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surveillance videos, showing that our proposed algorithms are
in fact general, which can be applied to other applications in

image processing other than face alignment, for instance, video
segmentation problem.
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CHAPTER 1. INTRODUCTION 3

behave like a real person, through rendering a smooth and nat-
ural video of articulators in sync with given speech signals. It
is a challenging task: rather than just having a static appear-
ance, it has to possess many properties such as convincing plastic
deformations of the lips synchronized with the corresponding
speech, emotional facial expressions, and realistic head move-
ments. Also, the performance is highly affected by image nui-
sances, including 3D-pose variation, occlusion and illumination
variation, etc.

Such animated talking head can be implemented by select-
ing an optimal sequence of lip images from a video training
dataset, then stitching them back to a background head video.
One usual practice is to take a video record of a talking per-
son as the training data with annotated speech. Then through
some training algorithm such as Hidden Markov Model (HMM),
the audio-visual information is extracted [41]. Thus the visual
speech trajectory can be synthesized. Further combining with
the technology of Text-to-Speech (T'TS), it is possible to gener-
ate a head speaking what you want him/her to say by inputting
the script of the speech.

Alignment of faces in the video training set is very crucial.
[magine a situation when a human subject being recorded keeps
nodding his/her head while speaking, his head pose thus varies
among the raw image frames. In this case, if no additional
treatment is taken, the synthesized lip motion would definitely
be peculiar due to significant misaligniment. So face alignment is
the first step in generating a talking head. In addition, the align-

ment has to be very accurate, since a small misalignment may
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conventional photo-realistic talking head. For this type of align-
ment, our mainly concern is about the frontal normal view of
the faces. The dataset for training is a video sequence of the
same person which may consist of several thousands of image
frames. The memory and computational time appear to be a
problem for such large datasets. Another difficulty is related
to the image nuisances existing in the dataset, which can affect
the alignment results. An applicable face alignment algorithm
should be able to alleviate the mentioned effects while maintain-

ing the accuracy and efficiency:.

1.1.3 Existing methods

Many alignment algorithms which are specialized for faces have
been proposed. In the following, an overview of such algorithms

will be given.

Statistical Models of Appearance

The most popular alignment methods belong to the class of
statistical models of appearance including Active Shape Model
(ASM) [10] and Active Appearance Model (AAM) [9]. These
mcthods involve two phases, the training phase and fitting phasc.
In the training phase, a training set is given; this set is used to
generate a parameterized model using the technique of Princi-
pal Component Analysis. After we generate the parameterized
model. an instance of this model can be fit to a given image so
that it can be the best representation of the image in the least

squares sensc.
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Pixel-based Image Alignment

For pixel-based alignment, one basic approach originates from
the measures of image similarity [34]. Many congealing algo-
rithms have been proposed such as the unsupervised joint align-
ment which searches for an alignment that minimizing the sum
of entropies of pixel values at each pixel [23], and the least
squares congealing procedure suggested in [12]. By stacking the
aligned images as the columns of a matrix, the above congeal-
ing algorithms require the matrix to be rankl. However, in
practice, due to some other factors such as large illumination
variation in the images, the aligned images may have an un-
known rank greater than one. Thus, other rank minimization
techniques are proposed in [40] and [32].

Our work can be classified as the pixel-based alignment, which
is inspired by the recent development of Robust Alignment by
Sparse and Low-rank Decomposition for Linearly Correlated Im-
ages (RASL) [32]. RASL allows a robust and highly accurate
batch alignment of faces in images, despite occlusions, corrup-
tions, and even illumination variations. The idea of iterative
linearization for the transformation is explored. This method
formulates the batch alignment problem as the solution of con-
vex programs, with the aid of latest advances in rank minimiza-
tion. Unfortunately, it has limitation on scalability. The mem-
ory constraint and computational cost restrain its application
on very large datasets, like those we have to deal with in talking
head. The detailed of RASL will be discussed in Chapter 5. Al-

though statistical models of appearance and 3-D model provide

































CHAPTER 2. SPARSE SIGNAL REPRESENTATION 18

weaker measure of the dependence between columns of the ma-
trix. It is found that there is a relationship between spark and

coherence, which gives the lower bound of spark as follows.

