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Abstract of thesis entitled: 

FADE: Secure Overlay Cloud Storage w i th Access Control 

and File Assured Deletion 

Submitted by TANG, Yang 

for the degree of Master of Philosophy 

at The Chinese University of Hong Kong in July 2011 

We can now outsource data backup to third-party cloud stor-

age services so as to reduce data management costs. However, 

security concerns arise in terms of ensuring the privacy and in-

tegrity of outsourced data. We design and implement FADE, a 

cloud storage system that enforces access control of active data 

and protects deleted data wi th policy-based file assured deletion. 

FADE is built upon a set of cryptographic key operations that 

are maintained by a quorum of key management entities, and 

encrypts outsourced data files to guarantee their privacy and 

integrity. I t uses file access policies to provide a fine-grained 

control of how active files are accessible, and assuredly deletes 

files to make them unrecoverable to anyone upon revocations 
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of file access policies. In particular, FADE acts as an overlay 

system that works seamlessly atop today's cloud storage ser-

vices. To demonstrate this objective, we implement a work-

ing prototype of FADE atop Amazon S3, one of today's cloud 

storage services, and empirically show that FADE provides se-

curity protection for outsourced data wi th a minimal trade-off 

of performance overhead. Our work provides insights of how 

to incorporate value-added security features into current data 

outsourcing applications. 
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中文摘要 

我們現在可以將數據備份外判到第三方的雲儲存服務，從而減少 

數據管理的開支。然而，如何保護外判數據的隱私和完整性引發 

了安全擔憂。我們設計及實現了 FADE，一個對現存數據提供存 

取控制和基於策略保證刪除數據的雲儲存系統。FADE建立在由 

一組密鏡管理實體維護的一系列密鏡運算之上，通過將外判數據 

文件加密來保證其隱私和完整性。它使用文件存取策略來精細控 

制現存文件如何存取，而且在文件存取策略被吊銷之後能夠保證 

刪除文件，使其無法被任何人訪問。特別地，FADE可以作為覆 

蓋系統無縫工作在現時雲儲存服務之上。為展示此目的，我們實 

現了一套工作在現時雲儲存服務Amazon S3之上的FADE原型 

系統，並通過實驗顯示出FADE僅引入極小性能開銷便可為外判 

數據提供安全保護。我們的工作為如何將安全特性結合到現時數 

據外判程序當中提供了見解。 
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Chapter 1 

Introduction 

Cloud storage is a new business solution for data outsourcing, as 

it offers an abstraction of infinite storage space for clients to host 

data in a pay-as-you-go manner [4]. Today there are a number 

of third-party cloud storage providers that offer cloud storage 

services, such as Amazon Simple Storage Service (Amazon S3) 

3] and Windows Azure [35]. Cloud storage helps enterprises and 

government agencies significantly reduce their financial overhead 

of data management, as they can now archive their data to the 

cloud rather than maintain data centers on their own. For ex-

ample, SmugMug [27], a photo sharing website, chose to host 

terabytes of photos on Amazon S3 in 2006 and saved thousands 

of dollars on the maintenance of storage devices [2]. Apart from 

enterprises, individuals can also archive their personal data to 

the cloud using tools like Dropbox [8]. In particular, w i th the 
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CHAPTER 1. INTRODUCTION 2 

advent of smart phones, we expect that more people wi l l use 

Dropbox-like tools to move audio/video files from their smart-

phones to the cloud in order to make effective use of the storage 

space of their smartphones, which have l imited storage resources 

in general. 

However, security concerns become relevant as we now out-

source the storage of possibly sensitive data to th i rd parities. 

There are two specific security concerns that we are interested 

in. First, we need to provide guarantees of access control, in 

which we must ensure that only authorized parties can access the 

outsourced data on the cloud. In particular, we must prohibit 

third-party cloud storage providers from mining any sensitive in-

formation of their clients' data for their own marketing purposes. 

Second, it is important to provide guarantees of assured dele-

t 漏 , m e a n i n g that outsourced data is permanently inaccessible 

to anybody (including the data owner) upon requests of deletion 

of data. Assured deletion is useful in some scenarios. For exam-

ple, a company has archived millions of email messages among 

its employees and customers on the cloud, and later decides to 

delete them to avoid leakage of sensitive data. The challenge 

here is that we have to trust cloud storage providers to actually 

delete data, but they may be reluctant in doing so [25]. Also, 
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cloud storage providers typically keep multiple backup copies 

of data for rel iabil i ty reasons. I t is uncertain, to cloud clients, 

whether cloud providers can reliably remove all backup copies 

upon requests of deletion. Keeping data permanently is undesir-

able, as data may be unexpectedly disclosed in the future due to 

malicious attacks on the cloud or careless management of cloud 

operators. 

Today's cloud storage providers only provide l imited forms of 

security protection for the data stored in their infrastructures. 

For example, they mainly protect data files of a client w i th a 

single access key (e.g., in Amazon S3), but the client cannot 

customize who can access the data, or when the data is acces-

sible. Also, to the best of our knowledge, none of today's cloud 

storage providers provide guarantees of assured deletion of data 

files. 

The security concerns motivate us, as cloud clients, to have 

a system that can enforce access control and assured deletion of 

outsourced data on the cloud m a fine-grained manner. How-

ever，building such a system is a difficult task, especially when 

i t involves protocol or hardware changes in cloud storage infras-

tructures that are externally owned and managed by third-party 

cloud providers. Thus, i t is necessary to design a secure overlay 
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cloud storage system that can be overlaid and work seamlessly 

atop existing cloud storage services. 

In this thesis, we present FADE，a secure overlay cloud stor-

age system that provides fine-grained access control and assured 

deletion for outsourced data on the cloud, while working seam-

lessly atop today's cloud storage services. In FADE, active data 

files that remain on the cloud are associated w i th a set of user-

defined file access policies (e.g., t ime expiration, read/wri te per-

missions of authorized users), such that data files are accessible 

only to users who satisfy the file access policies. In addition, 

FADE generalizes time-based file assured deletion [20, 10] (i.e., 

data files are assuredly deleted upon time expiration) into a more 

fine-grained approach called policy-based file assured deletion, in 

which data files are assuredly deleted when the associated file 

access policies are revoked and become obsolete. The design in-

tu i t ion of FADE is to decouple the management of encrypted 

data and cryptographic keys, such that encrypted data remains 

on third-party (untrusted) cloud storage providers, while cryp-

tographic keys are independently maintained and operated by 

a quorum of key managers that altogether form trustworthi-

ness. To provide guarantees of access control and assured dele-

tion, FADE leverages off-the-shelf cryptographic schemes includ-
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ing threshold secret sharing [26] and attribute-based enciyp-

t ion [24, 6, 11, 22], and performs various cryptographic key 

operations that provide security protection for basic file up-

load/download operations. We implement a prototype of FADE 

to just i fy its feasibility, and export a set of l ibrary APIs that 

can be used, as a value-added security service, to enhance the 

security properties of general data outsourcing applications. 

In summary, this thesis makes the following contributions: 

• We propose a new policy-based file assured deletion scheme 

that reliably deletes files wi th regard to revoked file access 

policies. In this context, we design the key management 

schemes for various file manipulation operations, such that 

we provide a fine-grained control of access control and as-

sured deletion for our outsourced data. 

