distributed stabilization to be the op-
t imal. Hence, we may say that, keeping other parameters and
network condition unchanged, once we deicide the average stabi-
l ization interval, optimal method is also determined (or at least
wi th in our range of parameters, i t is determined).

• End of chapter.

Chapter 4

A Black-Box Study of Xunlei

1 An Overview of Xunlei and its key compo-
nents

1.1 An overview

As claimed by the company and also as observed from our exper-
iments (details wi l l be discussed later), Xunlei supports differ-
ent methods for file downloading, including Bi t Torrent, eDon-
key, Kad, FTP and HTTP. These methods combined together,
become Xunlei's multi-protocol strategy for file downloading.
Fig. 1.1 shows a global view of Xunlei, which briefly introduces
its system structure.

Nowadays there are mainly two popular P2P file download-
ing networks which represent a majority of P2P file download-
ing application users, namely Bi t Torrent network and eMule
network. While these two networks share many similarities in
their P2P technologies, each has its own special designed prop-
erties. P2P users are more likely to use BitTorrent for sharing
and downloading popular files, and to use eMule for searching
and downloading rare resources. Xunlei has embedded both of
them into its own client, which saves its users for having to run
two different clients for different purposes. As shown in Fig. 1 . 1 ,
a Xunlei client can participate in both these two networks by

44

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 45

BT

server trackcr
eMule

ED2K.

eMule

Kad

- BT protocol: TCP

BT protocol: UDP

Xiinlei

-eMule protocol: TCP —

• eMule protocol: UDP

cMulc 缀

TCP protocol (FTP or HTTP)

Xunici private protocol: UDP

像 Q ^ ^ BT clients

Figure 1.1: Xunlei overview

communicating wi th B T clients or eMule clients using their own
protocols respectively.

Besides these P2P networks, another popular, and also tradi-
tional way for users to get resources is via FTP or HTTP. The
maturi ty of multi-threads and resuming downloading technolo-
gies makes it possible for a client to download a file in client-
server and P2P ways at the same time, which provides a solid
foundation for Xunlei's multi-protocol downloading method. We
believe Xunlei uses a certain mechanism to combine file parts
(downloaded from different sources) into a complete file. But at
present we are not clear about the details.

Irrespective whether i t is BitTorrent network, eMule network,
FTP or H T T P network, all of them already exist and are well
developed for a long time. A Xunlei client participating in these
network is more like a guest or a foreigner: i t needs to speak
different languages if i t wants to stay in different countries (net-

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 46

works). Then we may ask: what is Xunlei's mother tongue?
We find that Xunlei clients also form a Xunlei network, where

they communicate wi th each other using Xunlei private P2P
protocol (as their mother tongue). This protocol is based on
UDP, wi th special designed error control and congestion control
mechanisms, and i t is frequently used for exchanging peer lists
and file data during file downloading process. We wi l l discuss
the details in section 4.

1.2 Key components

Connections: During the run of Xunlei, a client opens several
TCP and UDP connections. TCP connections are used for: 1)
contacting Xunlei servers to get resources used in user interface
and to post user information; 2) contacting Bi t Tor rent's tracker
server to get file information (if needed); 3) exchanging file data
wi th a BitTorrerit/eMule client based on BitTorrent/eMule pro-
tocol, or downloading files from FTP servers. UDP connections
are used for: 1) exchanging peer lists and file data (based on
Xunlei's private protocol); 2) searching file information or swarm
peers in D H T network (can be BitTorrent or Kad network).

Ports:Usually three UDP ports are pre-assigned upon in-
stallation of a Xunlei client. One is for exchanging peer lists
and file data (based on Xunlei's private protocol); the other
two are for listening to Kad and eDonkey ne tworks、In ad-

dition, a new UDP port is randomly assigned for BitTorrent
D H T lookup packets (if needed). For TCP connections (used to
contact servers or to exchange messages wi th BitTorrent/eMule
clients^), ports are usually randomly assigned.

User interface components: Xunlei's user interface con-
tains several parts: advertisements, movie recommendations,
hot movie list etc. A number of servers are deployed to de-

iKad and eDonkey are networks supported by eMule clients.
2Both BitTorrent and eMule protocols use TCP for data transmission.

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 47

liver these information. According to our observations, Xunlei
servers have different responsibilities. There are usually several
servers specially in charge of a particular function and usually
these servers are located geographically near each other.

Downloading history cache: Each Xunlei client keeps a
record of its own downloading history. Besides the downloaded
list shown in the user interface, clients also store BitTorrent's
meta files (.torrent, .bt.dat and .bt.cfg) in their local cache if
they have performed any BitTorrent downloading tasks. Later,
this downloaded list and cached BitTorrent files can be used for
resource sharing.

2 Participating into other swarms: Xunlei's
multi-protocol downloading strategy

2.1 BitTorrent and eMule basics

BitTorrent was designed by Bram Cohen in Apr i l 2001 and the
first implementation was released on July 2, 2001 [4]. Subse-
quently numerous (more than 50) clients have been developed
by different organizations based on the original BitTorrent pro-
tocol [3] and they form the BitTorrent network. While these
clients each has its own features, they can communicate wi th
each other using the original BitTorrent protocol as a common
language. In BitTorrent network, file downloading processes
are standard, by following rules and sequences: 1) download-
ing the metainfo file (.torrent) from torrent-discovery sites] and
getting tracker information form it; 2)finding swarm peers from
server tracker (via TCP) or serverless D H T tracker (via UDP);
3) exchanging file chunks wi th other swarm peers based on pre-
defined messages (via TCP): choke, unchoke, interested, not in-
terested, have bitfield, request, piece, cancel [21

^Mininova, Private Bay .etc

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 48

Unlike Bit Tor rent, eMule supports two networks: eDon-
key2000 (ED2K) network and Kad network. I t represents
a large number of users in both ED2K network (more than 90
percents) and Kad network (more than 95 percents, together
wi th aMule and MLDonkey). Hence eMule can be seen as a
representative for both of them.

In ED2K network, clients connect to servers to search files
and swarm peer information. Instead, clients in Kad network
use D H T (Kademlia [6]) to fulfi l l these functions. I t is interest-
ing to note that most of Kad users are also connected to ED2K
servers, which means Kad and ED2K networks overlap a lot.
In other words, they are serving the same target users by pro-
viding similar services in different manners: ED2K is based on
servers [17, 5] and Kad is based on D H T (and hence is total ly
distributed). Once swarm peers are found and corresponding
client-to-client connections are established, eMule does not dif-
ferentiate ED2K and Kad users: file exchanging always follows
the same rule.

