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Abstract 

In maintaining consistencies, such as GAC*, F D G A C * and weak EDGAC* , for 

soft global constraints, Weighted CSP (WCSP) solvers rely on the projection 

and extension operations on constraints, requiring efficient min imum cost com-

putation. Since these operations modify the structure of the constraints, an 

important issue is tractable projection-safety, which concerns whether the min-

imum cost computation of a projected/extended constraint remains tractable. 

In this thesis, we prove that tractable projection-safety is always possible 

for projections/extensions to / f rom the mil iary constraint (C^), and always 

impossible for projections/extensions to / f rom n-ary constraints for n > 2. 

When n = 1，the answer is indefinite. We show an example that is not 

tractable projection-safe, while Lee and Leung give flow-based projection-

safe constraints as positive examples of tractable projection-safety. We define 

polynomially decomposable soft constraints, which are amenable to tractable 

minimum cost computation. We further show that such constraints remains 

polynomially decomposable after projections/extensions to unary constraints 

and thus being tractable projection safe. We show that the soft—among暫， 

s o f t - r e g u l a r ^ , soft—grammar^ and max_weight/min_weight constraints 

are polynomially decomposable. We embed these constraints in a WCSP solver 

and conduct experiments to confirm the feasibility and efficiency of our pro-

posal. 
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摘要 

在對軟性約束維護一致性的過程中，例如GAC*, FDGAC*，和弱EDGAC*， 

加權約束滿足問題(weighted constraint satisfaction, WCSP)的求解器依賴於 

對約束的投影和擴展操作。由於這些操作改變了約束的結構，可解投影安全 

性(tractable projection-safety)就成為了一個重要的問題。一個約束是可解投 

影安全的，意味著即使經過了投影和擴展操作，這個約束的最小值依然是可 

解的。在這篇論文裡面，我們證明了零元的投影和擴展操作並不影響可解投 

影安全性，而二元的投影和擴展操作會使得約束失去可解投影安全性。對 

於一元的情形，投影和擴展操作對可解投影安全性的影響並不確定。對此 

我們舉出了正面和反面的例子。我們定義了一類可多項式分解(poiynomially 

decomposable)的約束。這類約束允許我們有效地求解它們的最小值。進一 

步地，我們證明了即使經過了投影和擴展操作，它們的最小值依然可以被有 

效地求解，故而它們是可解投影安全的。我們展示了很多典型的約束都是可 

多項式分解的。我們在加權約束滿足問題求解器上面實現了我們提出的方 

法，用實驗數據顯示了我們的方法的可行性和有效性。 
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Chapter 1 

Introduction 

This thesis reports work on tractable projection-safe global constraints in weighted 

constraint satisfaction, which is a common soft constraint framework. We ad-

dress the issue of tractable projection-safety in enforcing WCSP consistencies. 

In this chapter, we first briefly describe constraint satisfaction problems (CSPs) 

and weighted constraint satisfaction problems (WCSPs) . T h e n we give the mo-

t ivation of our work, and overview the structure of rest of this thesis. 

1 1 Constraint Satisfaction Problems 

Many combinatorial problems can be model as constraint satisfaction problems 

(CSPs). As defined by Mackworth [33], a CSP is described as follows: 

l^e are given a finite set of variables, a finite domain of possible 

values for each variable, and a conjunction of constraints. Each 

constraint is a relation defined over a subset of the variables, lim-

让他g the combination of values that the variables in this subset can 

take. The goal is to find a consistent assignment of values from 

the domains to the variables so that all the constraints are satisfied 

simultaneously. 

We use the well-known n-queens problem to illustrate how to model a 

combinatorial problem as a CSP. 

1 



Chapter 1 Introduction ^ 

E x a m p l e 1 .1 . The n-queens problem is to place n queens onto anxn chess 

bo— — no two queens attack each other. Two queens attack each other 

订—y share the same row, column or diagonal Suppose n == 4. To model 

仇Problem, we can use four integer variables {x.^x,, x,,〜}. These variables 

s e n t the position of each queen, i.e. the i-th queen placed m the z-th row 

—工“h column. The following constraints are posted to restrict that no two 

queens attack each other: 

• column: Xi ̂  xj for all 1 < i < j < and; 

• diagonal: 一 Xj\ 寺 j - i for all 1 < z < j < 4. 

1 2 3 4 
XI Q ^ i z r 
x2 

X3 

x4 t l L S ^ 
Figure 1.1: The 4-queens problem 

TVie model implicitly guarantees no two queens share the same row. Fig-

蒙 1.1 a solution to the 4-queens problem. In fact there are two solutions 

m this case: ( 2 , 4 , 1 , 3) and (3,1，4, 2). flVe use tuples to represent an assign-

譲t，where the i-th component of the tuple corresponds to the value assigned 

to the i-th variable xi.) 

The CSP framework is a powerful tool to model a wide range of com-

binatorial problems. Yet CSP is NP-Complete, which means unless P=NP, 

solving CSP would take exponential t ime in general. I n practice CSPs are 

solved via backtracking tree search. Along a branch of a search tree, variables 

are assigned one by one unt i l a solution is found or inconsistent is detected. 

In the later case the solver backtracks and tries another branch. To improve 
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just removing infeasible values in variable domains, consistency techniques in 

WCSP take cost information into account and retrieve hidden information by 

transport ing costs. 

1.3 Motivation and Goal 

A global constraint is a constraint specified by its semantics, and involve a 

non-fixed number of variable. Besides an efficient branch and bound pro-

cedure augmented w i th powerful consistency algorithms, a practical WCSP 

solver should have a good l ibrary of soft global constraints to cater for the 

often complex scenarios in real-life applications. Lee and Leung [30’ 31, 32 

showed how AC* [18], FDAC* [27] and EDAC* [19] can be generalized and 

implemented efficiently for a special class of soft global constraints, namely 

those that are (flow-based) projection-safe[30, 32 . 

Lying in the heart of all WCSP consistency algorithms are (a) computation 

of min imum cost of constraints and (b) the projection and extension operations 

which transport costs among constraints to create pruning opportunities. In 

the case of soft global constraints which usually have high arities, specialized 

polynomial t ime algorithms can be developed for minimum cost computation 

according to the semantics of the global constraints and their violation mea-

sures. However, projections and extensions modify a constraint so that its 

structure and even semantics might change, possibly making the original min-

imum cost algorithm no longer applicable. Therefore, the key notions here is 

tractable projection-safety, which concerns whether the min imum cost compu-

tat ion of a projected/extended soft global constraint remains tractable. We 

discover that different consistency notions depend on different scenarios of pro-

jections and extensions. We study the impact of projections and extensions on 

tractabi l i ty of soft global constraints, and give positive and negative examples. 

Moreover, we discover that for several typical soft global constraints, we can 
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apply dynamic programming approach to compute their min imum costs, and 

the approach is sti l l applicable after projections and extensions. We study their 

properties and define polynomially decomposable soft constraints, which can 

be decomposed into a tractable number of simpler constraints for (minimum) 

cost calculation. We show a soft global constraint of this class are tractable 

projection-safe. 

1.4 Outline of the Thesis 

The outline of this thesis is as follows. We give basic backgrounds on CSPs 

and WCSPs, including related concepts and solving techniques, in Chapter 2. 

Backgrounds on global constraints and constraint softening are also given in 

this chapter. 

Chapter 3 defines tract abil i ty of a soft constraint, and addresses the issue of 

tractable projection-safety. We analyze tractable projection-safety by dividing 

the discussion into three cases of different scenarios of projections and exten-

sions. We prove that a soft (global) constraint is always tractable projection-

safe after projections/extensions to / f rom the mil iary constraint (C0), and al-

ways non-tractable after projections/extensions to / f rom n-ary constraints for 

n > 2. When n = 1, the answer is indefinite. We give a simple tractable 

constraint and show how i t becomes non-tractable after projections/extensions 

to / f rom unary constraints, while flow-based projection-safe constraints [30, 32 

are positive examples of tractable projection-safe constraints. 

We also define polynomially decomposable constraints in this chapter. We 

define safe decomposition where a constraint is divided into sub-constraints 

which allows us to (1) compute the minimum cost of the original constraint 

from the min imum cost of its sub-constraints, and (2) distribute projections 

and extensions to its sub-constraints. We give special scenarios of safe decom-

position. Base on safe decomposition, we define polynomially decomposable 
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constraints, and show that wi th a soft global constraint of this class, we can 

apply a dynamic programming approach to compute its minimum cost, and 

the algorithm is stil l applicable after projections and extensions. As such, a 

polynomially decomposable soft global constraint is tractable projection-safe. 

Chapter 4 give examples of polynomially decomposable constraints. These 

constraints include the soft—among卯『constraint, the soft—regular肌厂 con-

straint, the soft_grainmar^"^ constraint, and maxjweight/minjweigt i t con-

straints. For each constraint presented in this chapter, we show how they 

can be safely decomposed in a recursive way. Base on the decomposition, we 

give algorithms to calculate their minimum costs. The algorithms presented in 

this chapter are special cases of the generic algorithm to compute the minimum 

cost of a polynomially decomposable constraint. 

Chapter 5 shows the experiment results. For each constraint discussed in 

Chapter 4, we conduct one experiment to show the efficiency of our technique. 

We also compare our technique wi th the flow-based approach by Lee and Le-

ung [30，32 • 

We conclude the thesis in Chapter 7. We summarize our work on the thesis, 

and shed light on possible future directions of our research. 



Chapter 2 

Background 

In this chapter, we give the basic background for the rest of this thesis, includ-

ing the concept of constraint satisfaction problems (CSPs), weighted constraint 

satisfaction problems (WCSPs), and global constraints. We also describe var-

ious consistency techniques for CSPs and WCSPs and how they are incorpo-

rated into backtracking search to build efficient solvers for these problems. 

2.1 Constraint Satisfaction Problems 

A constraint satisfaction problem (CSP) is a tup le V = { X , V, C), where A' is 

a set of variables { x i , x 2 , . . . ,Xn}. Each var iable has i ts domain D{xi) G D of 

values that can be assigned to it. Assigning a value ̂； to a variable xi is denoted 

by Xi H-)- V. In this thesis we assume the domains to be finite. An assignment 

{^si 4 Vs2,…、〜^ on S = C A' Can 

be represented as a tuple I = {vi,v2,. •. ,Vn)- The notation l[xs-] denotes the 

value assigned to Xg., i.e. Vs。and l[S'] denotes the tuple formed by extracting 

an assignment on a subset S' C S in I. We also use the notation C{S) to 

denote the set of all tuples corresponding to all possible assignments on — 

. . . , Xs^,} C A', i.e. C{S) = D{xs-^) x . •. x A hard constraint 

Cg e C over the subset of variables S is a. subset of J C { S ) , specifying the allowed 

tuples to be assigned to the variables in S. The set of variable S is the scope of 

7 
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^s- The constraint could be explicit ly given by a table of tuples, or impl ic i t ly 

by its semantics. The anty of C^ is defined as A assignment I e C{S) 

satisfies C^ if l[S] E C^. A solution of a CSP is a complete assignment that 

satisfies every constraint in C. See Example 1.1 for a simple example of CSP. 

The superscript h in the notation C^ is to differentiate a hard constraint 

from a soft constraint. Soft constraints wi l l be discussed in Section 2.2. 

To bui ld efficient solvers for CSPs, backtracking tree search can be used. 

The backtracking tree search algorithm explores the whole search space in a 

systematic way, and backtracks as soon as i t detects any failure. By examining 

local substructure, local consistency techniques are able to reduce search space 

and help the search procedure backtrack earlier. 

2.1.1 Backtracking Tree search 

Backtracking tree search is a general algorithm that systematically explores 

the whole search space to look for solutions of a problem. In our application, 

given a CSP, the whole search space is made up of all possible assignments 

to the variables in the CSP. The task is to find solutions of the CSP in the 

search space. The algorithm traverses the search space in a depth-first man-

ner. Whenever conflict is detected, i t immediately backtracks and switches 

to another branch. Algor i thm 2.1 shows the pseudo-code for f inding the first 

solution of a CSP {X, V, C) [4:. 

The algorithm starts from an empty assignment, and tries to extend i t 

into a solution. I t recursively calls search() to traverse the search tree. On 

each node of the search tree, i t picks an unassigned variable by the function 

chooseUnassignedVarO (Line 5), and extends the assignment by assigning 

to i t a value v in its domain D{xi) by the function chooseValO (Line 7-8). 

I t then checks whether there is any conflict in the new part ial assignment 

I f no conflicts are found, the algorithm proceeds to the sub-search tree and 
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r印eats the procedure. The algorithm halts immediately after the first solution 

is found (Line 11), or the whole search tree is exhausted. In the latter case, 

the input CSP has no solutions. 

A l g o r i t h m 2.1: Backtracking tree search algorithm for solving CSPs 
1 P r o c e d u r e s o l v e ( ) beg in 
2 search(0 , V)； 

3 end 
4 P r o c e d u r e search(/, V) beg in 
5 Xi ^ chooseUnassignedVar()； 

6 w h i l e D{xi) 0 do 
7 V — c h o o s e V a l { D { x i ) ) ； 

8 I' ^ lU { x i v } ; 

9 i f n o C o n f l i c t ⑷ t h e n 
10 i f \l'\ = lA'l t h e n 
11 r e t u r n I，； 

12 else 
13 sol = search(" , :D)； 

14 i f sol ^false t h e n r e t u r n sol ； 

15 D { x i ) — D { x , ) \ { v } ； 

16 r e t u r n false] 
17 end 

Figure 2.1 shows a search tree for Example 1.1. The variables are being 

assigned in the order of their indices. The algorithm starts w i th an empty 

assignment that corresponds to the empty configuration. I t first tries the 

assignment Xi h^ 1 (putt ing the first queen in the corner). No conflicts can 

be seen at this point. Then i t proceeds to assign 1 to X2. A t least one of 

the constraints is violated due the two queens are attacking each other. So 

i t backtracks and t ry another branch. The procedure continues unt i l in the 

rightmost branch in the figure, when i t finds a solution (which is (2,4,1,3)). 

