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Abstract of thesis entitled: 
Video-based Face Alignment Using Efficient Sparse and Low-

rank Approach 
Submitted by WU, King Keung 
for the degree of Master of Philosophy 
at The Chinese University of Hong Kong in August 2011 

The theme for this thesis is the application of latest sparse and 
low-rank techniques to face alignment problem. Face alignment 
is a challenging problem which has a wide variety of applica-
tions, for example in face recognition and photo-real talking 
head. This is because face shape is not a rigid but a deformable 
object, which allows various expressions, poses and sometimes 
very extreme illumination conditions. 

Several methods have been introduced to tackle the align-
ment problem. Rather than using the popular Active Appear-
ance Model (AAM), we follow a pixel-based approach called 
Robust Alignment by Sparse and Low-rank decomposition for 
linearly correlated images (RASL). It is a robust and highly 
accurate batch image alignment method which formulates the 
batch alignment problem as the solution of convex programs, 
with the aid of the latest advances in rank minimization. 

RASL has been shown to work even under occlusions, cor-
ruptions, and illumination variations. Unfortunately, the origi-
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nal formulation has limitation on scalability. The memory con-
straint as well as the computational cost restrain its applications 
on very large dataset. In this thesis, we investigate the perfor-
mance of RASL on face alignment and then extend the original 
RASL to be applicable in large datasets. First we propose Mulit-
RASL which serves as a direct extension of RASL by choosing 
a reference image and run RASL algorithm for multiple times. 
However, the performance is not as satisfactory as RASL in 
practice. Hence we introduce another approach by aligning the 
image in the dataset one-by-one. This one-by-one approach is 
based on two sparse concepts, sparse representations and sparse 
errors. They exploit the relationship between sparseness and 
/i-norm minimization. Our proposed face alignment methods 
have been applied on the photo-real talking head, a challeng-
ing application which requires highly precise alignments of faces 
from video sequences. Experiments show that our one-by-one 
approach outperforms Multi-RASL for video-based face align-
ment. 

I l l order to achieve our objective of efficient and accurate face 
alignment, the latest researches about sparse representations are 
reviewed and organized. This includes extensive studies of tech-
niques of /i-norm minimization. We develop the sparse represen-
tation techniques to deal with sparse corruption problem, where 
/i-error is introduced based on /i-norm minimization. Moreover, 
since our application requires fast computation, we derive our 
own algorithms for solving our designed /i-norm minimization 
objectives by using split Bregman algorithm, which is one of 
the fastest /i-algorithm. We verify our derived algorithms using 
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surveillance videos, showing that our proposed algorithms are 
in fact general, which can be applied to other applications in 
image processing other than face alignment, for instance, video 
segmentation problem. 
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本論文的主題是利用最新的稀疏和低秩的技術來解決人臉對齊的問 