2.2 Bit Torrent and eMule in Xunlei

To study Bi t Torrent and eMule behaviors in Xunlei, we use a
Xunlei client to perform several BitTorrent and eMule down-
loading tasks respectively. For each task, we first delete all the
files about Xunlei, reboot the PC and install Xunlei again. Then
we start the task and use Wireshark to monitor the whole down-
loading process. We close Xunlei immediately after the file is
completely downloaded.

By claiming a task to be a B T task, we first download a
.torrent file and then use Xunlei to open it and to download the
file contained in it. By claiming a task to be an eMule task, we
observe an ED2K link (same as those used in eMule clients) in
Xunlei's downloading task manager.

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 49

Table 4.1: Examples of BT tracker servers that Xunlei clients contact
IP address Host Response
121.14.243.98 tk.greenland.net none
121.14.243.99 tk2.greenland.net none
218.16.124.111 bt.romman.net return request interval and binary

data(should be peer list)
222.73.173.113 btfans.3322.org redirect me to 218.202.227.27:8085
220.189.250.104 bt.ktkj.com

bt.ai-sky.com
failiire(unregistered)

221.130.196.76 share.comoe.cn failure(unregistered)
218.202.227.27 unknown exchange TCP messages

(should be peer list)

Xunlei client
o

ping

-pmg-

• ping response •
•ping response •
ping response

—flnd_node —
— find—node —
——find node——

nodes
-nodes-
nodes

.find—node-

—nodes —

-find node-

morc than
30 messages

72.20.34,145

79.24.252.64

93.152.129.206

72.20.34.145

79.24.252.64

93.152.129.206

72.20.34.145

79.24.252.64

93.152.129.206

repeated for
many times

get—peers
-get—peers-
-get_peers-
• get_pcers -

values
-nodes•
-nodes-

-get_pecrs-

~nodes'

values

announce

announce

•announce:response

announce:response

116.48.122.23

91152.129.206

72.20.34.145

124.118.246.34

72.2034.145

93.152.129.206

124.118.246.34

repeated for
many times

more than
10 messages

Figure 2.2: A BitTorrent DHT flow captured in a Xunlei client

,179 o
piece

request piece
— A C K ——
—have piece -
一ACK ——

have piece
— ACK ——
— T C P ——
— T C P ——
- A C K ——

choke
- A C K -

Figure 2.3: A BitTorrent client-to-client file exchange flow captured in a
Xurilei client

We observe that our Xunlei client fully performs BitTorrent
functions (as discussed in last subsection) during the file down-
loading process. We find a number of BitTorrent tracker servers
that our Xunlei client has contacted^ (as shown in Table.4.1),
and some UDP flows wi th message types consistent w i th Bit-
Torrent's DHT design (as shown in Fig. 2.2). We also find that
our Xunlei client has exchanged file data and control info wi th
other clients based on BitTorrent protocol (an example is shown
in Fig. 2.3). We may conclude that, in this part Xunlei follows
the original design of BitTorrent quite well.

During the downloading process of an eMule task, our Xunlei
client performs a number of eMule steps, including using Kad

4lt is interesting to note that only some of these tracker servers have replied our Xunlei
client's requests: two of them replied nothing and another two of them rejected our client
directly. We believe the "no response" is due to the heavy work load of those tracker
servers, and the rejection comes from the fact that our client is unregistered (as implied
by the http messages we received.)

repeated for
12 times

Xunlei client 220.169.250 y
——TCP:SYN ——

.——SYN ACK ——
ACK

-handshake -
—handshake -
—bitfield —
—bitfield —
—interested —
—unchoke —
• request piccc.
——ACK——
-have piece -
— A C K —

have piece
— ACK —

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 50

p
 p
 K

c
 c
c

T
 T

 A

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 51

Xunlei client

O
Kadcnil ia_bootstrap_REQ

Kademlia_bootstrap_REQ

• Kadcmlia...RBQ

Kadenil ia^ES:

‘ re turn 4 peers ‘

Katlcmlia__scarch

source_REO

.Kadcmlia search RES •

102 mesages

151.47.185.130

151.47.185.130

151-47.185-130

151.47.185.130

repeated for

several

times with

other IPs

Figure 2.4: A Kad flow captured in a Xunlei client

Xunlei client

o
116.14,211.1

•TCP conncction •

Hello ——

Hello answer -

• File request -

Sccure identification stale

File status request

Source request

vFilc request answer •

Public key

Secure identification stale

Pile status

• A I C H master hash answer •

Public kcv

Secure identification stale

Signature

Signature

• Queue ranking _

TCP termination

Figure 2.5: An eMule client-to-client file exchange flow captured in a Xunlei
client

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 52

、妇觀縦、4M1 毋 ？) •乂：J/,
53671
53672

Frame 53670 (1414 bytes on wi re, 1414 bytes captured)
Ethernet I I , Src: ca:c4:20:00:01:00 Cca:c4:20:00:01:00>, Dst:
i n te rne t pro toco l , Src: 94.75.237.193 (94.75.237.193), Dst: 1：
Transmission Control Protocol , src Por t : h t t p (80) , Dst Por t :
[Reassembled TCP Segments (65909 bytes) : #53037(1360), #530381

Partial
sun, 26 Apr 2009 02:42:30 GMT\r \n

Server: / I . 0 . 0 \ r \ n
con ten t -descr ip t ion : f i l e t r a n s f e r \ r \ n
Accept-Ranges: byte5\r\n

ifi.Ft—-Ti'?巨.6"sTt+]TtTr"irffI?Fiii?iifr—fTTe nami="pr fs"on7'Erial< .417.
i l content-Length:

connect ion: c l o s e \ r \ n
Cont ent -Type: appl i cat i on/down 1 oacl\r\n
\ r \ n

S Media Type
Media Type: appl icat ion/download (65536 bytes) •.

e Hypertext Transfer protocol
S Data (731 bytes)

natfl： A04n4 '̂)4fiQ'iFR7 '̂i74'i8R'i1^qFfiR79^ '̂i?FF'ilF'iRA?FrFF0...

