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Abstract 

In this thesis, we study the compressible Navier-Stokes equations for quantum 

fluids. First, we will introduce a derivation of quantum Navier-Stokes equations 

from a Wigner-BGK model by a moment method and a Chapman-Enskog expan-

sion around the quantum equilibrium. Secondly, we will prove the global-in-time 

existence of weak solutions to barotropic quantum Navier-Stokes equations in a 

two or three-dimensional torus for finite energy initial data. It is an improvemen-

t of the result by Jiingel [Global weak solutions to compressible Navier-Stokes 

equations for quantum fluids, SIAM J. Math. Anal., 42(2010), no.3, pp.1025-

1045], where the restriction "the viscosity constant must be smaller than the 

scaled Planck constant" can be removed here after we get a new energy estimate. 

Also, the result holds for more general external forces. Finally, we will show the 

global existence and large time behavior of weak solutions to the compressible 

Navier-Stokes-Poisson equations for quantum fluids in a two-dimensional torus. 
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摘 要 

本文討論了一類關於量子流的高維可壓Navier-Stokes方程的 

弱解的整體存在性以及大時間行為。首先， -我們大致地給出 

了從Wigner -BGK模型到此方程的推導。然後，我們證明了此 

方程在二維環面或三維環體上允許大初值的整體弱解的存在 

性。基於一個更細的能量估計，我們改進了 Jrnigel [32；!中的結 

果： 1 .不需要限制枯性係數小於普朗克常數； 2 .對更一般的 

外力也成立。最後，我們討論了在二維環面上關於量子流的可 

壓Navier-Stokes-Poisson方程的弱解的整體存在性以及大時間行 

0 
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Introduction 

The motion of fluids can be described through a system of partial differential 

equations. One important system is compressible Navier-Stokes equations: 

Pt + div(/m) = 0, 
< {pu)t + dW{pu (g) w) + V P = divS, (0.1) 

{pE)t + divifmE + uP) 二 div(A;•約 + div(uS)， 
V 

which express tlie fundamental physical laws in continuum mechanics: the con-

servation of mass, momentum and energy. In (0.1), p and u are the density and 
I 

velocity of the fluid respectively. The total energy E is given by E = + e, 

where e is the internal energy. P = P(p, e) is the pressure. 9 is the temperature, 

k = k{9) > 0 is the thermal conductivity, and S is the shear stress tensor with 

the form 

S = "(Vw + V^w) + A(divi/,)I, 

where I is the d x d identity matrix, /i and A are the Lame viscosity coefficients 

satisfying the following physical constraints “ 

/X > 0, 2fjL + dX^ 0. 

The relation among p, P, 9 and e is given by the equations of state for the fluid 

concerned and the second law of thermodynamics. 

The full Navier-Stokes equations (0.1) has been investigated by many math-

ematicians in a large variety of contexts, such as the earlier work by Kazhikhov 

3 
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and Shelukhin [36], the global existence in one-dimensional case by Hoff [20,22 

for small initial data. Chen, Hoff and Trivisa [8] gave the time-independent es-

timates for large discontinuous initial data. For the multi-dimensional system, 

Matsumura and Nishida [42] first obtained the global classical solutions for ini-

tial data close to a non-vacimrn equilibrium. Later, Hoff [24] proved a global 

existence result with small, discontinuous initial data. In the case that the den-

sity is allowed to vanish initially, Feireisl [16，17] showed the global existence 

of weak solutions in sense that the energy inequality instead of energy equality 

holds, under some constrains on P, provided 7 > - . His proof based on the 

work by Lions [39], which showed the existence of weak solutions to the isentrop-

ic Navier-Stokes equations. Concerning the full Navier-Stokes equations with 

vacuum states, Cho and Kim [9] constructed a local strong solution, as long as a 

suitable compatibility condition is satisfied initially. Recently, in one-dimensional 

case under special pressure, viscosity and heat conductivity, Wen and Zhu [51 

obtained a uniqueness global classical solution with large initial data and vacuum. 

If neglecting both heat conduction and dissipation of mechanical energy, we 

obtain the following isentropic compressible Navier-Stokes equations: 

I Pt + div(pu) = 0， （0.2) 

1 (pu)t + div(pu (8) w) + V P - /lAu - (A + ")Vdivw = 0, 

where P(p) == 了 with ^ > 0, 7 > 1. 

The behavior of the solution to (0.2) is closely related to our real world, which 

displays an amazing range of phenomena, from ordinary patterns to turbulent 

states. An important feature of (0.2) is that it is a couple hyperbolic-parabolic 

system for non-vacuum region and maybe degenerate in the presence of vacuum. 

There are huge literatures to (0.2). Since it is difficult to deal with vacuum, 

the first results were obtained with initial data bounded away from zero. The 

existence of global in time solutions for Navier-Stokes equations was first ad-
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dressed in dimension one for sufficient smooth initial data by Kazhikhov and 

Shelukhin [36], and for discontinuous initial data by Serre [45,46] and Hoff [19 . 

The two-dimensional case was done by Vazgant and Kazhikhov [50] for large ini-

tial data and special viscosity coefficients (still in the case away from vacuum). 

For higher-dimensional case, the local existence and uniqueness of classical so-

lutions are known in [44, 47] in the absence of vacuum. In 1983, Matsumura 

and Nishida [42] obtained the global classical solutions for initial data close to 

a non-vacuum equilibrium in some Sobolev space H^ with arbitrary large s. In 

particular, the theory requires that the solution has small oscillations from a uni-

form non-vacuum state so that the density is strictly away from the vacuum and 

the gradient of the density remains bounded uniformly in time. This result was 

generalized to discontinuous data by Hoff in a series of papers (See [19,21,23]). 

Later, Duanchin [12] obtained the existence and uniqueness of global solutions in 

a functional space invariant by the nature scaling of associated equations. 

Concerning arbitrary initial data that may vanish, the major breakthrough is 

due to Lions [39], where he showed the existence of global in time weak solutions 

provided that the specific heat ratio 7 is appropriately large (7 ^ -——d = 2,3). 
d十 

The restriction of 7 is to show the existence of renormalized solutions introduced 

by DiPerna and Lions [14]. This result was improved later by Feireisl [16] for 

7 � O t h e r results provide the full range 7 > 1 under symmetry assump-

tions, see [28,48] for instance. Recently, under the additional assumption that 

the viscosity coefficients 11 and A satisfy fi > max{4A, —A}, and if the far field 

density is away from vacuum, Hoff [25] obtained a new type of global weak solu-

tions with small energy. Such weak solutions have extra regularity information 

compared with those large weak ones constructed by Lions [39] and Feireisl [16 . 

Note that here the weak solutions may contain vacuum though the spatial mea-

sure of the set of vacuum has to be small. For strong solutions with the initial 
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density allowing vacuum, it was shown by Cho, Choe and Kim in [9] that the 

system (0.2) admits a local strong solution as long as the initial data satisfies a 

suitable compatibility condition. Moreover, Kim and Choe [11] obtained a local 

classical solution in a bounded or unbounded domain of where the initial 

density does not need to be bounded away from vacuum. Very recently, Huang, 

Li and Xin [26] established the global existence and uniqueness of classical so-

lutions to the three-dimensional Cauchy problem for (0.2). Note that the initial 

density is allowed to vanish and the spatial measure of the set of vacuum can be 

arbitrarily large, in particular, the initial density can even have compact support. 

This result generalizes previous results on classical solutions for initial densities 

being strictly away from vacuum, and is the first result for global classical solu-

tions which may have large oscillations and can contain vacuum states. Later, 

for the two-dimensional case, Luo in her Ph.D thesis [41] showed that for spher-

ically symmetric case, the local smooth solution (p, u) e C^([0,T]; H^) (s > 3) 

to (0.2) has to blow up in finite time with initial density having compact support. 

It is noted that, in dealing with large amplitude solutions, one has to face . 

the possible appearance of a vacuum state. However, as observed in [21, 38, 

52], the compressible Navier-Stokes equations with constant viscosity coefficients 

(i.e.(0.2)) behave singularly in the presence of vacuum. So in order to understand 

the behavior of fluids near vacuum, one can choose an alternative system of (0.2). 

As presented in [38], in deriving the compressible Navier-Stokes equations from 

the Boltzmann equations by the Chapman-Enskog expansions, the viscosity de-

pends on the temperature, and for isentropic cases, this dependence is translated 

to the dependence of the density by the law of Boyle and Gay-Lussac for ideal 

gas. So we can modified (0.2) to the following density-dependent system: 

. A + div(pn)=0, (0.3) 
(pu)t + div(pu (g) u) + V P - 2div(jLi(p)B(u)) - •(A(p)divw) = 0. 

\ 
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In geophysical flows, many matheinatical models correspond to (0.3) (see 

1,2,32]). In particular, the viscous Saint-Venant system for shallow water is 

expressed exactly as (0.3) with d = 2, /x(p) = p, X{p) = 0, and 7 = 2. Shallow 

water equations are to describe vertically averaged flows in three-dimensional 

shallow domains in term of the mean velocity u and the variation of the depth p 

due to the free surface, which is widely used in geophysical flows. Global smooth 

solutions for data close to equilibrium were established in [49], and related topics 

have been extensively studied in [1,2], and the references therein. Nevertheless, 

little is known about the global existence of weak solutions for large data to the 

shallow water equations or more generally to the multi-dimensional compress-

ible Navier-Stokes equations (0.3) (d = 2, 3). In fact, the system (0.3) is highly 

degenerate at vacuum and when dealing with vanishing viscosity coefficients on 

vacuum, the velocity cannot even be defined when the density vanishes, and hence 

we will have no uniform estimates for the velocity. 