Lemma 2.1. [5, 15] The following relationship holds for any
matriz D,

spark(D) > 1 + (2.3)

u(D)
Then with the lower bound of spark, the uniqueness theorem

characterizes by the coherence can be written as follows.

Theorem 2.3. [5, 15] If there exists a solution x of Dz = y
satisfying ||z||o < 5(1 4 1/u(D)), this solution is necessarily the

sparsest possible.

Therefore, the first question we raised at the end of Section
2.2.1 is answered. The second question about the method to
solve the optimal solution of (2.1) is not so straightforward, be-
cause of the discontinuity of [g-lorm. We will introduce in next
section a method called Basis Pursuit, which replaces the [y-

norm by [{-norm.

2.3 Basis Pursuit

Due to the discontinuity of ly-lorm, the formulation in (2.1) is
a NP-hard problem which is not numerically feasible in general.
In order to solve (2.1), one way is to regularize the [p-norm
with a continuous or even smooth approximation. There are
many possible choices such as replacing the lp-norm with /,-norm

for some p € (0,1] or smooth functions Y_,log(1 + ax?). It is
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found that the choice using (;-norm is a straight-forward feasible
strategy. It is the best convex approximant, and solving of the [;-
norm minimization is possible with many existing optimization
algorithms. Researchers sometimes call this method the Basis
Pursuit; it which was investigated to a great extent in the past

few years, both in empirical and theoretical aspects [14, 15, 21].

2.3.1 From [)-norm to [;-norm

By replacing the [p-norm in (2.1), a new optimization problem
is formulated:
min |[Wz||, st.y= Dz (2.4)
"

Note that the columns in D are not normalized. Since the [;-
norm can be affected by the magnitude of the entries. thus the
weighting matrix W € R™" is needed to compensate the effect.
W is a diagonal positive-definite matrix with the diagonal entries
w(i) = il

To provide a better illustration of the efficiency of using the (-
norm minimization to solve the sparest solution, let us consider
the 2-D case where m = 1 and n = 2. Figure (2.1) shows the
line of y = Dz and the [;-ball. By changing the size of the
[,-ball, the optimal solution z* = [z} x3] is the point where the
[,-ball touches the line, which is exactly the sparest solution of
the system of linear equation Dz = y. This simple model can
be easily extended to higher dimensions, with the line becoming
a hyperplane.

The above demonstration provides the evidence for using [;-

norm minimization to find the sparsest solution. The questions
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split Bregman method for solving our /;-norm minimization prob-
lem. It is shown that Bregman method [20] gives both accurate
and fast results for our applications. In [50], it mentions that the
split Bregman method is equivalent to the iterative process of
augmented Lagrange multiplier method under some conditions.
The detail descriptions and derivations will be given in the later

chapter.

2.5 Summary

In this chapter, we have first presented the formulation of sparse
signal representations using the /p-norm minimization and dis-
cussed the condition of uniqueness. Then the Basis Pursuit ap-
proach is suggested to replace the lp-norm by /;-norm. The [y-[;
equivalence also enables the L1LS which apply in noisy case as
well as over-determined systems of linear equations. In order to
solve L1LS and other [;-problems, the split Bregman algorithm

will be introduced in the succeeding chapter.
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representation such that its difference from the given signal or
image vector has the smallest number of nonzero entries. Same
as in Chapter 2, let y € R™ be the given signal and D € R™*"

be the dictionary. We can formulate our problem as:
min [ly — Dy, (3.1)

where |[|-|[, represents the lp-norm which counts the number of
nonzero entries.