• We implement a working prototype of FADE atop Amazon 

S3. Our implementation of FADE exports a set of A P I in-

terfaces that can be adapted into different data outsourcing 

applications. 

• We empirically evaluate the performance overhead of FADE 

atop Amazon S3. Using experiments in a realistic network 

environment, we show the feasibility of FADE in improving 
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the security protection of data storage on the cloud. 

The remainder of the thesis proceeds as follows. In Chapter 2, 

we describe and motivate the concept of policy-based file assured 

deletion, a major building block of FADE. In Chapter 3, we 

present the basic design of FADE and its related cryptographic 

key operations. In Chapter 4, we present the extensions that 

we include in FADE. In Chapter 5, we explain the implemen-

tat ion details of FADE. In Chapter 6, we evaluate FADE atop 

Amazon S3. In Chapter 7, we review related work on protecting 

outsourced data storage. Finally, Chapter 8 concludes. 



Chapter 2 

Policy-based File Assured 
Deletion 

FADE seeks to achieve both access control and assured deletion 

for outsourced data. The design of FADE is centered around 

the concept of policy-based file assured deletion. We first review 

time-based file assured deletion proposed in earlier work. We 

then explain the more general concept policy-based file assured 

deletion and motivate why it is important in certain scenarios. 

2.1 Background 

Time-based file assured deletion, which is first introduced in [20], 

means that files can be securely deleted and remain permanently 

inaccessible after a pre-defined duration. The main idea is that 

a file is encrypted wi th a data key, and this data key is further 

7 



CHAPTER 2. POLICY-BASED FILE ASSURED DELETION 8 

encrypted wi th a control key that is maintained by a separate 

key manager (known as Ephemerizer [20]). The key manager is 

a server that is responsible for cryptographic key management. 

In [20], the control key is time-based, meaning that i t wi l l be 

completely removed by the key manager when an expiration 

time is reached, where the expiration time is specified when 

the file is first declared. Without the control key, the data key 

and hence the data file remain encrypted and are deemed to be 

inaccessible. Thus, the main security property of file assured 

deletion is that even if a cloud provider does not remove expired 

file copies from its storage, those files remain encrypted and 

unrecoverable. 

An open issue in the work [20] is that i t is uncertain that 

whether time-based file assured deletion is feasible in practice, 

as there is no empirical evaluation. Later, the idea of time-based 

file assured deletion is prototyped in Vanish [10]. Vanish divides 

a data key into multiple key shares, which are then stored in 

different nodes of a public Peer-to-Peer Distr ibuted Hash Table 

(P2P DHT) system. Nodes remove the key shares that reside 

in their caches for a fixed time period. I f a file needs to remain 

accessible after the time period, then the file owner needs to 

update the key shares in node caches. Since Vanish is buil t on 



CHAPTER 2. POLICY-BASED FILE ASSURED DELETION 9 

the cache-aging mechanism in the P2P DHT, it is difficult to 

generalize the idea from time-based deletion to a fine-grained 

control of assured deletion wi th respect to different file access 

policies. We elaborate this issue in the following section. 

2.2 Policy-based Deletion 

We now generalize time-based deletion to policy-based deletion 

as follows. We associate each file wi th a single atomic file access 

Polwy (or policy for short), or more generally, a Boolean com-

bination of atomic policies. Each (atomic) policy is associated 

wi th a control key, and all the control keys are maintained by the 

key manager. Similar to time-based deletion, the file content is 

encrypted w i th a data key, and the data key is further encrypted 

wi th the control keys corresponding to the policy combination. 

When a policy is revoked, the corresponding control key wi l l be 

removed from the key manager. Thus, when the policy combi-

nation associated wi th a file is revoked and no longer holds, the 

data key and hence the encrypted content of the file cannot be 

recovered w i th the control keys of the policy combination. In 

this case, we say the file is deleted. The main idea of policy-

based deletion is to delete files that are associated wi th revoked 

policies. 
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The definition of a policy varies depending on applications. 

In fact, time-based deletion is a special case under our frame-

work. In general, policies wi th other access rights can be defined. 

To motivate the use of policy-based deletion, let us consider a 

scenario where a company outsources its data to the cloud. We 

consider four practical cases where policy-based deletion wi l l be 

useful: 

• Storing files for tenured employees. For each employee 

(e.g., Alice), we can define a user-based policy “P: Alice 

zs an employee”，and associate this policy wi th all files of 

Alice. If Alice quits her job, then the key manager wi l l ex-

punge the control key of policy P. Thus, nobody including 

Alice can access the files associated wi th P on the cloud, 

and those files are said to be deletec,. 

• Storing files for contract-based employees. An em-

ployee may be affiliated wi th the company for only a fixed 

length of time. Then we can form a combination of the 

user-based and time-based policies for employees' files. For 

example, for a contract-based employee Bob whose contract 

expires on 2010-01-01, we have two policies "Pi ； Bob is an 

employee” and “P2: valid before 2010-01-01”. Then all files 

of Bob are associated wi th the policy combination Pi A P2. 
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If either or P) is revoked, then Bob's files are deleted. 

• Storing files for a t eam of employees. The company 

may have different teams, each of which has more than one 

employee. As in above, we can assign each employee i a 

policy combination P几八 P仏 where and P,2 denote the 

user-based and time-based policies, respectively. We then 

associate the team's files wi th the disjunctive combination 

(Pn A P12) V (P21 A P22) V . • • V (Pm A P^vs) for employees 

1, 2’. . . ’ TV. Thus, the team's files can be accessed by any 

one of the employees, and wi l l be deleted when the policies 

of all employees of the team are revoked. 

• Switching a cloud provider. The company can define 

a customer-based policy “P: a customer of cloud provider 

X,，, and all files that are stored on cloud X are tied wi th 

policy P. I f the company switches to a new cloud provider, 

then it can revoke policy P. Thus, all files on cloud X wi l l 

be deleted. 

Policy-based deletion follows the similar notion of attnhute-

based encryption (ABE) [24’ 6, 11, 22], in which data can be 

accessed only if the corresponding attributes (atomic policies in 

our case) are satisfied. However, policy-based deletion is dif-
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ferent from A B E in two aspects. First, policy-based deletion 

focuses on how to delete data, while A B E focuses on how to ac-

cess data based on attributes. Second, because of the different 

design objectives, a major feature of A B E is to give users the de-

cryption keys of the associated attributes so that they can access 

files that satisfy the attributes, and hence A B E seeks to ensure 

that no two users can collude if they are tied wi th different sets 

of attributes. On the other hand, policy-based deletion does not 

share w i th users any of the decryption keys that are used for 

deletion, but instead such keys are all maintained by the key 

manager. This enables the keys to be appropriately removed in 

the key manager so as to guarantee file assured deletion. Thus 

policy-based deletion has a different design space in contrast 

w i th existing A B E approaches. However, FADE leverages A B E 

to achieve policy-based access control in addition to policy-based 

assured deletion. We explain the details in Chapter 4. 



Chapter 3 

Basic Design of FADE 

We now present the basic design of FADE, a system that pro-

vides guarantees of access control and assured deletion for out-

sourced data in cloud storage. Figure 3.1 illustrates an overview 

of the FADE system. In a nutshell, the cloud hosts data files on 

behalf of a group of users, each of which wants to outsource data 

files to the cloud based on his/her associated file access policies. 