For one-dimensional compressible Navier-Stokes equations (0.3) with i i {p )= 

p", A(p) = 0(a 6 (0,1)), there is much literature on the well-posedness theory of 

the solutions (see [29,30,36,38,53-55], and the references therein). In particular, 

initial boundary value problems for one-dimensional (0.3) with /z(p) = p", A(p) 二 

0(q； > i ) , were studied by Li, Li, and Xin in [37], and interesting phenomena of 
Zi 

vacuum vanishing and blowup of solutions were found there. When it comes to 

multi-dimensional case, Bresch, Desjardins and Lin in [1] showed the L} stability 

of weak solutions for the Korteweg system (/x(p) = i/p,入二 0 with the Korteweg 

stress tensor /cpVAp), and their result was later improved in [2] to include the 

case of vanishing capillarity {k = 0) but with an additional quadratic friction 

term rp\u\u. Under the additional constraint on the viscosity coefficients that 

X{p)=2{pfi'(p)-fi{p)), (0.4) 

an interesting new entropy estimate is established in [1], which provides some high 
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regularity for the density. Adding the constraint (0.4), Mellet and Vasseur [43 

proved the L̂  stability of weak solutions of the system (0.3) based on the new 

entropy estimate, extending the corresponding L̂  stability results of [1,2] to the 

case r = k 二 0. Recently, Guo, Jiu and Xin [18] showed the existence of spheri-

cally symmetric solutions to (0.3) adding the constraint (0.4). 

There is a related model for quantum fluids, called compressible quantum 

Navier-Stokes system, which reads as 
( 

Pt + div(pu) = 0, • 

< (pu)t + dw{pu (g)u) + VP(p) - 2e'^pV - 2iydiv{pD{v)) = pf. 
P (0.5) 

This system consists of the mass equation and the momentum equation including 

a third-order quantum term ) with density-dependent viscosity 
\ VP J 

coefficients n{p) = lyp, X = 0. p, u are the particle density and particle velocity of 

the quantum fluid respectively. The function P{p) is the pressure, and f describes 

external forces. The physical parameters are the (scaled) Planck constant £ > 0 

and the viscosity constant " � 0 . The system is derived from a Wigner equation, 

and there are many different derivations, such as [6,34,35]. In Chapter 2, we 

will introduce a derivation by using a moment method and a Chapman-Enskog 

expansion around the quantum equilibrium. Recently, there are some results on 

the existence of global solutions to the system (0.5). The existence of global-

in-time classical solutions in one-dimensional case has been shown in [31] under 

the assumption e = v. For multi-dimensional case, Jiingel [32] obtained the the 

global-in-time existence of weak solutions to (0.5) in a two or three-dimensional 

torus for large data. The main idea of the existence analysis is to reformulate the 

quantum Navier-Stokes equations (0.5) by means of a so-called effective velocity 

w = u-\- iN log p, 
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leading to a viscous quantum Euler system 
( 

pt + div(/)— = z/Ap, 

{pw)t + (g) tt;) + VP(p) + 2("2 — - = pf, 

(0.6) 

The advantage of the new formulation (0.6) is that we can apply the maximum 

principle to the parabolic equation to deduce strict positivity of the density p if 

the initial density pq is strictly positive and the velocity w is smooth. The global 

existence of weak solutions to the viscous quantum Euler model (0.6) is shown by 

using the Faedo-Galerkin method and weak compactness techniques. However, it 

needs the restriction that e > u. The case s = i/ is treated in [15] by performing 

the semiclassical limit (e — v) — 0, and Jiang [27] treated the remaining case 

E < y based on an estimate given in [15]. In Chapter 3 of this thesis, we will 

show the global existence of weak solutions to (0.5) for any e, z/ > 0, where we 

get a new energy estimate, and do not need to compare £ with v. 

The thesis is organized as follows. In Chapter 1，we give some useful inequal-

ities and fundamental lemmas which will be used in the thesis. In Chapter 2, 

we sketch a derivation of the compressible quantum Navier-Stokes model from 

a Wigner-BGK model by a moment method and a Chapman-Enskog expansion 

around the quantum equilibrium which is shown in [34]. In Chapter 3’ we prove 

the global-in-time existence of weak solutions to barotropic Navier-Stokes equa-

tions in a two or three-dimensional torus for finite energy initial data. First, 

we reformulate the quantum Navier-Stokes equations to a viscous quantum Euler 

system, which has some advantages; next, we construct the approximate solution-

s by using the Faedo-Galerkin method and obtain an energy estimate, which is 

crucial to the thesis; finally, we get the weak solutions by weak compactness tech-

niques. It is an improvement of the result in [32] since we can ignore the constraint 

s > v, this is possible due to a new energy estimate which is different from the 
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one in [32]. Chapter 4 is concerned with the compressible Navier-Stokes-Poisson 

equations for quantum fluids, where we show the global existence and large time 

asymptotic behavior of weak solutions in a two-dimensional torus. Finally, some 

comments about my following work are given in Chapter 5. 

I 



Chapter 1 

Preliminaries 

In this chapter, we will give some notations and recall some useful inequalities 

and fundamental lemmas to be used in the thesis. 

1.1 Notations and function spaces 

In this thesis, C is always an unspecified constant that may vary from line to 

‘ line. If C depends on some special parameters xi,. • .，Xk, we write C(xi,...’ x^). 

For vector-valued functions u = (ui,u2, =…1,?；2，…，拟)ofIR �de f ine 

d 
U^v = {uiVj}dxd. Vu diUjdiVj, 

and 

= Z ) � , ) + 严 . 
1 丄 

1=1 

i / ⑴ 切 ( … ( 1 < p < +00) are the usual Sobolev spaces, which are e-

quipped with the norm || . \\lp and || . ||納’p respectively. [ i / ( n ) ] � 切 ⑴ a r e 

the corresponding Sobolev spaces with elements being vector-valued functions. In 

many cases, we do not distinguish the vector-valued functions and scalar-valued 

functions very strictly. In particular, denote by [H^ip))* stands 

11 
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for the dural space of 

Let X denote a real Banach space, with norm || • ||. The space L^(0,T;X) 

consists of all strongly measurable functions u : [0,T] X with 

|U||LP(。，7VO = ( 义 L | U ⑴ I I 一 < 0 0 ， 

The space C([0,T];X) consists of all continuous u : [0,T] -)• X with 

|u||c(。，r;;o = 品矜 1 ||u(t)|| < 00. 

1.2 Some useful inequalities 

We first introduce the Young's inequality. 

Theorem 1.2.1 (Young's inequality) Let 1 < p,q < oo, - + ^ = 1. For any 
p q 

positive number a and b, it holds that 

…aP 
ah < ——h —. 

—V Q 
The Young's inequality yields immediately the following well-known Holder's 

inequality. 

Theorem 1.2.2 (Holder's inequality) Given Q an arbitrary domain in 

Assume 1 < p, g < oo, ^ + ^ = 1. Ifue v G then we have 

/ \uv\dx < ||w||LP(n) . |丨叫丨释). 
Jn 

Thus the interpolation inequality is shown. 

Theorem 1.2.3 (Interpolation inequality) Assume 1 < s, r, t < oo and 
1 e i-e 
r s t 

Suppose u e n Then u G U{n), and 

I M I — ) < ll̂ -llî (fi) • \Ml7'ny (1-2.1) 
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One more general of' the interpolation inequality is the following one. 

Theorem 1.2.4 (Gagliardo-Nirenberg inequality) Let ^ be a C^'^ domain, 

m e N, 1�p,q,r ‘ oo. Then there exists a constant C > 0 such that for all 

u e W'^^^n) n !/•(•)，it holds that 

丨乃〜I—) < C\W\\wm,iin) . IMIi;fn)’ 

where 0 ^ < m, 9 G [|/5|/m, 1) and 

M —1 二,（；」）— 
d p \d qj r 

The interpolation inequality is closely related to the Sobolev embedding the-

orem. 

Theorem 1.2.5 (Sobolev embedding theorem) Let be a bounded do-

main in W^. Then, 

(1) if kp < d, the space ly^'^(Q) is continuously embedded in p* = 

dp/{d — kp), and compactly embedded in for any q < p*; 

(2) if Q <m < k ——< m + 1，the space 而，”�)is continuously embedded 

. in C叫卢(n) for any /S < a. 

For functions in 妒’厂⑴）with some special homogeneous properties, there are 

Poincare's inequalities. 

Theorem 1.2.6 (Poincare's inequalities) LetQ be a bounded, connected open 

subset ofR"^ with a C^ boundary dn. Assume l<p<oo. Then for each function 

u e then there 

exists a constant C, depending only on Q., such that 

W - (w)f̂ llLP(n) < C'||Vw||LP(f̂ ), 
where {u)q = average of u over Jl. 

For each u G there exists a constant C, depending only on Q, 

such that 
\u\\LP{n) < C\\Vu\\LP{n)- “ 
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The following famous Gronwall's Lemma will be used frequently in this thesis. 

Theorem 1.2.7 (Gronwall's Lemma) 

a) (Differential Version) Let us assume h, r are integrahle on (a, b) and nonneg-

ative a.e. in (a, b). Further assume that y G C([a, b]) and y' < h) and that 

the following inequality is satisfied: 

y'(t) < h(t) + r{t)y{t) for a.a.t e (a, h). 

Then 

y{t) < y{a) + J h{s) exp J r(r)dr^ ds exp r(s)ds)， t G [a, b . 

b) (Integral Form) Let us assume h is continuous on [a, b], r is integrable on 

(a, b) and nonnegative a.e. in (a, h). Further assume that y E C([a, 6]) satisfies 

the following inequality: 

y(t) < h{t) + / r{s)y[s)ds for a.a.t G (a, b). 
J a 

Then 

y{t) < h{t) + 义 h{s)r{s) exp (义 r(T)dT) ds, t e [a, b . • 

c) (Local Version) Let T, a,co>0 be given constants and let h G L(0, T) with 

h>0 a.e. in [0,T], for nonnegative function y e C^([0, T]) satisfy 

y'{t) < hit) + C o y � for a.a. t e (0,T). 