The algorithm outputs the solution and halts. 

In the above example, we backtrack only when two queens are attacking 

each other. This strategy yields a large search tree of 27 search nodes. For 

more diff icult problems, we may get even larger search trees. By doing more 
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checking, we can prune large parts of the search tree to reduce our effort in 

doing search. Local consistency techniques [37, 34] are the tools to do this 

kind of job. 

2.1.2 Local consistencies in CSP 

Naive implementation of the backtracking search algorithm would not result in 

efficient solvers for CSP. One of the problems is its late detection of conflicts. 

For example, in the 4-queens problem, when we place the first queen in the 

first column, we should immediately know no other queens should be placed 

in the same column. So we can safely remove value 1 from the domains of 

and avoiding unnecessary search. The main idea here is to tu rn a CSP 

into another one that is equivalent but easier to solve. 

D e f i n i t i o n 2 .1 . [4] Given two CSPs = and P2 = (A' , 1^2,^2)• 

Pi is equivalent to 尸2 if the have the same set of solutions. 

A n equivalence preserving transformation converts a CSP i n to another 

equivalent CSP. Such a transformation is usually done by removing values 

in domains that wi l l not appear in any solution of the CSP. Usually we are 

to transform a CSP into another one that of some form of local consistency. 

Different consistency notions have appeared in literature. These consistency 

notions give rules to filter out unwanted values in domains. Algori thms that 

enforce local consistencies are called constraint propagation algorithms. These 

algorithms look into the substructures of a CSP and turns the CSP into desired 

form. Two common consistency notions are node consistency [37, 34] and arc 

consistency [37, 34]. We are to describe them in the following. 

N o d e Cons is tency Node consistency is perhaps the simplest form of con-

sistency notion. I t considers each time a unary constraint, that is a constraint 

involving one single variable. 
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D e f i n i t i o n 2 .2 . [37, 34] Given a CSP A constraint is node 

consistent (NC) if either > 1，or |6'| 二 { r r j and for any value v G D{xi), 

assigning v to Xi satisfies A CSP is node consistent if every constraint 

C E C is node consistent. 

E x a m p l e 2 . 1 . Suppose the domain of x is D{x) = { 2 , 3 , 4 , 5 } . And we have 

a constraint x < 4. We can remove 5 from D{x) since x ^ 5 violates the 

constraint. Other values remains intact because assigning them to x satisfies 

the constraint. 

A l g o r i t h m 2.2: Enforcing node consistency 
1 P r o c e d u r e enf orceNC(A', C) beg in 
2 fo r C^ eC and S = { x j do 
3 fo r V e D {x i ) do 
4 i f { x i ^ v } ^ C ^ t h e n 
5 D{x,) f - D{x,) \ ； 

6 e n d 

To enforce node consistency, we just have to check each unary constraint, 

and remove values that violates the constraint in the corresponding domain 

(Algor i thm 2.2). Node consistency is simple, and yet weak in pruning power. 

So usually we need a stronger form of consistency notions to help discovering 

hidden information in a CSP. 

A r c Cons is tency Arc consistency is a consistency notion that takes binary 

constraints (a constraint involving two variables) into account. 

D e f i n i t i o n 2 . 3 . [37, 34] Given a CSP P = A binary constraint 

Cij G C over variables Xi and xj is arc consistent (AC) if 

• for every value Vi G D{xi), these is a value Vj e D { x j ) such that (a, h) € 

C^j, and 
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• for every value Vj G D { x j ) , these is a value vi € D{xi) such that (a, b) € 

P is arc consistent if all its binary constraints are arc consistent. 

Let Vi be a value in D(xi) and v j a value in D{xj). The value v j is a support 

of Vi if the tuple {vi.Vj) belongs to C。. In another word, a binary constraint 

is arc consistent i f all the values in each domain of its variables has at least a 

support in the other domain. 

E x a m p l e 2 .2 . Consider a CSP with two variables M = { x i , X2} with domains 

D { x i ) = { 2 , 3 } a n d D { x 2 ) = { 1 , 2 , 3 } . These is only one constraint xi xX2 < 5. 

The constraint is not arc consistent. The value 3 in the domain of D{x2) has 

no support in D{xi) because even we take 2, 2 x 3 = 6 > 5. After 

removing 3 from D(X2)，the CSP is arc consistent. 

To enforce arc consistency, we loop through every binary constraints of a 

CSP, and look for supports for every value of both domains. I f a value has no 

support, i t is removed because i t cannot appears in any solution of the CSP. 

The removed value could be the support of other values. I t is thus possible 

that the removal causes other value to lose their support. I t is necessary to 

repeat the process and verify that every values in the domains st i l l has at least 

one support. We can stop if a fixed point is reached — no more values can 

be removed and every binary constraint is arc consistent. The algorithm is 

demonstrated in Algor i thm 2.3. The algorithm is called AC-1 [34 . 

The algorithm can be improved. In each iteration, AC-1 tries to revise every 

constraint in the system even if the corresponding domains are not changed. 

A more efficient way is to use a queue Q that stores every potential ly arc 

inconsistent constraint. Only those constraints wi l l be revised. The algorithm 

terminates when the queue is empty. Such an algorithm is called AC-3 [34] and 

is demonstrated in Algor i thm 2.4. Note that AC-1 and AC-3 differ only in the 
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A l g o r i t h m 2.3: Enforcing arc consistency (AC-1) 
1 P rocedu re AC-1(A', beg in 
2 changed — true ； 

3 while changed = true do 
4 changed false ； 

5 foreach C^- G C do 
6 changed^changedVRevise(C(；., Xi, x^)VRevise(C^, x j , Xi)； 

7 end 
8 P rocedu re R e v i s e ( ( 7 為 b e g i n 
9 deleted— false ； 

10 foreach Vi G D(xi) do 
11 i f ， G D(xj) such that {vi,vj) e C^j t h e n 
12 D{x,) — D{x,) \ {v,}； 

13 deleted^- true ； 

14 r e t u r n deleted; 
15 end 

main procedure. The Revise procedure is the same. The queue Q is called the 

propagation queue, since i t helps propagate the consistency information from 

one constraint to the others. 

A l g o r i t h m 2.4: Enforcing arc consistency (AC-3) 
1 P rocedu re V, C) beg in 
2 2 — G C}; 
3 wh i l e Q 0 do 
4 f - pop(Q)； 

5 i f Revise(C^-,工“ x j ) t h e n 
6 Q^Qu{C!leC}； 

7 i f Revise(Cfj, x j , Xi) t h e n 
8 2 — 
9 end 

There are stil l rooms left for us to further improve AC-3. Various algo-

rithms have been proposed. Examples are AC-4 [35], AC-5 [39], AC-6 [9], 

AC-7 [10], AC-2001 [13], AC-3.1 [50] and AC-2001\3.1 [14]. 

Arc consistency strikes a balance between propagation efficiency and power 

of removing unnecessary values. I t turns out to be a practical consistency 
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notion and is implemented in most (if not all) CSP solvers. 

Genera l i zed A r c Cons is tency Arc consistency has been generalized to 

n-ary constraints involving n variables. 

D e f i n i t i o n 2 .4 . A constraint C^ over a set of variables S is general ized arc 

consistency (GAC) if for every value Vi G D{xi) where Xi G S, there exists 

« tuple I G C{S) such that l [ x i ] = Vi and I G C^. A CSP is generalized arc 

consistent if all its constraints are generalized arc consistent 

In another word, a constraint C^ is arc consistent if for every variable 

Xi e S and every value Vi in the domain of Xi, the assignment { x i v^} can 

be extended to a tuple (an assignment to the variables in S) I that satisfies 

the constraint C^. The tuple is called a support of Vi G D{xi) w i th respect to 

Cs- Again unless all the constraints are GAC, a CSP cannot be GAC. 

E x a m p l e 2 . 3 . Consider a CSP with three variables X = {xi,x2,x3} with 

domains D{xi) = { 2 , 3 } , D{x2) = { 1 , 4 } and D{x^) = { 2 , 4 } . There is only 

one constraint X 1 + X 2 + X3 > 9. The constraint is not GAC because value 1 in 

D{x2) has Tho support. For example, if we take the assignment 3, X2 > 

1,X3 4}, it does not satisfy the constraint because 3 + l + 4 = 8 < 9 . The 

CSP is GAC after removing 1 from D{x2). 

The AC enforcement algorithms, for example, AC-3, discussed earlier in 

this section can be easily modified to achieve GAC. 

C o m b i n i n g L o c a l Cons is tency w i t h Search We can incorporate local 

consistency algorithms into backtracking tree search to improve the efficiency 

of search. One example is the maintaining arc consistency algorithm (MAC) 

46]. A t each of the search tree, before choosing a value for a variable, we 

enforce arc consistency to reduce the domain size. As a result, many unnec-

essary branches are avoided. Also, if one of the domains of variables becomes 
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empty，we can backtrack since in this case, a conflict is found and no solutions 

lies in the current branch. The removal of values are undone on backtrack-

ing- The algori thm is demonstrated in Algor i thm 2.5. In each search node 

before branching, AC is enforced by the function enforceACO. I t then checks 

whether there exists a variable w i th empty domain. In this case the algori thm 

backtracks by returning false. Otherwise, i t continues traversing the search 

tree as in A lgor i thm 2.1. The algorithm terminates when one solution is found, 

or the whole search space is exhausted. 

A l g o r i t h m 2.5: Maintaining arc consistency (MAC) search algorithm 
1 P r o c e d u r e so lve( ) b e g i n 
2 MAC(0,P); 
3 e n d 

4 P r o c e d u r e MAC(/,r>) b e g i n 
5 enforceACO ； 

6 i f 3D{xi) G D, D{xi) 二 0 t h e n 
7 r e t u r n false; 
8 Xi ^ chooseUnassignedVarQ ； 

9 w h i l e D{xi) ^ 0 do 
10 V f - chooseVal(D(x i ) )； 

11 r ^ l U {xi ^ v}； 

12 i f | " | = lA'l t h e n 
13 r e t u r n I，； 

14 else 
15 sol = search( " ’ V)； 

16 i f sol ^false t h e n r e t u r n sol ； 

17 Dix,) — D{xi) \ {v}； 

18 r e t u r n false; 
19 end 

Figure 2.2 gives the search tree for the 4-queens problem. Here we search 

for all the solutions for this problem. The values removed by enforcing AC 

is marked by shaded grid. Note that in the leftmost search node where 1 is 

assigned to x i , the search tree beneath i t disappears comparing to Figure 2.1, 

thanks to the earlier detection of failure. 
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Figure 2.2: The M A C search tree for the 4-queens problem 
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2.2 Weighted Constraint Satisfaction Problems 

In real-life there are optimization problems and over-constrained problems. 

For example, we may want to maximize our profit, or min imum the consumed 

resources. Weighted constraint satisfaction (WCSP) [48] is one of the soft 

constraint frameworks to handle optimization problems and over-constrained 

problems. Instead of being a set of allowed tuples, a constraint in WCSP is 

a cost function. And the total cost is the sum of costs returned by all the 

constraints. The task is to find a tuple to minimize the overall cost. 

A weighted CSP (WCSP) [48] is a tuple {？V, C , T ) . A ' i s a set of variables 

, X 2 , . . . , Xn}. Each variable has its finite domain DixA G of values that 

can be assigned to i t . Assigning a value to a variable xi is denoted by Xi ^ v. 

A tuple I = {vi,.. is used to represent an assignment to a set of variables 

{xi ^ Vi,... ^ Vn'}. We denote / [ x j as the value assigned to 工“ and l[S' 

as the tuple formed from the assignment on variables in the set S. We use 

the notat ion C{S) to denote the set of all tuples corresponding to all possible 

assignments on 5 = . . . , i.e. C{S) = x . . . x C 

is a set of soft constraints. Each constraint Cs e C over a set of variable 

5 C X is a cost function which maps l[S] to a value in the valuation structure 

= ([0,…’ T] , © , 幻 . T h e scope of a constraint Cs is S and its arity is 

The valuation structure contains a set of integers [ 0 , . . . , T ] w i th standard 

integer ordering < . Addi t ion 0 is defined by a 0 6 = min(丁，a + b). The 

subtraction e in ^ ( T ) is defined as 

, I a — 6, if a < T 
aeb= < 

T, i f a = T 
V 

s is the scope of Cs. The cost of a tuple I in a WCSP corresponding to an 

assignment on X is defined as: 

cost{l) = 0 C5(/[5']) 
CsGC 
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The goal is to find an assignment on A' w i th the minimum cost among all 

possible assignments. Such an assignment is a solution of the WCSP. 

Wi thout loss of generality, we assume there always exists a constraint C0 

over an empty set of variable, and for every variables Xi in A', a unary constraint 

Ci over Xi. The constraint C0 provides a lower bound of the min imum cost. 

We also use Q j to denote a binary constraint w i th scope { x i . x j } . In the rest 

of this thesis we refer to soft constraints as constraints. 

E x a m p l e 2 . 4 . Figure 2.3 shows an example of WCSP. There are two variable 

o/nA X2 in A'. The domain of Xi is D(xi) = {a, b} and the domain of X2 is 

DO2) = {a,b, c}. There are three constraints Ci, C2 and Cu given as tables. 

The upper hound T is set to 4. 

