
Tractable Projection-Safe Soft Globa.
Constraints in Weighted Constraint Satisfaction

WU, Y i

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

The Chinese University of Hong Kong

September 2011

- 、

I： J I- ^^ <..、.青 L'il 6 J 、 J l
\ -- -
\ 、 \ V

、 ： ‘ , ， ， - - ' - - ’ • . , 、/ '

\ , 1 ；一 “ “ .、》 ..，/I .、：.. ,

Thesis/Assessment Committeo

Professor Young Fung Yu (Chair)

Professor Jimmy Lee Ho Man (Thesis Supervisor)

Professor Cai Leizhen (Committee Member)

Doctor Thomas Schiex (External Examiner)

Abstract

In maintaining consistencies, such as GAC*, F D G A C * and weak EDGAC* , for

soft global constraints, Weighted CSP (WCSP) solvers rely on the projection

and extension operations on constraints, requiring efficient min imum cost com-

putation. Since these operations modify the structure of the constraints, an

important issue is tractable projection-safety, which concerns whether the min-

imum cost computation of a projected/extended constraint remains tractable.

In this thesis, we prove that tractable projection-safety is always possible

for projections/extensions to / f rom the mil iary constraint (C^), and always

impossible for projections/extensions to / f rom n-ary constraints for n > 2.

When n = 1，the answer is indefinite. We show an example that is not

tractable projection-safe, while Lee and Leung give flow-based projection-

safe constraints as positive examples of tractable projection-safety. We define

polynomially decomposable soft constraints, which are amenable to tractable

minimum cost computation. We further show that such constraints remains

polynomially decomposable after projections/extensions to unary constraints

and thus being tractable projection safe. We show that the soft—among暫，

s o f t - r e g u l a r ^ , soft—grammar^ and max_weight/min_weight constraints

are polynomially decomposable. We embed these constraints in a WCSP solver

and conduct experiments to confirm the feasibility and efficiency of our pro-

posal.

i

摘要

在對軟性約束維護一致性的過程中，例如GAC*, FDGAC*，和弱EDGAC*，

加權約束滿足問題(weighted constraint satisfaction, WCSP)的求解器依賴於

對約束的投影和擴展操作。由於這些操作改變了約束的結構，可解投影安全

性(tractable projection-safety)就成為了一個重要的問題。一個約束是可解投

影安全的，意味著即使經過了投影和擴展操作，這個約束的最小值依然是可

解的。在這篇論文裡面，我們證明了零元的投影和擴展操作並不影響可解投

影安全性，而二元的投影和擴展操作會使得約束失去可解投影安全性。對

於一元的情形，投影和擴展操作對可解投影安全性的影響並不確定。對此

我們舉出了正面和反面的例子。我們定義了一類可多項式分解(poiynomially

decomposable)的約束。這類約束允許我們有效地求解它們的最小值。進一

步地，我們證明了即使經過了投影和擴展操作，它們的最小值依然可以被有

效地求解，故而它們是可解投影安全的。我們展示了很多典型的約束都是可

多項式分解的。我們在加權約束滿足問題求解器上面實現了我們提出的方

法，用實驗數據顯示了我們的方法的可行性和有效性。

ii

Contents

1 I n t r o d u c t i o n 1

1.1 Constraint Satisfaction Problems 1

1.2 Weighted Constraint Satisfaction Problems 3

1.3 Motivation and Goal 4

1.4 Outline of the Thesis 5

2 B a c k g r o u n d ^

2.1 Constraint Satisfaction Problems 7

2.1.1 Backtracking Tree search 3

2.1.2 Local consistencies in CSP n

2.2 Weighted Constraint Satisfaction Problems 18

2.2.1 Branch and Bound Search 20

2.2.2 Local Consistencies in WCSP 21

2.3 Global Constraints 3 I

3 T rac tab le P ro jec t i on -Sa fe ty 36

3.1 Tractable Projection-Safety: Definition and Analysis 37

3.2 Polynomially Decomposable Soft Constraints 42

4 Examples o f P o l y n o m i a l l y Decomposable Soft G loba l Con-

s t ra in ts 48

4.1 Soft Among Constraint

iii

4.2 Soft Regular Constraint • . ^
01

4.3 Soft Grammar Constraint

4.4 Max_Weight/Min_Weight Constraint

5 Expe r imen t s ^
61

5.1 The car Sequencing Problem 61

5.2 The nonogram problem 62

5-3 Well-Formed Parenthesis . .
64

5.4 Minimum Energy Broadcasting Problem 64

6 Re la ted W o r k
67

6.1 WCSP Consistencies . . ^^
67

6.2 Global Constraints . . 广。
68

7 Conc lus ion
71

7.1 Contributions 了工

7.2 Future Work
I ^

B i b l i o g r a p h y ^^

iv

List of Figures

1.1 The 4-queens problem 2

2.1 A search tree for the 4-queens problem 10

2.2 The MAC search tree for the 4-queens problem 17

2.3 A WCSP wi th three constraints 19

2.4 Graphical representation of a WCSP 20

2-5 A branch and bound search tree to solve a WCSP 22

2.6 NC* 24

2.7 0 I C 25

2.8 AC* 27

2.9 FDAC* 28

2.10 ED AC* .

2.11 /^-consistency 31

2.12 A finite state automaton for a regu la r constraint 33

V

List of Tables

5.1 The car sequencing problem 62

5.2 The nonogram problem 63

The well-formed parentheses problem 64

5.4 The minimum energy broadcasting problem 66

vi

Chapter 1

Introduction

This thesis reports work on tractable projection-safe global constraints in weighted

constraint satisfaction, which is a common soft constraint framework. We ad-

dress the issue of tractable projection-safety in enforcing WCSP consistencies.

In this chapter, we first briefly describe constraint satisfaction problems (CSPs)

and weighted constraint satisfaction problems (WCSPs) . T h e n we give the mo-

t ivation of our work, and overview the structure of rest of this thesis.

1 1 Constraint Satisfaction Problems

Many combinatorial problems can be model as constraint satisfaction problems

(CSPs). As defined by Mackworth [33], a CSP is described as follows:

l^e are given a finite set of variables, a finite domain of possible

values for each variable, and a conjunction of constraints. Each

constraint is a relation defined over a subset of the variables, lim-

让他g the combination of values that the variables in this subset can

take. The goal is to find a consistent assignment of values from

the domains to the variables so that all the constraints are satisfied

simultaneously.

We use the well-known n-queens problem to illustrate how to model a

combinatorial problem as a CSP.

1

Chapter 1 Introduction ^

E x a m p l e 1 .1 . The n-queens problem is to place n queens onto anxn chess

bo— — no two queens attack each other. Two queens attack each other

订—y share the same row, column or diagonal Suppose n == 4. To model

仇Problem, we can use four integer variables {x.^x,, x,,〜}. These variables

s e n t the position of each queen, i.e. the i-th queen placed m the z-th row

—工“h column. The following constraints are posted to restrict that no two

queens attack each other:

• column: Xi ̂ xj for all 1 < i < j < and;

• diagonal: 一 Xj\ 寺 j - i for all 1 < z < j < 4.

1 2 3 4
XI Q ^ i z r
x2

X3

x4 t l L S ^
Figure 1.1: The 4-queens problem

TVie model implicitly guarantees no two queens share the same row. Fig-

蒙 1.1 a solution to the 4-queens problem. In fact there are two solutions

m this case: (2 , 4 , 1 , 3) and (3,1，4, 2). flVe use tuples to represent an assign-

譲t，where the i-th component of the tuple corresponds to the value assigned

to the i-th variable xi.)

The CSP framework is a powerful tool to model a wide range of com-

binatorial problems. Yet CSP is NP-Complete, which means unless P=NP,

solving CSP would take exponential t ime in general. I n practice CSPs are

solved via backtracking tree search. Along a branch of a search tree, variables

are assigned one by one unt i l a solution is found or inconsistent is detected.

In the later case the solver backtracks and tries another branch. To improve

Chapter 1 Introduction ^

just removing infeasible values in variable domains, consistency techniques in

WCSP take cost information into account and retrieve hidden information by

transport ing costs.

1.3 Motivation and Goal

A global constraint is a constraint specified by its semantics, and involve a

non-fixed number of variable. Besides an efficient branch and bound pro-

cedure augmented w i th powerful consistency algorithms, a practical WCSP

solver should have a good l ibrary of soft global constraints to cater for the

often complex scenarios in real-life applications. Lee and Leung [30’ 31, 32

showed how AC* [18], FDAC* [27] and EDAC* [19] can be generalized and

implemented efficiently for a special class of soft global constraints, namely

those that are (flow-based) projection-safe[30, 32 .

Lying in the heart of all WCSP consistency algorithms are (a) computation

of min imum cost of constraints and (b) the projection and extension operations

which transport costs among constraints to create pruning opportunities. In

the case of soft global constraints which usually have high arities, specialized

polynomial t ime algorithms can be developed for minimum cost computation

according to the semantics of the global constraints and their violation mea-

sures. However, projections and extensions modify a constraint so that its

structure and even semantics might change, possibly making the original min-

imum cost algorithm no longer applicable. Therefore, the key notions here is

tractable projection-safety, which concerns whether the min imum cost compu-

tat ion of a projected/extended soft global constraint remains tractable. We

discover that different consistency notions depend on different scenarios of pro-

jections and extensions. We study the impact of projections and extensions on

tractabi l i ty of soft global constraints, and give positive and negative examples.

Moreover, we discover that for several typical soft global constraints, we can

Chapter 1 Introduction ^

apply dynamic programming approach to compute their min imum costs, and

the approach is sti l l applicable after projections and extensions. We study their

properties and define polynomially decomposable soft constraints, which can

be decomposed into a tractable number of simpler constraints for (minimum)

cost calculation. We show a soft global constraint of this class are tractable

projection-safe.

1.4 Outline of the Thesis

The outline of this thesis is as follows. We give basic backgrounds on CSPs

and WCSPs, including related concepts and solving techniques, in Chapter 2.

Backgrounds on global constraints and constraint softening are also given in

this chapter.

Chapter 3 defines tract abil i ty of a soft constraint, and addresses the issue of

tractable projection-safety. We analyze tractable projection-safety by dividing

the discussion into three cases of different scenarios of projections and exten-

sions. We prove that a soft (global) constraint is always tractable projection-

safe after projections/extensions to / f rom the mil iary constraint (C0), and al-

ways non-tractable after projections/extensions to / f rom n-ary constraints for

n > 2. When n = 1, the answer is indefinite. We give a simple tractable

constraint and show how i t becomes non-tractable after projections/extensions

to / f rom unary constraints, while flow-based projection-safe constraints [30, 32

are positive examples of tractable projection-safe constraints.

We also define polynomially decomposable constraints in this chapter. We

define safe decomposition where a constraint is divided into sub-constraints

which allows us to (1) compute the minimum cost of the original constraint

from the min imum cost of its sub-constraints, and (2) distribute projections

and extensions to its sub-constraints. We give special scenarios of safe decom-

position. Base on safe decomposition, we define polynomially decomposable

Chapter 1 Introduction ^

constraints, and show that wi th a soft global constraint of this class, we can

apply a dynamic programming approach to compute its minimum cost, and

the algorithm is stil l applicable after projections and extensions. As such, a

polynomially decomposable soft global constraint is tractable projection-safe.

Chapter 4 give examples of polynomially decomposable constraints. These

constraints include the soft—among卯『constraint, the soft—regular肌厂 con-

straint, the soft_grainmar^"^ constraint, and maxjweight/minjweigt i t con-

straints. For each constraint presented in this chapter, we show how they

can be safely decomposed in a recursive way. Base on the decomposition, we

give algorithms to calculate their minimum costs. The algorithms presented in

this chapter are special cases of the generic algorithm to compute the minimum

cost of a polynomially decomposable constraint.

Chapter 5 shows the experiment results. For each constraint discussed in

Chapter 4, we conduct one experiment to show the efficiency of our technique.

We also compare our technique wi th the flow-based approach by Lee and Le-

ung [30，32 •

We conclude the thesis in Chapter 7. We summarize our work on the thesis,

and shed light on possible future directions of our research.

Chapter 2

Background

In this chapter, we give the basic background for the rest of this thesis, includ-

ing the concept of constraint satisfaction problems (CSPs), weighted constraint

satisfaction problems (WCSPs), and global constraints. We also describe var-

ious consistency techniques for CSPs and WCSPs and how they are incorpo-

rated into backtracking search to build efficient solvers for these problems.

2.1 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is a tup le V = { X , V, C), where A' is

a set of variables { x i , x 2 , . . . ,Xn}. Each var iable has i ts domain D{xi) G D of

values that can be assigned to it. Assigning a value ̂； to a variable xi is denoted

by Xi H-)- V. In this thesis we assume the domains to be finite. An assignment

{^si 4 Vs2,…、〜^ on S = C A' Can

be represented as a tuple I = {vi,v2,. •. ,Vn)- The notation l[xs-] denotes the

value assigned to Xg., i.e. Vs。and l[S'] denotes the tuple formed by extracting

an assignment on a subset S' C S in I. We also use the notation C{S) to

denote the set of all tuples corresponding to all possible assignments on —

. . . , Xs^,} C A', i.e. C{S) = D{xs-^) x . •. x A hard constraint

Cg e C over the subset of variables S is a. subset of J C { S) , specifying the allowed

tuples to be assigned to the variables in S. The set of variable S is the scope of

7

Chapter 2 Background 15

^s- The constraint could be explicit ly given by a table of tuples, or impl ic i t ly

by its semantics. The anty of C^ is defined as A assignment I e C{S)

satisfies C^ if l[S] E C^. A solution of a CSP is a complete assignment that

satisfies every constraint in C. See Example 1.1 for a simple example of CSP.

The superscript h in the notation C^ is to differentiate a hard constraint

from a soft constraint. Soft constraints wi l l be discussed in Section 2.2.

To bui ld efficient solvers for CSPs, backtracking tree search can be used.

The backtracking tree search algorithm explores the whole search space in a

systematic way, and backtracks as soon as i t detects any failure. By examining

local substructure, local consistency techniques are able to reduce search space

and help the search procedure backtrack earlier.

2.1.1 Backtracking Tree search

Backtracking tree search is a general algorithm that systematically explores

the whole search space to look for solutions of a problem. In our application,

given a CSP, the whole search space is made up of all possible assignments

to the variables in the CSP. The task is to find solutions of the CSP in the

search space. The algorithm traverses the search space in a depth-first man-

ner. Whenever conflict is detected, i t immediately backtracks and switches

to another branch. Algor i thm 2.1 shows the pseudo-code for f inding the first

solution of a CSP {X, V, C) [4:.

The algorithm starts from an empty assignment, and tries to extend i t

into a solution. I t recursively calls search() to traverse the search tree. On

each node of the search tree, i t picks an unassigned variable by the function

chooseUnassignedVarO (Line 5), and extends the assignment by assigning

to i t a value v in its domain D{xi) by the function chooseValO (Line 7-8).

I t then checks whether there is any conflict in the new part ial assignment

I f no conflicts are found, the algorithm proceeds to the sub-search tree and

Chapter 2 Background 9

r印eats the procedure. The algorithm halts immediately after the first solution

is found (Line 11), or the whole search tree is exhausted. In the latter case,

the input CSP has no solutions.

