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ABSTRACT 
The emergence of mobile data networks such as 3Q 3.5Q and 4G is progressively 

reshaping the Internet landscape from almost entirely wired broadband Internet users, 
to more and more users connected via wireless links. This thesis investigated the 
performance limitations of the core Internet transport protocol 一 Transmission Control ‘ 
Protocol (TCP), when operated in mobile data network environments; and developed a 
novel network-centric mobile accelerator to overcome such limitations without 
changing the core TCP transport module at either end of the connection (i.e., server 
and client). We investigated three fundamental problems of running TCP in modem 
mobile data networks: (a) flow-control-limited throughput due to larger 
bandwidth-delay product (BDP); (b) wireless link capacity estimation; and (c) false 
congestion avoidance due to random loss, and developed novel solutions for 
implementation in the network-centric accelerator. Experimental results conducted in 
production 3G HSPA networks show that the accelerator can increase the throughput 
performance of TCP by up to 2.5 times of the unaccelerated TCP. The proposed 
accelerator does not require modification to the applications, TCP implementation at 
the hosts, or operating system; and thus can be readily deployed in current and future 
mobile data networks. 
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摘要 

流動數據網絡的出現，如3G�3 .5G和4G的，逐步改造了互聯網的形態。 

從幾乎完全通過有線連接，至越來越多的用戶通過無線連接。本論文探討了核 

心互聯網傳輸協議-傳輸控制協議（TCP)的性能限制，當運行在流動數據網 

絡環境，並開發一種新的基於網絡的流動加速器，以克服這些限制而不改變連 

接端（即，服務器和客戶端）的核心TCP傳輸模塊。我們調查了三個在現代流 

動數據網絡運行TCP的基本問題：（一）流量控制於較大的帶寬延遲積（ 

bandwidth-delay product)時對吞吐量的限制，（二）無線網絡可得頻寬的估計； 

及（三）因隨機丟包錯誤觸發的擁塞避免機制，並開發新的解決方案以實施以 

基於網絡的加速器。在實際的3G HSPA網絡進行實驗的結果表明’與沒有力口 

速的TCP比較，該加速器可以提高的TCP吞吐量達2.5倍。建議的加速器並不需 

要修改應用程序、在主機或操作系統的TCP實踐方式，因此可以容易地部署和 

應用在當前和未來的流動數據網絡。 
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Chapter 1 
INTRODUCTION 

The emergence of mobile data networks such as 3Q 3.5Q and 4G is progressively 
reshaping the Internet landscape from almost entirely wired broadband Internet users, 
to more and more users connected via wireless links. As we will demonstrate in this 
thesis, this change could have profound impact on the performance of many Internet 
applications and services given the many fundamental differences between wired and 
wireless networks. This thesis investigated the performance limitations of the core 
Internet transport protocol - Transmission Control Protocol (TCP), when operated in 
mobile data network environments; and then develop a novel network-centric mobile 
accelerator to overcome such limitations without changing the core TCP transport 
module at either end of the connection (i.e., server and client). 

Specifically, we investigate three fundamental problems of running TCP in modem 
mobile data networks: (a) flow-control-limited throughput due to larger 
bandwidth-delay product (BDP); (b) wireless link capacity estimation; and (c) false 
congestion avoidance due to random loss. For (a) we developed a novel virtual 
advertised window mechanism to decouple flow control between the client and the 
server so that the server's transmission throughput is not limited by the receiver 
advertized window size. For (b) we develop a rate-based algorithm (as oppose to 
credit-based approach in TCP) to continuously estimate and adapt the data 
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transmission rate over the mobile data network. For (c) we developed a novel RTT 
modulation technique to effectively suppress packet loss events from the TCP sender 
so that high throughput can be sustained despite the existence of random packet loss. 

Unlike previous works which rely on modifications to the TCP protocol stack at 
the sender [4]-[8], at the receiver [10],[11],[12], at both ends [1]，[2]，[3]，or at the 
network [13],[14], we propose a network-centric approach where the 
above-mentioned protocol processing algorithms are to be implemented in a network 
device - mobile accelerator, which is deployed at the edge of the mobile data network 
linking it to the rest of the Internet. 

This network-centric approach has four significant advantages over previous 
works. First, it eliminates the need to modify the TCP module in either the TCP sender 
or the TCP receiver. Considering that many modem operating systems are proprietary 
and slow to adopting any protocol modifications, this network-centric approach allows 
a far more rapid adoption and deployment of the proposed protocol optimizations. 
Second, even if we can modify the TCP module, some of the optimizations such as 
local retransmission (c.f.，Chapter 5) simply cannot be effectively implemented in the 
end hosts. Third, the proposed protocol optimization algorithms are designed 
specifically for mobile data networks. Thus if it is implemented in the end host such as 
the server, it will need to determine the type of network a client is accessing before the 
appropriate protocol optimizations can be applied. Finally, in practice many mobile 
operators deploy their own web proxies to reduce Internet bandwidth consumption and 
to implement proprietary value added services. Consequently, the Internet server (e.g., 
web server) may not even be communicating with the client device directly at all. In 
this case the TCP connection between the server and the proxy is independent from the 
TCP connection between the proxy and the client. Hence protocol optimization 
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performed at the server end will never reach the mobile data network, rendering it 

useless. 
In addition to TCP throughput improvement, the proposed mobile accelerator also 

opens up a new platform for implementing sophisticated network traffic controls. For 
example, we developed a packet scheduling mechanism which can perform precise 
bandwidth allocation among competing TCP flows. This opens the way to many other 
interesting traffic regulation applications of which some will be discussed in Chapter 
9. 

The rest of the thesis is organized as follows: Chapter 2 reviews previous related 
works. Chapter 3 investigates the performance problem of TCP's flow control 
mechanism in mobile data networks. Chapter 4 presents the virtual advertized window 
mechanism to overcome TCP's flow control bottleneck. Chapter 5 investigates packet 
loss in mobile data networks and presents a local retransmission algorithm. Chapter 6 
presents the RTT modulation mechanism for loss event suppression. Chapter 7 
presents a packet scheduling mechanism for precise bandwidth allocation. Chapter 8 
reports performance of the proposed mobile accelerator in production 3G networks. 
Chapter 9 outlines some future work and Chapter 10 concludes the study. 

X 
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Chapter 2 
BACKGROUND AND RELATED WORK 

Much research had been done to improving the performance of TCP in large BDP 
networks. We can classify the existing works into four categories: modifying both 
sender and receiver; modifying the sender only; modifying the receiver only; and 
network-centric approach. 

2.1 Sender-receiver-based 
approaches 

We first consider approaches where both the sender and the receiver are modified. 
Jacobson et al. proposed in RFC 1323[1] the LWS extension to TCP which is 
currently the most widely supported solution. It works by scaling the Advertised 
Window (AWnd) by a constant factor throughout the connection. With the maximum 
LWS factor 14，the maximum AWnd can be increased up to 1 GB 

We will discuss the strengths and weaknesses of LWS in 
more detail in Chapter 3. 

Alternatively, the application can be modified to initiate multiple TCP connections 
in parallel [2] to increase throughput by aggregating multiple TCP connections. This 
approach effectively multiplies the AWnd and Congestion Window (CWnd) by the 
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number of TCP flows and so can mitigate the AWnd limitation. However, 
aggregating multiple TCP connections will also allow the application to gain unfair 
amount of bandwidth from competing TCP flows and the aggregate CWnd may 
increase too rapidly. Hacker et al. [3] solved this problem by deferring CWnd 
increase until multiple ACKs are received so as to compensate for the rapid CWnd 
growth. 