工 1 Xi X2 C12 
上 _ _ ~ ~ g ^ 

" g ~ ~ h r ~ 
X2 C2 a c ""o~ 

_a b a 2 
~b Q~ ~ b ~ ~ b r ~ 

c I 2 I b c "~Q~ 

Figure 2.3: A WCSP with three constraints 

Figure 2.4 gives a graphical representation of the above example. A rectan-

gle represents a variable domain. Circles represent values in domains. Num-

bers in the circles stand for unary costs. An edge between two circles represents 

a cost if the two values are taken simultaneously. A label on the edge gives the 

cost If the cost is 1， the label is omit. 

The solution of this WCSP is (b, b) (or equivalently {xi b}). It 

has the minimum cost 1. There is only one solution since other tuples incur a 

cost greater or equal to 2. 

Note that a CSP is a special WCSP wi th T = 1. Every hard constraint 

can be translate as a soft constraint by assigning a cost T to disallowed tuples. 
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r n 風 

xl x2 

Figure 24： Graphical representation of a WCSP 

In the rest of the thesis we may use the graphical representation shown in 

the above example to depict WCSPs wi th only unary and binary constraints. 

2.2.1 Branch and Bound Search 

Branch and hound (BnB) search [26] is a special k ind of backtracking tree 

search. I t is a general method to obtain an optimal solution for an optimization 

problem. Suppose we are solving a minimization problem. The algorithm 

traverse the whole search space as backtracking tree search. Dur ing search, a 

currently best solution is kept. We use i t as an upper bound of the opt imal 

solution. In i t ia l ly i t is set to T , and is updated when a better solution is found. 

On each search node, the algorithm t ry its best to evaluate a lower bound of 

the cost in the current branch. I f the lower bound is no less than the upper 

bound, i t is a signal that the optimal solution cannot appears in the search tree 

beneath this search node. In this case the algorithm immediately backtracks. 

Unlike solving decision problems, where the algorithm immediately stops when 

i t encounters the first solution (if only one solution is of interest), branch and 

bound search has to exhaust the whole search space to prove the currently 

best solution is indeed the optimal solution. 

A lgor i thm 2.6 shows the pseudo-code of solving a WCSP wi th branch and 

bound search. Dur ing search, the upper bound 丁 is always set to the cost of 

the currently best solution. To have an estimation of the lower bound, the 
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algorithm first transform the WCSP in a desired form by enforcing local con-

sistency. (WCSP local consistencies wi l l be discussed in the next subsection.) 

Then C^ is then used as a lower bound of the optimum. The algorithm back-

tracks whenever a better solution is found (Line 2) or the lower bound is no 

less than the upper bound (Line 4). 

A l g o r i t h m 2.6: Solving WCSP using branch and bound “ 
1 P r o c e d u r e BraiichAndBound(A', V、C, T , I) beg in 
2 if A： = 0 t h e n r e t u r n C0； 

3 enforceLoca lCons is tencyO; 
4 i f C0 > T t h e n r e t u r n 丁； 

5 Xi ^ chooseVar(A')； 

6 fo r each v e D{xi) do 
7 I' ^ l U { x i ^ v } ] 
8 [ C0 ④ CiCu); 
9 T 卜 BrancMndBound(A', V, C, 丁，1')； 

10 r e t u r n T ; 
11 end 

Figure 2.5 shows a search tree for solving the WCSP in Example 2.4 using 

branch and bound search. 

2.2.2 Local Consistencies in WCSP 

As in solving CSPs, we can incorporate local consistency techniques w i th the 

basic branch and bound search. Local consistencies in WCSP are capable of 

removing infeasible values in the domains, as well as deducing a lower bound 

of the min imum cost. The lower bound is then used in the branch and bound 

search to decide whether i t can immediately backtrack from the current branch. 

As for CSPs, consistency notions for WCSPs are achieved via equivalence 

preserving transformation. 

D e f i n i t i o n 2.5. [18] Given two WCSPs = (A', Ci, T ) and P2 = 

is equivalent to P2 if for all feasible tuples I G in 

both problems, costp^{l) = costp^{l). 
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Figure 2.5: A branch and bound search tree to solve a WCSP 
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Note that given a WCSP, a tuple I is feasible iff cost{l) < T. Typical 

equivalence preserving transformation in WCSP are projections and exten-

sions. We adopt the definition from Cooper [16] and Larrosa and Schiex [27 . 

Given S2 C Si and a tuple I on S2. An r-projection of a cost a from C而 to 

Cs2、l、, where I is a tuple on S2 with l^sl = r , is a transformation of {Cs^.Cs^) 

to such that for all assignments /: 

c丨s (f[氏j) = I ^sAnSi ] ) e a, if i[S2] = I 

、C«5i(Z[*5̂ i])， otherwise 

二 I 狗(z*[狗])e a, if / [sy = I 

otherwise 
\ 

An r-extension of a cost a from C而(/) to Cs” where I is a tuple on S2 wi th 

6̂ 21 = r , and a < (7狗⑷，is a transformation of ((7而’C为)to such 

that for all assignments /: 

二 I C^i (打別）® a, if = I 
〜（"別）， otherwise 

、 

= I "勤(打別)e … i f 肪2] = I 
、 o t h e r w i s e 

In addition, if S2 = 0, the projections/extensions are always to / f rom the 

miliary constraint C^. We note that extension is the inverse of projection 

if no intermediate result is T. 

We use 5 to denote a projection to a constraint Cs^ or an extension from 

a constraint Cs^- We also use A to denote a series of projections/extensions. 

The constraint obtained by applying ^ (A) to a constraint Cs, is denoted by 

respectively). For convenience, when Si n = 0 , we define 

In the following we briefly discuss four consistency notions in WCSPs, 

namely NC* [28], (strong) 0 I C [51，30], (G)AC* [28, 30], FD(G)AC* [27, 30], 

ED(G)AC* [19, 31], and A:-consistency [16]. 
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N o d e Cons i s tency S ta r 

D e f i n i t i o n 2 . 6 . [28] Given a WCSP P = 

• A value v G D{xi) where Xi e X is node consistent star (NC*) if C^ 0 

Ci{v) < T . 

• ^ variable Xi e X is NC* if all values in D{xi) is NC* and there exists 

a value v G D{xi) such that Ci(v) = 0. Such a value is called a u n a r y 

support of Xi. 

• P is NC* if all its variables are NC*. 

Note that NC* collapses to NC when a WCSP represents a CSP, i.e. T = 1. 

E x a m p l e 2 . 5 . Consider the example given in Figure 2.6 and suppose 丁二 4. 

The WCSP in Figure 2.6(a) is not NC*，since the unary cost of both values in 

D{xi) is larger than 0. At most 1 cost can be projected to C^ (Figure 2.6(h)). 

/力 is still not NC* because C2⑷① = 3 © 1 = T . We immediately know 

c cannot appears in any solutions. By removing the value c from D{x2) 

the WCSP IS NC* (Figure 2.6(c)). 

C0 = O C0 = 1 C0 = 1 

门 a 门 司 a 岡 a 

夕 。 b 如 b � O b 

xl x2 xl x2 xl x2 

� (b) (c) 

Figure 2.6: Node consistency star 
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0 - Inve rse Cons is tency 

D e f i n i t i o n 2 .7 . [51, 30] Given a WCSP P = (A' , V、C,T). 

• A constraint Cs e C is 0 - inverse consistent ( 0 I C ) if there exists a tuple 

I G C{S) such that Cs{l) = 0. 

• Cs is strong 0-inverse consistent (strong 0 I C ) if Cs is 0IC, and for all 

^ ^ D{xi) where Xi G S, there exists a tuple I G S such that / [ x j = v 

< T . Such a tuple is called the 0 - s i i p p o r t of the 

value V e D{xi) with respect to Cs. 

• P is 0IC (strong 0IC) if all constraints in C are 0IC (strong 0IC, 

respectively). 

E x a m p l e 2 .6 . Consider the example given in Figure 2.1 and suppose T = 4. 

The binary constraint Cu in the WCSP shown in Figure 2.7(a) is not 0IC. 

By projecting cost 1 from Cu to C^, 0IC is achieved (Figure 2.7(h)). It is not 

*07ig 0IC, since for value a in D{x2), C^®C2{a) = 1 0 3 = T . By removing 

a from D{x2), it is strong 0IC (Figure 2.7(c)). 

C0=O C0=1 C0=1 

a a a 〇 © a a ^ F 

2 Q - ^ O - " O b b O 〇 b 

XI x2 xl x2 XI x2 

� (b) (c) 

Figure 2.T. 0-inverse consistency and strong 0-inverse consistency 

(Genera l i zed ) A r c Cons is tency S ta r 

D e f i n i t i o n 2 .8 . [28] Given a WCSP P = 丁). 
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• A value v G D{xi) where Xi e M is arc cons is tent s tar ( A C * ) with respect 

to a binary constraint Qj over variables Xi and Xj if there exists a value 

w G D { x j ) such that Cij{a, h) = 0. Such a value is called a s imp le s u p p o r t 

of a e D{xi). 

• ^ variable Xi e A： is AC* if it is NC* and each value in D{xi) is AC^ 

with respect to every binary constraint over Xi. 

• P is AC* if all its variables are AC*. 

D e f i n i t i o n 2 . 9 . [18] Given a WCSP P = Assume x, G AT, 

S C X and Cs e C. 

• A s imp le s u p p o r t of a value v e D{xi) with respect to a soft constraint 

Cs is a tuple I G C{S) with l [ x i ] = v satisfying Cs(l) = 0. 

• ^ variable Xi e M is generalized arc consistent star (GAC*) with respect 

to Cs if it is NC*，and each value v G D{xi) has a simple support with 

respect to Cs-

• P 狄 GAC* if it is NC* and each variable is GAC* with respect to all 

constraints in C. 

E x a m p l e 2 . 7 . Consider the example given in Figure 2.8. The WCSP in 

Fz卵re 2.8(a) is not (G)AC*’ since value a in D{x2) has no support By 

projecting a cost 1 to ^2(6), both values in D{xi) are supports of value b in 

(Figure 2.8(h)). Still, tt is not (G)AC* since now X2 lost its unary 

support. The unary cost of X2 can be projection to C^ and (G)AC* is achieved 

(Figure 2.8(c)). 

F u l l D i r e c t i o n a l (Genera l i zed) A r c Cons is tency S ta r 

D e f i n i t i o n 2 . 1 0 . [27] Given a WCSP P = 丁). 
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C0 = O C0 = O C0 = 1 

~ I ~ _ J ^ a 
a ① / a © / 

/ © b / 〇 b 

M H g b W 

xl X2 xl x2 xl x2 

� （b) (c) 

Figure 2.8: Arc consistency star 

• The value b G D { x j ) is a f u l l s u p p o r t of a value a G D{xi) if Ci八a, b)① 

Cj{b) = 0. 

• The 耽 a e D{xi) is d i r ec t i ona l arc consis tent with respect to a binary 

constraint Qj where j > i if there exists a full support in D { x j ) . 

• ^ variable Xi is directional arc consistent star (DAC*) if it is NC* and 

eac/i value in its domain is directional arc consistent with respect to all 

binary constraints Qj where j > i. 

• P 仏 ful ly directional arc consistent (FDAC*) if all variables are AC* 

and DAC*. 

D e f i n i t i o n 2 . 1 1 . [30, 32] Given a WCSP P = P , C, T ) . Assume Xi e 

S C A： and Cs e C. 

• ^ f u l l s u p p o r t of a value v e D{xi) with respect to a constraint Cs and 

a set of variables T C S \ { x j is a tuple I G C{S) with l [ x i ] = v such 

that Cs{l) © = 0. 

•工 i “ directional generalized arc consistent star (DGAC*) with respect to 

Cs if it IS NC* and each value in D{xi) has a full support with respect 

to Cs and { x j \ j > i j o S . 
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• P is ful ly directional generalized arc consistent star (FDGAC*) if it is 

GAC* and each variable is DGAC* with respect to all constraints in C. 

E x a m p l e 2 . 8 . Consider the example given in Figure 2.9. Value a in D{xi) 

has a full support, which is value b in D{x2) since C i 2 ( a，6 ) 0 ^ 2 ( 6 ) = 0. Value 

b in D{xi) has no support. To transform the WCSP into a FD(G)AC* one, 

胱 can extend a cost 1 from C2(c) to the binary constraint (Figure 2.9(b) then 

projection a cost 1 from the binary constraint to Ci{h) (Figure 2.9(c)). 

C0 = 1 C0 = 1 C0 = 1 

^B^f^ 
Ao^ \ 〇b 

， b 够 2 。 V 
x l X 2 X I x 2 X I X 2 

� （b) (c) 

Figure 2.9: Full directional arc consistency star 

E x i s t e n t i a l D i r e c t i o n a l (Genera l i zed) A r c Cons is tency 

D e f i n i t i o n 2 . 1 2 . [19] Given a WCSP P = 丁）. 

• A variable xi is existential arc consistent star (EAC*) if there exists at 

I肌St one value v € D{xi) such that Ci{v) = 0 and it has a full support 

—th respect to every binary constraint C”. Such a value v is called the 

ful ly supported value of Xi. 

• P is EAC* if every variables are NC* and EAC*. 

• P is existential directional arc consistent star (EDAC*) if it is FDAC* 

and EAC*. 



Chapter 2 Background 29 

Lee and Leung [31，32] showed that naively generalizing EDAC* to high ar-

i ty constraints is not always enforceable, i.e. the algorithm may not terminate. 

The gave a weak form of EDGAC* base on ful ly support set. 

D e f i n i t i o n 2.13. The ful ly supported set U{Cs,x,) for a variable x, and a 

constraint Cg with Xi e S is a set of variables such that: 

• U{Cs,Xi)CS; 

• U{Cs,Xi) n U{Ck,Xi) = 0 for two different constraints Csj.Cs^ e C, 

and; 

• = (Uc妖CAa：础約 \ {xi}. 