Figure 2.6: Getting a file part via HTTP

to search swarm peers and using eMule protocol to exchange file
data and control info. We show them in Fig. 2.4 and Fig. 2.5
respectively. In this part, Xunlei follows eMule's original design
quite well. More details about eMule can be found in [17 .

2.3 Multi-protocol downloading

From the subsections above, We know that Xunlei can communi-
cate wi th different clients from different networks using different
protocols, and we have observed real flows related to Bi t Torrent
and eMule protocols in Xunlei's downloading process. Since
the mechanisms used in FTP and H T T P are well understood,
we omit real flow demo about FTP or H T T P here. Generally
speaking, by claiming a particular binary range, a Xunlei client
can download any part of a file as i t wants via FTP or HTTP.
We show a packet snapshot of this process in Fig. 2.6. To better
understand the multi-protocol downloading, we further discuss
the following questions:

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 53

How many networks does a Xunlei client usually participate
in?

A Xunlei client can and wi l l always participate in at least two
networks for one downloading task: the one where the original
source is located^ and Xunlei network. For some tasks (not
all of them), we may also find a Xunlei client participates in
more than two networks. For example, for some BitTorrent or
eMule tasks, a Xunlei client may also get resources from FTP
or H T T P servers at the same time. We believe Xunlei should
adopt some multi-threads technologies, which helps its client
collect resources from different networks at the same time.

For simultaneous downloading tasks during the same run of
a Xunlei client, the extreme case is that i t may participates in
BitTorrent, eMule, FTP and H T T P networks at the same time
when these tasks are of multiple types (BT, eMule and non-P2P)
during one run.

Does a Xunlei client fully perform all the functions when it
participates in another network besides its own network?

We believe it does. As shown in last subsection, when partic-
ipating in BitTorrent network, a Xunlei client acts exactly like a
BitTorrent client: i t contacts tracker servers, i t performs D H T
lookups and it communicates wi th other BitTorrent clients in
original BitTorrent protocol. And same situation happens when
it participates in eMule network.

Does a Xunlei client have a preference for which protocol to
use?

Although we have not done a measurement to answer this
question, we observe from previous experiments that a Xun-
lei client gets a large amount (sometimes even a majori ty) of
a downloaded file from its own network, especially when down-
loading tasks are targeting at Chinese users (as shown in Fig. 2.7)6,

5For a BT (eMule) task, original source is located in BitTorrent (eMule) network and
for a non-P2P task, it is located in FTP or HTTP network.

®The 10 torrents are the same as those used in Table. 1.1: the first five are downloaded

鼸 from Xunlei network • from BitTorrent network

Figure 2.7: Examples of download percentage from Xunlei and Bittorrent
networks for BT tasks

Instead of well-developed P2P networks, why does a Xunlei
client get a large amount of resource from its own network?
Recall Table. 1.1 we may further see that this choice reaches
high downloading speed for Xunlei users. We conjecture that
either Xunlei uses certain methods (or deploys many servers) to
help its clients find more swarm peers (means more sources to
get the target file), or i t designs some algorithms to improve the
performance of file exchanging process. Both of these two parts
are related to Xunlei's private protocol and we wi l l discuss them
in the following sections.

3 Xunlei servers

Xunlei deploys a number of servers to perform certain functions,
such as delivering recommendation and advertisements used in
user interface, broadcasting desktop news, checking software up-
dates, collecting peer information and so on. Instead of finding

from Gougou search (Xunlei's entertainment resources search engine), where Chinese users
are the targets.

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 54

《％
}
 9
s
e
:
l
u
3
〕
J
3
d

 p
e
o
l
u
M
o
a

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 55

all the servers deployed by Xunlei (which is unnecessary and
also a heavy work), we are more interested in classifying their
functions, both in startup and file downloading processes.

We use wireshark to monitor the whole process of opening a
Xunlei client, downloading a file and closing the client. To get a
general understanding, we repeated this process for many times.

We summarize the information of some servers we captured in
Table. 4.2, including their IP addresses, locations and functions.
Most of these servers are located in different areas of China. For
a certain function, its corresponding servers are usually located
geographically near each other, e.g. servers that are responsible
for dealing wi th clients' POST messages are usually located in
Guangdong.

Table 4.2: Information about some Xunlei servers
IP addresses Location Function(s)
58.251.57.86 ； 58.251.57.73 Shenzhen delivering desktop news
221.203.179.6; 221.203.179.7 Liaoning
60.19.64.46 ；60.19.64.52 Liaoning delivering recommendation
60.19.64.62 ； 60.19.64.36 and news
60.28.15.204 ； 60.28.15.208 Tianjin checking updates and
60.28.178.196 ； 60.28.178.205 virus scan
218.57.144.53 ； 218.59.144.53 Shandong delivering advertisements
58.254.134.204 ； 58.254.134.205 Guangdong dealing with clients' POST
58.254.134.206 ； 58.254.134.208 messages
58.254.134.209 ； 221.4.246.73
58.251.57.201 Shenzhen collecting and delivering
60.28.13.153 ； 60.28.178.207 Tianjin requested file info
60.28.178.224; 125.39.72.105

Based on our observation, we classify Xunlei servers into three
categories: initialization servers, POST servers and target file
responsible servers.

Init ial ization servers are contacted by Xunlei clients during

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 56

startup process to get resources used in user interfaces. Some
of these servers are also hosts of Xunlei Portal, which shows the
variety of one single Xunlei server's functions. Besides initializa-
t ion servers, a Xunlei client also contacts several POST servers
during startup process, based on H T T P POST messages^. Con-
tents of these messages are of binary type (hence can not be de-
coded straightforwardly) and they are usually of different sizes.
We conjecture that these POST servers may be used for collect-
ing client information, as login servers. During the downloading
process, a Xunlei client further contacts several other servers for
delivering and retrieving file information. For different down-
loading tasks, a client usually contacts different servers. That
is why we call them target file responsible servers. To support
a Xunlei client, these three types of servers need to cooperate
wi th each other to fulfi l l all the needed functions.

4 Understanding Xunlei's private protocol

In this section, we give our results of the analysis of Xunlei's pri-
vate protocol, including but not restricting to its message types,
data structures, error control and congestion control mecha-
nisms. Due to the fact that Xunlei is a proprietary protocol,
our results are based on the analysis of binary data. Hence all
the results given here are conjectures, rather than official de-
scriptions.

