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Abstract 

Inverse problems are notable for their broad applications in natural sciences 

and industries. Their mathematical study typically leads to challenging models 

that are ill-posed in the sense of Hadamard. For numerics, general regularization 

strategies are developed to treat inherited instability. However, due to the variety 

and speciality of inverse problems, problem oriented numerical schemes are more 

promising for efficiency and robustness. In this thesis, we will take the inverse 

scattering problem as an example to design and analyze several optimization 

methods for numerical treatments. 

The inverse scattering problem is to study obstacle or medium properties 

by sending and measuring propagating waves. The whole process is described 

by partial differential equations(e.g. Helmholtz equation, Maxwell' equation) 

with proper boundary, initial conditions. In recent decades, continuous efforts 

are made to improve the mathematical models that guarantee the existence and 

uniqueness of solutions. These results can serve as guidelines for practical designs 

and numerical reconstructions. For a model frequently used in computation that 

reduced to a bounded domain with absorbing boundary conditions, a unique 

result is derived to provide some justifications for numerical analysis in this thesis. 

The inverse scattering problem can be formulated into an optimization prob-

lem governed by partial differential equations(PDE), hence relatively mature op-

timization techniques are ready for numerical studies. By considering structural 

features, we mainly modify and analyze two optimization methods for efficient 

and robust numerical treatments. First, starting from the recursive lineariza-

tion method which is advantageous for computational efficiency, we reexamine 

the method from an unconstrained optimization method - the steepest decent 

method. By exploring some properties of this method, we suggest directions for 
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further improvements. After that, regarding as a PDE constrained optimization 

problem and noticing the bilinearity of the equation, a second order method -

the augmented Lagrangian method is carefully analyzed. Optimality conditions 

are established under some conditions. A modified algorithm is derived to save 

computational costs. 



論文摘要 

反問題以其在自然科學和工業界的廣泛用途而著稱。對於它們的數學研究 

常常會導致在所謂阿達馬意義下不適定的數學模型。對數值分析而言，為了克 

服不適定問題内在的不穩定性，一般的正則化理論被發展起來。但是，由於反 

問題的多樣性與獨特性，針對具體問題而設計的數值方法在提高計算效率與穩 

定性方面更具潛力。本論文將以反散射問題為例，分析並提出幾種基於優化理 

論的數值方法。 

反散射問題是通過發射和測量傳播波來探測和研究散射體或散射介質的性 

質。這一過程可以用帶初、邊值條件的偏微分方程（如亥姆霍兹方程，麥克斯 

韋方程等）來描述。最近幾十年中，為了保證解的存在唯一性而改進數學模型 

的努力從未停止。這些結果指導著實際設計與數值重構工作。對於在數值計算 

中經常使用的一個簡化模型，也即有屆區域内帶吸收邊界條件的模型，本文給 

出了一個唯一性的結果為以後的數值分析作准備。 

反散射問題一般來說可以被表述為帶偏微分方程約束的優化問題。從而對 

它們的數值研究可借璧成熟的優化理論。考慮到問題的結構特征，本文具體分 

析並改進了兩種優化方法。首先，從一種計算上效率較高的遞歸線性化方法出 

發，我們分析了一種無約束優化方法——最速下降法。通過發掘這一方法的性 

質，我們指出進一步改進的方向。之後，從約束優化角度，並注意到方程中的 

雙線性項，我們分析了一種具有二階收斂性的增廣拉格朗日方法。在合理假設 

條件下推導出最優化條件。此外，我們提出了一種改進算法來節省計算開銷。 
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Chapter 

Introduction 

1.1 Overview of the subject 

This thesis is devoted to the numerical study of some inverse problems by op-

timization methods while demonstrates their robustness and efficiency. Inverse 

problems come from many branches of natural sciences, such as geophysics, com-

puterized tomography, antenna design and optimal control etc. When casted into 

mathematical models, these inverse problems usually manifest a theoretical and 

numerical challenge - ill-posedness. In the sense of Hadamard(1923), a well-posed 

problem means (i) the problem is solvable in the class of possible solutions; (ii) 

its solution is unique in this class; (iii) its solution is stable in this class with 

respect to admissible perturbations of the ingredients of the problem. Otherwise, 

a problem is called ill-posed. From mathematical point of view, the existence of 

solutions depends on the definition of solution spaces. And the uniqueness de-

pends on how large the solution space is, while the stability concerns the topology 

of solution spaces. 

Due to practical limitations(insufficient measurements, noises etc), ill-posedness 

is prevalent in inverse problems. Lack of uniqueness or existence indicates in-

completeness of physical models and should be corrected. There are numerous 
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efforts on establishing sufficient conditions to guarantee the uniqueness and ex-

istence of physically meaningful solutions. For numerics and real applications, 

however, stability is of special value since it allows the approximation procedure 

to work. In this respect, the regularization theory developed by Tikhonov A N 

TA] plays an unreplaceable role in the theory of ill-posed problems. The basic 

idea is to introduce a bounded, so-called regularization operator to approximate 

unbounded operators. Henceforth, finite dimension approximation follows from 

the well-developed bounded operator theory, while the error caused by regular-

ization can be estimated. Even with the help of regularization to counteract the 

ill-posedness, there still remain difficulties for various inverse problems, such as 

establishing more proper models and improving computational efficiencies etc. 

In this thesis, we will mainly focus on one important class of inverse problem 

- t h e inverse medium scattering problem as an example. We try to put them 

into proper optimization models and analyze their properties. Before that, let us 

briefly review some developments of this problem. 

The inverse scattering problem is a primary model for lots of practical appli-

cations, such as radar, sonar, medical imaging and nondestructive testing. Here 

we would consider the case of scattering of time-harmonic acoustic waves by ei-

ther an obstacle or a penetrable inhomogeneous medium. Later in Chapter 2, 

the detailed mathematical setting will be illustrated. In the past twenty years, 

theoretical results concerning the unique determination were developing very fast, 

e.g. [CoK]. Among them, one representative methodology is to exploit the behav-

ior of the fundamental solution to the Helmholtz equation [CoKl]. Within this 

regime, numerical methods such as the point-source method, the probe meth-

ods [P] and the linear sampling method [CoKi] are relatively mature and well 

behaved, particularly for the obstacle scattering case. For example, the linear 

sampling method(LSM) tries to find an indicator function that tends to infinity 
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near the boundary of obstacles and stays bounded elsewhere. By plotting the 

indicator function, the profile of obstacles appears. Although it possesses some 

intrinsic drawbacks like computational burden of sampling and heuristic choices 

of cut-off value, the LSM is generally workable and promising for accurate re-

coveries. Many researchers are then spurred to justify or improve the method, 

including the factorization method [CoKl] as well as some fast implementations 

ABP], [LLZ]. These kinds of methods may also be applied to the medium scatter-

ing case, however, only the support can be detected. As a result, the LSM could 

be employed to recover piecewise constant medium functions. For general media, 

the above methods seems not advantageous at all. Actually, the reconstruction of 

obstacles mainly concerns the boundary, which is of lower dimension. For medium 

functions, we need to know the support (boundary) and (more importantly) the 

value. 

For the inverse medium scattering problem, there are fewer breakthroughs, 

especially in the numerical regime. Since the obstacle methodology could hardly 

be applied as pointed above, researchers are trying fresh ideas. Of existing meth-

ods, the recursive linearization method(RLM)[BL] works well for many scattering 

problems. Later, we would continue the effort to an'alyze some properties of this 

method from the optimization point of view. In fact, formulating the scattering 

problem into optimization models can relieve many difficulties, which propels our 

efforts towards this direction. 

1.2 Motivation 

Because of the variety and difficulties arising in inverse problems, we need new 

techniques and fresh perspectives. Actually, too general frameworks omit prob-

lem features which may play important roles for inverse problems. Therefore, 

our motivation comes from mathematical structures rooted in specific inverse 
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problems. 

Mathematics reveals the structure and the underlying pattern of a problem. 

In computational field, delicate consideration for mathematical structures often 

generates efficient and stable numerical schemes. For example, the symplectic 

schemes for Hamiltonian systems that preserves the symplectic structure and the 

edge element method that preserves the de Rham diagram both result in much 

more stable numerical methods. In this thesis, we would exploit two structural 

features of the inverse medium scattering problem. After that, proper optimiza-

tion methods could be selected to carry out efficient and robust numerical algo-

rithms and theoretical results. 

First, the scattering problem is associated with a two parameter function -

the incident wave d), where k is the wave number and d is the incident 

direction. In application, they will be discretized to sufficient many. Direct 

applying optimization method will lead to large matrixes which are difficult to 

store and solve in computers. However, the incident directions and wave numbers 

can be ordered by a continuation method [BL]. We will make use of this feature to 

break down the large problem to small pieces which improves the computational 

efficiency. “ 

Second, the inverse medium scattering problem is generally nonlinear in essence. 

However, the non-linearity comes from the low order term qu\ which is actually 

bilinear with respect to q and ？ T h i s natural structure implies possible facilities 

for analysis and numerical designs. Indeed early in [Nl], a linearization approach 

was studied to utilize this feature. In this thesis, we would first adopt a proper 

optimization model that suggested in [IK]. After that, the augmented Lagrangian 

multiplier method is analyzed carefully. In fact, the bilinear term provides what 

we need to verify the optimality conditions. The optimization methods can also 

be applied to the discretized problem like in [HAO], and discuss the numerical 

efficiency. Our approach focus more on the theoretical part. 
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In this thesis, the main contribution, as the title suggested, is to analyze 

the inverse scattering problem by proper optimization methods. In chapter 2’ 

the mathematical formulation and basic theoretical background of the inverse 

medium scattering problem are brief reviewed. An novel uniqueness result is 

established for the model proposed. In Chapter 3, after briefly reviewing the 

recursive linearization method, we reexamine the method and suggeste some im-

provements. In Chapter 4, a new optimization model are employed and the 

augmented Lagrangian method is analyzed to give a second order algorithm. At 

last, Chapter 5 summarizes this thesis and points out some research directions. 



Chapter 2 

Inverse Medium Scattering 

Problem 

In this chapter, we will describe the mathematical setting of the inverse medium 

scattering problem. A reduced model is introduced and some potential applica-

tions are illustrated. Related to the numerical analysis, some theoretical results 

are discussed, and the variational formulation is derived for analysis. 

2.1 Mathematical Formulation 

Generally speaking, the scattering problem is to study behaviors of wave propaga-

tion through mediums or obstacles, while the inverse scattering problem intends 

to study properties of mediums or obstacles from those wave behaviors. There 

are many literatures([CoK], [Is], [K]，[Ih] etc) devoted to the mathematical for-

mulation as well as backgrounds of the problem, including acoustic scattering, 

electromagnetic scattering, elastic scattering etc. Here we will derive an reduced 

model. 