A l g o r i t h m 2.1: Backtracking tree search algorithm for solving CSPs
1 P r o c e d u r e s o l v e () beg in
2 search(0 , V)；

3 end
4 P r o c e d u r e search(/, V) beg in
5 Xi ^ chooseUnassignedVar()；

6 w h i l e D{xi) 0 do
7 V — c h o o s e V a l { D { x i)) ；

8 I' ^ lU { x i v } ;

9 i f n o C o n f l i c t ⑷ t h e n
10 i f \l'\ = lA'l t h e n
11 r e t u r n I，；

12 else
13 sol = search(" , :D)；

14 i f sol ^false t h e n r e t u r n sol ；

15 D { x i) — D { x ,) \ { v } ；

16 r e t u r n false]
17 end

Figure 2.1 shows a search tree for Example 1.1. The variables are being

assigned in the order of their indices. The algorithm starts w i th an empty

assignment that corresponds to the empty configuration. I t first tries the

assignment Xi h^ 1 (putt ing the first queen in the corner). No conflicts can

be seen at this point. Then i t proceeds to assign 1 to X2. A t least one of

the constraints is violated due the two queens are attacking each other. So

i t backtracks and t ry another branch. The procedure continues unt i l in the

rightmost branch in the figure, when i t finds a solution (which is (2,4,1,3)).

The algorithm outputs the solution and halts.

In the above example, we backtrack only when two queens are attacking

each other. This strategy yields a large search tree of 27 search nodes. For

more diff icult problems, we may get even larger search trees. By doing more

Chapter 2 Background 10

叫 I刊 ^

二 一 一

寸 丨 丨 I 寸I ^ ^ " I I众I
二 二 = ： ！ 二 二 二 二 4 - S

寸 / — — 二 rŜ - I I S ： rem

/ 細 X石，
/ . — \ «H (N m 对

/ A “ u

X I I I I I

/ 代 r ^ J J J rr丨<!X|々 丨

… / II \ X X X X
^ / (N \ ”

x / \：：二 = V ^ j 11 二二 一=运
/ Jt Jt A| m /tidzb

: f f f f y y / W s

\ / A \ 4 ： - I l S
\ / / / 0 0 — 一 一 一 \ t-H (N m r f

\ / / / X ^ \ x x x x

A K r a
II \ f ^ X X X X CN JX
^ \ I / I I I ： “ - ^ I I l

\ fN / ^ ^ ^ ^ 寸 r-r-m - - ^ ^

\ y H M I I 'J ^ I l ^ I

rA Z II rH r /二 \ \ \ m X X "
(X " y x W 寸I I I I I

II \ X X \ V l

, \ 棚
rH (N m 守 V
X X X X A 一 一 一 一

fN

fH <N m ^ X X X X

Figure 2.1: A search tree for the 4-queens problem

Chapter 2 Background 11

checking, we can prune large parts of the search tree to reduce our effort in

doing search. Local consistency techniques [37, 34] are the tools to do this

kind of job.

2.1.2 Local consistencies in CSP

Naive implementation of the backtracking search algorithm would not result in

efficient solvers for CSP. One of the problems is its late detection of conflicts.

For example, in the 4-queens problem, when we place the first queen in the

first column, we should immediately know no other queens should be placed

in the same column. So we can safely remove value 1 from the domains of

and avoiding unnecessary search. The main idea here is to tu rn a CSP

into another one that is equivalent but easier to solve.

D e f i n i t i o n 2 .1 . [4] Given two CSPs = and P2 = (A' , 1^2,^2)•

Pi is equivalent to 尸2 if the have the same set of solutions.

A n equivalence preserving transformation converts a CSP i n to another

equivalent CSP. Such a transformation is usually done by removing values

in domains that wi l l not appear in any solution of the CSP. Usually we are

to transform a CSP into another one that of some form of local consistency.

Different consistency notions have appeared in literature. These consistency

notions give rules to filter out unwanted values in domains. Algori thms that

enforce local consistencies are called constraint propagation algorithms. These

algorithms look into the substructures of a CSP and turns the CSP into desired

form. Two common consistency notions are node consistency [37, 34] and arc

consistency [37, 34]. We are to describe them in the following.

N o d e Cons is tency Node consistency is perhaps the simplest form of con-

sistency notion. I t considers each time a unary constraint, that is a constraint

involving one single variable.

Chapter 2 Background 12

D e f i n i t i o n 2 .2 . [37, 34] Given a CSP A constraint is node

consistent (NC) if either > 1，or |6'| 二 { r r j and for any value v G D{xi),

assigning v to Xi satisfies A CSP is node consistent if every constraint

C E C is node consistent.

E x a m p l e 2 . 1 . Suppose the domain of x is D{x) = { 2 , 3 , 4 , 5 } . And we have

a constraint x < 4. We can remove 5 from D{x) since x ^ 5 violates the

constraint. Other values remains intact because assigning them to x satisfies

the constraint.

A l g o r i t h m 2.2: Enforcing node consistency
1 P r o c e d u r e enf orceNC(A', C) beg in
2 fo r C^ eC and S = { x j do
3 fo r V e D {x i) do
4 i f { x i ^ v } ^ C ^ t h e n
5 D{x,) f - D{x,) \ ；

6 e n d

To enforce node consistency, we just have to check each unary constraint,

and remove values that violates the constraint in the corresponding domain

(Algor i thm 2.2). Node consistency is simple, and yet weak in pruning power.

So usually we need a stronger form of consistency notions to help discovering

hidden information in a CSP.

A r c Cons is tency Arc consistency is a consistency notion that takes binary

constraints (a constraint involving two variables) into account.

D e f i n i t i o n 2 . 3 . [37, 34] Given a CSP P = A binary constraint

Cij G C over variables Xi and xj is arc consistent (AC) if

• for every value Vi G D{xi), these is a value Vj e D { x j) such that (a, h) €

C^j, and

Chapter 2 Background 13

• for every value Vj G D { x j) , these is a value vi € D{xi) such that (a, b) €

P is arc consistent if all its binary constraints are arc consistent.

Let Vi be a value in D(xi) and v j a value in D{xj). The value v j is a support

of Vi if the tuple {vi.Vj) belongs to C。. In another word, a binary constraint

is arc consistent i f all the values in each domain of its variables has at least a

support in the other domain.

E x a m p l e 2 .2 . Consider a CSP with two variables M = { x i , X2} with domains

D { x i) = { 2 , 3 } a n d D { x 2) = { 1 , 2 , 3 } . These is only one constraint xi xX2 < 5.

The constraint is not arc consistent. The value 3 in the domain of D{x2) has

no support in D{xi) because even we take 2, 2 x 3 = 6 > 5. After

removing 3 from D(X2)，the CSP is arc consistent.

To enforce arc consistency, we loop through every binary constraints of a

CSP, and look for supports for every value of both domains. I f a value has no

support, i t is removed because i t cannot appears in any solution of the CSP.

The removed value could be the support of other values. I t is thus possible

that the removal causes other value to lose their support. I t is necessary to

repeat the process and verify that every values in the domains st i l l has at least

one support. We can stop if a fixed point is reached — no more values can

be removed and every binary constraint is arc consistent. The algorithm is

demonstrated in Algor i thm 2.3. The algorithm is called AC-1 [34 .

The algorithm can be improved. In each iteration, AC-1 tries to revise every

constraint in the system even if the corresponding domains are not changed.

A more efficient way is to use a queue Q that stores every potential ly arc

inconsistent constraint. Only those constraints wi l l be revised. The algorithm

terminates when the queue is empty. Such an algorithm is called AC-3 [34] and

is demonstrated in Algor i thm 2.4. Note that AC-1 and AC-3 differ only in the

Chapter 2 Background 14

A l g o r i t h m 2.3: Enforcing arc consistency (AC-1)
1 P rocedu re AC-1(A', beg in
2 changed — true ；

3 while changed = true do
4 changed false ；

5 foreach C^- G C do
6 changed^changedVRevise(C(；., Xi, x^)VRevise(C^, x j , Xi)；

7 end
8 P rocedu re R e v i s e ((7 為 b e g i n
9 deleted— false ；

10 foreach Vi G D(xi) do
11 i f ， G D(xj) such that {vi,vj) e C^j t h e n
12 D{x,) — D{x,) \ {v,}；

13 deleted^- true ；

14 r e t u r n deleted;
15 end

main procedure. The Revise procedure is the same. The queue Q is called the

propagation queue, since i t helps propagate the consistency information from

one constraint to the others.

A l g o r i t h m 2.4: Enforcing arc consistency (AC-3)
1 P rocedu re V, C) beg in
2 2 — G C};
3 wh i l e Q 0 do
4 f - pop(Q)；

5 i f Revise(C^-,工“ x j) t h e n
6 Q^Qu{C!leC}；

7 i f Revise(Cfj, x j , Xi) t h e n
8 2 —
9 end

There are stil l rooms left for us to further improve AC-3. Various algo-

rithms have been proposed. Examples are AC-4 [35], AC-5 [39], AC-6 [9],

AC-7 [10], AC-2001 [13], AC-3.1 [50] and AC-2001\3.1 [14].

Arc consistency strikes a balance between propagation efficiency and power

of removing unnecessary values. I t turns out to be a practical consistency

Chapter 2 Background 15

notion and is implemented in most (if not all) CSP solvers.

Genera l i zed A r c Cons is tency Arc consistency has been generalized to

n-ary constraints involving n variables.

D e f i n i t i o n 2 .4 . A constraint C^ over a set of variables S is general ized arc

consistency (GAC) if for every value Vi G D{xi) where Xi G S, there exists

« tuple I G C{S) such that l [x i] = Vi and I G C^. A CSP is generalized arc

consistent if all its constraints are generalized arc consistent

In another word, a constraint C^ is arc consistent if for every variable

Xi e S and every value Vi in the domain of Xi, the assignment { x i v^} can

be extended to a tuple (an assignment to the variables in S) I that satisfies

the constraint C^. The tuple is called a support of Vi G D{xi) w i th respect to

Cs- Again unless all the constraints are GAC, a CSP cannot be GAC.

E x a m p l e 2 . 3 . Consider a CSP with three variables X = {xi,x2,x3} with

domains D{xi) = { 2 , 3 } , D{x2) = { 1 , 4 } and D{x^) = { 2 , 4 } . There is only

one constraint X 1 + X 2 + X3 > 9. The constraint is not GAC because value 1 in

D{x2) has Tho support. For example, if we take the assignment 3, X2 >

1,X3 4}, it does not satisfy the constraint because 3 + l + 4 = 8 < 9 . The

CSP is GAC after removing 1 from D{x2).

The AC enforcement algorithms, for example, AC-3, discussed earlier in

this section can be easily modified to achieve GAC.

C o m b i n i n g L o c a l Cons is tency w i t h Search We can incorporate local

consistency algorithms into backtracking tree search to improve the efficiency

of search. One example is the maintaining arc consistency algorithm (MAC)

46]. A t each of the search tree, before choosing a value for a variable, we

enforce arc consistency to reduce the domain size. As a result, many unnec-

essary branches are avoided. Also, if one of the domains of variables becomes

Chapter 2 Background IQ

empty，we can backtrack since in this case, a conflict is found and no solutions

lies in the current branch. The removal of values are undone on backtrack-

ing- The algori thm is demonstrated in Algor i thm 2.5. In each search node

before branching, AC is enforced by the function enforceACO. I t then checks

whether there exists a variable w i th empty domain. In this case the algori thm

backtracks by returning false. Otherwise, i t continues traversing the search

tree as in A lgor i thm 2.1. The algorithm terminates when one solution is found,

or the whole search space is exhausted.

A l g o r i t h m 2.5: Maintaining arc consistency (MAC) search algorithm
1 P r o c e d u r e so lve() b e g i n
2 MAC(0,P);
3 e n d

4 P r o c e d u r e MAC(/,r>) b e g i n
5 enforceACO ；

6 i f 3D{xi) G D, D{xi) 二 0 t h e n
7 r e t u r n false;
8 Xi ^ chooseUnassignedVarQ ；

9 w h i l e D{xi) ^ 0 do
10 V f - chooseVal(D(x i))；

11 r ^ l U {xi ^ v}；

12 i f | " | = lA'l t h e n
13 r e t u r n I，；

14 else
15 sol = search(" ’ V)；

16 i f sol ^false t h e n r e t u r n sol ；

17 Dix,) — D{xi) \ {v}；

18 r e t u r n false;
19 end

Figure 2.2 gives the search tree for the 4-queens problem. Here we search

for all the solutions for this problem. The values removed by enforcing AC

is marked by shaded grid. Note that in the leftmost search node where 1 is

assigned to x i , the search tree beneath i t disappears comparing to Figure 2.1,

thanks to the earlier detection of failure.

Chapter 2 Background 17

1 2 3 4
x l I I I I
x2 : 二 二 二
x3 二二二 =
x4| I

x l 立 x l H ^ x l | Xl I I kV
l ^ V x2 x 2 = = = = x2
L ^ i i i ; ^ X3 x3 X3

j x4— 、 x4 ！ x 4

1 2 3 4 1 2 3 4
xl kV " T n xl| I

x2 5•圭立 x2
x3 = = = = x3 S ^ l l Z
x4 l l i l x4 b I ？ f c

1 2 3 4 1 2 3 4
xi[Xil I ^ T "
x2 X2 互謹
x3 x3

1 2 3 4 1 2 3 4
xl| xll I ^ T "

x2 立 X2 互

U S E x3 2••查

x41 I I x41 fl l Akc I V

Figure 2.2: The M A C search tree for the 4-queens problem

Chapter 2 Background 25

2.2 Weighted Constraint Satisfaction Problems

In real-life there are optimization problems and over-constrained problems.

For example, we may want to maximize our profit, or min imum the consumed

resources. Weighted constraint satisfaction (WCSP) [48] is one of the soft

constraint frameworks to handle optimization problems and over-constrained

problems. Instead of being a set of allowed tuples, a constraint in WCSP is

a cost function. And the total cost is the sum of costs returned by all the

constraints. The task is to find a tuple to minimize the overall cost.

A weighted CSP (WCSP) [48] is a tuple {？V, C , T) . A ' i s a set of variables

, X 2 , . . . , Xn}. Each variable has its finite domain DixA G of values that

can be assigned to i t . Assigning a value to a variable xi is denoted by Xi ^ v.

A tuple I = {vi,.. is used to represent an assignment to a set of variables

{xi ^ Vi,... ^ Vn'}. We denote / [x j as the value assigned to 工“ and l[S'

as the tuple formed from the assignment on variables in the set S. We use

the notat ion C{S) to denote the set of all tuples corresponding to all possible

assignments on 5 = . . . , i.e. C{S) = x . . . x C

is a set of soft constraints. Each constraint Cs e C over a set of variable

5 C X is a cost function which maps l[S] to a value in the valuation structure

= ([0,…’ T] , © , 幻 . T h e scope of a constraint Cs is S and its arity is

The valuation structure contains a set of integers [0 , . . . , T] w i th standard

integer ordering < . Addi t ion 0 is defined by a 0 6 = min(丁，a + b). The

subtraction e in ^ (T) is defined as

, I a — 6, if a < T
aeb= <

T, i f a = T
V

s is the scope of Cs. The cost of a tuple I in a WCSP corresponding to an

assignment on X is defined as:

cost{l) = 0 C5(/[5'])
CsGC

Chapter 2 Background 9

The goal is to find an assignment on A' w i th the minimum cost among all

possible assignments. Such an assignment is a solution of the WCSP.