2.2 Sender-based approaches 
Apart from AWnd limit, the CWnd maintained by the sender may also limit TCP's 

throughput in large BDP networks. Specifically, the growth of the CWnd is triggered 
by the reception of ACKs. Thus in a long delay path it may take longer time for the 
CWnd to grow to sufficiently large value so that the link bandwidth can be fully 
utilized. 

To tackle this problem Allman et al. proposed in RFC 3390 [4] to initialize the 
CWnd to a larger value (as opposed to one TCP segment) so that it can grow more 
quickly in large delay networks to ramp up TCP's throughput. Since then much effort 
had been put into developing more sophisticated congestion control algorithms such 
as CUBIC [5]，BIC [6], FAST [7], H-TCP [8] to further shorten TCP's throughput 
ramp up time and provide better fairness among different TCP connections. These 
solutions tackled the limitation of CWnd growth and are complementary to our work. 

Another problem affecting the CWnd and throughput is the existence of 
non-congestion-induced packet loss in mobile data networks. As TCP would reduce 
CWnd upon detection of packet loss, its throughput performance will be severely 
degraded in the presence of non-congestion-induced packet losses. Lai et al. [9] 
proposed a TCP-NCL protocol for wireless networks such as WiFi to differentiate 

5 



between congestion loss from random packet loss; and to handle packet reordering in 
case the link layer also retransmit packets. Nevertheless the performance of these 
sender-based approaches in mobile data networks is still subject for further 
investigation, and in cases where the mobile network implemented proxy servers 
then they will have no effect at all as the sender will only be communicating with the 
proxy server. 

2.3 Receiver-based approaches 
At the receiving end, Fisk and Feng [10] proposed dynamic right-sizing of the 

AWnd by estimating the CWnd at the receiver and then dynamically adapt the 
receiver buffer size, i.e., the AWnd, to twice the size of the estimated CWnd. This 
ensures that when the sender's CWnd doubles (behavior of TCP New Reno [11] after 
receiving an ACK) the AWnd will not become the bottleneck. 

More recent Operating Systems such as Linux 2.4 and Microsoft Windows Vista 
[12] also implemented receiver buffer size auto-tuning by estimating the BDP of the 
connection and the data consumption rate of the application. In comparison, our 
accelerator does not require any modification to the receiver application or require 
support from the receiver operating system, and so can be more readily deployed by 
an ISP or a satellite operator to accelerate all bandwidth demanding TCP traffics. 

2.4 Network-centric approach 
The fourth approach is to implement protocol optimizations within the network. 

The Snoop [13] protocol adopts this approach by keeping copies of transmitted 
packets in the base station's cache, and then retransmit them on behalf of the sender 
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when packet loss occurs. However the extra delay incurred by the retransmission 
process could also trigger the sender to timeout which will lead to severe throughput 
degradation. We tackled this problem through a novel RTT modulation mechanism 
(c.f. Chapter 6) which can actively prevent sender timeout in case of local 
retransmission. 

Another study by Hu and Yeung [14] proposed a new active queue management 
protocol whereby the network device such as a router or a base station, generates 
duplicate ACKs to trigger CWnd reduction at the sender whenever the device's 
packet queue length exceeds a certain threshold, thus preventing congestion from 
taking place. While this work share the same network centric approach it is solving a 
different problem compared to our study. 
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Chapter 3 TCP FLOW CONTROL 

REVISITED 

TCP's built-in flow control mechanism is designed to prevent fast sender from 
overflowing slow receiver. It works by reporting the receiver's buffer availability, 
i.e., the AWnd, back to the sender via a 16-bit field inside the TCP header so that the 
sender would not send more data than the receiver's buffer can store. 

Over the years computer processing power have grown tremendously such that 
even today's modest computers can easily keep up with the arriving stream of data at 
relatively high data rates (e.g., tens ofMbps). Thus an arrived packet will quickly be 
retrieved by the application from the receiver buffer, and in most cases this can be 
completed even before the next packet arrives. As a result, the reported AWnd simply 
stays at the maximum receiver buffer size as illustrated in Fig. 1 which plots the 
actual AWnd of a receiver at a throughput of 1.5 Mbps. In this case TCP's flow 
control mechanism is clearly not necessary as the sender never transmit data faster 
than the receiver's processing rate. 

Due to the delayed AWnd the sender cannot send more than the reported AWnd 
and thus cannot make use of the new freed buffer space at the receiver. In cases 
where the BDP is larger than the maximum AWnd, the sender will operate in a 
stop-and-go manner as illustrated in Fig. 2，resulting in severe undemtilization of the 
network channel. 
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For example, a 3G HSPA data network has bandwidth ranging from 3.6 Mbps to ’ 
14.4 Mbps. Take the commonly offered bandwidth 7.2 Mbps with round-trip-delay 
(RTT) of 100 ms as an example. This set of network parameters will lead to a BDP of 
90 KB which already exceeds TCP's maximum advertised window size of 64KB. In 
this case TCP's flow control mechanism will limit the throughput to no more than 5.1 
Mbps which leave about 29% of bandwidth unused even if there are no competing 
traffics in the network. 
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Fig. 2. Stop-and-go behavior due to large BDP compared with Awnd 
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The conventional solution 一 TCP's Large Window Scale extension, was designed 
specifically to address this limitation by allowing the two hosts of a TCP connection 
to negotiate a constant multiplying factor to be applied to the AWnd value during 
connection setup so that AWnd larger than 64 KB can be used. Obviously this 
requires both communicating hosts to support and activate the use of LWS prior to 
connection setup is carried out. Unfortunately although most modem operating 
systems support LWS, there is no standard way for the application to activate the use 
of LWS. Some operating systems activate LWS by default (e.g.，Windows Vista), 
some requires manual configuration (e.g., Windows XP), and yet others require the 
application to explicitly configure a large (e.g., >64 KB) socket buffer to activate it 
[12]. 

For example, the common operating system Microsoft Windows XP defaults its 
advertised window size to 17 KB for connections with link capacity at or below 10 
Mbps. Running over a 3G HSPA data network this advertised window size will limit 
the achievable throughput of TCP to about 1.4 Mbps at a RTT of 100 ms. While 
applications could configure a larger window size, i.e., by explicitly setting a larger 
socket buffer size [12], we found that this is rarely done in practice. In fact almost all 
common Internet applications we evaluated on the Microsoft Windows platform, 
including web browsers (Internet Explorer, Firefox，Google Chrome), FTP clients 
(Windows' built-in FTP client), and email clients (Outlook Express) simply employ 
the operating system's advertized window size (e.g., 17 KB) and do not make use of 
TCP's LWS extension, therefore limiting their throughput performance in networks 
with large bandwidth-delay product. 

Another limitation of LWS is that the AWnd value is still interpreted as the 
amount of buffer physically available at the receiver (and sender as well), thus for 
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networks with very large BDP the resultant buffer requirement can be very large as 
well (e.g., with LTE's 172.8 Mbps over 100 ms RTT a receiver buffer size of 21.6 
MB will be needed). This could become a problem for applications that make use of 
large number of sockets (e.g., server applications) or for mobile devices with limited 
physical memory. 