Let to G [0,T] be such that acoIf(to)"% < 1, where 

糊=/(O) + f h{s)ds. 
Jo 

Then for all t G [0, ̂ o] there holds 

m < 付⑴ + 丑⑴((1 - acoH(tyH)-‘ — 1) • 
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Next, we will show two inequalities (see [32, 33]), which are important in the 
thesis. 

Theorem 1.2.8 Let f be a strictly positive function on T" {d ^ 1) such that 

v7 € 门 then the following inequalities hold: 

丄 / | V 2 l � g / | 2 办 》 踪 丄 血 (1.2.2) 

/ /丨VSlog 斤 办 》 f ^ i 丨 办 （1.2.3) 

1.3 Fundamental lemmas 
Finally, we introduce some lemmas which will be used in the thesis. 

Theorem 1.3.1 (Banach fixed point theorem) Let U be a complete subset 

of a normed space X, and let A : U U be a contraction operator. Then A has 

a unique fixed point. 

Theorem 1.3.2 (Aubin-Lions lemma) Assume X Y ^ Z, where X, Z 

are reflexive Banach spaces, X is dense in Y. Set 

W = {ue i7(0，T; X)，ut e T;Z), l<p,q< oo}. 

• ThenW ^^ LP{0,T] Y). 

� 



Chapter 2 

Compressible Navier-Stokes 

Equations for Quantum Fluids 

In this chapter, we will sketch a derivation of the compressible quantum 

Navier-Stokes equations from a Wigner-BGK model by a moment method and 

a Chapman-Enskog expansion around the quantum equilibrium which is shown 

in [34:. 

( 

16 
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2.1 Background 

A quantum fluid is a many-particle system in whose behavior not only the 

effects of quantum mechanics, but also those of quantum statistics, are impor-

tant. It is known that it is essential to use quantum mechanics to describe the 

actual structure of atoms or molecules; a classical description fails to account for 

even the qualitative properties. However, if we consider the atoms or molecules 

as themselves simple entities and ask about their dynamics, we find that classical 

mechanics is a good approximation. 

Quantum fluid modeling has become very attractive due to Bose-Einstein 

condensation and quantum fluid models are used to describe superfluids (such 

as helium-4 at low temperatures) and quantum semiconductors. Recently, two 

interesting dissipative quantum fluid models have been established: the viscous 

quantum Euler system and the quantum Navier-Stokes equations. In the follow-

ing, we will introduce a derivation of the quantum Navier-Stokes equations. 

2.2 Derivation of model 

There are some derivations of quantum Navier-Stokes system, one can de-

rive it from the Wigner-Fokker-Planck equation using a moment method (such 

as [35]), or you can derive it from a Wigner-BGK model by a moment method 

and a Chapman-Enskog expansion (see [34]). Here, we sketch the latter. 
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We start from the Wigner-BGK equation: 

Wt+P' V^w + e[V]w = -(M[w] -w)-\- —{ApW + diYp(pw)), (2.2.1) 
V To 

where w{x,p, t) is the Wigner function in the phase-space variables {x,p) G x 

and time t > 0. u > 0 is the scaled mean free path and tq > 0 is a relaxation 

time. The potential operator 0\y] is a pseudo-differential operator 

{e[V]w){x,p,t) = [ {SV){x, 77, t)w{x, 

modeling the influence of the electric potential 1/ = V{x, t) with 

mi^.V.t) = '-{V{x + 臺77，亡)一 -

Here e > i) denotes the scaled Planck constant. The first term on the right-hand 

side of (2.2.1) describes a relaxation process towards the quantum equilibrium 

state M[w], which has been introduced by Degond and Ringhofer [13]. It is the 

formal maximizer of the quantum free energy subject to the constraints of given 

mass, momentum, and energy. More precisely, let 

Exp w = iy(expiy-i(w;))， Log w = W{logW-\w)), • 

where W is the Wigner transform and W''^ is its inverse. The quantum free 
energy is given by 

I f ( 2 � . 
力 = / .) (Log w){x,p,.) — 1 + I — I/(:r,.) dxdp. î ZTTtJ J 股3xK3 \ 2 J. 

For a given Wigner function w, let M[w\ be the formal maximizer of S{g), where 
g satisfies 

f wKip)dp= [ gK{p)dp, K(p) = i|p|2). 

If such a solution exists, then it has the form ‘ 

\ 2 丄（:r’t) 乂. 
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where A, f/, T are Lagrange multipliers. 

To simplify the notations, we define for functions f , 

It is shown that the collision operator -(M[w] - w) conserve mass, momentum 
ly 

and energy, i.e. 

(^{M[w] - w)K{p)) =0. 

Next, multiplying the Wigner-BGK equation (2.2.1) by K(p) (i.e. l,jy, \p\'^/2 

respectively), and then integrating over p e R^, we obtain the moment equations 

{w)t + div ̂ (pw) + {e[V]w) = 0, 

< {pu))t + dWa:{wp^p) + {pO[V]w) = - — {pw), (2.2.2) 
1 1 1 To 

(^WMt + div工〈互+ {-\p\'^0[V]w) = - 3w), 

where p^p denotes the matrix with components pjpk. The particle density p, the 

momentum pu and the energy density pe are defined by 

P= (w), pu = {pw), pe = 

The variable u = {pu)lp and e = {pe)/p are the macroscopic velocity and the 

macroscopic energy respectively. 

. It is shown in [34] that the potential operator d[V] can be simplified in terms 

of the moments p, pu and pe : 

Lemma 2.2.1 ( [34]) The moments o/(9[V^ can be expressed as 

{e[v]) = 0, I 

{pe[v]w) = 

{\We[v]xv) = -puv^v, 

{P � pO[V]w) = -pu (g) •工 1/ - � U, 

1 2 
�jpIpPWW = -{{p^pw) + pel)•怎 1/ + l ^ p V A K ‘ 
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It remains to calculate {wp (g) p) and {hp\'^pw). To this end, we employ the 

Chapman-Enskog expansion 

w = M[w\ + ug 

and introduce the quantum stress tensor P = {{p-u)<S){p-u)M[w]) and quantum 

heat flux q = {-{p - u)\p — u\'^M[w]). Since (Ad[w]) = (w) = p, {pA4[w]) = pu 
1 ^ 

and {-\p\'^M[w]) = pe, a straight calculation gives 

(wp (g)p) = P + pn 0 w + i/(p (g) pg), 

=(尸 + pel)u + g + 

Hence (2.2.2) can be rewritten as 

Pt + div^ (pn) = 0， 

< {pu)t + div^(P + puig)u) - pV:rV = -iydiva;(p ^pg)-—, 
1 ‘ 

�(pe)t + div工((P + pel)u) + div^g — pu . V^V = - - ( p e - -p), 
2 T 2 

where r = tq/u. 

Inserting the Chapman-Enskog expansion in (2.2.1), we get 

9 = -w) = -M[w\t — p . - e\y]M[w\ + •(")， 

where 0{v) contains terms of order v. These equations can be interpreted as a • 

nonlocal quantum Navier-Stokes system. By expanding the quantum Maxwellian 

M[w] in powers of the squared scaled Planck constant we derive a local version 

of this system. Under the assumptions that the temperature varies slowly and the 

vorticity tensor A(u) = -(Vu - V'^u) is small (i.e. V^^logT = O(e^), A(u)= 

•(£2))，the quantum heat flux becomes q = - — + 2 V x d i V a : w ) + the 
£•2 o 1 

quantum stress tensor P = pTl- —pVl log p + and pe = -pT + -p\u\'^ -
丄 2 2 
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—pA^, logp + Furthermore, a tedious calculation shows that 

-i/diva;(p (g) pg) = z/diVa;<S'i, 

where 

51 = 2pTD{u) — ^pTdiv^uI + + 

52 = 2pTB(u)u - ^pTudiv^u + •pT•工T + + …. 

Therefore, we obtain the following result: 

Theorem 2.2.2 ( [34]) Assume that A{u) = an /̂V logT = Then, 

up to terms of order the moment equations of the Wigner equation 

read as 

Pt + div(y9u) = 0, 

{py)t + div(/m + V(/9T) - —div(pV2 log/?) — pVV = i^divS -
< 2 丄 2 . • T 

{pe)t + div((pe + pi:)u) - logp)w) 
5 

� + div{q + -pTVT) -pu-VV = "div(S '̂tx) -^{pe-

where S = 2pTD{u) — ？pTdiv^nl. 
O 

Remark 2.2.3 When we only consider the conservation of mass and momentum, 

the quantum equilibrium becomes 
M[w]{x,p,t) = Exp (A{x,t)- b 一巧••̂，力)|2� 

V 2 乂 

Jn this case, a Chapman-Enskog expansion has been carried out in [6], where a 

barotropic Navier-Stokes system is obtained with 

pt + div(pii) = 0, 

( — i + div(/m (g) u) + V p - - pVV = 2z/div(pD(w)). 



Chapter 3 

Global Weak Solutions to 

Barotropic Navier-Stokes 

Equations for Quantum Fluids 

In this chapter, we prove the global-in-time existence of weak solutions to 

the barotropic compressible Navier-Stokes for quantum fluids with large initial . 

data, which improves the result by Jiingel [Global weak solutions to compressible 

Navier-Stokes equations for quantum fluids, SIAM J. Math. Anal, 42(2010), 

no.3, pp. 1025-1045], where the restriction e > 1/ can be removed and for more 

general external forces. The key is that we get a new energy estimate. 