Let u{x) 二 + iu2{x) G = 2,3 be the total field that is 

11 
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governed by the Helmholtz equation 

+ + q(x))u{x) = 0, in R � ’ （2.1) 

where k > 0 is the wave number, q(x) is the medium function. For the inhomo-

geneous medium, we make following assumptions that q(x)�一1 is a real 

function, and q(x) is compactly supported. 

Let = e-.d G be the incident field in direction d e D = {x e 

股"：|a;| = (EZi^fy^^ = !}• It satisfies the homogeneous Helmholtz equation 

in ‘ 

Au'(x) + A;V(x) = 0. (2.2) 

From equation (2.1) and (2.2), we can derive an equation for the scattered 
field u^(x) = u(x) -

+ k2(l + q(x))u'(x) = -k'g(xy(x). (2.3) 

In the free space M^, the scattered field is required to satisfy the Sommer-

feld radiation condition: 

pi^.s 

厂1恋厂("-1)/2(备—-”=。，.…礼 （2.4) 

uniformly along all directions in D. This condition describes that waves are 

propagating to the infinity and will not be reflected back. It guarantees the 

uniqueness of the solution u .̂ 

2.1.1 Absorbing Boundary Conditions 

When solving the scattering problem by such as the finite element method, it 

is convenient to truncate to a finite domain ？L. And consequently, proper 

boundary conditions should be imposed on the artificial boundary d^. In view of 

the Sommerfeld radiation condition, these conditions should minimize nonphysi-

cal reflecting waves from the boundary, hence are called non-reflecting boundary 
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conditions(NRBC) or absorbing boundary conditions(ABC). Various ABCs can 

be divided into non-local ABC and local ABC. For the finite element method, lo-

cal ABCs are easier to implement. Following [J], we will derive some local ABCs 

frequently used later. The same order ABCs may appear different by other deriva-

tions like the localization of pseudodifFerential operators([EM]). More detailed 

descriptions can be found in [Ih], [J], [G] etc. 

In ]R2, starting from the famous Wilcox expansion for the solution of the 

Helmhotz equation 

IT 
� n = 0 

where (r, (9) is the polar coordinates. Define a sequence of operators by the 

recurrence relation 
” . a , 4m - 3 � ” 
召m = ( 石 - i k + (2.6) 

with Bo 二 1. It can be verified that the operator Bm cancellates the first m terms 

in (2.5) and gives 

Bmiun = 备 1/2). 

Therefore, the first and second order ABC are respectively 

d , 1 • 
召1 = 石 — 认 + 5 ’ 

口 3 丄 1 1 1 

B? 二二——z/c + -—— 

(2.7) 

(2.8) 

dr …’2r Sr{\ - ikr) 2r{l - ikr)m' (？.… 

As expected, the finite domain approximation becomes better as r grows and 

higher order ABCs are taken. However, for numerical discretization, larger do-

main will result in more unknowns, while higher order ABCs involve higher or-

der derivatives which are complicated to implement. Here and after, we take 

a bounded artificial domain Q = [ -L i ,L i ] x [0, L2], and impose the first-order 

absorbing boundary condition: 

Qu^ 
—-iku' = 0, on an, (2.10) 
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where n is the normal direction to the boundary dfL Of course, the region 

n should be chosen large enough to cover the support of q(x). Under these 

assumptions, we can take g(x) G Z/g°(Q) directly. And also, u^ e 

Remark 2.1.1 For the Maxwell's equation in R^ to be discussed in section 2.1.2, 

similar procedures can carry out corresponding ABCs. Following notations there, 

the first two ABCs are 

S,=rxVx E' + ikEt, (2.11) 

B2 = rxVxE^ + ikE, — 2(1 二 的 • x ( f (V x E%)—认丑;(2.12) 

where the subscription t, r stands for traverse and radial components of a vector 

field. 

With the help of ABC, the reduced model we adopt for later analysis is the 

following equation: 

A ? / � + + q(x))u'(x) = -eq{x)u'{x), in (2.13) 

dnvf — ihuf = 0， o n dQ. (2 14) 

And we call such solution û  the ABC scattered field. 

Given a medium q(x) and a set of plane waves we can measure the cor-

responding Dirichlet boundary values of the scattered field From these 

values, the inverse problem is to determine q(x)： In the following, we always as-

sume q(x) can be uniquely identified by enough information. An inspiring unique 

determination result will be discussed in section 2.2.2. 

2.1.2 Applications 

Many important applications share the same underlying structure to our model 

problem. Next, we will describe two representatives. For more backgrounds and 



Some Robust Optimization Methods for Inverse Probl ems 15 

applications, please refer to [BL], [BLl] and [BL2 

Application 1: Medium scattering by electromagnetic waves 

Consider the time harmonic Maxwell's equation in 

V X E = iujii*H, 

V X H = -iuje*E. 

(2.15) 

(2.16) 

Here, E and H are the total electric field and magnetic field respectively, a; > 0 is 

the frequency, e* and fi* are the electric permittivity and magnetic permeability 

respectively. Let cq > 0 and jiQ be the permittivity and permeability of the 

vacuum. Assume [i* = /io, rewrite e* = eoe, e 二 1 + q[x). Here q{x) may be 

complex, and the imaginary part means the medium is absorbing. Also, q{x) is 

assumed to be compactly supported and > —1. 

By eliminating the magnetic field H, we get 

V X V X E - k ^ e E = 0, (2.17) 

where k = uj^/e^ is the wave number. Suppose the medium is illuminated by 

the normalized plane wave 

E^ = ikpe ikx- ne S^.pe = 

where is the unit sphere in M .̂ Such plane wave satisfies 

V xV X - k^E' = 0, in R^. 

Since E = + we have 

V xV xE'- + q{x))E' = k^q{x)E\ 

(2.18) 

(2.19) 

(2.20) 

For the electromagnetic waves, the Sommerfeld radiation condition is replaced by 

the Silver-Miller radiation condition, 

X lim r{V X X - - ikE') = 0 (2.21) 
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By introducing an artificial surface, the first order absorbing boundary condition 

gives 

u xV X -\-ikiy xu X = 0, (2.22) 

where v is the outer normal direction. 

Application 2: Incident waves with spacial frequency 

In some applications, special incident waves are preferred. Considering acous-

tic medium scattering problem in M ,̂ the scatterer is illuminated by a one-
—* 

parameter family of plane waves at fixed wave number ko. Let k = (j], k(jj)) 

and 

Hv)= 
V^Q- "2, ko > 177 

i v V ko < M 

where r] is called the spacial frequency. Now, the incident wave adopted is û  = 
Ak x : „ 

u\Xi,X2)= 
exp(如1 + x A o - ^ ^ 2 ) ) , K > I" 

e x p ( _ — y/rf klx2), ko < 

It can be seen that when < A;。，the wave is propagating. Otherwise, the wave 

is evanescent and can only penetrate a thin layer, as the figure shows. This par-

ticular plane wave can be generated at the interface of two media by total internal 

reflection, and has primally been used in near-field optics. 
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Figure 2.1: Plot of propagating wave, k = 5, 77 = 4 
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Figure 2.2: Plot of evanescent wave, k = 5, 7/ = 7 

2.2 Preliminary Results 

2.2.1 Weak Formulation 

We intend to base the later analysis on weak formulation, and progress system-

atically. By multiplying 小 G H\Vt) and integrating by part, we can derive the 
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weak formulation for (2.13), (2.14) 

'q Jn Jn 

Jq JQ. 

where the boundary condition is used. 

/ ikuS 杏 
•dn JQ 

(2.23) 

(2.24) 

Let 

and 

a{u, v) = (Vw, — + q)u, v) - ik{u, v) 

b(v) = k'^{qu\v), 

(2.25) 

(2.26) 

where (u, v) 二 uv and (n, v) = fg^ uv. Then the weak formulation is to find 

e such that 

(2.27) 

Denote the solution operator to the weak formulation (2.27) by S : x 

1 / 2 � ) H i (ft), i.e. n® = S{q,u'). Properties for this formulation are discussed 

in literature such as [BL]. We list several results related to further work. Since 

some ideas in the proof are used later, and also for the completeness, short proofs 

are given in the following. 

Lemma 2.2.1 Given q G the variational problem admits a unique weak 

solution in And the estimate 

holds, where the constant c depends on k and Q. 

u (2.28) 

Proof: For the uniqueness, we only need to prove = 0 for v} = 0. By Green's 

formula 

0 = / A^w" —— AuS^F = / dn^u' - dnu'W = -2ik / \u 
Jn JdQ JdQ 

(2.29) 
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Thus = 0 on dQ, and dnÛ  = 0 on from the absorbing boundary condition. 

By the Holmgren uniqueness theorem, u® = 0 in By a unique continuation 

result [JK], u® = 0 in Q. Therefore, û  is unique solvable. 

For the continuity of the operator 5, we first split a{u,v) = ai{u,v) + 

k'^a2{u,v), where 

ai(u, ？;) = (Vu, Vv) — ik{u, v) 

a2(w, v) = - ( ( 1 + q{x))u, v). 

(2.30) 

(2.31) 

Then ai is coercive as following 

ai(n, u] 

> 2(巧〜)(丨丨•養…)+ 

> c u 2 

Here and after, c is a generic constant depends on k. 

Next, let A : -> H\Q) be such that ai[Au,v) = a2{u,v)yv € 

Prom Lax-Milgram theorem, we have 

<c||l + 9||L-(f2)||w||L2(n). (2.32) 

Therefore, ^ is a bounded operator form to By the compact 

imbedding of H^ into A is compact from to L^(Jl). 

Let cj e be such that ai(uj,v) = b(v),\/v e Again by Lax-

Milgram theorem, we have ||a;||//i…）< c||dL~(fi)||w”|ẑ 2(Q). Using the operator 

A, we see that the original variational problem (2.27) is equivalent to 

Now, by the Predholm alternative, we can conclude that 

(2.33) 

L2(f2) < C\\uj\\I2^Q) < 

c||u;||//i(f2). From u^ = uj — k'^Au^, we have 

HHn) < c uj //i(� < c q /^oo�) 

This finishes the proof. • 

L W (2.34) 
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Remark 2.2.1 From the proof we notice that the dependence of c on k is com-

plicated by the usage of the Fredholm alternative. Actually, when k is sufficiently 

small, such dependence can be clarified as in [BLj. For general cases, however, 

this method is frustrated. 

A direct application of lemma 2.2.1 tells the continuity of operator S with 

respect to q. 

