
FADE: Secure Overlay Cloud Storage with

Access Control and File Assured Deletion

TANG, Yang

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

The Chinese University of Hong Kong

September 2011

/t- • \ . / .
丨 ' ' < t：I - • —〜

I ‘ 2 3 JAM 2eiJ] l | (—— ——

、、 、/、“
\ 、 、 •-、〜 . . Z �� A/

、 〉 ‘

Thesis/Assessment Committee

Prof. LYU Rung Tsong Michael (Chair)

Prof. LEE Pak Ching Patrick (Thesis Supervisor)

Prof. FU Wai Chee Ada (Committee Member)

Prof. X U Yinlong (External Examiner)

Abstract of thesis entitled:

FADE: Secure Overlay Cloud Storage w i th Access Control

and File Assured Deletion

Submitted by TANG, Yang

for the degree of Master of Philosophy

at The Chinese University of Hong Kong in July 2011

We can now outsource data backup to third-party cloud stor-

age services so as to reduce data management costs. However,

security concerns arise in terms of ensuring the privacy and in-

tegrity of outsourced data. We design and implement FADE, a

cloud storage system that enforces access control of active data

and protects deleted data wi th policy-based file assured deletion.

FADE is built upon a set of cryptographic key operations that

are maintained by a quorum of key management entities, and

encrypts outsourced data files to guarantee their privacy and

integrity. I t uses file access policies to provide a fine-grained

control of how active files are accessible, and assuredly deletes

files to make them unrecoverable to anyone upon revocations

i

of file access policies. In particular, FADE acts as an overlay

system that works seamlessly atop today's cloud storage ser-

vices. To demonstrate this objective, we implement a work-

ing prototype of FADE atop Amazon S3, one of today's cloud

storage services, and empirically show that FADE provides se-

curity protection for outsourced data wi th a minimal trade-off

of performance overhead. Our work provides insights of how

to incorporate value-added security features into current data

outsourcing applications.

ii

中文摘要

我們現在可以將數據備份外判到第三方的雲儲存服務，從而減少

數據管理的開支。然而，如何保護外判數據的隱私和完整性引發

了安全擔憂。我們設計及實現了 FADE，一個對現存數據提供存

取控制和基於策略保證刪除數據的雲儲存系統。FADE建立在由

一組密鏡管理實體維護的一系列密鏡運算之上，通過將外判數據

文件加密來保證其隱私和完整性。它使用文件存取策略來精細控

制現存文件如何存取，而且在文件存取策略被吊銷之後能夠保證

刪除文件，使其無法被任何人訪問。特別地，FADE可以作為覆

蓋系統無縫工作在現時雲儲存服務之上。為展示此目的，我們實

現了一套工作在現時雲儲存服務Amazon S3之上的FADE原型

系統，並通過實驗顯示出FADE僅引入極小性能開銷便可為外判

數據提供安全保護。我們的工作為如何將安全特性結合到現時數

據外判程序當中提供了見解。

iii

Acknowledgement

I would like to extend my sincere gratitude to my supervisor,

Prof. Patrick P. C. Lee. He has always been an ideal supervisor.

His sound advice not only guides me throughout my research,

but also helps me realize the good attitude towards life.

Besides, I would like to thank Prof. John C. S. Lui. His

advice and his enthusiasm in research have encouraged me a lot.

From him, I learned how to keep energetic in doing research.

Furthermore, I would like to thank Dr. Radia Perlman, from

Intel Labs, for her advice, which saved me from twists and turns.

I would also like to thank my internal examiner, Prof. Michael

R. Lyu, for his comments in my research.

Last but not least, I would like to thank Dr. T. Y. Wong and

all fellow students in the ANSRLab. They are great collabora-

tors, and I am so pleased that they are always helpful whenever

I have troubles.

To all of the above, I express my deepest appreciation.

iv

This work is dedicated to my dear parents, who have been

offering me unconditional love and support at all times.

V

Contents

Abstract j

Acknowledgement iv

1 Introduction 1

2 Policy-based File Assured Deletion 7

2.1 Background 7

2.2 Policy-based Deletion 9

3 Basic Design of FADE 13

3.1 Entities I3

3.2 Deployment 15

3.3 Security Goals, Threat Models, and Assumptions 16

3.4 The Basics - File Upload/Download 18

3.5 Policy Revocation for File Assured Deletion . . . 23

3.6 Mult iple Policies 23

3.7 Policy Renewal 25

vi

4 Extensions of FADE 27

4.1 Access Control wi th ABE 27

4.2 Mult iple Key Managers 31

5 Implementation 3 5

5.1 Representation of Metadata 36

5.2 Client 37

5.3 Key Managers 38

6 Evaluation 40

6.1 Experimental Results on Time Performance of

FADE 41

6.1.1 Evaluation of Basic Design 42

6.1.2 Evaluation of Extensions 46

6.2 Space Util ization of FADE 49

6.3 Cost Model 51

6.4 Lessons Learned 53

7 Related Work 54

8 Conclusions 58

Bibliography 60

vii

List of Figures

3.1 The FADE architecture 14

3.2 File upload 21

3.3 File download 22

3.4 A special case of policy renewal 26

4.1 Policy revocation wi th ABE 30

4.2 File upload wi th multiple key managers 32

4.3 File download wi th multiple key managers and

A B E 33

4.4 A special case of policy renewal wi th multiple key

managers and ABE 34

6.1 Experiment A . l (Performance of file upload/download

operations) 42

6.2 Experiment A.3 (Performance of multiple policies) 45

6.3 Experiment B . l (Performance of CP-ABE) 46

viii

6.4 Experiment B.2 (Performance of multiple key man-

agers) 47

6.5 Experiment B.3 (Performance of multiple policies

and multiple key managers wi th CP-ABE) 48

ix

List of Tables

3.1 Notation used in this thesis 20

6.1 Experiment A.2 (Performance of policy updates) • 44

6.2 Size of the policy metadata for conjunctive policies 49

6.3 Size of the policy metadata for disjunctive policies 50

6.4 A simplified pricing scheme of Amazon S3 in Sin-

gapore 51

6.5 Cost report 52

V

List of Publications

Part of this research work appeared in the following publications:

• Yang Tang, Patrick P. C. Lee, John C. S. Lui, and Radia

Perlman. FADE: Secure Overlay Cloud Storage w i th File

Assured Deletion. In Proceedings of the 6th International

ICST Conference on Security and Privacy in Commumca-

t漏 Networks (SecureComm 2010), Singapore, September

2010.

• Ar thur Rahumed, Henry C. H. Chen, Yang Tang, Patrick P.

C. Lee, and John C. S. Lui. A Secure Cloud Backup System

wi th Assured Deletion and Version Control. CloudSec 2011,

Taipei, September 2011.

xi

Chapter 1

Introduction

Cloud storage is a new business solution for data outsourcing, as

it offers an abstraction of infinite storage space for clients to host

data in a pay-as-you-go manner [4]. Today there are a number

of third-party cloud storage providers that offer cloud storage

services, such as Amazon Simple Storage Service (Amazon S3)

3] and Windows Azure [35]. Cloud storage helps enterprises and

government agencies significantly reduce their financial overhead

of data management, as they can now archive their data to the

cloud rather than maintain data centers on their own. For ex-

ample, SmugMug [27], a photo sharing website, chose to host

terabytes of photos on Amazon S3 in 2006 and saved thousands

of dollars on the maintenance of storage devices [2]. Apart from

enterprises, individuals can also archive their personal data to

the cloud using tools like Dropbox [8]. In particular, w i th the

1

CHAPTER 1. INTRODUCTION 2

advent of smart phones, we expect that more people wi l l use

Dropbox-like tools to move audio/video files from their smart-

phones to the cloud in order to make effective use of the storage

space of their smartphones, which have l imited storage resources

in general.

However, security concerns become relevant as we now out-

source the storage of possibly sensitive data to th i rd parities.

There are two specific security concerns that we are interested

in. First, we need to provide guarantees of access control, in

which we must ensure that only authorized parties can access the

outsourced data on the cloud. In particular, we must prohibit

third-party cloud storage providers from mining any sensitive in-

formation of their clients' data for their own marketing purposes.

Second, it is important to provide guarantees of assured dele-

t 漏 , m e a n i n g that outsourced data is permanently inaccessible

to anybody (including the data owner) upon requests of deletion

of data. Assured deletion is useful in some scenarios. For exam-

ple, a company has archived millions of email messages among

its employees and customers on the cloud, and later decides to

delete them to avoid leakage of sensitive data. The challenge

here is that we have to trust cloud storage providers to actually

delete data, but they may be reluctant in doing so [25]. Also,

CHAPTER 1. INTRODUCTION 3

cloud storage providers typically keep multiple backup copies

of data for rel iabil i ty reasons. I t is uncertain, to cloud clients,

whether cloud providers can reliably remove all backup copies

upon requests of deletion. Keeping data permanently is undesir-

able, as data may be unexpectedly disclosed in the future due to

malicious attacks on the cloud or careless management of cloud

operators.

Today's cloud storage providers only provide l imited forms of

security protection for the data stored in their infrastructures.