Wi thout loss of generality, we assume there always exists a constraint C0

over an empty set of variable, and for every variables Xi in A', a unary constraint

Ci over Xi. The constraint C0 provides a lower bound of the min imum cost.

We also use Q j to denote a binary constraint w i th scope { x i . x j } . In the rest

of this thesis we refer to soft constraints as constraints.

E x a m p l e 2 . 4 . Figure 2.3 shows an example of WCSP. There are two variable

o/nA X2 in A'. The domain of Xi is D(xi) = {a, b} and the domain of X2 is

DO2) = {a,b, c}. There are three constraints Ci, C2 and Cu given as tables.

The upper hound T is set to 4.

工 1 Xi X2 C12
上 _ _ ~ ~ g ^

" g ~ ~ h r ~
X2 C2 a c ""o~

_a b a 2
~b Q~ ~ b ~ ~ b r ~

c I 2 I b c "~Q~

Figure 2.3: A WCSP with three constraints

Figure 2.4 gives a graphical representation of the above example. A rectan-

gle represents a variable domain. Circles represent values in domains. Num-

bers in the circles stand for unary costs. An edge between two circles represents

a cost if the two values are taken simultaneously. A label on the edge gives the

cost If the cost is 1， the label is omit.

The solution of this WCSP is (b, b) (or equivalently {xi b}). It

has the minimum cost 1. There is only one solution since other tuples incur a

cost greater or equal to 2.

Note that a CSP is a special WCSP wi th T = 1. Every hard constraint

can be translate as a soft constraint by assigning a cost T to disallowed tuples.

Chapter 2 Background 20

r n 風

xl x2

Figure 24： Graphical representation of a WCSP

In the rest of the thesis we may use the graphical representation shown in

the above example to depict WCSPs wi th only unary and binary constraints.

2.2.1 Branch and Bound Search

Branch and hound (BnB) search [26] is a special k ind of backtracking tree

search. I t is a general method to obtain an optimal solution for an optimization

problem. Suppose we are solving a minimization problem. The algorithm

traverse the whole search space as backtracking tree search. Dur ing search, a

currently best solution is kept. We use i t as an upper bound of the opt imal

solution. In i t ia l ly i t is set to T , and is updated when a better solution is found.

On each search node, the algorithm t ry its best to evaluate a lower bound of

the cost in the current branch. I f the lower bound is no less than the upper

bound, i t is a signal that the optimal solution cannot appears in the search tree

beneath this search node. In this case the algorithm immediately backtracks.

Unlike solving decision problems, where the algorithm immediately stops when

i t encounters the first solution (if only one solution is of interest), branch and

bound search has to exhaust the whole search space to prove the currently

best solution is indeed the optimal solution.

A lgor i thm 2.6 shows the pseudo-code of solving a WCSP wi th branch and

bound search. Dur ing search, the upper bound 丁 is always set to the cost of

the currently best solution. To have an estimation of the lower bound, the

Chapter 2 Background 21

algorithm first transform the WCSP in a desired form by enforcing local con-

sistency. (WCSP local consistencies wi l l be discussed in the next subsection.)

Then C^ is then used as a lower bound of the optimum. The algorithm back-

tracks whenever a better solution is found (Line 2) or the lower bound is no

less than the upper bound (Line 4).

A l g o r i t h m 2.6: Solving WCSP using branch and bound “
1 P r o c e d u r e BraiichAndBound(A', V、C, T , I) beg in
2 if A： = 0 t h e n r e t u r n C0；

3 enforceLoca lCons is tencyO;
4 i f C0 > T t h e n r e t u r n 丁；

5 Xi ^ chooseVar(A')；

6 fo r each v e D{xi) do
7 I' ^ l U { x i ^ v }]
8 [C0 ④ CiCu);
9 T 卜 BrancMndBound(A', V, C, 丁，1')；

10 r e t u r n T ;
11 end

Figure 2.5 shows a search tree for solving the WCSP in Example 2.4 using

branch and bound search.

2.2.2 Local Consistencies in WCSP

As in solving CSPs, we can incorporate local consistency techniques w i th the

basic branch and bound search. Local consistencies in WCSP are capable of

removing infeasible values in the domains, as well as deducing a lower bound

of the min imum cost. The lower bound is then used in the branch and bound

search to decide whether i t can immediately backtrack from the current branch.

As for CSPs, consistency notions for WCSPs are achieved via equivalence

preserving transformation.

D e f i n i t i o n 2.5. [18] Given two WCSPs = (A', Ci, T) and P2 =

is equivalent to P2 if for all feasible tuples I G in

both problems, costp^{l) = costp^{l).

Chapter 2 Background 22

u

J O h
II “

<N

/ 悬 I o l ^
N /

IN /

/ ^ “ f i： / PS 〜

J © 0 Q h / ^ ?! ^ — — I

^ A 。o] ^
« jO \ I K .

/ \ J Q h
么I
K / II / Q
/ ^ I O l ^
I n n

A U I

fs:[y
\广
严“卜 L Q卜
I f - ^ I ,

I P I ^ \ 。 〇 I .

“ \ ‘
(N \ h

(N
II

Q u r o I .
10

Figure 2.5: A branch and bound search tree to solve a WCSP

Chapter 2 Background 23

Note that given a WCSP, a tuple I is feasible iff cost{l) < T. Typical

equivalence preserving transformation in WCSP are projections and exten-

sions. We adopt the definition from Cooper [16] and Larrosa and Schiex [27 .

Given S2 C Si and a tuple I on S2. An r-projection of a cost a from C而 to

Cs2、l、, where I is a tuple on S2 with l^sl = r , is a transformation of {Cs^.Cs^)

to such that for all assignments /:

c丨s (f[氏j) = I ^sAnSi]) e a, if i[S2] = I

、C«5i(Z[*5̂ i])， otherwise

二 I 狗(z*[狗])e a, if / [sy = I

otherwise
\

An r-extension of a cost a from C而(/) to Cs” where I is a tuple on S2 wi th

6̂ 21 = r , and a < (7狗⑷，is a transformation of ((7而’C为)to such

that for all assignments /:

二 I C^i (打別）® a, if = I
〜（"別）， otherwise

、

= I "勤(打別)e … i f 肪2] = I
、 o t h e r w i s e

In addition, if S2 = 0, the projections/extensions are always to / f rom the

miliary constraint C^. We note that extension is the inverse of projection

if no intermediate result is T.

We use 5 to denote a projection to a constraint Cs^ or an extension from

a constraint Cs^- We also use A to denote a series of projections/extensions.

The constraint obtained by applying ^ (A) to a constraint Cs, is denoted by

respectively). For convenience, when Si n = 0 , we define

In the following we briefly discuss four consistency notions in WCSPs,

namely NC* [28], (strong) 0 I C [51，30], (G)AC* [28, 30], FD(G)AC* [27, 30],

ED(G)AC* [19, 31], and A:-consistency [16].

Chapter 2 Background 24

N o d e Cons i s tency S ta r

D e f i n i t i o n 2 . 6 . [28] Given a WCSP P =

• A value v G D{xi) where Xi e X is node consistent star (NC*) if C^ 0

Ci{v) < T .

• ^ variable Xi e X is NC* if all values in D{xi) is NC* and there exists

a value v G D{xi) such that Ci(v) = 0. Such a value is called a u n a r y

support of Xi.

• P is NC* if all its variables are NC*.

Note that NC* collapses to NC when a WCSP represents a CSP, i.e. T = 1.

E x a m p l e 2 . 5 . Consider the example given in Figure 2.6 and suppose 丁二 4.

The WCSP in Figure 2.6(a) is not NC*，since the unary cost of both values in

D{xi) is larger than 0. At most 1 cost can be projected to C^ (Figure 2.6(h)).

/力 is still not NC* because C2⑷① = 3 © 1 = T . We immediately know

c cannot appears in any solutions. By removing the value c from D{x2)

the WCSP IS NC* (Figure 2.6(c)).

C0 = O C0 = 1 C0 = 1

门 a 门 司 a 岡 a

夕 。 b 如 b � O b

xl x2 xl x2 xl x2

� (b) (c)

Figure 2.6: Node consistency star

Chapter 2 Background 25

0 - Inve rse Cons is tency

D e f i n i t i o n 2 .7 . [51, 30] Given a WCSP P = (A' , V、C,T).

• A constraint Cs e C is 0 - inverse consistent (0 I C) if there exists a tuple

I G C{S) such that Cs{l) = 0.

• Cs is strong 0-inverse consistent (strong 0 I C) if Cs is 0IC, and for all

^ ^ D{xi) where Xi G S, there exists a tuple I G S such that / [x j = v

< T . Such a tuple is called the 0 - s i i p p o r t of the

value V e D{xi) with respect to Cs.

• P is 0IC (strong 0IC) if all constraints in C are 0IC (strong 0IC,

respectively).

E x a m p l e 2 .6 . Consider the example given in Figure 2.1 and suppose T = 4.

The binary constraint Cu in the WCSP shown in Figure 2.7(a) is not 0IC.

By projecting cost 1 from Cu to C^, 0IC is achieved (Figure 2.7(h)). It is not

*07ig 0IC, since for value a in D{x2), C^®C2{a) = 1 0 3 = T . By removing

a from D{x2), it is strong 0IC (Figure 2.7(c)).

C0=O C0=1 C0=1

a a a 〇 © a a ^ F

2 Q - ^ O - " O b b O 〇 b

XI x2 xl x2 XI x2

� (b) (c)

Figure 2.T. 0-inverse consistency and strong 0-inverse consistency

(Genera l i zed) A r c Cons is tency S ta r

D e f i n i t i o n 2 .8 . [28] Given a WCSP P = 丁).

Chapter 2 Background 26

• A value v G D{xi) where Xi e M is arc cons is tent s tar (A C *) with respect

to a binary constraint Qj over variables Xi and Xj if there exists a value

w G D { x j) such that Cij{a, h) = 0. Such a value is called a s imp le s u p p o r t

of a e D{xi).

• ^ variable Xi e A： is AC* if it is NC* and each value in D{xi) is AC^

with respect to every binary constraint over Xi.

• P is AC* if all its variables are AC*.

D e f i n i t i o n 2 . 9 . [18] Given a WCSP P = Assume x, G AT,

S C X and Cs e C.

• A s imp le s u p p o r t of a value v e D{xi) with respect to a soft constraint

Cs is a tuple I G C{S) with l [x i] = v satisfying Cs(l) = 0.

• ^ variable Xi e M is generalized arc consistent star (GAC*) with respect

to Cs if it is NC*，and each value v G D{xi) has a simple support with

respect to Cs-

• P 狄 GAC* if it is NC* and each variable is GAC* with respect to all

constraints in C.

E x a m p l e 2 . 7 . Consider the example given in Figure 2.8. The WCSP in

Fz卵re 2.8(a) is not (G)AC*’ since value a in D{x2) has no support By

projecting a cost 1 to ^2(6), both values in D{xi) are supports of value b in

(Figure 2.8(h)). Still, tt is not (G)AC* since now X2 lost its unary

support. The unary cost of X2 can be projection to C^ and (G)AC* is achieved

(Figure 2.8(c)).

F u l l D i r e c t i o n a l (Genera l i zed) A r c Cons is tency S ta r

D e f i n i t i o n 2 . 1 0 . [27] Given a WCSP P = 丁).

Chapter 2 Background 27

C0 = O C0 = O C0 = 1

~ I ~ _ J ^ a
a ① / a © /

/ © b / 〇 b

M H g b W

xl X2 xl x2 xl x2

� （b) (c)

Figure 2.8: Arc consistency star

• The value b G D { x j) is a f u l l s u p p o r t of a value a G D{xi) if Ci八a, b)①

Cj{b) = 0.

• The 耽 a e D{xi) is d i r ec t i ona l arc consis tent with respect to a binary

constraint Qj where j > i if there exists a full support in D { x j) .

• ^ variable Xi is directional arc consistent star (DAC*) if it is NC* and

eac/i value in its domain is directional arc consistent with respect to all

binary constraints Qj where j > i.

• P 仏 ful ly directional arc consistent (FDAC*) if all variables are AC*

and DAC*.

D e f i n i t i o n 2 . 1 1 . [30, 32] Given a WCSP P = P , C, T) . Assume Xi e

S C A： and Cs e C.

• ^ f u l l s u p p o r t of a value v e D{xi) with respect to a constraint Cs and

a set of variables T C S \ { x j is a tuple I G C{S) with l [x i] = v such

that Cs{l) © = 0.

•工 i “ directional generalized arc consistent star (DGAC*) with respect to

Cs if it IS NC* and each value in D{xi) has a full support with respect

to Cs and { x j \ j > i j o S .

Chapter 2 Background 28

• P is ful ly directional generalized arc consistent star (FDGAC*) if it is

GAC* and each variable is DGAC* with respect to all constraints in C.

E x a m p l e 2 . 8 . Consider the example given in Figure 2.9. Value a in D{xi)

has a full support, which is value b in D{x2) since C i 2 (a，6) 0 ^ 2 (6) = 0. Value

b in D{xi) has no support. To transform the WCSP into a FD(G)AC* one,

胱 can extend a cost 1 from C2(c) to the binary constraint (Figure 2.9(b) then

projection a cost 1 from the binary constraint to Ci{h) (Figure 2.9(c)).

C0 = 1 C0 = 1 C0 = 1

^B^f^
Ao^ \ 〇b

， b 够 2 。 V
x l X 2 X I x 2 X I X 2

� （b) (c)

Figure 2.9: Full directional arc consistency star

E x i s t e n t i a l D i r e c t i o n a l (Genera l i zed) A r c Cons is tency

D e f i n i t i o n 2 . 1 2 . [19] Given a WCSP P = 丁）.

• A variable xi is existential arc consistent star (EAC*) if there exists at

I肌St one value v € D{xi) such that Ci{v) = 0 and it has a full support

—th respect to every binary constraint C”. Such a value v is called the

ful ly supported value of Xi.

• P is EAC* if every variables are NC* and EAC*.

• P is existential directional arc consistent star (EDAC*) if it is FDAC*

and EAC*.

Chapter 2 Background 29

Lee and Leung [31，32] showed that naively generalizing EDAC* to high ar-

i ty constraints is not always enforceable, i.e. the algorithm may not terminate.

The gave a weak form of EDGAC* base on ful ly support set.

D e f i n i t i o n 2.13. The ful ly supported set U{Cs,x,) for a variable x, and a

constraint Cg with Xi e S is a set of variables such that:

• U{Cs,Xi)CS;

• U{Cs,Xi) n U{Ck,Xi) = 0 for two different constraints Csj.Cs^ e C,

and;

• = (Uc妖CAa：础約 \ {xi}.

D e f i n i t i o n 2 . 1 4 . [30, 32] Given a WCSP P = and any fully

supported set x ,) for each variable x^ E ^ and each constraint C^ g C.

• A weak ful ly supported value v e D{xi) of a variable Xi e M is the

― 耽 硫 C办)=瓶d full supports with respect to all constraints

^S e C with Xi e S and U{Cs,Xi), i.e. for every non-unary con-

*aint Cs e C, there exists a tuple I G C{S) with l [x i] = v such that

Cs{l) ®
®xj£U{Cs,Xi) Cj•(収j]) = 0.

• ^ vo^riable Xi is weak existential generalized arc consistent star (weak

E G A C *) if it IS NC* and there exists at least one weak fully supported

value in its domain D{xi).