題。人臉對齊是一個具有挑戰性的問題，它有各式各樣的應用，例如用於 

面部識別和利用真實照片建構的頭部模型上。因爲臉形可以變形，例如可 

以有各種表情、姿勢、有時甚至受燈光照明影響。 

之前曾經有幾種方法被引入到解決對齊問題，例如主動外觀模型 

( A A M ) �不過我們在這裡嘗試利用一個以像素爲基礎的方法，名爲 

RASL�它是針對線性相關圖像’利用最新的稀疏和低秩方法來實現魯棒 

對齊。他可以高度精確地以批量的方式對齊’將之轉化爲一個秩最小化問 

題。 

RASL已被證明可以對受阻礙、受損壞和受光照影響的情況進行對 

齊。可惜受限於記憶體太少和低運算力，它不適用於數據量大的情況。本 

論文會將RASL應用到人臉對齊的問題上，然後將RASL推廣到應付數 

據量大的情況。首先’我們提出一個通過選取一個參考圖像和重複執行 

RASL算法’直接將RASL推廣的方法’命名過Multi-RASL�不過這方 

法的效能並不及原來的RASL�因此，我們提出另一個方法，以逐一地對 

齊人臉取代一次過對齊全部人臉。這個方法建基於兩個槪念：稀疏表示和 

稀疏誤差，其中我們會利用稀疏性和//-norm最小化問題。我們提出去人 

臉對齊方法特別針對真實照片建構的頭部模型應用上，因爲它要求高度精 

準地對一段或多段影片中的人臉對齊。實驗証明我們這方法比 

Multi-RASL在這個應用上優勝。 

爲了達到有效而準確地對齊人臉的目標，我們將最新的稀疏表示硏究 

作了槪括和整理，特別是包括//-norm最小化問題。其中，我們提出//-error 
來應付稀疏誤差的問題。由於我們的應用要求快速運算，故此選了其中一 

種現時最快的1 丨算法：split Bregman算法。我們用監控錄像來驗証我們的 

算法無誤，而且這些算法不單可用在人臉對齊，還可用到其他圖像處理的 

應用上，例如視頻分割的問題等。 
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Chapter 1 

Introduction 

1.1 Overview of Face Alignment Algorithms 

Face alignment is the main theme of this thesis. It is difficult yet 
very important in many applications such as robust face recogni-
tion [46] and photo-realistic talking head [41]. This section gives 
a summary to the past research on this challenging problem. 

1.1.1 Objectives 

To see how important and useful face alignment is, it is better to 
illustrate with a practical example. In face recognition, usually 
several photos of a person are taken to compare with a face 
dataset so as to identify the individual. However in practice, the 
test photos taken will not be exactly in the same orientations 
as those in the dataset, for example the person is not exactly in 
the frontal normal view with respect to the camera, or his/her 
head is tilted with a small angle. Although those variations can 
be small in terms of angles, the comparison result can vary a lot 
and eventually causing the recognizer to fail [36, 42]. Therefore, 
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CHAPTER 1. INTROD UCTION 2 

face alignment is necessary for face recognition. 
The objective of face alignment is to localize facial features 

such as eyes, mouth, nose, and eye-brows, etc. It is an example 
of image registration. Sometimes, a specific pose is given so 
that all the face images are aligned to it through deformation 
and warping. It can be considered as a special case of the general 
image alignment problem. However, it is worth to notice that 
not all the image alignment methods can be directly applied on 
the face images since human face is a deformable object rather 
than a rigid one. Variations in expressions and poses cause the 
alignment becomes a great challenge. Besides, the possibility of 
extreme illumination conditions also poses a huge difficulty to 
the problem. As a result, research of face alignment have been 
an active research field over the recent decade. 

1.1.2 Motivation: Photo-realistic Talking Head 

Before discussing the algorithms, let us state the motivation of 
our project first. Our interest in face alignment begins with the 
application of photo-realistic talking head. Photo-realistic talk-
ing heads have a wide variety of applications in human-machine 
interaction, from entertaining purpose in video games to educa-
tional software assisting language learning. A vividly lip-sync 
talking head provides a user-friendly interface, capable to com-
fort the users as well as attract their attention. This topic has 
been studied for a decade, and many successful models have 
been proposed and implemented [11, 41 . 

The goal of photo-realistic talking head is to make the head 
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behave like a real person, through rendering a smooth and nat-
ural video of articulators in sync with given speech signals. It 
is a challenging task: rather than just having a static appear-
ance, it has to possess many properties such as convincing plastic 
deformations of the lips synchronized with the corresponding 
speech, emotional facial expressions, and realistic head move-
ments. Also, the performance is highly affected by image nui-
sances, including 3D-pose variation, occlusion and illumination 
variation, etc. 

Such animated talking head can be implemented by select-
ing an optimal sequence of lip images from a video training 
dataset, then stitching them back to a background head video. 
One usual practice is to take a video record of a talking per-
son as the training data with annotated speech. Then through 
some training algorithm such as Hidden Markov Model (HMM), 
the audio-visual information is extracted [41]. Thus the visual 
speech trajectory can be synthesized. Further combining with 
the technology of Text-to-Speech (TTS), it is possible to gener-
ate a head speaking what you want him/her to say by inputting 
the script of the speech. 