Sometimes, (3.1) can be rewritten in an equivalent form:
min ||e]l, s.t.y=Dz+e (3.2)
T

where e is known as the corruptions or the error term.
In fact, (3.2) is a lp-norm minimization similar to (2.1). So
applying the same argument as in Chapter 2, we replace the

lo-norm by [;-norm, and we get
min [le]|; s.t.y= Dz +e (3.3)

(3.3) is an [;-norm minimization for the error term. For conve-
nient, we call this [;-error approach. It is easy to see that (3.3)

can be recast in the form of (2.4):
min || Qw||, s.t.y = Yw (3.4)

where w = [z €]7, ® = [04xn Lixm] and ¥ = [D I,,xp]. There-
fore the theorems in Section 2.3.2 are valid for our new optimiza-
tion problem. We will see how to implement a fast algorithm in
Chapter 4.
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mention about the /;-norm, but it is obvious that (3.6) is exactly
the same as our least [;-error problem (3.3) where [ corresponds
to x in our problem.

Comparing LAD with the least squares, it can be found that
LAD is robust to outliers. Consider a signal with several entries
corrupted significantly; the least square solution would smooth
out the outliers by compensating with the other entries, causing
an overall change in resulting lincar combination which differs a
lot from what we would expect. However, LAD can pick out the
outliers, keeping the others unaffected, so the combination can
preserve the features of the uncorrupted signal. This explains
why we can correct the sparse corruption using the least [;-error
approach.

Another important property of the regression perspective is
that the LAD estimator 3 equals the maximum likelihood esti-
mator if the disturbances follow the Laplace distribution with

parameter A > O:
1 €l
(€;) = —exp(———= 3.7
In comparison, the least squares estimator is the same as the
maximum likelihood estimator for Gaussian disturbances. This

provides a new insight to the least [;-error problem.

3.2.3 [-Regularized [,-Error

In Section 2.4, we extend the ordinary least squares by using
an [; regularization to constrain the sparsity of representation

and formulate the [;-regularized least squares (L1LS). Here we
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gives an efficient and accurate result in the application of face

alignment.

3.3 Robust Principal Component Analysis (RPCA)

and Principal Component Pursuit

Consider the case where we have a set of image data sparsely
corrupted and we know that the data all lie near some low-
dimensional subspace. We would like to eliminate the corrup-
tions and retain the useful low-dimensional information. [6] in-
troduces a technique of rank minimization that can exactly fulfill
our task, which is named Robust Principal Component Analy-
sis (RPCA). It is developed recently through the advancement
of transforming intractable sparse problem to a feasible convex
optimization problem. In this section, we will give an intro-
duction to RPCA by distinguishing it from classical Principal
Component Analysis (PCA) and further introduce the Princi-
pal Component Pursuit, a tractable convex optimization which

allows solving the RPCA practically.

3.3.1 Principal Component Analysis (PCA) and RPCA

PCA is a mathematical procedure which converts a set of ob-
servations of possibly correlated variables into a set of values of
uncorrelated variables called principal components. This con-
version is defined such that the first principal component has
as large variance as possible and each succeeding component in

turn has the highest variance possible under the constraint that
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3.3.2 Principal Component Pursuit

Here is the formulation of RPCA with reference to [6]. Given a

large data matrix M € R™*" we would like to decompose it as
M=L+S8 (3.12)

where L € R™*" is a low-rank matrix and S € R™*" is sparse.
The exact rank of L and the locations of the nonzero entries of
S is not given. In order to search for the sparse and low-rank
solution, the problem can be written as the following optimiza-
tion:

rillbn rank(L) +v||S|l; st. M =L+ S (3.13)

Here v > 0 is a parameter that trades off the rank of L against
the sparsity of S. In fact, (3.13) is the formulation of RPCA
mentioned in Section 3.3.1. However, since the rank and [y-
norm are discontinuous and even non-convex. The computation
is impossible for large-scale problem as it is NP-hard. Fortu-
nately, the recent development of sparse representation which
we have introduced in Chapter 2 provides an inspiration. It
shows the possibility to approximate a discontinuous problem
to a convex one through the convex relaxation technique. Also
the performance is guaranteed. The convex relaxation of (3.13)
can be achieved by replacing the rank with the nuclear norm
and the [p-norm by [;-norm. The nuclear norm of L is defined
as || L|