Corollary 2.2.1 Assume that gi,仍 G e then 

-S(q2,u')\\Mi{n) < c\\qi - q2\\L-°{n)\W\\LHn)^ 

where the constant c depends on k, Q and \\q2\\L°°{Q)(or \\q\\\L°°{n))-

Proof: Let wf 二 and u^ = S(q2,ii”. G the weak formulation 

(2.27) are respectively 

(Vw?, — k'iil + qi)ut, (t>) - ik{ulv) = k\q,u\ 0), (2.35) 

(Vu^, V0) — A:2((l + q她、0) - ikl^ul v) = k\q2u\ cj>). (2.36) 

Let Sû  二 wf — wg. Subtracting these two equations gives 

(V6u\ V(t>) - e({l + qi)Su', (j)) — ik{8u', v) = k2((gi — q2)(u' + ？4),孙（2.37) 

Now, according to lemma 2.2.1, 

⑴） < C\\qi —仍 (…（|KI|L2(n) + 11̂ 211//I (f̂ )) 

This finishes the proof. 

Later in Chapter 4, we need regularity results for another set of equation. 
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Lemma 2.2.2 Given f G there exists a unique weak solutionu G 

to (2.13), (2.14): 

—Au; + u; = /, in Q, 

dnOJ = 0, on dQ. 

and the estimate holds for some constant 

< C||/| 丨//I � ) 

(2.38) 

(2.39) 

2.2.2 About the Unique Determination 

For the inverse problem we are considering, it is of theoretical and practical im-

portance to know the sufficient information for uniquely determining a medium. 

In fact, it prescribes the sufficient incident waves one should send as well as mea-

surement point one should place. For scattering problem in with radiation 

condition, such kind of results are plentiful (e.g. [Is], [CoK], [K]). The two di-

mensional case seems more challenging. Meanwhile, it is evident that our reduced 

model possesses an essential different structure: it is a bounded value problem. 

Therefore, we need to study the unique determination for the ABC scattered field, 

i.e. the solution to (2.13), (2.14). Fortunately, from recent progresses [lUY], such 

result is attainable under some conditions on q(x). 

The main theorem in [lUY] proved for a two dimensional bounded domain 

that the Cauchy data for the Schrodinger equation measured on an arbitrary 

open subset of the boundary determines uniquely the potential. Specifically, let 

f C 如 be a non-empty open subset of the boundary. Denote Fo = Let 

Qj G ( 7 i + � n ) , i = 1,2 for some a > 0. Consider the following sets of Cauchy 

data on f : 

Co, = {{u 
du 
dn 

{A-^qj)u = 0 on Q,w|ro = j = 1,2. 

Theorem 2.2.1 Assume Cq^ = Cq^. Then qi = q2. 
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This result is strong in the sense that only partial Dirichlet data are needed. 

However, the theorem requires the Dirichlet data to be supported on f , which 

is not the case we are considering. Therefore, we give up partial recovering and 

take f = dQ, Tq = 0. Also, we take the artificial domain Q to be 5(0，r), which 

is a ball centered at 0 with radius r > 0. 

In order to utilize this theorem, we need to work on the total field u = 

which satisfies 

Au + q{x))u = 0, in • (2.40) 

dnU — iku = dnU^ — iku\ on dQ. (2.41) 

As before, we call the solution u the ABC total field. Now, we prove the next 

density lemma. 

Lemma 2.2.3 Suppose k"^ is not an eigenvalue of - A . For q{x) e the 

span of ABC total field u{k, d), d e D is dense in the possible solution set 

Q = {ue I (A + k^q)u = 0 on fi}. That is span{u(k,d),d e = 

Q. 

Proof: We prove the lemma by contradiction. If u{k, d) is not complete in Q, 

there must exist some Uq e Q such that uq • span{u{k, d)}. According to the 

Hahn-Banach theorem(e.g. [Y]), there exists a / € such that f^ fu{k, d)= 

0, Vc? G D, but not for uq G Q. Then let u be the solution to 

Alj + + q(x))uj = f, in Q, (2.42) 

dnUJ — iku; = 0, on dfl. (2.43) 

The existence of w is guaranteed by lemma 2.2.1 later. Thus by Green's 

formula, 

0 == f fu{k,d) 
Jn 
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=/ (Auj q{x))uj)u 
Jn 

=/ (Au + + q(x))u)uj + / dnCJU - dnUUJ 
Jn J do. 

= / dnUM — dnULU. 
Jdn 

Then by the boundary condition of u and u, we further have 

0 = dnCOU — dnUUJ = / ikuJU — dn^ 

JdQ Jdn 

23 

= / ikuju'^ — dnU � = / dnOJU^ — dnU � . 
Jdn Jdn • 

Let ujo be the solution to the homogeneous Helmholtz equation Auq + k'̂ uo = 0 in 

n with Dirichlet boundary condition luq = lj on dCl. Remember that u^ satisfies 

the homogeneous Helmholtz equation too, we have 

0 = / (Acjo + k^ujQ)u' 

= / (Aw^ + k + / dnOJQV} — dnU^UJQ 
Jn JdQ 

= / dnUJQU' — dnU'UJo. 
Jdn 

Thus compare the above two equations and use ujq = u on dQ, we have 0 = 

fg (̂dnCJo - dn^)u\ By the assumption that k'̂  is not an eigenvalue for - A , 

we can conclude ([Isl]) that d) are dense in L?[dQ). As a result, we get 

dnUJo = d n � on do.. Prom the boundary condition of a;, we have dn^o — ikujQ = 0 

on dQ. 

Now consider Aljq + k'̂ ujo — 0. Multiplying the equation by ujq and do inte-

gration by part, we get 

-(VcJo, VcJo) + k'̂ (uJo,uJo) +ik(uJo,uJo) = 0. 

Since the only imaginary part is ik(yjQ,ujQ�, we conclude that luq = 0 on dQ. 

Hence dnco 二 0 on 敝 Therefore, the Dirichlet value and Neumann value of u 

are also zero. Thus, by the assumption that uq G Q, we derive 

/ fuo = / (Aa; + k̂ Lu)uo 
Jn Jn 
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= / (Auo + k'^Uo)uj + / dnuMo — ̂ 氏互o 
Jo. Jdn 

which is a contradiction. • 

With the above preparation, we have 

Theorem 2.2.2 Assume <71,92 ^ 丑 J Q ^ a � 0 ， a n d Uj{k, d) are the cor-

responding solutions to (2.13), (2.14) with v} = e•工.^VcLe D and some fixed 

k > 0. Suppose ul = on dQ, then qi = q). 

Proof: First, by lemma 2.2.3 and interior Schauder-type estiinates([GT])it follows 

that the ABC total field u is dense in Q ([Is]). And from the continuity 

of trace operator 7, u\dn is H�丨"dense in Since ul = from the 

boundary condition, we have the Cauchy data Cq̂  = Cq̂ . By theorem 2.2.1 and 

the embedding of 丑 i n t o C i + � q i = q). • 

Remark 2.2.2 In the proof, we directly employed lemma in [Isl] which is ap-

plicable for 5(0, r). For general domains, a similar lemma should be established. 

And also, the medium should be smooth than IP to make use of the recent progress 

[lUY]. For lower regularities like such results are not found yet. 

This theorem simply tells us that in order to uniquely determine a medium, 

one need all Dirichlet data on the boundary incidented by plane waves from all 

directions at fixed wave number k. This provides a priori knowledge for numerical 

studies. In the following analysis and numerical experiments, we always assume 

that media can be uniquely determined. 



Chapter 3 

Unconstrained Optimization 

Steepest Decent Method 

This chapter starts our numerical study from a simple optimization algorithm 

- t h e steepest decent method, extracted from the existing recursive linearizaion 

method. Prom optimization perspectives, the method is reexamined and some 

improvements are carried out. 

3.1 Recursive Linearization Method Revisited 

The recursive linearization method (RLM) was first proposed by Chen Yu ([Ch]) 

in a numerical study of inverse scattering problems by Riccati equation method. 

To overcome the ill-posedness and possible local minima, Chen adopted a con-

tinuation procedure along the wave number that stabilizes the algorithm. Later, 

Bao, G et al further developed the idea and applied it to scattering problems in 

various situations( [BHL], [BL], [BL1], [BL2]). This method is easy to understand 

and implement despite some disadvantages which will be discussed later. We now 

briefly review these methods under the model of inverse medium scattering . 

25 



Some Robust Optimization Methods for Inverse Probl ems 26 

Let the measurements 屯=•(少i，屯2,…} = depend on the number 

of incident waves. Then define the measurement map M : x 

by 

= (3.1) 

where 7 : — i s the trace operator. The inverse problem is to 

solve q{x) from the operator equation 

二 勺 = 少 (3.2) 

in some sense. It is easy to see that S is linear with respect to but nonlinear 

with respect to q{x). The RLM first approximate the equation by a linear one, 

that is to solve 6q for some initial value q, 

VM{q, u')6q = m-M[q, u'), (3.3) 

where VM is the Frechet derivative of M with respect to q. Then q = q Sq 

is an approximate solution. The viability of the method depends on the follow-

ing issues: Frechet differentiability of S, the choice of initial values and stable, 

efficient solver for the linearized equation. 

3.1.1 Frechet differentiability 

To verify the Frechet differentiability, [BL] employed the first order perturbation 

method. Here, we directly derive from definition and variational formulation, 

which unifies our analysis. 

According to the definition, for q € G L ? ⑴ )， • ) : x 

L^(r^) — is the solution operator to 

(•u�Vv) — + q)u\ v) - ik(y, v) = e(qu\ v), W e (fi), (3.4) 
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i.e. = For, Sq G …)’ let VS{q,u%) : — H\n) be the 

solution operator to 

{Vdu, •…一 A ;2 ( ( i + q)Su, v) -ik(Su, v) = v), \fv e H^…)，（3.5) 

i.e. Su 二 T>S[q,u”dq. We prove that VS is the Prechet derivative of S with 

respect to q{x). Before that, it is easy to see that Su is the solution of the 

following equation 

A6u(x) + /c2(i + q{x))6u{x) = -k^6q(x){u\x) + u'{x)), in (3.6) 

dnSu — ikSu = 0， on dQ. (3.7) 

Lemma 3.1.1 The operator VS defined in (3.2) is the Frechet derivative of the 

operator S defined in (3.1) with respect to q. 

Proof: For any q,q ^ 6q = q — q, we have the corresponding equation 

( V w � V v ) 一 A;2((1 + q)u\ v) — ik(u', v) = k^{qu\ v), W e 

(Vu', Vv) - k'((l + q)u', v) - ik(u', v) = k\qu\ v)，Vv e 

and it follows from (3.2) that = VS{q, u^)6q satisfies 

{VSu, Vv) - + q)6u, v) - ik{Su, v) = e(Sq(u' + v), W € H^Q) 

Denote w = S{q, u^) — VS(q, then from the above three equations, 

we have 

{Vw, Vv) - /c2((l + q)w, v) — ik{w, v) = k'^{6q{u' - v), Vv G H^ (Q). 