4.1 Exchanging peer lists

Besides existing methods (via tracker server or D H T lookup),
Xunlei also uses its own UDP-based messages for exchanging
peer list. We first show its message structure in Fig. 4.8.

� T h a t ' s why we call these servers "POST servers".

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 57

Xunlei flags type
my client ID

31) 00 00 00 m 10 00 00 00 16 bytes client ID

another peer's client ID

10 00 00 00 16 bytes client ID

(a) peer-exchange: type

packet

Xunlei flags
type

Mi 00 00 00 U 10 00 00 00 16 bytes client ID

(b) peer-exchange: type 2

Figure 4.8: Xunlei's message structures for exchanging peer lists.

The first four bytes should contain the flags for Xurilei mes-
sages and the f i f th byte specifies the message type. The fol-
lowing 4 bytes (10 00 00 00) probably serve as a 'separator' for
16 bytes client IDs. We conjecture that this type of message is
used for exchanging swarm peers, for the reason that i t contains
other clients' IDs, and upon receiving it, our client immediately
sends a handshake message to another peer whose client ID is
exactly the same as the one attached in it. We believe that the
16 bytes client ID should contain information of corresponding
peer's IP address and port number, which may be gotten by
hashing them based on a particular hash function. Hence wi th
this ID, our client can directly contact that peer.

We also find that there are two types of messages for peer
exchange, wi th type number equals to 03 and 04 respectively.
At present we are not quite clear about their differences, but
this wi l l not affect the following analysis. We guess type 04
message may be a simple version of type 03 message, since it
ignores packet sending peer's client ID in the data structure.

Usually a Xunlei client keeps on exchanging this message wi th
many IP addresses throughout the whole downloading process.
We are not sure whether these IP addresses represent normal

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 58

peers or deployed servers. But we find that, most of the UDP
ports at the other side are 8000. Unlike what we expected, we
did not find any periodic behavior in this peer exchange process.

4.2 Exchanging file data

After finding a swarm peer, a Xunlei client directly establishes
a UDP connection wi th i t to exchange file data. We discover
several specific exchanges during this process and we show them
in Fig. 4.9. I t should be noted that we don't capture all of these
messages in a session, rather i t is a summary from multiple
sessions throughout all our experiments. •

Handshake and handshake ACK: handshake (31 bytes)
is usually performed at the beginning of a client-to-client con-
nection. Upon receiving it , the other client replies a 39 bytes
handshake ACK. A handshake message contains some basic in-
formation about the client and the connection, i.e. session flag,
peer ID and packet ID^.

Session flag is used for specifying a particular session (client-
to-client connection) and its direction. In Fig. 4.9, 00 00 dc
97 and dc 97 00 00 are used respectively for the two directions
of one connection. The 4 bytes peer ID is used to specify a
particular peer, or client. I t is unique for the same peer, even
in different sessions. Packet ID is used to specify a particular
packet, which wi l l be frequently used later for exchanging file
data.

Self-introduction: this message (29 bytes) is usually per-
formed before or right after handshake message, for introducing
16 bytes client ID to specify a client. After this self-introduction
message, all subsequent packets wi l l only use 4 bytes peer ID to
do this specification. We conjecture that Xunlei utilizes this
method to reduce the length of its packet header. Session flag

8A11 these field are named based on our conjectures.

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 59

pac
Xunlei flags

cet type my client ID | 4B session flag.
32 00 00 00 05 10 00 00 00 16 bytes client ID 00 00 dc 97

self-introduction session fla^ peer ID
32 00 00 00 06 00 00 00 00 dc 97 00 00 94 e6 5b Oc

4B piece ID
handshake

32 00 00 00 06 1)1 00 00 00 00 00 dc 97 34 87 eO 08

4B picce ID 4B piece ID
handshake / iCK session flag ^ peer ID

32 00 00 00 07 dc 97 00 00 94 e6 5b Oc

32 00 00 00 08 00 00 dc 97 34 87 eO 08
ping

32 00 00 00 12 dc 97 00 00 94 e6 5b Oc 4B packet ID

4B session ID 8B unspecilled Seq#
file data status flag

32 00 00 00 1 ！ 00 00 dc 97 34 87 eO 08 00 00 01 00

req pkt ID _ rev pkt ID Req g a p

4B session【1) 4B packet TD 4B packet ID Seq# 000000 01
file data ACK

32 00 00 00 12 dc 97 00 00 94 e6 5 b � Oc 4B old session ID
• req pkt ID •

4B packet TD
control info

32 00 00 00 11 00 00 dc 97 34 87 eO 08 4B flag

p M 11•乂 l l tAl

4B packet ID 4B new session ID 4B old session ID Seq#
control info ACK

Figure 4.9: Xunlei's message structures for exchanging file.

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 60

is the same as that used in handshake messages.
Ping: this message (13 bytes) is performed when one client

wants to re-connect to another client. I t is quite light-weighted
since it only contains the information of session flags and peer
ID.

File data and its A C K : typically a file data packet is over
1000 bytes, wi th a few exceptions which should correspond to
pieces at the end of a file. Besides session flag and peer ID, this
packet also contains a field we refer to as 'session ID' , which
seems unique for a particular session, but i t can be changed
by control info (will be discussed later). We conjecture that i t
may be used for specifying a particular session (client-to-client
connection), or for doing some security-related operations, such
as error detection. The field 'seq#' (sequence number) is used
to organize the sequence of packets.

Upon receiving a file data packet, the receiver replies an ACK
(usually of 37, 38 or 39 bytes), wi th the information of received
packet ID, requesting packet ID, requesting packet seq# and
gap size. This ACK message also contains a field of status flag,
showing whether there is a gap in receiver's buffer or not. The
gap is generated by out-of-ordered packet arriving (a common
issue for UDP transmission) and gap size is calculated as largest
packeLrev-seq^ — packeLreq_seq# (the largest sequence number
of the received packets minus that of the requested packet).

Control info and its ACK: Control info messages (89
bytes) share the first 13 bytes common header w i th file data
messages, which is followed by a 4 bytes old session ID and an-
other 4 bytes requesting packet ID. Upon receiving this control
message, the client replies a 37 bytes ACK claiming the new
session ID and the packet ID that wi l l be sent next. Session ID
wi l l be changed to the new one in all subsequent packets, unt i l
the client receives another control info.