• P 仏 weak existential directional generalized arc consistent star (weak

E D G A C *) if it is FDGAC* and each varible is EG AC*.

E x a m p l e 2 . 9 . Consider the example given in Figure 2.10. The WCSP in

Figure 2.10(a) has three variables Xi,X2, X3 and two binary constraints C13, C23.

/力 IS not ED (GJ AC. ⑷ 二 1 〉 0 . Value b in D{xs) has no full support with

respect to constraint C13. Value c in D^x^) has no full support with respect

Chapter 2 Background 37

to constraint C23. To transform the WCSP into a ED(G)AC* one, we first

extend from Ci{h) to C13 and extend from C2(6) to C23 (Figure 2.10(h)). Then,

by projecting from C13 to Cs{b) and from C23 to C3(c), both value b and c in

^ f e) has at least one full support with respect to every binary constraint

(Figure 2.10(c)). Finally, by a projection of cost 1 from C3 to C^, ED AC* is

achieved.

C 0 = O C 0 = O

x2

⑷ (b)
C 0 = O C 0 = 1

x2

(c) (d)

Figure 2.10: Existential directional arc consistency star

A;-Consistency The following definition is adopted from Cooper's definition

of /^-consistency for valued constraint satisfaction problem [16' •

D e f i n i t i o n 2 . 1 5 . Given a WCSP P = Assume S C X and

Cs ^ C. k is a positive integer. S' is a proper subset of S where = k.

Chapter 2 Background 31

• S' IS k-consistent with respect to Cs if for all tuples I' e C{S'), there is

tuple I G C{S) with = I' such that Cs{l) = 0.

• P IS k-consistent if for all subset S' C X with = k is k-consistent

—th respect to all constraints in C.

E x a m p l e 2 . 1 0 . Consider the example given in Figure 2.11. Cs is a ternary

constraint with the scope S = {x,,x2,xs} and is a binary constraint over

— In Figure 2.11(a), {x^ ^ a,X2 ^ b} is not 2-consistent with

"aspect to Cs. By projecting cost 1 from Cs to Cu{a,h), it is 2-consistent

(Figure 2.11(b)).

Xs Cs I I 3；3 I Cs
a a a Q] a a 0~

a a b 0 a a b 0
a b a 2 a b a 1
a b b 1 丨 3；中2 丨 a b b 0 | | X2 丨 Cu
b a a 1 a a 0 b a a 1
b a b 0 a b Q b a b 0 a h 1
b h a 0 h a 0 b b a 0 b a 0

M H M 1 |卜 I M 0 I I 6 I 6 I 6 I 1 II 6 I 6 I 0
⑷ （b)

Figure 2.11: k-consistency

2.3 Global Constraints

In general, in CSPs, every constraint can be represented as a table. Each

entry of the table specifies whether a tuple is accepted by the corresponding

constraint. Such an representation loses the semantics of the constraint. Also,

the size of the table is usually exponential in the number of its variables. Thus,

they are useful only for constraints involving a few variables or small domains.

In contrast to table constraints, a global constraint is a constraint specified

by its semantics, and i t involves a non-fixed number of variables. For example,

Chapter 2 Background 32

instead of l ist ing out all the allowed tuples, we can post an a l l D i f f erent(xi，X2, X3)

constraint, requiring x i , and X3 to take distinct values. Global constraints

play an important role in the CSP framework. Many real-life problems can

be easily modeled by global constraints. More over, in solving CSPs, global

constraints are more efficient than table constraints due to its compact repre-

sentation size and efficient consistency enforcement algorithms.

Another benefit of using global constraints is that they usually capture the

semantics of a conjunction of smaller constraints. Thus, enforcing consistencies

on global constraints would usually result in pruning more infeasible values.

E x a m p l e 2 . 1 1 . Suppose in a CSP we have three variables Xi,X2,Xs. D { x i) =

^ f e) = {a, 6 } . D{x3) = {a, 6, c } . There are three constraints xi

^ 工3 and X2 ^ xs. It is AC since every variable is AC with respect to every

involved constraints. No values are pruned in this case. If the constraints

化 replaced by one a l l D i f f e r e n t (a ; i , X 3) constraint, the CSP is not AC.

Value a,b G D{xs) has no support with respect to the a l l D i f f e r e n t constraint.

Thus, by enforcing AC, these two values are removed from

Enforcing GAC on global constraint is NP-Hard in general [12]. For spe-

cific global constraints, polynomial t ime algorithms to enforce AC and other

consistencies have been discussed in the literature [6 •

The following constraints wi l l be discuss later in this thesis. A l l of the

constraints below are hard constraints.

D e f i n i t i o n 2 . 1 6 . ^2sa t constraint) Let X be a set of boolean variable and F

a set of binary clauses. The 2 s a t (X , F) constraint requires that all the clauses

in F are satisfied.

E x a m p l e 2 . 1 2 . Suppose X = {xi,x2,x2,} is a set of boolean variables. F =

V V X3, Xi V X3}. The tuple (true, true, false) satisfies the constraint

since all the clauses in F are satisfied.

Chapter 2 Background 33

D e f i n i t i o n 2.17.广among constraint) [7] Let X be a set of variables, V a

set of values, lb and ub are two integers satisfying lb < ub. The constraint

ainong(X, Ih, uh, V) requires the number of variables taking a value in V must

be no less than lb and no more than ub.

E x a m p l e 2 . 1 3 . Suppose X = {x^.x^.x^}, D{x^) = D f e) = D f e) =

{a，6’c}，and V = { 6 , c } . The tuple (c ,a , b) satisfies the constraint

since the number of variables taking a value in V is 2.

D e f i n i t i o n 2.18.〈 regular constraint) [40] Let M = (Q , I] , T ’ ^ , F) denote

a deterministic finite automaton where Q is a finite set of states, E is an

al_et，T is a set of transitions of the form fe, c) h^ qj with 礼 qj € Q and

c G S . qo IS the initial state and F Q Q is the set of final states. X =

• • •' ^n] is a sequence of variables with domain D{xi) C E . The constraint

r e g u l a r (X , M) requires the sequence form by X must belongs to the regular

language recognized by M.

E x a m p l e 2 . 1 4 . Let M be the deterministic finite state automaton shown in

F—代 2.12. X = where D{xi) = { a , b}. Both tuples (a, a, b) and

(6，a, a) satisfy the constraint regu.laLr{X, M) since the corresponding sequences

are recognizable by M.

a
a

\ a ©
Figure 2.12: A finite state automaton for a r e g u l a r constraint

D e f i n i t i o n 2 . 1 9 . (grammar constraint) [22，42] Let G 二（S, N, P , T) denote a

context-free grammar where E is an alphabet, N is a finite set of non-terminals,

P is a set of productions, and T e N is the start non-terminal We assume G

Chapter 2 Background 34

is in Chomsky Normal Form, i.e. productions m P are in the form of either

(A a) or {A ^ BC, where A,B,C eN andae E . X = is a

sequence of variables with domain D{xi) C E. The constraint grammar(X, G)

requires that the sequence formed by X belongs to the context-free grammar G.

E x a m p l e 2 . 1 5 . Let G 二 (E , TV, P, S) be a context-free grammar in Chomsky

Normal Form where E = {a , h}, N = {S, A, B} and P is the set

BB, S ^ AB}

X = Both tuples (a, a, 6) and (a, 6, b) satisfies the constraint

g r a m m a r (X , G) since the corresponding sequences are in the grammar G.

Hard global constraints can be reformulated to soft global constraints, by

associating violat ion measures. This technique is called constraint softening

45:.

D e f i n i t i o n 2.20. (Constraint softening) Let C^ be a hard constraint and fx

is a v i o l a t i o n measure of C、which maps a tuple I G C{S) to a cost. Then

s o f t _ C ^ is defined as a soft constraint that for all tuples I G C⑶:

s o f t _ C - (/) = <[0， I saUsfies ^

/ / (/) , otherwise

\

Note that a soft global constraint can be associated w i th more than one

violation measures. In the context where the violation measure f i of the soft

constraint is not important, we denote the constraint simply by Cs. Common

violation measures including the following.
D e f i n i t i o n 2 . 2 1 . Let C么 be a hard constraint and I is a tuple in C{S).

• [41] The variable-based violation measure maps I to the minimum num-

ber of variable assignments required to change in I to satisfy C^.

Chapter 2 Background 42

• The edit-based violation measure maps I to the minimum number of

insertions, deletions, and substitutions required to change I into a tuple

satisfies Cg.

• UljAssume C^ can he decomposed into a set of constraints Cdec- The

decomposition-based violation measure of C^ maps I to the number of

constraints in Cdec violates by I.

For convenience we also define the constant violation measure as a function

maps a tuple to a constant cost.

E x a m p l e 2.16. Let C、be the hard constraint among(6', 1,2, {a, 6}).

soft version of C^ with variable-based violation measure is

so f t _among--(6 ' , 2 , 3,{a}). The soft constraint on the tuple (6, a, c) re-

t ^ s a cost 1 since either the first or the last component of the tuple has to

be changed to a in order to satisfy C、.

Throughout this thesis we always assume the representation size of a global

constraint is polynomial in the number of variables restricted by the constraint

and the maximum size of the variable domains.

Chapter 3

Tractable Projection-Safety

We say a soft constraint is tractable if the computation of its minimum cost can

be done in time polynomial in the representation size of the global constraint

(i.e. in the number of variables and maximum domain size). Tractabil ity of

a soft constraint is important. As we have seen many examples of WCSP

consistencies in the last chapter, those consistencies cannot be enforced in

polynomial time unless the constraints in the system are tractable. However,

consistency algorithms also modify constraints by projections and extensions.

Even if a constraint is tractable, i t is not guaranteed that the resultant con-

straint obtained after projections and extensions is tractable. In this chapter

we address this issue, namely tractable projection-safety. Our discussion is di-

vided into three cases of projections and extensions for constraints of different

arities. The result shows that projections and extensions indeed hinders the

tractabil i ty of a constraint in some cases.

In the second part of this chapter we wil l discuss a class of constraints,

namely polynomially decomposable constraints. Our technique sequentially de-

composes a constraint into smaller and smaller constraints. The number of

constraints appear in the sequence is bounded, and each constraint is tractable.

We can compute the minimum cost of the original constraint from the mini-

mum costs of these smaller constraints, and maintain that the decomposition

stil l holds after projections and extensions. We show that a polynomially

36

Chapter 3 Tractable Projection-Safety 37

decomposable constraint is tractable projection-safe. Given a polynomially

decomposable constraint. We show that we can apply a dynamic program-

ming algorithm to compute its minimum cost, and the algorithm sti l l works

after projections and extensions.

3.1 Tractable Projection-Safety: Definition and
Analysis

In the following, we denote the minimum cost of a constraint C5, min{(7乂/)|/ G

by mm{Cs). Note that enforcement algorithms of WCSP consistencies

usually query a part of a constraint. For example (G)AC* enforcement al-

gori thm queries the minimum cost when a variable is fixed to a value, say

min{C5(/) | / G C{S) A / [xJ — v} for a variable Xi e S and a value v € D{xi).

As long as there is an efficient algorithm to compute m i n ((7 A this value can

be computed by simply assuming D{xi) = {v} and then computing min(C5).

Following Leung [32], the general notion of projection-safety is defined as

follows. Let T be an arbitrary property and r a non-negative integer. A soft

constraint Cs is T r-projection-safe if:

參 Cs satisfies the property T , and;

• ^ r { C s) satisfies the property T , for all series of r-projections/r-extensions

A soft constraint Cs is T r-projection-safe means that the constraint pre-

serves the property T even after projections and extensions. The property we

concern about is tractabil i ty. A soft constraint Cs is tractable i f there exists

an algorithm to compute its minimum cost mm{Cs), and runs in polynomial

time.

A soft constraint Cs is tractable r-projection-safe i f

Chapter 3 Tractable Projection-Safety 38

• Cs is tractable, and;

• A (C y is tractable, where A^ is a series of r-projections/r-extensions A广

Remind that a table constraint is a constraint represented as a table, where

each entry of the table corresponding to a possible assignment, specifying its

cost. The following theorem shows that a table constraint is always tractable.

T h e o r e m 3 . 1 . Table constraints are tractable and tractable r-projection-safe

for an fixed r.

Proof. A table constraint is tractable because we can scan the min imum cost

of every possible assignments on the table and return the min imum one. This

take t ime linear in the table size.

The constraint obtained from applying a series of r-projections and r-

extensions A^ can be represented as a table constraint. Then the same al-

gor i thm to compute min imum cost applies. •

We mainly focus on soft global constraints. In the following we divide the

discussion of tractable r-projection-safety into three cases of different r: (a)

r = 0, (b) r > 2 and (c) r = 1.

Case 1: r = 0. In this case, projections and extensions are only to / f rom C0.

T h e o r e m 3 . 2 . A tractable constraint Cg is tractable 0-projection-safe.

P彻f. Let Cs A。a series of O-projections/O-extensions f rom/ to Cs. Note that

i f Zmin is the min imum cost tuple in C5, i.e. m i n (C y = Cs{lmin). U n is also a

minimum cost tuple in Ao{Cs). We can first compute m i n (C y then evaluate

min(Ao(as)) = A o (C 暴 n). •

O-projections/O-extensions are employed in 0 I C [51] and strong 0 I C [30

enforcements. Consequently, as long as all the constraints in the system are

tractable, enforcement algorithms for (strong) 0 I C runs in polynomial time.

Chapter 3 Tractable Projection-Safety 39

Although (strong) 0 I C are relatively weaks form of WCSP consistency, they

can be efficiently applied to a wide range of soft constraints.

Case 2: r > 2. In this case, projections and extensions are to / f rom r -ar i ty

constraints. The key observation here is that, by using projections/extensions

of arity r , we can encode any relations (constraints) between variables into the

newly obtained constraint.

T h e o r e m 3 . 3 . A tractable soft global constraint Cs is not tractable r-projecUon-

safe for 2 < r < \S .

iVoo/. We use a reduction from CSP. Given a CSP P = (X , V , C^) where every

constraint in C" are r-ar i ty. We construct Cs = C；,- Let k be the maximum

cost of an assignment in C5, i.e. k = max(Cs). We construct a series of r-

extension A , as follows. In i t ia l ly A , is empty. For each hard constraint C^,

and any tuple I unsatisfying C^, we append an extension of cost k+lioCx. V

is satisfiable i f and only i f min(A,(C；^)) < k, because any tuple I unsatisfying

a constraint C � e C must incur a cost of at least A: + 1 in C^. •

Theorem 3.3 shows that in general, even if a constraint Cg is tractable,

Cs is not tractable after projections to or extensions from r -ar i ty constraints.

Projections and extensions of arity larger than 1 are required for enforcing

consistencies in ternary constraints [47] and A:-consistency [16]. Thus, these

consistency techniques are hard to apply efficiently to global constraints.

Case 3: r = 1. A soft constraint Cs is flow-based [49] if i t can be represented

by a flow network G such that the minimum cost flow on G corresponds to the

min imum cost of Cs- A soft constraint Cs is flow-based projection-safe if：

• (7s is flow-based, and;

• 从 C s) is flow-based for all series of 1-projections/ 1-extensions A i .

Chapter 3 Tractable Projection-Safety 40

Theorem 3.4 gives a sufficient condition for flow-based projection-safety,

which is a special case of 1-projection safety. By using this theorem, i t

is shown that soft—allDifferent^ec, soft一allDifferentwar, so f t .gcc^"^

soft-gcc卯sof t -same抓sof t—regu lar抓『and soft_regular^^^^ are all flow-

based projection-safe [30, 32 .

