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Abstract 

The discontinuous Galerkin(DG) methods have been extensively studied and applied to numeri-

cally solve partial differential equations since 1970s, see [1,2] for a detailed account of the historical 

development of the methods. Because of various reasons, DG methods are getting popular. For in-

stance, they are flexible in the sense that different polynomial degrees can be used for approximation 

in different regions of the computational domain. Besides, they can be applied on non-conforming 

meshes, and their local property makes them well-suited for parallel computing. Among them, for 

example, the interior penalty(IP) method and the local discontinuous Galerkin(LDG) method were 

used to deal with the curl-curl operator [18, 23, 27]. These methods produce spurious-free approxi-

mation of highly singular functions, but the drawbacks are the additional degrees of freedom and the 

bulky penalty terms, which greatly increase the computational cost. 

Recently, Chung and Engquist [11, 12] have developed a new DG method for wave propagation, 

which is explicit, energy conservative and optimal in the order of convergence. In this thesis, we 

will investigate a staggered DG method for the curl-curl operator in using a similar discretization 

technique. Such discretization imposes extra continuity conditions carefully on functions in the 

approximation space such that no extra penalty terms are needed in the resulting bilinear forms and 

the number of degrees of freedom is much reduced. In this regard, the proposed method is superior 

to the conventional DG methods. Another purpose of this thesis is to apply a similar scheme to solve 

the convection-diffusion equation, which is rarely seen in the literature. Both the static and time-

dependent problems will be studied. The stability and the convergence of the methods are analyzed 

and the results of numerical experiments are given to support the theoretical analysis. 
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摘要 

自20世紀70年代，間斷伽遼金(discontinuous Galerkin)方法已被廣泛研究並應用 

於PDE的數值求解，可看[1,2]詳細地了解這方法的歷史發展。基於各種原因，間斷 

伽遼金方法越來越受歡迎。例如，在計算域的不同地區它們可靈活地使用不同次數 

的多項式。此外，它們可以應用在非協調網格上，其局部特性更使其非常適用於並 

行計算。其中，内部處罰(interior penalty)方法和局部間斷伽遼金(local discontinuous 

Galerkin)方法就被用來處理捲曲-捲曲算子的問題[18, 2 3 , 2 7 ] �這些方法能準確地計 

算出髙度奇異的函數，但缺點是額外的自由度和笨重的處罰項大大提高了計算成 

本。 

最近Chung及Enquist[ll, 12]研發出一種新的間斷伽遼金方法用作解決波的傳播問 

題。這方法直截，能量守衡並且擁有最佳的收斂速度。在這篇論文中，我們將使用 

類似的離散技巧去處理二維空間的捲曲-捲曲算子。這種離散方法對間斷有限元空間 

内的函數施加額外的連續性條件使得産生的雙線性式不需要額外的處罰項，而且自 

由度的數量也大大減少。在這方面，該方法較傳統的間斷伽遼金方法優勝。這論文 

的另一個目的是應用類似的方法去求對流-擴散問題的數值解，這在文獻中是罕見 

的。不論是靜態的或是隨時間變化的問題都會被探討。這個新方法的穩定性和收斂 

性會在論文中深入地分析。為了支持分析的結論，我們會給予數值實驗的結果。 
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Chapter 1 

Model Problems 

1.1 Introduction 

The discontinuous Galerkin(DG) methods have been extensively studied and applied to numerically 

solve partial differential equations since 1970s, see [1, 2] for a detailed account of the historical 

development of the methods. Because of various reasons, DG methods are getting popular. For in-

stance, they are flexible in the sense that different polynomial degrees can be used for approximation 

in different regions of the computational domain. As a result, adaptive /ip-finite element method is 

easy to carry out with DG methods. Besides, they can be applied on non-conforming meshes, and 

their local property makes them well-suited for parallel computing. With the rapid advance in high 

performance computers, DG method is surely a favorite choice in scientific computing. 

In the context of computational electromagnetism, one often encounters the curl-curl operator 

which result from eliminating either the electric field or the magnetic field. If continuous finite 

elements is applied to discretize the resulting equations, the numerical solution may converge to a 

wrong answer(spurious solution) in the case of non-convex domain. To overcome the problem, the 

interior penalty(IP) method and the local discontinuous Galerkin(LDG) method were used to deal 

with the curl-curl operator [18, 23, 27], These methods produce spurious-free approximation of 

highly singular functions, but the drawbacks are the additional degrees of freedom and the bulky 

penalty terms, which greatly increase the computational cost. 

Recently, Chung and Engquist [11, 12] have developed a new DG method for wave propagation. 
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which is explicit, energy conservative and optimal in the order of convergence of both norm 

and the energy norm. In this thesis, we will investigate a staggered DG method for the curl-curl 

operator in using a similar discretization technique. Such discretization imposes extra continuity 

conditions carefully on functions in the approximation space such that no extra penalty terms are 

needed in the resulting bilinear forms and the number of degrees of freedom is much reduced. In 

this regard, the proposed method is superior to the conventional DG methods. Another purpose of 

this thesis is to apply a similar scheme to solve the convection-diffusion equation, which is rarely 

seen in the literature. Both the static and time-dependent problems will be studied in detail. The 

equation will be further discretized in time using the Crank Nicolson scheme, which give rise to a 

unconditionally stable scheme. The stability and the convergence of the methods are analyzed and 

the results of numerical experiments are given to support the theoretical analysis. 

1.2 The curl-curl operator 

The first model problem being considered is the following: 

curl curl u — cu'^u = f in Cl 
(1.1) 

u -t — g on dQ, 

where H is a bounded domain in and t is the anti-clockwisely oriented unit tangent on dQ. 
duj 

For a vector field u = (^1,1/2)，curl u = — — , while for a scalar field (p, we have 
c)x ay 

Q I I 
curl 0 = ( — . - — ) . We assume the source function f e satisfies d i v / 二 0 in fi , this 

oy ‘ ox 

implies that divix = 0 in That is u satisfies a natural divergence-free condition. Besides, the 

Dirichlet boundary datum g is assumed to belong to This boundary value problem normally 

arises from the time harmonic Maxwell's equations, here u > 0 is the given pulsation. Throughout 

the paper, symbols with bold face are vector quantities. 
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Variational form We define the following function spaces: 

H{div;n) = {veL^in):dwveL^{n)}, 

/ / (cur l ; n ) = { v e ：curl ” G 

ifo(curl; Q) = {” G / / (cur l ; Vt):v-t = {)on 

/ /o(cur l^ n ) = [ v ^ i7o(curl; fi) : curl i; = 0 in fi}, 

V = {v e i f (curl; Q):v-t = gon 

where denotes the set of square integrable functions over the domain Ct and jL^(O) is the set 

of vector functions having each of its components in The properties of these space can be 

found in [24, 16]. 

An equivalent variational formulation is obtained simply by multiplying the first equation o f ( l . l ) 

with test functions and integrating by parts, to reach 

find u eV such that 
(1.2) 

(curl w, curl ⑴）-uj^ = V” G i7o(curl; 

By introducing an additional unknown, namely q := curl u, we can recast equivalently this problem, 

and obtain a suitable framework for our new discontinuous Galerkin discretization, the so-called 

mixed formulation. 

find {u, q) eV X such that 

M h n n ) - (curl U , 偏 例 = 0 VV, e ⑴)， （1.3) 

— 以 ， ^ ； ) 【 2 ⑴ ） = � Vi; G ifo(ciirl; 

If the domain is non-convex, the solution has singularities at the re-entrant comers. It is well-known 

that using conforming finite element methods will produce spurious solutions for the singularities 

due to the fact that the standard / f ^-conforming nodal element space is not dense inV H H{div: Q), 

see [13, ？，20]. Rather, it is a subspace of K n H{div: ft) and the inclusion is strict. For example, 

consider the exact solution given by the function V [r^/^ s i i i ( ^ ) ] on a L-shaped domain with re-

entrant comer at the origin, Figure 1.1 shows the graph of this function. In order to illustrate the 

inability of conforming finite element method, we consider the conforming finite element method 
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Figure 1.1: Graph of V [r^/^ s i n ( f ) " 

based on the following weak formulation: 

find u eV n H{dw; Q) such that Vv G Ho{cuv\] n) 
(1.4) 

(curl w,curl 10乙2(� + ( d i v u , d i v — � ( 以 ， 1 ； ) 【 2 ⑴ ） = � ) . 

Note that since div = 0, the exact solution of (1.1) still satisfies this variational form (1.4). The 

numerical solution obtained by using conforming piecewise linear nodal elements is shown in Figure 

1.2. This approximation, which is completely different from the exact solution, is the so-called spu-

rious solution. To obtain numerical solutions without spurious modes, methods using Nedelec's first 

0；； 1 I 0；； loe 
I 、 “ , 1 H 0 5 

it ' - 1 塵 』 ： 
•0.2 j (f :::;「 -0.4 -0.2 j J I m 

'Mi 
-� I 力 � . M i _ � i 
•'[mrnmrn I 

-1 0 5 0 0 5 1 -1 -0 5 0 0 5 1 

(a) X component (b) y component 

Figure 1.2: Numerical approximation of V [r^/^ s i n ( ^ ) ] using conforming finite element method 

with piecewise linear elements and h = 0.0625 

family finite elements are developed for the mixed form of the Maxwell's equations; see, e.g., [20] 

and [24], In these methods, the divergence free condition are automatically satisfied. However, the 

order of convergence of these elements is one order lesser than nodal elements for approximation of 

regular functions. One can also use the Nedelec's second family finite elements to achieve optimal 
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rate of convergence, but they generally do not produce weak divergence free numerical solutions. 

Hence, a scheme that can produce good approximation for the singularities and possesses optimal 

convergence rate is desirable. There are many successful works in the area of solving the Helmholtz 

and the Maxwell 's equations by the discontinuous Galerkin (DG) method. For instances, in [17], a 

DG method using plane waves is developed and analyzed for the Helmholtz equation, while in [4], a 

stabilized DG method is analyzed for the first order hyperbolic system. Regarding the time-harmonic 

Maxwell's equations, DG methods based on a mixed formulation are proposed and analyzed for the 

low frequency model in [21] and [26], In these works, the divergence free condition is handled by 

a suitable Lagrange multiplier. In [22], the first optimal error estimates in both energy and L^-norm 

are proved for the interior penalty DG method for the 3D time harmonic Maxwell's equations in 

the second order form. Moreover, in [23], the same type of method is applied to the time harmonic 

Maxwell's equations in the mixed form. In addition to optimal error estimates, the numerical solu-

tion is shown to automatically satisfy a weak form of the divergence free condition. There is also an 

interior penalty DG method for the 2D curl-curl problem that gives pointwise divergence free condi-

tion by using divergence free basis functions, see [3], where optimal convergence estimates are also 

proved. For the Maxwell eigenvalue problem, [5] and [6] prove estimates for the convergence rate of 

the eigenvalues. In [19], the computation of Maxwell eigenvalue problem in three space dimensions 

is considered. For the time-dependent Maxwell's equations, [18] developed an interior penalty DG 

method and analyzed its optimal convergence. 

In this thesis, we investigate a new discontinuous Galerkin method aiming to achieve the afore-

mentioned two properties. In fact, our new finite element space can be seen as a local 丑(curl; O)-

conforming edge element space. Similar techniques have also been applied to time-dependent Maxwell's 

equations and the Helmholtz equation, see [10], [8] and [9]. There are some distinctive advantages 

in using our new discretization. First, the discrete versions of the two curl operators are adjoint oper-

ators to each other, which hold for the differential operators. Thus, our discretization preserves some 

conservation properties arising naturally from the differential equation. In fact, if the same method 

is applied to the time-dependent Maxwell's equation, the resulting method will have block-diagonal 

mass matrix and conserve the electromagnetic energy. Another advantage is that the numerical solii-
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tion of our new method will satisfy automatically a discrete divergence-free condition. Thus, there 

is no need to enforce, either weakly or strongly, this divergence-free condition in our method. We 

emphasize that this condition is important for elimination of spurious mode in the numerical solution. 