For example, they mainly protect data files of a client w i th a

single access key (e.g., in Amazon S3), but the client cannot

customize who can access the data, or when the data is acces-

sible. Also, to the best of our knowledge, none of today's cloud

storage providers provide guarantees of assured deletion of data

files.

The security concerns motivate us, as cloud clients, to have

a system that can enforce access control and assured deletion of

outsourced data on the cloud m a fine-grained manner. How-

ever，building such a system is a difficult task, especially when

i t involves protocol or hardware changes in cloud storage infras-

tructures that are externally owned and managed by third-party

cloud providers. Thus, i t is necessary to design a secure overlay

CHAPTER 1. INTRODUCTION 4

cloud storage system that can be overlaid and work seamlessly

atop existing cloud storage services.

In this thesis, we present FADE，a secure overlay cloud stor-

age system that provides fine-grained access control and assured

deletion for outsourced data on the cloud, while working seam-

lessly atop today's cloud storage services. In FADE, active data

files that remain on the cloud are associated w i th a set of user-

defined file access policies (e.g., t ime expiration, read/wri te per-

missions of authorized users), such that data files are accessible

only to users who satisfy the file access policies. In addition,

FADE generalizes time-based file assured deletion [20, 10] (i.e.,

data files are assuredly deleted upon time expiration) into a more

fine-grained approach called policy-based file assured deletion, in

which data files are assuredly deleted when the associated file

access policies are revoked and become obsolete. The design in-

tu i t ion of FADE is to decouple the management of encrypted

data and cryptographic keys, such that encrypted data remains

on third-party (untrusted) cloud storage providers, while cryp-

tographic keys are independently maintained and operated by

a quorum of key managers that altogether form trustworthi-

ness. To provide guarantees of access control and assured dele-

tion, FADE leverages off-the-shelf cryptographic schemes includ-

CHAPTER 1. INTRODUCTION 5

ing threshold secret sharing [26] and attribute-based enciyp-

t ion [24, 6, 11, 22], and performs various cryptographic key

operations that provide security protection for basic file up-

load/download operations. We implement a prototype of FADE

to just i fy its feasibility, and export a set of l ibrary APIs that

can be used, as a value-added security service, to enhance the

security properties of general data outsourcing applications.

In summary, this thesis makes the following contributions:

• We propose a new policy-based file assured deletion scheme

that reliably deletes files wi th regard to revoked file access

policies. In this context, we design the key management

schemes for various file manipulation operations, such that

we provide a fine-grained control of access control and as-

sured deletion for our outsourced data.

• We implement a working prototype of FADE atop Amazon

S3. Our implementation of FADE exports a set of A P I in-

terfaces that can be adapted into different data outsourcing

applications.

• We empirically evaluate the performance overhead of FADE

atop Amazon S3. Using experiments in a realistic network

environment, we show the feasibility of FADE in improving

CHAPTER 1. INTRODUCTION 19

the security protection of data storage on the cloud.

The remainder of the thesis proceeds as follows. In Chapter 2,

we describe and motivate the concept of policy-based file assured

deletion, a major building block of FADE. In Chapter 3, we

present the basic design of FADE and its related cryptographic

key operations. In Chapter 4, we present the extensions that

we include in FADE. In Chapter 5, we explain the implemen-

tat ion details of FADE. In Chapter 6, we evaluate FADE atop

Amazon S3. In Chapter 7, we review related work on protecting

outsourced data storage. Finally, Chapter 8 concludes.

Chapter 2

Policy-based File Assured
Deletion

FADE seeks to achieve both access control and assured deletion

for outsourced data. The design of FADE is centered around

the concept of policy-based file assured deletion. We first review

time-based file assured deletion proposed in earlier work. We

then explain the more general concept policy-based file assured

deletion and motivate why it is important in certain scenarios.

2.1 Background

Time-based file assured deletion, which is first introduced in [20],

means that files can be securely deleted and remain permanently

inaccessible after a pre-defined duration. The main idea is that

a file is encrypted wi th a data key, and this data key is further

7

CHAPTER 2. POLICY-BASED FILE ASSURED DELETION 8

encrypted wi th a control key that is maintained by a separate

key manager (known as Ephemerizer [20]). The key manager is

a server that is responsible for cryptographic key management.

In [20], the control key is time-based, meaning that i t wi l l be

completely removed by the key manager when an expiration

time is reached, where the expiration time is specified when

the file is first declared. Without the control key, the data key

and hence the data file remain encrypted and are deemed to be

inaccessible. Thus, the main security property of file assured

deletion is that even if a cloud provider does not remove expired

file copies from its storage, those files remain encrypted and

unrecoverable.

An open issue in the work [20] is that i t is uncertain that

whether time-based file assured deletion is feasible in practice,

as there is no empirical evaluation. Later, the idea of time-based

file assured deletion is prototyped in Vanish [10]. Vanish divides

a data key into multiple key shares, which are then stored in

different nodes of a public Peer-to-Peer Distr ibuted Hash Table

(P2P DHT) system. Nodes remove the key shares that reside

in their caches for a fixed time period. I f a file needs to remain

accessible after the time period, then the file owner needs to

update the key shares in node caches. Since Vanish is buil t on

CHAPTER 2. POLICY-BASED FILE ASSURED DELETION 9

the cache-aging mechanism in the P2P DHT, it is difficult to

generalize the idea from time-based deletion to a fine-grained

control of assured deletion wi th respect to different file access

policies. We elaborate this issue in the following section.

2.2 Policy-based Deletion

We now generalize time-based deletion to policy-based deletion

as follows. We associate each file wi th a single atomic file access

Polwy (or policy for short), or more generally, a Boolean com-

bination of atomic policies. Each (atomic) policy is associated

wi th a control key, and all the control keys are maintained by the

key manager. Similar to time-based deletion, the file content is

encrypted w i th a data key, and the data key is further encrypted

wi th the control keys corresponding to the policy combination.

When a policy is revoked, the corresponding control key wi l l be

removed from the key manager. Thus, when the policy combi-

nation associated wi th a file is revoked and no longer holds, the

data key and hence the encrypted content of the file cannot be

recovered w i th the control keys of the policy combination. In

this case, we say the file is deleted. The main idea of policy-

based deletion is to delete files that are associated wi th revoked

policies.

CHAPTER 2. POLICY-BASED FILE ASSURED DELETION 10

The definition of a policy varies depending on applications.

In fact, time-based deletion is a special case under our frame-

work. In general, policies wi th other access rights can be defined.

To motivate the use of policy-based deletion, let us consider a

scenario where a company outsources its data to the cloud. We

consider four practical cases where policy-based deletion wi l l be

useful:

• Storing files for tenured employees. For each employee

(e.g., Alice), we can define a user-based policy “P: Alice

zs an employee”，and associate this policy wi th all files of

Alice. If Alice quits her job, then the key manager wi l l ex-

punge the control key of policy P. Thus, nobody including

Alice can access the files associated wi th P on the cloud,

and those files are said to be deletec,.

• Storing files for contract-based employees. An em-

ployee may be affiliated wi th the company for only a fixed

length of time. Then we can form a combination of the

user-based and time-based policies for employees' files. For

example, for a contract-based employee Bob whose contract

expires on 2010-01-01, we have two policies "Pi ； Bob is an

employee” and “P2: valid before 2010-01-01”. Then all files

of Bob are associated wi th the policy combination Pi A P2.

CHAPTER 2. POLICY-BASED FILE ASSURED DELETION 11

If either or P) is revoked, then Bob's files are deleted.

• Storing files for a t eam of employees. The company

may have different teams, each of which has more than one

employee. As in above, we can assign each employee i a

policy combination P几八 P仏 where and P,2 denote the

user-based and time-based policies, respectively. We then

associate the team's files wi th the disjunctive combination

(Pn A P12) V (P21 A P22) V . • • V (Pm A P^vs) for employees

1, 2’. . . ’ TV. Thus, the team's files can be accessed by any

one of the employees, and wi l l be deleted when the policies

of all employees of the team are revoked.

• Switching a cloud provider. The company can define

a customer-based policy “P: a customer of cloud provider

X,，, and all files that are stored on cloud X are tied wi th

policy P. I f the company switches to a new cloud provider,

then it can revoke policy P. Thus, all files on cloud X wi l l

be deleted.

Policy-based deletion follows the similar notion of attnhute-

based encryption (ABE) [24’ 6, 11, 22], in which data can be

accessed only if the corresponding attributes (atomic policies in

our case) are satisfied. However, policy-based deletion is dif-

CHAPTER 2. POLICY-BASED FILE ASSURED DELETION 12

ferent from A B E in two aspects. First, policy-based deletion

focuses on how to delete data, while A B E focuses on how to ac-

cess data based on attributes. Second, because of the different

design objectives, a major feature of A B E is to give users the de-

cryption keys of the associated attributes so that they can access

files that satisfy the attributes, and hence A B E seeks to ensure

that no two users can collude if they are tied wi th different sets

of attributes. On the other hand, policy-based deletion does not

share w i th users any of the decryption keys that are used for

deletion, but instead such keys are all maintained by the key

manager. This enables the keys to be appropriately removed in

the key manager so as to guarantee file assured deletion. Thus

policy-based deletion has a different design space in contrast

w i th existing A B E approaches. However, FADE leverages A B E

to achieve policy-based access control in addition to policy-based

assured deletion. We explain the details in Chapter 4.