In Fig. 4.10, we show an example of Xunlei's private protocol

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 61

A B
O

self-introduction

—handshake —

handshake ACK
pkt type 11: ACK -

•pkt type 12 seqO 1 _

•pkt type 12 seqOl—»h

—contro l info ——

‘ control info ACK —
•pkt type 12 s e q 0 2 -

pkt type 11: A C K -

g
 E

n
 n

n
 •

 I
t

p
 p

pkt type 12 seq03

—contro l info —

control info ACK —•

—contro l info

—control info ACK
—pkt type 12 seq04

—pkt type 12 seq05 -

如 pkt type 11: ACK •

j reply last message
and request pkt seqO 1
with client ID
with client ID

request pkt seq02
inform next pkt seq
and new session ID

pkt seq 02 received;
request for pkt seq 03
pending for 20s

agree on a new
session ID ‘

1428 bytes;
file data

file data delivering

begins here

pkt seq 04 received;
request for pk t seq 05

Figure 4.10: An example for file data exchange process of Xunlei's private
protocol

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 62

flow, which introduces the typical process for Xunlei clients to
exchange file data: 1) sending self-introduction and exchanging
handshake messages to provide/retrieve information like session
flag, client ID and peer ID; 2) using control info to make an
agreement on session ID; 3)delivering file data or sending ACKs
to request packets.

4.3 Error control and congestion control

A common issue for all UDP-based applications is that, while
they take advantage of UDP's light-weight and flexibility, they
need to design their own application-level error and congestion
control mechanisms. Usually these mechanisms are performed
via ACK messages. According to our observation, Xunlei adopts
several mechanisms for uploaders to deal w i th ACKs and to
decide packet sending policies. We consider them as Xunlei's
error and congestion control mechanisms

The way a Xunlei client sends an ACK message is different
from that used in TCP or Go-Back-N (GBN). Here ACKs do
not need to be sent in order: a client wi l l send an ACK imme-
diately after receiving a packet, no matter whether this packet
arrives in order or out of order. So in some sense Xunlei's ACK
is more like that used in Selective Repeat (SR) [7], except that
it provides more information, such as requesting packet seq#
(negative acknowledgement), which can be used for retransmis-
sion.

Based on the above understanding, we make some conjectures
about Xunlei's error control and congestion control mechanisms.
We list them as follows and use a real flow captured in Xunlei's
file data exchange process shown in Fig. 4.11 as an example to
explain them.

• Xunlei wi l l do retransmission, either upon receiving triple
duplicate ACKs or after a timeout.

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 63

Xunlei client

time(s)

107.043777

107.278066

107.278289

107.488730

107.489089

107.747368

107.747578

109.414038

109.657025

111.039120

111.329405

1] 1.332810

111.333038

1] 1.445240

]11.64]135

111.641537

C

send pkt 04 and 05

-04 rev; request 05 -

send pkt 06 and 07

-07 rev; request 08-

send pkt 08 to Od

-Oa rev; request 08-

send pkt Oe

•send pkt 08 09 Ob to Oe

——Oe rev; request 08 ——

send pkt 08 09 Ob to Od

— 0 9 rev; request Ob —

—Oc rev; request Od —

—send pkt Of and 10 —

send pkt Od

10 rev; request Od

——send pkt 11 ——

o

i n

1 1 1

111
ij i

733576

i
733935

f
981228

I
981567

】12.066850

i
n 2.067041

gap I
]12.0671%

I
112.385030

retra^is
112.385254

gap I
112.400714

retrans
112.400978

1
112.403251

I
1)2.574106

I
112.632805

retraps
112.646039

胖 I
112.646271

-control info： request ! 1

—send pkt 12 to 15 —

— 1 1 rev; request 12 —

—send pkt 16 and 17 —

——13 rev; request 14 —

——15 rev; request 16 —

—send pkt 18 to I f —

——19 rev; request la —

—send pkt 20 to 27 -

— l b rev; request 1 c —

—send pkt 28 to 2b —

• control info; request Ic

——control info reply -—-

— 2 0 rev; request Ic —

— 2 1 rev; request Ic —

send pkt 1 c

gap

gap

retrans

Figure 4.11: An example for Xunlei's error control mechanism

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 64

To recognize an ACK to be a duplicate ACK, the receiver
needs to confirm that: l) th is ACK requests for the packet wi th
the same seq# as last ACK has requested for; 2) this ACK shows
a non-zero gap size. Hence in Fig. 4.11, our client retransmitted
packet Ic immediately after receiving three duplicate ACKs^.

Besides triple duplicate ACKs, retransmissions can also be
triggered by timeout (similar to TCP). In Fig. 4.11, our client re-
transmits packet 08 at 109.414038s and packet Od at 111.44524s
respectively, both due to the timeout, rather than triple dupli-
cate ACKs. According to our observation, this timeout is around
1.5 seconds.

• During a retransmission process, Xunlei wi l l retransmit all
the packets falling in the gap [pkt_req, pkt—rev(largest)],
except those that have already been ACKed.

This retransmission mechanism is similar to that used in Se-
lective Repeat (SR). In Fig. 4.11, our client retransmits packet
08 09 Ob Oc Od and Oe at 109.414038s, without packet Oa since Oa
has already been ACKed at 107.747368s. This mechanism can
reduce the work load and avoid unnecessary retransmissions.

Besides error control, another interesting question is whether
Xunlei provides congestion control to avoid overflowing the net-
work and flow control to avoid overflowing receiver's buffer. We
show one Xunlei UDP upload flow in Fig. 4.12 to study and
explain Xunlei，s congestion control mechanism.

From Fig. 4.12, we find two typical behaviors of Xunlei's data
sending policies, which share some similarities w i th those used in
TCP and are also reasonable for all congestion control designs:
l)when there is no retransmission (detection of error), data send-
ing rate wi l l be increased (see 15s to 20s in Fig. 4.12); 2) when
there are retransmissions (indicated by duplicated packet ID),

9During the calculation of duplicate ACKs, the one embedded in 89 bytes control
message always accounts one.

raw data sending rate
throughput
retransmission case

20 30
time(*100ms)

Figure 4.12: A Xunlei UDP upload flow

data sending rate wi l l be decreased (see 4s to 8s in Fig. 4.12).
I t is not clear how Xunlei implements the increase and decrease
functions, or whether a window size is used for flow and conges-
tion control. Meanwhile, the error control mechanism used in
Xunlei seems to trigger flow control actions: the retransmission
triggered by triple duplicate ACKs or by timeout can be used
to slow down the sending rate, and hence avoids overflowing
receiver's buffer.