If we reconsider Fig. 1 then we can expect that such a large buffer at the receiver 
will end up mostly unused anyway as the received data will be retrieved out of the 

t 

TCP receive buffer quickly by the application. Thus instead of strictly following the 
reported receiver buffer size, we propose to reinterpret it as an indicator of receiver 
processing capacity and employ it for use in a rate-based flow control mechanism to 
be discussed in the next Chapter. 
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Results from Chapter 3 reveal that the AWnd turns out to become the bottleneck 
to achieving high throughput in modem mobile data networks. A trivial solution 
would be to eliminate the AWnd altogether as it is no longer serving its intended 
function. To experiment with this idea we implemented a simple accelerator between 
the sender and the receiver as depicted in Fig. 3. The accelerator's sole function is to 
modify the AWnd field inside the TCP header of ACK packets from the receiver, to a 
value much larger than the BDP of the network to prevent it from becoming the 
bottleneck. In this experiment we make use of the Linux Netem module [15] to 
emulate a typical 3G HSPA data network. The emulation parameters including 
network delay and bandwidth are obtained from measurement of a production 3G 
HSPA data network. 

The sender, the accelerator, and the emulator all run on Linux with kernel 2.6 
(with CUBIC as the default TCP congestion control module) and the receiver is 
running on Windows XP SP2. This network configuration has a BDP of 90 KB 
which is larger than Windows XP's default receiver buffer size of 17 KB. The 
receiver initiates the connection and then the sender would keep sending data to the 
receiver as fast as TCP allows. 
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Fig. 4. CWnd and Throughput dynamics without accelerator 

As a benchmark for comparison we first conducted an experiment without any 
modification to the AWnd reported by the receiver. Fig. 4 shows the evolution of 
AWnd, CWnd, and throughput (as measured by the receiver) of the first 20 seconds 
of the experiment. As expected the AWnd stayed at the maximum value at all times. 
The CWnd, once increased pass the AWnd value, stopped increasing further even 
though there is no packet loss during the experiment. As a result the achievable 
throughput is limited by the window size and in this case is significantly lower than 
the network's capacity (i.e., 1.41 Mbps versus 7.2 Mbps). 

In the second experiment the accelerator will modify the AWnd reported by the 
receiver to 10 MB, regardless of the actual value of the AWnd reported. This 
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effectively disables TCP's flow control mechanism as the modified AWnd size is 
larger than the largest value reached by the CWnd in the experiment. 

Fig. 5 plots the evolution of CWnd and throughput for the first 15 s of the 
experiment. Compared to Fig. 4 we observe that the CWnd was no longer 
constrained by the AWnd and thus could continue to grow all the way up to 3 MB. 
Similarly the achievable throughput also continued to increase, only to be limited by 
the network's link capacity at 7.2 Mbps. However, the high throughput did not last 
very long and it abruptly dropped to zero after about 10 s. 

Not surprisingly, this abrupt drop was due to network congestion as the large 
CWnd allowed the sender to transmit at a rate even higher than the network link 
capacity. In fact TCP was designed to induce congestion events in its probe for 
additional bandwidth in the network and react to congestion by lowering its 
transmission rate (via reduction in CWnd). What is unexpected is the drop to nearly 
zero throughput after the loss event. Moreover, this condition continued for an 
extensive duration (over 600 s) as depicted in Fig. 6 before the TCP flow could 
recover from it. This suggests that TCP congestion control algorithm could not 
function well without its flow control mechanism. 

To understand the cause of the blackout period after a loss event, we need to 
consider the behavior of the receiver. Normally when there is no packet loss, TCP 
segments arriving at the receiver are quickly processed and passed to the application, 
thus releasing the occupied buffer space. However when a packet loss occurs, all the 
subsequent data will need to be buffered until the lost packet is successfully 
retransmitted as TCP guarantees in-sequence data delivery. In normal TCP the sender 
will stop transmitting data once the AWnd is used up and thus buffer overflow will 
never occur. Now in case the AWnd is set to a value larger than the actual one, the 
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sender will continue to send data, even beyond the buffer space available at the 
receiver. Consequently, these out-of-boimd packets will all be discarded by the 
receiver due to buffer overflow，resulting in a very large burst of packet loss. 

This explains the evolution of the CWnd in Fig. 5. At time 8.49 s，the sender 
(running the default CUBIC [5] congestion module in Linux) began receiving 
duplicate ACKs and started to reduce its CWnd linearly at a rate of one per two 
DUP-ACKs, until it reached a lower limit. This continued until the lost packet timed 
out, at which point the CWnd reset to one. Due to the large burst of packet loss ’ 
induced, numerous timeout events followed and this was the reason for the extensive 
blackout period in Fig. 6. During this period the sender repeatedly timed out and then 
retransmitted the lost packet, one at a time. Only after all the lost packets were 
successfully retransmitted then the CWnd and hence, throughput can resume growth. 
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Fig. 6. CWnd and Throughput dynamics with sender's flow control mechanism disabled 

The previous experiment clearly shows that the trivial solution of disabling TCP's 
flow control will end up degrading throughput performance rather than improving it. 
To prevent such blackout condition from occurring we need to devise a way to 
control the packet transmission to prevent congesting the receiver and the network, 
and to develop a new retransmission algorithm to incorporate the effect of modifying 
the AWnd. We tackle the former problem in the following sections and investigate to 
the retransmission algorithm in Chapter 5. 

4.1 Link bandwidth estimation 
To prevent congesting the network the accelerator will need to regulate the rate at 

which packets are forwarded to the receiver over the mobile data network. In the 
following we develop a system model to estimate the link bandwidth by assuming 
that (a) the accelerator always has data to forward; (b) network delays and receiver's 
processing capability remain constant; (c) network delays of the channel between the 
accelerator and the receiver are symmetric in the forward and the reverse direction; 
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(d) the receiver generates an ACK immediately upon the arrival of a TCP segment, 
i.e., zero processing delay; and (e) the uplink, i.e., from the receiver to the 
accelerator, is not the bottleneck. 

Let rtt be the RTT between the accelerator and the receiver. Obviously the RTT is 
not known a priori and thus will need to be estimated from passive measurements of 
packets traversing the accelerator. Let 力 be the time packet i was forwarded by the 
accelerator to the receiver, and let U be the time at which the corresponding ACK 
arrived at the accelerator. Then the RTT as measured by packet i’ denoted by rtti, can ’ 
be computed from: 

r t h = t � j \ (1) 

To smooth out random fluctuations in the rtti, the accelerator applies exponentially 
weighted moving average to the measured values to obtain the smoothed RTT rtt: 

rtt = {l-a)xrtt + ax rtt^ (2) 

where the weight 0J= 0.125 follow the one used in TCP's internal RTT estimator [16]. 
Next we estimate the link bandwidth from the acknowledged sequence number and 

the arrival time of a pair of ACK packets using a formula similar to [17], assuming the 
receiver has infinite processing capacity. Specifically, let U be the arrival time of ACK 
packet i with acknowledged sequence number m. Then for some positive integer k, the 
link bandwidth, denoted by r,-, can be estimated from 

_ a (3) 
‘ t —t 

'•i+k ~ 
where the numerator is the amount of data acknowledged during the time interval 
{ti,ti+k]. The intuition behind (3) is that the receiver, having infinite processing capacity, 
will generate an ACK packet immediately upon receiving a packet from the network. 
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Thus the transmission rate is faster than the link bandwidth then the rate at which 
packets departs from the network will be determined by the link bandwidth available. 