Chapter 3

Basic Design of FADE

We now present the basic design of FADE, a system that pro-

vides guarantees of access control and assured deletion for out-

sourced data in cloud storage. Figure 3.1 illustrates an overview

of the FADE system. In a nutshell, the cloud hosts data files on

behalf of a group of users, each of which wants to outsource data

files to the cloud based on his/her associated file access policies.

FADE can be viewed as an overlay system atop the underlying

cloud. I t applies security protection to the outsourced data files

before they are hosted on the cloud.

3.1 Entities

As shown in Figure 3.1, the FADE system is composed of two

main entities:

13

CHAPTER 3. BASIC DESIGN OF FADE 14

Key Key Key
manager manager ••• manager

f a d e ^ 1 2 N
client ^ ^ J ^

、、、、、I

data Kf^^T^ File
source ^ ed) 广 \
——.__^T-Wj^ t ^ 广 鬥 鬥 鬥 ）

data r ^ r ^
Isource 刚 f e ^ Cloud

Figure 3.1: The FADE architecture. Each client (deployed locally with

its own data source) interacts with one or multiple key managers and up-

loads/downloads data files to/from the cloud.

• Clients. A client is an interface that bridges the data

source (e.g., filesystem) of each FADE user and the cloud.

I t applies encryption (decryption) to the outsourced data

files uploaded to (downloaded from) the cloud. I t also in-

teracts wi th the key managers to perform the necessary

cryptographic key operations.

• Key managers. FADE is built on one or multiple key

managers, each of which is a stand-alone entity that main-

tains policy-based control keys for access control and as-

sured deletion. These control keys are to protect data keys

that are used to encrypt data files. The key managers re-

spond to the requests made by different clients and perform

the necessary cryptographic operations on the control keys.

CHAPTER 3. BASIC DESIGN OF FADE 15

The cloud, maintained by a third-party provider (e.g., Ama-

zon S3 or Windows Azure), hosts data files on behalf of different

clients. Each of the data files is associated wi th a combination

of file access policies. We emphasize that we do not require

any protocol and implementation changes in the cloud to sup-

port FADE. In fact, even a naive storage service that merely

provides file upload/download operations is also suitable.

3.2 Deployment

In our current design, a FADE client is deployed locally w i th

its corresponding data source as a local driver or daemon. We

point out that i t is also possible to deploy the FADE client as

a cloud storage proxy [1], so that i t can interconnect multiple

data sources. We can use standard TLS/SSL [7] to protect the

communication between each data source and the proxy.

In FADE, the set of key managers is deployed as a central-

ized trusted service, whose trustworthiness is enforced through

a quorum scheme (see Section 3.3). We assume that the key

managers are centrally maintained, for example, by the system

administrators of an enterprise that deploys FADE for its em-

ployees. We note that this centralized control is opposed to the

core design of Vanish [10], which proposes to use decentralized

CHAPTER 3. BASIC DESIGN OF FADE 16

key management on top of existing P2P D H T systems. However,

as discussed in Chapter 2, there is no straightforward solution to

develop fine-grained cryptographic key management operations

over a decentralized P2P D H T system. Also, the Vanish imple-

mentation that was published in [10] is subject to Sybil attacks

36], which particularly target D H T systems. In view of this, we

propose to deploy a centralized key management service, anc.

use a quorum scheme to improve its robustness, as explained in

Section 3.3.

3.3 Security Goals, Threat Models, and As-

sumptions

We now formally state the security properties that FADE seeks

to achieve in order to protect the outsourced data files. Here, we

consider an adversary that seeks to compromise the privacy of

data files. Clearly, FADE needs to properly encrypt outsourced

data files to ensure that their information is not disclosed to

unauthorized parties. The underlying assumption is that the

encryption mechanism is secure, such that i t is computationally

infeasible to recover the encrypted content without knowing the

cryptographic key for decryption. In this thesis, we highlight

CHAPTER 3. BASIC DESIGN OF FADE 17

two specific security goals that FADE seeks to achieve for fine-

grained security control:

• Policy-based access control. A client is authorized to

access only the files whose associated policies are active and

are satisfied by the client; and

• Policy-based assured deletion. A file is deleted (or per-

manently inaccessible) if its associated policies are revoked

and become obsolete. That is, even if a file copy that is asso-

ciated wi th revoked policies exists, it remains encrypted and

we cannot retrieve the corresponding cryptographic keys to

recover the file. Thus, the file copy becomes unrecoverable

by anyone (including the owner of the file).

To achieve these security goals, it is necessary to make the key

management service in FADE robust and secure. We address the

robustness of key management in FADE from two perspectives.

First, we assume that each key manager does not keep any

backup copy of every key that it stores [20], as it is difficult to

remove all copies of keys of revoked policies (see explanations

below). To improve robustness, we use a quorum of key man-

agers [26], in which we create N key shares for a key, such that

any k < N oi the key shares can be used to recover the key.

Each key manager is a stand-alone entity that is independent

CHAPTER 3. BASIC DESIGN OF FADE 18

of other key managers. While the quorum scheme increases the

storage overhead of keys, this is justified as keys are generally

of much smaller size than data files. We explain the details of

how to implement the quorum scheme in FADE in Chapter 4.

Second, we assume that the key managers (or at least N -

A: + 1 of them if a quorum scheme is used) reliably remove the

corresponding control keys of the revoked policies. Suppose in

the worst case that all key managers are compromised. Then an

attacker can recover the files that are associated w i th existing

active policies. On the other hand, files that are associated w i th

revoked policies sti l l remain inaccessible, as the control keys are

removed. Hence, assured deletion is achieved.

In the following, we describe the cryptographic key operations

in order to achieve the security goals.

3.4 The Basics - File Upload/Download

We start w i th the basic design of FADE. To simplify our discus-

sion, we make two assumptions. First, only a single key manager

is used. Second, before accessing a file, a client needs to present

authentication credentials (e.g., based on public key infrastruc-

ture certificates) to the key manager to show that it satisfies the

proper policies associated wi th the files, so that the key manager

CHAPTER 3. BASIC DESIGN OF FADE 19

wil l perform cryptographic key operations. We explain in Chap-

ter 4 how to relax both of the assumptions through multiple key

managers w i th threshold secret sharing and access control w i th

attribute-based encryption.

We now introduce the basic operations of how a client up-

loads/downloads files to / f rom the cloud. We start w i th the case

where each file is associated wi th a single policy, and then ex-

plain how a file is associated wi th multiple policies in Section 3.6.

Our design is based on blinded RSA [29] (or blinded deciyp-

t ion [20]), in which the client requests the key manager to de-

ciypt a blinded version of the encrypted data key. I f the associ-

ated policy is satisfied, then the key manager wi l l decrypt and

return the blinded version of the original data key. The client

can then recover the data key. The motivation of using this

blinded decryption approach is that the actual content of the

data key remains confidential to the key manager as well as to

any attacker that sniffs the communication between the client

and the key manager.

Table 3.1 summarizes the notation used in this thesis. We

first summarize the major notation used throughout the thesis.

For each policy z, the key manager generates two secret large

RSA prime numbers and q, and computes the product n , =

CHAPTER 3. BASIC DESIGN OF FADE 20

Notation Description

F Data file generated by the client

K Data key used to encrypt file F

Pi Policy with index i

Pi, Qi RSA prime numbers for policy P, (kept secret by the key
manager)

rii = known to the public

(e” di) RSA public/private control key pair for policy P,

S, Secret key corresponding to policy Pi

{?Ti}/c Symmetric-key encryption of message m with key k

R The random number used for blinded RSA

Table 3.1: Notation used in this thesis.

PiQî - The key manager then randomly chooses the RSA public-

private control key pair (e“dz). The parameters wi l l be

publicized, while d̂ is securely stored in the key manager. On

the other hand, when the client encrypts a file F, i t randomly

generates a data key K , and a secret key Ŝ that corresponds to

policy P” We let {m}k denote a message m encrypted w i th key

k using symmetric-key encryption (e.g., AES). We let R be the

blinded component when we use blinded RSA for the exchanges

of cryptographic keys.

Suppose that F is associated wi th policy PI. Our goal here is
iWe require that each policy i uses a distinct tm to avoid the common modulus attack

on RSA [16],

CHAPTER 3. BASIC DESIGN OF FADE 21

Cloud Client Key manager

Pi，，S:‘, {F}^

Figure 3.2: File upload.

to ensure that K , and hence F , are accessible only when policy

Pi is satisfied. Note that we only present the operations on cryp-

tographic keys, while the implementation subtleties, such as the

metadata that stores the policy information, wi l l be discussed

in Chapter 5. Also, when we raise some number to exponents

Ci or di, i t must be done over modulo n,-. For brevity, we drop

“mod n , in our discussion.