L. It is easy to notice that the idea is the same as the [y to [, re-

.= >_" o:(L) which is the sum of all singular values of

laxation, since rank(L) equals to the number of nonzero singular

values of L. After applying this relaxation, (3.13) yields a new
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CHAPTER 5. FACE ALIGNMENT USING SPARSE AND LOW-RANK DECOMPOSI'T'1¢)

the three Multi-RASL outputs, the eyebrow corners are marked
in white for better comparison. The 25-batch approach gives the
best alignment which is consistent with the quantitative evalu-

ation.

Computational Time

Our experiment are carried out on a 2.66GHz Intel Core 2 Quad
machine with 3.25GB RAM and 32-bit Operating System. The
approximate CPU time for the 5000 images dataset for different
Multi-RASL is given in Table 5.4. It shows that the 100-batch

approach runs the fastest.

Algorithm Approximate Time required
Multi-RASL (25 batch) 17180s
Multi-RASL (50 batch) 10660s
Multi-RASL (100 batch) 6680s

Table 5.4: Approximate running time for 5000 images in Multi-RASL exper-

iment

5.5.3 Conclusion

Experiment results have shown that our Multi-RASL algorithm
gives a comparable alignment output as RASL. However, as seen
in Figure 5.8, using more batches may cause a significant mis-
alignment across different batches. One reason may due to the
inaccurate of our assumption that the face is the flat plane in
3D space. This assumption is generally false and hence it in-
troduces errors in the alignment. Within each batch, the error

is relatively small and thus hardly noticeable. But for different
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batches, since the alignments are independent, the alignment
errors become significant. It concludes that it is wise to use as
few batches as possible for a better alignment result.
Unfortunately, using fewer batches usually lead to a longer
running time. As shown in Table 5.1 and 5.4, there may be a
tradeoff between the accuracy and speed. Therefore, in prac-
tice, the number of batches would depend on the condition and

requirement of the specific task.

5.6 Sensitivity analysis on selection of refer-

ences

One important difference of Multi-RASL from RASL is that we
have to choose a reference. In our application of photo-realistic
talking head, the frontal normal view is the most useful pose.
Therefore, we would like to choose the best frontal normal view
reference so that every face image can transform to that pose.
However, one can only identify the frontal normal view qual-
itatively; it is difficult to pick the absolute normal view out.
In this section, we would like to analyze the sensitivity in the
performance upon different selection of references. Two tests
have been carried out. First we choose consecutive frames in
frontal normal view. Since the change in pose among consecu-
tive frames is small, we would expect the alignment should be
nearly the same. We verify this in both qualitative and quan-
titative tests. In our second experiment, instead of choosing
consceutive frames, we sclect different references from the small

set of RASL-aligned images where the images are expected to
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Iny107) 1 +JAT, 1, where J is the Jacobian matrix with respect
to the affine transform 7,,;. Thus, (6.4) becomes

min
.l'.A Tn+1

'[I'l-{-l (0] TI(1)+1 + JAT,I+1 = AIHl (65)

It can be easily converted into the [;-error form as (4.40):

min |le||, s.t.e= 1., — By (6.6)
y

T

where I) | = I,y 1070,, B= [ A = }, Yy = [ T AT ] .
As discussed in Chapter 3 Section 3.2, [;-error optimization
is nearly identical to minimizing the sparse corruption in the
test image. In our video of face, the mouth is continuously
moving and the eyes are frequently blinking. Since the eyes
and mouth only covers a relatively small area of the face, and
they are supposed to be at the same position on the face, it is
reasonable to consider the movement of the eyes and mouth as
the sparse corruption in the images. This idea is consistent with
that of RASL, where the sparse matrix S representing the sparse

difference between the face for align and the low-rank face.