By lemma 2.2.1 and corollary 2.2.2’ we have 

w HHQ) < 丨知丨 Iloo� ll^^s - W^l 丨"1 � 
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where c is a generic constant depends on k,Q and This finishes the 

proof. • 

As a result, for the measurement map M , by the linearity of 7, we have 

VM = iVS. (3.8) 

Thus the differentiability of M is confirmed. 

Remark 3.1.1 Since operator M and S are linear with respect to u\ in the 

following, the dependence on v} in operator T>A4 and VS is omitted. 

3.1.2 Initial guess 

For a qualified initial value, the RLM resorts to the so-called Born approximation. 

Assume the wave number k is small, then the proof of lemma 2.2.1 tells that the 

scattered field û  is weak in the sense of H^ norm. Henceforth, (2.13) becomes 

essentially linear. The Born approximation drops the nonlinear term from (2.13) 

and solves u% instead, which satisfies 

Au%{x) + k\%{x) = - ^ q i x y i x ) , in (3.9) 

dnU% — iku% = 0, on dQ. (3.10) 

To derive the Born approximation qb for q{x), we take u^ as an approximation 

of u%. Multiply the equation (3.9) by = e 认工for any de D and do integration 

by part, 

[Au'u' + [ k'^u'u' = - [ Pqsu'u' 
Jq Jn Jn 

[Au'u' + I + I u'dnu' - u'dnu' = — I k'^qeu'v} 
Jn Jn J do. Jn 

/ QbU^u' = yr / {dnu' _ iku')u\ 
Jn ^ JdQ. 

Due to the special form of incident waves, the last equation Aqb = / is a Fourier 

transform (or Fourier-Laplace transform for evanescent wave) that can be effi-

ciently solved by FFT. 
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The usage of Born approximation in scattering problems has a long history, 

and there are numerous literatures on this subject, especially for scattering prob-

lem in E^. Let be the fundamental solution to the Helmhotz equation 

= 
\Ho{k\x\), N = 2� 

oik\x\ 

47r|x| 
iV = 3. 

Then the total field u satisfies the Lipperman-Shwinger integral equation 

u{x) = u\x) - k] - y)u{y)dy. 
Jr^ . 

By neglecting u® in the integral, the Born approximation is given by 

UB{X) = u'{x) -K^ Q{Y)^{X — y)u\y)dy. 

Prom equations (3.7), (3.8), we can derive([K]) that for {kr)^\\q\\oo < 1, 

U - U b oo < 
{h 

2 
|2 
loo. 

(3.11) 

(3.12) 

(3.13) 

Moreover, some numerical studies (e.g. [CS]) indicate that the Born approxima-

tion is valid if 
kr sup < 27rc, (3.14) 

_ ’ r ) 

where c is a small constant. This observation was partially verified in a recent 

paper [N] by F. Natterer. Following the notations in [N], if 

(3.15) M = '^n^k sup |(7(x)| < 
B{0,r) 

then 

u�— u. < M 
- M 

7„r/c sup 丨咖 
華 ’ r) 

(3.16) 

where is an important constant. 

For the approximation qb, define q2k via the finite frequency Fourier transform 

hkiO 
2
 

<
1
 

V
M
/
 

0, otherwise; 
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then for q{x) < 1, 

Wqb -胁丨loo < (3.17) 

The above results tells that Born approximation is suitable for small pertur-

bations and downgrades very fast as the wave number k increases. For more 

backgrounds, analysis and applications about the Born approximation, please re-

fer to 丨N], [Mil, [RSI etc. 

To make use of the Born approximation, the RLM starts from small wave 

numbers and gradually pass the initial value to larger wave numbers. That is 

a continuation method along the wave number direction. Employing this extra 

continuation direction settles the initial value together with stability. Actually, 

this is the fundamental idea in RLM. 

3.1.3 Landweber iteration 

There are many candidates for the linear solver. In RLM, the author used the 

(projected) Landweber iteration. Although it is notorious for slow convergence 

and other defects, however, as an iterative method, the Landweber iteration is 

easy to implement and can reduce some computational costs. Moreover, the 

relaxation parameter can reduce the instability as well. Numerical tests also 

verified the efficiency and robustness of this method. By selecting a relaxation 

parameter, the method takes the following iteration step 

Qn = Qn-i - -少)，for n = 1,2, . . . (3.18) 

Here, M(q) 二 (M(g’ i^),. •.) stands for the vector corresponding to incident 

waves. In fact, we need multiple measurements corresponding to incident direc-

tions di,i = 1, 2,. •. , N for fixed wave number k in view of the uniqueness result. 

Meanwhile, the continuation requires many measurements corresponding to an 
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increasing sequence of k. Direct discretization will lead to a very large linear sys-

tem. Therefore, the method employs a projected Landweber method that breaks 

down the large problem into small pieces. Especially for scattering problems, the 

method solves only one direct problem for a single incident wave in each iterative 

step. Specifically, it involves two cycles. For fixed k, the inner cycle moves from 

one incident direction to another, that is 

q(d, k) = q{d, k) - TVM{q(d, k)y(M{q{d, k), - ^{d, k)). (3.19) 

And when the inner cycle finishes, for some fixed direction d, the outer cycle 

moves to another wave number 

q{d, k) 二 k) — TVM{q{d, k)y{M{q{d, k), -免(d, k)). (3.20) 

Here (d, k) is corresponding to incident waves u^ = ê左工义 

Now, for the efficient evaluation of the adjoint operator T>M*, an adjoint 

equation can be introduced. Given a reconstruction q and corresponding w® = 

the above procedure is to find a q = q-\-6q such that M(q, u^) = ^(d, k). 

Let Sû  = then it satisfies (3.6) 

ASu'{x) + + qix))6u'{x) = -eSq(x){u\x) + u'{x)), in ^7,(3.21) 

dnSu' - ik6u' = 0, on dn, (3.22) 

and dq = TVM*iq)Su\ Now introduce an adjoint equation 

ASw{x) + + q{x))Sw(x) = 0, in (3.23) 

dnSw - ikSw = Su\ on (3.24) 

Multiply equation (3.15) by w and integrate over Q, we then derive 

f Mu'w + + q)Su'w = - [ + 
Jn Jn 

[dSu'w - Su'dfw = - f kHq(ui + 
Jdn Jq 
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/ Su'5u' = / k^6q{u' + u')w. 
JdQ Jq 

Considering Su^ = VM.{q)Sq on dft, we have 

I VM{q)6qIu'= I k^Sq{u' + 
Jdn JQ 

/ SqVM*(q)Su' = / k'Sq{u' + u')w. 
JQ. JQ. 

Since it should hold for any 5q G VM*(q)5u^ = + Therefore, 

6q can be evaluated by solving the adjoint equation. And in each iteration step, 

the RLM requires to solve a direct problem together with an adjoint problem. 

The adjoint equation for other situations can be derived similarly. 

3.1.4 Numerical Results 

At last, we give an example to demonstrate the numerical success. Here, we 

aim to recover Medium 1 which will be specified in section 3.3. For the wave 

number, we take k = 1,2,3,4,5,6,7. And for each wave number, 16 equally 

spaced incident directions are employed. More details on the implementation 

will be specified in section 3.3. The following figures show the evolution of the 

reconstruction. As expected, small wave number reconstruction displays fewer 

details of the medium. When the wave number increases, the reconstruction 

becomes significantly better. The last figure and table displays the relative error 

of the reconstruction. It deserves to notice that the error decreases slowly at small 

k. Actually, similar situations were observed in many numerical experiments (e.g. 

BL]). Moreover, the authors observed that the convergence is not sensitive to 

the step size of wave number. 
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Figure 3.1: Reconstruction of 仍 at k = 

Figure 3.2: Reconstruction of 仍 at k 二 3 
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••rr-tirl-iff-i-.i-f?--

Figure 3.3: Reconstruction of at k = 5 
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Figure 3.4: Reconstruction of at k = 7 
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90 100 110 

wave number relative error 

1 0.9272 

2 0.8757 

3 0.7784 

4 0.6143 

5 0.4101 

6 0.2497 

7 0.1471 

Figure 3.5: Relative error of qi 

3.2 Steepest Decent Analysis 

Although theories are incomplete, the RLM has demonstrated tremendous suc-

cessful numerical results. The major disadvantage, as can be seen, is the data 

redundancy. Besides the continuation of incident directions, the extra continua-

tion needs more data(sometimes than necessary). As a result, more measurements 

need to be taken in real applications, and more computational costs are required 

for the extra data. 

In view of the uniqueness result in Chapter 2, at least for smooth medium, 

incident waves from all directions at fixed wave number k can uniquely determine 

the medium. However, the RLM requires to start from small wave numbers. This 
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discrepancy between theory and method clearly implies great room for improve-

ments. In this section, we will reexamine the RLM from an optimization view 

point and derive some theoretical results. It is surprising that careful choices for 

the parameter r will achieve robust convergence with much less data. Actually, 

fixed wave number is enough, and such numerical method matches the theory 

well. 

Remark 3.2.1 In [BL], the authors considered the fixed wave number case. How-

ever, they employed the special incident wave described in section 2.1.2. The 

spacial frequency is used as continuation direction. 

3.2.1 Single Wave Case 

We first consider one incident wave case. For some incident wave =^ikx d̂  

following notations in section 3.1, we need to solve q from 

M(q,u” =屯. (3.25) 

Then, the linearization procedure together with a Landweber iteration takes the 

following step 

Qn+i = Qn - rVM*(qn)7Z(qn), for n = 0 ,1 ,2 , . . . (3.26) 

where 7Z(qn} = M(qn,u') - ^ is the residue, r > 0. 

Now, it deserves to notice that the above iteration step can be identified as a 

steepest decent method applied to the functional 

= - nly^^any (3.27) 

with constant step size r, as the lemma 4.2.12 modified from [Kl states. 
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Lemma 3.2.1 Let {gvj be defined by (3.26), and J is Frechet differentiable such 

that 

J'(q)Sq = ^(VM(q)Sq, M{q, - (3.28) 

where 况 stands for the real part. Then, the linear functional J'[q) can he identi-

fied with VM[qy[M[q)-少）over the field R. Therefore, iteration (3.26) is the 

steepest decent step with step size r. 

With this observation, amplitude optimization methodologies about the steep-

est decent method can be employed to analyze our problem. Particularly, the 

convergence and step size analysis are relatively easy to carry out, by comparing 

some results for the steepest decent method in finite dimension spaces [Be . 

Theorem 3.2.1 Let {qn} be the sequence generated by (3.26), and T > 0 be the 

Lipschitz constant for J' = VM*Tl, i.e. 

J\x)-J'{y)\\<V\\x-y\l Vx,?/, 

and that there exists a scalar e such that 

2 - e 
0 < e < r < . _ r 

Then every limit point q of {qn} is a critical point of J, which means 

J'{q) = 0. 