File upload. Figure 3.2 shows the file upload operation. The

client first requests the public key (n,, e,) of policy P, from the

key manager, and caches (n,, e,) for subsequent uses if the
same

policy P,

is associated wi th other files. Then the client generates

two random keys K and S” and sends S f ’ and {F}k to

the cloud^ Then the client must discard K and S^. To protect
2We point out that the encrypted keys (i.e., { K } s , , S f) can be stored in the cloud

without creating risks of leaking confidential information.

CHAPTER 3. BASIC DESIGN OF FADE 22

Cloud Client Key manager

Figure 3.3: File download.

the integrity of a file, the client computes an HMAC signature

on every encrypted file and stores the HMAC signature together

wi th the encrypted file in the cloud. We assume that the client

has a long-term private secret value for the HMAC computation.

File download. Figure 3.3 shows the file download operation.

The client fetches S-\ and {F}k from the cloud. The

client wi l l first check whether the HMAC signature is valid before

decrypting the file. Then the client generates a secret random

number R, computes i?〜and sends S-' . R^̂ = 耶， t o the

key manager to request for decryption. The key manager then

computes and returns 临RF个 二 SJI to the client, which

can now remove R and obtain S” and decrypt {K}S^ and hence

條 .

CHAPTER 3. BASIC DESIGN OF FADE 23

3.5 Policy Revocation for File Assured Dele-
tion

I f a policy P, is revoked, then the key manager completely re-

moves the private key d̂ and the secret prime numbers p, and � .

丄 Jius’ we cannot recover Si from S f ’ and hence cannot recover

K and file F. We say that file F , which is tied to policy P” is

assuredly deleted. Note that the policy revocation operations

do not involve interactions wi th the cloud.

3.6 Multiple Policies

FADE supports a Boolean combination of multiple policies. We

mainly focus on two kinds of logical connectives: (i) the con-

junction (AND), which means the data is accessible only when

every policy is satisfied; and (ii) the disjunction (OR), which

means if any policy is satisfied, then the data is accessible.

• Conjunctive Policies. Suppose that F is associated wi th

conjunctive policies Pi 八 P2 八...八 i^m. To upload F to the

cloud, the client first randomly generates a data key K , and

secret keys 5^2’. •.，Sm. I t then sends the following to the

cloud: { { K } s , } s , . • . s 饥 , S l \ . . 恐 、 a n d { F } k . On

the other hand, to recover F , the client generates a random

CHAPTER 3. BASIC DESIGN OF FADE 24

number R and sends {S iRY^ 产， . . . ’（S^i?)〜 to the

key manager, which then returns SiR, S2R,. . . ’ SmR. The

client can then recover 81,82, • • and hence K and F.

• Disjunctive Policies. Suppose that F is associated wi th

disjunctive policies V P,̂ V • • • V P,^. To upload F to

the cloud, the client wi l l send the following: {^}s2'>

...，{Kkn, 52', S'二 and { F } k . Therefore, the

client needs to compute m different encrypted copies of K.

On the other hand, to recover F\ we can use any one of the

policies to decrypt the file, as in the above operations.

To delete a file associated wi th conjunctive policies, we simply

revoke any of the policies (say, Pj). Thus, we cannot recover

Sj and hence the data key K and file F. On the other hand,

to delete a file associated wi th disjunctive policies, we need to

revoke all policies, so that S^/ cannot be recovered for all j. Note

that for any Boolean combination of policies, we can express it

in canonical form, e.g., in the disjunction (OR) of conjunctive

(AND) policies.

CHAPTER 3. BASIC DESIGN OF FADE 25

3.7 Policy Renewal

We conclude this chapter wi th the discussion of policy renewal.

Policy renewal means to associate a file wi th a new policy (or

combination of policies). For example, if a user wants to extend

the expiration time of a file, then the user can update the old

policy that specifies an earlier expiration time to the new policy

that specifies a later expiration time.

In FADE, policy renewal merely operates on keys, without

retrieving the encrypted file from the cloud. The procedures

can be summarized as follows: (i) download all encrypted keys

(including the data key for the file and the set of control keys for

the associated Boolean combination of policies) from the cloud,

(ii) send them to the key manager for decryption, (ii i) recover

the data key, (iv) re-encrypt the data key wi th the control keys

of the new Boolean combination of policies, and finally (v) send

the newly encrypted keys back to the cloud.

In some special cases, we can simplify the key operations of

policy renewal. Suppose that the Boolean combination structure

of policies remains unchanged, but one of the atomic policies P,

IS changed to Pj. For example, when we extend the contract date

of Bob (see Section 2.2), we may need to update the particular

time-based policy of Bob without changing other policies. Then

9^^mum g b U M t u i • • • i • _111咖__ _ • • _ _ _ 1 _ 通 • _

CHAPTER 3. BASIC DESIGN OF FADE 26

Cloud Client Key manager

Figure 3.4: A special case of policy renewal - when policy P, is renewed to

policy Pj.

instead of decrypting and re-encrypting the data key w i th the

control keys that correspond to the new Boolean combination of

policies, we can simply update the control key that corresponds

to the particular atomic policy. Figure 3.4 illustrates this special

case of policy renewal. In this case, the client simply sends the

blinded version S / "督 to the key manager, which then returns

SzR- The client then recovers S^ Now, the client re-encrypts

Si into S f (mod n]), where (n” e]�is the public key of policy

Pj, and sends it to the cloud. Note that the encrypted data key

K remains intact.

Chapter 4

Extensions of FADE

We now discuss two extensions to the basic design of FADE.

The first extension is to use attribute-based encryption (ABE)

24’ 6’ 11, 22] in order to authenticate clients through policy-

based access control. The second extension is to use a quorum

of key managers [26] in order to achieve better reliabil ity for the

-^ey management service.

4.1 Access Control with ABE

To recover a file from the cloud, a client needs to request the

key manager (assuming that only a single key manager is de-

ployed) to decrypt the data key. The client needs to present

authentication credentials to the key manager to show that it

indeed satisfies the policies associated wi th the files. One imple-

27

CHAPTER 4. EXTENSIONS OF FADE 28

mentation approach for this authentication process is based on

the public-key infrastructure (PKI). However, this client-based

authentication requires the key manager to have accesses to the

association of every client and its satisfied policies. This lim-

its the scalability and flexibil ity if we scale up the number of

supported clients and their associations w i th policies.

To resolve the scalability issue, attribute-hased encryption

(ABE) [24, 6, 11, 22] turns out to be the most appropriate so-

lut ion (see Section 2.2). In particular, our approach is based

on Ciphertext-Policy Attribute-Based Encryption (CP-ABE) [6..

We summarize the essential ideas of A B E that are sufficient for

our FADE design, while we refer readers to [6] for details. Each

client first obtains, from the key issuing authority of the A B E

system, an ABE-based private key that corresponds to a set

of attributes^ the client satisfies. This can be done by having

the client present authentication credentials to the key issuing

authority, but we emphasize that this authentication is only a

one-time bootstrap process. Later, when a client requests the

key manager to decrypt the data key of a file on the cloud: the

key manager wi l l encrypt the response messages using the ABE-

based public key that corresponds to the combination of policies
lAn attribute is equivalent to an atomic policy that we define for policy-based file

assured deletion (see Chapter 2).

CHAPTER 4. EXTENSIONS OF FADE 29

associated wi th the file. If the client indeed satisfies the policy

combination, then it can use its ABE-based private key to re-

cover the data key. Note that the key manager does not have to

know exactly each individual client who requests decryption of

a data key.

FADE uses two independent keys for each policy. The first

one is the private control key that is maintained by the key man-

ager for assured deletion. If the control key is removed from the

key manager, then the client cannot recover the files associated

wi th the corresponding policy. Another one is the ABE-based

key that is used for access control. The ABE-based private key

IS distributed to the clients who satisfy the corresponding policy,

as in the ABE approach, while the key manager holds the ABE-

based public key and uses it to encrypt the response messages

returned to the clients. The use of the two sets of keys for the

same policy enables FADE to achieve both access control and

assured deletion.

We now modify the FADE operations to include the ABE

feature as follows. We assume that we operate on a file that is

associated wi th a single policy.

File Upload. The fi] -G upload operation remains unchanged

since we only need the public parameters from the key manager

CHAPTER 4. EXTENSIONS OF FADE 43

Cloud Client Key manager

I ^Ps ^̂^
revoke control
key of P,

Figure 4.1: Policy revocation with ABE.

for this operation, and hence we do not need to authenticate the

client.

File Download. The file download operation requires authen-

tication of the client. When the client requests the key manager

to decrypt S f the key manager encrypts its answer S^R wi th

ABE based on the policy of the file. Therefore, if the client sat-

isfies the policy, then it can decrypt the response message and

get S J l

Policy Renewal. Similar to above, the key manager encrypts

SiR wi th ABE when the client requests it to decrypt the old

policy. For the re-encryption wi th the new policy, there is no

need to enforce access control since we only need the public

parameters.

Policy Revocation. Here we use a challenge-response mech-

anism in order for the key manager to authenticate the client.