5 Further discussions

In this section, we t ry to speculate on the reasons for Xunlei's
good performance.

5.1 Proximity of content

The first guess is the proximity of content. Xunlei is originated
from China and designed for mainly Chinese users. I f true, i t
means most users are "close" to the content they t ry to down-
load. Does this mean Xunlei wi l l lose its speed advantage when

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 65

4
 3

 2

 1

 o

S
E
O
C
U
 A
j

①
>
9

 u
!

 1
U
9
S

 ①
z
!
s

 e
l
e
o

•
torrent a torrent b torrent c torrent d torrent e torrent f

i 7

一 1.4

torrent b torrent c torrent a torrent <

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 66

Figure 5.13: User experiences of file downloading speed (outside China)

i t is used outside China? •
The answer is no. We performed several experiments in

Canada and America respectively. These experiments are per-
formed in Apr i l 09. Each time we use a Xunlei client (Xunlei
5.8.10) and a BitTorrent client (BitTorrent 6.1.2, installed in
the same PC) to download the file contained in the same tor-
rent one after another (to minimize the time influence). We
repeated this process wi th six different torrents. The first three
torrents (torrent a-c, as shown in Fig. 5.13) are discovered via
gougou search [13] (targeting at Chinese users) and the other
three are discovered via Mininova (a popular English-language
torrent-discovery site). Results (average downloading speed) are
shown in Fig. 4.13(a) and Fig. 4.13(b), which indicate that Xun-
lei sti l l achieves high downloading speed when i t is used outside
China.

5.2 Active swarm peers

Another possible reason for Xunlei's high downloading speed
is its multi-protocol downloading strategy. Running a Xunlei
client is like running two clients respectively: one is getting re-
sources from the network where the original file is located, the
other one is getting resources from the Xunlei network. Intu-

p
山
a
d
s
 如
u
{
F
>
e
o
f
u
M
o
f
>

 9
如
e
J
9
>
<

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 67

200 400 600 800 1000 1200 1400 1600
time(s)

(a) torrent i, average download speed: Xunlei321.54kB/s; Bit-
Torrent 193kB/s.

Xunlei 5.8.10
-BitTorrent 6.1.2

1000 1500 2000
t ime(s)

2500 3000

(b) torrent j, average download speed: Xunlei331.1kB/s; Bit-
Torrent99.9kB/s.

Xunlei 5.8.10
BitTorrent 6.1.2

1000 1500
t ime(s)

2000 2500

(c) torrent k, average download speed: Xunlei 116.48kB/s; Bit-
Torrent 64kB/s.

Figure 5.14: The evolvement of number of peers a Xunlei/BT client down-
loads resources from

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 68

itively, a Xunlei client can connect to more swarm peers, and
hence it has more sources to get the file, which ensures its high
downloading speed.

We performed several experiments to evaluate our intuit ion.
We use a Xunlei client and a Bi t Torrent client to download the
file contained in the same torrent file respectively. To make a
fair comparison, both these two clients are installed in the same
PC and the experiments are performed one immediately after
another. We show our results, the number of active swarm peers
that upload file chunks to our clients, in Fig. 5.14.

According to previous measurement results about file down-
loading speed (see Table. 1.1 and Fig. 5.13)，Xunlei and BitTor-
rent can both be the faster one. But usually Xunlei is faster.
Consistent w i th our intuit ion, one of the reasons seems to be the
number of altruistic (partially) seeding neighbors as indicated by
Fig. 4.14(a) and Fig. 4.14(b): comparing to BitTorrent clients,
Xunlei clients usually download file chunks from more swarm
peers and also have higher downloading speed. Indeed there
can be various reasons for Xunlei's fast downloading speed, es-
pecially when we focus on a particular downloading task instead
of numerous ones. Simply the tracker returning some peers w i th
large upload capacity can be one of the reasons. Fig. 4.14(c) can
be seen as an example: in this downloading session, the Xun-
lei client only has active swarm peers w i th the number slightly
larger then that of the BitTorrent client has, but i t reaches a
downloading speed almost twice as much as the BitTorrent client
does.

While Xunlei's multi-protocol strategy provides its clients
high downloading speed, it also puts a high upload burden on
them, since in P2P networks total download capacity is approx-
imately the same as the total upload capacity. That is why in
Table. 1.1, besides downloading speed, the Xunlei client also has
higher uploading load.

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 69

O other nodes

^Xunlei client
background traffic 麓

Xunlei UDP flows
PC's Ian - 〜 " ^ 哥 t e r 、 、

TCP flow

ftp server
case 1: local, high path BAV
case 2: remote, low path BAV

Figure 5.15: Experiment setup

5.3 UDP-based data transmission

Another possible reason is due to Xunlei's packet transmission
strategy: how aggressive is Xunlei's flow and congestion control
relative to TCP. Just from observing a sequence of Xunlei pack-
ets, it is not clear at all if Xunlei implements any window or rate
based control for packet transmission. I t appears Xunlei simply
pushes packets out continuously unti l packet loses are detected
by triple-duplicate-ack or timeout. In case of loses, Xunlei re-
transmits the (presumed) lost packets, and it is not clear the
exact condition under which it resumes new data packet trans-
missions.

What we can do is to experiment wi th scenarios wi th simul-
taneous Xunlei and TCP flows, and observe how each kind of
traffic get affected by the other. Ideally, we would like to do con-
trolled experiments wi th Xunlei flow(s) and a TCP flow travers-
ing the same path, and compare the result to a Xunlei flow or
a TCP flow alone. Unfortunately, i t is not easy to control the
path Xunlei flows traverse, so we cannot get the TCP flow to
share exactly the same path. Also, we cannot avoid possible
background traffic.

25 50 75 100 125
time(s)

(b) Xunlei UDP flows and the TCP flow

Xunlei UDP flows
•Number of active swarm peers

2
 L
p

1

(
s
/
g

眷 d

L
|
6
n
o
J
i
4

0.5

-Xunlei UDP flow
•TCP flow

I
w
^

!
i
-
 M
M

M
l
!