D e f i n i t i o n 2 . 1 4 . [30, 32] Given a WCSP P = and any fully 

supported set x , ) for each variable x^ E ^ and each constraint C^ g C. 

• A weak ful ly supported value v e D{xi) of a variable Xi e M is the 

― 耽 硫 C办)=瓶d full supports with respect to all constraints 

^S e C with Xi e S and U{Cs,Xi), i.e. for every non-unary con-

*aint Cs e C, there exists a tuple I G C{S) with l [ x i ] = v such that 

Cs{l) ® 
®xj£U{Cs,Xi) Cj•(収j]) = 0. 

• ^ vo^riable Xi is weak existential generalized arc consistent star (weak 

E G A C * ) if it IS NC* and there exists at least one weak fully supported 

value in its domain D{xi). 

• P 仏 weak existential directional generalized arc consistent star (weak 

E D G A C * ) if it is FDGAC* and each varible is EG AC*. 

E x a m p l e 2 . 9 . Consider the example given in Figure 2.10. The WCSP in 

Figure 2.10(a) has three variables Xi,X2, X3 and two binary constraints C13, C23. 

/力 IS not ED (GJ AC. ⑷ 二 1 〉 0 . Value b in D{xs) has no full support with 

respect to constraint C13. Value c in D^x^) has no full support with respect 
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to constraint C23. To transform the WCSP into a ED(G)AC* one, we first 

extend from Ci{h) to C13 and extend from C2(6) to C23 (Figure 2.10(h)). Then, 

by projecting from C13 to Cs{b) and from C23 to C3(c), both value b and c in 

^ f e ) has at least one full support with respect to every binary constraint 

(Figure 2.10(c)). Finally, by a projection of cost 1 from C3 to C^, ED AC* is 

achieved. 

C 0 = O C 0 = O 

x2 

⑷ (b) 
C 0 = O C 0 = 1 

x2 

(c) (d) 

Figure 2.10: Existential directional arc consistency star 

A;-Consistency The following definition is adopted from Cooper's definition 

of /^-consistency for valued constraint satisfaction problem [16' • 

D e f i n i t i o n 2 . 1 5 . Given a WCSP P = Assume S C X and 

Cs ^ C. k is a positive integer. S' is a proper subset of S where = k. 
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• S' IS k-consistent with respect to Cs if for all tuples I' e C{S'), there is 

tuple I G C{S) with = I' such that Cs{l) = 0. 

• P IS k-consistent if for all subset S' C X with = k is k-consistent 

—th respect to all constraints in C. 

E x a m p l e 2 . 1 0 . Consider the example given in Figure 2.11. Cs is a ternary 

constraint with the scope S = {x,,x2,xs} and is a binary constraint over 

— In Figure 2.11(a), {x^ ^ a,X2 ^ b} is not 2-consistent with 

"aspect to Cs. By projecting cost 1 from Cs to Cu{a,h), it is 2-consistent 

(Figure 2.11(b)). 

Xs Cs I I 3；3 I Cs 
a a a Q ] a a 0~ 

a a b 0 a a b 0 
a b a 2 a b a 1 
a b b 1 丨 3；中2 丨 a b b 0 | | X2 丨 Cu 
b a a 1 a a 0 b a a 1 
b a b 0 a b Q b a b 0 a h 1 
b h a 0 h a 0 b b a 0 b a 0 

M H M 1 |卜 I M 0 I I 6 I 6 I 6 I 1 II 6 I 6 I 0 
⑷ （b) 

Figure 2.11: k-consistency 

2.3 Global Constraints 

In general, in CSPs, every constraint can be represented as a table. Each 

entry of the table specifies whether a tuple is accepted by the corresponding 

constraint. Such an representation loses the semantics of the constraint. Also, 

the size of the table is usually exponential in the number of its variables. Thus, 

they are useful only for constraints involving a few variables or small domains. 

In contrast to table constraints, a global constraint is a constraint specified 

by its semantics, and i t involves a non-fixed number of variables. For example, 
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instead of l ist ing out all the allowed tuples, we can post an a l l D i f f erent(xi，X2, X3) 

constraint, requiring x i , and X3 to take distinct values. Global constraints 

play an important role in the CSP framework. Many real-life problems can 

be easily modeled by global constraints. More over, in solving CSPs, global 

constraints are more efficient than table constraints due to its compact repre-

sentation size and efficient consistency enforcement algorithms. 

Another benefit of using global constraints is that they usually capture the 

semantics of a conjunction of smaller constraints. Thus, enforcing consistencies 

on global constraints would usually result in pruning more infeasible values. 

E x a m p l e 2 . 1 1 . Suppose in a CSP we have three variables Xi,X2,Xs. D { x i ) = 

^ f e ) = {a, 6 } . D{x3) = {a, 6, c } . There are three constraints xi 

^ 工3 and X2 ^ xs. It is AC since every variable is AC with respect to every 

involved constraints. No values are pruned in this case. If the constraints 

化 replaced by one a l l D i f f e r e n t ( a ; i , X 3 ) constraint, the CSP is not AC. 

Value a,b G D{xs) has no support with respect to the a l l D i f f e r e n t constraint. 

Thus, by enforcing AC, these two values are removed from 

Enforcing GAC on global constraint is NP-Hard in general [12]. For spe-

cific global constraints, polynomial t ime algorithms to enforce AC and other 

consistencies have been discussed in the literature [6 • 

The following constraints wi l l be discuss later in this thesis. A l l of the 

constraints below are hard constraints. 

D e f i n i t i o n 2 . 1 6 . ^2sa t constraint) Let X be a set of boolean variable and F 

a set of binary clauses. The 2 s a t ( X , F) constraint requires that all the clauses 

in F are satisfied. 

E x a m p l e 2 . 1 2 . Suppose X = {xi,x2,x2,} is a set of boolean variables. F = 

V V X3, Xi V X3}. The tuple (true, true, false) satisfies the constraint 

since all the clauses in F are satisfied. 
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D e f i n i t i o n 2.17.广among constraint) [7] Let X be a set of variables, V a 

set of values, lb and ub are two integers satisfying lb < ub. The constraint 

ainong(X, Ih, uh, V) requires the number of variables taking a value in V must 

be no less than lb and no more than ub. 

E x a m p l e 2 . 1 3 . Suppose X = {x^.x^.x^}, D{x^) = D f e ) = D f e ) = 

{a，6’c}，and V = { 6 , c } . The tuple ( c ,a , b) satisfies the constraint 

since the number of variables taking a value in V is 2. 

D e f i n i t i o n 2.18.〈 regular constraint) [40] Let M = ( Q , I ] , T ’ ^ , F ) denote 

a deterministic finite automaton where Q is a finite set of states, E is an 

al_et，T is a set of transitions of the form fe, c) h^ qj with 礼 qj € Q and 

c G S . qo IS the initial state and F Q Q is the set of final states. X = 

• • •' ^n] is a sequence of variables with domain D{xi) C E . The constraint 

r e g u l a r ( X , M ) requires the sequence form by X must belongs to the regular 

language recognized by M. 

E x a m p l e 2 . 1 4 . Let M be the deterministic finite state automaton shown in 

F—代 2.12. X = where D{xi) = { a , b}. Both tuples (a, a, b) and 

(6，a, a) satisfy the constraint regu.laLr{X, M) since the corresponding sequences 

are recognizable by M. 

a 
a 

\ a © 
Figure 2.12: A finite state automaton for a r e g u l a r constraint 

D e f i n i t i o n 2 . 1 9 . (grammar constraint) [22，42] Let G 二（S, N, P , T ) denote a 

context-free grammar where E is an alphabet, N is a finite set of non-terminals, 

P is a set of productions, and T e N is the start non-terminal We assume G 
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is in Chomsky Normal Form, i.e. productions m P are in the form of either 

( A a) or {A ^ BC, where A,B,C eN andae E . X = is a 

sequence of variables with domain D{xi) C E. The constraint grammar(X, G) 

requires that the sequence formed by X belongs to the context-free grammar G. 

E x a m p l e 2 . 1 5 . Let G 二 (E , TV, P, S) be a context-free grammar in Chomsky 

Normal Form where E = {a , h}, N = {S, A, B} and P is the set 

BB, S ^ AB} 

X = Both tuples (a, a, 6) and (a, 6, b) satisfies the constraint 

g r a m m a r ( X , G) since the corresponding sequences are in the grammar G. 

Hard global constraints can be reformulated to soft global constraints, by 

associating violat ion measures. This technique is called constraint softening 

45:. 

D e f i n i t i o n 2.20. (Constraint softening) Let C^ be a hard constraint and fx 

is a v i o l a t i o n measure of C、which maps a tuple I G C{S) to a cost. Then 

s o f t _ C ^ is defined as a soft constraint that for all tuples I G C⑶: 

s o f t _ C - ( / ) = <[ 0， I saUsfies ^ 

/ / ( / ) , otherwise 

\ 

Note that a soft global constraint can be associated w i th more than one 

violation measures. In the context where the violation measure f i of the soft 

constraint is not important, we denote the constraint simply by Cs. Common 

violation measures including the following. 
D e f i n i t i o n 2 . 2 1 . Let C么 be a hard constraint and I is a tuple in C{S). 

• [41] The variable-based violation measure maps I to the minimum num-

ber of variable assignments required to change in I to satisfy C^. 
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• The edit-based violation measure maps I to the minimum number of 

insertions, deletions, and substitutions required to change I into a tuple 

satisfies Cg. 

• UljAssume C^ can he decomposed into a set of constraints Cdec- The 

decomposition-based violation measure of C^ maps I to the number of 

constraints in Cdec violates by I. 

For convenience we also define the constant violation measure as a function 

maps a tuple to a constant cost. 

E x a m p l e 2.16. Let C、be the hard constraint among(6', 1,2, {a, 6}). 

soft version of C^ with variable-based violation measure is 

so f t _among--(6 ' , 2 , 3,{a}). The soft constraint on the tuple (6, a, c) re-

t ^ s a cost 1 since either the first or the last component of the tuple has to 

be changed to a in order to satisfy C、. 

Throughout this thesis we always assume the representation size of a global 

constraint is polynomial in the number of variables restricted by the constraint 

and the maximum size of the variable domains. 



Chapter 3 

Tractable Projection-Safety 

We say a soft constraint is tractable if the computation of its minimum cost can 

be done in time polynomial in the representation size of the global constraint 

(i.e. in the number of variables and maximum domain size). Tractabil ity of 

a soft constraint is important. As we have seen many examples of WCSP 

consistencies in the last chapter, those consistencies cannot be enforced in 

polynomial time unless the constraints in the system are tractable. However, 

consistency algorithms also modify constraints by projections and extensions. 

Even if a constraint is tractable, i t is not guaranteed that the resultant con-

straint obtained after projections and extensions is tractable. In this chapter 

we address this issue, namely tractable projection-safety. Our discussion is di-

vided into three cases of projections and extensions for constraints of different 

arities. The result shows that projections and extensions indeed hinders the 

tractabil i ty of a constraint in some cases. 

In the second part of this chapter we wil l discuss a class of constraints, 

namely polynomially decomposable constraints. Our technique sequentially de-

composes a constraint into smaller and smaller constraints. The number of 

constraints appear in the sequence is bounded, and each constraint is tractable. 

We can compute the minimum cost of the original constraint from the mini-

mum costs of these smaller constraints, and maintain that the decomposition 

stil l holds after projections and extensions. We show that a polynomially 

36 
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decomposable constraint is tractable projection-safe. Given a polynomially 

decomposable constraint. We show that we can apply a dynamic program-

ming algorithm to compute its minimum cost, and the algorithm sti l l works 

after projections and extensions. 

3.1 Tractable Projection-Safety: Definition and 
Analysis 

In the following, we denote the minimum cost of a constraint C5, min{(7乂/)|/ G 

by mm{Cs). Note that enforcement algorithms of WCSP consistencies 

usually query a part of a constraint. For example (G)AC* enforcement al-

gori thm queries the minimum cost when a variable is fixed to a value, say 

min{C5(/) | / G C{S) A / [xJ — v} for a variable Xi e S and a value v € D{xi). 

As long as there is an efficient algorithm to compute m i n ( ( 7 A this value can 

be computed by simply assuming D{xi) = {v} and then computing min(C5). 

Following Leung [32], the general notion of projection-safety is defined as 

follows. Let T be an arbitrary property and r a non-negative integer. A soft 

constraint Cs is T r-projection-safe if: 

參 Cs satisfies the property T , and; 

• ^ r { C s ) satisfies the property T , for all series of r-projections/r-extensions 

A soft constraint Cs is T r-projection-safe means that the constraint pre-

serves the property T even after projections and extensions. The property we 

concern about is tractabil i ty. A soft constraint Cs is tractable i f there exists 

an algorithm to compute its minimum cost mm{Cs), and runs in polynomial 

time. 

A soft constraint Cs is tractable r-projection-safe i f 
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• Cs is tractable, and; 

• A ( C y is tractable, where A^ is a series of r-projections/r-extensions A广 

Remind that a table constraint is a constraint represented as a table, where 

each entry of the table corresponding to a possible assignment, specifying its 

cost. The following theorem shows that a table constraint is always tractable. 

T h e o r e m 3 . 1 . Table constraints are tractable and tractable r-projection-safe 

for an fixed r. 

Proof. A table constraint is tractable because we can scan the min imum cost 

of every possible assignments on the table and return the min imum one. This 

take t ime linear in the table size. 

The constraint obtained from applying a series of r-projections and r-

extensions A^ can be represented as a table constraint. Then the same al-

gor i thm to compute min imum cost applies. • 

We mainly focus on soft global constraints. In the following we divide the 

discussion of tractable r-projection-safety into three cases of different r: (a) 

r = 0, (b) r > 2 and (c) r = 1. 

Case 1: r = 0. In this case, projections and extensions are only to / f rom C0. 