(3.29) 

(3.30) 

(3.31) 

Proof: For n 二 0,1, 2 ’ . . . ’ let qn+i = 如 - i . e . 丄 几 = V M * { q n ) n { q r 

Then by the following equality, 

J{qn - rdn) — J{qn) 

=-T况(DM*(qnyJZOh),dn� 

+ [况�p^r�7^�-vM*{qn - 礼 - td丄 d^冲 
Jo 

< -T\\dn\\^ + / trWdnW^dt 
Jo 
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By the assumption, — 1 + 去tT < — |e，therefore, 

J{qn) - J{qn+l) > 2 

For any limit point q of {如}, the above inequality implies = 0. This is 

just 

J\q) = 0. 

The above theorem 3.2.1 asserts that every limit point of the generated se-

quence is a critical point. Meanwhile, it prescribes the condition on the parameter 

T in order to guarantee the validity from the viewpoint of steepest decent method. 

Due to the nonlinear nature, the general convergent result is difficult to get. Next, 

we derive some qualitative analysis towards this direction. 

Since the measurement 屯 is generated by some medium, in the noise free case, 

we can assume there exists a q* such that M{q*, v})=少.Then, 

Qn+x 一 Q 

二 Ikn -q*- u” — w�||loo� 

< Ikn -q*- rVM*{qn)VM{qn){qn — g* )||Loc⑶ + T\\VM*\\0{\\qn — 

To guarantee convergence, first we need to choose r such that x = ||I -

TVM*VM\\ < 1. a thorough estimate of the spectral property of the operator 

VM, especially the dependency on k and (?„，is a must. It is clear that previous 

regularity analysis in section 2.2.1 are not enough but indicate 丁 should be small 

compared to /ĉ ||l + ^nll- Next, the initial guess should be reasonably well, other-

wise the nonlinear growth will dominate. Fortunately, the factor r will relax the 

convergent radius. 
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3.2.2 Multiple Wave Case 

For multiple incident waves, the analysis in section 3.2.1 works for the functional 

J{q) = -屯爪||^/2(如) (3.32) 

However, the recursive step needs more analysis, especially for the operator VM. 

By VM = 7P<S, we turn to analyze VS. The outer loop concerns continuation 

along the wave number k, while the inner loop is along the incident direction 

d. Therefore, we denote VS{q, u^) by VS[q, k, d) to emphasize explicitly the 

dependency. 

First, for the inner loop we have 

Lemma 3.2.2 For fixed k and d, d 

\VS(q, k, d)-VS[q,k,d)\\ < c\\d - d (3.33) 

where the constant c depends on q, k and Q. 

Proof: For any Sq G L�(Q), let u = VS[q,k,d)6q and w = VS{q,kJ)6q, we 

have 

(Vn, Wv) 一 A;2((1 + q)u, v) - ik{u, v) = k\6q{u' + W G 

(Vw, Vv) - /c2((l + q)w, v) — ik(w, v) = + v), W G if 丄�)， 

where itf, w^ correspond to d) respectively. Then we get 

(V(n —— w), Vv) — + q){u- w), v) — ik{u — w, v) 

= /c2((5Wwi-iii + wS-u;S)，^;)， Vv€ ffi(Q) 

According to lemma 2.2.1, we have the estimate 

u — w u � - ur 

< (Ik - 釣 ⑴ + \\u' - ⑶川<̂ �ĝ||z/x>(n) 
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The symbol < means if x < y then x < cy for some constant c. Then corollary 

2.2.1 gives 

u � - w^ //1(Q) < C 

Besides, a direct calculation tells that 

u- -

u - W L2(f2) = / 认td — e认 

JQ 

= / (cos(/cx . d) — cos{kx . d))'^ + (sin(A:x . d) — sm(kx . d))^dx 
Jn 

< [2e\x • {d - d)\^dx • 
Jn 

< d-d'' 

where the last norm is the Euclidean norm, and we used | cos a — cos b\ < \a — b 

Then combining the above estimates gives 

u — w\ //I ⑴） < 

< 

This finishes the proof. • 

Next, the outer loop has a similar result but involves more work, since the 

underlying equation changes according to k. 

Lemma 3.2.3 For fixed d and k, k 

VS{q, ~k, d) - VS(q, A;, d)\\ < c\k - /c| (3.34) 

where the constant c depends on q, k, k and 

Proof: For any Sq e L°°(Q)’ let u = VS{q,k,d)Sq and w = VS(q,~k,d)Sq, we 

have 

(Vw, S/v) — A;2((1 + q)u, v) - ik{u, v) = k\Sq(u' + v), \/v € H^Q), 

{Vw, Vv) - P ( ( l + q)w, v) - ik(w, v) = P(Sq(u' + v), Vv G 
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where w�w^ correspond to d), d) respectively. 

Subtracting these two equations, we have 

(V(u - w), Vv) - + q){u — w), v) - ik{{u — w), v) 

=-(k^ P)((l + q)w, v) - i(k - k)(w, v) 

Prom the proof of lemma 2.2.1, we have 

\u — wWH^^Q) < —石2|||1 + g||L~(n)lkl|//i(n) + I"” _ 补HI//1 ⑴） 

+|A:2 — + ||A;V - Pu^li付1 �II圳I尤巧⑴ 

Now, estimates on w, w®, w^ together with lemma 2.2.1, corollary 2.2.1 give 

u-wl\ffi(n) < \k-k\\\dq\\L >⑴）: 

which proves the lemma. • 

With above preparations, we turn to analyze the recursive linearization step. 

For any inner loop, the step is 

q TVM\q, k, d)(M(q, k, d) - ^(k, d)) 

=q + TVM*(q, /c, d)VM{q, k, d){q - q*) + 0{\\q - q 

and then 

q - q 

<lk-<7*- rVM*{q, k, d)(M(q, k, d ) - 歸 , 川 � 

< Ik-7* + rVM*(q, k, d)VM(q, k, d)(q - 0||loo� + 0(\\q -

< \\I- rDM*(q, k, d)VM{q.kj)\\\\{q-q*)\\…� 

+CT\\d-d\\\\VM*(q, k,d)\\\\q - + 0(||<7 - q* 2� 
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The outer loop admits a similar estimate but changing \\d — d\\ to \k — k . 

Prom the above analysis we can see that the recursive linearization method is to 

minimize the functionals 

J{q) = —屯m||2片 i/2(如)’ (3.35) 

sequentially by a steepest decent method. It can be estimated (heuristically) that 

for fixed t, x 二 — TVM*{q, k, d)VM[q, k, c?)|| grows as k increases. There-

fore, low wave number k admits larger convergence radius.. As the approximation 

becomes better, the wave number can be increased safely. That is the mechanism 

and remarkable feature of the recursive linearization method. The strategy deli-

cately avoids difficulties arising from estimates on x. Despite more measurements 

data, the method has wide applicability and adaptability. 

However, when few data dominates, it should be rioted that the choice of r can 

simplify the procedure. First, the discrepancy term cT\k - k\\\VM*{q, k, d)\\ can 

be negligible if r is small, which admits larger steps in the wave number direction. 

This phenomena has been observed in many numerical experiments. Second, r 

can be selected such that x 二 ||2： — T:D_A/r((7，k, d)VM[q, k,d)\\ < 1. Henceforth, 

we can directly start from one larger wave number, or at most recover the Born 

approximation at some small wave number. Unfortunately, the explicit r relies on 

a thorough study of the operator S, VS, especially the explicit dependency on k. 

Although this may be quite difficult in general, the reliability and efficiency of the 

method are prescribed by such results, and meanwhile reveal the limitation of the 

method. Finally, as k increases, it is expected harder to reduce x. Consequently, 

the convergence will become slower. In next section, we will give several numerical 

experiments to verify our idea. 



Some Robust Optimization Methods for Inverse Probl ems 43 

3.3 Numerical Experiments and Discussions 

In this section, we will conduct several numerical experiments to verify the the-

oretical analysis. According to the proof of lemma 2.2.1 and the analysis in 

section 3.2.2, we set the parameter r heuristically by Regardless of the 

convergent speed, this choice guarantees convergence for all the following numer-

ical experiments. Although these improvements may arouse other difficulties, the 

numerical results are as accurate as the original recursive linearization method. 

And more importantly, we only need incident waves at one fixed wave number k. 

The computational region is taken to be = [ -1 ,1] x [0, 2]. All the scattering 

data are generated by a finite element solver(FEM) with step size h = 0.01. We 

use 16 incident directions that equally spaced in the unit circle. That is di = 

(cos(ai)’ sin(Q;i)), Qj 二 27ii/16，z = 0, 2, • • • , 15. And the data are measured on all 

boundary nodes. Actually, the incident waves are not so sufficient theoretically. 

However, they are enough for our experiments. For the implementation of the 

recovery, we used the finite element method with step size h 二 0.02 to solve the 

direct and adjoint equations. The relative error is computed by 

6n — 

where q* is the true scatterer and is the reconstruction at step n. To test the 

robustness, some relative random noise is added to the data, i. e. the measure-

ments takes the form 

少 = ( l + arand)ws|如. (3.37) 

Here rand is uniformly distributed numbers in [—1,1] and cr is a noise level pa-

rameter taken to be 0.05 in all numerical experiments. 

In the following, we will mainly consider recovering two media. 

Medium 1: Peaks 
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Let qi = g(3xi, 3(x2 — 1)), where 

= 0.3(1 — x,f expi-xl — {x2 + 1)2) - - X? - xl) exp{-{xl + xD) 

-—exp{-(xi-\-lf-xl) 30 

'：礙 

12 

1 

0.8 i 

0.6:; 

0.4 

aii 

•0.8 -06 -04 -0 2 0,6 0 8 

Figure 3.6: Plot of medium 

Medium 2: Two bumps 

Let q2 = exp(-30(x2 + (x2 一 1.5)2)) + exp(—30(:r? + (^2 - 0.5)2)). 

Figure 3.7: Plot of medium 2 



Figure 3.8: Reconstruction of at n = 16 
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It is worthy to notice that the above two media are smooth and not very 

large in the sense of L^ or f P norm. Therefore,如=0 is already a good initial 

value. In the numerical experiments, we even dropped the Born approximation 

procedure. The parameter r is chosen to be 1/A;̂  as stated before. 

For the first experiment, we use incident waves at A: = 10 to recover medium 

1. This example was tested in [BL] at /c = 10 with spacial frequency r] from 12 to 

0. By the choices of 丁 and qo, the convergence can be achieved without aids from 

spacial frequency. Fig 3.8, Fig 3.9, Fig 3.10 show the evolution of convergence. 