22 
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3.1 Reformulation and main results 

In this chapter, we study the barotropic quantum Navier-Stokes equation-

s，which consist of the mass conservation equation and a momentum balance 

equation, including a nonlinear third-order differential operator, with the quan-

tum Bohm potential and a density-dependent viscosity. The barotropic quantum 

Navier-Stokes equations can be written as 

Pt + div(pu) = 0， (x, G T^ X (0, T), 

(Ht + div{pu (g)w) + VP{p) - - 2i^div{pD{u)) = pf, 
\ VP J 

(3.1.1) 
with the initial condition 

p\t=o = Po{x), {pu)\t=o = pouo in T^. (3.1.2) 

The unknowns in this system are the particle density p = p{x, t) [0, +oo) 

R+ U {0}, and the particle velocity u = u{x,力)：T" x [0，+oo) u 0 u is the 

matrix with components UiUj，D{u) = is the symmetric part of the 

velocity gradient, and T^ is the d-dimensional torus. The function P{p)=厂 with 

7 > 1 is the pressure, and f describes external forces. The physical parameters 

are the (scaled) Planck constant £ > 0 and the viscosity constant " � 0 . The 

nonlinear dispersive term is produced by the quantum Bohm 
\ Vp J 

potential Q{p) = 
Vp 

We introduce an auxiliary velocity 

w = u + i'V log p, 

then the system (3.1.1) can be rewritten as 

Pt + div(ptt;) = z/Ap, [x,力)G T^ X (0, T), 

—)t + div(pu; 0 — + NP�p�+ 2("2 — 一 = pf, 
\ vP J ‘ 

(3.1.3) 
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and the initial condition is changed to 

p\t=o = poix), {pw)\t=o = powo, in IT� (3.1.4) 

where wo = uo-\- i/V log pq. 

Lemma 3.1.1 The initial value problems (3.1.1)-(3.1.2) and (3J.3)-(3.14) are 

equivalent if po satisfies / < oo. 

Proof: See lemma 2.1 in [32]. • 

Lemma 3.1.2 Let T > 0, and {p,u) be a (smooth) solution to the initial value 

problem (3.L1)-(3.1.2), then (p, u) satisfies 

[Po'i^o . • ， + [ [ [p^u . (I)t - p2(divu)u . (j) + {pu (8) pu) : V0 
i/T'̂  Jo Jjd 

—2upD{u) : + pVcfy + p” . (t)\dxdt = 0’ (3.1.5) 

for all 0 e x (0,T)))^ with </>{-, T) = 0. . 

Equivalently, z/(p, w) is a (smooth) solution to the initial value problem (3.1.3)-

(3.1.4)，then {p, w) satisfies 

[pIwo •(/){•, 0)dx+ [ f [p^w • (/)t - p'^{diYw)w • 0 + (pit; 0 pw) : \/(/) 
JT<i Jo JT<i 

- 如 � Vp) : + ；^^p-^+Miv^ + 2("2 — + . 

- lyV(pw) : (2Vp (g) 0 + pV0) + p V . cfydxdt = 0’ （3.1.6) 

for all 0 G x (0,T)))^ with = 0. 

Proof: Let (f> e x (0,T)))^ with </>{•, T) = 0. ‘ 
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Multiplying (3.1.1)2 by pcj) and integrating over T" x (0,T), we obtain 

- [pgwo . (/)(., 0)(i:c = [ [ {p^u • (j))tdxdt 
Jo JT'^ 

=/ / [p^u . (pt + pptu . 0 + p{pu)t • (fidxdt 
Jo JT'i 

= / [p^u . 4>t + pu . (j){—pd\\u — uVp) 
Jo JT^ 

+ p(^(-div(/m � w) - VPO^) + 2&VV + 2iydw{pD{u)) + pf)]dxdt 
\ VP / 

= / [p^u • (pt - • 0 — p{u ‘ <p){u • Wp) 
Jo Jt'^ 

+ (pu (g) w) ： + p{u 0 u) : (Vp ( g ) 0 ) — — • (/) + . (/) 
7 + 1 

— + . (/)) - 2iypD{u) : (Vp 0 (/> + pV(l))]dxdt = 0, 

Observing that p{u . . Vp) = p{u � u) : (Vp (g) 0), we obtain (3.1.5). 

Similarly, if we multiply (3.1.3)2 by pcj), integrate over T" x (0,T), and use the 

following elementary identities 

. p[w • (f)){w • Vp) = p{w (8) w) : (• /? (8) 0) , 

/ pApw . (l)dx = / [V{pw) : (V/y <S) (/)) + {pw 0 Vp) : 
JT<i Jjd 

then (3.1.6) holds. • 

Next, we will give the definition of weak solutions to the initial value problems 

(3.1.1)-(3.1.2) and (3.1.3)-(3.1.4). 

Definition 3.1.3 A pair (p, u) is said to be a weak solution to the initial value 

problems (3.L1)-(3.L2) if and only if {p, u) satisfies (3.1.1)i pointwise in T" x 

(0,T) and satisfies (3.1.5) for any • G x with (/){-, T) = 0. 

Equivalently, we say (p, w) is a weak solution to (3.1.3)-(3.1.4) if and only if 

{p, w) satisfies (3.1.3)i pointwise in T^ x (0,T) and satisfies (3.1.6) for any 0 G 

X {0,T))y with (j){-,T) = 0. 
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Remark 3.1.4 The reason why we define the weak solutions like above is that 

we can not get the compactness for the convection term pw ^ w (or pu® u). 

However, we are able to obtain the compactness for pw ® pw (or pu) thanks 

to the third-order quantum term . 
\ Vp J 

Now, we state the main results. 

Theorem 3.1.5 Letd = 2,3,T> 0, = p ) 僅 ， 》 1 ifd = 2-j> 
(27 

3ifd = 3,andfe L°°(0,T; "(T勺)，where p = ^ � . Assume 
+00, 7 = 1 

that the initial data (po，^^o) satisfies 

( 

Po � ^ 0, in T̂ , 
f fl \ 

< (̂ jPol̂ ôl + G{po)j dx < oo, (3.1.7) 

/ < 00, 
.JT'i 

where 

G{p) = 7>1’ 
p( logp- 1), 7 = 1. • 

V 

Then there exists a weak solution {p, u) to the initial value problem (3.1.1)-(3.L2) 

with p > 0 m T � a n d the regularity 

‘x/;^ei:°°(o,T;^i(T�nL2(o，:r;//2(Tr^)， • 

^ P e 昨,T; Ẑ 2(t勺）n T; L^(T^)) n L2(0’ T; w ^ i ’ 3 ( t O ) , . 

�p\Vu\ G 

Theorem 3.1.6 Let the assumptions in Theorem 3.1.5 above hold. Assume that 
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the initial data (po, wq) satisfies 

f 
Pq{x) ^ 0, in T^ 
f fl \ 

< 人 " ( ^ ― 夠 I + G�Po) j dx < oo, (3.1.9) 

/ IVŷ l̂ c/a； < oo. 
. J j d 

Then there exists a weak solution (p, w) to the initial value problem (3.1.3)-(3.1.4) 

with p ^ 0 in T'^, and the regularity 

‘^Tp ^ T; n L2(0, T; H^T"^)), 

p G r； l2(t勺)n T； L'^(T^)) n l2(o’ t; iyi’3(TrO), 

‘ p ? " e L 2 ( o ’ : r ; i y i ， 3 / 2 ( T ^ ) ) ’ （3丄10) 

p\Vw\ e l2(0,t； 
‘V 

Remark 3.1.7 In Theorem 3.1.6, wq = uo + uVlogpo. It is easy to check that if 

{po, Wo) satisfies (3.1.9)，then {po,uo) satisfies (4.1.4)，and the regularity (3.1.10) 

of {p, w) implies the regularity (3.1.8) of {p, u). Hence Theorem 3.1.5 is an im-

mediately consequence of Theorem 3.1.6. 

3.2 Construction of approximate solutions 

We introduce the finite-dimensional'space X ^ = span^ipj�^” where ifjj e 

and is an orthonormal basis of which is also an orthogonal basis 

of / / 1們 . 

We construct the approximate solutions as follows: Let the initial data (po, wq) g 

X with po{x) ^6>0 in T". Consider the following system as 
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an approximate system of (3.1.3): 

Pt + div(pu;) = z/Ap, (rr, i) e T" X (0, T), 

< {pw)t + div(pi(； V P ( p ) + - (3.2.1) 

\ y/P J 

—uA{pw) — SAw Sw = pf, in X^j, 

where X*^ stands for the dual space of X^. 
Let the velocity v G C([0, T]; X^v) be given, then v can be written as 

N 

y(工,t) = {x,t) g t ^ x [O，T], 
j=i • 

for some aj{t) e C[0, T], and the norm of v in C([0, T]; Xn) can be formulated as 

N 

lkllc([o,T];X;v) = max^Xll̂ '̂WI-
’ j=i 

Linearize (3.2.1) by 

Pt + div(p?;) = lyAp, (x, t) € T^ X (0, T), 

< {pw)t + + VP(j}) + - (3.2.2) 
\ y/p J 

� 一iyA{pw) - 6Aw -\-6w = pf, in X^. 

Lemma 3.2.1 Assume po{x) G C � ( T勺 , 0 < 6 ( po{x) ^ M < oo,v e C([0, T]; Xjv), 

then there exists an operator S : C([0, T]; X^r) T]; C^(T^)) satisfying 

(1) p = S{v) is a unique classical solution to the initial value problem 

\ Pt + div(p…=i^Ap, (X’ t) eT'^ X (0, T), 

[Plt=o = Pq. 