T h e o r e m 3 . 2 . A tractable constraint Cg is tractable 0-projection-safe. 

P彻f. Let Cs A。a series of O-projections/O-extensions f rom/ to Cs. Note that 

i f Zmin is the min imum cost tuple in C5, i.e. m i n ( C y = Cs{lmin). U n is also a 

minimum cost tuple in Ao{Cs). We can first compute m i n ( C y then evaluate 

min(Ao(as)) = A o ( C 暴 n). • 

O-projections/O-extensions are employed in 0 I C [51] and strong 0 I C [30 

enforcements. Consequently, as long as all the constraints in the system are 

tractable, enforcement algorithms for (strong) 0 I C runs in polynomial time. 
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Although (strong) 0 I C are relatively weaks form of WCSP consistency, they 

can be efficiently applied to a wide range of soft constraints. 

Case 2: r > 2. In this case, projections and extensions are to / f rom r -ar i ty 

constraints. The key observation here is that, by using projections/extensions 

of arity r , we can encode any relations (constraints) between variables into the 

newly obtained constraint. 

T h e o r e m 3 . 3 . A tractable soft global constraint Cs is not tractable r-projecUon-

safe for 2 < r < \S . 

iVoo/. We use a reduction from CSP. Given a CSP P = ( X , V , C^) where every 

constraint in C" are r-ar i ty. We construct Cs = C；,- Let k be the maximum 

cost of an assignment in C5, i.e. k = max(Cs). We construct a series of r-

extension A , as follows. In i t ia l ly A , is empty. For each hard constraint C^, 

and any tuple I unsatisfying C^, we append an extension of cost k+lioCx. V 

is satisfiable i f and only i f min(A,(C；^)) < k, because any tuple I unsatisfying 

a constraint C � e C must incur a cost of at least A: + 1 in C^. • 

Theorem 3.3 shows that in general, even if a constraint Cg is tractable, 

Cs is not tractable after projections to or extensions from r -ar i ty constraints. 

Projections and extensions of arity larger than 1 are required for enforcing 

consistencies in ternary constraints [47] and A:-consistency [16]. Thus, these 

consistency techniques are hard to apply efficiently to global constraints. 

Case 3: r = 1. A soft constraint Cs is flow-based [49] if i t can be represented 

by a flow network G such that the minimum cost flow on G corresponds to the 

min imum cost of Cs- A soft constraint Cs is flow-based projection-safe if： 

• (7s is flow-based, and; 

• 从 C s ) is flow-based for all series of 1-projections/ 1-extensions A i . 
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Theorem 3.4 gives a sufficient condition for flow-based projection-safety, 

which is a special case of 1-projection safety. By using this theorem, i t 

is shown that soft—allDifferent^ec, soft一allDifferentwar, so f t .gcc^"^ 

soft-gcc卯sof t -same抓sof t—regu lar抓『and soft_regular^^^^ are all flow-

based projection-safe [30, 32 . 

T h e o r e m 3 . 4 . [30, 32] Given a soft global constraint Cg such that: 

• Cs is flow-based, with the corresponding network G; 

• there exists a function $ mapping each maximum flow f in G to each 

tuple 少 ( / ) G C, and; 

• there exists an injection from an assignment {xi v} to a subset of 

edges E of the edge set of G, such that whenever l [ x i ] = v for some 

I，Eee^ /e = 1 in the flow corresponding to I; whenever l [ x j \ • v， 

YleeE /e = 0. 

Cs is flow-based projection-safe. 

T h e o r e m 3 . 5 . A flow-based projection-safe constraint Cs is tractable 1 -

projection-safe. 

Proo/. Let A i a series of 1-projections/l-extensions. By definition A i ( C y is 

flow-based, and by finding a minimum cost network flow on the corresponding 

flow network G we can compute m i n ( A i ( C y ) in polynomial time. • 

We also observe that tractable constraints are not necessarily tractable 1-

projection-safe. The soft;_2sat⑶“对 constraint is an example. Given a set of 

boolean variable X, a set of binary clauses F and a constant c G [0 . . . A;]. The 

soft_2sat⑶“对(X，F,c) constraint is a soft constraint defined as: 

s o f t _ 2 s a t - - ( X , F, cm = | 迁《satisfies F 
c, if I does not satisfy F 

\ 
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Computing min(sof t_2sa1;_对(足 F,c)) is equivalent to determining the 2-

boolean satisfiability, which is tractable [25]. Thus soft一2sat⑶似力 is tractable. 

However, soft_2sa1:C贈力 is not tractable 1-projection-safe as explained below. 

Let F be a set of binary clauses, X the set of boolean variables of F , 

and k a non-negative integer. The problem W2SAT is to determine whether 

these exists a assignment to X satisfying F, w i th at most k variables set to 

trwe. W2SAT is NP-Hard [20]. We use a reduction from W2SAT to com-

put ing the min imum cost of a constraint obtained from applying a series of 

1-projections/l-extensions to so f t _2sa t隱气 

T h e o r e m 3 .6 . The soft_2sat⑶似亡 constraint is not tractable 1-projection-

safe^ unless P = NP. 

iVoo/. Given a set of binary clauses F , a set of boolean variables X , and a 

non-negative integer k. We construct an constraint Cg and 

a series of 1-projections/l-extensions A i as follows. Cg is the constraint 

s o f t _ 2 s a t _ ^ ( X， F , k + 1). A i is in i t ia l ly empty. For each variable Xi e X, 

we add a 1-projection of cost 1 from Ci(true) to Cs, where Q is a unary 

constraint over Xi. Every assignment to X satisfying F incurs a cost of k' in 

where k' is the number of variables assigned to true in the assignment. 

Thus，by determining whether m i n ( A i ( C y ) < k we can solve the W2SAT 

problem. • 

According to the above discussion, tractable constraints are tractable 1-

projection-safe only under special conditions. 1-projections/l-extensions are 

the backbone of the consistency algorithms of (G)AC* [18, 30], FD(G)AC*[27, 

30] and (weak) ED(G)AC* [19, 31]. Thus, these consistency techniques can be 

efficiently apply to 1-projection-safe global constraints. 

To summarize, given a tractable soft constraint Cs, Cs must be tractable 

0-projection-safe, Cs cannot be tractable r-projection-safe w i th r > 2, and Cs 

• y be tractable 1-projection-safe. To simplify notations, we write tractable 
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projection-safe to mean tractable 1-projection-safe in the rest of the paper. 

Lee and Leung [30] gives only one sufficient condition for tractable projection-

safety based on flow-based global constraints. In the next section, we wi l l show 

another sufficient condition based on another type of tractable constraints, 

namely polynomially decomposable constraints. 

3.2 Polynomially Decomposable Soft Constraints 

In this section we introduce a new class of tractable projection-safe constraints, 

namely polynomially decomposable constraints, which are derived from ab-

stracting dynamic programming algorithms that compute the min imum cost of 

a constraint。These algorithms often imply decompositions of the constraints. 

Examples of polynomially decomposable constraints are given in Chapter 4. 

For convenience, we write projections/extensions to mean 1-project ions/ l -

extensions in this section. 

A constraint Cs safely decomposes into a sequence of constraints 

Csi,Cs2^ - • • ,Csm\ where Si C S and / is a polynomial t ime computable 

function, such that: 

• Cs{ l ) = …，爪⑷S m ] ) ) holds for all assignments /, and; 

• for any constraint C'g and sequence of constraints . . . , C'sJ, where 

• 二 / ( Q i (収 1]),…，C'sJ l [Sm])) , i t holds that: 

(a) min(C^) = / ( m i n ( C ^ J , • . . , and; 

(b) for a variable x e S, a cost a and a complete assignment /*, we 

have: 

C ' s ^ n ® a = fiC'sSnSi])①"：^，的(a),…’ C ' s j n s ^ ] ) e 

c m e a = KC'sSm) e “ 仏 ⑷ ， C s j n S m ] ) e“工’；⑷） 
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The function v is defined as: 

, . j a, X G 5 

0, otherwise 

\ 

In another word, Cs can be represented as a combination of 

• •.，Csm. In addition, condition (a) allows us to compute mm{Cs) from 

• . . ’ m i n ( ( 7 ‘ ) . Condition (b) suggests how projections and exten-

sions on Cs can be distributed to its components. 

Let ^ be a projection of cost a from C办),or extension from Ci(v) where 

Ci is a unary constraint over a variable Xi G S. We have the following result. 

We only proof the part of extension, while the proof on projection is similar. 

T h e o r e m 3 .7 . Let Cs he a constraint safely decomposes into ,... ’ Cs^ • 

^(Cs) safely decomposes into [^(C^J,..., S{Csm). 

I t is sufficient to prove 5 { C s m = f i ^ { C s , m S , ] ) , . . . , S { C s J { l [ S m ] ) ) 

holds for all assignments /. In case l[xi] # 仏 6{Cs){l) = Cs(l) and S(CsJ(l)= 

for all 1 < i <m and result follows. Suppose l[xi] = v. 

5{Cs){l) � a 

= f i C s M S i ] ) e 遍 , C s j i [ S m ] ) e"^：^⑷） 

• 
Theorem 3.8 and Theorem 3.9 give special scenarios where a constraint can 

be safely decomposed. 

T h e o r e m 3 .8 . Given a constraint Cs and a sequence of constraints 

Csy • • • CsJ, where for all 1 < i < m, Si <Z S, and for all j + k, Sj nSk = 0, 

satisfying 

Cs{l) = 0 CsMSi]) 
l<i<m 

for all possible assignments I. Cs safely decomposes into Cs”..., Cs^-
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P 彻 f . Let /min be an assignment on S such that Cs{lnv\n) = min(C5), and 

h an assignment on Si such that Cs i ik ) = min(C&) for 1 < i < m. We 

claim = Csjlu) i o i l <u <m. Otherwise, C5(/min[5' \ S^] U 

U = C ^ s J W © ① 1 诞叫询 O s , ⑷ < (収 J ) © ① 1 絕叫 i 办 C 氏⑷ = C s ( L i n ) 

which leads to contradiction. So we have 

0 CsM = 0 m i n ( C y 
l<i<m l<i<m 

〇n the other hand, given a variable x G 5', a cost a, and a assignment I on S. 

^ is in the scope of at most one constraint. Suppose the constraint is Cs”. We 

have 

Cs{l) = © a ) © 0 C民⑷ 

l<i<m,i^v 

For © i t is similar. • 

T h e o r e m 3 . 9 . Given a constraint Cs and a sequence of constraints 

Cs”..” CsJi, where for alll <i <m, Si = S, satisfying 

Cs{l) = min CsAl) 
l<i<m 

for all possible assignments I. Cs safely decomposes into Cs”..” Cs^. 

Proof. Let C{S) be the set of all possible assignments to variables in S. We 

have 

=min i< i<^{min /g£(5) Cs側 

= m i n i 诞饥 {min(C民 ) } 

On the other hand, given a variable x G 5, a cost a, and a assignment I on S. 

^x.sAol) = a holds for all 1 < z < m. We have 

Cs{l) ® a = min i< i<^{C5,( / ) © a} 

= m i n i < i < ^ { C 5 , ( / ) e a } 

For © i t is similar. • 
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T h e o r e m 3 . 1 0 . Given a constraint Cs satisfying 

G ⑴ = 1 琪 n ^ i 0 
— l<j<ni 

for all possible assignments I G C{S), where m and Ui for 1 < i < m are 

positive integers, Cs、，are constraints，and S = |Ji<j<n,茂，j for 1 < i < m. 

Cs safely decomposes into Cs^^j^，. •., Cs^ ^^ • 

P 彻 f . We prove the result by creating redundant constraints Q satisfying 

咖 = 0 Cs^Am,]) 
^<3<ni 

for all I e C{S) where I < i < m. By Theorem 3.8, C^ safely decomposes 

into Cs、 ” . . . , Cs、< By Theorem 3.9 Cs safely decomposes into C差” . • , C ^ . 

Thus, we have 

m i n ( C y = m i n i < i < ^ { m i n ( C j ) } 

Also，with a variable x e S, sl cost a, and a assignment I on S, we have 

Cs{l)① = m i n i < i < ^ { Q ( / ) ① a} 

For e i t is similar. • 

A constraint that can be safely decomposed is not necessary tractable. For 

one thing, safe decomposition does not required that each constraint in the 

sequence is tractable. For another, the length of the sequence is not bounded. 

Given a constraint Cs on the set of variables S. The constraint Cs is poly-

nomially decomposable i f there is a sequence of constraints [Cs^.Cs^, • . . , Cs^ 

such that: 

• Cs = Cs^ and m is polynomial in \S\ and the maximum size of the 

variable domains in S, and; 
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• Each Csi is either a tractable unary constraint, or can be safely decom-

posed into [ q i , . . •, CU where m, < i and q . € { C ^ ” . . •, C ^ ^ . J 

for a l l j < rrii. 

Given a series of 1-projections/l-extensions A , and a polynomially decom-

posable constraint Cs. In the following, we show that Cs is tractable, and so 

is A(C5) . Thus, Cs is tractable projection-safe. 

L e m m a 3 . 1 1 . A polynomially decomposable constraint Cs is tractable. 