T h e o r e m 3 . 4 . [30, 32] Given a soft global constraint Cg such that:

• Cs is flow-based, with the corresponding network G;

• there exists a function $ mapping each maximum flow f in G to each

tuple 少 (/) G C, and;

• there exists an injection from an assignment {xi v} to a subset of

edges E of the edge set of G, such that whenever l [x i] = v for some

I，Eee^ /e = 1 in the flow corresponding to I; whenever l [x j \ • v，

YleeE /e = 0.

Cs is flow-based projection-safe.

T h e o r e m 3 . 5 . A flow-based projection-safe constraint Cs is tractable 1 -

projection-safe.

Proo/. Let A i a series of 1-projections/l-extensions. By definition A i (C y is

flow-based, and by finding a minimum cost network flow on the corresponding

flow network G we can compute m i n (A i (C y) in polynomial time. •

We also observe that tractable constraints are not necessarily tractable 1-

projection-safe. The soft;_2sat⑶“对 constraint is an example. Given a set of

boolean variable X, a set of binary clauses F and a constant c G [0 . . . A;]. The

soft_2sat⑶“对(X，F,c) constraint is a soft constraint defined as:

s o f t _ 2 s a t - - (X , F, cm = | 迁《satisfies F
c, if I does not satisfy F

\

Chapter 3 Tractable Projection-Safety 41

Computing min(sof t_2sa1;_对(足 F,c)) is equivalent to determining the 2-

boolean satisfiability, which is tractable [25]. Thus soft一2sat⑶似力 is tractable.

However, soft_2sa1:C贈力 is not tractable 1-projection-safe as explained below.

Let F be a set of binary clauses, X the set of boolean variables of F ,

and k a non-negative integer. The problem W2SAT is to determine whether

these exists a assignment to X satisfying F, w i th at most k variables set to

trwe. W2SAT is NP-Hard [20]. We use a reduction from W2SAT to com-

put ing the min imum cost of a constraint obtained from applying a series of

1-projections/l-extensions to so f t _2sa t隱气

T h e o r e m 3 .6 . The soft_2sat⑶似亡 constraint is not tractable 1-projection-

safe^ unless P = NP.

iVoo/. Given a set of binary clauses F , a set of boolean variables X , and a

non-negative integer k. We construct an constraint Cg and

a series of 1-projections/l-extensions A i as follows. Cg is the constraint

s o f t _ 2 s a t _ ^ (X， F , k + 1). A i is in i t ia l ly empty. For each variable Xi e X,

we add a 1-projection of cost 1 from Ci(true) to Cs, where Q is a unary

constraint over Xi. Every assignment to X satisfying F incurs a cost of k' in

where k' is the number of variables assigned to true in the assignment.

Thus，by determining whether m i n (A i (C y) < k we can solve the W2SAT

problem. •

According to the above discussion, tractable constraints are tractable 1-

projection-safe only under special conditions. 1-projections/l-extensions are

the backbone of the consistency algorithms of (G)AC* [18, 30], FD(G)AC*[27,

30] and (weak) ED(G)AC* [19, 31]. Thus, these consistency techniques can be

efficiently apply to 1-projection-safe global constraints.

To summarize, given a tractable soft constraint Cs, Cs must be tractable

0-projection-safe, Cs cannot be tractable r-projection-safe w i th r > 2, and Cs

• y be tractable 1-projection-safe. To simplify notations, we write tractable

Chapter 3 Tractable Projection-Safety 42

projection-safe to mean tractable 1-projection-safe in the rest of the paper.

Lee and Leung [30] gives only one sufficient condition for tractable projection-

safety based on flow-based global constraints. In the next section, we wi l l show

another sufficient condition based on another type of tractable constraints,

namely polynomially decomposable constraints.

3.2 Polynomially Decomposable Soft Constraints

In this section we introduce a new class of tractable projection-safe constraints,

namely polynomially decomposable constraints, which are derived from ab-

stracting dynamic programming algorithms that compute the min imum cost of

a constraint。These algorithms often imply decompositions of the constraints.

Examples of polynomially decomposable constraints are given in Chapter 4.

For convenience, we write projections/extensions to mean 1-project ions/ l -

extensions in this section.

A constraint Cs safely decomposes into a sequence of constraints

Csi,Cs2^ - • • ,Csm\ where Si C S and / is a polynomial t ime computable

function, such that:

• Cs{ l) = …，爪⑷S m])) holds for all assignments /, and;

• for any constraint C'g and sequence of constraints . . . , C'sJ, where

• 二 / (Q i (収 1]),…，C'sJ l [Sm])) , i t holds that:

(a) min(C^) = / (m i n (C ^ J , • . . , and;

(b) for a variable x e S, a cost a and a complete assignment /*, we

have:

C ' s ^ n ® a = fiC'sSnSi])①"：^，的(a),…’ C ' s j n s ^]) e

c m e a = KC'sSm) e “ 仏 ⑷ ， C s j n S m]) e“工’；⑷）

Chapter 3 Tractable Projection-Safety 43

The function v is defined as:

, . j a, X G 5

0, otherwise

\

In another word, Cs can be represented as a combination of

• •.，Csm. In addition, condition (a) allows us to compute mm{Cs) from

• . . ’ m i n ((7 ‘) . Condition (b) suggests how projections and exten-

sions on Cs can be distributed to its components.

Let ^ be a projection of cost a from C办),or extension from Ci(v) where

Ci is a unary constraint over a variable Xi G S. We have the following result.

We only proof the part of extension, while the proof on projection is similar.

T h e o r e m 3 .7 . Let Cs he a constraint safely decomposes into ,... ’ Cs^ •

^(Cs) safely decomposes into [^(C^J,..., S{Csm).

I t is sufficient to prove 5 { C s m = f i ^ { C s , m S ,]) , . . . , S { C s J { l [S m]))

holds for all assignments /. In case l[xi] # 仏 6{Cs){l) = Cs(l) and S(CsJ(l)=

for all 1 < i <m and result follows. Suppose l[xi] = v.

5{Cs){l) � a

= f i C s M S i]) e 遍 , C s j i [S m]) e"^：^⑷）

•
Theorem 3.8 and Theorem 3.9 give special scenarios where a constraint can

be safely decomposed.

T h e o r e m 3 .8 . Given a constraint Cs and a sequence of constraints

Csy • • • CsJ, where for all 1 < i < m, Si <Z S, and for all j + k, Sj nSk = 0,

satisfying

Cs{l) = 0 CsMSi])
l<i<m

for all possible assignments I. Cs safely decomposes into Cs”..., Cs^-

Chapter 3 Tractable Projection-Safety 44

P 彻 f . Let /min be an assignment on S such that Cs{lnv\n) = min(C5), and

h an assignment on Si such that Cs i ik) = min(C&) for 1 < i < m. We

claim = Csjlu) i o i l <u <m. Otherwise, C5(/min[5' \ S^] U

U = C ^ s J W © ① 1 诞叫询 O s , ⑷ < (収 J) © ① 1 絕叫 i 办 C 氏⑷ = C s (L i n)

which leads to contradiction. So we have

0 CsM = 0 m i n (C y
l<i<m l<i<m

〇n the other hand, given a variable x G 5', a cost a, and a assignment I on S.

^ is in the scope of at most one constraint. Suppose the constraint is Cs”. We

have

Cs{l) = © a) © 0 C民⑷

l<i<m,i^v

For © i t is similar. •

T h e o r e m 3 . 9 . Given a constraint Cs and a sequence of constraints

Cs”..” CsJi, where for alll <i <m, Si = S, satisfying

Cs{l) = min CsAl)
l<i<m

for all possible assignments I. Cs safely decomposes into Cs”..” Cs^.

Proof. Let C{S) be the set of all possible assignments to variables in S. We

have

=min i< i<^{min /g£(5) Cs側

= m i n i 诞饥 {min(C民) }

On the other hand, given a variable x G 5, a cost a, and a assignment I on S.

^x.sAol) = a holds for all 1 < z < m. We have

Cs{l) ® a = min i< i<^{C5,(/) © a}

= m i n i < i < ^ { C 5 , (/) e a }

For © i t is similar. •

Chapter 3 Tractable Projection-Safety 45

T h e o r e m 3 . 1 0 . Given a constraint Cs satisfying

G ⑴ = 1 琪 n ^ i 0
— l<j<ni

for all possible assignments I G C{S), where m and Ui for 1 < i < m are

positive integers, Cs、，are constraints，and S = |Ji<j<n,茂，j for 1 < i < m.

Cs safely decomposes into Cs^^j^，. •., Cs^ ^^ •

P 彻 f . We prove the result by creating redundant constraints Q satisfying

咖 = 0 Cs^Am,])
^<3<ni

for all I e C{S) where I < i < m. By Theorem 3.8, C^ safely decomposes

into Cs、 ” . . . , Cs、< By Theorem 3.9 Cs safely decomposes into C差” . • , C ^ .

Thus, we have

m i n (C y = m i n i < i < ^ { m i n (C j) }

Also，with a variable x e S, sl cost a, and a assignment I on S, we have

Cs{l)① = m i n i < i < ^ { Q (/) ① a}

For e i t is similar. •

A constraint that can be safely decomposed is not necessary tractable. For

one thing, safe decomposition does not required that each constraint in the

sequence is tractable. For another, the length of the sequence is not bounded.

Given a constraint Cs on the set of variables S. The constraint Cs is poly-

nomially decomposable i f there is a sequence of constraints [Cs^.Cs^, • . . , Cs^

such that:

• Cs = Cs^ and m is polynomial in \S\ and the maximum size of the

variable domains in S, and;

Chapter 3 Tractable Projection-Safety 46

• Each Csi is either a tractable unary constraint, or can be safely decom-

posed into [q i , . . •, CU where m, < i and q . € { C ^ ” . . •, C ^ ^ . J

for a l l j < rrii.

Given a series of 1-projections/l-extensions A , and a polynomially decom-

posable constraint Cs. In the following, we show that Cs is tractable, and so

is A(C5) . Thus, Cs is tractable projection-safe.

L e m m a 3 . 1 1 . A polynomially decomposable constraint Cs is tractable.

Proof. Let [Csi , . • . , Csm] be a sequence of constraints where Cs = Cs^ and

m is polynomial in |5'| and the maximum size of the variable domains in S,

and each C5. is either a tractable unary constraint and can be safely decom-

posed into [Q i , . . . , q ^ J where m, < i and q^- G . • . , for all

j ^ ^ i - By definit ion such a sequence exists. A lgor i thm 3.1 can be applied to

compute the min imum cost of a polynomially decomposable constraint. The

algorithm uses a dynamic programming approach, loops through the sequence

and computes the min imum cost of each constraint appears. A n associative

array MinCost is used to store minimum costs of each constraint in the de-

composed sequence to avoid re-computation. I t remains to analyze the run

time. Each min(C民) is evaluated at most once in polynomial time. Since the

sequence is polynomial in size, result follows. •

A l g o r i t h m 3.1: Compute minimum cost of C.g
1 fo r z ^ 1 t o m do
2 M inCos t [Cy — / (M inCos t [(7 (i] ’ . . . ’ M i n C o s t [q ^ J)；

3 r e t u r n MinCostfC^]； ’ ‘

T h e o r e m 3 . 1 2 . A polynomially decomposable constraint Cs is tractable

projection-safe.

Chapter 3 Tractable Projection-Safety 47

P^oof. Let . • . , CsJ[be the corresponding sequence and each C5, safely

decomposes into [q ” ••.，《，爪 J. cHs a 1-projection/l-extension. 5{Cs) is

polynomially decomposable since by Theorem 3.7, 5{Cs,) safely decomposes

into [列 q i) ， N q ^ J] . By induction after a series of projections/extensions

A，A[Cs) is polynomially decomposable. By Lemma 3.11, A{Cs) is also

tractable. Result follows.

•
Theorem 3.12 gives rise to a class of constraints that is tractable projection-

safe. Algor i thm 3.1 is the basis of an efficient dynamic programming algorithm

to compute the min imum cost of a polynomially decomposed constraint.

In the next chapter, we wi l l give several examples of polynomially decom-

posable constraints.

Chapter 4

Examples of Polynomially

Decomposable Soft Global

Constraints

As we have shown in the last chapter, polynomially decomposable constraints

are tractable projection-safe. In this chapter, we give examples of polynomially

decomposable constraints, including soft variant of among, regu la r , grammar

constraints, and max—weight constraint. Thus, these constraints are tractable

projection-safe. Depending on the decomposition, we give an algorithm for

each of these constraints to compute the minimum cost. Moreover, after a

series of 1-projections/l-extensions we can sti l l use the same algorithm to

compute the minimum cost. Thus, the algorithms allow us to efficiently enforce

consistencies which depends on 1-projections/l-extensions. Note that these

algorithms are special cases of Algori thm 3.1.

In the following, we use n to denote the number of variables involved in a

constraint Cs, and d the maximum domain size, i.e. d =

Also, we assume the variables in = { x i , . . . , x n } are ordered by their indices.

48

Chapter 4 Examples of Polynomially Decomposable Soft Global Constraints 49

4.1 Soft Among Constraint
Given a set of variables S, a set of values F , a lower bound lb and a upper

bound ub, where lb < uh. We define t{l) = \{i\l[x,] G T/}| as the number of vari-

ables taking a value in V in the assignment I. The sof t:_among^(5； lb, ub, V)

constraint [7] w i th the variable-based violation measure is a constraint defined

as:

soft:_ainong^(5； lb, ub, V){1) = max(0, lb - t { l) , t { l) — ub)

T h e o r e m 4 .1 . The soft—among暫 constraint is polynomially decomposable.

/Voo/. Let Cs be the constraint soft_ainong^«^(5', Ih, uh, V) where S =

{工1... a; J . Let = { : c i，…， x j and in particular Sq = 0 . We denote the

constraint by C ^ . In particular C ^ always returns

j by definition. We also define the unary constraint U^ on variable Xi e S

where k e {0，1} that for all v e D(xi):

f / fc⑷ 二 I 0， i f = 0 A ” g K) V (A： = 1 八 G 10
1, otherwise

V

We show Cs to be polynomially decomposable by constructing a sequence

In the sequence { C ^ J are ordered in the increasing

order of i. The length of the sequence is bounded by 0{nd). Considering

where ^ > 0, i f the last variable in its scope Xi takes a value in (not in) V , i t

requires the variables in the set has j - 1 { j) values in F . Thus, for all

assignments I:

C i (脚 ） = m i n f 及 i i (临 — 1]) ® 柳 [幼

for < 〉 0 and j > 0. Finally, by definition，for all assignments I:

Cs{l) = min C{ (/)
lb<j<ub •^n、’

Chapter 4 Examples of Polynomially Decomposable Soft Global Constraints 50

By Theorem 3.10, each constraint in the constructed sequence is either unary

constraint, or can be safely decomposes into constraints precede i t in the se-

quence. •

E x a m p l e 4.1. Suppose Cs is the constraint soft_ainong^"^(5', 0,1，{a}) where

S = {xi ,X2, x^}. Cg. and U^ are defined as above. We construct the sequence

[t/?, ul ul ul ul t/�，Cgi，C!1，吸,C〗3，吸,

For all assignments I G C{S), we have:

c i m]) =

C丢1 w 別 ） = 1 e

创 ） ⑷ 別) ① 吸 ⑷

CIMS2]) = m i n (C i m]) e [/ i (/ [x2]) , C i m j) e

= min(C§^(/[6'2]) e C/ i (i [x3]) ,Ci (i [S2]) 0 t / ° (/ N))

OsW = n i i n (C l (i) , C i (l))

C o r o l l a r y 4.2. The soft_ainong^"^ constraint is tractable projection-safe.