FADE can be viewed as an overlay system atop the underlying 

cloud. I t applies security protection to the outsourced data files 

before they are hosted on the cloud. 

3.1 Entities 

As shown in Figure 3.1, the FADE system is composed of two 

main entities: 

13 
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Key Key Key 
manager manager ••• manager 

f a d e ^ 1 2 N 
client ^ ^ J ^ 

、、、、、I 

data Kf^^T^ File 
source ^ ed) 广 \ 
——.__^T-Wj^ t ^ 广 鬥 鬥 鬥 ） 

data r ^ r ^ 
Isource 刚 f e ^ Cloud 

Figure 3.1: The FADE architecture. Each client (deployed locally with 

its own data source) interacts with one or multiple key managers and up-

loads/downloads data files to/from the cloud. 

• Clients. A client is an interface that bridges the data 

source (e.g., filesystem) of each FADE user and the cloud. 

I t applies encryption (decryption) to the outsourced data 

files uploaded to (downloaded from) the cloud. I t also in-

teracts wi th the key managers to perform the necessary 

cryptographic key operations. 

• Key managers. FADE is built on one or multiple key 

managers, each of which is a stand-alone entity that main-

tains policy-based control keys for access control and as-

sured deletion. These control keys are to protect data keys 

that are used to encrypt data files. The key managers re-

spond to the requests made by different clients and perform 

the necessary cryptographic operations on the control keys. 
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The cloud, maintained by a third-party provider (e.g., Ama-

zon S3 or Windows Azure), hosts data files on behalf of different 

clients. Each of the data files is associated wi th a combination 

of file access policies. We emphasize that we do not require 

any protocol and implementation changes in the cloud to sup-

port FADE. In fact, even a naive storage service that merely 

provides file upload/download operations is also suitable. 

3.2 Deployment 

In our current design, a FADE client is deployed locally w i th 

its corresponding data source as a local driver or daemon. We 

point out that i t is also possible to deploy the FADE client as 

a cloud storage proxy [1], so that i t can interconnect multiple 

data sources. We can use standard TLS/SSL [7] to protect the 

communication between each data source and the proxy. 

In FADE, the set of key managers is deployed as a central-

ized trusted service, whose trustworthiness is enforced through 

a quorum scheme (see Section 3.3). We assume that the key 

managers are centrally maintained, for example, by the system 

administrators of an enterprise that deploys FADE for its em-

ployees. We note that this centralized control is opposed to the 

core design of Vanish [10], which proposes to use decentralized 
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key management on top of existing P2P D H T systems. However, 

as discussed in Chapter 2, there is no straightforward solution to 

develop fine-grained cryptographic key management operations 

over a decentralized P2P D H T system. Also, the Vanish imple-

mentation that was published in [10] is subject to Sybil attacks 

36], which particularly target D H T systems. In view of this, we 

propose to deploy a centralized key management service, anc. 

use a quorum scheme to improve its robustness, as explained in 

Section 3.3. 

3.3 Security Goals, Threat Models, and As-

sumptions 

We now formally state the security properties that FADE seeks 

to achieve in order to protect the outsourced data files. Here, we 

consider an adversary that seeks to compromise the privacy of 

data files. Clearly, FADE needs to properly encrypt outsourced 

data files to ensure that their information is not disclosed to 

unauthorized parties. The underlying assumption is that the 

encryption mechanism is secure, such that i t is computationally 

infeasible to recover the encrypted content without knowing the 

cryptographic key for decryption. In this thesis, we highlight 
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two specific security goals that FADE seeks to achieve for fine-

grained security control: 

• Policy-based access control. A client is authorized to 

access only the files whose associated policies are active and 

are satisfied by the client; and 

• Policy-based assured deletion. A file is deleted (or per-

manently inaccessible) if its associated policies are revoked 

and become obsolete. That is, even if a file copy that is asso-

ciated wi th revoked policies exists, it remains encrypted and 

we cannot retrieve the corresponding cryptographic keys to 

recover the file. Thus, the file copy becomes unrecoverable 

by anyone (including the owner of the file). 

To achieve these security goals, it is necessary to make the key 

management service in FADE robust and secure. We address the 

robustness of key management in FADE from two perspectives. 

First, we assume that each key manager does not keep any 

backup copy of every key that it stores [20], as it is difficult to 

remove all copies of keys of revoked policies (see explanations 

below). To improve robustness, we use a quorum of key man-

agers [26], in which we create N key shares for a key, such that 

any k < N oi the key shares can be used to recover the key. 

Each key manager is a stand-alone entity that is independent 
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of other key managers. While the quorum scheme increases the 

storage overhead of keys, this is justified as keys are generally 

of much smaller size than data files. We explain the details of 

how to implement the quorum scheme in FADE in Chapter 4. 

Second, we assume that the key managers (or at least N -

A: + 1 of them if a quorum scheme is used) reliably remove the 

corresponding control keys of the revoked policies. Suppose in 

the worst case that all key managers are compromised. Then an 

attacker can recover the files that are associated w i th existing 

active policies. On the other hand, files that are associated w i th 

revoked policies sti l l remain inaccessible, as the control keys are 

removed. Hence, assured deletion is achieved. 

In the following, we describe the cryptographic key operations 

in order to achieve the security goals. 

3.4 The Basics - File Upload/Download 

We start w i th the basic design of FADE. To simplify our discus-

sion, we make two assumptions. First, only a single key manager 

is used. Second, before accessing a file, a client needs to present 

authentication credentials (e.g., based on public key infrastruc-

ture certificates) to the key manager to show that it satisfies the 

proper policies associated wi th the files, so that the key manager 
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wil l perform cryptographic key operations. We explain in Chap-

ter 4 how to relax both of the assumptions through multiple key 

managers w i th threshold secret sharing and access control w i th 

attribute-based encryption. 

We now introduce the basic operations of how a client up-

loads/downloads files to / f rom the cloud. We start w i th the case 

where each file is associated wi th a single policy, and then ex-

plain how a file is associated wi th multiple policies in Section 3.6. 

Our design is based on blinded RSA [29] (or blinded deciyp-

t ion [20]), in which the client requests the key manager to de-

ciypt a blinded version of the encrypted data key. I f the associ-

ated policy is satisfied, then the key manager wi l l decrypt and 

return the blinded version of the original data key. The client 

can then recover the data key. The motivation of using this 

blinded decryption approach is that the actual content of the 

data key remains confidential to the key manager as well as to 

any attacker that sniffs the communication between the client 

and the key manager. 

Table 3.1 summarizes the notation used in this thesis. We 

first summarize the major notation used throughout the thesis. 

For each policy z, the key manager generates two secret large 

RSA prime numbers and q, and computes the product n , = 
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Notation Description 

F Data file generated by the client 

K Data key used to encrypt file F 

Pi Policy with index i 

Pi, Qi RSA prime numbers for policy P, (kept secret by the key 
manager) 

rii = known to the public 

(e” di) RSA public/private control key pair for policy P, 

S, Secret key corresponding to policy Pi 

{?Ti}/c Symmetric-key encryption of message m with key k 

R The random number used for blinded RSA 

Table 3.1: Notation used in this thesis. 