CHAPTER 4. EXTENSIONS OF FADE 31

Figure 4.1 shows the revised policy revocation protocol. In the

first round, the client tells the key manager that i t wants to

revoke policy P” The key manager then generates a random

number r a s a challenge, encrypts i t w i th ABE that corresponds

to policy P ” and gives it to the client. Next, if the client is gen-

uine，then i t can decrypt r and send it to the key manager as

the response to that challenge. Finally, the key manager revokes

the policy and acknowledges the client.

4.2 Multiple Key Managers

We point out that the use of a single key manager wi l l lead to

the single-point-of-failure problem. An untrustworthy key man-

ager may either prematurely removes the keys before the client

requests to revoke them, or fail to remove the keys when it is re-

quested to. The former case may prevent the client from getting

its data back, while the latter case may subvert assured deletion.

Therefore, i t is important to improve the robustness of the key

management service to minimize its chance of being compro-

mised. Here, we deploy a quorum of key managers [26], such

that if there exist any A: < TV key managers that correctly fmic-

tion’ then it is sufficient to perform all required cryptographic

key operations.

CHAPTER 4. EXTENSIONS OF FADE 32

Cloud Client Key manager 1 … K e y manager N

^ e i N ’ 几 i N

Pi，®s,，^ii，…，S〜‘工，{F]k

Figure 4.2: File upload with multiple key managers.

In FADE, we need to address the challenge of how to manage

the control keys wi th i V 〉 1 key managers. For each policy

Pi, the j t h key manager (where I < j < N) wi l l independently

generate and maintain an RSA public/private key pair (e小 dy)

corresponding to a modulus n “ . We point out that this key pair

is independent of the key pairs generated by other key managers,

although all such key pairs correspond to the same policy P,.

Also, each key manager keeps its own key pair and wi l l not

release it to other key managers.

Let us consider a file F that is associated wi th policy P” We

now describe the file/policy operations of FADE using multiple

.̂ ey managers.

File Upload. Figure 4.2 shows the file upload operation wi th

multiple key managers. Instead of storing Sp on the cloud as in

CHAPTER 4. EXTENSIONS OF FADE 33

Cl。ud Client Key manager 1 . . . Key managerN

Pi, sSi?^
^

Figure 4.3: File download with multiple key managers and ABE.

the case of using a single key manager, the client now splits 5；.

into N shares, 山 ⑶...，S⑶ using Shamir's scheme. Next, the

client requests each key manager j for the public key (n”.，e”.).

Then the client computes S货 (m o d n ”) for each j , and sends

•. •, Se淑,and { F } k to the cloud. Finally, the

client discards K , S” and S…S仏 . . . ,Su^ .

File Download. Figure 4.3 shows the file download operation

wi th multiple key managers. After retrieving the encrypted key

shares S^f, . • . , s说 from the cloud, the client needs to re-

quest each key manager to decrypt a share. For the j t l i share

Si? U = 2,. . ., N)^ the client blinds it w i th a randomly gen-

erated number R, and sends S货W ” to key manager j . Then,

key manager j responds the client wi th S^jR. I t also encrypts

the response wi th ABE. After unblinding, the client knows

CHAPTER 4. EXTENSIONS OF FADE 34

Cloud Client Key manager 1 … K e y manager N

P OfiN

， e 1，72 1 • • •

,ejN，
P QSjI Q^iN

Figure 4.4: A special case of policy renewal with multiple key managers and

ABE - when policy P, is renewed to policy Pj.

After collecting k decrypted shares of S…the client can combine

them into S, and hence decrypts K and F.

Policy Renewal. The policy renewal operation is similar to our

original operation discussed in Section 3.7. The only difference

is that the client needs to renew every share of Si. Note that

in this operation we do not need to combine or split the shares.

Figure 4.4 shows a special case of renewing a policy P, to another

Pj (cf. Figure 3.4 in Chapter 3).

Policy Revocation. The client needs to ask every key manager

to revoke the policy. As long as at least (TV —A:+ 1) key managers

remove the private control keys corresponding to the policy, all

files associated wi th this policy become assuredly deleted.

Chapter 5

Implementation

We implement a working prototype of FADE using C + + on

Linux. Our implementation is built on off-the-shelf l ibrary APIs.

Specifically, we use the OpenSSL library [19] for the crypto-

graphic operations, the cpabe l ibrary [31] for the ABE-based

access control, and the ssss l ibrary [28] for sharing control keys

to a quorum of key managers. The ssss library is originally

designed as a command-line ut i l i ty to deal wi th keys in ASCII

format. We slightly modify ssss and add two functions to split

and combine keys in binary format, so as to make it compatible

wi th other libraries. In addition, we use Amazon S3 [3] as our

cloud storage backend.

In the following, we define the metadata of FADE being at-

tached to individual data files. We then describe how we im-

plement the client and a quorum of key managers and how the

35

CHAPTER 5. IMPLEMENTATION

client interacts w i th the clouc.

5.1 Representation of Metadata

For each data file protected by FADE, we include the metadata

that describes the policies associated wi th the file as well as a set

of cryptographic keys. More precisely, the metadata contains

the specification of the Boolean combination of policies, and

the corresponding cryptographic keys including the encrypted

data key of the file and the control keys associated wi th the

policies. Here, we assume that each (atomic) policy is specified

by a unique 4-byte integer identifier. To represent a Boolean

combination of policies, we express it in disjunctive canonical

form, i.e., the disjunction (OR) of conjunctive policies, and use

the characters and to denote the A N D and OR operators.

We upload the metadata as a separate file to the cloud. This

enables us to renew policies directly on the metadata file without

retrieving the entire data file from the cloud.

In our implementation, individual data files have their own

metadata, each specifying its own data key. To reduce the meta-

data overhead as compared to the data file size, we can form a

tarball of multiple files under the same policy combination and

have all files protected wi th the same data key.

CHAPTER 5. IMPLEMENTATION 37

5.2 Client

Our implementation of the client uses the following four function

calls to enable end users to interact w i th the cloud:

• U p l o a d C f i l e , p o l i c y) . The client encrypts the input file

according to the specified policy (or a Boolean combination

of policies). Here, the file is encrypted using the 128-bit

AES algorithm wi th the cipher block chaining (CBC) mode.

After encryption, the client also appends the encrypted file

size (which is 8 bytes long) and the H M A C - S H A l signature

(which is 20 bytes long) to the end of encrypted file for

integrity checking in later downloads. I t then sends the

encrypted file and the metadata onto the cloud.

• D o w n l o a d (f i l e) . The client retrieves the file and the pol-

icy metadata from the cloud. I t then checks the integrity

of the encrypted file, and decrypts the file.

參 Revoke (p o l i c y) . The client tells the key managers to per-

manently revoke the specified policy. A l l files associated

w i th the policy wi l l be assuredly deleted. I f a file is associ-

ated w i th the conjunctive policy combination that contains

the revoked policy, then it wi l l be assuredly deleted as well.

參 R e n e w (f i l e , new一policy). The client first fetches the

CHAPTER 5. IMPLEMENTATION 51

metadata for the given file from the cloud. I t then up-

dates the metadata wi th the new policy. Finally, i t sends

the metadata back to the clouc.

We export the above function calls exported as l ibrary APIs.

Thus, different implementations of the client can call the l ibrary

APIs and have the protection offered by FADE. In our current

prototype, we implement the client as a user-level program that

can access files under a specified folder.

The above exported interfaces wrap the third-party APIs for

interacting wi th the cloud. As an example, we use L i b A W S + +

15], a C + + l ibrary for interfacing w i th Amazon S3 using plain

HTTP. We point out that we can also extend FADE to interact

w i th different cloud storage services, provided that there are

APIs that support the basic file upload/download operations

w i th a particular clouc..

5.3 Key Managers

We implement a quorum of key managers, each of which sup-

ports the following basic functions.

• Creating a policy. The key manager creates a new policy

and returns the corresponding public control key.

CHAPTER 5. IMPLEMENTATION 39

• Retrieving the public control key of a policy. I f the policy is

accessible, then the key manager returns the public control

key. Otherwise, i t returns an error.

• Decrypting a key with respect to a policy. I f the policy is

accessible, then the key manager decrypts the (blinded) key.

Otherwise, i t returns an error.

參 Remkmg a policy. The key manager revokes the policy and

removes the corresponding keys.

We implement the basic functionalities of a key manager so

that i t can perform the required operations on the cryptographic

keys. In particular, all the policy control keys are buil t upon

1024-bit blinded RSA (see Section 3.4). Besides, each individual

key manager supports A B E for access control.

Chapter 6

Evaluation

We now evaluate the empirical performance of our implemented

prototype of FADE atop Amazon S3. I t is crucial that FADE

does not introduce substantial performance or monetary over-

head that wi l l lead to a big increase in data management costs.

In addition, the cryptographic operations of FADE should only

bring insignificant computational overhead. Therefore, our ex-

periments aim to answer the following questions: What is the

performance and monetary overhead of FADE? Is i t feasible to

use FADE to provide file assured deletion for cloud storage?