And Fig 3.11 illustrates the relative error. 
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Figure 3.9: Reconstruction of at n = 32 
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Figure 3.10: Reconstruction of 仍 at n 二 112 
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100 110 

iteration relative error 

1 • 0.9384 

8 0.7263 

16 0.5221 

32 0.1848 

64 0.0858 

112 0.0697 

Figure 3.11: Relative error of qi 

It can be seen that the reconstruction is nearly perfect. Moreover, comparing 

with the original RLM, we find that the convergence is much faster. As pointed 

before, in many numerical experiments of the RLM, the error stays unchanged or 

slightly decreases for small wave numbers. That could be interpreted as r is too 

small comparing with the wave number k. When k grows to match r, convergence 

becomes fast. By choosing a better r, we achieved the latter immediately. 

For the second experiment, we increased k to 20 for the recovering of medium 

2. In fact, smaller k such as 7 or 10 are fairly enough for such medium. By this 

experiments, we intend to test the robustness of our improvements. Fig 3.12， 

Fig 3.13, Fig 3.14, Fig 3.15’ displays the convergence status. Fig 3.16 shows the 

step error. The convergence is also achieved but with a much slower convergent 

speed. This can be interpreted as in section 3.2.2 - it is harder to decrease x as 
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k grows. The limitation of the steepest decent method will become cumbersome 

for even lager k, which inspires us to study other methods to overcome those 

difficulties, especially the convergent 

that a further study of the spectral 

meaningful. 

rate. Also, from these experiments, we feel 

property of operator S is quite useful and 

m _ _ _ _ 
•：：：二：: •-t^" -VXit：：-：：.：. •：.-：.>»?.'jJSSx̂  

Figure 3.12: Reconstruction at of n = 16 

Figure 3.13: Reconstruction at of n = 32 
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Figure 3.14: Reconstruction at of 仍 n = 64 

Figure 3.15: Reconstruction at of Oo n = 256 
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iteration relative error 

1 • 0.9538 

16 0.9167 

32 0.7644 

64 0.5660 

128 0.3620 

256 0.2714 

Figure 3.16: Relative error of q] 



Chapter 4 

Constrained Optimization: 

Augmented Lagrangian Method 

Continuing our efforts on reconstruction techniques for inverse medium scattering 

problems, we focus on higher order methods in this chapter. The purpose is two 

folded. First, the steepest decent analysis in the previous chapter can be regarded 

as a global method to raise good initial values. By combining with higher order 

methods, the convergent rate can be improved. Second, frequently, we will con-

sider media with a priori knowledge such as piecewise constant or discontinuity. 

The previous optimization model cannot reflect and make use of these informa-

tion which may contribute to computational robustness and efficiency. Therefore, 

new models that incorporate the medium features should be developed to treat 

these situations. 

4.1 Method Review 

In [IK] and [IKl], the authors carefully studied some robust optimization meth-

ods, especially the augmented Lagrangian-SQP-methods, in a Hilbert space set-

ting. In addition, they successfully applied the methods to parameter identifi-

51 
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cation problems in elliptic systems and optimal control problems governed by 

partial differential equations. The major features of these methods are of second 

order convergence and better global behavior, which could benefit our problem. 

In this section, we briefly summarize their main results. 

For the optimization problem: 

{V) min F(x) subject to e{x) = 0’ （4.1) 

where F : X —> M, e : X —> y , with X, Y Hilbert spaces. The Lagrangian 

associated with {V) is defined to be £ : X x "K R, 

/:(x,A) = F(x) + (A,e(x))y, (4.2) 

where {•, •>y denotes the inner product in Y. Here and after, we do not distinguish 

functional and its Riesz representation since all we consider are Hilbert spaces. 

An element X* eY is called a Lagrangian multiplier if 

A) = F'{x) + e'{xyX* = 0. (4.3) 

Here F' denotes the Frechet derivative and e'(x)* denotes the adjoint of e'{x) in 

Hilbert space Y. We need several hypothesis on these functionals. 

(HI) {V) has at least a local solution x*. F{x) and e{x) are twice continuously 

Frechet differentiable, and their second Frechet derivatives are Lipschitz 

continuous in some neighborhood V(x*) of x*; 

(H2) e'{x*) is surjective; 

(H3) There exists K, > 0 such that C"{x\ A*)(", h) > \fh G Kere'(x*). 

The augmented Lagrangian method for constrained optimization problem was 

developed from the penalty method and the Lagrangian method. As is well 
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known, the penalty method suffers from ill-conditioning and slow convergence 

when the penalty parameter becomes large, while the original Lagrangian method 

cannot enforce convergence when far from a solution. The augmented Lagrangian 

methods moderates both disadvantages and is defined by 

X) = A) + -\e{x)\l, Vc > 0. (4.4) 

Under hypothesis (HI) - (H3), there exists a neighborhood V{x*) C and 

constants c > 0, cr > 0 such that • 

Cc(x, A*) > Cc {x\ A*) + a\x - for all x G V(x*) and c > d (4.5) 

Therefore, Cc is bounded below by a quadratic function. This fact is referred to 

as augmentability of Cc ([IK]). 

Introduce 
C"{x,X) e'{x] 

e'(x) 0 / 
M(x,A)= 

we now give the main algorithm and convergence results 

Algorithm 1 

(i) Choose (XQ, AQ) G X X y, C > 0 and set n = 0; 

(a) Set A = A„ + ce{xn)； 

(Hi) Solve for (x, A); 

M(Xn,A) 
卜 — \ 

= — 
丨 作 n � ) � 

I “ J / 
(4.6) 

fivj Set (XN+i, An+i) = (x, A), n = n + 1 and goto (ii). 



J[u\q) = 

subject to (2.13), (2.14), 
� 

where 

• X = and Z = ⑶ ； 

• z G X is the observation data; 

• û  e is the scattered field; 

• 7 : is the trace operator; 

Some Robust Optimization Methods for Inverse Probl ems 54 

Theorem 4.1.1 Let {H1),{H2) and ( M ) hold, if \{xo, Xo) - X*)\XXY is suf-

ficiently small, then Algorithm 1 is well defined and satisfies 

(Xn+i, A„+i ) - {x*,X*)\xxY < K\{Xn,Xn)-(工*,入*)丨^Y， 

for some K depending on c, and n = 0，1, • •.. 

Remark 4.1.1 This algorithm is the original SQP method. It can be combined 

with other methods to enlarge the convergent radius as analyzed in [Be] for finite 

dimensional cases. In [IK], the authors also provided alternatives - second order 

update of the multiplier. 

4.2 Problem Formulation 

With previous preparations in section 4.1，we formulate the inverse medium scat-

tering problem into an optimization problem. Besides Tikhonov regularization to 

counteract the ill-posedness, we choose a mixed method that combines the out-

put least-squares method and the equation error method as introduced in [IK 

Specifically, the method is to minimize. 

2
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• (3 is the regularization parameter; 

• N : Z is the regularization operator. Here N = Id. 

This formulation has several advantages. First the output least-squares term 

easily incorporates information at hand, with little modification according to 

various wave numbers and incident directions. This is especially convenient since 

medium properties would affect the sufficient number of incident fields. Second, 

the regularization term can easily reflect certain a priori knowledge about the 

medium q[x). The above full-norm regularization operator N works for smooth 

media, while BY or TV regularization would be suitable for piecewise constant 

medium or discontinuous medium. 

There is one remark about the choice of function space for q. We know that 

f P can be embedded into and this fact will benefit our analysis for the bi-

linear term. Although such high regularity may cause computational difficulties, 

it is reasonable in view of the uniqueness result in section 2.2.2. 

In order to represent the PDE constraint (2.13), (2.14) into an operator equa-

tion, we first define an operator e{-

formulation: 

H\RT) X ⑴ ） — b y weak 

q), � ) ’ / / i (n) = (Vws，V(/>) — + g)7/，0) 

, (f)) 一 e{qu\ 0), G H\n) 

and N : H - \ Q ) — hy u = M f , 

( • a ; , V 0 ) + (a;, 0 ) = (/’ ⑶，仰，V(/> G (4.7) 

It is easily seen that M is the solution operator to (2.38), (2.39). Then let 

e(.’ .）: X H^Q) — to be e = Afe, we get the constraint e = 0 
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To summarize, the optimization problem for later analysis is 

56 

mmj{u',q) = - 2||2 , + ^\\Nq 

subject to q) = 0 

4.3 First Order Optimality Condition 

Because the Hilbert norm is Frechet differentiable and 7 is continuous, it can be 

concluded that q) is twice continuously Frechet differentiable. Specifically, 

for some u^ G and q € we have 

=况 (77/ — \J8uS G H\Q), (4.8) 

and 

q)8q - (q, Sq), VSq e (4.9) 

Moreover, for the second order derivative, we have Ju�q{uS, q) = 0, and 

= (4.10) 

Jq,g{u',q)(Sq,Sq) = ||(5g||//2(n). (4.11) 

The following lemma asserts the Frechet differentiability of e. 

Lemma 4.3.1 The operator e : H\n) x — H\n) is Frechet differen-

tiable with respect to (w®, q). 

Proof: Prom the definition of J\f and lemma 2.2.2’ AA is a bounded linear oper-

ator. Next, for if G being the solution of u^ = S{q,u'), q e //^(il), let 

e'{u',q){-r) ： H\Q) x H^Q) H-'(n) be such that 

Sq), 0)"-i(n)’//i(n) 



s 〇 m e  R o b u s t  O f > t i m i z a t i o n  M e t h o d s  f o r  I n v e r s e  P r o b l e m s  

( v $ “ ， V 0 )  I  i k 〈 s u \  乡  I  A : 2 ( ( 1  +  3  I
 A ; 2 ( 乏 ( u a  +  m  i Z 一 3 ) .  

T h e r e & r e ,  
= s u p >  

t o  

分 H 一  n  

^  C 云 +  A ; 。 i m i l 8 ( S 云 S 1 I / / H 3  +  々 。 云 9 = L 8 § I 一 ？ /  = / / l ( s  

+ 斤 》 = < M I / / - § I K I k 8 ( n ) ，  

w h e r e  C *  i s  g e n e r i c  c o n s t ^ a n t  N o w ,  b y  t ; h e  e m b e d d i n g  o 叫  i n t ; o  L 8 ( Q ) -  i  

h a v e  
l l g 、 ( 5 g ) ( K _ / / — l §  

^  0 ( 9 , 圣 一 〜 一 I / / 舌 ) + 斤 。 1 1  玄 一 一 二 L 8 §  

^  C ( 云 ？ /  =  / / l §  +  I I < m i / / 2 § ) ，  

w h e r e  C  d e p > e n d s  o n  a n d  p .  H e n c e  如 、 ( u ® , g )  i s  a  b o u n d e d  o p > e r a t ; o r .  I t ,  

i s  e v i d e n t  t h a t  ⑷ 、 ( 气 , g )  i s  l i n e a r .  