PiQî - The key manager then randomly chooses the RSA public-

private control key pair (e“dz). The parameters wi l l be 

publicized, while d̂  is securely stored in the key manager. On 

the other hand, when the client encrypts a file F, i t randomly 

generates a data key K , and a secret key Ŝ  that corresponds to 

policy P” We let {m}k denote a message m encrypted w i th key 

k using symmetric-key encryption (e.g., AES). We let R be the 

blinded component when we use blinded RSA for the exchanges 

of cryptographic keys. 

Suppose that F is associated wi th policy PI. Our goal here is 
iWe require that each policy i uses a distinct tm to avoid the common modulus attack 

on RSA [16], 
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Cloud Client Key manager 

Pi，，S:‘, {F}^ 

Figure 3.2: File upload. 

to ensure that K , and hence F , are accessible only when policy 

Pi is satisfied. Note that we only present the operations on cryp-

tographic keys, while the implementation subtleties, such as the 

metadata that stores the policy information, wi l l be discussed 

in Chapter 5. Also, when we raise some number to exponents 

Ci or di, i t must be done over modulo n,-. For brevity, we drop 

“mod n , in our discussion. 

File upload. Figure 3.2 shows the file upload operation. The 

client first requests the public key (n,, e,) of policy P, from the 

key manager, and caches (n,, e,) for subsequent uses if the 
same 

policy P, 

is associated wi th other files. Then the client generates 

two random keys K and S” and sends S f ’ and {F}k to 

the cloud^ Then the client must discard K and S^. To protect 
2We point out that the encrypted keys (i.e., { K } s , , S f ) can be stored in the cloud 

without creating risks of leaking confidential information. 
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Cloud Client Key manager 

Figure 3.3: File download. 

the integrity of a file, the client computes an HMAC signature 

on every encrypted file and stores the HMAC signature together 

wi th the encrypted file in the cloud. We assume that the client 

has a long-term private secret value for the HMAC computation. 

File download. Figure 3.3 shows the file download operation. 

The client fetches S-\ and {F}k from the cloud. The 

client wi l l first check whether the HMAC signature is valid before 

decrypting the file. Then the client generates a secret random 

number R, computes i?〜and sends S-' . R^̂  = 耶， t o the 

key manager to request for decryption. The key manager then 

computes and returns 临RF个 二 SJI to the client, which 

can now remove R and obtain S” and decrypt {K}S^ and hence 

條 . 
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3.5 Policy Revocation for File Assured Dele-
tion 

I f a policy P, is revoked, then the key manager completely re-

moves the private key d̂  and the secret prime numbers p, and � . 

丄 Jius’ we cannot recover Si from S f ’ and hence cannot recover 

K and file F. We say that file F , which is tied to policy P” is 

assuredly deleted. Note that the policy revocation operations 

do not involve interactions wi th the cloud. 

3.6 Multiple Policies 

FADE supports a Boolean combination of multiple policies. We 

mainly focus on two kinds of logical connectives: (i) the con-

junction (AND), which means the data is accessible only when 

every policy is satisfied; and (ii) the disjunction (OR), which 

means if any policy is satisfied, then the data is accessible. 

• Conjunctive Policies. Suppose that F is associated wi th 

conjunctive policies Pi 八 P2 八...八 i^m. To upload F to the 

cloud, the client first randomly generates a data key K , and 

secret keys 5^2’. •.，Sm. I t then sends the following to the 

cloud: { { K } s , } s , . • . s 饥 , S l \ . . 恐 、 a n d { F } k . On 

the other hand, to recover F , the client generates a random 
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number R and sends {S iRY^ 产， . . . ’（S^i?)〜 to the 

key manager, which then returns SiR, S2R,. . . ’ SmR. The 

client can then recover 81,82, • • and hence K and F. 

• Disjunctive Policies. Suppose that F is associated wi th 

disjunctive policies V P,̂  V • • • V P,^. To upload F to 

the cloud, the client wi l l send the following: {^}s2'> 

...，{Kkn, 52', S'二 and { F } k . Therefore, the 

client needs to compute m different encrypted copies of K. 

On the other hand, to recover F\ we can use any one of the 

policies to decrypt the file, as in the above operations. 

To delete a file associated wi th conjunctive policies, we simply 

revoke any of the policies (say, Pj). Thus, we cannot recover 

Sj and hence the data key K and file F. On the other hand, 

to delete a file associated wi th disjunctive policies, we need to 

revoke all policies, so that S^/ cannot be recovered for all j. Note 

that for any Boolean combination of policies, we can express it 

in canonical form, e.g., in the disjunction (OR) of conjunctive 

(AND) policies. 
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3.7 Policy Renewal 

We conclude this chapter wi th the discussion of policy renewal. 

Policy renewal means to associate a file wi th a new policy (or 

combination of policies). For example, if a user wants to extend 

the expiration time of a file, then the user can update the old 

policy that specifies an earlier expiration time to the new policy 

that specifies a later expiration time. 

In FADE, policy renewal merely operates on keys, without 

retrieving the encrypted file from the cloud. The procedures 

can be summarized as follows: (i) download all encrypted keys 

(including the data key for the file and the set of control keys for 

the associated Boolean combination of policies) from the cloud, 

(ii) send them to the key manager for decryption, (ii i) recover 

the data key, (iv) re-encrypt the data key wi th the control keys 

of the new Boolean combination of policies, and finally (v) send 

the newly encrypted keys back to the cloud. 

In some special cases, we can simplify the key operations of 

policy renewal. Suppose that the Boolean combination structure 

of policies remains unchanged, but one of the atomic policies P, 

IS changed to Pj. For example, when we extend the contract date 

of Bob (see Section 2.2), we may need to update the particular 

time-based policy of Bob without changing other policies. Then 

9^^mum g b U M t u i • • • i • _111咖__ _ • • _ _ _ 1 _ 通 • _ 
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Cloud Client Key manager 

Figure 3.4: A special case of policy renewal - when policy P, is renewed to 

policy Pj. 

instead of decrypting and re-encrypting the data key w i th the 

control keys that correspond to the new Boolean combination of 

policies, we can simply update the control key that corresponds 

to the particular atomic policy. Figure 3.4 illustrates this special 

case of policy renewal. In this case, the client simply sends the 

blinded version S / "督 to the key manager, which then returns 

SzR- The client then recovers S^ Now, the client re-encrypts 

Si into S f (mod n]), where (n” e]�is the public key of policy 

Pj, and sends it to the cloud. Note that the encrypted data key 

K remains intact. 



Chapter 4 

Extensions of FADE 

We now discuss two extensions to the basic design of FADE. 

The first extension is to use attribute-based encryption (ABE) 

24’ 6’ 11, 22] in order to authenticate clients through policy-

based access control. The second extension is to use a quorum 

of key managers [26] in order to achieve better reliabil ity for the 

-^ey management service. 

4.1 Access Control with ABE 

To recover a file from the cloud, a client needs to request the 

key manager (assuming that only a single key manager is de-

ployed) to decrypt the data key. The client needs to present 

authentication credentials to the key manager to show that it 

indeed satisfies the policies associated wi th the files. One imple-

27 
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mentation approach for this authentication process is based on 

the public-key infrastructure (PKI). However, this client-based 

authentication requires the key manager to have accesses to the 

association of every client and its satisfied policies. This lim-

its the scalability and flexibil ity if we scale up the number of 

supported clients and their associations w i th policies. 