Our experiments use Amazon S3 APAC servers that reside

in Singapore for our cloud storage backend. Also, we deploy the

client and the key managers wi th in an organization's network

that resides in Hong Kong. We evaluate FADE on a per-file

basis, that is, when it operates on an individual file of different

40

CHAPTER 6. EVALUATION 41

sizes. We can proportionally scale our results for the case of

multiple files.

6.1 Experimental Results on Time Performance
of FADE

We first measure the time performance of our FADE prototype.

In order to identify the time overhead of FADE, we divide the

running time of each measurement into three components:

• file transmission time, the uploading/downloading time for

the data file between the client and the cloud.

• rnetadata transmission time, the time for uploading/downloading

the metadata, which contains the policy information and

the cryptographic keys associated wi th the file, between

the client and the clouc..

• cryptographic operation time, the total t ime for crypto-

graphic operations, which includes the total computational

time used for performing AES and HMAC on the file, and

the time for the client to coordinate wi th the quorum of

key managers on operating the cryptographic keys.

We average each of our measurement results over 10 different

trials.

CHAPTER 6. EVALUATION 42

1 0 0 — . 、 ’ ， 1 0 0

File transmission — ^ File transmission — ^ Z
Metadata transmission . • + . . Metadata transmission •. + • • ^ ^

10 . Crypto operations - - 0 - - 乂 : 10 • Crypto operations - - 0 - - •

H 0.1 . 盯 1 0.1 + + .• — + ...+ ,,��

0.01 . 0.01 • •
[] • - '

0.001 ‘~••，"-• ‘ 0.001

1 10 100 1000 10000 1 10 100 1000 10000

File size (KB) File size (KB)

(a) Upload (b) Download

Figure 6.1: Experiment A. l (Performance of file upload/download opera-

tions) .

6.1.1 Evaluation of Basic Design

We first evaluate the time performance of the basic design of

FADE (see Chapter 3), in which we use a single key manager

and do not involve ABE.

Experiment A . l (Performance of file upload/download

operations). In this experiment, we measure the running time

of the file upload and download operations for different file sizes

(including 1KB, 3KB, 10KB，30KB, 100KB, 300KB, 1MB, 3MB,

and 10MB). Figure 6.1 shows the results.

First, the cryptographic operation time increases wi th the

file size, mainly due to the symmetric-key encryption applied

to a larger file. Nevertheless, we find that in all cases of file

upload/download operations, the time of cryptographic opera-

CHAPTER 6. EVALUATION 43

tions is no more than 0.2s (for a file size within 10MB), and

accounts for no more than 2.6% of the file transmission time.

We expect that FADE only introduces a small time overhead in

cryptographic operations as compared to the file transmission

time, where the latter is inevitable even without FADE.

Also, the metadata transmission time is always around 0.2s,

regardless of the file size. This is expected, since the metadata

file only stores the policy information and cryptographic keys,

both of which are independent of the data files. The file trans-

mission time is comparable to the metadata transmission time

for small files. However, for files larger than 100KB, the file

transmission time becomes the dominant factor. For instance,

to upload or download a 10MB file, the sum of the metadata

transmission time and the cryptographic operation time (both

are due to FADE) account for 4.1% and 0.7% of the total time,

respectively.

We note that the upload and download operations are asym-

metric and spend different times to complete the operations.

Nevertheless, the performance overhead of FADE drops when

the size of the data file being protected is large enough, for ex-

ample, on the megabyte scale.

Experiment A.2 (Performance of policy updates). Ta-

CHAPTER 6. EVALUATION 44

. . Total Metadata transmission Crypto ops.
File size — —

� tmie Download (%) Upload (%) Time (%)

1KB 0.294s 0.117s 39.9% 0.173s 58.8% 0.004s 1.3%

10KB 0.268s 0.089s 33.0% 0.176s 65.6% 0.004s 1.3%

100KB 0.259s 0.083s 32.2% 0.171s 66.3% 0.004s 1.5%

1MB 0.252s 0.082s 32.7% 0.166s 65.8% 0.004s 1.6%

10MB 0.275s 0.106s 38.5% 0.165s 60.2% 0.004s 1.3%

Table 6.1: Experiment A.2 (Performance of policy updates).

ble 6.1 shows the time used for renewing a single policy of a

file (see Figure 3.4 in Section 3.7)，in which we update the pol-

icy metadata on the cloud wi th the new set of cryptographic

keys. We conduct the experiment on various file sizes ranging

from 1KB to 10MB. Our experiments show that the total time

is generally small (about 0.3 seconds) regardless of the file size,

since we operate on the policy metadata only. Also, the cryp-

tographic operation time only takes about 0.004s in renewing a

policy, and this value is again independent of the file size.

Experiment A.3 (Performance of multiple policies). We

now evaluate the performance of FADE when multiple policies

are associated wi th a file (see Section 3.6). Here, we focus on

the file upload operation, as we have similar observation for the

file download operation. We look at two specific combinations of

CHAPTER 6. EVALUATION 45

10 . 10 ,

v T 1 K B ~ ^ ~ 一 1 K B ~ K ~

I , lJo°KB ' - ' - o ' - ' - t
•I 1 • — ----- _ I 1 ^ -
- 1 0 0 0 0 K B - o - 2 1 0 0 0 0 K B - o -

& , 。 o — — I - — — - — — o — — o — — . .

•2 O-l o 0.1 • .
^ —• • “ HI ^ K - • • m HI

S 0.01 . . o 0.01 .
p 口--；：：：：：：̂^̂-。-"：̂ 丨！ n g：：：-…--？ 2 ‘‘

1 2 3 4 5 . 1 2 3 4 5

N u m b e r o f c o n j u n c t i v e p o l i c i e s N u m b e r o f d i s j u n c t i v e p o l i c i e s

(a) Conjunctive policies (b) Disjunctive policies
Figure 6.2: Experiment A.3 (Performance of multiple policies).

policies, one on the conjunctive case and one on the disjunctive

case.

Figure 6.2a shows the cryptographic operations time for dif-

ferent numbers of conjunctive policies, and Figure 6.2b shows

the case for disjunctive policies. A key observation is that for

each file size, the cryptographic operation time is more or less

constant (less than 0.22s) within five policies. I t is reasonable to

argue that the time wi l l increase when a file is associated wi th a

significantly large number of policies. On the other hand, we ex-

pect that in practical applications, a file is associated wi th only

a few policies, and the overhead of cryptographic operations is

sti l l minima'.

CHAPTER 6. EVALUATION 59

0 . 2 ‘ ~ — ~ — • . • • — q.

crypto operation time without CP-ABE —h—:
U.lb • crypto operation time with CP-ABE .•+.
0.16 • / -

0 . 1 4 . / r

^ 0.12 . / /•
I 0.1 • / .

0 . 0 4 • J -

0.02

1 10 100 1000 10000
File size (KB)

Figure 6.3: Experiment B.l (Performance of CP-ABE).

6.1.2 Evaluation of Extensions

We now evaluate the time performance of the extensions that

we add to FADE (see Chapter 4). This includes the use of ABE

and a quorum of key managers.

Experiment B . l (Performance of CP-ABE). In the file

download operations, the key manager encrypts the decrypted

keys wi th the ABE-based key of the corresponding policy (or

combination of policies) (see Chapter 4). In this experiment, we

examine the overhead of this additional encryption. We focus

on downloading a file that is associated wi th a single policy:

assuming that a single key manager is used.

Figure 6.3 shows the cryptographic operation time for down-

loading a file wi th CP-ABE and without CP-ABE. We find that

CP-ABE introduces a constant overhead of 0.06-0.07 seconds,

which is reasonable. This shows the trade-off between better

CHAPTER 6. EVALUATION 47

一 10 — 10 . •
7 ^ KB ~ ^ ^ 1 kr ~K~
i 1 二:： t i隱..工… I 1 _ 1:0= -----. I 1. 1 = 二:：.
g . C . o o—一。一。二二二…I 1 0 0 0 0 K B - . 0 —

I 0.1 • . 1 0.广 。 o …
& Q .

J ” J » HI ^ . «. ° 0.01 • 名 0 01 - g—— “
P [丨 ^ ° “ I

議 ！- * * i 0.001

1 2 3 4 5 1 2 3 4 5

Number of key managers Number of key managers

(a) Upload (b) Download

Figure 6.4: Experiment B.2 (Performance of multiple key managers).
performance and better security.

Experiment B.2 (Performance of multiple key managers).

We now analyze the performance of using multiple key man-

agers. Here, we do not enforce access control wi th ABE, in order

to focus on the overhead introduced by multiple key managers.

In particular, we use the 7V-out-of-7V scheme for key sharing,

i.e., the client needs to retrieve key shares from all key man-

agers. This puts the maximum load on the key managers and

allows us analyze the worst-case scenario.

Figure 6.4 shows the cryptographic operation time using dif-

ferent number of key managers. For the file upload operation,

the cryptographic operation time stays nearly constant (less

than 0.22s) when the number of key managers increases. For

the file download operation, the cryptographic operation time

CHAPTER 6. EVALUATION 48

2 . . . n
— 1 key manager x ~ ,乂）

‘ ‘ 2 key managers •• + -. •
c 1.6 • 3 key managers
•B 14 . 4 key managers --«•-- 一 . - a . 一 一 一 n

2 5 key managers —o— z,一 一 - ' ' ' ' .