P r o m  d i r e c t ;  c a l c u l a t i o n ,  

賽  +  g  +  < 5 g )  —  < 7 )  V )  "  ( g 、 ( l / ,  g ) ( ^ 5 〜 ， s q ) ， 3  I  k ; 童 6 5  3 .  
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i  
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w h e r e  C 〉 0  i s  t ^ h e  e m b e d d i n g  c o n s t a n t :  f r o m  H \ Q . )  ̂o  L 8  3 ) .  T h u s , ⑷ 、 i s  t ; h e  

p r a c h e t  d e r i v a t i v e  o f  如 . B y  t h i e  c h a i n  r u l e ,  w e  f i n d  e 、 =  N 叱
 i s  t l i e  F r e e h 聚  d e r i v a -

t i v e  f o r  e .  T h e  s e c o n d  d e r i v a t i v e  c a n  b e  p r o v e d  s i m i l a r l y .  •  
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For the later use, we calculate the representation for e^.(w�q)(-) and q){-) 

as follows 

…s, q)du', (j)) = (WtZ, V0) - + cj)) - ik{6u', 0〉， M&u" G H\Q) 

( 召 q ) S q , (t>) = -k\6q{u' + 0), ^Sq G 

And also, we have 各“》，„«("、q) = 0 , 巨 , q) = 0 and 

(4.12) 

In addition, we can characterize the kernel of e'^®, gO(-，•). For Sq) eKer 

e'(ws’g), we have ,q){5u\5q) = 0. Hence force (dV, Sq) satisfies 

ASu' + + q)SuS = - e S q ( u ' + u” , in Q 

dnSu^ 一 ik6u' = 0, on dQ. 

(4.13) 

(4.14) 

In order to verify (HI), we need 

Lemma 4.3.2 (Vp) admits a local solution for p > 0. 

Proof: Let (w納’ g") be a minimizing sequence such that < 

and e(u''\q') = OJ= 1,2, Therefore, 

引 丨 7 … “ ― 如 ) + 丨 丨 ⑶ 

引 … 如 ） + ||力 |2付2⑶ 

< 00. 

is bounded. Considering = 0 and lemma 2.2.1’ � < 

c||g'"||//2(Q), where the constant c only depends on k and Hence 

is bounded. Now, from the Eberlein-Smuljan theorem, there exists a weakly con-

vergent subsequence with weak limit (w®,办 Still denote the subsequence by 
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(w®'", q^). Since 3 is weakly lower semi-continuous, we have 

J[u\q) < liminf J V ’ " , 八 (4.15) 

n—oo 

Since e(?/，"，(t) — 0, we know that q) = 0. Therefore (u^, q) is 

a solution to (Vp), and (HI) is verified. • 

Towards (H2), first notice that q) is surjective already implies (H2). 

According to the definition, we know that J\f is surjective. Moreover, for any 

f G such that e � ( w � q)Su^ = /，we know it satisfies the following equation 

ASu' ^ + q)6u' = - / , in Q, 

dnSu^ - ikSuS = 0， on dQ. 

By lemma 2.2.2, q) is surjective, thus ê s = Afcu^ is surjective. (H2) is 

verified. 

With (H2) holding, there exists a Lagrange multiplier A* G such that 

the first order optimality condition is satisfied, i.e. 

In our case, =去！卜“-2：||“2(如）+ fll^^ … … + (A, e ( w � g ) ) " !仰. 

By direct calculation, we find 

0 = Cq(uS,q,X)5q 

=飛(Nq, N6q) — Sq{u' + u')), \/Sq G H^Q) 

and 

0 == 
= 况 - 7如。+ (VA, VSu') - ik{A,Su') — (1 + g)Su'), VSu' 6 H\Q) 
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Prom the above characterization, we can derive the equation A satisfies. From 

lemma 2.2.1, we observe that 

� ) < c||7*(7w' - � ) < c||7||||7w' - 2||"i/2(如)• 

4.4 Second Order Optimality Condition 

To verify (H3), we need the following lemma modified from [CK'. 

Lemma 4.4.1 Suppose {Vp) has a solution (uj, qp) E U^ x Qp, which is the 

solution set for /? > 0. And (VQ) admits a solution (w®, q) ^ U x Q Then we have 

� s u p 卯 e g 。 如 � < infqeQ ⑶，. 

� s u p 棚 - 2||“2(如)< infu^et/̂  丨丨，》-2||“2(如)，. 

问 sup„�ec/" - ^ - 如）+ "(infgeQ I I " … 仰 _ 

sup 卯 eQ�|W 卯 ⑴)）. 

Proof: Since any (w^ g) e [/ x is a solution for (P), we have ||7w®-2;|| 
//1/2 刚 

< 

-州5/i/2(如)，for any (w ,̂ qp) e Up x Qp. Thus (ii) is proved. By adding 

P\WQ0\\H2(Q) to both sides, 

IIt̂ s - 如)+ " I IA^如⑶ 

^ I 卜 的 — 丨 如 ) 如 ⑶ 

^ I 卜 " - 一 |2//i/2(如)+洲 A^…|2"2⑶. 

Therefore, WNq̂ Ŵ  < (i) is proved. Besides, we have 

sup 一 + /^sup || iVg�“Q) < inf||7u^ — 2；||“2(如）+/3inf … | “ � : 

sup 117̂ 4 - < - 2：||“2(如）+ - sup � )） 

(iii) is proved. • 
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Now it is easy to see that 
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=I l7 紐 1 
2 

= 7 紀 2 

= 
2 
//l/2(如) 

> 2 

> 2 
//l/2(如) 

Since {Su'.Sq) GKer 如)，by (4.13), (4.10) and lemma 2.2.1, \\5u'\\ < c\\Sq\\. 

Let c be a generic constant, we have 

£〃(u、如,A)(紀,(5 …2 

> Ihr如 � + - c/c'll7ll(ll7w' - 2 

[inf 
qeQ 

+ / ? ( 恕 P 州 I “ � - s u p II"如丨丨�))1/2|H|2們⑴. 
9/3 eQ^ 

Assume that 

’ s - 州 / / I , ) < ) - 恶 I I � I | 2 / / 2 ⑶ - ^ s u p 如||“Ĵ ))) 

we arrive at 

^ 1 卜 < ^ " 1 | 2 / / 1 / 2 ( 如 ) 書 ( I I 圳&2 ⑶ + 

Here we used < c. This verifies (H3). We summarize the result in 

next lemma. 

Lemma 4.4.2 Assume (n^, q^) is a solution to (Vp) and that 

P 
7 

风 ! ? P � I | 2 " 2 � - s u p (4.16) 
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Then we have 

C ! ' i y p q A ( 8 u � 5 q f > c f ( 丨 丨 + 11 紀丨丨�)） (4.17) 

for all {Su^, 5q) € Ker q^). 

Actually, the assumption is a little stringent. However, without satisfactory 

regularity results about (2.13), (2.14), we have to employ full-norm regularization. 

Otherwise, we can gain something from 付"2⑴）and relax the assumption 

IK]. But in view of the uniqueness result in section 2.2.2, the H^ regularity as in 

is reasonable. 

4.5 Modified Algorithm 

For the inverse medium scattering problem, we usually need multi-incoming 

waves to guarantee uniqueness of the medium. Suppose we have M incident 

waves coming with different directions d e D and various wave number k > 0. 

Let yf = u^j) be the corresponding scattered fields, and q)= 

(ei(ui, g), 62(^2, g), • • • be the corresponding PDE constraints. Now 

the optimization problem is 

m i n 冗 
M 

in 一 Zi //i/2(n) + f 

subject to q) = 0 

Of course, previous analysis works for this vector-valued case. However, as M 

becomes larger, the resulting discretized linear system becomes increasingly diffi-

cult to store and solve in computer. As in Chapter 3，we now propose a modified 

algorithm that breaks down the vector-valued problem to pieces of scalar ones. 

In each iteration, we only need to solve one optimization problem corresponding 

to one incident field. That is 

m i l l 糾 - � ) + f 州 � 

subject to e i (w�q) = 0 

i n , 
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Algorithm 2 (Modified Algorithm) 

(i) Choose (w幼，gO) = ( u f , u f , … ， i ^ � ’ …，c > 0 and set n = 0, 

(n) Set X = Xn + ( f ) = (A, + 

(Hi) Set qS = q � .. 

(iv) For 1 = 1: M, solve for {uf, q, Aj); 

uf - < ’ 

Q-Q? 

Ai — A, 

(4.18) 

Set <’"+i = uf, gf+i = q and 入广丄= 

(V) Set = qlj, n = n + 1 and goto (ii). 

For the convergence analysis of the modified algorithm, we need the following 

lemma [IK . 

Lemma 4.5.1 Let ( if2), {H3) hold for some (x*,A*) G X x Y(both Hilbert 

spaces), then there exists a constant k, > 0 and a neighborhood U[x*, A*) such 

that 

||M-i(a:，A川 < V(x,A) G U{x\X*}. (4.19) 

There exists a constant K > 0 such that the solution to 

satisfies 

M(x, A) 
( . \ X — X ( L 

(4.20) 
\ e � y 

(4.20) 

(x, A) — (x*, A Xy^Y < K \{xA) (4.21) 
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Now we have a corresponding lemma. 

Lemma 4.5.2 Let {u, q. A) = (wi, U2, • • • , um, Ai, ^2，...，入Af) some neigh-

borhood U{u*, q*, A*) of {u*, q*, A*). Through Step (iv) of the modified algorithm, 
A ~ 

it becomes (u, q, A). Then there exists a constant K > 0 such that 

11(^,9, A) - < K\\{u,q,X) — OAg*，^ 

where K depends on Ki and U. 

(4.22) 

Proof: It can be deduced from {HI), {H2) and (i/3) of {V^) that (w*, q*) satisfies 

(H2), {H3) for (Vp^i). From lemma 4.5.1, we have constants Ki > 0 such that 

(4.23) 

where qi denote the intermediate variable in Step (iv) of the modified algorithm 

with qo = q and QM = q, i = 1,2, • - • , M. Therefore, 

A) - (w*,g*，入* 

M-l 

+ ||(wm,(?m,Am) - {ulj,q\Xlj)\\' = ^ IK化,Ai) - A 
i=l 

M-l 

M-l 

+ 2i^Mll9M-i - + 2KIj\\{um, AM) - K / , A 
i=l 

M - 2 

M-2 

M-2 

.,AM-1) - { u M-1, ^M-li ^ + 9A/-1 

- « r . 入]If) 4 

.,9M-1,‘‘ �M-1 ) - K/-i，g* ,入1/-1)1 2 

- ^M) 
4 

{um-U AM-l)-—W/-1，; �*M —1) |4 
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- + 2KIJ\\{UM, Am) — W^，A；^川4 + KIJWQM-I — q 

M M-] 

< E 入0 - \*)l|4 + 一 ||4 + ^ Ktu - q 
1=1 i=l 

Let K == maxi we have 
Af-l 

- (w*，A A*)||2 < Kll(u,q,A) - + E " 

Denote the diameter of [/(u*, q*, A*) by diam(U), we have 

- {u\q\X*)\\/diam{U) < (4.24) 

Since \\qi-q*\\ < ||(uj, qi, Aj) — (u*, q*, A*)||, by the same procedure, we conclude 

that 

IK众’<̂ ’A) — 川 S 玄| | (以,… *，y , A *川2 , (4.25) 

where K depends on K and diam{U). This finishes the proof. • 

With the help of the above lemma, all analysis reduces to Algorithm 1. There-

fore, all convergent results hold for the modified algorithm. 