Proof. Let [Csi , . • . , Csm] be a sequence of constraints where Cs = Cs^ and 

m is polynomial in |5'| and the maximum size of the variable domains in S, 

and each C5. is either a tractable unary constraint and can be safely decom-

posed into [ Q i , . . . , q ^ J where m, < i and q^- G . • . , for all 

j ^ ^ i - By definit ion such a sequence exists. A lgor i thm 3.1 can be applied to 

compute the min imum cost of a polynomially decomposable constraint. The 

algorithm uses a dynamic programming approach, loops through the sequence 

and computes the min imum cost of each constraint appears. A n associative 

array MinCost is used to store minimum costs of each constraint in the de-

composed sequence to avoid re-computation. I t remains to analyze the run 

time. Each min(C民) is evaluated at most once in polynomial time. Since the 

sequence is polynomial in size, result follows. • 

A l g o r i t h m 3.1: Compute minimum cost of C.g 
1 fo r z ^ 1 t o m do 
2 M inCos t [Cy — / (M inCos t [ (7 ( i ] ’ . . . ’ M i n C o s t [ q ^ J )； 

3 r e t u r n MinCostfC^]； ’ ‘ 

T h e o r e m 3 . 1 2 . A polynomially decomposable constraint Cs is tractable 

projection-safe. 
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P^oof. Let . • . , CsJ[ be the corresponding sequence and each C5, safely 

decomposes into [ q ” ••.，《，爪 J. cHs a 1-projection/l-extension. 5{Cs) is 

polynomially decomposable since by Theorem 3.7, 5{Cs,) safely decomposes 

into [列 q i ) ， N q ^ J ] . By induction after a series of projections/extensions 

A，A[Cs) is polynomially decomposable. By Lemma 3.11, A{Cs) is also 

tractable. Result follows. 

• 
Theorem 3.12 gives rise to a class of constraints that is tractable projection-

safe. Algor i thm 3.1 is the basis of an efficient dynamic programming algorithm 

to compute the min imum cost of a polynomially decomposed constraint. 

In the next chapter, we wi l l give several examples of polynomially decom-

posable constraints. 



Chapter 4 

Examples of Polynomially 

Decomposable Soft Global 

Constraints 

As we have shown in the last chapter, polynomially decomposable constraints 

are tractable projection-safe. In this chapter, we give examples of polynomially 

decomposable constraints, including soft variant of among, regu la r , grammar 

constraints, and max—weight constraint. Thus, these constraints are tractable 

projection-safe. Depending on the decomposition, we give an algorithm for 

each of these constraints to compute the minimum cost. Moreover, after a 

series of 1-projections/l-extensions we can sti l l use the same algorithm to 

compute the minimum cost. Thus, the algorithms allow us to efficiently enforce 

consistencies which depends on 1-projections/l-extensions. Note that these 

algorithms are special cases of Algori thm 3.1. 

In the following, we use n to denote the number of variables involved in a 

constraint Cs, and d the maximum domain size, i.e. d = 

Also, we assume the variables in = { x i , . . . , x n } are ordered by their indices. 

48 
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4.1 Soft Among Constraint 
Given a set of variables S, a set of values F , a lower bound lb and a upper 

bound ub, where lb < uh. We define t{l) = \{i\l[x,] G T/}| as the number of vari-

ables taking a value in V in the assignment I. The sof t:_among^(5； lb, ub, V) 

constraint [7] w i th the variable-based violation measure is a constraint defined 

as: 

soft:_ainong^(5； lb, ub, V){1) = max(0, lb - t { l ) , t { l ) — ub) 

T h e o r e m 4 .1 . The soft—among暫 constraint is polynomially decomposable. 

/Voo/. Let Cs be the constraint soft_ainong^«^(5', Ih, uh, V) where S = 

{工1... a; J . Let = { : c i，…， x j and in particular Sq = 0 . We denote the 

constraint by C ^ . In particular C ^ always returns 

j by definition. We also define the unary constraint U^ on variable Xi e S 

where k e {0，1} that for all v e D(xi): 

f / fc⑷ 二 I 0， i f = 0 A ” g K ) V (A： = 1 八 G 10 
1, otherwise 

V 

We show Cs to be polynomially decomposable by constructing a sequence 

In the sequence { C ^ J are ordered in the increasing 

order of i. The length of the sequence is bounded by 0{nd). Considering 

where ^ > 0, i f the last variable in its scope Xi takes a value in (not in) V , i t 

requires the variables in the set has j - 1 { j ) values in F . Thus, for all 

assignments I: 

C i ( 脚 ） = m i n f 及 i i ( 临 — 1 ] ) ® 柳 [ 幼 

for < 〉 0 and j > 0. Finally, by definition，for all assignments I: 

Cs{l) = min C{ ( / ) 
lb<j<ub •^n、’ 
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By Theorem 3.10, each constraint in the constructed sequence is either unary 

constraint, or can be safely decomposes into constraints precede i t in the se-

quence. • 

E x a m p l e 4.1. Suppose Cs is the constraint soft_ainong^"^(5', 0,1，{a}) where 

S = {xi ,X2, x^}. Cg. and U^ are defined as above. We construct the sequence 

[t/?, ul ul ul ul t/�，Cgi，C!1，吸,C〗3，吸, 

For all assignments I G C{S), we have: 

c i m ] ) = 

C丢1 w 別 ） = 1 e 

创 ） ⑷ 別 ) ① 吸 ⑷ 

CIMS2]) = m i n ( C i m ] ) e [ / i ( / [x2]) , C i m j ) e 

= min(C§^(/[6'2]) e C/ i ( i [x3] ) ,Ci ( i [S2]) 0 t / ° ( / N ) ) 

OsW = n i i n ( C l ( i ) , C i ( l ) ) 

C o r o l l a r y 4.2. The soft_ainong^"^ constraint is tractable projection-safe. 

Proof. Result follows from Theorem 3.12 and Theorem 4.1. 口 

A l g o r i t h m 4.1: Computing the minimum cost of soft—among抓厂 

I n p u t : Cs ： soft_among^«^(5', Ih, ub, ] / ) , and 
a series of 

1-projections/l-extensions A 
O u t p u t : mm{A{Cs)) 

1 fo r i 1 t o n do 
2 f o r j € {0,1} do ui f - m i n ( A邮）； 
3 fo r j/ 卜 0 t o ub do 
4 /0' — j ； 

5 fo r i — 1 t o n do 
6 — 

7 fo r j <- 1 to ub do 
8 —min(/t-/ ��1 , / t i ①必； 
9 r e t u r n mmib<j<ub{f i }； 
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Algor i thm 4.1 computes the minimum cost of a soft—among抓r constraint. 

In the algorithm, i t holds that u i = mm{U i ) and / / = min(C/ ) . Line 1-2 com-

putes the min imum cost of each unary constraint Uf. As the unary constraints 

are stored as tables, the minimum costs can be computed by scanning the ta-

ble. This step is done in 0{nd) time, since there are 2n such unary constraints 

and the domain size of each variable is at most d. Line 3-4 initialize f^ = j 

for 0 < j < ub, since C^ always returns j . The algorithm then computes the 

minimum costs of rest of the constraints in the sequence. By definition of safe 

decomposition, and the decomposition shown in the proof of Theorem 4.1, we 

have 

m in (A (C f ) ) = m i n ( A ( C t i ) ) ① min(A( t /?) ) 

m in (A (C / ) ) = m i n { m i n ( A ( C f / ) 0 min(A(C/,i)), min{A{CU) © min(A(C/0))} 

Line 5-8 of the algorithm computes the minimum costs accordingly, in 0{n'^) 

time. Finally, the algorithm returns the answer base on the fact that 

min(A(C5)) = , m i n {m in (A (C^ ) ) } 
lb<j<ub 

This final step takes t ime 0{n). 

T h e o r e m 4 .3 . Given a soft .among^"^ constraint and a series of 1-

projecUons/l-extensions A . Algorithm 4.1 computes the minimum cost of 

s o f t - a m o n g難 constraint after applying A, in 0 ( n 2 + nd) time. 

4.2 Soft Regular Constraint 

sof t_ regu lar^^^ is the soft form of the r e g u l a r constraint w i th the variable-

based violation measure. In addition, when i t is impossible to satisfy the 

underlying r e g u l a r constraint, the cost is T . Leung [32] has shown that the 

so f t - r egu la r抓 r constraint is flow-based projection-safe and thus tractable 

projection-safe. We are to show that this constraint is also polynomially de-

composable and derive another algorithm to compute its min imum cost. 
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T h e o r e m 4.4. The sof t—regular抓『constraint is polynomially decomposable. 

Proof. Let Cs be the constraint soft_regular^"^(5', M) where S = 

{ x i , ...’；} and M = (Q,E,T,qo,F) (see Definit ion 2.18). Let Si = 

• •. ’ ^i}- For each state qj G Q, we define a deterministic finite automa-

ton M j = w i th Qj being the only final state. We denote a 

constraint so f1 :_ regu la r^ (5^ “ M^) by In particular, C^g。always returns 

0 and C^Q always returns T for j ^ 0. We also define the unary constraint Uf 

on the variable Xi where c G E that for all v G D{xi)\ 

0, i f … 

I 1, otherwise 

We show Cs to be polynomially decomposable by constructing a sequence 

Uf, • • •, Cg i^ . . . , Cs]- In the sequence are ordered in the increasing or-

der of i. The length of the sequence is bounded by 0(n . \M\). Consider 

where i > 0. For each transit ion c) i-> qj, in order to form a sequence rec-

ognizable by M j , we can choose to make the variables in S i - i forms a sequence 

recognizable by Mk, and the variable Xi to be c. Thus, for all assignments 

1 e C{S): 

for < 〉 0 and qj e Q. Finally, the set of sequences recognizable by M are the 

union of the set of sequences recognizable by Mj for all qj G F. Thus, for all 

assignments I: 

Cs{l) = min Ci (I) 

By Theorem 3.10, each constraint in the constructed sequence is either unary 

constraint, or can be safely decomposes into constraints precede i t in the se-

quence. 口 

E x a m p l e 4.2. Suppose Cs is the constraint soft—regular抓厂(5； Af) where 

s = and M is the finite state automaton shown in Figure 2.12. 
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Ck and Uf are defined as above. We construct the sequence 

广0 广1 广2 广3 

^52' 

^53' ^ I s ' 

For all assignments I G C{S) we have: 

糊 = T 

吸 ( 収 1]) = m in {T , CB。e f / f (収 1]), Clo 0 U^{l[x,])} 

[別）=min{T，Ci。0[ /^(Z[ :^ i ] ) } 

C | i ( / [別） = m i n { T , C l ① ^ / ( ( /⑷ ) ,C !。0 C/f(/[xi])} 

CIMS2]) =T 

^sMS2]) = © "2“0^])，C差i(/[场])0 U^{l[x2])} 

CIMS2 ] ) = m in {T , C l i l [ S , ] ) © U^{l[x2])} 

= m in {T , C l { l [ S , ] ) 0 0 

c i m ] ) = T 

= m in {T , © US{l[xs]), C 毛 © [/^(/[xs])} 

= m in {T , 0 Ul{ l [xs\)} 

= m in {T , C ^ m ] ) 0 f / | ( / N ) , C l m ] ) © f / fW吻] ) } 

= m i n ( C ! 3⑴ , ^ s M = min(l, 1) = 1 

C o r o l l a r y 4 . 5 . The s o f t — r e g u l a r — constraint is tractable projection-safe. 

Proof. Result follows from Theorem 3.12 and Theorem 4.4. 口 

Algori thm 4.2 computes the minimum cost of a sof t _ r e g u l a 严 constraint. 

In the algorithm, i t holds that < = min(A( t / f ) ) and / / 二 m in(A(C/ ) ) . Line 1-

2 computes the minimum cost of each unary constraint Uf. Since unary con-

straints are stored as tables, their minimum costs can be computed by scanning 

the tables. This step takes time 0{nd-\T.\). Line 3-4 initialize f^ for all qj e Q 
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A l g o r i t h m 4.2: Compute the min imum cost of so f t—re f f l i l a r ^ , 
I n p u t : Cs.. sof t_regular^"^(5 ' , M ) , and a series of 

1-projections/l-extensions A 
O u t p u t : m in (A(Cs) ) 

1 fo r i — 1 t o n do 
2 fo r c G E do u; i- m in (A ( [ / f ) )； 

3 /o。— 0 ; 
4 fo r qj eQ\ {qo} do V T ; 
5 fo r z 1 t o n do 
6 fo r Qj e Q do 
7 / / = n i i n { T , min((队c)4g】)eT{/? © < } } ； 

8 r e t u r n m i n 拆 訂 ； 

following the definition. By definition of safe decomposition, and the decom-

position shown in the proof of Theorem 4.4，we have: 

m i n ( A ( C / ) ) = min{T,((收 imn ® 

Line 5-7 of the algori thm computes the min imum costs accordingly, in t ime 

0 ( n . |T|). Finally, the algorithm returns the answer base on the fact that 

m i n ( A ( C y ) = m m { m i n ( A ( Q ) ) } 

This final step takes t ime 0{\F\). The total t ime consumed by the algorithm 

is |Af|)。 

T h e o r e m 4.6. Given a sof t—regular卯『constraint and a series of 1-

projections/l-extensions A . Algorithm 4.2 computes the minimum cost of 

soft一regular抓r constraint after applying A， i n 0{nd- \M\) time. 

4.3 Soft Grammar Constraint 

soft-grammar抓r is the soft form of the grammar constraint w i th the variable-

based violat ion measure. In addition, when i t is impossible to satisfy the 

underlying grammar constraint, the cost is 丁. In the following we are to show 
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this constraint to be polynomially decomposable and thus tractable projection-

safe, and give an algorithm to compute the minimum cost. 

T h e o r e m 4 .7 . The so f t : _g ra imnar_ constraint is polynomially decomposable. 