(2) p = S{v) is strictly 'positive and bounded from below and above, i.e. for any 

(x, X (0, T), it holds that 
I 

0 < Se- :� ' lldiHIi/^的ds ^ S{v) < Me-̂ o PHILOO的ds. (3 2.3) 
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(3) For any wi,w2 G C([0, T]; Xjv), there exists constant C > 0 such that 

115^1) — 秘2)||?̂i(t勺 ^ c亡Iki - V t € (0，T), (3.2.4) 

where C =广已^‘了�'"�"'�)[�’[�’nx一(1 + 切2临([�’t];;ov))， 

C is a constant. 

Proof: 

( 1 ) See [40；. 

(2) Denote Lf = ft + div(/i') — " A / , then a computation shows that 

L ( ( 5 e - " ^ o � l d i H I …心)=如 - / J l l d i H i…的幻 _ ||divt;||…(T勺）^ 0’ 

Lp = 0, 

L (Me~^o'"div�~aVs) = Me*^�'"出叫(约办(div” + ^ 0. 

By maximum principle, we have 
如-/JlldiHI…(Td)ds ^ ^ 

• (3) For any G C([0, T]; X^.), {p^ = S{w,),p2 = S^w^)) G (Ci([0, T]; 

satisfy 

dtPi + div(piiui) = "Api, (3.2.5) 

dtP2 + = (3.2.6) 

and (Pi — P2) satisfies 

dt{pi - P2) + div(pi{(;i - P2W2) = — P2). (3.2.7) 

Since 

/ pi(x, t)dx = / po{x)dx = / p2{x, t)dx, 
Jjd Jjd Jjd 

we have for any t G (0, T), 

/ {pi - P2){x,t)dx = 0. 
JTd . 
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So by Poiiicare's inequality, we get 

\\pi-p2\\LHT'i) ^ C||V(pi-p2)||L2m, V t e (0’T). (3.2.8) 

Multiplying (3.2.6) by -Ap2 and integrating over TT̂ , we have 

^ [ + [丨Ap2|2ob < [ (|it;2||Vp2||Ap2| + |divt(;2||p2||Ap2l)<̂ a; 
肌 丄 jfd Jjd 

In view of (3.2.3), we obtain 

4 [ |Vp2|2cb + i/ f \Ap2fdx 
dt JJd JJd 

^ C\\w2\\h^lO,T];Xr,) f |VP2|2cLT + Cl|7i;2^([�,T];;CWeC�""2"c([�’”;XN), Jjd, 
Grownwall's inequality yields that 

sup ||Vp2||?,2(T.) ^ C(1 + T|| î;2 (̂[。，:rj;;ov))eCTIMcmnx—. (3.2.9) te[o,T] , u，” iv/ 

Next, multiplying (3.2.7) by - A ( p i - P2) and integrating over T"̂  leads to 

4 [ hv{pi-p2)\^dx + u [ \A{pi-p2)\''dx 
Jjd Z Jjd 
< / (|w;i||V(pi - P2)||A(pi - P2)\ + |divi<;i||pi - P2||A(pi - ps)! 

Jf^ 
+ |p2||div(u;i - W2)\\A{pi - P2)丨 + 丨Vpsll̂ t î - W2\\A{pi - p2)\)dx 

《备丄丨八…1 -仍 )丨 2彻 + 丄(丨•(外一仍)丨2 + IPl - P2\^)dx 

2 

It follows from (3.2.3), (3.2.8) and (3.2.9) that 

冬+ f \^{pi-p2)\^dx + iy [ \A{pi-p2)\^dx 
似 Jjd Jjd 

Jjd 

+ C(1 + 1 川2临([0’巧;̂…）el奶[�’nx") I h -

Then (3.2.4) holds after we apply Grownwall's inequality. 
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• 

Next, we wish to solve the equation (3.2.2)2 in X � . In other words, for given 

p = S{y), we are looking for a function w G C([0, T];Xm) such that 

/ PoWq •(!){•, 0)dx/ / [pzi；. + (/W � + + p/. 0 
Jud Jo Jjd 

+ - + 2Vy/p . 0) — lyV(pw) : 

-S(Vw + (/))]dxdt = 0, (3.2.10) 

for all (f) e (Ci([0’T];Xw))d with </)(•,T) = 0. 

In order to deal with p in (3.2.10), we introduce a family of operators (See [16]): 

Given a function p G L1(T’，with p ^ p > 0, define 

M[p] : Xn — X^, 

{M[p]u,w) = / pu- wdx, V u,w e Xn-
JTd 

As stated in [16], M[p] has the following properties: 

• M[p] is invertible with 

here X^) is the set of bounded linear mapping from X ^ to Xn-

• Moreover, M~'^[p] is Lipschitz continuous in the following sense: 
For V pi,p2 G I/i(T勺，with Pi,P2 ^ p > 0, there exists a constant C = 

C{N, p) > 0 such that 

||M-i[pi] — ^ C\\pi - P2||LI(T’ (3.2.11) 

With the preparation above, now we can rephrase (3.2.2)2 as an ordinary differ-

ential system: 

f = (N[v,w(t)],^i}, t G [0，T], , 、 

< at (3.2.12)-
i�M[P�]切⑴|i=o’V^i�=�A/[A)]«^o，论〉， “‘ 

‘‘ 、 
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where (1 ^ N) is the orthonormal basis of X^, p = S{v) and 

�N\v, w{t)lil;i) = / [{pv 0 w) : VA + P(p)div也 + pf • A 

+ — £ 2 ) A � ( � d i v 也 + 2Vv^ •他） 

-lA/、pw、: Vipi - 6{S/w : + w . ijj>i)]dx. 

Recall that p = S{v) e T]; C^(T^)) is bounded from below and above, 

so the above integral is well defined. N[v, •] is an operator from Xn to X^ 

and is continuous in time. Then standard theory for finite dimensional ODE 

system provides the existence of a unique classical solution to (3.2.12). In other 

words, for a given v e C{[0,T]]Xn), p = S{v), there exists a unique solution 

w e to (3.2.2)2. 

Lemma 3.2.2 (Local existence) Assume {po,wo) e C � ( T ’ x C � � ^ 

77 > 0( V 77 > 0) m T^ and (3.1.9) holds. There is a time interval [0’ T'] (0 < T' < ‘ 

T) such that there exists a solution {p,w) E T']; x T']; Xat) 

to the approximate system (3.2.1) on T"̂  x [0,T'] with initial condition (3.14). 

Proof: Let i? > 0 large enough, and T丨 G (0，T] to be fixed. 

Consider a bounded ball BR in C([0, T']; X^v), 

= C([0，T'];Xw) I |H|c([o’T'j;;ov) ‘ R} ' 

Define a mapping 

r： 

T{w) = M-'^[S{w){t)] (^M[po]wo + j � 7 V [ t / ; ， , where p = S{w). 

• Fov\f w E BR, 
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Observe that 

I^W^^olU* = sup \ f poWo . (f)dx ( f pl\wo\'^dx] = Co, 
T̂̂  KJrd / 

Hence, for any t e [0, T'], 

IITHIU^ ^ ',/-V丑(Co + tF(R)) ^ R, 

provided T' = ^ ^ � � } > 0, here we assume R is large enough. 

So T maps Br to itself. 

• Next, for V wi, W2 G Br, 

^ (Co + 2TF{R))\\M-'[S{w,)] — ¥-1[5^2)]丨|似义’;0v) 

< C(Co + - S{w2)\\LHT'i) 

‘ C{Co + 2TF(i?,))||5(w;i) - … 

^ CVi\\wi - W2\\ci[0,T']-,XN) 

^ ^Ikl - W2\\C{[0,T']-,Xn)^ (fi < 1) 
1 

provided t ^ —5-—. 

Hence, let T' = mm{R-\ "-;『。，。/十丄}’ then T maps Br to itself and is 

a contraction mapping. By Banach fixed point theorem, there exists a unique 

function w G C([0, T']; X^v), such that T{w) = w. In other words, there exists a 

unique solution w G C{[0,T'];XN) to the equation (3.2.2)2 in X^, furthermore, 

w e C\[OX];Xn). Let p = S{w), then p G 

Hence, there exists a unique local-in-time solution {p,w) to (3.2.1) with initial 

condition (3.1.4). • 
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We have the following key energy estimate. 

Proposition 3.2.3 Let T' ^ T, {p,w) G C^([0, T']; C^(T^)) x C\[0,T']-, Xn) be 

a local-in-time solution to (3.2.1) with smooth initial condition (3.1.4). Then it 

holds that 

c/ /* 广 1 1 \ 
7+ / + + + 2G{p) + dx at j^d I y 

Jjd JTd 

+ [ p\VHogp\'^dx + 26 [ + \w\^)dx 
JTd. Jjd 

‘ { (\ 1 \ 五 
叫 + + Vv^p + 2G{p) dx + C\\f\\'-' ’(7�1) 

< Jjd Z / 
^ 1/ r 1 

2 + + -||/||ioc(Tdx(o,T))IIPo||Lim, (7 = 1) 
(3.2.13) 

where V^p = logp, u 二‘⑴一^Vy? and A{u) = — 
丄 2d 

Proof: Let ^ = 2v log p, u = w — ^•(p, then we can rewrite (3.2.1) as 
( 

Pt + div(pw) = 0, • 

< {pu)t + div(pw 0 w) + VP(p) - f ^ ^ ^ (3.2.14) 
\ y/P J 

� 一2"div(pD(w)) - Si^w -i-Sw = pf, in X*n. 

Multiplying (3.2.14)i by ip'{p), and operating pdi to both sides gives 

+ 2"pVdivw + pV{u . V)ip + p[u • V)V(^ = 0. 