1.3 The convection-diffusion equation 

The other model problem that will be investigated in this thesis is the following convection-difflision 

equation 
Qn 

An-V- (b7i) + / , (.T, t ) e n x (0, T), (1.5) 

where H is a polyhedral domain in 脱“，d = 2,3, and T > 0 is a fixed time. In (1.5), u is the 

unknown function to be approximated and / is a given source term. We supplement (1.5) with initial 

condition u{x, 0) = uo{x) f o v x e f l and the homogeneous Dirichlet boundary condition u{x, t) = 0 

for X e d f t . The extension to the cases with inhomogeneous Dirichlet boundary condition and 

other types of boundary conditions are straightforward. We assume that the velocity field h{x,t) is 

divergence free, namely V • b = 0 for (x, i) G H x (0, T). We will also derive and analyze our new 

method for solving the corresponding static problem 

- A h + V • (bw) = f (1.6) 

supplemented with a suitable boundary condition. 

Over the past few decades, staggered type methods have been applied successfully to many prob-

lems, such as wave propagation and fluid flow problems [7, 8, 9, 11, 12, 25, 28]. A distinctive feature 

of these methods is that the physical laws arising from the corresponding partial differential equations 

are automatically preserved. Nevertheless, staggered methods for convection-difflision equations are 

rarely seen in literature. It is thus the second main goal of this thesis to develop and analyze a class 

of staggered numerical schemes for the approximation of convection-difflision equations such that 

the underlying physical laws are preserved by the numerical scheme automatically. One key step in 

the development of the new approach is a new mixed formulation of the convection-difflision equa-

tion, which will be defined in the following. The construction of our new method is then based on 

the techniques developed in [11, 12], in which a new class of staggered DG methods for the wave 
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equations are presented and analyzed. Moreover, stability and convergence of the new method are 

rigorously analyzed. 

To be precise, we will develop the new staggered DG scheme that preserves the following con-

servative structures arising from the convection-diffusion equation (1.5). The first one is the conser-

vation of density, namely 

4 f udx= [ -uh-n)da+ [ f dx (1.7) 
dt Jn' Jdn' dn Jn' 

where C ^Hs any subdomain. The second one is a relation about the rate of change of energy and 

flux: 

•兰 [ V ? dx = - [ dx+ [ f u dx (1.8) 
2 Jn Jn Jq 

and for any subdomain f t ' C fl: 

秦 县 [ d x = - [ |Vii|2 dx + f (Vu - ^bu)u • n da + f f u dx. 
2 dt Jii> Jn' Jdn' 2 

The key step in the construction of the new staggered DG method is the following new mixed 

form for the convection-diffusion equation (1.5). To derive the new formulation, we introduce the 

new variables 

w = hu, p = Vu - - b 
2 

Then we have 

Aw - V • (bu) = V • (Vu) 一 i v • (bw) - ^ V . (bw) = V • p - ^ b • Vu . (1.9) 

By the definition of p, we have 

b • V?/ = b - ( p + - b n ) = b - ( p + - w). 
2 2 

Using this relation in (1.9), we have the following new mixed form 

p = Vw - i b u, (1.10) 

Li 

w = b u , (1.11) 

du _ 1 1 
瓦 = V p - - b p - - b w + / . (1.12) 

The new staggered DG method derived and analyzed in Chapter 3 is based on this formulation. 
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Chapter 2 

Staggered DG method for the Curl-Curl 

operator 

2.1 Introduction 

This chapter is devoted to the boundary value problem: 

curl curl u 一 u'^u — f in Q 
(2.1) 

u t = g on dVt, 

where H is a bounded domain in and t is the anti-clockwisely oriented unit tangent on dil. 

This chapter is organized as follows. In Section 2.2, the optimal discontinuous Galerkin dis-

cretization will be defined. The stability and optimal convergence of the new method are analyzed 

in Section 2.3 and Section 2.4. Numerical results for testing rate of convergence and eigenvalue 

computations will be given in Section 2.5. Section 2.6 concludes the chapter. 

2.2 Discontinuous Galerkin discretization 

Following Chung and Engquist [11, 12], we first define the initial triangiilation Tg. Suppose the 

domain is triangulated by a set of triangles. We use the notation Ĵ q to denote the set of all edges in 

this triangulation and use the notation JT '̂ to denote the subset of all interior edges - that is edges that 

arc not embedded in Oil — in (丨.For each triangle, we take nil interior point “ and call this truinnlc 
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<S{iy). In practice, ly is chosen as the center of the triangle to enhance mesh regularity. Using the 

point /y, we can further subdivide each triangle into 3 sub-triangle by connecting the point h> to the 3 

vertices of the triangle. We denote by T the triangulation made up of all sub-triangles. We use the 

notation J^u to denote all new faces obtained by the subdivision of triangle, and we let T — TqU Tu, 

respectively T ^ — Tu- Figure 3.1 illustrates these ideas, where the solid lines belong to Tq 

and the dotted lines belong to For each edge k, G J^q, we let 1Z{k) be the union of the two 

sub-triangles sharing the edge k.. If ac is a boundary edge, we let be the only triangle having 

the edge k. For an illustration, see again Figure 3.1. 

Figure 2.1: Triangulation in 2D. 

We will also define a unit tangent vector on each edge â  in by the following way. If « G , 

then we define as the anti-clockwisely oriented unit tangent on dVt. If K E is an interior face, 

then we fix as one of the two possible unit tangent vectors on h:. When it is clear which edge we 

are considering, we will use t instead of t^ to simplify the notations. 

Now, we will discuss the finite element spaces. Let /c > 0 be a non-negative integer. Let r G T 

. W e define P^(T) as the space of polynomials of degree less than or equal to k on T. Then we 

introduce the following discrete space for scalar fields. 

Locally H^ (r2)-conforming finite element space for scalar fields 

Sk 二 {v̂  I W e 尸A了（T), Mt eT] V' is continuous on k G (2.2) 
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In the space S^ we define the following norms 

M x = f 妒 dx + K f iji da, (2.3) 

Wlz = [ |curl'0|2 dx-\- [ W da (2.4) 

where we remark that the integral of curl ijj in (3.4) is defined elementwisely: 

J |curl dx = ^ J |curl dx. 

Here we recall that, by definition, G S^ is always continuous on each edge k, in the set whereas 

it can be discontinuous on each edge k in the set We say \\ip\\x is the discrete L^-norm of ^ and 

l̂ tpWz is the discrete / f^-norm of ip. In the above definition, the jump [ip] is defined in the following 

way. For each k G J^u, there exist two (sub-)triangles RI and T2 such that k is a. common edge of 

them. Moreover, each 丁“ i = 1,2, has a edge that belongs to J^q. Thus, k. C dTZ{i^i) for i = 1,2. 

Then for such k, G Tu, we write m^ as the anti-clockwisely oriented unit tangent of d7l{Ki) for 

2 = 1,2, and define 
( 

� 1 if rrii = t on ti 
趁)= 

r v 

—1 if rrii = -t on k. 

where t is the unit tangent vector of the face k. Then the jump [-0] on the face k, is defined as 

M =松 )也 +吃 ) 

where = 

Note that one can prove, by the argument used in the proof of Theorem 3.1 of Ref [12], that there 

exists a constant a > 0, independent of h, such that 

\ m U n ) < m x < c ^ m l H n ) 攀 S,,. 

Locally //(curl; n)-conforming finite element space for vector fields 

Now, we introduce the following discrete space for vector fields. 

V/i = [v I G Vr E T ; v t 'xs continuous on k G }. (2.5) 
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In the space Vh, we define the following norms 

I…=[…|2 f (” .亡)2 da, (2.6) 

\\v\\\> = f (curl vf dx-{- f [v . t? da^ Y^ h:^ f {v • t f da (2.7) 
Jn kGTO 人 Kedft 人 

where we remark again that the integral of curl v in (3.7) is defined elementwisely. Here we recall 

that, by definition, v e Vh has continuous tangential component on each edge k, G Tu- We say 

is the discrete L^-norm of v and \\v\\z' is the discrete / / (cur l ; -norm of v. In the above 

definition, the jump [v • t] is defined in the following way. Let k C T�.Then there are exactly two 

triangles t\ and T2 such that kis a. common edge of them. Let be an interior node of Tj. Then we 

have K e dS{ui) for i = 1,2. Let m^ be the anti-clockwisely oriented unit tangent of dS{ui). We 

define 

1 if vfii = t on hz 
4 ” = 

- 1 if rrii = - t on k, 

where t is the unit tangent vector of the edge k. Then the jump [v • t] on the edge k is defined as 

V-t]= d^^^t；! • t + t, 

where v^ = V]̂ -̂ .. 

One can prove, by the argument used in the proof of Theorem 3.2 of Ref [12], that there exists a 

constant > 0, independent of h, such that 

|问|2�2⑴）< l l ^ f x ' < “ l l ^ l l ^ ( i ^ ) 彻 6 V,. (2.8) 

We define for ip,q E <5丨” v,u e Vh, 

Bh[q,v) 二 / q curl v dx - ^ / q [v • t] da - ^ qv-tda, (2.9) 

Bfi(u,论）=f u curl 'iP dx + ^ / u t ^ da. (2.10) 

映 : f J K 

Using the same technique in proving Lemma 2.4 of Chung and Engquist [12], we have 

Buii^^v) = B U v . 'iĴ ). V(V',w) G Sii X V/,. (2.11) 
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Moreover, the following holds 

Bh{v,ij) < M x IMIz ' , V(也”）GShX Vh. (2.12) 

The discrete variational formulation, or numerical method, is 

find [qk.Uh) e Sk X Vk such that 

( 队 ， 功 ⑴ ） 一 = ( 仏 功 如 ) ’ V 功 G A (2.13) 

Bh{qh,v) = ( / ’ … ⑴ ) ， yveVh-

Note that (1.3) is the continuous variational form and (2.13) is the discontinuous Galerkin formula-

tion. 

Using a proof similar to the proof of Theorem 3.2 of [12], we know that there is a uniform constant 

K > 0 such that the global inf-sup condition below holds: 

inf sup „ B^ 沙广)> K . (2.14) 
輕乂 IK^IIx llt^llz'— 

Let V(h) := Vh + i^o(curl; Q), then we have the following norm compatibility: If i; E V{h) satisfies 

\\v\\z' = 0, then v G Ho{curf;fl). Furthermore, if G //o(curl; ft), then | | 叫 = ||curl t»||L2(R2)-

We define some more discrete function spaces below: 

Qh = { g “ 2 ( ^ � e P “ V ) ’ V 7 " G n 

VI = V^n//o(curl;n), 

Qh = Q"n//oiW， 

Kh = V/?n/:/c)(curlO;r])， 

K/t = {v e V/, ： (v,w)=o Vw e /h,}. 

Note that we have K^ = VQf^, c.f. [6], so we have 

= { t ^ e v , : ( t ; , V p ) = 0 VpeQf,}. 

Moreover, one can show, in the spirit of [6], that the following discrete Poincare inequality and 

the discrete compactness property hold in our setting. More precisely, there exists a constant Cp 

independent of h such that 

Wlz;2 (� < (2.15) 
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And for any sequence {wh)h in K^ with + \\wh\\%>)i < C for some C independent of 

h, there exists a subsequence, still denoted by {wh)h, and an element v G such that 

Jim 卜 巧 ⑷ = 0 . (2.16) 
/i—>0 \ ‘ 

Lemma 2.2.1 The discrete solution u^ of (2.13) belongs to K-j^. 

Proof Since (队,w/J solves (2.13) and VQ^^ = K^ c V", the following holds: 

B/i(队，Vp) — � = ( / , MpeQl-

Since for any p G V p G Kh C //o(curl°: fi), Bk{qh , Vp) = 0. Also, as d i v / = 0，we have 

(/，•P)z^2(�2) = 0. Hence, together with a; / 0, we conclude ⑴）= 0 V p G Q^. So 

uh e K^. • 

From now on, we say the discrete fields (g/^，tt/J G iS" x K^ are aligned if 

= B/二(u/i，'0)， V '0 e cS/i, (2.17) 

and let A^ be the set of aligned fields, i.e. 