！ . z z Z
•2 丨 Z - - • ‘ a - ' '

各 0.8 . 二 D - - - - - - - - - : S 0.4 IP：'-：：： E !!•••• “
p 0.2 :s

0 ‘
1 2 3 4 5

Number of conjunctive policies

Figure 6.5: Experiment B.3 (Performance of multiple policies and multiple

key managers with CP-ABE).

only increases by about 0.01s when the number of key managers

increases from one to five. Again, this value is less significant

for uploading/downloading larger data files.

Experiment B.3 (Combining everything together). Lastly,

we combine multiple policies, CP-ABE, and multiple key man-

agers together. The enables us to understand the maximum

load of FADE wi th all the available security protection schemes.

In this experiment, we measure the time overhead when down-

loading a 10MB file wi th different number of policies and key

managers. We consider the case where all policies are conjunc-

tive. For the multiple key managers, we use the iV_out-of-iV key

sharing scheme.

Figure 6.5 shows the cryptographic operation time for each

case. We find that when turning on CP-ABE, the time of crypto-

CHAPTER 6. EVALUATION 49

Num. of KMs

Num. of policies ‘ 5

1 149 277 405 533 661

2 282 538 794 1050 1306

3 415 799 1183 1567 1951

4 548 1060 1572 2084 2596

5 681 1321 1961 2601 3241

Table 6.2: Size of the policy metadata for conjunctive policies (in bytes).

graphic operations increases almost linearly wi th both the num-

ber of policies and the number of key managers. Even for the

worst case (five policies and five key managers), the crypto-

graphic operation time is sti l l less than two seconds, which is

small compared wi th the file transmission time.

6.2 Space Utilization of FADE

We now assess the space util ization. As stated in Section 5.1,

each data file is accompanied wi th its file size (8 bytes), the

HMAC-SHA l signature (20 byte), and a metadata file that

stores the policy information and cryptographic keys. For the

metadata file, its size differs wi th the number of policies and

the number of key managers used. Here, we analyze the space

overhead due to the metadata introduced by FADE.

CHAPTER 6. EVALUATION 50

Num. of KMs
. ^ ^ ^ 1 2 3 4 5

Num. of policies

1 149 277 405 533 661

2 298 554 810 1066 1322

3 447 831 1215 1599 1983

4 596 1108 1620 2132 2644

5 745 1385 2025 2665 3305

Table 6.3: Size of the policy metadata for disjunctive policies (in bytes).

Table 6.2 and Table 6.3 show the different sizes of the meta-

data based on our implementation prototype for a variable num-

ber of (a) conjunctive policies (Pi 八 P2 八…八 Pm)，and (b) dis-

junctive policies (Pi V P2 V • • • V P^). To understand how each

metadata size is obtained, we consider the simplest case where

there is only a single policy and a single key manager. Then

we need: (i) 128 bytes for each share of the policy-based secret

key S f for policy z, (ii) 16 bytes for the encrypted copy of K

based on 128-bit AES, (hi) 4 bytes for the policy identifier, and

(iv) 1 byte for the delimiter between the policy identifier and

the keys. In this case, the metadata size is 149 bytes. Note that

in the case of multiple policies, we need to store more policy

identifiers as well as more cryptographic keys, and hence the

metadata size increases. Also, the metadata size increases wi th

the number of key managers (see Section 4.2). This space over-

CHAPTER 6. EVALUATION 51

Pricing

Storage (c,) $0.14 per GB

Data transfer in (q) $0.10 per GB

Data transfer out (c �) $0.19 per GB with first 1GB free

PUT requests (cp) $0.01 per 1,000 requests

GET requests (cg) $0.01 per 10,000 requests

Table 6.4: A simplified pricing scheme of Amazon S3 in Singapore (in US
dollars).

head becomes less significant if the file size is large enough (e.g.,

on the megabyte scale).

6.3 Cost Model

We now evaluate the monetary overhead of FADE using a sim_

pie pricing model. Here, we use a simplified pricing scheme of

Amazon S3 in Singapore, in which we assume that our storage

usage is less than 1TB and our monthly data outbound transfer

size is less than 10TB. Table 6.4 shows the pricing scheme (as

of May 2011).

We estimate the cost of FADE based on Cumulus [32], a

snapshot-based backup system. In [1], i t is shown that a typical

compressed snapshot consists of hundreds of segments, each of

which is around. Here, we assume that our data source has 5 files

CHAPTER 6. EVALUATION 52

Without FADE With FADE

Storage c,-s-f = $0,210 c , - s - (/ + 28 + M(p, TV)) = $0,210

Data transfer in c^s.f.u = $0,150 CrS-{f+28 + M{p,N))-u = $0,150

Data transfer out C o ' s - f - d = $0,095 c^ -s - (/+28 + M(p, A^))-ti = $0,095

PUT requests c^-s-u = $0,003 = $0,006

GET requests Cg,s.d = $0,000 Cg-s-2d = $0,001

Total cost $0,458 $0,462

Table 6.5: Cost report (in US dollars).

(segments) and each file is f bytes. Suppose that each segment

is associated w i th p policies^ and there are N key managers.

We evaluate the cost when each file is uploaded u times and

downloaded d times. We denote by M{p, N) the size of the

metadata.

Table 6.5 shows the cost reports. To illustrate, we plug in

some example values as follows. We let s 二 300 and f = 5MB,

for a total of 1.5GB data. We use 3 conjunctive policies and 3

key managers. We assume that each file is uploaded once and

downloaded once. From the table, we can see that the extra cost

that FADE incurs is less than a cent per month.

iln Cumulus, each segment may be composed of multiple small files. We assume the

simplest case that all the files are associated with the same combination of policies.

CHAPTER 6. EVALUATION 53

6.4 Lessons Learned

In this chapter, we evaluate the performance of FADE in terms

of the overheads of time, space utilization, and monetary cost. I t

IS important to note that the performance results depend on the

deployment environment. For instance, if the client and the key

manager all reside in the same region as Amazon S3’ then the

transmission times for files and metadata wi l l significantly re-

duce; or if the metadata contains more descriptive information,

the overhead wi l l increase. Nevertheless, we emphasize that our

experiments can show the feasibility of FADE in providing an

additional level of security protection for today's cloud storage.

We note that the performance overhead of FADE becomes

less significant when the size of the actual data file content in-

creases (e.g. on the order of megabytes or even bigger). Thus,

FADE is more suitable for enterprises that need to archive large

files wi th a substantial amount of data. On the other hand, in-

dividuals may generally manipulate small files on the order of

kilobytes. In this case, we may consider associating the same

metadata wi th a tarball of multiple files (see Chapter 5) to re-

duce the overhead of FADE.

Chapter 7

Related Work

In Section 2.1, we discuss time-based deletion in [10, 20], which

we generalize into policy-based deletion. In this chapter, we

review other related work on how to apply security protection

to outsourced data storage.

Cryptographic protection on outsourced storage. Re-

cent studies (see survey in [14]) propose to protect outsourced

storage via cryptographic techniques. Plutus [13] is a crypto-

graphic storage system that allows secure file sharing over un-

tmsted file servers. Ateniese et al. [5] and Wang et al [33] pro-

pose an auditing system that verifies the integrity of outsourced

data. Wang et al [34] propose a secure outsourced data access

mechanism that supports changes in user access rights and out-

sourced data. However, all the above systems require new pro-

tocol support on the cloud infrastructure, and such additional

54

CHAPTER 7. RELATED WOBK 55

functionalities may make deployment more challenging.

Secure storage solutions for public clouds. Secure solu-

tions that are compatible wi th existing public cloud storage ser_

vices have been proposed. Yun et al [38] propose a cryptographic

file system that provides privacy and integrity guarantees for

outsourced data using a universal-hash based MAC tree. They

prototype a system that can interact wi th an untrusted storage

server via a modified file system. JungleDisk [12] and Cumulus

32] protect the privacy of outsourced data, and their implemen-

tation use Amazon S3 [3] as the storage backend. Specifically,

Cumulus focuses on making effective use of storage space while

providing essential encryption on outsourced data. The above

systems mainly put the protocol functionalities on the client

side, and the cloud storage providers merely provide the storage

space. On the other hand, such systems do not consider file

assured deletion in their designs.

Access control. One approach to apply access control to

outsourced data is by attribute-based encryption (ABE), which

associates fine-grained attributes wi th data. ABE is first intro-

duced in [24], in which attributes are associated wi th encrypted

data. Goyal et a/. [11] extend the idea to key-policy ABE, in

which attributes are associated wi th private keys, and encrypted

CHAPTER 7. RELATED WOBK 69

data can be decrypted only when a threshold of attributes are

satisfied. Pirrett i et a/. [22] implement ABE and conduct empir-

ical studies. Nair et a/. [17] consider a similar idea of ABE, and

they seek to enforce a fine-grained access control of files based

on identity-based public key cryptography. Perlman et al [21

also address how to associate data wi th Boolean combinations

of policies, but their focus is on digital rights management (i.e.,

access control) rather than file assured deletion.