Using (3.2.14)1 once more, we get that 

�pVip)t + d iv (Vy?� pu) + 2"pVdivw + pV(u . = 0. (3.2.15) 

Observing that 
i 

d\-w{pD(u)) = dw{pA{u)) + div(pVTw) 

=div{pA{u)) + /sVdivw + V(w . V)p, 
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Multiplying (3.2.15) with (u + V(p), and integrating over T � o n e obtains 

/ + div(V(^ % pu) + 2i/div(pL)(w)) - 2vdiY{pA{u))\. [u + Vip)dx = 0. 

(3.2.16) 
Multiplying (3.2.14)2 by 2w = (u + VV) + u, and integrating by parts, we get 

/ [{pu)t + div{u (g) pu) + VP(yo) — 2"div(/?D(w))] • (n + + u)dx 
Jjd 

— , pV ‘ wdx + 26 [ ^\w\^)dx = 2 f pf • wdx. 
JT'^ \ y/P J JTd Jjd 

(3.2.17) 

Combining (3.2.16) and (3.2.17) gives 

/ [{p{u + Vip))t + div((w + V V ) (8) pu) + VP[p) — 2udYv{pA{u))] • (u + Vip)dx 
jjd 

+ / [{pu)t + (g) pu) + VP{p) - 2udW{pD{u))] • udx 

[ pv • wdx + 26 [ \w\'^)dx = 2 [ pf • wdx. 
JTd \ VP / Jt"^ JT<i 

• (3.2.18) 

Integration by parts and the identity 2pV = div(pV^ logp) yield 
\ yP J 

. -4 ,2 / p•(罕）.•Wd工=4,2 / ( 竿 ) ( 1 + 血. 
hd \ VP J JjdK y/p J ‘ 

=-4一 [ - f pVlogp- V ( d x 
Jt^ JTd \ y/P J 

= 4e2生[iVVppdx - 21/^2 [ Vlogp-div(pV2 log p)dx 
Ctt Jjd Jjd 

= 4 一 生 / 办 + 2"一 / plV^logppdx-. 
ac Jjd Jjd 

‘ ^ 

• i . . 
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Since A(u) = • " ， 观 have 

/ div(/L4(w)) . Vifdx = / pdiv(>l(w)). ^Lpdx + / 
Jt'^ Jt^ « / ” 

= 2 " / div(A(w)). Vpdx + 2" / p-\VpYA{u)Vpdx 

=-2v [ pdiY{diy{A{u)))dx 
Jjd 

= 0 . 

Hence, (3.2.18) leads to 

丢 Xi ( 赢 + 臺厂 + 2 + + 4 一 d x • 

JTi Jjd 

+ / log p\'^dx +26 I + \w\'^)dx = 2 [ pf • wdx. 
JT'i JT'^ JTd' 

Finally, using Young's inequality, the right-hand side is bounded by 

if 7 > 1, 

2 / pf • wdx = pf • udx + / pf • {u-\- V(p)dx 
JTi Jrd Jjd 

p\u\^ + p\u + Vip\'^dx + - 1 p\f\'^dx • 
2 Jjd V Jjd 

� ] i p k p + Ip\u + + 2G{p)dx + C(7,1^)11/11% ， 

if 7 = 1’ 

2 pf- wdx = / pf ' udx + / pf • (u + Vcp)dx 
Jjd Jjd 

< ^ / pWI"^ + p\u + Vip\'^dx + - f plfl'^dx 
^ JT^ V Jjd 

《备丄(•丨2 + + + 办 + …ll~(T<M0’T))IIP0|kim’ 

since p l°°(o,t';L1(T'̂ )) = Po |_Li(Td). • 

After we get the energy estimate, we can obtain the global existence of the 

approximate solution, which will be stated in the following lemma. 



Compressible Navier-Stokes System and Related Topics . 37 

Lemma 3.2.4 (Global existence) Let T > 0, and the assumptions in Lemma 

3.2.3 hold. Then There exists a pair of functions, denoted by in 

T]; C3(T勺）X T];Xn), which is a solution to the approximate system 

(3.2.1) with smooth initial condition (3.1.4). . 

Fwihermore，it satisfies the following estimates: 

l\/7^lk°°(o’7Vfi(T勺）^ C, (3.2.19) 

|P/V，<H|L°°(0’T;L"r(T。）̂  C, (3.2.20) 

I log Pn,5\\mo,T-,LHT'i)) ^ c, (3.2.21) 

\/PN,s\\L'̂ {0,T-,Ĥ iTd)) + I ^ C, (3.2.22) 

I VPN,SWN,S 11 (0,T;L2 (Td)) + 11 11 L2 (0,T;L2 (T'̂  )) ^ C, (3.2.23) 

V l̂hiv，<5|b(o,r;Hi(T勺）^ c , (3.2.24) 

where the constant C > 0 is independent of N and 6. 

Proof: By Lemma 3.2.2, there exists a T ' > 0 such that the approximate system 

(3.2.1) with initial condition (3.1.4) has a solution (denote it by (pn,5,^^,5)) on 

T* = {supT'|(p;v’<5’iyiv’<0 exists on T^ x [0,T']}. (3.2.25) 

To prove T* = T, we only need to show that 

sup ||̂ îv’5||xjv < c < 00, (3.2.26) 
峰’”） 

where C is independent of T*. . 

In fact, if (3.2.26) holds but T* < T. We consider 

as the initial data of the approximate system (3.2.1). By the similar arguments 

like above, we can extend T* to a larger time T** > T氺,which is a contradiction 
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to (3.2.25). Hence T* = T, furthermore, (pn,s,'Wn,5) exists on the closed interval 

:o，r. 

Next, we show that (3.2.26) holds. 

Applying Grownwall's inequality in (3.2.13) gives 

sup f (Ipn,6Wn,6\'^ + Ipn,6Wn,5 + + 2G(p;v’5) + dx 
te[0,T*) Jjd \丄 I 乂 

+ 2"义丄(P ;V’<5|D + 你 ， j L 況，J)|2)办+ 义 j妙’ l-J 口 pN,6\2dT 

+ f f logpM^sl'^dx -\-26 [ [ + \wMA^)dx ^ C, 
Jo JTd Jq Jjd 

where wn,s = Un,s + = u + uV logpn,6, and C > 0 is a constant indepen-

dent of N, and 5. It follows that 

^ C, (3.2.27) 

|/̂ Â ,<5||L°°(0,r*;L7(T'i)) ^ c , (3.2.28) 

Iv̂ ^̂ 7V’(5||L°°(O，T*;L2(T〜）< 3ll\/̂ î (WAr，<5 + Vv?;v，6)||L°°(o，:r*;i2(Td)) 

+ 2 11VPN,6UN,S 11 (0,r* ；L2 (T'i)) 

^ c , (3.2.29) 

< c , (3.2.30) 

+ II ||L2(0,T*;L2(T'i)) 

^ IIV^^D�A^<0||L2(O’r-;L2(Td)) 

+ 11 vPn,5A�UN�5) 11 L2 (0’T* ；L2 (TO) 

+ llx/P^V^ logPAr,<j||L2(0,T*;L2(Trf)) 

^ c, (i2.31) 

V^lh;v’5||L2(o’r*;丑 1(T勺）< c. (3.2.32) 
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In view of (3.2.3), we have 

> f c^ iv〜丨|2师勺办 

^ C > 0 , (3.2.33) 

here C is independent of T*. 

Then it follows from (3.2.29) that 

for some C > 0 which is independent of T*. 

So (3.2.26) holds. 

Finally, since we have shown T = T*, (3.2.19)-(3.2.21),(3.2.23),(3.2.24) fol-

lows from (3.2.27)-(3.2.32); and (3.2.22) is a consequence of (3.2.21),(1.2.2) and 

(1.2.3). • 

3.3 A priori estimates 

In this section, we will conclude some estimates from the energy estimate of 

Proposition 3.2.3, which are useful in the proof of the main results. In the fol-

lowing, we always assume that 7 ^ 1 if d = 2; 7 > 3 if d = 3. 

Lemma 3.3.1 The following estimates hold for some C > 0 which is independent 

of N and S: 

\P^ALh+\o,T-,Lh+\Td)) ^ C, (3.3.1) 

|/̂ 7V’5||i2(o’:r;;y2’p(Td)) ^ C, (3.3.2) 

ll~，<^切风丨L2(0’T;Vri’i(T勺）^ c, (S-S.a)" 
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2j 
where p = if d = 3; and p <2 if d = 2. 

7 + 1 
Proof: See Lemma 4.3 in [32]. • 

Lemma 3.3.2 The following estimates hold for some C > 0 which is independent 

of N and 6: 

II 这 m 』 巧 o , T ; L § m ) < c ， (3-3.4) 

I 这 v ^ |L2(0,T;(/fl(Trf))*) ̂  C, (3.3.5) 

II线 W，J切"’减0,了;(丑介 ) ) * ) < C, (3.3.6) 

, d 1 where 5 > - + 1. 
Zd 

Proof: See Lemma 4.4 in [32]. 

• 

3.4 Proof of Theorem 3.1.6 

In this section, we proceed similarly as in [32], and divide the proof into 3 step-

s. For step 1 and step 2，we consider the two limits ” N oo" and 0" 

separately to prove that there exists a weak solution (p, w) to the initial value 

problem (3.1.3)-(3丄4) if the initial data is smooth; finally, in step 3, we will show 

that it holds for any finite-energy initial data which only satisfies (3.1.9). 

STEP 1 First, we fix ^ > 0, let N oo, and have the following lemma: 



Compressible Navier-Stokes System and Related Topics . 41 

Lemma 3.4.1 Let S > 0 be fixed, there exists a pair {ps, ws) such that 

dt{p5)+diY{psWs) = i^Aps, pointwise in T'̂  x (0, T), 

/ PoWo . 工.+ / / [psWs • (th + {ps'Ws ® Ws) ： + P{ps)div^ + psf . 4> 
JT'^ JO JT'^ 

+ 2("2 - + . (t>) — "•(A5购）：•於 

-5{Vws :V(I) + W5- (/))]dxdt = 0, (3.4.1) 

for all test functions (p such that the integrals above are well defined. 