A ,̂ = {{ip.v) e S k - x K j t such that (2.17) are satisfied }. (2.18) 

Note that by the norm equivalence of || • and || • and the global inf-sup condition (3.11), 

for {ip, v) e Ah, we have 

II Ml W,，0)L2(S2) 
miLHn) = sup 

cPeSn miLHi}) 
( 也 ⑴ 

> Slip ^ ^ 

Bljv.cl^) 

小诚丨 mix 

> f < M z ' - (2.19) 
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Also, we introduce the following bilinear forms which will be used in the convergence and error 

analysis: 

bh((q,U), (1fJ,v)) 

ah((q,u), (1fJ,v)) 

2.3 Stability for aligned fields 

B h ( q, v) + (q, 1fJ) L2 (D) - B'h ( u, 1fJ ) 

bh((q,u), (1fJ ,v)) - w2(U,V)L2(D) 

In this section, we will prove the unifonn stability of the fonn (ah)h for aligned fields. More pre-

cise1y, we will prove the following theorem. 

Theorem 2.3.1 There exists (J > 0, ho > 0 such that VO < h < ho, V(1fJh, Vh) E A h, 

sup 
(Ph ,Wh)ESh x Kt 

lah((1/Jh ,Vh),(1>h,Wh))1 ;::: crll(1/Jh,Vh)llh, 

where the norm 11 . Ilh is defined on £2 x (Vh + H(curl ; n)) by 

1 

11(1fJh,Vh)llh = (11 ?j)hlli2(D) + Ilvhll~/) 2 . 

(2.20) 

(2.21 ) 

Proof We will need the unifonn coercivity of (bh)h for aligned fields to prove (2.20). This can be 

obtained by using (2.11) and (2.19) that for all CtPh, Vh) E Ah, 

bh (( 1fJh, Vh), (1fJh, Vh)) 

where, = ~ min{l, K}. 

Bh (1fJh , Vh) + (1fJh, 1fJh)L2(D) - B'h(Vh , 1fJh) 

II 1fJhlli2(D) 

> , 11( 1fJh,Vh)llh , (2.22) 

Let us now prove (2.20) by contradiction. Suppose (2.20) is not tnle, then there exists (/-Lh)h > 

0, lim /-Lh = 0, such that V ho > 0, there exists h with 0 < h < ho, and (1fJh, Vh,) E Ah, 11(1fJh, vh)llh = 
h~O 

1 such that 

sup 
(PI" ,WI, )ES", X K/~ 

/ah (( 1fJh,Vh) , (cfJh, Wh)) / 

11 (cfJ h" wh.)llh ~ /-Lh· (2.23) 
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Note that \\iph\\L^{n) < 1 and Hv/^H^/ < 1, for all h. By the discrete Poincare inequality (2.15), 

we have ( | | f + ll'^/illz')^ < (1 + where Cp is the constant in the discrete Poincare 

inequality. Hence, by the discrete compactness property (2.16), there exists a subsequence of {vh)h 

that converges strongly in Thus, if we still denote this subsequence by (v/J/, , then there 

exists u* e such that 

j | i m 少 咖 ） 二 0. (2.24) 

We claim that it* = 0, so that lim ||i^�l2;;2(n) = 0. Then, it follows from the uniform coercivity of 
/i—+0 ^ ‘ 

{bk)k for aligned fields (2.22) and our assumption on the lack of stability of {ah)h (2.23) that for all 

h>0, 

7 < a"(0/i，^^"), [•h,Vh)�+~2(1；/^，1；")【2(� < /i" + … J l ? � ) . (2.25) 

Since both lim Uh = 0 and lim \\vh I r 2 m � = 0, we have found a contradiction. So we conclude that 
h—o “0丨|…�… 

the forms are uniformly stable for aligned fields in the sense of (2.20). 

Now we go back to prove our claim, i.e. u* = 0. 

Note that the sequence ('tph)h is bounded in L^(l l) , so one can extract a subsequence, which we still 

denote it by (彻,,)"，such that ('iph)h converges weakly to some q* in where q* G 
i / j h � q * weakly in (2.26) 

In the following, we want to prove that {q*,u*) solves the two-unknown problem (1.3) with / = 0 

and g = 0. First, we have to prove that curl u* e L^(fl) and u* • t = 0 on dQ. By the definition of 

differentiation in the sense of distributions, for any cp G V{Vl), we have 

(curl u* ,(f)) =�IX*，curl (/>) = f^ u* curl (f) dx 

= l i m / Vh curl 6 dx = lim Buid). Vh). 

/i—0 九 /i—0 

Using a similar argument in proving (3.15) and (3.22) of [12], one can show that given 0 G (12), 

there exists (I)�G Sh such that 

I3i,�(l)i,. 一（l),w) = Q \/w e Vi, 

I I 於 ⑴ ） … 叫 
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where C is independent of w and h. As {xl^h.^h) ^ ^ h , we have by (2.11) and (2.17), 

Bti{(i),vk) = Bh�(h,Vh) 

=Bl{vh, (ph) = Jq iph (h dx. 

Since (4)h)h converge strongly in and ('0/i)/i converge weakly in we conclude that 

(curl u\(t)) = I q* (f) dx. ^cf) G V{n). 

Jn 

In other words, u* G / / (curl ; f t ) and moreover curl u* = q*. Second, one has u* G /fo(curl; Vt) if 

and only if, there holds 

[ u * curl (f)dx = [ curl dx. G 
Jn Jn 

This time, we find 

L u* curl d) dx = lim / v^ curl (j) dx = lim Bi,((p, vj,) 
/z—0 Jq h^O 

= l i m Bh�(t)h,Vh) = lim B 认 血 = } i m ( V V i ， 

h—^Q /i 一 0 n—>0 

=f^ q* (f) dx = /q curl it*, (f) dx, 

which proves u* e //o(curl; 11). Third, let us check that (g*，it*) G x Ho{cvlv\; Q) solves the 

original two unknown problem (1.3), with / = 0 and g = d As q* = curl u*’ we obviously have 

that 

(curl u*,(/)} - {q\(t)) = 0 G 

Consider next w G 

(<7*,curl - �=lini{(V ' / i , curl � — } • 

Again, let us integrate the first term by parts, element by element: 

(Vv�curl ⑴ ） = / V^/i curl w dx 

t^tJ 丁 

= I y curl V", w dx + j ,h�w . (̂ f̂ l 

= / curl V'/i u) dx + ^^ / [ijjii]w • t da 
.人2 人. 

=BfXw^iP,,). (2.27) 
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Above, we used the fact that w\dn = 0, iph is continuous across edges of J g and it; • t = 0 on 

Also, to compute the contribution on the remaining edges(i.e. those of J^u), we used the definition of 

the jumps of the scalar field on those edges(See section 2.2). 

Using again a similar argument in proving (3.13) and (3.19) of [12], one can show that given w e 

H 叫 ( f l ) , there exists Wh G Vh such that 

Bl{wh-w,(f))=0 y(j)eSh 

where C is independent of 0 and h. Therefore, we reach 

(^/i, curl 一 尤2⑴） 

= B l — h , ^h) — ^'^{vh, ⑴） 

Let us consider each term of the right-hand side separately, when h goes to zero: 

”hh (O^'^/i) < = fih\\wh\\z' — 0. 
For the other term, by the Cauchy-Schwarz inequality: 

l O / t , 川 ” - < ⑴）|| l i；" 一 — 0 . 

We thus conclude that 

(g*,ciirl — = 0 , Viz; G V i ^ l f . 

By density, this is also true for all w G //o(ciirl; fl). In other words, {q*,u*) solves (1.3), with 

f = 0 and g = 0. As a consequence, under the well-posedness of the continuous problem (1.3), we 

find that {q*,u*) = (0 ,0) . • 

2.4 Error estimates 

( � i 
We use the notation ||('0，i;)||o = ⑴）+ I…||/；2�))‘‘to represent the norm on L'^i}) x 

(V/,, + K). 
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We recall that (q, w)(resp. (q^, u^J) denotes the solution to the exact two-unknown problem (1.3)(resp. 

discrete two-known problem (2.13)). Let v be arbitrary element in K^. The we define ip by 

= Bl[v,(t)) + V (/) G (2.28) 

Thus, - qh;V - Uh) are aligned fields. Let us now use the uniform stability of the form {ah)h, i.e. 

condition (2.20), to establish error estimates. Accordingly, we have 

1 a.h(M - Qh.v - Uh), 
\{i； ~ Qk.V -Uk)\\k < — sup ^ ^ 

1 - Qh^u- Uh), 

一 a ( 0 ， — 1 1 ( 0 , 比 ） I k 

1 dhU^ — - u),{(p,w)j 
+ — sup [ T T T ^ 

1 tt"(((/，W)，（0，！/；)) 一（/,秘)⑴）— 

^ {4>,w)Ts!,xK^ IK么比）Ik 

1 - q.v - u), {(/),w)) 
+ — — )- (2.29) 

� , • S h . x K f 11(0，切）lk 

The first term on the right hand side of (2.29) represents the consistency error while the second term 

on the right side of (2.29) represents the approximation error. 

Approximation error By the definition of a^, we have 

" " ( O ~ q.v - 二 Dkiij) - + O - r/’0)L2(⑷ 

-Bl{v - u,(j)) - — (2.30) 

By a similar argument in proving (3.13) and (3.15) of [12], we know that there exists elements 

Tihq G Sfi and tt/^u G K^^ such that 

Bhiirnq — q, w) = 0 \fw G V" 

B l ( n i , u — = 0 Vc/) G SI, 
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Now we choose v = 7rhU and note that the corresponding ?jJ is defined such that they satisfy (2.28). 

Then, for all cjJ E S h, we have 

(?jJ, cjJ)L2(D) = B'h(7rhU , cjJ) + (g, cjJ)L2(8D) = B'h(u, cjJ) + (g, cjJ)L2(8D) = (q, cjJ)L2(D) 

Thus, ?jJ is merely the L 2-projection of q. Therefore, (2.30) becomes 

ah(CI/) - q,7rhU - u), (cjJ,w)) = BhCl/) - q,w) - W
2 (7rhU - U,W)L2(D)' 

Using the definition of 7fhq, 

ah((?jJ - q, 7rhU - u), (cjJ,w)) = Bh(?jJ -7fhq,W) - W
2 (7rhU - U, W)L2(D)' 

By the continuity of Bh (2.12) and the equivalence of the norms 11 . IIx and 11 . IIL2(D), 

ah((?jJ - q, 7rhU - u) , (cP, w)) 

< 11 '0 - 7fhQllxllwllz' + w 2
117rhU - Ull L2(D) IIwllL2(D) 

< all?jJ - 7fhqllL2( D) IIwllz' + w 2
117rhU - ullL2(D)ll w llL2(D) ' 

We observe that by the triangle inequality 

11 1/) - 7f h q 11 L 2 (D) ::; 11 1/) - q 11 L 2 ( D) + 11 q - 7f h q 11 L 2 (D) , 

and then since ?jJ is the L2-projection of q, the following holds: 

II ?jJ - 7rhqllL2(D) ::; IIq - 7fhqllL2(D)' 

And with the help of the discrete version of Poincare inequality in I( t (2.15), we obtain 

a h (et/; - q, 7r h u - u) , (cjJ, w )) ::; C 11 (Q - 7f hq , 7r h u - u) 11 0 11 ( cjJ, w ) 11 h ' 

where C = C(w, Cp, rv. ). Hence, 

sup 
(c/J, 'w )ES" x [(,; 

0,,, (Cif) - '1 , 7rhU - u) , (cjJ, w)) :S 11('1 _ 1fh!], 7r/tU _ u) 110 . 



Staggered Discontinuous Galerkin Method 20 

With that, we can obtain error estimates: by using a proof similar to the proof of theorem 3.4 and 

theorem 3.5 of [12], we have respectively 

hhq — qWmn) < i f q G H^+^n)^ 

\WhU — < CTi腦{“l，.s+l}|"u|丑计i(� if li G 

where k is the maximal degree of the polynomials that define the discrete fields, and C is independent 

of g, u and h. It is possible to obtain more precise results. Note that since q = curl u, we have 

automatically 5 = .s - 1, and .s can be non-integer values. So we find that for u G i f ^ ^ ^ ( n ) , we 

have 

h h Q — q\\LHn) < C7zmm{糾，4’ ||冗”以—以“尤？� < C"™in{/c+l，.计l}， (2.31) 

where C is independent of h. 