The parameter k controls the duration of the estimation interval (in number of ACK 
packets) and can be adjusted to tradeoff between accuracy and timeliness of rate 
estimation. We also apply exponentially weighted moving averaging similar to (2) to 
smooth out random fluctuations and obtain the smoothed estimated link bandwidth 
denoted by r. 

The assumption of infinite receiver processing capacity is obviously not valid in 
practice so we relax this assumption in the next section. 

4.2 Reception rate estimation 
When packets arrive at a rate higher than the receiver's processing capacity, the 

received data will be buffered at the receiver buffer awaiting processing. The lower 
buffer availability then will result in smaller reported AWnd. Thus by monitoring the 
AWnd reported from the receiver the accelerator can incorporate the receiver's 
processing capability into the system model described by (3). 

Specifically, let at be the value of AWnd reported by ACK packet i. Then the 
amount of data processed by the receiver between time U and ti+k is given by: 

)-(«/+«/) (4) 
which is the difference in the acknowledged sequence number plus the difference in 
the reported AWnd. In case the receiver is slower than the incoming data rate then at+k 
will decrease, thus reducing the amount. 

The reception rate, denoted by Ri, can then be computed from 

及 + (5) 

‘ t —f ''i+k ~ 
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Fig. 7. Transmission timing diagram between receiver and accelerator 

Similar to (3) the parameter k controls the width of the estimation interval and we also 
apply exponentially weighted moving averaging to (5) to smooth out the random 
fluctuations and obtain the smoothed reception rate denoted by R. Note that if the 
receiver processing capacity is infinite, then ai+k=ai for all i and k, and (5) will reduce 
to the special case in (3). The estimated reception rate incorporated the effect of both 
link bandwidth availability and receiver processing capacity. This will be used to 
schedule the forwarding of packets in the accelerator. 

4.3 Transmission scheduling 
Armed with an estimate of the reception rate, our goal is to schedule the 

transmission of packets from the accelerator to the receiver such that it will not cause 
buffer overflow at the receiver. The challenge is that the AWnd reported in a ACK 
packet is delayed information - it was the receiver's buffer availability O.Srtt s ago. 
During the time the ACK took to travel to the accelerator additional TCP segments 
may have arrived at the receiver, and the receiver application may also have taken 
out more data from the receive buffer. 

Consider the timing diagram in Fig. 7，we want to find the minimum/^ for the 众-th 

packet such that the expected buffer availability b\, when the k-th packet arrives at the 
receiver is non-negative (i.e., no buffer overflow), fk may further be expressed as 
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(6) 

where tnow is the current time and Atk be the delay in forwarding of the ^-th packet. 
Next we consider the data arrives and departures between the time the last ACK 

was transmitted by the receiver, i.e., {U- 0.5m), and the time packet k arrives at the 
receiver, i.e., (fk + O.Srtf). First, during this time the receiver will continue to process 
packets and free-up buffers at a rate of R. Thus the expected amount of buffer space 
being freed up in this period, denoted by Dproc，is given by 

Dproc 二及 ( A + — t, + 0.5r") (乃 

• = 冲 丽 + A � - … 0 

Similarly, the expected amount of data arriving at the receiver during this period, 
denoted by £)動 is given by 

E qj (8) 
'ij\[fj>{ti-rtt)r^fj<h] 

Hence the buffer availability bk at time (fk + 0.5m) can be computed from the 
buffer availability at the beginning of the period, i.e., at, plus the amount of buffer 
freed up, i.e., Dproc, minus the amount of data arrivals, i.e., £>腳: 

K = min [a. + D— _ A.cv'«max} 

= 及(《。，+AG+0.5R"-6+0.5 枪 ) - ^ ( 9 ) 

= rmn a . + R + rtt-t^)- ^ 

where a_ is the maximum AWnd of the receiver. Assuming bk < “瞧，then the 
packet forwarding delay can be computed from 
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0 沾 

0<a.-^R (t_ + A�+ rtt 一) 一 ^ 力 

RxAt,> Yj 力一以 / -及 ( ( "。 w + " , -々 ) (10) 

I ( � 

AG >max I E q厂 a i + 0 (...AG >0) 

The accelerator computes the packet forwarding time for each head-of-line packet 
in a TCP flow, and transmits them according to a round-robin scheduler in Chapter 7. 

4A Performance 
To evaluate the performance of the developed estimation and scheduling 

algorithms we repeated the experiment depicted in Fig. 3. The accelerator is 
equipped with the reception rate estimation algorithm and will schedule packet 
forwarding according to the transmission scheduler described in Section 4.3. 

Fig. 8 shows the evolution of the AWnd, CWnd, Virtual AWnd, buffer occupancy 
at accelerator, sending rate and the throughput achieved by the TCP flow. Unlike the 
previous experimental results in Fig. 5，the bottleneck link was not congested even 
though the sender's CWnd grew to very large value (-10 MB). As a result the TCP 
throughput could reach and sustain at the link's capacity limit. Note that the initial 
sending rate is higher than the TCP throughput as the accelerator reports its own 
buffer availability in the AWnd sent back to the sender. Once the accelerator buffer 
becomes full, i.e., around 25 seconds, the AWnd will realize flow control between the 
sender and the accelerator, of which the sender quickly reduces its sending rate to the . 
TCP throughput. Compared to the case without the accelerator, the achievable 
throughput (payload only) is increased from 1.34 Mbps to 6.71 Mbps. 
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Nevertheless, unlike wired networks where packet losses are primarily due to 
congestion, our measurements show that mobile data networks do exhibit random 
packet losses which are not related to congestion. Thus although the transmission 
scheduler can prevent congestion-induced packet losses, the occurrences of random 
packet loss may still degrade TCP's throughput performance. We investigate this loss 
recovery problem in the next chapter. 

12 - ^^S end i n g Rate __ 12 
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！ : 。 1 \ I 二 I I 
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Fig. 8. Evolution of the AWnd, CWnd, Virtual AWnd, buffer occupancy, sending rate and throughput 

achieved with transmission scheduling 
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Chapter 5 Local Retransmission 
As shown in Chapter 4 the introduction of a virtual AWnd, which is purposely 

made larger than the actual receiver AWnd, can lead to large packet loss bursts which 
could blackout the throughput performance for hundreds of seconds (c.f. Fig. 9). The ， 

transmission scheduler in Chapter can prevent loss induced by congestion but our 
experiments revealed that even a very low level of residual packet loss could still 
cause the blackout phenomena. We develop in this Chapter a new local 
retransmission algorithm to tackle this burst-loss problem so that the throughput of 
the TCP flow can be maintained in the event of packet loss. 
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Fig. 9. Dynamic of CWnd and throughput in the present of packet loss 
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5.1 The blackout period 
To illustrate the problem we conducted an experiment using the same network 

topology as in Fig. 3. The accelerator implements the transmission scheduler to 
prevent network congestion from occurring. We cpnfigure the network emulator to 
introduce random loss at 0.01%. For ordinary TCP packet loss at this low loss rate 
will not cause significant throughput degradation as such losses can be readily 
recovered via TCP's fast retransmit algorithm [18]. 