I
M

s
v

L W ^ W V v l

% 25 50 75 100 125 150
time(s)

o c :

(a) BitTorrent flows and the TCP flow

1 q6 Large link capacity for the TCP flow

50 75 100
time(s)

(c) Xunlei UDP flows and number of active swarm peers

Figure 5.16: Xunlei's influence: large link capacity for the comparing TCP
flow

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI

Large link capacity for the TCP flow

70

2.5

2

10"
BitTorrent flow

一 T C P flow

50 f

o
 o

 o

3

2

1

s
j
9
s
d
 E
j
e
M
S

 9
>
!
p
e

 j
o
」
9
q
u
J
n
N

40

50

(
s
/
m
>
i
)
l
n
d
4
6
n
o
J
L
U
.
 0.5

1

 o

(
s
/
g

眷

 O
U
B
n
o
J
u
l

25 50 75
time(s)

100 125 150

Figure 5.17: Comparison of TCP flow's throughput: large link capacity for
the comparing TCP flow

Instead, we pre-arrange two TCP flows. The source of the
TCP flows is the same as Xunlei's flows, on the host where
Xunlei is running. One of the TCP flow is destined for another
host on campus; the other TCP flow is destined for a host far
away (outside of campus). In other words, the local TCP flow
traverses a high bandwidth path wi th a small number of hops;
whereas the remote TCP flow traverses a long path wi th lower
bandwidth. The situation is depicted in Fig. 5.15. Note, there is
also likely to be some background traffic that we cannot control.
To minimize the effect of the randomness of the background
traffic, we perform the experiments several times to ensure we
report a consistent effect. The results are shown in Fig. 5.16,
Fig. 5.17 and Fig. 5.18.

For the case wi th a local TCP flow (traversing a path of high
bandwidth), the TCP flow achieves higher bandwidth than ei-
ther simultaneous B T flows, or simultaneous Xunlei flows, as
shown in the first and second sub-figures of Fig. 5.16. But the
co-existing Xunlei and TCP flows seem to be sightly worse-ofF
compared to the co-existing BT and TCP flows. We speculate

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 71

2.5 10。
Large link capacity for the TCP flow

•TCP flow
TCP flow w Xunlei

-TCP flow w BitTorrent

i

 队
"

5

1

5
 o
o

1
 c
i

(
w
/
g
>
l
)
l
n
d
4
6
n
o
」
u
i

Small link capacity for the TCP flow

100 200 300 400 500
time(s)

(a) Xunlei UDP flows and the TCP flow

Small link capacity for the TCP flow

0 100 200 300 400 500
time(s)

(b) Comparison of TCP flow's throughput

Figure 5.18: Xunlei's influence: small link capacity for the comparing TCP
flow

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 72

.A

d’

•TCP flow
Xunlei UDP flow

H i

Ml

0' 3

2.5

2

5

0.5

(
s
/
g
>
l
)
l
n
d
u
6
n
o
J
u
l

0‘
8

7
 6

 5

 4

 3

 2

(
s
/
g
>
l
)
l
n
d
u
6
n
o
J
u
l

CHAPTER 4. A BLACK-BOX STUDY OF XUNLEI 73

that the reason for TCP being worse off is due to the aggressive-
ness of Xunlei in competing wi th the TCP flow for bandwidth.
The reason for Xunlei to be also worse off seems to be due to the
few neighbors i t is able to get, as shown in the th i rd sub-figure
of Fig. 5.16. Figure 5.17 compares the throughput of the TCP
flow wi th (a) no P2P flows, (b) wi th BT flows, and (c) wi th
Xunlei flows. The relative throughput is (a) better than (b) and
(b) better than (c).

For the case wi th a remote TCP flow (traversing a longer
path wi th lower bandwidth), the TCP flow achieves much less
throughput than the simultaneous Xunlei flows. In this case,
the instantaneous TCP rates also tends to fluctuate wildly, see
Fig. 4.18(b). Due to the higher aggregate rate of Xunlei flows,
the TCP flow has to respond more often to congestion signals,
leading to much lower throughput.

In the second sub-figure of Fig. 4.18(b), we compare the in-
stantaneous rate of the TCP flow wi th and without the Xunlei
flows, and it is clear that the latter case is much less stable.

• End of chapter.

Chapter 5

Conclusion

In this thesis, we studied peer-to-peer systems.in two aspects -
we provided an analysis, as well as an evaluation of the design
of trackers in P2P systems, and we studied a large-scale P2P file
sharing system (Xunlei).

The inherent distributed property of P2P systems require a
participating peer to find more swarm peers to get a better per-
formance. The "tracker" function is hence a key enabler for all
P2P systems. Traditional server-based trackers hold bottleneck
and do not support well the scalability either in the number
of objects (e.g. files), or in the number of simultaneous par-
ticipating peers. DHT-based trackers, however, are much more
scalable. Our analysis shows that, the system reliabil ity of DHT-
based tracker design can be quite stable in the face of hetero-
geneous system population and resource popularity, owning to
they distributing the workload of searching information to nor-
mal peers, and achieving another level of "distributed manner"-
P2P systems wi th DHT-based trackers are distributed not only
in distributing contents, but also in searching information (e.g.
file info and peer info). Further, our analysis of DHT-based
tracker design shows that, among different system and network
parameters, peer's average lifetime and the D H T stabilization
interval influence its performance (reliability) most.

Having attracted a vast user base (purportedly over 200 mil-

74

CHAPTER 5. CONCLUSION 75

lion users), and achieved very good downloading performance
compared to Bittorrent, Xunlei is a system worth closer exam-
ination. Yet, being proprietary means it is not easy to uncover
its design details. In this thesis, we tried to study Xunlei the
best we can using a black-box approach. We find that its multi-
protocol design, and the ability to tap into different networks
simultaneously is probably the most important reason for its
good performance. We believe our measurements and detective
work is useful for other colleagues working on P2P algorithms
as well.

• End of chapter.

Bibliography

1] http://baike.baidu.com/view/1506350.htm.

2] http:/ /bamboo-dht.org/.

3] http://en.wikipedia.org/wiki/bittorrent_client.

4] http://en.wikipedia.org/wiki/bittorrent_protocol.

5] http://en.wikipedia.org/wiki/edonkey_network.

6] http://en.wikipedia.org/wiki/kad_network.

7] http://en.wikipedia.org/wiki/selective_repeat_arq.