Thus, we conclude that for the term representing the approximation error, we have 

sup — )- < C"mm{A:+l，4. 

11W,川）Ik 一 
Consistency error by the definition of a ^ we have 

((仏⑷，（也 ̂ )) — (/,切)L 2 ( n ) -(仏小h n m ) 

=Bh{q,w) + � q , c l ) )昨 、 — _ “。（以’ ̂ )̂【2印）—(/，iî )î 2⑴）-{g,4>)L̂ dn)-

Integrating by parts, we find that BfJ^u, 0) + ( 仏 = (7’ Using the other definition 

of w), we have 

a"(O，w)，(0，w;)) - ( / ’ t i ; ) i 2⑴）—M h H d V i ) 

= � q - curl ix’0)l2⑴）+ (curl q — uj'^u — 

Therefore, as q = curl u in L�(J}), and curl q — lj'^u = / in we conclude that the consis-

tency term is zero. 

Error estimate We obtain finally the following estimates. 

Theorem 2.4.1 Let u e H^Q) and q G with s > Moreover let k he the maximal degree 

of the polynomials that define the discrete fields. Then one has 

I k -价 . I I l 2 ( � SC7严⑴{A:+i’.s}, 

\\u-un\\z' SC7严"小”•>•}， (2.32) 

II以—叫』SC/严•收H’.s� 
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where 0 < h < Jiq and Jiq is defined in Theorem 2.3.1. 

Proof Starting from (2.29) and combining all the previous results, we know that 

M - qh .^hU — < CT^mK/c+U}， (2.33) 

where is the 1/2 (n)-projection of q. 

Then, by triangle inequality, we find 

Ik — < \\q 一 niHn) + W —⑷ I l 2⑶ < C7imin{fc+:M}. 

Next, using a proof similar to the proof of theorem 3.4 of [12], we know that ||ti — tz^^uW^' < 

SO we get 

— Ui.Wz' < — + W^hU - UHWz' < C7l" în{fc’吃 

Moreover, by the discrete Poincare inequality on the space K ^ (2.15), 

W^hU - ⑴）< C^WlVhU — UHWZ' < C7imin{A:+l”s}. 

Using again theorem 3.4 of [12] to reach ||w —兀/̂以“丄。⑴）< (7/imm{/c+i’s},观 conclude that 

— ^hhHn) < 1 1 ^ - + W^hu - u^WLHH) < CTi-小’+1,吃 

• 

2.5 Numerical experiments 

Numerical results which verify the error estimates in the previous section will be shown in this 

section. We will test our method on the square domain Hi = (0,1)2 and the L-shaped domain 

= (—1,1)2\([0，1] X [0, —1]). Experiments have been conducted with the theoretical solution 

given by the following functions: 

/ - e % c o s " + s i n " ) ) 

\ sin y / 

S2(x,y) = V r 4 / � h i ( ¥ ) 

_ '?0 _ 
= V sin(了）， 
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where r = y/x^ + y^ and 9 = tan~^(?y/.T). Note that is smooth, S2 E //鲁⑴2) and S3 G 

2 

Hi (^2) . The data function f and g are obtained according to (1.1) with uj = 1. Note that the 

L-shaped domain is non-convex, so the Lagrangian finite elements fail to recover Ss in the L-shaped 

domain. For each function we will test our DG method with piecewise constant elements and piece-

wise linear elements. 

In order to make it more clear, we give explicitly the basis functions that we have used for both 

elements. Firstly, in the piecewise constant case, since we require the tangential component of the 

vector functions in Vh to be continuous across each edge k G Tu , the degrees of freedom for the 

vector function v in each S(iy) is 3. So there will be 3 basis functions associated with each S{iy). 

Before defining the basis functions, we have to fix some notations. We first fix one S{iy). Note that 

tS(") itself is a triangle, let u” i = 1,2,3, be its vertices, ordered in the anti-clockwise direction. S{u) 

such that Vi is not one of its vertices. Moreover, let ti = { t j . t f ) be the unit vector pointing from Vi 

to ly. Lastly, let 丁i be the sub-triangle in Si^iy) such that Vi is not one of its vertices. See Figure 2.2 

for an example of such S{i'). 

Now we define the basis functions, associated with each iS(i/), as follows: 

= t ^ S - ^ l A ) If (工 

0 otherwise 

0 otherwise 

志(-力•，力D if (x ,?/) GTi 

0 otherwise 

As for the scalar functions in 5/,., it must be constant in each where k G (广 so the basis func-

tions can be defined to be 1 on one 1Z{k) and 0 elsewhere. The numerical results for this piecewise 

constant approximation are summarized in Tables 2.1-2.4. Next, we consider the piecewise linear 
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h II'" - UkllL^^n) Order Hix - Uh\\z' order \\q - ghh^Q) Order 

0.7071 5.961 le-001 - 3.4472e+000 - 2.7736e-001 -

0.3536 2.9944e-001 0.99332 3.4463e+000 0.00035 1.3837e-001 1.00324 

0.1768 1.4990e-001 0.99821 3.446 le+000 0.00011 6.9132e-002 1.00107 

0.0884 7.4975e-002 0.99954 3.4460e+000 0.00002 3.4559e-002 1.00029 

0.0442 3.7491e-002 0.99989 3.4460e+000 -0.00000 1.7279e-002 1.00007 

Table 2.1: Piecewise constant approximation of Si in the square domain 

h \\u - Order ||it - Uk\\z' order \\q - g h h ^ n ) Order 

1.0000 1.0371e+000 - 3.9884e+000 - 7.3379e-001 -

0.5000 4.2708e-001 1.27997 3.9167e+000 0.02618 2.4136e-001 1.60416 

0.2500 2.0785e-001 1.03892 3.8976e+000 0.00705 1.1173e-001 1.11122 

0.1250 1.0338e-001 1.00758 3.8904e+000 0.00268 5.4978e-002 1.02307 

0.0625 5.1630e-002 1.00172 3.8873e+000 0.00115 2.7388e-002 1.00532 

Table 2.2: Piecewise constant approximation of Si in the L-shaped domain 

h \\u - Order \\u - u^Wz' order \\q - gkhnn) Order 

1.0000 3.8985e-001 - 2.0449e-001 - 6.6573e-002 -

0.5000 1.9968e-001 0.96525 1.427 le-001 0.51900 1.6129e-002 2.04524 

0.2500 1.0220e-001 0.96632 1.0072e-001 0.50267 4.0192e-003 2.00471 

0.1250 5.1928e-002 0.97675 7.1203e-002 0.50037 1.0071e-003 1.99663 

0.0625 2.6235e-002 0.98505 5.0346e-002 0.50005 2.5242e-004 1.99639 

Table 23: Piecewise constant approximation of S2 in the L-shaped domain 

h — � ) Order ||ix - Uh\\z' order \\q - g h h ^ j n ) Order 

1.0000 7.9598e-001 - 3.2337e-001 - 6.4408e-001 -

0.5000 3.1653e-001 1.33038 1.1442e-001 1.49885 1.8848e-001 1.77280 

0.2500 1.6912e-001 0.90429 5.7055e-002 1.00393 6.7538e-002 1.48068 

0.1250 1.0068e-001 0.74835 3.4706e-002 0.71716 2.5803e-002 1.38816 

0.0625 6.2316e-002 0.69203 2.3239e-002 0.57864 1.0090e-002 1.35466 

Table 2.4: Piecewise constant approximation of Ss in the L-shaped domain 
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case. Again, we fix one S{iy). Let A" be the scalar linear function such that Â  = 1 at Vi and 

Aj = 0 at the other three vertices, Â^ = 1 at // and = 0 at the other three vertices, respectively. 

The degrees of freedom for the vector flmction v in each S{v) is 12. We define the basis functions, 

associated with each S^u), as follows: 

= I ^ l t w t i - If(X,?/) e r a 

0 otherwise 
\ 

‘ M ^ t i - l ^ g ^ t s lf(X.，")GT2 

”2 = i r ^ t i - i f ( x , y ) G r 3 

0 otherwise 
\ 

,3 二 I - T ^ t ^ ^ s 巧 

0 otherwise 
V 

… _ I M ^ ^ i - T ^ t ^ t s If(.-，?_/) e r a 

I 0 otherwise 

' - T ^ t ^ t s If (工,V) 6 丁1 

仍 = - T ^ ^ h if(x,y)eTs 

0 otherwise 

仰 = - If (A 1/) e r a 

0 otherwise 

仰 = I T ^ ^ ^ - If (工水丁 1 

I 0 otherwise 

仰 = I 一 if(.r,y)ers 

0 otherwise 
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0 otherwise 

‘ I f ( 工 水 n 

0 otherwise 

如 = I - ^ ^ t . If 
0 otherwise 

V 

I 0 otherwise 

For the basis functions for the scalar field, there will be 4 such basis on each 尺⑷’ each of them is 

a linear function such that it is continuous within and it equals to 1 at one of the 4 nodes and 

0 at the other three nodes. The numerical results for piecewise linear approximation are summarized 

in Tables 2.5-2.8. As you can see from Tables 2.1-2.8, the numerical solutions u ^ converge to 

the theoretical solution in the L^-nomi with the expected order of convergence in all cases. More 

importantly, the method recovers 5*3, the highly singular function, in a non-convex domain, so our 

DG method is spurious free. See Figure 2.3 for the graph of the approximation of by our method. 

For S i , the smooth function, the order of convergence of u^ in the discrete ^ ( cu r l ; n)-norm and 

Qh in the L^-norm again agree with Theorem 2.4.1. Surprisingly, the order of convergence of u^ 

in the discrete H{cm\ ; r^)-norm for S2 and are higher than predicted. The same happens to the 

convergence of in the L^-norm. 

Eigenvalue problem Beside using our new DG method to solve the equations (1.1), we also tried to 

use the discrete system to approximate the eigenvalues of the curl curl operator. More precisely, we 

want to approximate the value A G C such that there exists 0 ^ u G H(){CUY\; fl), 

(curl n , curl = A(w, ^v e //o(curl; (2.34) 
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h — 1^/1||丄2(� Order - Uh\\z' order \\q - qh\\L^{n) Order 

0.7071 4.2730e-02 - 2.7207e-01 - 2.1238e-02 -

0.3536 1.1081e-02 1.94715 1.3755e-01 0.98404 5.3234e-03 1.99622 

0.1768 2.8005e-03 1.98435 6.8812e-02 0.99922 1.3313e-03 1.99950 

0.0884 7.0223e-04 1.99566 3.4373e-02 1.00138 3.3284e-04 1.99997 

0.0442 1.7570e-04 1.99885 1.7173e-02 1.00113 8.3209e-05 2.00000 

Table 2.5: Piecewise linear approximation of -Si in the square domain 

h — ⑴） Order - Uk\\z' order ||g — Order 

1.0000 8.5857e-02 - 4.2364e-01 - 3.7549e-02 -

0.5000 2.1898e-02 1.97114 2.1642e-01 0.96902 9.6156e-03 1.96534 

0.2500 5.5377e-03 1.98345 1.0840e-01 0.99744 2.4182e-03 1.99147 

0.1250 1.3927e-03 1.99136 5.4117e-02 1.00223 6.0538e-04 1.99801 

0.0625 3.4924e-04 1.99563 2.702 le-02 1.00201 1.5139e-04 1.99953 

Table 2.6: Piecewise linear approximation of 5*1 in the L-shaped domain 

h Order \\u - Uh\\z' order \\q - qkhnn) Order 

1.0000 4.6391e-02 - 1.2824e-02 - 2.8166e-03 -

0.5000 1.8939e-02 1.29251 4.4299e-03 1.53350 5.5840e-04 2.33457 

0.2500 7.6035e-03 1.31659 1.5688e-03 1.49764 1.1202e-04 2.31755 

0.1250 3.0317e-03 1.32656 5.5484e-04 1.49950 2.2355e-05 2.32507 

0.0625 1.2054e-03 1.33062 1.9617e-04 1.49996 4.4467e-06 2.32980 

Table 2.7: Piecewise linear approximation of S2 in the L-shaped domain 

h ||ix - Order ||ix - Uh\\z' order 一 办 O r d e r 

1.0000 1.4936e-01 - 8.4435e-02 - 8.4590e-02 -

0.5000 8.3248e-02 0.84332 3.263 le-02 1.37158 3.2541e-02 1.37824 

0.2500 4.9699e-02 0.74420 1.2831e-02 1.34660 1.2778e-02 1.34855 

0.1250 3.0613e-02 0.69906 5.0715e-03 1.33918 5.0509e-03 1.33908 

0.0625 1.9110e-02 0.67980 2.0086e-03 1.33625 2.0013e-03 1.33558 

Table 2.8: Piecewise linear approximation of 63 in the L-shaped domain 
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Figure 2.2: Notations on a specific S(i/). 
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Figure 2.3: Numerical solution of the new DG method with piecewise linear elements and h = 

0.0625 

Note that our discrete eigen problem are in the following form: 

ALq — B*u = 0 
(2.35) 

Bq 一 XhMuU = 0 

So one needs to find the generalized eigenvalues A/,, such that for some 0 ^ u, 

B ( M ( � ) - ~ ^ ] r u = X M , u (2.36) 

We give the approximations of the first 40 eigenvalues in the square domain and also the first 5 eigen-

values of the L-shaped domain. The theoretical eigenvalues for the square domain are 
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where n and m are nonnegative integers and they are not equal to zero at the same time. The numer-

ical results with piecewise linear elements approximation are shown in Figures 2.4-2.6, we denote 

Ai the i-th eigenvalue for the continuous problem and Xi，h the approximation for z-th eigenvalue. 