To resolve the scalability issue, attribute-hased encryption 

(ABE) [24, 6, 11, 22] turns out to be the most appropriate so-

lut ion (see Section 2.2). In particular, our approach is based 

on Ciphertext-Policy Attribute-Based Encryption (CP-ABE) [6.. 

We summarize the essential ideas of A B E that are sufficient for 

our FADE design, while we refer readers to [6] for details. Each 

client first obtains, from the key issuing authority of the A B E 

system, an ABE-based private key that corresponds to a set 

of attributes^ the client satisfies. This can be done by having 

the client present authentication credentials to the key issuing 

authority, but we emphasize that this authentication is only a 

one-time bootstrap process. Later, when a client requests the 

key manager to decrypt the data key of a file on the cloud: the 

key manager wi l l encrypt the response messages using the ABE-

based public key that corresponds to the combination of policies 
lAn attribute is equivalent to an atomic policy that we define for policy-based file 

assured deletion (see Chapter 2). 
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associated wi th the file. If the client indeed satisfies the policy 

combination, then it can use its ABE-based private key to re-

cover the data key. Note that the key manager does not have to 

know exactly each individual client who requests decryption of 

a data key. 

FADE uses two independent keys for each policy. The first 

one is the private control key that is maintained by the key man-

ager for assured deletion. If the control key is removed from the 

key manager, then the client cannot recover the files associated 

wi th the corresponding policy. Another one is the ABE-based 

key that is used for access control. The ABE-based private key 

IS distributed to the clients who satisfy the corresponding policy, 

as in the ABE approach, while the key manager holds the ABE-

based public key and uses it to encrypt the response messages 

returned to the clients. The use of the two sets of keys for the 

same policy enables FADE to achieve both access control and 

assured deletion. 

We now modify the FADE operations to include the ABE 

feature as follows. We assume that we operate on a file that is 

associated wi th a single policy. 

File Upload. The fi] -G upload operation remains unchanged 

since we only need the public parameters from the key manager 
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Cloud Client Key manager 

I ^Ps ^̂^ 
revoke control 
key of P, 

Figure 4.1: Policy revocation with ABE. 

for this operation, and hence we do not need to authenticate the 

client. 

File Download. The file download operation requires authen-

tication of the client. When the client requests the key manager 

to decrypt S f the key manager encrypts its answer S^R wi th 

ABE based on the policy of the file. Therefore, if the client sat-

isfies the policy, then it can decrypt the response message and 

get S J l 

Policy Renewal. Similar to above, the key manager encrypts 

SiR wi th ABE when the client requests it to decrypt the old 

policy. For the re-encryption wi th the new policy, there is no 

need to enforce access control since we only need the public 

parameters. 

Policy Revocation. Here we use a challenge-response mech-

anism in order for the key manager to authenticate the client. 
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Figure 4.1 shows the revised policy revocation protocol. In the 

first round, the client tells the key manager that i t wants to 

revoke policy P” The key manager then generates a random 

number r a s a challenge, encrypts i t w i th ABE that corresponds 

to policy P ” and gives it to the client. Next, if the client is gen-

uine，then i t can decrypt r and send it to the key manager as 

the response to that challenge. Finally, the key manager revokes 

the policy and acknowledges the client. 

4.2 Multiple Key Managers 

We point out that the use of a single key manager wi l l lead to 

the single-point-of-failure problem. An untrustworthy key man-

ager may either prematurely removes the keys before the client 

requests to revoke them, or fail to remove the keys when it is re-

quested to. The former case may prevent the client from getting 

its data back, while the latter case may subvert assured deletion. 

Therefore, i t is important to improve the robustness of the key 

management service to minimize its chance of being compro-

mised. Here, we deploy a quorum of key managers [26], such 

that if there exist any A: < TV key managers that correctly fmic-

tion’ then it is sufficient to perform all required cryptographic 

key operations. 
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Cloud Client Key manager 1 … K e y manager N 
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Figure 4.2: File upload with multiple key managers. 

In FADE, we need to address the challenge of how to manage 

the control keys wi th i V 〉 1 key managers. For each policy 

Pi, the j t h key manager (where I < j < N) wi l l independently 

generate and maintain an RSA public/private key pair (e小 dy) 

corresponding to a modulus n “ . We point out that this key pair 

is independent of the key pairs generated by other key managers, 

although all such key pairs correspond to the same policy P,. 

Also, each key manager keeps its own key pair and wi l l not 

release it to other key managers. 

Let us consider a file F that is associated wi th policy P” We 

now describe the file/policy operations of FADE using multiple 

.̂ ey managers. 

File Upload. Figure 4.2 shows the file upload operation wi th 

multiple key managers. Instead of storing Sp on the cloud as in 
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Cl。ud Client Key manager 1 . . . Key managerN 
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^ 

Figure 4.3: File download with multiple key managers and ABE. 

the case of using a single key manager, the client now splits 5；. 

into N shares, 山 ⑶...，S⑶ using Shamir's scheme. Next, the 

client requests each key manager j for the public key (n”.，e”.). 

Then the client computes S货 ( m o d n ” ) for each j , and sends 

•. •, Se淑,and { F } k to the cloud. Finally, the 

client discards K , S” and S…S仏 . . . ,Su^ . 

File Download. Figure 4.3 shows the file download operation 

wi th multiple key managers. After retrieving the encrypted key 

shares S^f, . • . , s说 from the cloud, the client needs to re-

quest each key manager to decrypt a share. For the j t l i share 

Si? U = 2,. . ., N)^ the client blinds it w i th a randomly gen-

erated number R, and sends S货W ” to key manager j . Then, 

key manager j responds the client wi th S^jR. I t also encrypts 

the response wi th ABE. After unblinding, the client knows 
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Figure 4.4: A special case of policy renewal with multiple key managers and 

ABE - when policy P, is renewed to policy Pj. 

After collecting k decrypted shares of S…the client can combine 

them into S, and hence decrypts K and F. 

Policy Renewal. The policy renewal operation is similar to our 

original operation discussed in Section 3.7. The only difference 

is that the client needs to renew every share of Si. Note that 

in this operation we do not need to combine or split the shares. 

Figure 4.4 shows a special case of renewing a policy P, to another 

Pj (cf. Figure 3.4 in Chapter 3). 

Policy Revocation. The client needs to ask every key manager 

to revoke the policy. As long as at least (TV —A:+ 1) key managers 

remove the private control keys corresponding to the policy, all 

files associated wi th this policy become assuredly deleted. 
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Implementation 

We implement a working prototype of FADE using C + + on 

Linux. Our implementation is built on off-the-shelf l ibrary APIs. 

Specifically, we use the OpenSSL library [19] for the crypto-

graphic operations, the cpabe l ibrary [31] for the ABE-based 

access control, and the ssss l ibrary [28] for sharing control keys 

to a quorum of key managers. The ssss library is originally 

designed as a command-line ut i l i ty to deal wi th keys in ASCII 

format. We slightly modify ssss and add two functions to split 

and combine keys in binary format, so as to make it compatible 

wi th other libraries. In addition, we use Amazon S3 [3] as our 

cloud storage backend. 

In the following, we define the metadata of FADE being at-

tached to individual data files. We then describe how we im-

plement the client and a quorum of key managers and how the 

35 
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client interacts w i th the clouc. 