By contrast, as shown in Fig. 9 which plots the evolution of the CWnd versus 
time，the accelerated TCP flow did suffer from the same blackout period as reported 
in Chapter 4，even if there are only two packet losses before the blackout period 
began. The blackout period continues for over 400 s while the sender repeatedly 
timeout and retransmit lost packets, one at a time, to the receiver. 

Our measurements of production 3G HSPA networks revealed that the loss rate is 
not zero even at low data rate. Table 1 summarizes the loss rate for sending UDP data 
in 1 KB datagram size to a mobile receiver at data rates ranging from 1 to 7 Mbps. 
The 3G HSPA network and the 3G modem has a maximum bandwidth of 7.2 Mbps. 
It is clear from this result that even at the lowest data rate of 1 Mbps, some packet 
losses remained. Analysis of the traffic trace data suggested that these packet losses 
are unlikely due to congestion. 

To understand the cause for the blackout period we trace the packet exchanges 
between the sender and the receiver in Fig. 10. The accelerator in-between simply 
forward packets between the sender and receiver, except for rewriting the AWnd field 
in ACKs sent by the receiver to a large value (e.g., 10 MB). At the beginning of 
Phase I the receiver buffer is empty as we assume it takes zero time to process the 
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incoming packet and passes the data to the receiver application. Now suppose packet 
i is lost. Then while packets /+1，i+2, etc., arrive at the receiver successfully, they 
cannot be passed to the application as packet i has not been received. Instead the 
subsequent packets must be buffered up until the buffer is full when packet 7 (j>i) 
arrives as depicted in Phase II of Fig. 10. In this case the receiver will discard packet 
j and all subsequent packets as well. 

Eventually the sender will use up the CWnd, say, after packet k-\ (assuming 
k>j+\) is transmitted and then it has to halt transmission. Meanwhile when three ’ 
duplicate ACKs for packet i is received the sender will trigger fast retransmit by 
retransmitting packet i and decreasing the CWnd (e.g.，to half in Reno). Suppose the 
retransmission is successful then the ACK for packety (i.e., the last buffered packet) 
will return to the sender at the end of Phase II. At the receiver side all the buffered 
data can now be passed to the application, thus freeing up the receiver buffer. 

The blackout period begins in Phase III. Here the sender may not be able to 
transmit any packet as the CWnd has already been used up. Note that receiving the 
ACK for packet j may not relieve this condition as long as 

(A:-1)-7 + 1>(^-/+1)/2 (11) 

for the case of Reno. Similar conditions can be derived for other TCP variants such 
as CUBIC. In any case this condition is due to two factors: (a) the reduction of 
CWnd in fast retransmit; and (b) the transmission of packets beyond the actual AWnd 
(i.e., packet j to k-l). 

The sender in this case will wait until the RTO for packet j expires, at which time 
it retransmits packet j and reset the CWnd to 1. By the time the ACK returns the RTO 
for packet 7+I will likely have expired as well and so the sender will retransmit 
packet 7+1, and the process repeats. During Phase III the sender effectively can 
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transmit just one packet per RTT, resulting in the long stretch of very low throughput 
observed in Fig. 9. Eventually all the lost packets up to packet k-\ will be 
successfully retransmitted and then the sender will begin slow-start again in Phase IV 
of Fig. 10. Note that this black-out behavior occur because the accelerator can send 
packets beyond the receiver's AWnD. We verified via experiments that the same 
behavior does not occur in ordinary TCP, even when a large burst of consecutive 
packets are dropped. 

Therefore while rewriting the AWnd eliminates the throughput limit constrained 
by AWnd, it introduces a new problem in packet loss recovery. We tackle this 
problem by developing a new predictive retransmission algorithm in the next section. 

Sending rate (Mbps) 1 2 3 4 5 6 7 
Loss ratio 0.01 0.01 0.01 0.04 0.21 0.33 0.47 

Table 1. Average loss ratio at various sending rate 
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Fig. 10. Illustration of slow recovery of discarded packets caused by disabling flow control 

27 



5.2 Proactive retransmission 
Local retransmission has previously been proposed to handle random loss in 

wireless networks [19]. The principle is to buffer unacknowledged packets in the 
intermediate gateway so that it can retransmit lost packets on behalf of the sender to 
suppress duplicate ACKs from triggering congestion control at the sender. 

We can extend local retransmission to tackle the blackout problem. Referring to 
Fig. 10，we note that when packet i is lost, all the out-of-window packets from packet 
j to k-\ will be discarded by the receiver. As the accelerator knows the actual AWnd 
reported by the receiver, it can compute j from 

j = i + AWnd ( 1 2 ) 

Thus instead of waiting for the sender to timeout and retransmit packet j the 
accelerator simply retransmit packets j to k-\ after retransmitting packet i. Fig. 11 
illustrates this proactive retransmission algorithm using the same scenario in Fig. 10. 
The pseudo-code for the algorithm is listed in Fig. 12. Note that the retransmitted 
packets are also subject to the transmission scheduling described in Section 4.3 to 
prevent a large burst of retransmitted packets from congesting the network. In case 
the receiver supports TCP SACK [20] the accelerator will also scan through the 
SACK list and retransmit the missing packets within the AWnd. 

The accelerator will suppress the duplicate ACK (i.e., not forwarding it to the 
sender) if it can retransmit the packet. This prevents the sender from triggering its 
congestion control algorithm. On the other hand, if the packet is lost before it reaches 
the accelerator, then the duplicate ACK will be forwarded to the sender as the 
accelerator cannot retransmit a packet never received. This also preserves TCP's 
congestion control of the path between the sender and the accelerator. 
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Fig. 11. Illustration of how proactive retransmission work 
i 一 0 //start from the 0-th packet 
loss — NULL 
WHILE i ！= tail+1 DO //tail marks the last packet received from sender 

IF = NULL THEN 
schedule_transfer(p^/) //request the scheduling algorithm to transfer 

ELSE 
IF i ^oss + Umax THEN // Umax as the maximum AWnd 

schedule_transfer(pAt/) 
END IF 

END IF 

IF DupACK = NULL THEN //DupACK is packet no. to be retransmitted 
i = i+I 

ELSE 
\ ‘ / 一 DupACK 

loss — DupACK • 
DupACK— NULL 

END IF 
END DO 

Fig. 12. Pseudo code for data transmission with the local retransmission capability 
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5.3 Performance 
We repeated the experiment using the setup in Fig. 3 with local retransmission 

implemented at the accelerator. Fig. 13 plots the evolution of CWnd, throughput, and 
the sender's sending rate versus time. We first observe that the two packet losses 
within the first 5 s did not cause the sender to reduce its CWnd. This is because the 
loss events were successfully suppressed by the accelerator. 