The y-axis shows the magnitudes of the eigenvalues while the x-axis corresponds to the eigenvalue 

number, i.e. the n-th eigenvalue. We remark that we have discarded all the zero eigenvalues in the 

approximation in Figures 2.4-2.6. As the mesh is getting finer, the approximation are better. We can 

observe from Figure 2.6 that the method does not produce spurious eigenvalues and also the multi-

plicity of the dimension of the eigenspace is correct at least for the first 40 eigenvalues. 

600 I 1 1 1 1 • 
O exact 

approx. 

500 - • -

400 - ‘ 

. • • 

300 - ,〉.:、 -

200 - . (̂  ：;‘ -

1 0 0 - � � -

0 卜 . . . . . . .’ ‘ ‘ ‘ ‘ ‘ ‘ 

0 5 10 15 20 25 30 35 40 

Figure 2.4: Â  and Ai力，i 二 1 ,2, . . . , 40, for the square domain with h = 0.7071 

For the L-shaped domain, the first 5 eigenvalues are 1.47562182408, 3.53403136678, t t 2 ， t f 2 and 

11.3894793979, c.f. [5, 15]. This time we give the numerical results regarding the convergence of 

the first 5 approximations in Figure 2.7-2.11, the 以-axis shows the absolute error \ \ — Ai’/j| and the 

X-axis is the corresponding mesh width h. The convergence analysis of the eigen problem will be 

our further work. 
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Figure 2.5: \ and A�/i, i = 1,2, . . . ， 4 0 , for the square domain with h 二 0.3536 
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Figure 2.6: \ and A“/t，i — 1, 2, ...,40, for the square domain with h = 0.1768 
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Figure 2.7: convergence of Ai for the L-shaped domain 
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Figure 2.8: convergence of A2 for the L-shaped domain 
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Figure 2.9: convergence of A3 for the L-shaped domain 
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Figure 2.10: convergence of A4 for the L-shaped domain 
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Figure 2.11: convergence of A5 for the L-shaped domain 

2.6 Concluding Remarks 

In this chapter, we propose a new discontinuous Galerkin method for the curl curl operator in two 

dimension space. The method is stable with respect to both the L? norm and the energy norm. We 

have shown that the order of convergence of the proposed method is optimal in the above norms, 

and this is verified in the numerical experiments. Numerical examples also show that our proposed 

method is able to recover highly singular functions in a non-convex domain, and it does not produce 

spurious eigenvalues in the approximation of the spectrum of the curl curl operator. 
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Chapter 3 

Staggered DG method for the 

convection-diffusion equation 

3.1 Introduction 

Recall the convection-diffusion equation, which is the subject of the current chapter: 

Qn 
瓦 = A ? / - • . (hu) + /， (x，t) enx (0,T), (3.1) 

where is a polyhedral domain in d = 2,3, and T > 0 is a fixed time. 

This chapter is organized as follows. In Section 3.2, the new staggered DG method will be 

derived. Then, in Section 3.3, we will show that the numerical scheme preserves the physical laws 

(1.7)-(].3) arising from the convection-diffusion equation. The stability and convergence are then 

analyzed in Section 3.4 for the semi-discrete scheme and in Section 3.5 for the flilly discrete scheme. 

In Section 3.6, numerical results for both the static and time-dependent problems are presented to 

verify our theoretical estimates. Finally, a conclusion is given. 

3.2 Method description 

In this Section, we will derive our new staggered DG method for the convection-ditTusion equation 

(1.5). Following Chung and Engquist [11, 12], we first define the triangulation. Suppose the domain 

il is t r i angL i l a t ed by a set of tetrahedra. We use the notation to denote the set of all laccs in 
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this triangulation and use the notation to denote the subset of all interior faces in For each 

tetrahedron, we take an interior point v and call the this tetrahedron S { y ) . Using the point we can 

subdivide each tetrahedron into 4 sub-tetrahedra by connecting the point v to the 4 vertices of the 

tetrahedron. We use the notation to denote all new faces obtained by the subdivision of tetrahedra. 

For an example in 2D, see Figure 3.1. For each face k , we let 尺⑷ be the union of the two tetrahedra 

sharing the face k,. If k is a boundary face, we let 7Z{k.) the only tetrahedron having the face k,. For 

an example in 2D, see Figure 3.1. 

剩 / \ . ... .. 

Figure 3.1: Triangulation in 2D. 

We will also define a unit normal vector n̂ -, on each face k in by the following way. If 

K G is a boundary face, then we define n � a s the unit normal vector of k. pointing outside of 

f l If K e J^o is an interior face, then we fix n^ as one of the two possible unit normal vectors on 

/•c. When it is clear that which face we are considering, we will use n instead of n^ to simplify the 

notations. 

Now, we will discuss the finite element spaces. Let /c > 0 be a non-negative integer. Let r G T 

and G J". We define P ^ { t ) and as the spaces of polynomials of degree less than or equal to 

k on T and n respectively. Then we define the following: 

Local H^ (n)-conforming finite element space 

Uh = { ” I v\r G P�丁)•，V is continuous on k. G 7 小 ) ^ 之 = 0 } . ( 3 . 2 ) 

Notice that, if 7; G then 叫 尺 � G /"(尺(")）for each face “ e •F". Furtherniore, the 
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condition v\dn = 0 is equivalent to = 0 for all k G since Tu contains all boundary faces. 

We also define the following degrees of freedom. 

(UDl) . For each face k, G we have 

(/)“!；) : = J v p k d a 

for all pk e 

(UD2). For each r e T , w Q have 

:= J VPk-1 dx 
for all p k - i G P k - 1 � T � . 

In this paper, we use the notation \S\ to represent the number of elements in the set S. By Chung and 

Engquist [12], any function v in the local / /^(n)-conforming finite element space U^ is uniquely 

determined by the degrees of freedom (UD1)-(UD2). 

In the space Uh we define the following norms 

h l l x 二 [ dx + / � / (3.3) 

Ken 人 

IMli 二 [ I 2 " � 1 / d a (3.4) 
州 KeTp A 

where we remark that the integral of Vix in (3.4) is defined element by element. Here we recall that, 

by definition, u e U^ is continuous on each face in the set and is discontinuous on each face k 

in the set Tp. We say ||?/||x is the discrete L^-nonn of u and \\yWz is the discrete i /^-norm of n. In 

the above definition, the jump [li] is defined in the following way. For each k e J^p, there exist two 

tetrahedra t i and T2 such that k is a common face of them. Moreover, each r,, i = 1,2，has a face 

ni that belongs to Tu- Thus, k C dlZ^t^i) for i 二 1,2. Then for such k G Tp, we write mt as the 

outward unit normal vector of dlZ{Ki) for ？：二 1，2, and define 

, .� 1 if m.i = now hi 

劝)= 

- 1 if nii = —n on k. 

where n is the unit normal vector of the face k . Then the jump [it] on the face k is defined as 
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where Ui = u\r.. 

Now, we define the following: 

Local /7(div; Jl)-conforming finite element space 

= { q \ G and q • n is continuous on G J^p}. (3.5) 

Notice that, if q e W^, then q\s{u) ^ H{diw,S{iy)) for each v e J\l\. We also define the 

following degrees of freedom. 

(WDl) . For each k G J^p, we have 

V^K(q) ：= J q-npk da 

for all pk G 

(WD2). For each t" G we have 

: = j q-Pk-i dx 

for all pk-i e 

By Chung and Engquist [12], any function q in the local / / (div; r^)-conforming finite element space 

W}, is uniquely determined by the degrees of freedom (WD1)-(WD2). 

In the space Wj^, we define the following norms 

I I P I I X ' = f | P | 2 dx + V / " ( P • n f da, (3.6) 

I I P I I I ' = f { y - p f d x + ( [ [p •几]2 da (3.7) 

where we remark that the integral of V • p in (3.7) is defined element by element. Here we recall that, 

by definition, p G W^ has continuous normal component on each face in k e Tp. We say | | p | | a " is 

the discrete Z/^-norm of p and | |p | |z ' is the discrete / / (div; 17)-norm of p. In the above definition, the 

jump [p • N] is defined in the following way. Let h C J^「Then there are exactly two tetrahedra ti 
and T2 such that k is a. common face of them. Let be the node of 丁丄 that does not lie on k . Then 

we have k, G dS{ui) for i — 1,2. Let 7n,: be the outward unit normal vector of (//,). We define 

, � 1 if m., = n on k. 

—1 if 111, — — n on K. 
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where n is the unit normal vector of the face ti. Then the jump [p • n] on the face k is defined as 

:p .n ] = 4 i ) P i •几+ 4 � 2 • � 

where p, = p|r, . 

We define 

Bh(Ph,”) = Ph-Wv dx - Y^ / p/, • n [^] da, (3.8) 

Bli^ih^q) = - UhV • qdj： + E Uh[q. n] da, (3.9) 

k g 巧 “ 

Fh{v) = [ f v dx. (3.10) 
Jn 

By Chung and Engquist [12], we have BiJ^v, q) = v) for all v E Uk and q G W^. Moreover, 

the following inf-sup condition holds: 

K\\v\\z < sup ^ f ^ (3.11) 

for all V e Uh. Furthermore, there exist interpolation operators I and J such that \\u - Iu\\ < 

C7i(’+1|zi|h;^+i⑶，11^ - Iu\\z < �� and ||p — J p | | S C / / 呼 � for smooth 

functions u and p. 

Our new staggered DG method is then defined as: find (p^ , w^, u^) G W^ x W^ x Uh such that 

/ P /^ .qcb : = Bl{uh,q) - [ w/̂  • q dx, (3.12) 
Jn 2 Jq 

Wh-qdx = / Uhbh • q dx, (3.13) 
Jii Jn 
厂 d u 1 厂 \ f 
/ - ^ v dx = -BhiPh^v) - - / b/, -Pf^v- - / •、¥"•“：!； + ( 3 . 1 4 ) 

J n dt Z J q 4 J q 

for all test functions q G Wj^ and v e Ui,, The derivation of (3.12)-(3.14) follows a similar technique 

as in Chung and Engquist [12]. We emphasis here that in (3.14), we use w^ instead of b n/；. This 

is one of the key steps for the conservation of structures. Furthermore, the given vector field b is 

approximated by b/̂  in the space Wf^, and it is defined by 

B,,,{b-h,,„v) = {\ Vv e Un. 
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The existence of such approximation is proved in [12]. Since V • b = 0 and b has continuous normal 

component on each face k, 

二 B " ( b，… = B l { v , h ) = 0. (3.15) 

For given u^, we first find p；, by (3.12) and w/̂  by (3.13), then find Uf, for the next time step by 

using (3.14) and some suitable time-stepping numerical scheme. For example, if the Crank Nicolson 

method is used for time-stepping, the resulting fully discrete scheme is 

Jn 丄 Jn 

/ … . q r i 7 : = I • q dx 
Jn Jn 

义 wr 一 J j c 、 r . — 

i 一 ( 宇 ’ +• i C M � ) -
I 1 f , • ^十去， " , n + l . n + 1 、 � f I 1 , 

+ 7 / b；̂  • (W；, 2 +W/, 2 ) 7； dx = / .r+2,; dx. 