5.1 Representation of Metadata 

For each data file protected by FADE, we include the metadata 

that describes the policies associated wi th the file as well as a set 

of cryptographic keys. More precisely, the metadata contains 

the specification of the Boolean combination of policies, and 

the corresponding cryptographic keys including the encrypted 

data key of the file and the control keys associated wi th the 

policies. Here, we assume that each (atomic) policy is specified 

by a unique 4-byte integer identifier. To represent a Boolean 

combination of policies, we express it in disjunctive canonical 

form, i.e., the disjunction (OR) of conjunctive policies, and use 

the characters and to denote the A N D and OR operators. 

We upload the metadata as a separate file to the cloud. This 

enables us to renew policies directly on the metadata file without 

retrieving the entire data file from the cloud. 

In our implementation, individual data files have their own 

metadata, each specifying its own data key. To reduce the meta-

data overhead as compared to the data file size, we can form a 

tarball of multiple files under the same policy combination and 

have all files protected wi th the same data key. 
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5.2 Client 

Our implementation of the client uses the following four function 

calls to enable end users to interact w i th the cloud: 

• U p l o a d C f i l e , p o l i c y ) . The client encrypts the input file 

according to the specified policy (or a Boolean combination 

of policies). Here, the file is encrypted using the 128-bit 

AES algorithm wi th the cipher block chaining (CBC) mode. 

After encryption, the client also appends the encrypted file 

size (which is 8 bytes long) and the H M A C - S H A l signature 

(which is 20 bytes long) to the end of encrypted file for 

integrity checking in later downloads. I t then sends the 

encrypted file and the metadata onto the cloud. 

• D o w n l o a d ( f i l e ) . The client retrieves the file and the pol-

icy metadata from the cloud. I t then checks the integrity 

of the encrypted file, and decrypts the file. 

參 Revoke ( p o l i c y ) . The client tells the key managers to per-

manently revoke the specified policy. A l l files associated 

w i th the policy wi l l be assuredly deleted. I f a file is associ-

ated w i th the conjunctive policy combination that contains 

the revoked policy, then it wi l l be assuredly deleted as well. 

參 R e n e w ( f i l e , new一policy). The client first fetches the 
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metadata for the given file from the cloud. I t then up-

dates the metadata wi th the new policy. Finally, i t sends 

the metadata back to the clouc. 

We export the above function calls exported as l ibrary APIs. 

Thus, different implementations of the client can call the l ibrary 

APIs and have the protection offered by FADE. In our current 

prototype, we implement the client as a user-level program that 

can access files under a specified folder. 

The above exported interfaces wrap the third-party APIs for 

interacting wi th the cloud. As an example, we use L i b A W S + + 

15], a C + + l ibrary for interfacing w i th Amazon S3 using plain 

HTTP. We point out that we can also extend FADE to interact 

w i th different cloud storage services, provided that there are 

APIs that support the basic file upload/download operations 

w i th a particular clouc.. 

5.3 Key Managers 

We implement a quorum of key managers, each of which sup-

ports the following basic functions. 

• Creating a policy. The key manager creates a new policy 

and returns the corresponding public control key. 
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• Retrieving the public control key of a policy. I f the policy is 

accessible, then the key manager returns the public control 

key. Otherwise, i t returns an error. 

• Decrypting a key with respect to a policy. I f the policy is 

accessible, then the key manager decrypts the (blinded) key. 

Otherwise, i t returns an error. 

參 Remkmg a policy. The key manager revokes the policy and 

removes the corresponding keys. 

We implement the basic functionalities of a key manager so 

that i t can perform the required operations on the cryptographic 

keys. In particular, all the policy control keys are buil t upon 

1024-bit blinded RSA (see Section 3.4). Besides, each individual 

key manager supports A B E for access control. 
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Evaluation 

We now evaluate the empirical performance of our implemented 

prototype of FADE atop Amazon S3. I t is crucial that FADE 

does not introduce substantial performance or monetary over-

head that wi l l lead to a big increase in data management costs. 

In addition, the cryptographic operations of FADE should only 

bring insignificant computational overhead. Therefore, our ex-

periments aim to answer the following questions: What is the 

performance and monetary overhead of FADE? Is i t feasible to 

use FADE to provide file assured deletion for cloud storage? 

Our experiments use Amazon S3 APAC servers that reside 

in Singapore for our cloud storage backend. Also, we deploy the 

client and the key managers wi th in an organization's network 

that resides in Hong Kong. We evaluate FADE on a per-file 

basis, that is, when it operates on an individual file of different 

40 
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sizes. We can proportionally scale our results for the case of 

multiple files. 

6.1 Experimental Results on Time Performance 
of FADE 

We first measure the time performance of our FADE prototype. 

In order to identify the time overhead of FADE, we divide the 

running time of each measurement into three components: 

• file transmission time, the uploading/downloading time for 

the data file between the client and the cloud. 

• rnetadata transmission time, the time for uploading/downloading 

the metadata, which contains the policy information and 

the cryptographic keys associated wi th the file, between 

the client and the clouc.. 

• cryptographic operation time, the total t ime for crypto-

graphic operations, which includes the total computational 

time used for performing AES and HMAC on the file, and 

the time for the client to coordinate wi th the quorum of 

key managers on operating the cryptographic keys. 

We average each of our measurement results over 10 different 

trials. 
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Figure 6.1: Experiment A. l (Performance of file upload/download opera-

tions) . 

6.1.1 Evaluation of Basic Design 

We first evaluate the time performance of the basic design of 

FADE (see Chapter 3), in which we use a single key manager 

and do not involve ABE. 

Experiment A . l (Performance of file upload/download 

operations). In this experiment, we measure the running time 

of the file upload and download operations for different file sizes 

(including 1KB, 3KB, 10KB，30KB, 100KB, 300KB, 1MB, 3MB, 

and 10MB). Figure 6.1 shows the results. 

First, the cryptographic operation time increases wi th the 

file size, mainly due to the symmetric-key encryption applied 

to a larger file. Nevertheless, we find that in all cases of file 

upload/download operations, the time of cryptographic opera-
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tions is no more than 0.2s (for a file size within 10MB), and 

accounts for no more than 2.6% of the file transmission time. 

We expect that FADE only introduces a small time overhead in 

cryptographic operations as compared to the file transmission 

time, where the latter is inevitable even without FADE. 

Also, the metadata transmission time is always around 0.2s, 

regardless of the file size. This is expected, since the metadata 

file only stores the policy information and cryptographic keys, 

both of which are independent of the data files. The file trans-

mission time is comparable to the metadata transmission time 

for small files. However, for files larger than 100KB, the file 

transmission time becomes the dominant factor. For instance, 

to upload or download a 10MB file, the sum of the metadata 

transmission time and the cryptographic operation time (both 

are due to FADE) account for 4.1% and 0.7% of the total time, 

respectively. 

We note that the upload and download operations are asym-

metric and spend different times to complete the operations. 

Nevertheless, the performance overhead of FADE drops when 

the size of the data file being protected is large enough, for ex-

ample, on the megabyte scale. 