However, the third packet loss did result in sender timeout, despite the fact that 
the lost packet was successfully retransmitted by the accelerator. This is because the 
extra delay incurred by local retransmission delayed the ACK so much that it 
exceeded the RTO of the sender. This shows that local retransmission alone may not 
be able to suppress all loss events. We develop a novel RTT modulation technique in 
the next section to tackle this problem. 
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Fig. 13. Evolution of CWnd, throughput and sending rate with proactive retransmission 
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Chapter 6 Loss Event Suppression 
A fundamental limitation of local retransmission is that the lost packet may not be 

retransmitted and the corresponding ACK received in time to prevent the sender from 
timeout. Once timeout occurs the TCP flow's throughput will decrease significantly 

f 

as the CWnd is reset to one. One solution to this problem is to split the TCP flow into 
two, one between the sender and the accelerator and the other between the 
accelerator and the receiver [21]. This split-TCP approach decouples loss recovery 
between the sender and the receiver by generating ACKs independently of the 
receiver. Specifically, a split-TCP gateway will return ACKs to the sender as if it is 
the receiver. The received packets are then forwarded to the receiver in a separate 
TCP connection. Thus loss events between the gateway and the receiver are handled 
completely by the gateway, without involving the sender at all. This prevents the 
sender from triggering its congestion control algorithm. 

However the split-TCP approach suffers from a tradeoff - it breaks the reliable 
service guarantee provided by TCP. In particular, it is possible for a packet to be 
acknowledged by the gateway but ultimately failed to deliver to the receiver (e.g., the 
network link goes down before the gateway can forward the packet to the receiver). 
In this case the sender and the receiver will be in an inconsistent state, i.e.,-the sender 

X 

assumes successful delivery of a packet which is in fact not received by the receiver. 
To avoid this problem we propose a novel RTT modulation mechanism to enable 

the suppression of loss events without the need for splitting the TCP flow. 
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6.1 RTT modulation 
The challenge in retransmitting lost packet locally by the accelerator is the time 

needed for the retransmissions. In particular, if the retransmission cannot be done so 
that the ACK can reach the sender before it times out, congestion control will kick in 
to reduce the sender's transmission rate significantly (by reducing CWnd to 1 and 
then restart from slow-start again). Specifically, TCP sets its timeout threshold, 
denoted by RTO, according to: 

rto = srtt + Axrtt^^ (13) 

where srtt is the smoothed RTT and rttdev is the smoothed mean deviation of RTT 
[16]. Thus to avoid timeout the ACK must arrive at the sender no later than the 
average RTT plus four times the mean RTT deviation. 

Consider the scenario in Fig. 14，let RTTsr, RTTsm RTTar be the RTT between 
sender and receiver, sender and accelerator and accelerator and receiver respectively. 
Normally RTTsr is the sum of RTTsa and RTTar. However, once local retransmission 
takes place, measured RTT of the lost packet will increase to RTTs/&2RTJ\r. 

Depending on the extent of RTT variation of the mobile data network, the extra delay 
RTTar could be larger than four times the mean deviation of the RTT as measured by 
the sender. 

Our measurement of a production 3G HSPA network recorded a mean RTT 
deviation at around 7 ms while the mean RTTar is around 100 ms. Thus in this case 
even the packet can be successfully retransmitted in one attempt, the extra delay 
incurred (i.e., 100 ms) will still trigger timeout at the sender, leading to a significant 
drop in the sender's CWnd. 
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Fig. 14. RTT incurred by local retransmission 

Now the time needed for retransmission depends on a number of factors, 
including the RTT between the accelerator and the receiver, transmission time, and 
accelerator processing time. The first two of these factors are network dependent and 
thus cannot be reduced further by the transport layer. On the other hand, we note that 
the timeout threshold at the sender is continuously updated through measurement of 
the average RTT and mean RTT deviation between the sender and the receiver 
whenever an ACK comes back. 

In (13) we note that srtt is computed from measured RTT, which is in turn 
computed from the difference between the ACK packet arrival time and the 
transmission time of the original data packet. While we cannot change the way the 
sender computes the srtt, the accelerator could change the RTT as measured by the 
sender, simply by delaying the forwarding of ACK packets received from the 
receiver — RTT modulation. 

The next question is the amount of delay to add. Intuitively a longer delay will 
allow more time to carry out local retransmission. However if the delay is too long 
then it may exceed the RTO threshold at the beginning of the connection, resulting in 
false triggering of timeout. Moreover, a long RTT will also lower the rate at which 
the sender ramps up the CWnd, thus degrading throughput at the beginning. 
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To tackle this dilemma we propose to increase the forwarding delay in an 
incrementally maimer. Specifically, the accelerator continuously measures the RTT 
deviation between the accelerator and the receiver by 

" , e f e v � H " , / - H (14) 
and then compute the smoothed mean RTT deviation from 

rttdev=\rtta,,+^rtta,,j (15) 

Although the measurement does not include the delay and delay variations 
between the sender and the accelerator, the impact is generally insignificant as (a) the 
mobile link typically exhibit larger RTT and RTT variations than the wired link; and 
(b) RTT variations of the wired link is generally independent of the RTT variations of 
the mobile link, thus the mean RTT deviation measured by the sender will in general 
be not smaller than the mean RTT deviation of the mobile link. 

Define L to be the number of retransmission attempts to accommodate. Then our 
goal is to add a ACK-forwarding delay, denoted by D, such that 

D>Lxrtt ( 1 6 ) 

where rtt is the smoothed RTT between the accelerator and the receiver. 
Denote the initial ACK-forwarding delay as Do=0. Then whenever an ACK arrives 

at the accelerator, it will increase the ACK-forwarding delay by 
DM=Di+j3xrttdev (17) 

where rttdev is the smoothed mean RTT deviation between the accelerator and the 
receiver. The parameter p controls how fast we increase the ACK-forwarding delay. 
An obvious limit is p<A as the sender RTO will expire if the ACK arrives 4 times the 
smoothed mean RTT deviation later than the mean RTT. 
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6.2 Performance 
To evaluate the performance of RTT modulation we repeated the experiment using 

the setup in Fig. 3 by implementing the transmission scheduler, proactive 
retransmission, and RTT modulation algorithms in the accelerator. We set 2 in 
(17). Fig. 15 plots the evolution of modulated RTO (RTOM), RTO and RTT versus 
time. Random packet loss occurred at 8.21 s. Fig. 16 shows an enlarged view of Fig. 
15 around the time the loss event occurred. As the lost packet was retransmitted by ‘ 
the accelerator, the RTT of the locally retransmitted packet is increased beyond the 
original RTO. Thus without RTT modulation this will trigger sender timeout. By 
contrast, modulated RTT allows the extra margin for the local retransmission to 
complete, and in this case the increased RTT stays within the modulated RTT and 
thus the loss event can be successfully suppressed. 
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Fig. 15. Evolution of modulated RTO (RTOM), RTO and RTT versus time 
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Fig. 16 Evolution of modulated RTO (RTOM), RTO and RTT versus time (enlarged around loss) 
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Chapter 7 Fairness 
Congestion control between the accelerator and the receiver no longer follows the 

conventional TCP AMD algorithm. In a mobile data network although network 
channel resources are allocated in a per-device basis, TCP flows destined to the same ’ 
receiver^ will still compete against each other for bandwidth. We investigate in this 
chapter the bandwidth sharing behavior of conventional TCP and that of the 
accelerator. 

7.1 Packet forwarding 
The accelerator allocates channel resources in a round robin manner [22] as 

depicted in Fig. 17 for TCP flows destined towards the same receiver. Specifically, 
packets are organized in per-flow queues awaiting forwarding to the receiver. Each 
packet has a scheduled forwarding time as determined by the transmission scheduler 
(c.f. Section 4.3). The accelerator will iterate through all queues in a round-robin 
manner. Empty queues are skipped. Otherwise the scheduled forwarding time of the 
queue's head-of-line packet is compared against the current time, and the packet 
forwarded if the scheduled forwarding time is up, otherwise the queue is skipped. 