4 Jn Jn 

The approximation properties of these schemes will be studied in detail in Section 3.4 and 3.5. 

3.3 Preservation of physical structures 

In this section, we will prove that the numerical solution of the new staggered DG scheme (3.12)-

(3.14) preserves the properties (1.7)-(1.3) in some discrete sense. 

Let f t ' be a subdomain formed by the union of connected tetrahedra S{iy) and let Q" be a sub-

domain formed by the union of T Z { k ) for those faces k that lie on the tetrahedra in V t ' . Notice that 

C Vt". Then we have the following theorem. 

Theorem 3.3.1 The relation (1.7) is preserved in a discrete sense, namely, 

厂 尝 " 工 = f -111(1(7+ f dx + ei (3.16) 

•A"' r ‘ KediV 九 "化’ 

where rn is the unit outward normal for dVl" and the remainder 
1 1、 1 

= -o / iPh + o'^/i. — ) • bii dx. 
^ .hi"\iv 上 
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Proof. We define test functions v eU^ and qeW^hy 
( 

1 x^Q!' bh X G n' 
y = , q = < 

0 otherwise 0 otherwise. 
\ V 

Then using these test functions in (3.14) and (3.12) respectively, we have 

/ Ph • dx = Bl(u/,,q) - ]- f w/, • b" dx, (3.17) 
Jiv 2 人y 

L 警 = — 召 ‘ ， ” ) — I L . P" — 1 L b" . + L ‘ (3-18) 

By the definitions of Bh, and v, as well as the fact that [i;] = 0 on all internal faces o f n " , we have 

= - Yl Ph. •厂 i M da = — / P/, • m da 

Kedfi" Kedfi"人 

where m is the unit outward normal for dVi". By (3.17), the equation (3.18) becomes 

义 〃 警 " 工 = E J pH-mda-lBUu,^q) 

1 1 (3.19) 

+ / I dx - - / + -w/,) . bk dx. 
Jn" 上 J ^ 

By the definitions of B^ and q as well as the relation (3.15), we have 

= - / UkV • bu dx + V / Uf, b" . n da. 
J 释 ' .ennon'人 

Take one triangle r G Vt" \n ' with face kq G dO! and faces Ki, (i = 1, 2, 3), in d n " , then by the 

Green's identity, 

/ Vu/i . b " dx-\- V • b " dx — / 1//山"• n da. 

J T JT Jdr 

Thus, we have 

- UkV • b/i dx + / Ukhk • n da = - ^ / Uhbk , n da + / Vuh • bh dx. 
JT • / k o JKi Jt 

Then (3.19) becomes 

L 智 I 义(p, 

+ I ./. - I- [ (p/, + ^wi, - •"./,) . hi, (iv 
•hi" 乙.Jn"\n' � 

which proves (3.16). 
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• 

From Theorem 3.3.1, we see that the numerical solution u^ satisfies a discrete analog (3.16) of 

the continuous counterpart (1.7). We emphasize that the term p" — ̂ Uhb can be seen as a discrete 

analog of the continuous quantity Vu — ub. Moreover, the term p八 + 去 w/, can be seen as a discrete 

analog of Vu . Thus, by the result of the next section, the remainder term ei, which involves the 

integral of the difference of p/̂  + ^w^ and Vu^, converges to zero. 

In the next theorem, we prove that the numerical solution Uh also satisfies a discrete analog of 

(1.8) and (1.3). 

Theorem 3.3.2 The relations (1.8) and (1.3) are preserved in a discrete sense. For the whole domain 

ft, we have 

L + + \ dx =义 fuh dx (3.20) 

while for any siibdomain Q/' C fl, we have 

f 办 + [ ^/il^ dx - f UhPh • 771. da = [ fuh dx + 62 (3.21) 
丄jvl» Jil" ^ Jan" Jn" 

where m is the unit outward normal on dVt" and 

€2 = - / Ph • iPli + l^h 一 Vzz/̂ ) dx. 
Jn"\n' 乙 

Proof. Taking q = p；̂  and f = w/,, in (3.12) and (3.14) respectively, we have 

[Ph . P/i dx = Bl{ui,,piJ - I [ yvh-Ph dx, (3.22) 
Jn 丄 Jn 

f ^^Uh dx = - [ • pf, Uh - 7 [ b/,, • Wh Uh dx + [ f uh dx. (3.23) 
Jn 饥 � J n 4 J q 

Using (3.13), equation (3.23) becomes 

I ^Uk dx = -Bk{Ph,Uk) - I f Wh • P/i - 7 / w/, • w/, dx + [ f uh dx. (3.24) 
Jii 饥 � J n 4.7J2 Jn 

Adding (3.22) and (3.24), 
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which proves (3.20). 

To prove (3.21), we define the test functions v e Uh and q G W^ by 

Uh X G n � P/̂  X e 

V = < ， q = < . 

0 otherwise 0 otherwise 
V \ 

Then, using the above test functions in (3.14) and (3.12) respectively, we have 

/ Vh •Phdx = q) - ^ / w/̂  • p/̂  dx, (3.25) 
Jn' ^ Jn' 

[ ^ ^ h dx = -BhiVh^ V) - � f bh-PhUh-] [ bh-WhUhdx-\- [ fu^ dx. (3.26) 
Jn"饥 I Jq,, 4 Jw, Jn" 

In (3.13), we take the test function q = p/̂  in and q = 0 elsewhere, we see that 

/ Uhbh • Ph dx = / Ph -^h dx. 
Jn' JQ.' 

Similarly, in (3.13), we take the test function q = w/̂  in Vi' and q = 0 elsewhere, we obtain 

/ Uhhh • w" ob = / w" • w" dx. 
Jn' Jiv 

Moreover, by the definition of Bh, we have 

Bh(Pk, y) = " Ph . Vn/, dx — Pk.n [uh] dcr _ 卜 p" . n da 
拟丨' K^TpHiV JK nediv “ 

By the definition of D^, we have 

BU'^h. q)=召/i(q, Uh) = Ph- dx - Ph.几[uh] da. 

Adding (3.25) and (3.26), 

f I � 2 dx+ f + i w/j2 dx — [ Uh P/, . n da 
z at Jq// Jn" 丄 Jon" 

=I fuh dx - I p" • (p/, + ^w/, 一 Wuh) dx 
Jn" J n''\n' 丄 

which shows (3.21). 

• 
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3.4 Stability and convergence 

In this section, we will prove the stability and convergence of our new staggered DG method for both 

the static and time-dependent convection-diffusion equations. For the time-dependent problem, we 

will consider the semi-discrete case in this section. The corresponding fully discrete method will be 

analyzed in the next section. In the following, || • || denotes the standard norm defined on f l 

3 .4 .1 S t a t i c p r o b l e m 

In this part of the paper, we will analyze the static version of the convection-diffusion equation (1.6). 

Our new staggered DG method can be written as: find {uh, e Uh 乂 W^ such that 

I = q) - i I w/, q dx, (3.27) 
Jn 乙 Jn 

/ w/, • q d x = / Uhbh . q dx, (3.28) 
Jn Jn 

+ o / b" . p" ^^ + 7 / b/, • Wk V dx= / f v dx (3.29) 
^ Jn 4 Jq Jvl 

for all test functions (u, q) G x W^. We assume that the corresponding functions u, p and w 

satisfy the following system 

I p qdx = - ^ [ w-qdx, (3.30) 
Jn z Jn 

H——/ b p H——/ h • w V dx = / f v dx (3.31) 
2 Jn 4 Jn 

for all test functions (?;,q) G Uh x W}-^, and w = bu. The following theorem gives stability and 

optimal error estimates for the method (3.27)-(3.29). 

Theorem 3.4.1 Let (uh.Pk) ^ U^x W^ be the solution of(3.27)-(3.29). Then the following stability 

holds: 

\\uk\\z < A1I/II. (3.32) 

Moreover, we have the following optimal error hounds 

\\Iu — uuWz < II'", - u/JI < C h a n d — u,,\\z < Ch^'. (3.33) 
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Proof By (3.27), we have 

in (Ph + ~Wh) . q dx = B;;.r Uh, q) . 

Thus, by the inf-sup condition (3.11) for the operator Bh, 

11 

~ 11 - J n (Ph + ~ W h) . q dx 
Ph + 2 Wh - q~~h Ilqll 

> 
Bh(Uh,q) 

sup -'-'---
- qEWh Ilqllxl 

~ Klluhllz. 

Moreover, by taking the test functions v = Uh and q = Ph in (3.27)-(3.29) and following the proof 

of (3.20), we get 

Ilph + ~wh112 = in f Uh dx. 

Therefore, 

21 2 r II 1Lhllz :::; ](llph + "2whll = K In f Uh dx :::; Kllflllluhll :::; }(llflllluhllz 

where we use the inequality Iluhll :::; Klluhllz. Thus, (3 .32) is proved. 

Now we will prove the error bound (3.33). Subtracting (3 .30) from (3.27), we have 

r (p - Ph) . q dx = Bh(u - Uh, q) - ~ r (w - Wh) . q dx . In 2 In (3.34) 

Similarly, subtracting (3.31) from (3.29), we have 

Bh(p - Ph , v ) + ~ r bh . (p - Ph) v d~[; + ~ r bh . (w - Wh)V dx 
2Jn 4Jn 

= - ~ r (b - bit) . P v dx - ~ r (b - bh ) . W v dx . 
2Jn 4Jn 

(3.35) 

Taking q = Jp - Ph in (3.34), we have 

r (p - Ph) . (Jp - Ph) dx = B h (u - U h, Jp - Ph) - ~ r (W - W h) . (Jp - Ph) dx . In 2Jn 

Similarly, taking v = I U - U h in (3.35) , we have 

Bh(p - Ph ,In - UhJ 

1 j' 11 + - bh . (p - Pit,) (Iu - 'Uh ) dx + - bh . (w - w h) (Iu - 'U. h) d:[; 
2. n 4 n 

1 j' 11 = - -2 (b - b,.J . P (Iu - Uh) dx - -4 (b - bh) . W (I'll - Hh) d.'C . 
,0 0 
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Using the facts that Bl{u - lu, q) = 0 for all q e Wf, and B^ip — J p , t;) = 0 for all v eUh (see 

[12]) as well as adding the above two equations, we have 

/ (P — P/J • {JP - Ph) d x ^ l f (w - w/j • (Jp — p/J dx Jn 丄 Jn 

+ •义 b" . (P - P") - + Wh){Iu — uh) dx 

= - ^ [ (b - b/0 . p (lu - Uk) d x - l [ (b - b/J • w {lu - Uh) dx. ^Jn 4Jq 

Let w = I l k ( b k l u ) be the I ? projection of that is, w G W^ is defined via the relation 

^ ( w 一 hhTu) • q cb = 0 for all q G W^. Then 

/ (P — PJ • {JV - Ph) dx + l [ (w - w/,) - (Jp 一 pJ dx 
Jn 2 Jn 

+ 0 / (P - Ph) • (w - w") dx^- / (w - Wh) • (w - Wh) dx 
乙 Jn 4 J q 

=丢 j j j ? - P h ) - V d x + ^ j j w — w/J . 7] dx 

—•义(b - b") • p (Tu — Uh) dx — ~ j j p - b/0 . w (Jn 一 Uh) dx. 

where 

^ = (w - w/,) - (bhiu — bhUh). 