P^oof. Let Cs be the constraint soft_graininar^'^^(5', G) where S = 

and G = (E, iV, P，T) is a context-free grammar in Chomsky Normal Form 

(see Definit ion 2.19). Let S、j = { x , , . . . , x , } for i < j . For each non-

terminal A e N, we define a context-free grammar Ga = (S, N, P, A) obtained 

from G by replacing the start non-terminal T by A. We denote a constraint 

soft_grammar—(5^…GU) by C各 We also define the unary constraint U^ on 

the variable Xi where a G E that for all v e D{xi): 

i f … 

1, otherwise 
\ 

We show Cs to be polynomially decomposable by constructing a sequence 

U?, . . •，Cf^j, • • • ， I n the sequence { C ^ } are ordered in the increasing 

order of i. The length of the sequence is bounded by . |7V| + nd). 

for z = J/' and i； G D { x i ) can be determined base on all productions of the form 

{A a). We have 

C加） = m i n { T，m i n U^{v)} 

For J. 
〉 i and all assignments I on Si j , we have 

Q M O = m m { T , ( 起 二 连 八 伙 晰 』 e C ^ ’ / 帆 + 』 } 

Finally，Cs is equivalent to 乂 By Theorem 3.10, each constraint in the 

constructed sequence is either unary constraint, or can be safely decomposes 

into constraints precede i t in the sequence. • 

E x a m p l e 4 . 3 . Suppose G = (E , N, P, T) is a context-free grammar where 

S = {a , 6}，N = {T, A, B} and P contains the following productions: 

T ^ AB, 乂 AA, B 4 BB, Ah^a, B ^ b 
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Cs is the constraint soft一grammar抓『(5； G ) where S = {â i, 2:2, X3}. We con-

struct the sequence 

nA fiB (^T r^A r^B r<T 
*̂1’2，̂1,2' ̂ 2,3' ̂ 2,3' ̂ 2,3 

广A ^B 广T n 

l l ’ 3 , Ul’3, Is. 

For all assignments I G C{S), we have: 

C l m , , ] ) =T 

= m i n { T , C f ^ 収 i ’ i ] ) ① 収2，2])} 

= m i n { T , ① [战2])} 

Cl2i l [Si,2]) = m i n { T ， ① 収2，2])} 

= m i n { T , 0 [尚’2])① C^s^sW^^s』} 

= m i n { T , C f i (収 i ’ i ] ) ① C^^sC収2’3]), [知 ] ) ① ^3^3(^^3,3])} 

収1,3]) = m i n { T , ① C?、(収2,3]), C^i乂収 i ’2])① 03"3(丨[狗，3])} 

CsU) = CUD 

C o r o l l a r y 4.8. The soft-grammar^''^ constraint is tractable projection-safe. 

Proof- Result follows from Theorem 3.12 and Theorem 4.7. • 

A lgor i thm 4.3 computes the minimum cost of a grammar肌厂 constraint after 

applying a series of 1-projections/l-extensions. In the algorithm, i t holds that 

< = m m ( A ( [ / f ) ) and / A = min(A(C#. .)). Line 1-2 computes the minimum 

cost of each unary constraint As the unary constraints are stored as tables, 

the min imum costs can be computed by scanning the tables. This step takes 
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A l g o r i t h m 4.3: Compute the minimum cost of soft-grammar 抓『 

Input: Cs： soft_graininar̂ «̂ (S', G), and a series of 
1-projections/l-extensions A 

O u t p u t : m in(A(Cs) ) 
1 fo r i 1 t o n do 
2 for c G E do u^ m in (A ( [ / f ) )； 

3 for z ^ 1 t o n do 
4 for 乂 G iV do 
5 / i^ i = m i n { T , ； 

6 fo r len ^ 2 t o n do 
7 for z ̂  1 to n - /en + 1 do 
8 j — i + len - 1 ; 
9 for ^ G Â  do 

10 f̂ A. — m i n { T , m i n(如似2 ) e p ’ i私)• { / � 0 / 么 , } } ； 

11 r e t u r n f l ^ ； ’ 

t ime 0{n ‘ |E|). By definition of safe decomposition, and the decomposition 

shown in the proof in Theorem 4.7, we have 

m m { A { C s A j ) = m i n { T , …eP m i n ( A ( W ) ) } 

min(A(C^Ap) = m i n { T , m i n ( 如 山 制 ① m i n ( A ( ( ^之 ” ) ) } } 

Line 3-10 of the algorithm computes the min imum costs accordingly, in . 

time. Finally, as Cs is equivalent to Cfg,一 the algorithm returns the value 

min(A(C5)) = min(A(C j^ J ) 

The total t ime consumed by the algorithm is 0{{n^ + nd) . |G|). 

Theorem 4.9. Given a soft-grammar̂ "̂  constraint and a series of 1-
projections/1-extensions A . Algorithm 4.3 computes the minimum cost of 

soft-grammar— after applying A， in 0{{n^ + nd) . \G\) time. 

4.4 Max_Weight/Min_Weight Constraint 

Given a set of variables S, a cost function w{xi, v) that maps a variable Xi e S 

and a value ；̂ G A to a cost e[0...k]. The max_weight constraint is the cost 
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function 

max_weight(5',w;)(/) = max w(x i , v ) 
XiGSAllxi]=v 

The min一weight constraint is the cost function 

min_weig]it(S；川)(Z) = min w(x i , v ) 

These constraints are derived from the maximum/minimum constraint [5]. We 

are to show this constraint is polynomially decomposable and thus tractable 

projection-safe. We also give an algorithm to compute the min imum cost. 

Note that the following decomposition does not work. Let Cs be the constraint 

min_weigli1;(S;7i；). For all I G C{S), we have 

Cs{l) = min {Ci{l[x,])} 
l<i<n 

where each Q is the unary constraint such that 

Ci{v) = w(i, v) 

holds for all v G D{xi). The decomposition is not a safe decomposition since 

the scope of Q is not S, thus Theorem 3.8 does not applies. 

T h e o r e m 4.10. The max_weight(6', w) and min.\jeight {S,w) constraints are 

polynomially decomposable. 

P 彻 f . We prove for max—weight. The proof for min一weight is similar. Let Cs 

be the constraint max_weight(5', w) where S = { x i , •. We define two 

sets of unary constraints { H f } and { G f } as follows: 

T , V ^ u 
\ 

广 a , � J 0， w{Xi,v) < a 

� T , w{xi,v) > w{xj,u) 
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where I < i < n, u £ D{xi) and a is a cost. We construct the sequence 

….,G],...,Csl by enumerating all 1 < i j < n,u e D{xi) and a G 

A ; ， v ) \ l < k < n A v e D{xk)} . The length of the sequence is bounded by 

O(n^d). The decomposition is gave as follows: 

關 ） = 1 — 〈 吵 〒 调 ( 収 1 ) ① e c；严 

In the equation H : represents the choice of the maximum weighted compo-

nent in the tuple, G广 represents the choice of each components other than 

the maximum weighted one. By Lemma 3.10, the decomposition is a safe 

decomposition. 口 

E x a m p l e 4.4. Suppose Cs is the constraint max_weigli1:(6； w;) where S = 

D{xi) = {1 ,4 } , D{x2) = {2 ,3 } . Hf and G^ are defined as above. 

We construct the sequence 

[ H l H t . H l H l G l G i G l G l C s ] 

Then for all assignments I G jC{S), we have: 

f 
H t { l [ x i ] ) © G l { l [ x 2 ] ) 

Cs{l) = min 

、G^K収 1])① 

C o r o l l a r y 4.11. max_weiglit anffinin_weigh1; constraints are tractable projection-

safe. 

Proof. Result follows from Theorem 3.12 and Theorem 4.10. • 

Here we give an 0{nd\og{nd)) algorithm to compute the min imum cost 

of a max一weight constraint after a series of 1-projections/l-extensions. The 

algorithm first organize all the variable-value pairs {xi,v) where Xi £ S,v G 

in an array A, and sort them by w(xi,v). Then i t scans A (Line 6-11). 
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A l g o r i t h m 4.4: Computing; the minimum cost of max—weight 
Input: Cs'. max_weight(5','a;) 
O u t p u t : a set {m^.^；}, where m^,^ = min{C5(/) | / [x i ] = v} 

1 乂 — an array of pair { x j , u) for all possible Xj e X , u e D j ; 
2 sort A = {{xj,u))} in increasing order of w{xj, u)； 

3 fo r z 1 t o n do â  T ; 
4 s n • T ; 
5厂卜丁； 

6 fo r A: 1 t o 1^1 do 
7 { x i , v ) ^ A[k]； 

8 S t S — CLi ; 

9 ai — m i n ( a i , A ( Q » ) )； 

10 5 s + â  ； 

11 r — min(r , A ( i ; f》)）+ s - a^) ; 
12 r e t u r n r ； 

At the A:-th i terat ion where A[k] = {xi,v), i t maintains that â  = m i n ( Q ) , 

and s = J2i<i<n (Line 9-10). Thus, 

m in ( i ^7 )① © m i n ( G f ’ — ( W ) ) = m i n { T , s - a < + A ( i 7 ; > ) ) } 
Xj€S\{xi} 

So at the end of the algorithm, i t holds that 

r = 想 外 ( 切 ） ® 0 m i n ( A ( G f - ) ) ) } = m i n ( A ( C , ) ) 
xj€S\{xi} 

Theorem 4.12. Given a max_weight constraint and a series of 1-pro j ections/l-

extensions A . Algorithm 44 computes the minimum cost of the max—weight 

constraint after applying A , in 0{nd . l o g ( n d ) ) time. 
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Experiments 

We implement the constraints described in the previous chapter in Toulbar2 

vO.9 to demonstrate the practicality of our algorithmic framework. We also 

compare the results wi th different levels of consistency: strong 0 IC , GAC* 

and FDGAC*，which cover 0-projection, 1-projection, 1-extensions. For each 

constraint discussed in Chapter 4，we conduct one experiment to demonstrate 

the efficiency. 

In the experiments, variables are assigned in lexicographic order. Value 

assignment starts wi th the values with minimum unary cost. The tests are 

conducted on an Intel Core2 Duo E7400 (2 x 2.80GHz) machine wi th 4GB 

RAM. Each benchmark has a different timeout. We first compare the number 

of solved instances. Among those solved instances, we report their average 

run-time and number of backtracks. Out of 10 randomly generated test cases 

fo each parameter setting, the best result is highlighted in bold. A l l the bench-

mark problems are NP-Hard. 

5.1 The car Sequencing Problem 
The car sequencing problem (probOOl in CSPLib) [38] Given n cars of different 

type. Each type is specified by a set of options. For the z-th option, for every 

Q cars in the assembly line, the maximum number of cars allowed wi th option 

61 
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i is mi. This problem is to find a production sequence to satisfy all above 

constraints. We use n variables wi th domain 1 to n to model this problem. 

The variable Xi denotes the type of the z-th car in the sequence. One gcc 

constraint ensures all cars needed lie in the sequences. For the i - t h option, 

n - m^ + 1 among constraints ensure the capacity on each option. We generate 

10 over-constrained instances randomly, each wi th 5 options, and block size 

of at most 5, i.e. 1 < m < Q < 5. Each car is randomly assigned to a type 

and each type has 1/2 chance to have an option. To softened the problem, 

we replace among constraints by s o f t - a m o n g抓W e also model the hard gcc 

constraints as soft—gcc爾 [49] which returns 丁 upon violation. 

Results are shown in Table 5.1. In this benchmark, solving wi th FDGAC* 

runs faster than GAC* up to nearly 5 times, and more than 20 times faster 

than strong 0 I C . Enforcing GAC* also speeds up by 6 times when compared 

wi th strong 0 IC . 

n strong 0 lC GAC* FDGAC* 
solved I time backtracks solved time backtracks solved | time | backtracks 

14 10 42 .84 234537 10 16.80 67842 
8 136 _ _ R I 5 7 5 £ _ ~ 1 0 9 0 8 5 1 0 4 . 4 9 

16 3 178.98 834998 8 133.08 434969 1 0 6 1 7 9 ^ 
17 I 1 I 163.73 830343 2 130.14 387446 10 48.07 35218 

Table 5.1: The number of solved instances (in 5 minutes time l imi t ) , the 
average time (in seconds) of solved instances and the number of backtracks in 
solving the car sequencing problem using soft—among抓『constraints 

5.2 The nonogram problem 

Nonogram problem (prob012 in CSPLib) [6] Given a board of size n x n. 

The problem is to find a black-white coloring on each cell such that each 

row and each column contain a specific set of sequences of black squares wi th 

different lengths. For example, we can specify that a row must have two 

consecutive black blocks, one wi th length 2 and the other wi th length 3. We 
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model the problem by n^ variables, among which x^j denotes the color of the 

block at the z-th row and i - t h column. We model the restrictions on each 

row and column by a r e g u l a r constraint. To soften the problem, we replace 

r e g u l a r constraints by s o f t — r e g u l a r暫.W e generate random instances for 

the problem by generating a set of sequences for each row and column. 

In a t ime l imi t of 5 minutes, enforcing strong 0 I C can only solve relatively 

small instances (n = 6). Enforcing GAC* can solve larger ones (n = 8). For 

n = 10, all instances can be solved only when FDGAC* is enforced, where each 

instance is solved in around 10 seconds on average. The regular抓『constraint 

is both polynomially decomposable and (flow-based) projection-safe [30，32 . 

So we compare the two approaches. The results are shown in Table 5.2. The 

two approaches would result in the same search tree when we enforce the same 

consistency, but the run-time varies. Our benchmarks show that for r e g u l a r 

constraints, the polynomially decomposable approach is more efficient than 

the flow-based approach. I t is because the constant factor behind the flow 

algorithm is usually large. 

polynomially decomposable 
几 strong 0IC GAC* FDGAC‘ 

一 solved time backtrack" solved time backtracF" solved time backtrack 
6 10 9 .50 1 5 0 1 6 7 10 0 .03 763 1 0 O O 

-1 1 2 4 5 . 1 7 2 6 2 7 3 2 2 ^ ~ ~ 
5 ！ ！ 7 113.76 1730882 _ 10 0.12 ^ 

J . 5 ！ * 2 52 .85 7 6 4 4 6 7 1 0 0 . 3 4 
1 0 I 0 I * I * I 0 I * I * I 10 I 11.78 2 2 8 ^ 

flow-based approach 
几 strong 0IC FDGAC* 

一 solved time backtrack" solved time [ backtracF solved time backtrack 
6 9 25 .23 72130 10 O W M 

- I Q * * 10 60 .84 — 7 2 8 1 1 ^ 
5 * * 1 "26：^ 2 8 1 6 6 _ _ K L _ ^ 

J . 2 * * 1 151 .38 8 3 4 7 9 
I 1 0 I 0 _ _ _ _ * * I 0 I * I * I 9 I 4 0 . 6 7 4 8 4 ^ ~ 

Table 5.2: The number of solved instances (in 5 minutes t ime l imi t ) , the 
average t ime (in seconds) of solved instances and the number of backtracks in 
solving the nonogram problem using s o f t — r e g u l a严 constraints 
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5.3 Well-Formed Parenthesis 

Given a set of n even length intervals in [ 1 , . . . , n], where n is an even number. 