1 The mobile data network may also be shared by multiple hosts using an NAT. In this case TCP flows 
destined to all hosts connected via the same mobile data link will compete against each other for 
bandwidth. 
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Fig. 17. Logic of Packet scheduling 

To evaluate this component, we use two connections transferring 16 MByte of 
data while one of the connections starts 5 s earlier than another one such that the 
earlier link can achieve its maximum throughput and let the latter one compete with 
it. For the case of not using the accelerator, we manually set the receiver buffer size 
to 128 KB (which is larger than the BDP of the emulated link at 108 KB) and set 
random loss to zero to ensure that the two ordinary TCP connections (using Linux's 
default CUBIC congestion module) can fully utilize the link capacity. 

Fig. 18 and Fig. 19 plot the 1-s averaged throughout of the two TCP flows for the 
case without and with accelerator respectively. The throughput is measured at the 
receiver. We observe that normal TCP flows without the accelerator exhibit more 
throughput fluctuations than the case with the accelerator. The throughput 
fluctuations are due to the bandwidth probing actions of the two TCP flows. By 
contrast the accelerator's round-robin scheduler allocates near equal bandwidth to the 
two competing TCP flows with negligible fluctuations. 

The differences widen even further if we average the throughput over a shorter 
timescale, e.g.，100 ms in Fig. 20 and Fig. 21. In terms of fairness we employ Jain's 
fairness index [23] to quantify the comparisons. The fairness index can range from 
\/n to 1 where n is the number of competing flows. Larger index value represents 
better fairness among the competing TCP flows. Table 4 lists the fairness indices for 
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three timescales, i.e., 1000 ms，100 ms, and 10 ms. We can see that the accelerator 
can maintain a high fairness index even for timescale as short as 10 ms, at which 
point normal TCP performed poorly. These results demonstrate that although the 
accelerator does not implement TCP's AMD congestion control algorithm it 
nevertheless can achieve even better fairness in bandwidth sharing. 

" ^ l e s 1000 ms 100 ms 10 i 
Normal TCP "a95 0.76 0.82 
Using accelerator 0.95 O ^ ‘ 

Table 2 Jian's fairness index with different scale 

• . J -
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Fig. 18. Throughput variation of two competing flows without accelerator 
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Fig. 19. Throughput variation of two competing flows with accelerator 
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Fig. 20. Throughput variation of two competing flows without accelerator 
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Fig. 21. Throughput varaition of two competing flows with accelerator 

7.2 Non-uniform bandwidth 
allocation 

In addition to round-robin scheduling, the accelerator opens the door to implement 
more sophisticated bandwidth allocation and channel scheduling algorithms. As an 
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example we implemented a generalized queueing discipline called weight fair 
queueing (WFQ). Each TCP flow is assigned a weight, denoted by Wi for flow i. In 
each round of packet forwarding, up to w,- packets are forwarded for flow i. This 
results in unequal throughput with the flows throughput approximating the ratios of 
the weights. Fig. 22 plots the throughput of 3 TCP flows with weights wq=\, WI=2, 
and W2=3 respectively. Considering the stationary period from time 20 to 40 seconds 
the resultant throughput ratios are 1:2.0001:3.0003，which closely approximate the 
assigned weights. 

The applications of WFQ are many, such as to provide different bandwidth to 
different applications (e.g., more bandwidth for web browsing versus P2P), or to 
adapt the bandwidth allocation based on application demands (e.g., video streaming 
versus file download), and so on. 

8 Z Aggregate 

7-/\ … … 厂 

^ g . Weight=l 
i s /Weight=2 
: N X /Weight=3 I ~ 

I丨 I J ^ 
0 . " 「 r T T 丨 I • i 

0 10 20 30 40 50 60 70 
Time (Second) Fig. 22. Throughput variation of flows with different weight 

42 



Chapter 8 EXPERIMENTS 

We conducted extensive measurements and experiments in a production 3G HSPA 
network to evaluate the characteristics of mobile data networks, to study the 
performance of TCP, and to evaluate the performance of the proposed accelerator. ‘ 

8.1 Experiment setup 
Fig. 23 depicts the experiment setup. The sender and the accelerator both ran on 

Linux with kernel 2.6 (with CUBIC as the TCP congestion control module). They 
connect to the Internet via high-speed wired network links running at 100 Mbps. The 
receiver host ran Windows XP SP2 and was connected to the mobile data network 
via a USB 3G HSPA modem. All experiments are conducted with the receiving host 
in a stationary position. 

^ ^ 3G Modem ^ 

Sender Accelerator 

\ ‘ Fig. 23 Practical network setup 

43 



8.2 Packet loss 
We first study the packet loss rate of the mobile link by sending UDP datagrams 

directly from the sender to the receiver, bypassing the accelerator, at various fixed 
rates ranging from 3 to 6.5 Mbps. Fig. 24 plots the packet loss ratio with 95% 
confidence interval versus various UDP data rates. Our measurement shows that the 
mobile link has an upper throughput limit at approximately 5.40 Mbps. Nevertheless 
as the results in Fig. 24 show the packet loss ratio is significant even at data rates 
lower than the mobile link's throughout limit. Moreover our results consistently 
show that the loss rates are data rate dependent - higher data rate generally results in 
higher packet loss ratio. 

A second observation is that packet loss remains even if the data rate is low. For 
example, at a data rate or 3 Mbps we consistently measured a loss rate of 
approximately 0.6%. These losses are likely due to radio transmission errors which 
cannot be recovered by the link layer's retransmission mechanism such as HARQ 
[24]. 
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Fig. 24. Loss ratio with 95% confidence interval for data rates 3-6.5 Mbps 
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It is also worth noting that the extend of packet losses depends on many factors, 
such as the location of the mobile device, mobility of the mobile device, amount of 
radio interference, etc. We also conducted similar measurements in other mobile data 
networks and found different levels (higher) of packet losses. Nevertheless the 
previous two observations are consistent even across different mobile operators. 

8.3 Unaccelerated TCP throughput 
We first evaluate the throughput performance of normal TCP over the mobile data 

network. In addition to using the default receiver window size, which is 17 KB for 
Microsoft Windows XP, we also developed a custom application which explicitly 
increased the receiver window size by increasing the socket buffer size via the 
sockets API [12]. 

Fig.. 25 plots the achievable TCP throughput versus receiver buffer size ranging 
from 17 KB to 128 KB. The BDP of the path is approximately 90 KB thus the 128 
KB and the 192 KB settings already exceeded the BDP. Not surprisingly the 
throughput increases with larger receiver buffer size but we note that even with a 
receiver buffer size of 192 KB the achievable throughput is still lower than the 
throughput limit of 5.40 Mbps as measured using UDP in Section 8.2. 
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Fig. 25. Achievable throughput versus various receive buffer size 

8.4 Accelerated TCP throughput 
Next we repeat the throughput test by introducing the accelerator between the 

sender and the receiver. The receiver in this case employed the default receiver buffer 
size of 17 KB. The test transferred a 32 MB file from the sender to the receiver. 