Simplifying, we have 

j : � ( ( P — P J + 臺…一 w/O) • ( ( J p — P/J + w / J ) dx 

= 臺 丄 ( P - Ph) •” 办 + \ ^ ( w - W/,) • 77 dx 

- S / (b - b/J . p (lu — Uh) dx -I f (b - b/0 . w {lu - Uh) dx. 
上 Jn 4 Jii 

Then, 

义 ( U p _ P/J + ^ ( w — w/O) • ( ( j p — p；,) + ^(iv 一 w/O) dx 

= 义 ( ( j p - P) + ^ ( w - w ) ) • ( ( J p - p j + ^ ( v v - W / , ) ) dx 

+ 秦 / (P — P/J . V + ^ / (w - W/O . rj dx 
乙 Jn 4Jq 

~ o / (b - b/J • p {lu — Uk) dx - 7 / (b - b/,) • w {In — •"/,) d.r. 
上 Jn 4 J^i 
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By (3.28) and the definition of w, we have J^rj • q dx = 0 for all q G W^^, and consequently, 

\ jjV _ P") . " cte + 1 义(w -wh)-ridx = ^ 义(p + dx 

1 f 
—- Vn . 7/ dx 

2 Jn 

= - / {Vu 一 J\/u) . Tj dx 
2 JQ 

where J V u is the projection of the vector V u onto W^. So, 

L ( ( � — + w")) . ((Jp-p/,) + i(w-w/,)) dx 

= / ( ( ^ p - p ) + ^(w-w)) . + dx 

\ r I f (3.36) 

+ - / (Vw - JVu) -rjdx - - / (b - b") • p {lu - u^) dx 
^ Jn z Jii 

- - / (b - b/i) • w [lu - Uh) dx. 
4 Jn 

Using (3.34), 

f (P —P/J.qf^工+ • f iyy-yyh)-qdx = Bl{u-uk,q). 
Jn 丄 Jn 

Therefore, 

义 ( ( P — JP) + 臺(w - w ) ) -q dx + 义 ( ( J p — p/J + - W/0) . q dx 

= B ^ i l u 一 Uk,q) 

where we use BRu — lu, q) = 0. Thus, by the inf-sup condition (3.11), 

K\ \Tu — UhWz < II ( ( J p + w/O) II + II ( (p - J p ) + 去（w — vv)) II. (3.37) 

Note that 

^ 77 • 77 t i x = ^ 7/ • I ( w - w / 0 — [hhTu — b / i u j j> dx = 一 j广(bhlit — b / ^ u / J dx 

and consequently 

M < (max|b/j) \\Iu-2L,\\. 

By the discrete Poincare inequality, i.e. \\Iu 一 '<./,/,,|| < C\\I'U — we have 

Ik/ll < C'{|| ( ( J p — p") + 一 w, ,)) II + II ( (p 一 J p ) + 去(w — >v)) II}-
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Hence, by (3.36) and the Young's inequality, we get 

< C{\\ ( (P — J p ) + i ( w — w ) ) | | + ||V7/ — JVu\\ + lib — M } . 

Hence, by (3.37), 

II工权-UhWz < C{ | | ( ( p — J p ) + i ( w 一 iv)) II + \\Vu 一 J\/u\\ + lib - b/,11}. 

Notice that, since w = hu, 

w - w = w - n " ( w ) + - n/“b"tz) + n / “ b / � -

Therefore, 

||w - w|| < ||w - n"(w) | | + | |n"(b tO - IT/, .(b/�II + | | n " ( b / � — 

< | | w - Jw|| + | |u(b-b/,)| | + ||b/,(TZ-Jl/)|| 

By using the interpolation error estimates for the operators I and J , we obtain the first inequality 

in (3.33). The second inequality is obtained by using the discrete Poincare inequality \\lu - Uh\\ < 

K\\Iu 一 UhWz and the interpolation error estimate for X. Finally, the third inequality in (3.33) is 

proved by the error estimate of the operator X with respect to the Z-norm. 

• 

3.4.2 Time-dependent problem 

In the time-dependent problem, We consider 

du 

^ - Atz + V • (bu) = f . 

The corresponding numerical method is 

/ P/i •({dx = Bl{uh,q)-If Wk q dx, (3.38) 
Jn 2 Jn 

/ w" • q dx = / ui,bk • q dx, (3.39) 
.hi Jn 

L 尝 d x + + 去义 b" • p/, vdx + ^J^^ b/, • w/, 1’ dx = 乂 f v dx. (3.40) 

for all (?J, q) 6 Uh x Wf,. The next theorem examines the stability and convergence of numerical 

method (3.38)-(3.40). 
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Theorem 3.4.2 Let (Uh ,Ph) E Uh x W h be the solution of(3.38}-(3.40}. Then the following stability 

holds: 

max Iluh(- i t)II + ( rT 

IIUhll~ dT) ~ ~ e(IIUh(-, 0)11 + rT 

IIfll dT). (3.41) 
OStST lo lo 

Moreover, we have the following optimal error bounds 

OTt~XT 11 (I U - U h) (-, t) 11 ~ 11 (I U - U h) ( ., 0) 11 + eh k+ 
1 

. 

Proof As in the static case, we have 

1 
IIUhllz ~ Kllph + 2" whll. 

(3.42) 

Hence, by taking q = Ph in (3.38), v = Uh in (3.40) and summing up the two equations, we have 

1 d 2 2 
2" dt IIUhll + IIUhllz 

(
1 d 2 1 2) < e --IIUhll + IIPh + -whll 
2 dt 2 

C In f Uh dx <:; CIIflllluhll 

Integrating in time from 0 to t ~ T and using Young's inequality, we have 

IIUh( , t)1I 2 + lllUhl11 dT 

< C(lluh(-, 0)11 2 + oTi':{r Iluh(-, t)11 faT IIfll dT) 

< e(IIUh(- ,0)II 2 + le ( max IIUh(- , t)II)2 + e ( rT 

IIfll dT)2). 
2 OStST 2 lo 

As this is true for all 0 ~ t ~ T, we have 

max IIUh(-,t)II + ( rT 

IIUhll~ dT)~ ~ e(IIUh(- ,O)II + rT 

IIfll dT). 
OS LS T lo lo 

This gives the stability (3.41). 

Next, we derive the error estilnates (3.42). Note that we have 

ll(p ~ Ph) · q dx = Bi.(u ~Uh , q) ~ ~ In (w ~ Wh)· q dx, 

r 8 (u - U",) lD. . at v dx + Bh(p - Ph, v) 

+ ~ r b h . (p - P 11,) 'U d;); + ~ r b h . (w - W h) 'U dx 
2 ln 4 ln 
1 j' 1 j' = - - (b - bh) . P v dx - - (b - b",) . wv dx. 
2. 0 4 n 
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Again, define w to be the I ? projections of b/iXu onto Wh- Following the same steps as in Theorem 

3.4.1, we have 

义 Uh)、工 u - u,,) dx + L ( ( ^ P — P/J + 丢(W — W/O) . ( ( J p - P/J + — W/O) dx 

=Jn 8�工：u)办—‘叫)+ L ( ( 力 - P ) + ^ ( w - w ) ) • ( ( J p + w , ) ) dx 

+ l I + ^ [ (w- w/O . T] dx 
^ Jn 4 J � � 

- o / (b - b^) p {Xu - Uh) dx - - / (b - b/J . w {lu - Uh) dx 
^ Jn 4 J q 

=L 列工；— u )办—叫 J + 义 ( ( � — P ) + 臺(W — w)) . ( ( j p + w , ) ) dx 

+ ^ / (v?/, 一 JVu) -T] d x - ^ [ (b - b/i) • p {lu 一 Uh) dx 
丄Jn 之Jn 

- - / (b - b/i) • w {Xu — Uh) dx.. 
4 Jn 

where 7/ is set to be same as the one in the proof of Theorem 3.4.1 and therefore the following 

estimate still hold: 

||"|| < ( m a x | b ^ | ) \\Iu~uh]\. 

Integrating in time from Otot<T and using Young's inequality, we have 

— t ) f + j : IK J p - p , ) + — W")||2 d 丁 

< c{\\{Iu 一 + max , \\{lu — j:严:厂)"d丁 

+ I I I U p 一 P") + 去(W — w, ) | | | | (p 一 J p ) + i ( w — w)| | dr 

+ max II(X?/ — "zOhOII f | |Vu — JV7/,| | dr 
^ — ̂  — ^ 0 

r j i 

+ max [ l ib -b / , I I dr) 
0<t<I Jq / 

< c[\\ilu — u") (•，0)||2 + nmx^ II (Xu — u,)(.,t)liy + c U : 严 ； - I I d r f 

+ J I WiJp — Pk) + ^ ( w — W/Of + ||(p — J p ) + — w)||2 dr 

+ maxJK^' '^ - ？ + C ( J : - 调 I dry 

+击(( / i〜义、Jl—'"")(.，OII) ' + I : lib 一 b" | | (丨T丫). 
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As this is true for all 0 < i < T, we have 

< c(\\{Iu - + £ dr 

+ (义 IIP — J p f dry + ( j : ||w - iv f rfr) ' + ^ ^ ||Vn - JWu\\ dr 

义 d r ) . 

By using the interpolation error estimates for the operator J and J , we have 

< C<i||(Zu-tz/0(.，0)||+CVi"+i(l dr 

+ ( 义 丨 P ( . ’ T ) I ? / A : + 1 ( 一 ) 2 + ( y ^ | W ( . , T ) | 一 一 T ) 2 

pT 丄 nT I 

+ (义 I?".，T)|?^…⑴一) '+ ( /�|b(.，r)|2"叫⑶ y 

+ f 付 A : + 1 � ) f |b(.，T)|沪+1 ⑴ ) c / t ) . 

0 J 0 

So the error estimate (3.42) is proved. 

• 

3.5 Fully discrete scheme 

We further discretize (3.40) using the Crank-Nicolson scheme for time stepping. Let T be the final 

time, At be the time step size and denote Nr = ^ the number of time steps and t,, = n(At). 

We let also uf^ and pJJ be the numerical approximation of 'u(tn) and p(tn) respectively. Then the 
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resulting fully discrete numerical scheme for (1.5) is as follows: For n = 0,1,...，Nt — 1, 

[ M + p r ” . q " 工 = + < + i , q ) — J [ ( w r ' ' " + w r - ， 糾 ) • q dx, 
Jn 丄 Jn 

/ I bl'^^ul-qdx 
Jn Jn 

J 〒 、 — 二 j hl'^'ul + l - q d x (3.43) 

i 一 ， ’ … + U b r - 存 ) -

I 1 f u ^ + i / , n + i ’ n + l 、 J f , 

2 " " “ ) = J 广 2 “工, 

for all K q ) E I h x where b；；""^ = J b ( 力 奸 a n d 广 = / ( 力 奸 臺 ） . 

Now we analyze the stability and convergence of the scheme. 

Theorem 3.5.1 Let (uLh.Ph) ^ U^x W^ be the solution of (3.38)-(3.40). Then the following stability 

holds: 

+ (3.44) 

k=0 

Moreover, we have the following optimal error bounds 

max l l e / ^ � 1 < + + Af^) . (3.45) 

0<7).<N/ 

Proof. We first take q = '' ~ in the first equation of (3.43) and get 

(3.46) 

b ; m + f , —I jy：'''+wr 一 ) • d工. 

Next, take v = iif^ -i- in the last equation of (3.43), we get 

r ( n + l \ 2 / \ 2 i r “ + , 

/ ( 、 ） A 广 “ ) 山 c - ^ ^ ^ ) • ( w r * ’ ' i + 办 ： 
J 

+ + + i 义 ( P L ^ ) . ( < + … + � v ; : + 一 + � ( u . (3.47) 

二 / > + “ / ; : + " ; : + ' ) ( /工. 

•ni 
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Summing up (3.46) and (3.47) we have 

去 ( K + l | | 2 - K||2) + i||(pr^+p；；) + ——)||2 

= / 产•《 + <+”. 
Jn 

Hence, by Cauchy-Schwarz and triangle inequalities, we get 

去(K+1||2 — IKI|2) < / 严 + < II广+*II(KII + K+1||). 

Therefore, if + ||以；；+11| 0, we have 

K + i | | < K l l + A ” � + * | | < K l l + A t f ^ l l / " 去 I I . 

fc=0 

So the scheme is unconditionally stable and (3.44) is proved. Next, we will analyze the convergence 

of the scheme. In order to lucidly convey the results, we adopt the following notations: 

e办广=< -eO广=‘/i(•，tn) - Tu(-, tn)； 

e"(P广=P；； - Jpi-.tn), e ( p 广 = p { ; t n ) - Jp(•，力n), 

e " ( w 广 = - e(w广+1，" - 去 一 W"+*，"， 

where is the L? projection tn) onto the space U^ and w ” . 去 = t n ) . 