Experiment A.2 (Performance of policy updates). Ta-
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. . Total Metadata transmission Crypto ops. 
File size — — 

� tmie Download (%) Upload (%) Time (%) 

1KB 0.294s 0.117s 39.9% 0.173s 58.8% 0.004s 1.3% 

10KB 0.268s 0.089s 33.0% 0.176s 65.6% 0.004s 1.3% 

100KB 0.259s 0.083s 32.2% 0.171s 66.3% 0.004s 1.5% 

1MB 0.252s 0.082s 32.7% 0.166s 65.8% 0.004s 1.6% 

10MB 0.275s 0.106s 38.5% 0.165s 60.2% 0.004s 1.3% 

Table 6.1: Experiment A.2 (Performance of policy updates). 

ble 6.1 shows the time used for renewing a single policy of a 

file (see Figure 3.4 in Section 3.7)，in which we update the pol-

icy metadata on the cloud wi th the new set of cryptographic 

keys. We conduct the experiment on various file sizes ranging 

from 1KB to 10MB. Our experiments show that the total time 

is generally small (about 0.3 seconds) regardless of the file size, 

since we operate on the policy metadata only. Also, the cryp-

tographic operation time only takes about 0.004s in renewing a 

policy, and this value is again independent of the file size. 

Experiment A.3 (Performance of multiple policies). We 

now evaluate the performance of FADE when multiple policies 

are associated wi th a file (see Section 3.6). Here, we focus on 

the file upload operation, as we have similar observation for the 

file download operation. We look at two specific combinations of 
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Figure 6.2: Experiment A.3 (Performance of multiple policies). 

policies, one on the conjunctive case and one on the disjunctive 

case. 

Figure 6.2a shows the cryptographic operations time for dif-

ferent numbers of conjunctive policies, and Figure 6.2b shows 

the case for disjunctive policies. A key observation is that for 

each file size, the cryptographic operation time is more or less 

constant (less than 0.22s) within five policies. I t is reasonable to 

argue that the time wi l l increase when a file is associated wi th a 

significantly large number of policies. On the other hand, we ex-

pect that in practical applications, a file is associated wi th only 

a few policies, and the overhead of cryptographic operations is 

sti l l minima'. 
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Figure 6.3: Experiment B.l (Performance of CP-ABE). 

6.1.2 Evaluation of Extensions 

We now evaluate the time performance of the extensions that 

we add to FADE (see Chapter 4). This includes the use of ABE 

and a quorum of key managers. 

Experiment B . l (Performance of CP-ABE). In the file 

download operations, the key manager encrypts the decrypted 

keys wi th the ABE-based key of the corresponding policy (or 

combination of policies) (see Chapter 4). In this experiment, we 

examine the overhead of this additional encryption. We focus 

on downloading a file that is associated wi th a single policy: 

assuming that a single key manager is used. 

Figure 6.3 shows the cryptographic operation time for down-

loading a file wi th CP-ABE and without CP-ABE. We find that 

CP-ABE introduces a constant overhead of 0.06-0.07 seconds, 

which is reasonable. This shows the trade-off between better 
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Figure 6.4: Experiment B.2 (Performance of multiple key managers). 
performance and better security. 

Experiment B.2 (Performance of multiple key managers). 

We now analyze the performance of using multiple key man-

agers. Here, we do not enforce access control wi th ABE, in order 

to focus on the overhead introduced by multiple key managers. 

In particular, we use the 7V-out-of-7V scheme for key sharing, 

i.e., the client needs to retrieve key shares from all key man-

agers. This puts the maximum load on the key managers and 

allows us analyze the worst-case scenario. 

Figure 6.4 shows the cryptographic operation time using dif-

ferent number of key managers. For the file upload operation, 

the cryptographic operation time stays nearly constant (less 

than 0.22s) when the number of key managers increases. For 

the file download operation, the cryptographic operation time 
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Figure 6.5: Experiment B.3 (Performance of multiple policies and multiple 

key managers with CP-ABE). 

only increases by about 0.01s when the number of key managers 

increases from one to five. Again, this value is less significant 

for uploading/downloading larger data files. 

Experiment B.3 (Combining everything together). Lastly, 

we combine multiple policies, CP-ABE, and multiple key man-

agers together. The enables us to understand the maximum 

load of FADE wi th all the available security protection schemes. 

In this experiment, we measure the time overhead when down-

loading a 10MB file wi th different number of policies and key 

managers. We consider the case where all policies are conjunc-

tive. For the multiple key managers, we use the iV_out-of-iV key 

sharing scheme. 

Figure 6.5 shows the cryptographic operation time for each 

case. We find that when turning on CP-ABE, the time of crypto-
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Num. of KMs 

Num. of policies ‘ 5 

1 149 277 405 533 661 

2 282 538 794 1050 1306 

3 415 799 1183 1567 1951 

4 548 1060 1572 2084 2596 

5 681 1321 1961 2601 3241 

Table 6.2: Size of the policy metadata for conjunctive policies (in bytes). 

graphic operations increases almost linearly wi th both the num-

ber of policies and the number of key managers. Even for the 

worst case (five policies and five key managers), the crypto-

graphic operation time is sti l l less than two seconds, which is 

small compared wi th the file transmission time. 

6.2 Space Utilization of FADE 

We now assess the space util ization. As stated in Section 5.1, 

each data file is accompanied wi th its file size (8 bytes), the 

HMAC-SHA l signature (20 byte), and a metadata file that 

stores the policy information and cryptographic keys. For the 

metadata file, its size differs wi th the number of policies and 

the number of key managers used. Here, we analyze the space 

overhead due to the metadata introduced by FADE. 
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Num. of KMs 
. ^ ^ ^ 1 2 3 4 5 

Num. of policies 

1 149 277 405 533 661 

2 298 554 810 1066 1322 

3 447 831 1215 1599 1983 

4 596 1108 1620 2132 2644 

5 745 1385 2025 2665 3305 

Table 6.3: Size of the policy metadata for disjunctive policies (in bytes). 

Table 6.2 and Table 6.3 show the different sizes of the meta-

data based on our implementation prototype for a variable num-

ber of (a) conjunctive policies (Pi 八 P2 八…八 Pm)，and (b) dis-

junctive policies (Pi V P2 V • • • V P^). To understand how each 

metadata size is obtained, we consider the simplest case where 

there is only a single policy and a single key manager. Then 

we need: (i) 128 bytes for each share of the policy-based secret 

key S f for policy z, (ii) 16 bytes for the encrypted copy of K 

based on 128-bit AES, (hi) 4 bytes for the policy identifier, and 

(iv) 1 byte for the delimiter between the policy identifier and 

the keys. In this case, the metadata size is 149 bytes. Note that 

in the case of multiple policies, we need to store more policy 

identifiers as well as more cryptographic keys, and hence the 

metadata size increases. Also, the metadata size increases wi th 

the number of key managers (see Section 4.2). This space over-
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Pricing 

Storage (c,) $0.14 per GB 

Data transfer in (q ) $0.10 per GB 

Data transfer out ( c � ) $0.19 per GB with first 1GB free 

PUT requests (cp) $0.01 per 1,000 requests 

GET requests (cg) $0.01 per 10,000 requests 

Table 6.4: A simplified pricing scheme of Amazon S3 in Singapore (in US 
dollars). 

head becomes less significant if the file size is large enough (e.g., 

on the megabyte scale). 