Yu et al [37], similar to our work, also seeks to combine as-

sured deletion and access control by allowing attr ibute revoca-

tion in ABE. They require semi-trustable on-line proxy servers

to be available, such that data is re-encrypted wi th new keys

upon attr ibute revocation. In our case, we can simply remove

the policy-based control keys without the need of re-encryption,

since all policy-based control keys are maintained by centralized

key servers. We also empirically evaluate the feasibility of our

system, while [37] mainly focuses on security analysis.

Assured deletion. There are several related systems on

assured deletion (which come after our conference paper [30]).

Keypad [9] protects data in theft-prone devices (e.g., laptops,

USB sticks) by encrypting such data and maintaining keys in

an independent, centralized key server, similar to FADE. I t re-

CHAPTER 7. RELATED WOBK 57

moves all data of a protected device upon requests of deletion,

and does not consider fine-grained deletion as in FADE. Nasuni

announced the support of assured deletion in backup snapshots

in March 2011 [18]. However, there is no formal study about

their implementation methodologies and performance evalua-

tion. In our recent work [23], we extend the idea of assured

deletion to cloud backup systems wi th version control, but the

work [23] does not consider access control and the use of multiple

key managers for key management.

Chapter 8

Conclusions

We propose a practical cloud storage system called FADE, which

aims to provide access control assured deletion for files that are

hosted by today's cloud storage services. We associate files w i th

file access policies that control how files can be accessed. We

then present policy-based file assured deletion, in which files

are assuredly deleted and made unrecoverable by anyone when

their associated file access policies are revoked. We describe the

essential operations on cryptographic keys so as to achieve ac-

cess control and assured deletion. FADE also leverages existing

cryptographic techniques, including attribute-based encryption

(ABE) and a quorum of key managers based on threshold secret

sharing. We implement a prototype of FADE to demonstrate

its practicality, and empirically study its performance overhead

when it works wi th Amazon S3. Our experimental results pro-

58

CHAPTER 8. CONCLUSIONS 59

vide insights into the performance-security trade-off when FADE

is deployed in practice.

Bibliography

1] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon.

RAGS: A Case for Cloud Storage Diversity. In Proc. of

ACM SoCC, 2010.

2] Amazon. SmugMug Case Study: Amazon Web Services,

h t t p : / / a w s . a m a z o n . c o m / s o l u t i o n s / c a s e - s t u d i e s /

smugmug/, 2006.

3] Amazon S3, h t t p : " a w s . amazon.com/s3’ 2010.

:4] M. Armbrust, A. Fox, A. D. Griff i th, Reanand Joseph,

R. H. Katz, G. Konwinski, Andrewand Lee, D. A. Patter-

son, I. Rabkin, Ariel andStoica, and M. Zaharia. Above the

Clouds: A Berkeley View of Cloud Computing. Technical

Report UCB/EECS-2009-28, EECS Department, Univer-

sity of California, Berkeley, Feb 2009.

5] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik.

Scalable and Efficient Provable Data Possession.. In Proc.

60

http://aws.amazon.com/solutions/case-studies/

BIBLIOGRAPHY (,4

of SecureComm, 2008.

6] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-Policy

Attribute-Based Encryption. In Proc. of 28th IEEE Sym-

posium on Security and Privacy (Oakland), May 2006.

7] T. Dierks and E. Rescorla. The transport layer security

(tls) protocol version 1.2, Aug 2008. RFC 5246.

8] Dropbox. h t t p : //www. dropbox. com, 2010.

9] R. Geambasu, J. P. John, S. D. Gribble, T. Kohno, and

H. M. Levy. Keypad: Audi t ing File System for Mobile

Devices. In Proc. of EuroSys, Apr i l 2011.

10] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy. Van-

ish: Increasing Data Privacy wi th Self-Destructing Data. In

P^oc. of USENIX Security Symposium, Aug 2009.

11] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attr ibute-

Based Encryption for Fine-Grained Access Control of En-

crypted Data. In Proc. of ACM CCS, 2006.

12] JungleDisk. h t t p : / / w w w . j i m g l e d i s k . c o m / ’ 2010.

13] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and

K. Fu. Plutus: Scalable Secure File Sharing on Untrusted

http://www.jimgledisk.com/%e2%80%99

BIBLIOGRAPHY (,4

Storage. In Proc. of the 2nd USENIX Conference on File

and Storage Technologies (FAST), 2003.

14] S. Kamara and K. Lauter. Cryptographic Cloud Storage.

In Proc. of Financial Cryptography: Workshop on Real-Life

Cryptographic Protocols and Standardization, 2010.

15] L ibAWS++. h t t p : / /aws . 28msec . com/, 2010.

16] A. J. Menezes, P. C. van Oorschot, and S. A.Vanstone.

Handbook of Applied Cryptography. CRC Press, Oct 1996.

17] S. Nair, M. T. Dashti, B. Crispo, and A. S. Tanenbaum. A

Hybrid PKI- IBC Based Ephemerizer System. IFIP Interna-

tional Federation for Information Processing, 232:241-252,

2007.

18] Nasuni. Nasuni Announces New Snapshot Retention Func-

tionality in Nasuni Filer; Enables Fail-Safe File Deletion in

the C] -oud, Mar 2011. http://www.nasuni.com/news/press-

releases/nasuni-announces-new-snapshot-retention-

functionality-in-nasuni-filer-enables-fail-safe-file-deletion-

in-the-cloud/.

19] OpenSSL. h t t p : / /www.openss l . o rg / , 2010.

http://www.nasuni.com/news/press-
http://www.openssl.org/

BIBLIOGRAPHY (,4

20] R. Perlman. File System Design wi th Assured Delete. In

ISOC NDSS, 2007.

21] R- Perlman, C. Kaufman, and R. Perlner. Privacy-

Preserving DRM. In IDtrust, 2010.

22] M. Pirret t i , P. Tray nor, P. McDaniel, and B. Waters. Secure

Attr ibute-Based Systems. In ACM CCS, 2006.

[23] A. Rahumed, H. C. H. Chen, Y. Tang, P. P. C. Lee, and

丄 C. S. Lui. A Secure Cloud Backup System w i th Assured

Deletion and Version Control. In 3rd International Work-

shop on Security in Cloud Computing, 2011.

24] A. Sahai and B. Waters. Fuzzy Identity-Based Encryption.

In EUROCRYPT, 2005.

25] B. Schneier. File Deletion, h t t p : //www. schne ie r . com/

b l o g / a r c h i v e s / 2 0 0 9 / 0 9 / f i l e _ d e l e t i o n . h t m l , Sep 2009.

26] A. Shamir. How to Share a Secret. CACM, 22(11):612—613，

Nov 1979.

27] SmugMug. h t t p : //www. smugmug. com/, 2010.

28] ssss. h t t p : / / p o i n t - a t - i n f i n i t y . o r g / s s s s / , 2006.

29] W. Stallings. Cryptography and Network Security. Prentice

Hall, 2006.

BIBLIOGRAPHY (,4

30] Y. Tang, P. P. C. Lee, J. C. S. Lm, and R. Perlman. FADE:

Secure Overlay Cloud Storage wi th File Assured Deletion.

In Proc. of ICST SecureComm, 2010.

31] The CPABE Toolkit. h t t p : / / a c s c . cs . utexas . edu/

cpabe/，2010.

32] M. Viable, S. Savage, and G. M. Voelker. Cumulus: Filesys-

tem backup to the cloud. ACM Trans, on Storage (ToS),

5(4), Dec 2009.

33] C. Wang, Q. Wang, K. Ren, and W. Lou. Privacy-

preserving public auditing for storage security in cloud com-

puting. In Proc. of IEEE INFO COM, Mar 2010.

34] W. Wang, Z. Li, R. Owens, and B. Bhargava. Secure and

Efficient Access to Outsourced Data. In ACM Cloud Com-

puting Security Workshop (CCSW), Nov 2009.

35] Windows Azure. h t t p : / / m s d n . m i c r o s o f t . c o i n / e n - u s /

w indowsazure/defau l t .aspx, 2010.

36] S. W o l c h o k , 〇 . S . Hofmann, N. Heninger, E. W. Fel-

ten’ J. A. Halderman, C. J. Rossbach, B. Waters, and

E. Witchel. Defeating Vanish wi th Low-Cost Sybil Attacks

Against Large DHTs. In Proc. of NDSS, 2010.

http://msdn.microsoft.coin/en-us/

BIBLIOGRAPHY (,4

37] S. Yu, C. Wang, K. Ren, and W. Lou. At t r ibute Based Data

Sharing wi th At t r ibute Revocation. In A C M Symposium

on InformaUon, Computer and Communications Security

(ASIACCS), Apr 2010.

38] A. Yun, C. Shi, and Y. Kim. On Protecting Integrity

and Confidentiality of Cryptographic File System for Out-

sourced Storage. In ACM Cloud Computing Security Work-

shop (CCSW), Nov 2009.

CUHK L i b r a r i e s

_ _ _

0 0 4 8 0 6 8 9 7