The problem is to find a string of parentheses of length n, such that substrings 

in each of the intervals are well-formed parentheses. We model this problem by 

a set of n variables. For each interval, a soft-grammar constraint is posted to 

represent the well-formed parentheses requirement. The problem is softened 

by associating variable-based violation measure to each grammar constraint. 

We generate n - l even length intervals by randomly picking their end points 

in [ 1 , . . . , n], and add an interval covering the whole range to ensure that all 

variables are constrained. We also randomly assign unary costs to the variables. 

As shown in Table 5.3, F D G A C * is up to one order of magnitude faster than 

strong 0 I C , and up to 4 times faster than GAC*. 

n strong 0 I C GAC* FDGAC* 
solved “ time backtrack ~ ^ v e d time backtrack solved time backtrack 

20 10 “ 6 . 3 6 5 5 5 2 ~ ~ 10 . M 

22 10 T T W 1 0 2 5 3 10 7 8 4 — 2 4 5 
24 10 47.19 1 3 8 3 1 0 2 M ~ ^ ^ M i 
26 9 9 0 . 9 4 2 1 7 5 ~ ~ 1 0 ^ ^ ^ 

4 176 .1 — 5 9 7 5 6 10 3 1 . 9 9 7 2 0 8 1 0 

30 0 * “ * — 10 56.43 “ 9705 “ 10 1 ^ 5 9 1026 
32 0 * * 10 — 8 5 . 5 8 — 1 4 8 2 5 ~ ~ 1 0 ~ 2 0 . 1 2 

3 4 I 0 1 * 1 * 6 158 .16 2 5 5 4 6 1 0 5 4 . 9 4 3 3 4 6 

Table 5.3: The number of solved instances (in 5 minutes t ime l imi t ) , the 
average t ime (in seconds) of solved instances and the number of backtracks in 
solving the well-formed parenthesis problem using soft-grammar 抓厂 constraints 

5.4 Minimum Energy Broadcasting Problem 

The min imum energy broadcasting problem (prob048 in CSPLib) [15] Given 

n wireless routers in the network, one of which is the root that broadcasts 

messages to every other router. Not all links between pairs of routers are 

available, and each available l ink requires an energy level The energy 
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consumed by a router is equal to the maximum energy among all the links 

required to send the messages. The task is to find a broadcast tree that 

minimizes the total energy consumed. We use n variables, where x^ denotes 

the index of the router from which the i-th router receive a message. In 

addition，j G D(xi) iff there is a l ink between the z-th and j-th routers. One 

hard global constraint tree [8] is posted to enforce an assignment representing 

a tree. We post n max—weight cost functions to represent the energy consumed 

by each router. For the z-th router, we post a constraint max—weight (X，切丄 

where X is the set of all variables, and w办j, k) = e,,- ii k = i, or 0 otherwise. 

We randomly generate 10 instances of randomly connected network for each 

configuration of n routers and m links. Links are uniformly distr ibuted between 

all pair of routers w i th a random energy requirement. GAC is enforced on the 

tree constraint. 

In this benchmark, however, we get a result different from the previous 

ones. GAC* benefits from its pruning power and speeds up the solving by 

around 2 times compared to strong 0 I C . Al though F D G A C * can reduce more 

search spaces than GAC* up to 6 times, the run-t ime is worse than GAC* by 

2 times. We notice that in our model, the scope of each constraint involves all 

variables. Whenever a unary constraint increases cost, consistency checking is 

invoked for all global constraints, which introduces a large overhead. We also 

notice that the hard tree global constraint achieves strong 0 I C and GAC* 

(because i t is a hard constraint) but not FDGAC* , which could also be the 

explanation of the result. 
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n I m I strong 0lC GAC* FDGAC* 
solved time backtrack solved time backtrack solved time backtTg" 

20 40 10 8.03 ~ 61806 1 0 1 . 6 4 9080 ~ I Q 2 ： ^ 

20 60 10 26.08 153237 1 0 55317 10 ~377l7~ 16694 

20 100 10 13.55 69453 1 0 ~ 1 2 . 5 Q 3 7 3 2 ^ ~ 10 41.78 1 2 1 0 6 

25 50 10 72.55 ~ 303422 15.34 52855 一 1一 15.48 ~ ~ 
25 75 5 301.68 1044058 7 — 229.10 625415 ~ 5 1 7 6 . 4 5 34108 
25 125 5 ； 3 166.85 22005 
30 60 4 216.44 557575 9 1 0 1 . 3 3 233610 9 1 1 8 . 4 8 2 1 4 2 4 

30 I 90 I 1 401.92 1050414 2 1 6 2 . 6 3 293660 1 305.96 4 3 2 3 8 

Table 5.4: The number of solved instances (in 10 minutes t ime l imi t ) , the 
average t ime (in seconds) of solved instances and the number of backtracks 
in solving the min imum energy broadcasting problem using max_weight con-
straints 
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Related Work 

In this chapter, we present researches that related to our work. We briefly 

describe various consistency techniques in WCSP, and related works on global 
constraints. 

6.1 WCSP Consistencies 

The WCSP framework is useful in modeling many over constrained problems 

and optimization problems. To solve WCSP efficiently, many consistency tech-

niques have been proposed. NC* and AC* were developed by Larrosa and 

Schiex [28]. They demonstrated a branch-and-bound algorithm that main-

tains AC*. Other forms of consistency notions with different pruning power 

appeared later, including FDAC* [27], EDAC* [19]，0-IC [51] and strong 0-IC 

30]. Cooper et al. [17] defined two consistency notions, namely 〇SAC and 

VAC, both of which require a relaxation of cost valuation structure V{T) to 

real numbers, ^^-consistency is due to Cooper [16 . 

AC*，FDAC* and EDAC* are specialized for binary constraints, yet they 

can be generalized to handle high arity constraints and global constraints. 

Generalized version of arc consistency star, GAC*，is defined by Cooper and 

Schiex [18]. Sanchez et al. [47] extended AC*, FDAC* and EDAC* for ternary 

constraints. Their method to enforce EDAC* on ternary constraint requires 
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2-extension. F D G A C * is due to Lee and Leung [30, 32]. They also showed that 

naively generalizing ED A C * to high ari ty constraints wi l l lead to an oscillation 

in the enforcement algorithm, and proposed a weak form of E D G A C * based 

on cost providing par t i t ion [31, 32 . 

Bound arc consistency (BAG*) is discussed by Zytnicki et al. [51] to handle 

WCSP w i th large domains. This consistency notion only consider domain 

bounds，and only require simple supports for boundary values in the variable 

domains. 

Different consistency notions depend on different projections/extensions. 

For example, O-projections/O-extensions are employed in 0 I C and strong 0 I C 

enforcements. 1-projections/l-extensions are the backbone of the consistency 

algorithms of (G)AC*, F D ( G ) A C * and (weak) ED(G)AC* . Projections and 

extensions of ar i ty larger than 1 are required for enforcing ED A C * in ternary 

constraints and A;-consistency. Our work show that we can efficiently applied 

those consistencies depends on 1-projections/l-extensions to polynomially de-

composable constraints, and those consistencies depends on 2-projections/2-

extensions or above are hard to enforce efficiently on global constraints. 

6.2 Global Constraints 

Global constraint is one key element to make CSP framework success. A global 

constraint could be understood as an expressive and concise condition involving 

a non-fixed number of variables [6]. Since the work of Lauriere on A L I C E [29], 

many global constraints have been proposed and studied. Famous examples 

include the a l l D i f f e r e n t constraint [29] and cumula t ive constraint [1]. On 

the other hand, early work on WCSP consistencies concentrated on binary 

table constraints, and recently generalized to handle high ari ty constraints 

and global constraints. Introduction of global constraints to WCSP is a must 

to make the WCSP framework more useful. In this section, we review related 



Chapter 6 Related Work � 
by 

works on global constraints discussed in our work, and constraint softening. 

The among constraint w朋 originally proposed by Beldiceanu and Conte-

jean [7]. A n algorithm to achieve AC was given by Bessiere et a/.[11]. This 

constraint is useful in modeling the car-sequencing problem [38.. 

The r e g u l a r constraint is proposed by Peasant [40]. This constraint is 

extremely useful since i t is able to model many other global constraints, in-

cluding s t r e t c h and p a t t e r n . He also gave an algorithm that achieves AC 

on the r e g u l a r constraint based on a layered directed graph representation of 

the constraint. The decomposition for the sof t—regular constraint is derived 

from such a graph representation. 

The grammar constraint is proposed by Kadioglu and Sellmann [22], and 

Quimper and Walsh [42]. A C Y K parser ba^ed algorithm [22, 42] and an Ear-

ley parser based algorithm [42] are given to achieve AC on this constraint. 

The C Y K parser based AC algorithm is improved by Kadioglu and Sell-

mann [21]. They also consider achieving AC when grammar constraint ap-

pears in conjunction w i th a linear objective function. Quimper and Walsh 

discussed decomposition of the grammar constraint [43, 44]. Kassirelos et al. 

proposed the weightedGrammar constraint [24], which can be used to model 

soft_graininar-^ and soft_grainmare彻 constraints. Restricted classes of the 

grammar constraint was also discussed in l iterature [23 . 

The max_weight/mii i_weight constraints are derived from the 

maxinmm/minimum constraints originated in CHIP [7]. Beldiceanu showed 

t lmt the two constraints are instances of the min imum constraint family, and 

presented a fi l tering algorithm. 

Constraint softening is proposed by Regin et al. [45] to model and solve 

over-constrained problems. Van Hoeve et al [49] make use of flow theory to 

compute the min imum cost of several soft constraints, including soft variants 

of the a l l D i f f e r e n t , gcc and r e g u l a r constraints. Lee and Leung [30’ 32 
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further extend their idea and show these constraints are flow-based projection-

safe. 



Chapter 7 

Conclusion 

In this section, we summarize our contributions and shed light on possible 

future directions of our research. 

7.1 Contributions 

In this thesis, we discuss tractable projection-safety, and introduce the concept 

of polynomially decomposable constraints. Our contributions are three-fold. 

First，we address the issue of tractable projection-safety in enforcing WCSP 

consistencies. WCSP consistencies an be efficiently enforced only when tractable 

projection-safety is guaranteed. We divide our discussion into three cases of 

different scenarios of projections and extensions. We show that projection-

safety is always possible for projections/extension to / f rom the mil iary con-

straint, while i t is alway impossible for projections/extensions to / f rom r -ary 

constraints for r > 2. When r = 1，we show that a tractable constraint may or 

may not be tractable projection-safe by giving positive and negative examples. 

Second，we define polynomially decomposable soft constraints based on 

safe decomposition. Safe decomposition divides a soft constraint into sub-

constraints which allows us to (1) compute the min imum cost of the original 

constraint f rom the min imum cost of its sub-constraints, and (2) distribute 
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projections and extensions to its sub-constraints. We give special scenar-

ios of safe decomposition. We show that a polynomially decomposable soft 

constraints are tractable and tractable projection-safe, since we can apply a 

dynamic programming approach to compute the min imum cost of such a soft 

constraint, and the approach is st i l l applicable after projections and extensions. 

We further show that sof t—among抓sof t—regular抓sof t—grammar抓『and 

max_weight/min_weight constraints are polynomially decomposable. We give 

the decomposition of these constraint, and base on the decomposition, we give 

algorithms to compute their min imum costs. Our effort give rise to another 

class of tractable projection-safe soft global constraint. 

Thi rd, we perform experiments and compare typical WCSP consistency 

notions and show that our algorithm framework works well w i th GAC* and 

F D G A C * enforcement both, in terms of run-t ime and reduction in search 

space. We also compare our approach w i th the flow-based approach [30]. We 

show that our approach is more competitive. 

7.2 Future Work 

We have discussed the issue of tractable projection-safety in WCSP consis-

tencies enforcement, and show that flow-based projection-safe constraints and 

polynomially decomposable constraints are tractable projection-safe. A n im-

mediate future work is to investigate other forms of tractable projection-safety 

and techniques for enforcing typical consistencies efficiently. 

The second possible research question is whether we can handle constraints 

that are intractable efficiently. Existing consistency techniques for WCSP re-

quires knowledge of the minimum costs of constraints in the system. The 

question is whether we can design weak forms of these consistency techniques 

that requires knowledge of a lower bound of the min imum costs, which al-

lows application of approximation algorithms to compute min imum costs of 
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intractable constraints. 

The th i rd possible direction is related to optimal soft arc consistency (OSAC) 

17]，where a sequence of 1-projections/l-extensions operation which yields an 

optimal C0 is identified. Such task can be done by solving a linear program. 

OSAC is specialize for table constraints, and we would like to extend the idea 

to global constraints. The difficulty lies in how we can post linear constraints 

in the linear program to require a global constraint in the WCSP to have 

non-negative min imum cost. We conjecture that the decompositions given in 

Chapter 4 is related to such a reformulation. 
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