6.3 Cost Model 

We now evaluate the monetary overhead of FADE using a sim_ 

pie pricing model. Here, we use a simplified pricing scheme of 

Amazon S3 in Singapore, in which we assume that our storage 

usage is less than 1TB and our monthly data outbound transfer 

size is less than 10TB. Table 6.4 shows the pricing scheme (as 

of May 2011). 

We estimate the cost of FADE based on Cumulus [32], a 

snapshot-based backup system. In [1], i t is shown that a typical 

compressed snapshot consists of hundreds of segments, each of 

which is around. Here, we assume that our data source has 5 files 
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Without FADE With FADE 

Storage c,-s-f = $0,210 c , - s - ( / + 28 + M(p, TV)) = $0,210 

Data transfer in c^s.f.u = $0,150 CrS-{f+28 + M{p,N))-u = $0,150 

Data transfer out C o ' s - f - d = $0,095 c^ -s - ( /+28 + M(p, A^))-ti = $0,095 

PUT requests c^-s-u = $0,003 = $0,006 

GET requests Cg,s.d = $0,000 Cg-s-2d = $0,001 

Total cost $0,458 $0,462 

Table 6.5: Cost report (in US dollars). 

(segments) and each file is f bytes. Suppose that each segment 

is associated w i th p policies^ and there are N key managers. 

We evaluate the cost when each file is uploaded u times and 

downloaded d times. We denote by M{p, N) the size of the 

metadata. 

Table 6.5 shows the cost reports. To illustrate, we plug in 

some example values as follows. We let s 二 300 and f = 5MB, 

for a total of 1.5GB data. We use 3 conjunctive policies and 3 

key managers. We assume that each file is uploaded once and 

downloaded once. From the table, we can see that the extra cost 

that FADE incurs is less than a cent per month. 

iln Cumulus, each segment may be composed of multiple small files. We assume the 

simplest case that all the files are associated with the same combination of policies. 
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6.4 Lessons Learned 

In this chapter, we evaluate the performance of FADE in terms 

of the overheads of time, space utilization, and monetary cost. I t 

IS important to note that the performance results depend on the 

deployment environment. For instance, if the client and the key 

manager all reside in the same region as Amazon S3’ then the 

transmission times for files and metadata wi l l significantly re-

duce; or if the metadata contains more descriptive information, 

the overhead wi l l increase. Nevertheless, we emphasize that our 

experiments can show the feasibility of FADE in providing an 

additional level of security protection for today's cloud storage. 

We note that the performance overhead of FADE becomes 

less significant when the size of the actual data file content in-

creases (e.g. on the order of megabytes or even bigger). Thus, 

FADE is more suitable for enterprises that need to archive large 

files wi th a substantial amount of data. On the other hand, in-

dividuals may generally manipulate small files on the order of 

kilobytes. In this case, we may consider associating the same 

metadata wi th a tarball of multiple files (see Chapter 5) to re-

duce the overhead of FADE. 



Chapter 7 

Related Work 

In Section 2.1, we discuss time-based deletion in [10, 20], which 

we generalize into policy-based deletion. In this chapter, we 

review other related work on how to apply security protection 

to outsourced data storage. 

Cryptographic protection on outsourced storage. Re-

cent studies (see survey in [14]) propose to protect outsourced 

storage via cryptographic techniques. Plutus [13] is a crypto-

graphic storage system that allows secure file sharing over un-

tmsted file servers. Ateniese et al. [5] and Wang et al [33] pro-

pose an auditing system that verifies the integrity of outsourced 

data. Wang et al [34] propose a secure outsourced data access 

mechanism that supports changes in user access rights and out-

sourced data. However, all the above systems require new pro-

tocol support on the cloud infrastructure, and such additional 

54 
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functionalities may make deployment more challenging. 

Secure storage solutions for public clouds. Secure solu-

tions that are compatible wi th existing public cloud storage ser_ 

vices have been proposed. Yun et al [38] propose a cryptographic 

file system that provides privacy and integrity guarantees for 

outsourced data using a universal-hash based MAC tree. They 

prototype a system that can interact wi th an untrusted storage 

server via a modified file system. JungleDisk [12] and Cumulus 

32] protect the privacy of outsourced data, and their implemen-

tation use Amazon S3 [3] as the storage backend. Specifically, 

Cumulus focuses on making effective use of storage space while 

providing essential encryption on outsourced data. The above 

systems mainly put the protocol functionalities on the client 

side, and the cloud storage providers merely provide the storage 

space. On the other hand, such systems do not consider file 

assured deletion in their designs. 

Access control. One approach to apply access control to 

outsourced data is by attribute-based encryption (ABE), which 

associates fine-grained attributes wi th data. ABE is first intro-

duced in [24], in which attributes are associated wi th encrypted 

data. Goyal et a/. [11] extend the idea to key-policy ABE, in 

which attributes are associated wi th private keys, and encrypted 
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data can be decrypted only when a threshold of attributes are 

satisfied. Pirrett i et a/. [22] implement ABE and conduct empir-

ical studies. Nair et a/. [17] consider a similar idea of ABE, and 

they seek to enforce a fine-grained access control of files based 

on identity-based public key cryptography. Perlman et al [21 

also address how to associate data wi th Boolean combinations 

of policies, but their focus is on digital rights management (i.e., 

access control) rather than file assured deletion. 

Yu et al [37], similar to our work, also seeks to combine as-

sured deletion and access control by allowing attr ibute revoca-

tion in ABE. They require semi-trustable on-line proxy servers 

to be available, such that data is re-encrypted wi th new keys 

upon attr ibute revocation. In our case, we can simply remove 

the policy-based control keys without the need of re-encryption, 

since all policy-based control keys are maintained by centralized 

key servers. We also empirically evaluate the feasibility of our 

system, while [37] mainly focuses on security analysis. 

Assured deletion. There are several related systems on 

assured deletion (which come after our conference paper [30]). 

Keypad [9] protects data in theft-prone devices (e.g., laptops, 

USB sticks) by encrypting such data and maintaining keys in 

an independent, centralized key server, similar to FADE. I t re-
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moves all data of a protected device upon requests of deletion, 

and does not consider fine-grained deletion as in FADE. Nasuni 

announced the support of assured deletion in backup snapshots 

in March 2011 [18]. However, there is no formal study about 

their implementation methodologies and performance evalua-

tion. In our recent work [23], we extend the idea of assured 

deletion to cloud backup systems wi th version control, but the 

work [23] does not consider access control and the use of multiple 

key managers for key management. 



Chapter 8 

Conclusions 

We propose a practical cloud storage system called FADE, which 

aims to provide access control assured deletion for files that are 

hosted by today's cloud storage services. We associate files w i th 

file access policies that control how files can be accessed. We 

then present policy-based file assured deletion, in which files 

are assuredly deleted and made unrecoverable by anyone when 

their associated file access policies are revoked. We describe the 

essential operations on cryptographic keys so as to achieve ac-

cess control and assured deletion. FADE also leverages existing 

cryptographic techniques, including attribute-based encryption 

(ABE) and a quorum of key managers based on threshold secret 

sharing. We implement a prototype of FADE to demonstrate 

its practicality, and empirically study its performance overhead 

when it works wi th Amazon S3. Our experimental results pro-

58 
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vide insights into the performance-security trade-off when FADE 

is deployed in practice. 
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