Proof. Result follows from Theorem 3.12 and Theorem 4.1. 口

A l g o r i t h m 4.1: Computing the minimum cost of soft—among抓厂

I n p u t : Cs ： soft_among^«^(5', Ih, ub,] /) , and
a series of

1-projections/l-extensions A
O u t p u t : mm{A{Cs))

1 fo r i 1 t o n do
2 f o r j € {0,1} do ui f - m i n (A邮）；
3 fo r j/ 卜 0 t o ub do
4 /0' — j ；

5 fo r i — 1 t o n do
6 —

7 fo r j <- 1 to ub do
8 —min(/t-/ ��1 , / t i ①必；
9 r e t u r n mmib<j<ub{f i }；

Chapter 4 Examples of Polynomially Decomposable Soft Global Constraints 51

Algor i thm 4.1 computes the minimum cost of a soft—among抓r constraint.

In the algorithm, i t holds that u i = mm{U i) and / / = min(C/) . Line 1-2 com-

putes the min imum cost of each unary constraint Uf. As the unary constraints

are stored as tables, the minimum costs can be computed by scanning the ta-

ble. This step is done in 0{nd) time, since there are 2n such unary constraints

and the domain size of each variable is at most d. Line 3-4 initialize f^ = j

for 0 < j < ub, since C^ always returns j . The algorithm then computes the

minimum costs of rest of the constraints in the sequence. By definition of safe

decomposition, and the decomposition shown in the proof of Theorem 4.1, we

have

m in (A (C f)) = m i n (A (C t i)) ① min(A(t /?))

m in (A (C /)) = m i n { m i n (A (C f /) 0 min(A(C/,i)), min{A{CU) © min(A(C/0))}

Line 5-8 of the algorithm computes the minimum costs accordingly, in 0{n'^)

time. Finally, the algorithm returns the answer base on the fact that

min(A(C5)) = , m i n {m in (A (C^)) }
lb<j<ub

This final step takes t ime 0{n).

T h e o r e m 4 .3 . Given a soft .among^"^ constraint and a series of 1-

projecUons/l-extensions A . Algorithm 4.1 computes the minimum cost of

s o f t - a m o n g難 constraint after applying A, in 0 (n 2 + nd) time.

4.2 Soft Regular Constraint

sof t_ regu lar^^^ is the soft form of the r e g u l a r constraint w i th the variable-

based violation measure. In addition, when i t is impossible to satisfy the

underlying r e g u l a r constraint, the cost is T . Leung [32] has shown that the

so f t - r egu la r抓 r constraint is flow-based projection-safe and thus tractable

projection-safe. We are to show that this constraint is also polynomially de-

composable and derive another algorithm to compute its min imum cost.

Chapter 4 Examples of Polynomially Decomposable Soft Global Constraints 52

T h e o r e m 4.4. The sof t—regular抓『constraint is polynomially decomposable.

Proof. Let Cs be the constraint soft_regular^"^(5', M) where S =

{ x i , ...’；} and M = (Q,E,T,qo,F) (see Definit ion 2.18). Let Si =

• •. ’ ^i}- For each state qj G Q, we define a deterministic finite automa-

ton M j = w i th Qj being the only final state. We denote a

constraint so f1 :_ regu la r^ (5^ “ M^) by In particular, C^g。always returns

0 and C^Q always returns T for j ^ 0. We also define the unary constraint Uf

on the variable Xi where c G E that for all v G D{xi)\

0, i f …

I 1, otherwise

We show Cs to be polynomially decomposable by constructing a sequence

Uf, • • •, Cg i^ . . . , Cs]- In the sequence are ordered in the increasing or-

der of i. The length of the sequence is bounded by 0(n . \M\). Consider

where i > 0. For each transit ion c) i-> qj, in order to form a sequence rec-

ognizable by M j , we can choose to make the variables in S i - i forms a sequence

recognizable by Mk, and the variable Xi to be c. Thus, for all assignments

1 e C{S):

for < 〉 0 and qj e Q. Finally, the set of sequences recognizable by M are the

union of the set of sequences recognizable by Mj for all qj G F. Thus, for all

assignments I:

Cs{l) = min Ci (I)

By Theorem 3.10, each constraint in the constructed sequence is either unary

constraint, or can be safely decomposes into constraints precede i t in the se-

quence. 口

E x a m p l e 4.2. Suppose Cs is the constraint soft—regular抓厂(5； Af) where

s = and M is the finite state automaton shown in Figure 2.12.

Chapter 4 Examples of Polynomially Decomposable Soft Global Constraints 53

Ck and Uf are defined as above. We construct the sequence

广0 广1 广2 广3

^52'

^53' ^ I s '

For all assignments I G C{S) we have:

糊 = T

吸 (収 1]) = m in {T , CB。e f / f (収 1]), Clo 0 U^{l[x,])}

[別）=min{T，Ci。0[/^(Z[:^ i]) }

C | i (/ [別） = m i n { T , C l ① ^ / ((/⑷) ,C !。0 C/f(/[xi])}

CIMS2]) =T

^sMS2]) = © "2“0^])，C差i(/[场])0 U^{l[x2])}

CIMS2]) = m in {T , C l i l [S ,]) © U^{l[x2])}

= m in {T , C l { l [S ,]) 0 0

c i m]) = T

= m in {T , © US{l[xs]), C 毛 © [/^(/[xs])}

= m in {T , 0 Ul{ l [xs\)}

= m in {T , C ^ m]) 0 f / | (/ N) , C l m]) © f / fW吻]) }

= m i n (C ! 3⑴ , ^ s M = min(l, 1) = 1

C o r o l l a r y 4 . 5 . The s o f t — r e g u l a r — constraint is tractable projection-safe.

Proof. Result follows from Theorem 3.12 and Theorem 4.4. 口

Algori thm 4.2 computes the minimum cost of a sof t _ r e g u l a 严 constraint.

In the algorithm, i t holds that < = min(A(t / f)) and / / 二 m in(A(C/)) . Line 1-

2 computes the minimum cost of each unary constraint Uf. Since unary con-

straints are stored as tables, their minimum costs can be computed by scanning

the tables. This step takes time 0{nd-\T.\). Line 3-4 initialize f^ for all qj e Q

Chapter 4 Examples of Polynomially Decomposable Soft Global Constraints 54

A l g o r i t h m 4.2: Compute the min imum cost of so f t—re f f l i l a r ^ ,
I n p u t : Cs.. sof t_regular^"^(5 ' , M) , and a series of

1-projections/l-extensions A
O u t p u t : m in (A(Cs))

1 fo r i — 1 t o n do
2 fo r c G E do u; i- m in (A ([/ f))；

3 /o。— 0 ;
4 fo r qj eQ\ {qo} do V T ;
5 fo r z 1 t o n do
6 fo r Qj e Q do
7 / / = n i i n { T , min((队c)4g】)eT{/? © < } } ；

8 r e t u r n m i n 拆 訂 ；

following the definition. By definition of safe decomposition, and the decom-

position shown in the proof of Theorem 4.4，we have:

m i n (A (C /)) = min{T,((收 imn ®

Line 5-7 of the algori thm computes the min imum costs accordingly, in t ime

0 (n . |T|). Finally, the algorithm returns the answer base on the fact that

m i n (A (C y) = m m { m i n (A (Q)) }

This final step takes t ime 0{\F\). The total t ime consumed by the algorithm

is |Af|)。

T h e o r e m 4.6. Given a sof t—regular卯『constraint and a series of 1-

projections/l-extensions A . Algorithm 4.2 computes the minimum cost of

soft一regular抓r constraint after applying A， i n 0{nd- \M\) time.

4.3 Soft Grammar Constraint

soft-grammar抓r is the soft form of the grammar constraint w i th the variable-

based violat ion measure. In addition, when i t is impossible to satisfy the

underlying grammar constraint, the cost is 丁. In the following we are to show

Chapter 4 Examples of Polynomially Decomposable Soft Global Constraints 55

this constraint to be polynomially decomposable and thus tractable projection-

safe, and give an algorithm to compute the minimum cost.

T h e o r e m 4 .7 . The so f t : _g ra imnar_ constraint is polynomially decomposable.

P^oof. Let Cs be the constraint soft_graininar^'^^(5', G) where S =

and G = (E, iV, P，T) is a context-free grammar in Chomsky Normal Form

(see Definit ion 2.19). Let S、j = { x , , . . . , x , } for i < j . For each non-

terminal A e N, we define a context-free grammar Ga = (S, N, P, A) obtained

from G by replacing the start non-terminal T by A. We denote a constraint

soft_grammar—(5^…GU) by C各 We also define the unary constraint U^ on

the variable Xi where a G E that for all v e D{xi):

i f …

1, otherwise
\

We show Cs to be polynomially decomposable by constructing a sequence

U?, . . •，Cf^j, • • • ， I n the sequence { C ^ } are ordered in the increasing

order of i. The length of the sequence is bounded by . |7V| + nd).

for z = J/' and i； G D { x i) can be determined base on all productions of the form

{A a). We have

C加） = m i n { T，m i n U^{v)}

For J.
〉 i and all assignments I on Si j , we have

Q M O = m m { T , (起 二 连 八 伙 晰 』 e C ^ ’ / 帆 + 』 }

Finally，Cs is equivalent to 乂 By Theorem 3.10, each constraint in the

constructed sequence is either unary constraint, or can be safely decomposes

into constraints precede i t in the sequence. •

E x a m p l e 4 . 3 . Suppose G = (E , N, P, T) is a context-free grammar where

S = {a , 6}，N = {T, A, B} and P contains the following productions:

T ^ AB, 乂 AA, B 4 BB, Ah^a, B ^ b

Chapter 4 Examples of Polynomially Decomposable Soft Global Constraints 56

Cs is the constraint soft一grammar抓『(5； G) where S = {â i, 2:2, X3}. We con-

struct the sequence

nA fiB (^T r^A r^B r<T
*̂1’2，̂1,2' ̂ 2,3' ̂ 2,3' ̂ 2,3

广A ^B 广T n

l l ’ 3 , Ul’3, Is.

For all assignments I G C{S), we have:

C l m , ,]) =T

= m i n { T , C f ^ 収 i ’ i]) ① 収2，2])}

= m i n { T , ① [战2])}

Cl2i l [Si,2]) = m i n { T ， ① 収2，2])}

= m i n { T , 0 [尚’2])① C^s^sW^^s』}

= m i n { T , C f i (収 i ’ i]) ① C^^sC収2’3]), [知]) ① ^3^3(^^3,3])}

収1,3]) = m i n { T , ① C?、(収2,3]), C^i乂収 i ’2])① 03"3(丨[狗，3])}

CsU) = CUD

C o r o l l a r y 4.8. The soft-grammar^''^ constraint is tractable projection-safe.

Proof- Result follows from Theorem 3.12 and Theorem 4.7. •

A lgor i thm 4.3 computes the minimum cost of a grammar肌厂 constraint after

applying a series of 1-projections/l-extensions. In the algorithm, i t holds that

< = m m (A ([/ f)) and / A = min(A(C#. .)). Line 1-2 computes the minimum

cost of each unary constraint As the unary constraints are stored as tables,

the min imum costs can be computed by scanning the tables. This step takes

Chapter 4 Examples of Polynomially Decomposable Soft Global Constraints 57

A l g o r i t h m 4.3: Compute the minimum cost of soft-grammar 抓『

Input: Cs： soft_graininar̂ «̂ (S', G), and a series of
1-projections/l-extensions A

O u t p u t : m in(A(Cs))
1 fo r i 1 t o n do
2 for c G E do u^ m in (A ([/ f))；

3 for z ^ 1 t o n do
4 for 乂 G iV do
5 / i^ i = m i n { T , ；

6 fo r len ^ 2 t o n do
7 for z ̂ 1 to n - /en + 1 do
8 j — i + len - 1 ;
9 for ^ G Â do

10 f̂ A. — m i n { T , m i n(如似2) e p ’ i私)• { / � 0 / 么 , } } ；

11 r e t u r n f l ^ ； ’

t ime 0{n ‘ |E|). By definition of safe decomposition, and the decomposition

shown in the proof in Theorem 4.7, we have

m m { A { C s A j) = m i n { T , …eP m i n (A (W)) }

min(A(C^Ap) = m i n { T , m i n (如 山 制 ① m i n (A ((^之 ”)) } }

Line 3-10 of the algorithm computes the min imum costs accordingly, in .

time. Finally, as Cs is equivalent to Cfg,一 the algorithm returns the value

min(A(C5)) = min(A(C j^ J)

The total t ime consumed by the algorithm is 0{{n^ + nd) . |G|).

Theorem 4.9. Given a soft-grammar̂ "̂ constraint and a series of 1-
projections/1-extensions A . Algorithm 4.3 computes the minimum cost of

soft-grammar— after applying A， in 0{{n^ + nd) . \G\) time.

4.4 Max_Weight/Min_Weight Constraint

Given a set of variables S, a cost function w{xi, v) that maps a variable Xi e S

and a value ；̂ G A to a cost e[0...k]. The max_weight constraint is the cost

Chapter 4 Examples of Polynomially Decomposable Soft Global Constraints 58

function

max_weight(5',w;)(/) = max w(x i , v)
XiGSAllxi]=v

The min一weight constraint is the cost function

min_weig]it(S；川)(Z) = min w(x i , v)

These constraints are derived from the maximum/minimum constraint [5]. We

are to show this constraint is polynomially decomposable and thus tractable

projection-safe. We also give an algorithm to compute the min imum cost.

Note that the following decomposition does not work. Let Cs be the constraint

min_weigli1;(S;7i；). For all I G C{S), we have

Cs{l) = min {Ci{l[x,])}
l<i<n

where each Q is the unary constraint such that

Ci{v) = w(i, v)

holds for all v G D{xi). The decomposition is not a safe decomposition since

the scope of Q is not S, thus Theorem 3.8 does not applies.

T h e o r e m 4.10. The max_weight(6', w) and min.\jeight {S,w) constraints are

polynomially decomposable.

P 彻 f . We prove for max—weight. The proof for min一weight is similar. Let Cs

be the constraint max_weight(5', w) where S = { x i , •. We define two

sets of unary constraints { H f } and { G f } as follows:

T , V ^ u
\

广 a , � J 0， w{Xi,v) < a

� T , w{xi,v) > w{xj,u)

Chapter 4 Examples of Polynomially Decomposable Soft Global Constraints 59

where I < i < n, u £ D{xi) and a is a cost. We construct the sequence

….,G],...,Csl by enumerating all 1 < i j < n,u e D{xi) and a G

A ; ， v) \ l < k < n A v e D{xk)} . The length of the sequence is bounded by

O(n^d). The decomposition is gave as follows:

關 ） = 1 — 〈 吵 〒 调 (収 1) ① e c；严

In the equation H : represents the choice of the maximum weighted compo-

nent in the tuple, G广 represents the choice of each components other than

the maximum weighted one. By Lemma 3.10, the decomposition is a safe

decomposition. 口

E x a m p l e 4.4. Suppose Cs is the constraint max_weigli1:(6； w;) where S =

D{xi) = {1 ,4 } , D{x2) = {2 ,3 } . Hf and G^ are defined as above.