6.2.3 [,-Regularized [,-Error

Now we combine the advantages of {j-regularization and [;-error
to formulate the {;-regularized [ -error for solving our alignment

problem as follows:

min ‘],,H o Tog1 — Az|| + p ], (6.7)
LTy 1 1
Using the linearization trick, let 41 0 Tyq1 = Lup1 © (T +

~ 0
ATI!+1) G IIH-I o Ty

w1 + JAT, 1, where J is the Jacobian ma-

trix with respect to the affine transform 7,,,,. (6.7) becomes a
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Quantitative Evaluation

It is found that not all the frames achieve convergence within
300 iterations. This may due to the original orientation of the
head in some frames is too extreme. The number of frames that
unable to converge in 300 iterations is given in Table 6.1. In fact,
the convergence depends on the initial condition as well as the
complexity of the objective function. From Table 6.1 we discover
that L1LS has the largest number of non-convergent frames,
while L1L1 has the least. This may reveal that the objective

function of L1LS is not as good as L1L1 for face alignment.

Algorithm | non-convergent frames
L1LS 23
[, error |
L1L1 8

Table 6.1: Number of frames that arc not converge within 300 iterations

Next the eyebrow corners test is considered. Same as in pre-
vious chapter, in order to eliminate the effect of scaling effect on
our quantitative comparison, we normalize the distance between
the left and right eyebrow corners to be 50 pixels. We neglect the
non-convergent frames. In last chapter, we have already given
the statistics of errors for the 100 images dictionary in Table
5.3. This time we do not have one specific reference, therefore
we use the mean eyebrow corners positions of the 100 images
in dictionary as the reference for comparison. The statistics of
errors in eyebrow corners are as shown in Table 6.2. It is found
that the errors are approximately the same as that of RASL re-

sults for the 100 images, and smaller than that of Multi-RASL
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Original RASL is not capable in the large-scale case where the
memory restrains its ability. Since RASL has been proven to
achieve high precision alignment of images both in theory and
in practice, our extension also ensures a reliable result. The
trick of Multi-RASL is to set a reference and divide the whole
dataset into smaller batches. For each batch, we align all the
images within to the reference pose based on the ordinary RASL.
By performing this process for all batches, all the face images
can be aligned to the reference in theory.

Although Multi-RASL provides a reliable result, it still has
some weaknesses. First, if the number of batches increases, the
misalignment among different batches becomes significant. An-
other disadvantage of Multi-RASL is that if a few more new
images are added to the dataset, the whole computation may
have to start over again in order to prevent large misalignment
for the newly added images. In contrast to the batch alignment
in RASL, we introduce the one-by-one approach, which tries to
prevent the weaknesses of Multi-RASL. We modify the tricks of
convex relaxation and iterative linearization in RASL to satisfy
our requirement using [;-norm minimization algorithms includ-
ing L1LS, [y-error and L1L1. Experiments have discovered that
our one-by-one approach outperforms the batch Multi-RASL.
Besides, L1L1 has shown the best performance in handling our
face alignment task.

In fact, our preliminary result of using one-by-one L1LS has
been published in [47]. That work is collaborated with the
speech group in Microsoft Research Asia (MSRA). There is a

project of talking head in which accurate face alignment is a












Appendix A

Appendix

In this appendix, the derivation of solution for the simplest form

of [;-regularized least squares problem is presented.
Theorem A.1. Solution of the ly-reqularized least squares:
: A 2
min [z, + 7 [l = ull; (A.1)
is gqiven by the shrinkage operator

x; = shrink(u;, 1/\) (A.2)

th

where x; and u; are the i'* entries of x and w respectively. The

shrinkage operator is defined as shrink(x,~) = ] -max (|z| = .0).
Proof. First we take the first derivative of the objective function

with respect to x and set it to be 0:

l A
0= c;—x |lz|l, + 5(1‘ — )T (z — ) (A.3)
- [zl + A ) (A.4)
= —||Z r—Uu s
o i T — U
Notice that A.3 is separable, i.e. entries are independent with
each other. Let us consider the i entry,
l
0= — |zi| + Mai — w) (A.5)
dx

117
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