8] http:/ /en.wikipedia.org/wiki/xunlei.

9] http://kankan.xunlei.com/.

10] http://nsnam.isi.edu/nsnam/index.php/main_page.

11] }ittp://pdos.csail.mit.edu/p2psim/.

12] http: / /www. emule-proj ect. net/ •

13] http://www.gougou.com/.

14] http: / /www.opnet.com/.

15] http:/ /www.wireshark.org/.

16] ht tp: / /www.xunlei .com/.

76

http://baike.baidu.com/view/1506350.htm
http://bamboo-dht.org/
http://en.wikipedia.org/wiki/bittorrent_client
http://en.wikipedia.org/wiki/bittorrent_protocol
http://en.wikipedia.org/wiki/edonkey_network
http://en.wikipedia.org/wiki/kad_network
http://en.wikipedia.org/wiki/selective_repeat_arq
http://en.wikipedia.org/wiki/xunlei
http://kankan.xunlei.com/
http://nsnam.isi.edu/nsnam/index.php/main_page
http://www.gougou.com/
http://www.opnet.com/
http://www.wireshark.org/
http://www.xunlei.com/

BIBLIOGRAPHY 77

17] D. Bickson and Y. Kulbak. emule protocol specifica-
tion. Master thesis, The Hebrew University of Jerusalem,
Jerusalem, January 2005.

18] F. E. Bustamante and Y. Qiao. Friendships that last: Peer
lifespan and its role in P2P protocols. In Proceedings of
International Workshop on Web Content Caching and Dis-
tribution, Sep. 2003.

19] D. Carra and E. Bier sack. Bui lding a reliable P2P system
out of unreliable P2P clients: The case of Kad. In Proceed-
ings of CoNext'07, New York, USA, 2007.

20] B. Cohen. Incentives bui ld robustness in B i t Torrent. In
P2P Economics Workshop, Berkeley, CA, 2003.

•21] B. Cohen. The bittorrent protocol specification
3. http://www. bittorrent. org/heps/hep-003.html^ January
2008.

22] Y. Gu and R. L.Grossman. UDT: UDP-based data trans-
fer for high-speed wide area networks. Computer Networks:
The International Journal of Computer and Telecommuni-
cations Networking, 51 (7): 1777-1799, May 2007.

23] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy,
S. Shenker, and I. Stoica. The impact of dht rout ing ge-
ometry on resilience and proximity. In Proceedings of A CM
SIGCOMMW, Karlsruhe, Germany, August 2003.

24] Y . Huang, T . Fu, D. Chiu, J. Lui, and C. Huang. Chal-
lenges, design and analysis of a large-scale P2P VoD system.
In Proceedings of ACM SIGCOMMW, August 2008.

25 A. L. Jia and D. M. Chiu. Designs and evaluation of a
tracker in P2P networks. In the 8th International Con-

http://www

BIBLIOGRAPHY 78

ference on Peer-to-Peer Computing 2008 (P2P，08), pages
227-230, 2008.

2 6 W. Kun and D. H. et al. NDP2PSim: a NS2-based platform
for peer-to-peer networks simulations. In ISPA Workshops
2005, pages 520-529, 2005.

27] D. Leonard, V. Rai, and D. Loguinov. On lifetime-
based node failure and stochastic resilience of decentralized
peer-to-peer networks. In Proceedings of ACM SIGMET-
RICS'05, pages 26-37, Jun. 2005.

28] J. Li , J. Stribling, R. Morris, M. Kaashoek, and T. M.Gi l .
A performance vs. cost framework for evaluating D H T de-
sign tradeoffs under churn. In Proceedings of IEEE INFO-
COM，05, pages 225-236, 2005.

'29] A. Loewenstern. The bittorrent protocol specification
5. http://www. bittorrent. org/heps/hep .005. html, January
2008.

30] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-
peer information system based on the X〇R metric. In

Revised Papers from the First International Workshop on
Peer-to-Peer Systems, pages 53-65, March 2002.

31] S. Naichen and B. el al. The state of peer-to-peer simulators
and simulations. ACM SIGCOMM Computer Communica-
tion Review, 37(2), Apr i l 2007.

'32] N. Prabhu. Stochastic processes: basic theory and its appli-
cations. New York: Macmillan, 1965.

33] A. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location and routing for large-scale peer-to-peer
systems. In IFIP/ACM International Conference on Dis-
tributed Systems Platforms (Middleware), pages 329-350.

http://www

BIBLIOGRAPHY 79

34] S.A.Baset and H.G.Schulzrinne. An analysis of the Skype
peer-to-peer internet telephony protocol. In Proceedings of
IEEE INFOCOM，06, Apr i l 2006.

35] M. Steiner, T. En-Najjary, and E. W. Biersack. Long term
study of peer behavior in the K A D DHT. IEEE/ACM
Transactions on Networking, May 2009.

36] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of ACM SIG-
COMM，01, San Diego, California, USA, August 2001.

37] D. Stutzbach and R. Rejaie. Understanding churn in peer-
to-peer networks. In Proceedings of IMC'06, October 2006.

38

39

40

41

42

G. Tan and S. A. Jarvis. Stochastiv analysis and improve-
ment of the reliabil ity of DHT-based multicast. In Proceed-
ings of IEEE INFOCOM，07, 2007.

Z. Yao and D. Loguinov. Understanding disconnection
and stabilization of Chord. In Proceedings of IEEE IN-
FOCOMW, pages 1049—1057, 2008.

W. Yiu, X. Jin, and S. Chan. Vmesh: Distr ibuted sege-
ment storage for peer-to-peer interactive video streaming.
IEEE Journal on Selected Areas in Communications^ 25(9),
Sepetember 2007.

M. Zhang, C. Chen, and N. Brownlee. A measurement-
based study of Xunlei. In Proceedings of PAM’09, Apr i l
2009.

B. Y. Zhao and e. a. John Kubiatowicz. Tapestry: An in-
frastructure for fault-tolerant wide-area location and rout-
ing. In UC Berkeley Technical Report, 2001.

BIBLIOGRAPHY 80

43] S. Zoels, S. Schubert, W. Kellerer, and Z. Despotovic. Hy-
brid DHT design of mobile environments. In Proceedings of
AP2PC'06, pages 19—30, 2006.

J

St.；
‘J：、.11. V

t

.；

C U H K Librai

004660247