Theorem 4.5.1 Let (HI), (H2) and (H3) hold, i/||(7/’0,广 A。）- (u -̂*, g*, A*)| 

is sufficiently small, then Algorithm 2 (Modified Algorithm) is well-defined and 

satisfies 

s’"+i, f+1 , - (7/’*, q\ A*)|| < i^||(7/’"，— q\ A*)||2 (4.26) 

for some K depending on c, and n = 1 ,2 , . . . . 

Proof: Let fj be the largest radius for a ball centered at (?/，*, g*’ A*) and 

contained in , X*). Introduce 

V 1 � r] = min( 
\ / a ' Ka 

(4.27) 
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where a = max(2, l + and K is the constant in lemma 4.5.2’ F is the local 

Lipschitz constant of e. 

Assume that 

||0/’％。,A�)-(i^S’*,^A*)||<�. (4.28) 

We proceed by induction and the case n = 0 follows from the general arguments 

below. Suppose 
(4.29) 

then we have 

引丨(以s’n’,,An 

+ 2c2||e(i/’"，g") — + 2||A" — A*||2 

7/’*’ + 2c2r2||(ws’"，q̂ ) — (?/’*，g*川2 + 2||A" - A* ^ 

Therefore, lemma 4.5.2 is applicable, we get 

,n+l n+1 9"+i，A"+i)">s’*,g*,A* 川 

<r]. 

Let K = Ra, the theorem is proved. 

Comparing with the original algorithm, this theorem establishes the same 

order convergence result for the modified one. As pointed before, the modified 

algorithm solves a sub-problem (Vp) in each iteration, hence saves some compu-

tational resources. However, from the proof of lemma 4.5.2 and theorem 4.5.1’ we 
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know that the convergence radius is further shrunk and the constant K is larger 

than before, which requires a better initial value. At this point, it is advantageous 

to combine this second order method with the steepest decent method in Chapter 

3. 



Chapter 5 

Conclusions and Future Work 

We have mainly studied two optimization methods for the inverse medium scatter-

ing problem - the steepest decent method and the augmented Lagrangian method. 

Taking problem structures into account, these general methods are shown to be 

efficient and robust, both numerically and theoretically. Despite these advan-

tages, there still remains unsettled difficulties for further improvements. 

First of all, it is clear that our analysis heavily depends on the continuity 

property of the solution operator M , especially the explicit dependency on wave 

number k. In fact, this bound can greatly affect the choice of step size (3 in the 

steepest decent method as well as an alleviated assumption in the augmented 

Lagrangian method. Unfortunately, the proof in [BL] relies on the Predholm 

alternative thus cannot provide such an explicit estimate unless the wave number 

k is small (at least less than 1). 

Secondly, to overcome the ill-posedness, we employed the Tikhonov regular-

ization or Landweber iteration. These regularization methods are well developed 

for linear equations that are ill-posed in the Hadamard sense, i.e. (i) solution may 

not exist; (ii) solution may not be unique; (iii) solution may not be stable. For op-

erators, (iii) means that the inverse operator is unbounded. And the idea of above 

68 
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regularization methods is to approximate the inverse by bounded operators. Nev-

ertheless, as pointed out in [Chi], there exists another new type of ill-posedness 

for the Helmholtz problem - the shielding effect. The paper carefully discussed 

the obstacle scattering case to illustrate this effect. Roughly speaking, this ill-

posedness comes out as two obstacles can generate very similar eigen-systems 

of corresponding scattering operators. For the medium scattering problem, it is 

quite possible that this new ill-posedness still exits. The different mechanism 

calls for new techniques beyond the regime of Tikhonov regularization. On the 

other hand, for non-linear problems as we encountered, we should borrow many 

existing proper methods to improve our results further(e.g. [TLY]). 



Bibliography 

ABP] R. Aramini; M. Brignone; M. Piana, The linear sampling method without 

sampling. Inverse Problems 22 (2006), no. 6’ 2237-2254. 

Be] D. P. Bertsekas, Constrained optimization and Lagrange multiplier methods. 

Computer Science and Applied Mathematics. Academic Press, Inc., New 

York-London, 1982. 

BHL] G. Bao, S. M. Hou, P. J. Li, Inverse scattering by a continuation method 

with initial guesses from a direct imaging algorithm. J. Comput. Phys. 227 

(2007), no. 1’ 755-762. 

BL] G. Bao, P. J. Li, Inverse medium scattering for the Helmholtz equation at 

fixed frequency. Inverse Problems 21 (2005), no. 5, 1621-1641. 

:BL1] G. Bao, P. J. Li, Inverse medium scattering problems for electromagnetic 

waves. SIAM J. Appl. Math. 65 (2005), no. 6, 2049-2066. 

BL2] G. Bao, P. J. Li, Inverse medium scattering problems in near-field optics. 

J. Comput. Math. 25 (2007), no. 3, 252-265. 

Ch] Y. Chen, Inverse scattering via Heisenberg,s uncertainty principle. Inverse 

Problems 13 (1997), no. 2, 253-282. 

Chi] Y. Chen, On the shielding effect of the Helmholtz equation. Comm. Pure 

Appl. Math. 61 (2008), no. 5, 627-638. 

70 



Some Robust Optimization Methods for Inverse Probl ems 71 

CK] F. Colonius, K. Kunisch, Output least squares stability in elliptic systems. 

Appl. Math. Optim. 19 (1989), no. 1，33-63. 

CoK] D. Colton, R. Kress, Inverse acoustic and electromagnetic scattering the-

ory. Applied Mathematical Sciences, 93. Springer-Verlag, Berlin, 1992. 

CoKl] D. Colton, R. Kress, Using fundamental solutions in inverse scattering. 

Inverse Problems 22 (2006)，no. 3, R49-R66. 

CoKi] D. Colton, A. Kirsch, A simple method for solving inverse scattering prob-

lems in the resonance region. Inverse Problems 12 (1996), no. 4, 383-393. 

CS] B. Chen, J. J. Stamnes, Validity of diffraction tomography based on the first 

Born and the first Rytov approximations. Appl. Opt. 37, 2996-3006. 

EM] B. Engquist, A. Majda, Absorbing boundary conditions for the numerical 

simulation of waves. Math. Comp. 31 (1977), no. 139, 629-651. 

GT] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second 

order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, 

Berlin, 2001. 

G] D. Givoli, Numerical methods for problems in infinite domains. Studies in 

Applied Mechanics, 33. Elsevier Scientific Publishing Co., Amsterdam, 1992. 

HAO] E. Haber, U. M. Ascher, D. Oldenburg, On optimization techniques for 

solving nonlinear inverse problems. Inverse Problems 16 (2000), no. 5, 1263-

1280. 

Ih] F. Ihlenburg, Finite element analysis of acoustic scattering. Applied Math-

ematical Sciences, 132. Springer-Verlag, New York, 1998. 

IK] K. Ito, K. Kunisch, Augmented Lagrangian-SQP-methods in Hilbert spaces 

and application to control in the coefficients problems. SIAM J. Optim. 6 

(1996), no. 1, 96-125. 



Some Robust Optimization Methods for Inverse Probl ems 72 

IKl] K. Ito, K. Kunisch, Augmented Lagrangian-SQP-methods for nonlinear op-

timal control problems of tracking type. SIAM J. Control Optim. 34 (1996), 

no. 3, 874-891. 

Is] V. Isakov, Inverse problems for partial differential equations. Second edition. 

Applied Mathematical Sciences, 127. Springer, New York, 2006. 

Isl] V. Isakov, On uniqueness in the inverse transmission scattering problem. 

Comm. Partial Differential Equations 15 (1990), no. 11, 1565-1587. 

lUY] O. Imanuvilov, G. Uhlmann, M. Yamamoto, Global Uniqueness from Par-

tial Cauchy Data in Two Dimensions. Preprint. 

J] J. M. Jin, The finite element method in electromagnetics. Second edition. 

Wiley-Interscience, New York, 2002. 

JK] D. Jerison, C. E. Kenig, Unique continuation and absence of positive eigen-

values for Schrdinger operators. Ann. of Math. (2) 121 (1985), no. 3, 463-494. 

K] A. Kirsch, An introduction to the mathematical theory of inverse problems. 

Applied Mathematical Sciences, 120. Springer-Verlag, New York, 1996. 

LLZ] J. Z. Li, H. Y. Liu, J. Zou, Multilevel linear sampling method for inverse 

scattering problems. SIAM J. Sci. Comput. 30 (2008), no. 3, 1228-1250. 

MI] P. M. Morse, K. V. Ingard, Theoretical Acoustics. Princeton, NJ: Princeton 

University Press. 1986. 

N] F. Natterer, An error bound for the Born approximation. Inverse Problems 

20 (2004), no. 2，447-452. 

Nl] F. Natterer, Numerical solution of bilinear inverse problems. Miinster 19/96-

N Angewandte Mathematik und Inforrnatik preprints. Technical Report. 

1996 



Some Robust Optimization Methods for Inverse Probl ems 73 

P] R. Pott hast, A survey on sampling and probe methods for inverse problems. 

Inverse Problems 22 (2006), no. 2’ R1-R47. 

RS] M. Reed, B. Simon, Methods of modern mathematical physics. III. Scattering 

theory. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-

London, 1979. 

:TA] A. N. Tikhonov, V. Y. Arsenin, Solutions of ill-posed problems. Translated 

from the Russian. Scripta Series in Mathematics. John Wiley & Sons, New 

York-Toronto, Ont.-London, 1977. 

TLY] A. N. Tikhonov, A. S. Leonov, A. G. Yagola, Nonlinear ill-posed problems. 

Vol. 1,2. Translated from the Russian. Applied Mathematics and Mathemat-

ical Computation, 14. Chapman k Hall, London, 1998. 

Y] K.Yosida, Functional analysis. Reprint of the sixth (1980) edition. Classics 

in Mathematics. Springer-Verlag, Berlin, 1995. 



：‘’感: 

货、 
•T 

1
 



C U H K L i b r a r i e s 

004660321 