Table 3 summarizes the overall throughput and steady state throughput for both 
accelerated and unaccelerated cases. The former includes the ramp-up period of TCP 
while the latter does not. In either case the accelerator increases the achievable 
throughput by approximately 2.5 times. Moreover, the accelerated TCP achieved a 
throughput (4.03 Mbps) higher than the case for normal TCP with 192 KB receiver 
buffer size (3.80 Mbps). This is because the accelerator not only eliminated the 
AWnd-induced bottleneck, but also suppressed packet loss events to keep the sender 
CWnd at a high level. 
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~ ~ ~ ~ ~ ~ ~ “ O v e r a l l Throughput (bps) Steady State Throughput (bps) 

Without Accelerator 1617918.03 1696274.89 

With Accelerator 4033170.61 4255799.80 

Ratio (With/Without) ^ 2.51 

Table 3 Improvement in both overall throughput and steady state throughput 

8.5 Fairness 
To evaluate the fairness in bandwidth sharing across competing TCP flows, we ‘ 

initiate two concurrent TCP connections between the sender and the receiver, both 
transferring data as fast as TCP allows. For the unaccelerated case we explicitly set 
the receiver window size to 128 KB while for the accelerated case we use the default 
window size of 17 KB. 

We captured and measured the throughput of the two TCP flows at the receiver 
and then compute the Jain's fairness index using throughput data averaged over 100 
ms intervals. The resultant fairness indices are 0.74 and 0.99 for the unaccelerated 
and accelerated cases respectively. Consistent with the results in Section 7.1 the 
accelerator can achieve much better fairness in sharing bandwidth across the 
competing TCP flows. 

8.6 Mobile handset performance 
In this section, we change the experiment setup to replace the PC-based receiver 

host by a mobile handset. We tested three mobile handsets: iPhone 3Q iPhone 3GS, 
and Nexus One. All three mobile handsets have built-in support for 3G HSPA. 
Throughput is measured by downloading a 4 MB image file from a web server 
running in the sender host. The measured throughput is summarized in Table 4. 
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Without accelerator With accelerator 
iPhone 3G throughput ( M b p s ) ^ 
iPhone 3GS throughput (Mbps) 3.56 
Nexus One throughput (Mbps)~~ 

Table 4 Throughput obtained with handsets with and without the accelerator 
From the packet trace data we observe that both iPhone 3G and iPhone 3GS have 

a fixed receiver buffer size of 128 KB while Nexus One appeared to implement 
adaptive buffer sizing, with a dynamically variable receiver buffer size up to 81 KB. 

Surprisingly, for iPhone 3G and iPhone 3GS the accelerator did not offer 
significant improvement in TCP throughput. Analysis of the traffic trace data 
revealed that the RTT measured by the sender was about 400 ms. However if we 
replace the mobile handset by a PC-based receiver the measured RTT was only 120 
ms at the same data rate. As the same mobile data network is used in both cases we 
conclude that the differences in RTT must be due to processing delays incurred by 
the mobile handsets. In other words in the cases of iPhone 3G and iPhone 3GS the 
achievable throughput is in fact limited by the processing capacity of the receiver. It 
is worth nothing that this capacity limit has been incorporated into the accelerator's 
transmission scheduler and thus even without TCP's AMD congestion control the 
accelerator can still correctly estimate the receiver's processing capacity and 
achieved its throughput limit. 

For the Nexus One the accelerator did increase the achievable throughput from 
2.93 Mbps to 4.02 Mbps. This suggests that the Nexus One has a higher processing 
capacity which allows the accelerated TCP flow to reach a higher throughput. 
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Chapter 9 
FUTURE WORK 

In this chapter we discuss three directions for future work: (a) dynamic AWnd 
control; (b) split-TCP; (c) dynamic resource allocation; and (d) sender-based 
acceleration. 

9.1 Dynamic AWnd control 
In the proposed opportunistic transmission the AWnd is rewritten with a large 

constant (e.g., 10MB) by the accelerator before it is forwarded to the sender. On one 
hand, while the constant AWnd works well in the 3G HSPA environment it may not 
be large enough for networks with even higher bandwidth. On the other hand, the 
accelerator must reserve buffer space of size AWnd bytes. If an accelerator needs to 
handle lOK flows than the buffer requirement alone will become 100 GB，which is 
not cost-effective. 

Therefore one future direction is to investigate adaptive algorithms to monitor and 
estimate the throughput of on-going TCP flows and then dynamically adjust the 
AWnd to reduce buffer consumption, while still ensuring data are always available 
for forwarding to the receiver. Moreover, buffer sharing techniques may also provide 
further reduction in buffer requirement, especially for flows destined to the same 
receiver. 

49 



9.2 Split-TCP 
The accelerator developed in this thesis maintains TCP's end-to-end performance 

guarantees such that data acknowledged are guaranteed to be received by the 
receiver. This is an important property in many applications, including finance, 
trading, e-banking, e-healthcare, and so on. Nevertheless if split-TCP can be applied, 
e.g., for non-critical applications, the accelerator can then further modify the 
end-to-end congestion control algorithm which may provide further performance 
gains. 

Specifically, similar to flow control the accelerator can decouple congestion 
control between the sender and the receiver altogether. In this split-TCP approach the 
accelerator may acknowledge packets before the receiver does, thus substantially 
speeding up the growth of CWnd at the sender. This will likely improve the 
performance of short-lived TCP flows, such as web browsing. In addition, packet 
loss events can also be suppressed completely by the accelerator, thereby keeping the 
sender from triggering congestion control in the event of random or even 
congestion-induced packet losses in the mobile link. 

9.3 Dynamic resource allocation 
In Chapter 7.2 we described a modification to the packet forwarded in the 

accelerator to achieve non-uniform bandwidth allocation. Beyond WFQ the 
accelerator can also be implemented to provide priority scheduling (e.g., higher 
priority for real-time traffic), to guarantee bandwidth availability (e.g., for streaming 
video), or to perform traffic policing (e.g., to limit throughput of P2P traffics). This 
provides a fertile ground for further investigation. 
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9.4 Sender-based acceleration 
While the proposed acceleration algorithms are designed for use in a 

network-centric accelerator. Some of them in fact may also be implemented at the 
sender TCP module. For example, opportunistic transmission and to a lesser extent 
loss event suppression are candidates for implementation in the sender. However 
sender-based approach does face new challenges, including the differentiation of 
mobile and non-mobile TCP flows, the existence of proxied servers in mobile ， 

operators, and so on. More research is warranted to investigate the applicability and 
performance of sender-based acceleration. 

X 
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Chapter 10 
CONCLUSION 

This thesis tackled the performance problem of running TCP over mobile data 
networks by introducing an accelerator between the sender and the receiver. The 
accelerator implements three acceleration algorithms: (a) opportunistic transmission 
to overcome the AWnd-induced throughput bottleneck; (b) local retransmission to 
prevent throughput blackout in the event of packet loss; and (c) loss event suppression 
to keep the sender CWnd at a high level. 

Experimental results conducted in production 3G HSPA networks show that the 
.accelerator can increase the throughput performance of TCP by up to 2.5 times of the 
unaccelerated TCP. Moreover, the accelerator achieves better fairness among 
competing TCP flows and can also be equipped with dynamic resource allocation 
algorithms to offer more sophisticated traffic control for the TCP flows. 

Last but not least, the proposed accelerator does not require modification to the 
applications, TCP implementation at the hosts, or operating system; and thus can be 
readily deployed in current and future mobile data networks. 
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