We construct the sequence

[H l H t . H l H l G l G i G l G l C s]

Then for all assignments I G jC{S), we have:

f
H t { l [x i]) © G l { l [x 2])

Cs{l) = min

、G^K収 1])①

C o r o l l a r y 4.11. max_weiglit anffinin_weigh1; constraints are tractable projection-

safe.

Proof. Result follows from Theorem 3.12 and Theorem 4.10. •

Here we give an 0{nd\og{nd)) algorithm to compute the min imum cost

of a max一weight constraint after a series of 1-projections/l-extensions. The

algorithm first organize all the variable-value pairs {xi,v) where Xi £ S,v G

in an array A, and sort them by w(xi,v). Then i t scans A (Line 6-11).

Chapter 4 Examples of Polynomially Decomposable Soft Global Constraints 60

A l g o r i t h m 4.4: Computing; the minimum cost of max—weight
Input: Cs'. max_weight(5','a;)
O u t p u t : a set {m^.^；}, where m^,^ = min{C5(/) | / [x i] = v}

1 乂 — an array of pair { x j , u) for all possible Xj e X , u e D j ;
2 sort A = {{xj,u))} in increasing order of w{xj, u)；

3 fo r z 1 t o n do â T ;
4 s n • T ;
5厂卜丁；

6 fo r A: 1 t o 1^1 do
7 { x i , v) ^ A[k]；

8 S t S — CLi ;

9 ai — m i n (a i , A (Q »))；

10 5 s + â ；

11 r — min(r , A (i ; f》)）+ s - a^) ;
12 r e t u r n r ；

At the A:-th i terat ion where A[k] = {xi,v), i t maintains that â = m i n (Q) ,

and s = J2i<i<n (Line 9-10). Thus,

m in (i ^7)① © m i n (G f ’ — (W)) = m i n { T , s - a < + A (i 7 ; >)) }
Xj€S\{xi}

So at the end of the algorithm, i t holds that

r = 想 外 (切 ） ® 0 m i n (A (G f -))) } = m i n (A (C ,))
xj€S\{xi}

Theorem 4.12. Given a max_weight constraint and a series of 1-pro j ections/l-

extensions A . Algorithm 44 computes the minimum cost of the max—weight

constraint after applying A , in 0{nd . l o g (n d)) time.

Chapter 5

Experiments

We implement the constraints described in the previous chapter in Toulbar2

vO.9 to demonstrate the practicality of our algorithmic framework. We also

compare the results wi th different levels of consistency: strong 0 IC , GAC*

and FDGAC*，which cover 0-projection, 1-projection, 1-extensions. For each

constraint discussed in Chapter 4，we conduct one experiment to demonstrate

the efficiency.

In the experiments, variables are assigned in lexicographic order. Value

assignment starts wi th the values with minimum unary cost. The tests are

conducted on an Intel Core2 Duo E7400 (2 x 2.80GHz) machine wi th 4GB

RAM. Each benchmark has a different timeout. We first compare the number

of solved instances. Among those solved instances, we report their average

run-time and number of backtracks. Out of 10 randomly generated test cases

fo each parameter setting, the best result is highlighted in bold. A l l the bench-

mark problems are NP-Hard.

5.1 The car Sequencing Problem
The car sequencing problem (probOOl in CSPLib) [38] Given n cars of different

type. Each type is specified by a set of options. For the z-th option, for every

Q cars in the assembly line, the maximum number of cars allowed wi th option

61

Chapter 5 Experiments 62

i is mi. This problem is to find a production sequence to satisfy all above

constraints. We use n variables wi th domain 1 to n to model this problem.

The variable Xi denotes the type of the z-th car in the sequence. One gcc

constraint ensures all cars needed lie in the sequences. For the i - t h option,

n - m^ + 1 among constraints ensure the capacity on each option. We generate

10 over-constrained instances randomly, each wi th 5 options, and block size

of at most 5, i.e. 1 < m < Q < 5. Each car is randomly assigned to a type

and each type has 1/2 chance to have an option. To softened the problem,

we replace among constraints by s o f t - a m o n g抓W e also model the hard gcc

constraints as soft—gcc爾 [49] which returns 丁 upon violation.

Results are shown in Table 5.1. In this benchmark, solving wi th FDGAC*

runs faster than GAC* up to nearly 5 times, and more than 20 times faster

than strong 0 I C . Enforcing GAC* also speeds up by 6 times when compared

wi th strong 0 IC .

n strong 0 lC GAC* FDGAC*
solved I time backtracks solved time backtracks solved | time | backtracks

14 10 42 .84 234537 10 16.80 67842
8 136 _ _ R I 5 7 5 £ _ ~ 1 0 9 0 8 5 1 0 4 . 4 9

16 3 178.98 834998 8 133.08 434969 1 0 6 1 7 9 ^
17 I 1 I 163.73 830343 2 130.14 387446 10 48.07 35218

Table 5.1: The number of solved instances (in 5 minutes time l imi t) , the
average time (in seconds) of solved instances and the number of backtracks in
solving the car sequencing problem using soft—among抓『constraints

5.2 The nonogram problem

Nonogram problem (prob012 in CSPLib) [6] Given a board of size n x n.

The problem is to find a black-white coloring on each cell such that each

row and each column contain a specific set of sequences of black squares wi th

different lengths. For example, we can specify that a row must have two

consecutive black blocks, one wi th length 2 and the other wi th length 3. We

Chapter 5 Experiments 70

model the problem by n^ variables, among which x^j denotes the color of the

block at the z-th row and i - t h column. We model the restrictions on each

row and column by a r e g u l a r constraint. To soften the problem, we replace

r e g u l a r constraints by s o f t — r e g u l a r暫.W e generate random instances for

the problem by generating a set of sequences for each row and column.

In a t ime l imi t of 5 minutes, enforcing strong 0 I C can only solve relatively

small instances (n = 6). Enforcing GAC* can solve larger ones (n = 8). For

n = 10, all instances can be solved only when FDGAC* is enforced, where each

instance is solved in around 10 seconds on average. The regular抓『constraint

is both polynomially decomposable and (flow-based) projection-safe [30，32 .

So we compare the two approaches. The results are shown in Table 5.2. The

two approaches would result in the same search tree when we enforce the same

consistency, but the run-time varies. Our benchmarks show that for r e g u l a r

constraints, the polynomially decomposable approach is more efficient than

the flow-based approach. I t is because the constant factor behind the flow

algorithm is usually large.

polynomially decomposable
几 strong 0IC GAC* FDGAC‘

一 solved time backtrack" solved time backtracF" solved time backtrack
6 10 9 .50 1 5 0 1 6 7 10 0 .03 763 1 0 O O

-1 1 2 4 5 . 1 7 2 6 2 7 3 2 2 ^ ~ ~
5 ！ ！ 7 113.76 1730882 _ 10 0.12 ^

J . 5 ！ * 2 52 .85 7 6 4 4 6 7 1 0 0 . 3 4
1 0 I 0 I * I * I 0 I * I * I 10 I 11.78 2 2 8 ^

flow-based approach
几 strong 0IC FDGAC*

一 solved time backtrack" solved time [backtracF solved time backtrack
6 9 25 .23 72130 10 O W M

- I Q * * 10 60 .84 — 7 2 8 1 1 ^
5 * * 1 "26：^ 2 8 1 6 6 _ _ K L _ ^

J . 2 * * 1 151 .38 8 3 4 7 9
I 1 0 I 0 _ _ _ _ * * I 0 I * I * I 9 I 4 0 . 6 7 4 8 4 ^ ~

Table 5.2: The number of solved instances (in 5 minutes t ime l imi t) , the
average t ime (in seconds) of solved instances and the number of backtracks in
solving the nonogram problem using s o f t — r e g u l a严 constraints

Chapter 5 Experiments 64

5.3 Well-Formed Parenthesis

Given a set of n even length intervals in [1 , . . . , n], where n is an even number.

The problem is to find a string of parentheses of length n, such that substrings

in each of the intervals are well-formed parentheses. We model this problem by

a set of n variables. For each interval, a soft-grammar constraint is posted to

represent the well-formed parentheses requirement. The problem is softened

by associating variable-based violation measure to each grammar constraint.

We generate n - l even length intervals by randomly picking their end points

in [1 , . . . , n], and add an interval covering the whole range to ensure that all

variables are constrained. We also randomly assign unary costs to the variables.

As shown in Table 5.3, F D G A C * is up to one order of magnitude faster than

strong 0 I C , and up to 4 times faster than GAC*.

n strong 0 I C GAC* FDGAC*
solved “ time backtrack ~ ^ v e d time backtrack solved time backtrack

20 10 “ 6 . 3 6 5 5 5 2 ~ ~ 10 . M

22 10 T T W 1 0 2 5 3 10 7 8 4 — 2 4 5
24 10 47.19 1 3 8 3 1 0 2 M ~ ^ ^ M i
26 9 9 0 . 9 4 2 1 7 5 ~ ~ 1 0 ^ ^ ^

4 176 .1 — 5 9 7 5 6 10 3 1 . 9 9 7 2 0 8 1 0

30 0 * “ * — 10 56.43 “ 9705 “ 10 1 ^ 5 9 1026
32 0 * * 10 — 8 5 . 5 8 — 1 4 8 2 5 ~ ~ 1 0 ~ 2 0 . 1 2

3 4 I 0 1 * 1 * 6 158 .16 2 5 5 4 6 1 0 5 4 . 9 4 3 3 4 6

Table 5.3: The number of solved instances (in 5 minutes t ime l imi t) , the
average t ime (in seconds) of solved instances and the number of backtracks in
solving the well-formed parenthesis problem using soft-grammar 抓厂 constraints

5.4 Minimum Energy Broadcasting Problem

The min imum energy broadcasting problem (prob048 in CSPLib) [15] Given

n wireless routers in the network, one of which is the root that broadcasts

messages to every other router. Not all links between pairs of routers are

available, and each available l ink requires an energy level The energy

Chapter 5 Experiments 72

consumed by a router is equal to the maximum energy among all the links

required to send the messages. The task is to find a broadcast tree that

minimizes the total energy consumed. We use n variables, where x^ denotes

the index of the router from which the i-th router receive a message. In

addition，j G D(xi) iff there is a l ink between the z-th and j-th routers. One

hard global constraint tree [8] is posted to enforce an assignment representing

a tree. We post n max—weight cost functions to represent the energy consumed

by each router. For the z-th router, we post a constraint max—weight (X，切丄

where X is the set of all variables, and w办j, k) = e,,- ii k = i, or 0 otherwise.

We randomly generate 10 instances of randomly connected network for each

configuration of n routers and m links. Links are uniformly distr ibuted between

all pair of routers w i th a random energy requirement. GAC is enforced on the

tree constraint.

In this benchmark, however, we get a result different from the previous

ones. GAC* benefits from its pruning power and speeds up the solving by

around 2 times compared to strong 0 I C . Al though F D G A C * can reduce more

search spaces than GAC* up to 6 times, the run-t ime is worse than GAC* by

2 times. We notice that in our model, the scope of each constraint involves all

variables. Whenever a unary constraint increases cost, consistency checking is

invoked for all global constraints, which introduces a large overhead. We also

notice that the hard tree global constraint achieves strong 0 I C and GAC*

(because i t is a hard constraint) but not FDGAC* , which could also be the

explanation of the result.

Chapter 5 Experiments 73

n I m I strong 0lC GAC* FDGAC*
solved time backtrack solved time backtrack solved time backtTg"

20 40 10 8.03 ~ 61806 1 0 1 . 6 4 9080 ~ I Q 2 ： ^

20 60 10 26.08 153237 1 0 55317 10 ~377l7~ 16694

20 100 10 13.55 69453 1 0 ~ 1 2 . 5 Q 3 7 3 2 ^ ~ 10 41.78 1 2 1 0 6

25 50 10 72.55 ~ 303422 15.34 52855 一 1一 15.48 ~ ~
25 75 5 301.68 1044058 7 — 229.10 625415 ~ 5 1 7 6 . 4 5 34108
25 125 5 ； 3 166.85 22005
30 60 4 216.44 557575 9 1 0 1 . 3 3 233610 9 1 1 8 . 4 8 2 1 4 2 4

30 I 90 I 1 401.92 1050414 2 1 6 2 . 6 3 293660 1 305.96 4 3 2 3 8

Table 5.4: The number of solved instances (in 10 minutes t ime l imi t) , the
average t ime (in seconds) of solved instances and the number of backtracks
in solving the min imum energy broadcasting problem using max_weight con-
straints

Chapter 6

Related Work

In this chapter, we present researches that related to our work. We briefly

describe various consistency techniques in WCSP, and related works on global
constraints.

6.1 WCSP Consistencies

The WCSP framework is useful in modeling many over constrained problems

and optimization problems. To solve WCSP efficiently, many consistency tech-

niques have been proposed. NC* and AC* were developed by Larrosa and

Schiex [28]. They demonstrated a branch-and-bound algorithm that main-

tains AC*. Other forms of consistency notions with different pruning power

appeared later, including FDAC* [27], EDAC* [19]，0-IC [51] and strong 0-IC

30]. Cooper et al. [17] defined two consistency notions, namely 〇SAC and

VAC, both of which require a relaxation of cost valuation structure V{T) to

real numbers, ^^-consistency is due to Cooper [16 .

AC*，FDAC* and EDAC* are specialized for binary constraints, yet they

can be generalized to handle high arity constraints and global constraints.

Generalized version of arc consistency star, GAC*，is defined by Cooper and

Schiex [18]. Sanchez et al. [47] extended AC*, FDAC* and EDAC* for ternary

constraints. Their method to enforce EDAC* on ternary constraint requires

67

Chapter 6 Related Work 68

2-extension. F D G A C * is due to Lee and Leung [30, 32]. They also showed that

naively generalizing ED A C * to high ari ty constraints wi l l lead to an oscillation

in the enforcement algorithm, and proposed a weak form of E D G A C * based

on cost providing par t i t ion [31, 32 .

Bound arc consistency (BAG*) is discussed by Zytnicki et al. [51] to handle

WCSP w i th large domains. This consistency notion only consider domain

bounds，and only require simple supports for boundary values in the variable

domains.

Different consistency notions depend on different projections/extensions.

For example, O-projections/O-extensions are employed in 0 I C and strong 0 I C

enforcements. 1-projections/l-extensions are the backbone of the consistency

algorithms of (G)AC*, F D (G) A C * and (weak) ED(G)AC* . Projections and

extensions of ar i ty larger than 1 are required for enforcing ED A C * in ternary

constraints and A;-consistency. Our work show that we can efficiently applied

those consistencies depends on 1-projections/l-extensions to polynomially de-

composable constraints, and those consistencies depends on 2-projections/2-

extensions or above are hard to enforce efficiently on global constraints.

6.2 Global Constraints

Global constraint is one key element to make CSP framework success. A global

constraint could be understood as an expressive and concise condition involving

a non-fixed number of variables [6]. Since the work of Lauriere on A L I C E [29],

many global constraints have been proposed and studied. Famous examples

include the a l l D i f f e r e n t constraint [29] and cumula t ive constraint [1]. On

the other hand, early work on WCSP consistencies concentrated on binary

table constraints, and recently generalized to handle high ari ty constraints

and global constraints. Introduction of global constraints to WCSP is a must

to make the WCSP framework more useful. In this section, we review related

Chapter 6 Related Work �
by

works on global constraints discussed in our work, and constraint softening.