Proof: For approximate solution { P N , 5 , WN/), we have shown that for any (J) e 

with 乃 = 0 , 

dt{pN,5) + div{pN^5WN,s) = ^ X (0’ T), 

/ PoWo • (f){-,0)dx-{- / / [PN,5WN,S . (K + {PN,5WN,5 ® WM,5) : V(56 + P(PIV,5)DIV(/) JTd. J q Jjd 

+ 2("2 - + . 4>)—所PN/wn,5) ： 

- : + WN,5 . (/>) + pN,6f . (I)]dxdt = 0, 

We are now let N — + 0 0 . 

Since 

• K^2’p(Td) L � ( T 勺 ， 勺 ， l ^ i ' i 

by Aubin-Lions lemma, it follows from (3.3.2)&(3.3.4), (3.2.22)&(3.3.5) and (3.3.3)&(3.3.6) 

that there exist subsequences {piv,^}, {Y/pi^}, {PN,6WN,5} (not relabeled) such 

that for some functions ps and js, it holds that 

PN,5 P6 strongly in as TV 4 + 0 0， 

strongly in [2(0, T; 勺 ) a s TV 4 + 0 0， 

Pn,5Wn,6 js strongly in 1/̂ (0, T; L^iJ"^)) as N + 0 0 . 
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Also, we have the following weak convergence: 

weakly in 1.2(0, T; as AT ^ + 0 0 , 

'V(PN,5WN,S) y{psW5) weakly in as T V + 0 0 , 

wn,6 ws weakly in 1/2(0, T; L6(T勺)as N +00. 

Since it is easy to check that 

PN,S'WN,5 P5WS weakly in L^(0,T; as N +00, 

we infer that js = psws. • 

With the convergence results above, we then can finish the proof immediately. • 

STEP 2 Next, let the test function in (3.4.1) above be ps(j), according to 
Lemma 3.1.2，we get 

/ . 0)dx + / / [pIws . (jh 一 p]ws(liYWs . cj) + {psWs ③ psws) : V0 
JT'i Jo JT'^ 

— u � _ (g) yps) ： Vcj) + - £ 2 ) 於 + • (j)) 
/y . 

+ ； — uV{p5W5) ： {2Vps 0 0 + psV(l)) + p]f • (l)]dxdt = 0. • 

Now, we want to pass the limit ^ 0 term by term. 

Using Aubin-Lions lemma, we have for some functions p and j , 

P strongly in ：之⑴，T; 1^1’爪(T”）as (3.4.2) 

y/p strongly in i7(T 勺）as 6-^0, (3.4.3) 

P6W5 j strongly in L^(T^)) as (3.4.4) 

where m E (1, ；j；^), r G [1,6), qe [1,3). 

Since ^ is bounded in L°°(0, T; Fatou's lemma yields ： 

[ l i m i n f 丨你切̂丨 dx < + 0 0 . 

JTd <̂->0 pS 
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In particular, we have j = 0 a.e. in {p = 0}. So if we define the limit velocity w 

by setting 
( j 

A - , when p — 0, 
= < P 

0，when p = 0, 
� 

then we have j = pw. 

Lemma 3.4.2 Up to subsequences, for some functions p and w, it holds that 

p]ws p^w strongly in L^(T^)) as S 0 , 

(3.4.5) 

Psm ® Vp5 pw®Vp strongly in T; jJ (T"^)) as S ̂  0, 

(3.4.6) 

Psm <S) P6Ws pw<S>pw strongly in T; L2 (T^)) as 6-^0, 

(3.4.7) 

‘ s t r o n g l y in L\0,T; as (5-^0, 

(3.4.8) 

. ^ A v ^ ^ V p weakly in L^(0,T; L^(T^)) as 5 — 0， 

(3.4.9) 

V{pw)Vp weakly in T; as J —)• 0, 

. (3.4.10) 

'^{p5Ws)ps weakly in L\0,T; L^(T^)) as S ̂  0, 

(3.4.11) 

pjwsdivws p'^wdivw weakly in L^(0,T; as 0, 
(3.4.12) 

pl/"�p2/ weakly in 1^(0, T;/^(T”）as 

(3.4.13) 

where q G [1, 3). 
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Proof: (3.4.5)-(3.4.12) have been shown in [32], and (3.4.13) can be easily got 

due to (3.4.2). • 

Finally, in view of the estimate (3.2.24) for VSws, we have for smooth test 
functions as S 0, -

S / psV'Ws : V(f)dx 
Jjd' 

^ v ^ 11 VSVws 11 z,2 (0,r;L2 {Td))\\ps\\L^ (0,T;L°° 11011 (0,r;i/i (T̂ )) 0, 

S / Vws ： {Vps ® 4>)dx 
JTd' 

< V̂ ||V̂ Vw;5||L2(0’T;L2(T<i))||A5|k2(o,T;]yi’3(Td))||<;̂ ||L~(0’T;L6(Td)) •， 

丄 P押5 .树工 ̂  列你•^< l̂lL2(0’T;Lim)ll洲�2(o’:r;L3(T勺）—0. 

Therefore, we now are able to pass the limit term by term, and obtain 

that (p, w) (defined above) is a weak solution to (3.1.3)-(3.1.4) for smooth initial 

data. 

Remark 3.4.3 The restriction 7 > 3 when d = 3 is crucial in the proof of 

(34.9)-(3.4.W. For example, we have the convergence 

V^S^VP strongly in L°°(0,r； {r < 6), 

Av^^ Ay^ weakly in L'^{0,T] L^iT"^)), 

Vps Vp strongly in 1/2(0’ T; L爪(T^)), 

then 

^y/l^y/W^Ps A v ^ ^ V / 9 weakly in L\0,T; L^(T^)), 
I 

provided m > 3. 
67 67 

Since m < so we need > 3, i.e. 1 > 3 
7 + 3 7 + 3 ‘ 
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STEP 3 After STEP 1 and STEP 2，we have proved that (p, w) solves 

(3.1.3)-(3.1.4) for smooth initial data. If (po, WQ) only satisfies (3.1.9), we can 

construct an approximate sequence (pq, WQ) such that 

‘ U，切幻 e X C°°(T0， P'O^ 6 >0 in T � 

< VJ^ strongly in if^(T^) as 5 0 , 

�合秘合 川0 strongly in 1/2 (T�as 6 0 . 

In particular, 

v^ strongly in as 6-^0, 

and therefore 

‘ p p 2 I 
PQWQ 4 powo strongly in 泛(T” as ^ 0. 

By the above proof, there exists a weak solution {ps,ws) to (3.1.3)-(3.1.4) with 

initial data {PO,WQ). In particular, (ps,p6Ws) converges strongly to (/?, pw) as 

^ 0 in some space, and there exist uniform bounds for ps in lJ(T〜） 

. and for in M/i’i(0,T; 勺)*). 

Thus, up to subsequences, 

J Po = weakly in Li(T^) as 6^0, 

\ pWO = {p5Ws){-, 0) 一 {pw){-, 0) weakly in as S^O. 

This shows that p(.，0) = po and {pw){-, 0) = poWo in the sense of distributions. 

Hence, we finish the proof of Theorem 3.1.6，which gives Theorem 3.1.5. 



Chapter 4 

Global Existence and Large Time 

Behavior of Weak Solutions to 

Quantum Navier-Stokes-Poisson 

Equations 

In this chapter, we prove the global existence of weak solutions to the com-

pressible Navier-Stokes-Poisson for quantum fluids in T^ with large initial data, 

and then show the large time behavior of the weak solutions. 

46 
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4.1 Global existence of weak solutions 

In this chapter, we consider the quantum Navier-Stokes-Poisson system, which 

is the quantum Navier-Stokes equations coupled self-consistently to a Poisson 

equation for the electric potential. This system reads as 

‘Pt + div(p?/) = 0, {x, (0，T), 

< (pu)t + div(p'a 0 u) + V p - (^^^ - 2udiy(pD{u)) = p W -—, 
\ VP J T 

A^AF = p-K, 
(4.1.1) 

with the initial condition 

p\t=o = PO{x), = POUQ, in T^ (4.1.2) 

Here the unknowns are the particle density p = p{x, : T^ x [0, +oo) —R+U{0 } , 

the particle velocity u = u{x,t) : T^ x [0, +oo) -)• and the electric potential 

V = 力)：T2 X [0, +00) —)• R. u ® u is the matrix with components uiuj , 

D[u) = -{"^u+y^u) is the symmetric part of the velocity gradient, and T^ is the 
Zi 

two-dimensional torus. The scaled physical parameters are the (scaled) Planck 

constant the viscosity constant the momentum relaxation time r and the 

Debye length A. All these constants are assumed to be positive. The nonlinear 

dispersive term is produced by the quantum Bohm potential 
\ VP / 

Q{p) = K is the doping profile of background charges. 
yP . 

Moreover, we assume that 

/ V{x,t)dx = {), t ^ 0, 

and the compatibility condition 

I (poix) - K)dx = 0. (4.1.3) 
7t2 
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The compatibility condition (4.1.3) is necessary; otherwise the Poisson equation 

for V would not be solvable. 