We define e/i(w广 + 去， a n d e (w)"+ l ’ "+ i similarly. Note that from the first equation of (3.43), we 

have 

[{enipr + • q dx = Bl{en{uT + e"�."+i，q) 

Jn 

丄 Jn Jn 

— B:,(eC?ir + e (? , ; r+ i ’q) + i [ (6(伸广+*，" + e ( w)"+*，"+ i ) • q 
2 Jn 

+ 5 f + - b；；^̂ ) • q d x + 
乙Jn 

where 

/t^ + ^ q ) 二 - I + p(-, W i ) ) • q dx + Bl(u{-J.n) + /„ + ,), q) 
•hi 

丄.hi 
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By the definition of lu, + e O 广+i, q) = 0. Hence, 

Jn 

= [ ( e 一 广 + 去 ’ " + e “ w 广+l’-+i) .qc/工•+ [ (e(p 广 + e(p)-+i ) • q 
^ Jn Jn 

f ( e ( w 广 + . q c/工 
2 Jn 

+ i j j u � . , tn) + U。，‘+I))(b时去-b；；.” •qdx + <"去 ( q ) , , (3.48) 

On the other hand, from the last equation of (3.43), we have 

Jn A力 ^ Jci 2 

= [ r ⑷ 奸 ; J 咖 广 ） + 1 / c ^ . ( 咖 " 〜 咖 时 1 ) . 办 

Jn 丛 2 J � i 2 
, D 广 + e(p广+1 1 A n+i , (e(AV^+i" + e(>v)"+i’"+i)� 

2 ' ' 4 Jn ( 2 ) 
+ J 义 ( P(.， t n ) + p ( 丄 — 13；；+-) . ^ d x 

+ 1 [ + - b"^^) •vdx + R^^hv), 
o Jn 

where 

f 产hd工-[(斗，力”+1),-"(.丄—B;aP(.’力”)+P(.’力”+i)’z;) 
Jn Jn A 力 2 

—1 r bn+i . (p( ."n)+p(.，,n+l)) ”办—i b ?计去 ( U ( . ’ � + “ 1 ) ) ” 办 

2 Jn 2 4 Jq 2 

By the definition of J p , Bh{已“口广+？‘“口,…,v) = 0. Hence, 

[(咖奸1 广 ⑷ n ) w x + i / br^广“p)…"(p广1).办 
Jn A力 2 J�i 2 

+ 4 i b" . ( 2 ) “ " 工 

= J J At � “ … 丄 、 2 )�如 

+召 , , (P)”广广，”)+1 / c 去.(附‘小々<'+—)). 

I (p(.,/'j + p(.，t"+i))(b"+^—b;;.+V (H/:,; 

4 Jn 

+ / (w."+*’" f w".+ “' + i)(b"+* - b;: + ” . V dx + . (3.49) 
^ Jn “ 
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1 1 

We first give estimate for IIR~+211 and IIR;+211. Notice that since u, p satisfy the continuous prob-

lem, we have 

r p(- , tn+l) . q dx - Bh(u(- , tn+l), q) + -21 r (u(·, tn+l)bn+~ . q dx = o. in 2 2 in 2 

Thus, 

1 

R~+2 (q) r (2p(- , tn+l) - (p(., tn) + p(., tn+1 ))) . q dx in 2 

+Bh(u(·, tn) + u(·, tn+d - 2u(·, tn+l), q) 
2 

+~ r (2u(- , tn+l) - (U(· , tn) + u(- , tn+d))bn+~ . q dx 
2 in 2 

< IIp(- , tn) + p(., tn+d - 2p(·, tn+l)llllqll 
2 

+Cllu(" tn) + u(- ) tn+d - 2u(·, tn+l)IIZllqII X' 
2 

1 
+-llbll oo llu(" tn) + u(- , tn+d - 2u(- , tn+l)llllqll· 2 2 

Similarly, 

10 r+~ v dx 
r au in at (-, tn+ ~ ) V d.T, + Bh(p(- ) tn+ ~ ) ' v ) 

+- bn+2 . p(. t 1) v dx + - bn+2. bn+ 2 u(. t 1) v dx 11 1 11 1 1 

2 ' n+- 4 ' n+-n 2 n 2 

Thus, 

R2 2 (v) :::; C 11_(-, t. l) _ u ' ) n+l - U " tn) 1111 11 n+l ( aU (t) ( 
at n+ 2 1\ i V 

+llp(- ,t l) _ p(-,tn) +p(- , tn+d
ll 11 11 n+

2 
2 Z ' v x 

+llbll oo IIp(- , tn+ ~ ) - pC tn ) +r-' tn+1) 1IIIvll 

+llbll~ Ilu( , tn+ ~ ) _ u( -, tn ) \ u (- , tn+llllllvll) 

Using Taylor's expansion, and the norm equivalence, we obtain 

and 

IIR~+ ~ II :::; C6 t2(IIP tt (-,(n+l) + Ptt (- ' (~+ l )11 + Il utt.(-'~n+l) + 'att (- ' ~~+l)ll z 
2 2 2 2 

+ Ilutt (- ) ~n+ ~ ) + Utt (- , (;,,+ ~ )II), 

IIR;+1 11 :S C""t2 (lluLlt (- " ln+~ ) + UttL ( " I;t+ ~ )1I + IIPU( '(n+ ~ ) + p" C('+1 )ll zl 

+ 11 Pu (- , (n+ ~ ) + Pu (- , (;L+ 4) 11 + 11 11, 1.1. (', ~n+ 4) + 'a ft (- , ~:, + ~ ) 11) . 

(3.50) 

(3.5 1) 
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We will make use of these two estimates later. Now we take q = …^ 队… in (3.48), 

V = + e“w广+1 in (3.49) and adding the two equations, we get 

去 ( 1 | 6 / ^ « + 1 | | 2 - lie办广 | |2) + i | | ( e , ( p r + + + 广 + 去 ， 奸 ” 旧 

= L ( 咖 咖 广 ) ( e “ u r + d:^ 

• f / ( e ( p ) n + e ( p r + i ) P ( P ) n + / " ( P � + i ) 办 
Jn 2 

+ 丢 •广 + 咖 广 1 ) 广 “ P ) " + / " ( P ) " i ) 办 

+ ( 付 广 

+ ( 2 )”办 

+ \ f tn) + - dx 
•J 

J 

+ 臺 / ―时去’”+ W 奸 一 ) ( b " . + 去 - 去 ) ” dx 

+ � + | ( e , i ( p ) " + 2 e “ p r . + i ) + 丑 ‘ � n + • 产 ) ， 

where we have used the fact that Bu,{v, q) = v). 

Using Cauchy-Schwarz and Young's inequalities, with suitable scaling, we arrive 

去lie"("广+i||2 S 去 广 | | 2 + - e ( 収 广 | | + 

+ C： (| |e(p广 + e ( p广1 | 2 + lie(权广 + f (3.52) 

+ l i b 几 — + + K 计 + e 

Note that 

II咖广+1—e('“n = II 外“说Z?,)(.，。出II 

/-7I 
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Hence, 

广+i||2 = + II 列 " ^ 广 ) M ) | | dtHeniur + e.iur^'W 

+ C A 力(||e(p 广 + e(p 广+i||2 + ll(eCa)- + 

+ 1 — — f + f + | | � + * II + II) 

< IMU)0||2+ lie一n|| 广 严 ： 工 〜 d t 

o<n<Nt J q at 

Nt Nt Nt-1 1 

n=0 n=0 71=0 

Nt-l 1 Nt-1 1 

+ E 丨丨丑，丨丨2 + � < m n器 l i e " � 1 E l l ^ r ^ l l ) -
n=0 -""- n=0 

As this is true for all 0 < n < A^̂ , using Young's inequality, we get 

Tl —0 

+ E I I 咖 n i + "b 奸* - C ^ II + 
n=0 n=0 n=0 

Nt-1 1 

iî r̂ ii)-
n=0 

Using the interpolation error estimates for the operators I and J, together with (3.50) and (3.51), 

the error bound (3.45) follows. 

3.6 Numerical examples 

In this section, numerical tests illustrating the convergence of the new staggered DG method are 

presented. Both the static problem and the time dependent problem are considered. Our results show 

that the new method has the expected rate of convergence. In all examples below, the domain f l is 

taken as [0，1]", t / = 2，3. 

3.6.1 The static problem 

Now we will present numerical results to verify the convergence rate of the new staggered DG method 

(3.27)-(3.29) for the approximation of the static problem (3.30)-(3.31). We will consider the two-
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dimensional case, that is, d = 2, and three choices of b defined as follows: 

/ i \ / I I A / / A , . / 1 \ / X + y + 1 \ cos(7r'^) 
b i O ’ " ） = , b2(x,y) = , b 3 ( : r , y ) = . 

\ v \x -y-\-1 j Xcosi-Kx) 

For the convergence test, we take the exact solution as 

u{x, y) = sin(7ra:) sin(27ry)e'^ 

and take the source term f accordingly. We will consider both the piecewise constant and piecewise 

linear cases, that is, /c = 0 ,1 . The numerical results for b i , b 2 , b 3 are shown respectively in Figures 

3.2-3.4 where the logarithm of the errors are plotted against the logarithm of the mesh sizes. For 

each figure, both the L^ and the H^ errors are shown. All of these results show that we obtain the 

expected rate of convergence. 

i��i i 一 

‘.，, / ‘3 一..——— , 

1 0 z . / 

Z . I '•‘ 
- 『 ’ • ‘‘ 

I , � / ' ' / I - i 
\ ’’' iio�- / p=o 别 

• s , 
' < z / 、 / ' / 10 • / 

Piecewise Constant Piecewise Constant 
-在 » Piecewise Linear ' Piecewise Linear 

IV 10"' 10° 10"' 10° h h 

Figure 3.2: Log-log plots for b = b i . Left: error. Right: U.^ error. 

3.6.2 Time dependent problem 

Next, we will present the convergence test for the time dependent problem (1.5). We will consider 

both the two-dimensional and three-dimensional cases. For the two-dimensional case, we take 

{ y - 0 . 3 - t \ 

+ 0.5 + y 

and the exact solution 

u{x,yj,) = - (// - 0.3 — 00s i i i ( / / + (./. 0.5 /) /) . 
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10。 — . , - - • 

10 -
p: 0.06 ] 

/ o '> 丁 

-1 ‘ 10'. z / y 
Z " ， i % ‘ / I / 

r° ^ ^ / I / / 
I / I 10°. / p = _ . 

/ < / 
10-̂- / / 

Piecewise Constant '-> Piecewise Constant 
-•*• Piecewise Linear - ‘ Piecewise Linear 

10"' 10"' 10° 10'' 10° h h 

Figure 3.3: Log-log plots for b = b j . Left: LP" error. Right: H^ error. 
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10'' 10'' 10"' 10° 
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Figure 3.4: Log-log plots for b = b � . L e f t : I ? error. Right; error. 

The source term f is taken accordingly. The log-log plots of errors are shown in Figure 3.5 for the 

piecewise linear case, that is, k = 1. For the three-dimensional case, we take 

/ y - 0.3 - ^ \ 

h{x, y,z,t) = (x - 0.6 - t ) - {x- 0.5 - t ) , 

V - ( y - 0 . 4 - / ) 

and the exact solution 

u[x,仏二, t ) = 

The source term f is taken accordingly. The log-log plots of errors are shown in Figure 3.6 for the 

piecewise linear case, that is, k 二 1. 
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Figure 3.5: Log-log plots for the errors of the 2D time dependent case in L^ and H^ norms. 
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Figure 3.6: Log-log plots for the errors of the 3D time dependent case in Lp- and H^ norms. 
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3.7 Concluding Remark 

In this chapter, a new staggered DG method for the convection-diffusion equation is presented. The 

new method has the distinctive advantage that some physical laws arising from the equation are 

automatically preserved. Moreover, stability and optimal error estimates are proved. Numerical 

results are shown to verify the order of convergence. 
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