The among constraint w朋 originally proposed by Beldiceanu and Conte-

jean [7]. A n algorithm to achieve AC was given by Bessiere et a/.[11]. This

constraint is useful in modeling the car-sequencing problem [38..

The r e g u l a r constraint is proposed by Peasant [40]. This constraint is

extremely useful since i t is able to model many other global constraints, in-

cluding s t r e t c h and p a t t e r n . He also gave an algorithm that achieves AC

on the r e g u l a r constraint based on a layered directed graph representation of

the constraint. The decomposition for the sof t—regular constraint is derived

from such a graph representation.

The grammar constraint is proposed by Kadioglu and Sellmann [22], and

Quimper and Walsh [42]. A C Y K parser ba^ed algorithm [22, 42] and an Ear-

ley parser based algorithm [42] are given to achieve AC on this constraint.

The C Y K parser based AC algorithm is improved by Kadioglu and Sell-

mann [21]. They also consider achieving AC when grammar constraint ap-

pears in conjunction w i th a linear objective function. Quimper and Walsh

discussed decomposition of the grammar constraint [43, 44]. Kassirelos et al.

proposed the weightedGrammar constraint [24], which can be used to model

soft_graininar-^ and soft_grainmare彻 constraints. Restricted classes of the

grammar constraint was also discussed in l iterature [23 .

The max_weight/mii i_weight constraints are derived from the

maxinmm/minimum constraints originated in CHIP [7]. Beldiceanu showed

t lmt the two constraints are instances of the min imum constraint family, and

presented a fi l tering algorithm.

Constraint softening is proposed by Regin et al. [45] to model and solve

over-constrained problems. Van Hoeve et al [49] make use of flow theory to

compute the min imum cost of several soft constraints, including soft variants

of the a l l D i f f e r e n t , gcc and r e g u l a r constraints. Lee and Leung [30’ 32

Chapter 6 Related Work yg

further extend their idea and show these constraints are flow-based projection-

safe.

Chapter 7

Conclusion

In this section, we summarize our contributions and shed light on possible

future directions of our research.

7.1 Contributions

In this thesis, we discuss tractable projection-safety, and introduce the concept

of polynomially decomposable constraints. Our contributions are three-fold.

First，we address the issue of tractable projection-safety in enforcing WCSP

consistencies. WCSP consistencies an be efficiently enforced only when tractable

projection-safety is guaranteed. We divide our discussion into three cases of

different scenarios of projections and extensions. We show that projection-

safety is always possible for projections/extension to / f rom the mil iary con-

straint, while i t is alway impossible for projections/extensions to / f rom r -ary

constraints for r > 2. When r = 1，we show that a tractable constraint may or

may not be tractable projection-safe by giving positive and negative examples.

Second，we define polynomially decomposable soft constraints based on

safe decomposition. Safe decomposition divides a soft constraint into sub-

constraints which allows us to (1) compute the min imum cost of the original

constraint f rom the min imum cost of its sub-constraints, and (2) distribute

71

Chapter 7 Conclusion 72

projections and extensions to its sub-constraints. We give special scenar-

ios of safe decomposition. We show that a polynomially decomposable soft

constraints are tractable and tractable projection-safe, since we can apply a

dynamic programming approach to compute the min imum cost of such a soft

constraint, and the approach is st i l l applicable after projections and extensions.

We further show that sof t—among抓sof t—regular抓sof t—grammar抓『and

max_weight/min_weight constraints are polynomially decomposable. We give

the decomposition of these constraint, and base on the decomposition, we give

algorithms to compute their min imum costs. Our effort give rise to another

class of tractable projection-safe soft global constraint.

Thi rd, we perform experiments and compare typical WCSP consistency

notions and show that our algorithm framework works well w i th GAC* and

F D G A C * enforcement both, in terms of run-t ime and reduction in search

space. We also compare our approach w i th the flow-based approach [30]. We

show that our approach is more competitive.

7.2 Future Work

We have discussed the issue of tractable projection-safety in WCSP consis-

tencies enforcement, and show that flow-based projection-safe constraints and

polynomially decomposable constraints are tractable projection-safe. A n im-

mediate future work is to investigate other forms of tractable projection-safety

and techniques for enforcing typical consistencies efficiently.

The second possible research question is whether we can handle constraints

that are intractable efficiently. Existing consistency techniques for WCSP re-

quires knowledge of the minimum costs of constraints in the system. The

question is whether we can design weak forms of these consistency techniques

that requires knowledge of a lower bound of the min imum costs, which al-

lows application of approximation algorithms to compute min imum costs of

Chapter 7 Conclusion

intractable constraints.

The th i rd possible direction is related to optimal soft arc consistency (OSAC)

17]，where a sequence of 1-projections/l-extensions operation which yields an

optimal C0 is identified. Such task can be done by solving a linear program.

OSAC is specialize for table constraints, and we would like to extend the idea

to global constraints. The difficulty lies in how we can post linear constraints

in the linear program to require a global constraint in the WCSP to have

non-negative min imum cost. We conjecture that the decompositions given in

Chapter 4 is related to such a reformulation.

Bibliography

1] AGGOUN, A . , AND BELDICEANU, N. Extending chip in order to solve

complex scheduling and placement problems. Mathematical and Computer

Modelling 17, 7 (1993), 57-73.

2] APT, K . The essence of constraint propagation. Theoretical computer

science 221, 1-2 (1999), 179-210.

3] APT, K . The rough guide to constraint propagation. In Proceedings

of 5th International Conference on Principles and Practice of Constraint

Programming (1999), Springer, pp. 1-23.

4j APT, K . Principles of constraint programming. Cambridge Un iv Pr, 2003.

5] BELDICEANU, N . Pruning for the minimum constraint family and for the

number of distinct values constraint family. In Proceedings of 7th Interna-

t'^onal Conference on Principles and Practice of Constraint Programming

(2001), pp. 211-224.

:6] BELDICEANU, N . ’ CARLSSON, M . , AND RAMPON, J . G l o b a l cons t ra i n t

ca ta log . SICS Research Report (2005).

7] BELDICEANU, N. ’ AND CONTEJEAN, E . In t roduc ing global constraints

in chip. Mathematical and Computer Modelling 20, 12 (1994), 97-123.

:8] BELDICEANU, N . , FLENER, P . , AND LORCA, X. T h e t ree cons t ra in t .

I n Proceedings of 2nd Integration of AI and OR Techniques in Constraint

74

Programming for Combinatorial Optimization Problems (2005) , Spr inger ,

pp. 64-78.

9] BESSIERE, C . Arc-consistency and arc-consistency again. Artificial in-

telligence 65, 1 (1994), 179-190.

[10] BESSIERE, C.，FREUDER, E . , AND REGIN, J. Using constraint meta-

knowledge to reduce arc consistency computation. Artificial Intelligence

107, 1 (1999), 125-148.

[11] BESSIERE, C . , HEBRARD，E.，HNICH, B . , KIZILTAN, Z . , AND WALSH,

T . Among, common and disjoint constraints. Recent Advances in Con-

straints (2006), 29-43.

[12] BESSIERE, C . , HEBRARD, E . , HNICH, B . , AND WALSH, T . T h e com-

plexity of global constraints. In Proceedings of 19th AAAI Conference on

Artificial Intelligence (2004), pp. 112-117.

13] BESSIERE, C., AND REGIN, J. Refining the basic constraint propaga-

t i o n a l g o r i t h m . I n Proceedings of 17th International Joint Conferences on

Artificial Intelligence (2001), vol. 17, Citeseer, pp. 309-315.

[14] BESSIERE, C.，REGIN, J . , YAP , R . , AND ZHANG, Y . An optimal

coarse-grained arc consistency algorithm. Artificial Intelligence 165, 2

(2005), 165-185.

15] BURKE, D .， A N D BROWN, K . Using relaxations to improve search in

distributed constraint optimisation. Artificial Intelligence Review 28, 1

(2007), 35-50.

16] COOPER, M . High-order consistency in valued constraint satisfaction.

Constraints 10, 3 (2005), 283-305.

75

17] COOPER, M . , DE GIVRY, S . ’ SANCHEZ, M . , SCHIEX, T . , ZYTNICKI,

M . , AND WERNER, T . Soft arc consistency revisited. Artificial Intelli-

gence 174, 7-8 (2010), 449-478.

18] COOPER, M .， A N D SCHIEX, T . Arc consistency for soft constraints.

Artificial Intelligence 151 1-2 (2004), 199-227.

19] D E GIVRY, S . ’ HERAS, R , ZYTNICKI, M . , AND LARROSA, J. Ex is -

tential arc consistency: Getting closer to ful l arc consistency in weighted

CSPs. I n Proceedings of 19th International Joint Conferences on Artificial

Intelligence (2005), pp. 84-89.

20] FLUM, J . , AND GROHE, M . Parameterized complexity theory. Spr inger -

Verlag New York Inc, 2006。

21] KADIOGLU, S., AND SELLMANN, M . Efficient context-free grammar con-

s t ra in ts . I n Proceedings of 23rd AAAI Conference on Artificial Intelligence

(2008), pp. 310-316.

22] KADIOGLU, S . , AND SELLMANN, M . G r a m m a r cons t ra in ts . Constraints

15, 1 (2010), 117-144.

23] KATSIRELOS, G . ’ MANETH, S . ’ NARODYTSKA, N . , AND WALSH, T .

Restricted global grammar constraints. In Proceedings of 15th Interna-

tional Conference on Principles and Practice of Constraint Programming

(2009), Springer, pp. 501-508.

24] KATSIRELOS, G . , NARODYTSKA, N . , AND WALSH, T . T h e we igh ted

Grammar constraint. Annals of Operations Research 184 (2011), 179-

207.

25] KROM, M . The Decision Problem for a Class of First-Order Formulas in

Which all Disjunctions are Binary. Mathematical Logic Quarterly 13, 1-2

(1967), 15-20.

76

[26] LAND, A . , AND DOIG, A . A n automatic method of solving discrete pro-

g r a m m i n g p rob lems . Econometrica: Journal of the Econometric Society

(1960), 497-520.

[27] LARROSA, J.，A N D SCHIEX, T . In the quest of the best form of local

cons is tency for we igh ted CSP. I n Proceedings of 18th International Joint

Conferences on Artificial Intelligence (2003), pp. 239-244.

[28] LARROSA, J . , AND SCHIEX，T . So l v i ng we igh ted csp b y m a i n t a i n i n g arc

consistency. Artificial Intelligence 159, 1-2 (2004)，1-26.

29] LAURIERE，J. A language and a program for stating and solving combi-

natorial problems. Artificial intelligence 10, 1 (1978), 29-127.

[30] LEE, J., AND LEUNG, K . Towards efficient consistency enforcement

for global constraints in weighted constraint satisfaction. In Proceedings

of 21st International Joint Conferences on Artificial Intelligence (2009) ,

pp. 559-565.

[31] LEE, J., AND LEUNG, K . A Stronger Consistency for Soft Global Con-

straints in Weighted Constraint Satisfaction. In Proceedings of 24th AAAI

Conference on Artificial Intelligence (2010) .

32] LEUNG, K. L . Soft global constraints in constraint optimization and

weight constraint statisfaction. Master's thesis, The Chinese University

of Hong Kong, 2009.

33] MACK WORTH, A . Consistency in networks of relations. Artificial intelli-

gence 8, 1 (1977), 99-118.

34] MACKWORTH，A . Cons is tency i n ne two rks o f re la t ions . Artificial intelli-

gence 8, 1 (1977), 99-118.

77

35] MOHR, R . , AND HENDERSON, T . A rc and pa th consistency revisited.

Artificial Intelligence 28, 2 (1986), 225-233.

36] MOHR, R . , AND MASINI, G . G o o d o l d d iscrete r e l axa t i on . I n 8th Euro-

pean Conference on Artificial Intelligence (1988) , pp . 651-656 .

37] MONTANARI, U. Networks of constraints: Fundamental properties and

applications to picture processing. Information sciences 7 (1974), 95-132.

38] PARRELLO, B ” KABAT, W ” AND W O S , L . Job -shop schedu l ing us-

ing automated reasoning: A case study of the car-sequencing problem.

Journal of Automated Reasoning 2, 1 (1986), 1-42.

39] PERLIN, M . A rc consistency for factorable relations. Artificial Intelli-

gence 53, 2-3 (1992), 329-342.

40] PES ANT, G. A regular language membership constraint for finite se-

quences o f var iab les. I n Proceedings of 10th Conference on Principles and

Practice of Constraint Programming (2004) , pp . 482 -495 .

:41] PETIT, T . , REGIN, J . , AND BESSIERE, C . Speci f ic f i l t e r i n g a l g o r i t h m s

for over-constrained problems. I n Proceedings of 7th International Con-

ference on Principles and Practice of Constraint Programming (2001) ,

Springer, pp。451-463.

42] QUIMPER, C . ’ AND WALSH, T . Global grammar constraints. I n Pro-

ceedings of 12th International Conference on Principles and Practice of

Constraint Programming (2006), pp. 751-755.

43] QUIMPER, C. , AND WALSH, T . Decomposing global grammar con-

s t ra in ts . I n Proceedings of 13th International Conference on Principles

and Practice of Constraint Programming (2007), Springer, pp. 590-604.

78

[44] QUIMPER, C . , AND WALSH, T . Decompos i t i ons o f g r a m m a r const ra in ts .

I n Proceedings of 23rd AAAI Conference on Artificial Intelligence (2008),

pp. 1567-1570.

[45] REGIN, J . , PETIT, T . , BESSIERE, C . , AND PUGET, J. A n o r i g i na l

constraint based approach for solving over constrained problems. In Pro-

ceedings of 6th International Conference on Principles and Practice of

Constraint Programming (2000), Springer, pp. 543-548.

[46] SABIN, D . , AND FREUDER, E . C o n t r a d i c t i n g conven t i ona l w i s d o m i n

cons t ra i n t sa t is fac t ion . I n Proceedings of the 2nd International Workshop

on Principle and Practice of Constraint Programming (1994) , Spr inger ,

pp. 10-20.

[47] SANCHEZ, M . ， D E GIVRY, S .，A N D SCHIEX, T . Mendelian error de-

tection in complex pedigrees using weighted constraint satisfaction tech-

niques. Constraints 13, 1 (2008), 130-154.

[48] SCHIEX, T . , FARGIER, H . , AND VERFAILLIE, G . V a l u e d cons t ra in t

satisfaction problems: Hard and easy problems. In Proceedings of 14th

International Joint Conferences on Artificial Intelligence (1995) , pp . 6 3 1 -

639.

49] VAN HOEVE，W., PESANT, G . , AND ROUSSEAU, L . On global warming：

Flow-based soft global constraints. Journal of Heuristics 12, 4 (2006),

347-373.

50] ZHANG，Y.，AND Y A P , R . Making ac-3 an optimal algorithm. In Pro-

ceedings of 17th International Joint Conferences on Artificial Intelligence

(2001), pp. 316-321.

79

51] ZYTNICKI, M.，GASPIN, C . , D E GIVRY, S . ’ AND SCHIEX, T . Bounds

arc consistency for weighted csps. Journal of Artificial Intelligence Re-

search 35, 1 (2009), 593-621.

80

C U H K L i b r a r i e s

_ 圓 _ 1
0 0 4 8 0 6 9 1 3