Theorem 4.1.1 (Global existence) 

Let T > > 0 with V < T. Assume that the initial data (po,Wq) satisfies 

the compatibility condition (4.1.3) and 

Pq{t) ^ 0’ in T^, 
r fi \ 

< J’ + G{po)j dx < oo， (4.1.4) 

/ < 00, 

where 

Then there exists a weak solution (p, w, V) to the initial value problem (4.1.1)-

(4-1-2) with p ^ ^ in T in the sense that (p, u, V) satisfies (4.1.1)1’ (4.1.1)3 

pointwise and satisfies 

/ 吕Wo . 0(.’O)cb + / / [p^u • (f)t - p^udWu - (j)+(pu^ pv) : V(j) 
斤 Jo 7t2 

+ ip^divc^ — + . (p) • 

-2iypD{u) : (Vp (g) + pV0) + p^Vy • 0 + ^ . (p]dxdt = 0, (4.1.5) 

for any • G X {0,T))f with 化 T) = 0. 

The proof of this theorem is similar to the one of the quantum Navier-Stokes 

equations, which has been shown in Chapter 3. Hence we only need to sketch the 

proof. 

First, by introducing an auxiliary velocity 

= u-\- z/V log p, 
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we reformulate the initial value problem (4.1.1)-(4.1.2) to 

Pt + div(pw;) = i/Ap, {x, t) eT^ X (0, T), 

< {pw)t + diy{pw (g) w) + kVp + — f ^ ^ ) — lyA(pyj) = pVV 一 
\ VP / . T 

�A^AV = p-K, 
(4.1.6) 

with the initial condition 

p\t=o = Po{x), (/9i<;)|t=o = Powo, in T^ (4.1.7) 

1/ 
where k = 1 ——�0, =以o + log A). 

T 

Prom 

A'Al/ = p-K in T2, 

and 

‘ / V(x,t)dx = 0, t ̂  0, 

we have the estimate 

11 W||lp(T2) ^ \\p — î ||LP(T2), P e (1，+00). 

The existence proof for the approximate solutions is similar to Section 3.2 

after we replacing f by W[p] satisfying (4.1.1)3 with p = and observing 

the new energy estimate 

S Jj2 + 臺咖 + + 狐 、 P ) + + 入2|W|2) dx 

+ 2"/ {p\D{u)\^ + p\A{u)\'')dx + 2u [ 

+ log p\^dx +25 [ + [ p^dx 
7t2 7T2 Â  Jj2 

2UK 
< Po L1(T2), (4.1.8) 

where Vip = logp, u = w- and A{u) = — 
2 2 
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After we get the energy estimate above, we obtain the same a priori estimates 

as those in Section 3.3, and can proceed in the same way as in Section 3.4 to get 

the existence of the weak solutions. 

4.2 Large time behavior 

In this section, we will show the large time behavior of the weak solutions 

which can be stated in the following theorem: 

Theorem 4.2.1 The weak solution {p,u, V) is closed to a steady state in the 

following sense: 

ForV e�0， there exists a time T(e) > 0 such that for Vt > T(e), it holds that 

�.)lk2(T2) <e， . 

where m G (1，+oo). 

Proof: During the proof of the existence of weak solutions, we have shown that 

there exists a sequence {{ps, ws, }(5>o satisfying 

= i^^Ps, pointwise in T^ x (0,T), 

A^AV^ = Ps- K, pointwise in T^ x (0, T), 

I [{p6Us)t + (g) Us) + kVps — 
V V ^ 

-2z^div(pji:>(u<5)) — + 5w5 - ps'^Vs + — ] . (t>dx = 0， （4.2.1) 
T 
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for any smooth functions and 

P strongly in L2(0,T; W^^'^ij'^)) as S ̂  0, (4.2.2) 

x/p strongly in L°°(0,T; ^"^(T^)) as S 0 , (4.2.3) 

Vl/^ Vy strongly in 丄2(0，T;//"(f)) as ^ - > 0, (4.2.4) 

for V m G ( l ,+oo) . 

Define 

糊 = L (-Ml均|2 + \U6 + Vv^.n + 2kG{ps) + + A2|W,|2) dx 

=El + E2 + E3-^ 五4, 

where us = ws - vVlog ps. 

Following an approach of [7], we compute the time derivatives of Es{t) term 

by term. 

Let (J) = 2ws in (4.2.1), a computation like (3.2.18) gives 

dtEi = -21/ [ {p5\D{us)\^+ps\A{us)\^)dx-\-4£^ [ VB{ps) • {psws)dx 

. + 2 / VKj • {p5Ws)dx -2k I W5 • Vpsdx -S [ {\Vws\'^ + \ws\'^)dx --Ei, 
JT^ 7T2 JJ2 T 

(4.2.5) 

and integration by parts yields 

dtE2 = 2k {ps)t^ogpsdx 
Jt2 

=2k \ogps{iyAps - div{psW5))dx 
7t2 

2ki/ r 
= 丑 3 + 2A; . Vpsdx, (4.2.6) 
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dtE3 = f v ^ . ( V y ^ ) 必 

= - I A^s{V^6)tdx 

= 一 f B{ps){ps)tdx -

/ B{ps){dW(psWs) - iyAps)dx, 
Jt2 

I B{ps)div{psws) - f p ĵV^ logp̂ l̂ cZx, (4.2.7) 

where = { A y / p ) / ^ . . 

dtE各=2入2 [ VVs. {VVs)tdx 

=-2A2 [ Vs{AVs)tdx 

=-2 [ Vs{ps)tdx 

= 2 / Vsidiv{psws) - iyAp6)dx 

=-2 WV5 . (psW5)dx + 2u j VVs . Vpsdx. (4.2.8) • 

Combining (4.2.5)-(4.2.8) leads to 

1 2ki' C C 
dtEsify =—-丑1 - + / Vy^ . Vpdx — (5 / + \ws\'')dx 

- 仏 f log ps\^dx-2u [ {p6\D{US)\^ + ps\A{us)\^) dx. 

We divide the third term into two parts: 

I VVs • Vpsdx = 2v [ VVs. V(p5 一 K)dx 

=-2v [ AVs{p6 — K)dx 

= [ \AVs\'^dx : 

= [ \AVs\'dx-^ [ {ps - Kfdx. 
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If (3 denotes the first positive eigenvalue of —A on T^, then 

which gives 

- [ \AVs\'^dx ^ 五4. 
7t2 

Since s(log s - 1) + 1 ̂  (5 - 1)̂  for 5 > 0, 

let <5 =尝 ,w e have 

which leads to 

- 告 / > - 幻 2 血 盖丑2. 

It then follows that 

dtEsif) ^ - ‘ 五 2 - - 丑4 -5 + \ws\^)dx 

—2^2"/ / IP5\D{u8)\^ ^ ps\A(U5)\^) dx 
7t2 JT^ 

^ -(jEsit), 

1 . A vK 2ku … where a = min{ - , > 0. 

• Therefore, we have 

_ < e-�t聊). 

Since we can choose the approximate initial data sequence (po, tt̂ o) such that 

‘ ( P G , 切 0勺 € X pi^6>0 in T?, 

< \JpiV^ strongly in if^(T^) as (5 -)• 0, 

Y PQWQ strongly in L^(T^) as —)• 0, 

so there there exists a constant C > 0, which is independent of 6, such that 

糊 < C. 
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Therefore, we get 

4已2||V(v̂ (力,•）- < Ce-对, (4.2.9) 

X^VVsit, •)||i2(T2) ^ Ce-at (4.2.10) 

Next, it is easy to check that 

{S — 1)2 ^ s2(l0g<s2 - 1) + 1, (0，+00), 

which gives 

so it holds that 

•) - \/̂ ||i2(T2) ^ � < C e - � t . (4.2.11) 

The embedding 4 <m< +oo) and (4.2.9),(4.2.11) yield 

l I v S ( 力 ， 饥 � V m e ( l ’ + o o ) . (4.2.12) 

For any e > 0, there exists T(e) > 0 such that 

< t > T(e). 

The strong convergence (4.2.3) implies that for this e > 0 and any t > T(e), we 

can always choose 5 small enough such that . 

Wpsitr) - < 

Hence, for any t > T(e), 

^ WVPdit, •)-\/p{t, ')\\Lm(T2) + \\y^Ps{t, • ) - V ^ | | L - ( T 2 ) < E. 

Similarly, we can obtain || . )||^2( t2 ) < e {t > T{e)) from (4.2.4) and 

(4.2.10) by the same way. • 



Chapter 5 

Discussions and Future Work 

In this chapter, we will discuss some problems about compressible Navier-

Stokes equations that I will focus on in the following several years. 

As discussed in the introduction, to my best knowledge, there is few result-

s on the global existence of solutions to the full Navier-Stokes equations when 

vacuum appears except three results under special pressure, viscosity and heat 

conductivity assumptions (see [16] where the viscosity /i=constant and the so-

called variational solutions are obtained, see [5] where the viscosity fi = 

degenerated when the density vanishes and the global weak solutions are got, 

and see [51] for global classical large solutions in one-dimensional case). I am 

now working on this problem in order to obtain some satisfied results. 

Next, for the barotropic compressible Navier-Stokes equations with density-

dependent viscosity, although an interesting new entropy estimate is established 

in [1], which provides some high regularity for the density, there is few results 

on the global existence of solutions in the multi-dimensional case except one re-

sult(see [18] where spherically symmetric solutions is obtained in 3 dimensional 
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case). The key issue now is how to construct approximate solutions, which is 

another problem that I am interested in. 

Finally, in studying the barotropic compressible Navier-Stokes equations with 

density-dependent viscosity, I find that it is easier to get the global existence of 

weak solutions to the system with an added term (see [1] for the Korteweg system 

with the Korteweg stress tensor /[；pVAp, see [2] with an additional quadratic 

friction term rp\u\u, and see [32] where the global existence of weak solutions to 

the barotropic compressible quantum Navier-Stokes equations {/i{p) = up, A = 0 

with the quantum Bohm potential ( ^ ^ ^ ) in a three-dimensional torus 
\ VP J 

for large data is proved). So I think studying a special model may help us to deal 

with the general model that we stated above. 
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