Alignment of faces in the video training set is very crucial. 
Imagine a situation when a human subject being recorded keeps 
nodding his/her head while speaking, his head pose thus varies 
among the raw image frames. In this case, if no additional 
treatment is taken, the synthesized lip motion would definitely 
be peculiar due to significant misalignment. So face aliginnent is 
the first step in generating a talking head. In addition, the align-
ineiit has to be very accurate, since a small inisaligiiineiit im\y 
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lliliillif 
(a) Before alignment 

mrnmmmMWB^Mh 

(b) Aligned with our proposed method 

(c) Mouth replaced with other lip shapes 

(d) Return to original pose but with new lip shapes 

Figure 1.1: Deinostratioii with inouth replacement (illustrated with 20 
frames) 

already decrease the naturalness of the lips movement percep-
tually. This motivates our investigation of efficient and precise 
face alignment algorithms. A demonstration with an interview 
video obtained from the internet^ is shown in Figure 1.1. The 
Poisson image editing [33] is applied in stitching the mouth. 

The goal of our thesis is to propose and investigate an effi-
cient face alignment method whose objective is to improve the 

T̂he video is obtained from http: //www.beet. tv/2008/09/microsofts-crai .html. 

http://www.beet
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conventional photo-realistic talking head. For this type of align-
ment, our mainly concern is about the frontal normal view of 
the faces. The dataset for training is a video sequence of the 
same person which may consist of several thousands of image 
frames. The memory and computational time appear to be a 
problem for such large datasets. Another difficulty is related 
to the image nuisances existing in the dataset, which can affect 
the alignment results. An applicable face alignment algorithm 
should be able to alleviate the mentioned effects while maintain-
ing the accuracy and efficiency. 

1.1.3 Existing methods 

Many alignment algorithms which are specialized for faces have 
been proposed. In the following, an overview of such algorithms 
will be given. 

Statistical Models of Appearance 

The most popular alignment methods belong to the class of 
statistical models of appearance including Active Shape Model 
(ASM) [10] and Active Appearance Model (AAM) [9]. These 
methods involve two phases, the training phase and fitting phase. 
In the training phase, a training set is given; this set is used to 
generate a parameterized model using the technique of Princi-
pal Component Analysis. After we generate the parameterized 
model, an instance of this model can be fit to a given image so 
that it can be the best representation of the image in the least 
squares sense. 
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AAM can be considered as an enhancement of ASM by adding 
the gray-scale texture of the faces for the modeling. The opti-
mization strategies are different for ASM and AAM as AAM uses 
a direct optimization method to match shape and texture simul-
taneously by considering the global appearance. It was shown 
that AAM is a reliable algorithm for face alignment [9, 25]. Also, 
there have been many alternatives and extensions such as Direct 
Appearance Model (DAM) [27] and progressive AAM [25'. 

3-D Face Model 

The 3-D face model has been applied for face alignment [51, 
22, 43]. It involves automatically locating detailed facial land-
marks across different viewpoints. Sometimes it can be done by 
estimating a rigid pose transformation relating a 2-D face im-
age to a 3-D face model. In contrast to the statistical model of 
appearance, 3-D face model allows a larger range of viewpoints. 

Since the datasets we considered are video-based, let us fo-
cus on the real-time 3-D model-based pose tracking technique 
introduced by [43] which is considered to be a fast algorithm 
for face alignment. Their corresponding method is based on the 
Bayesian tracking framework. The authors of [43] first define a 
key-frame, and then obtain a pose posterior distribution which 
fuses feature correspondence information from both the pervious 
frame and the key-frame. 
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Pixel-based Image Alignment 

For pixel-based alignment, one basic approach originates from 
the measures of image similarity [34]. Many congealing algo-
rithms have been proposed such as the unsupervised joint align-
ment which searches for an alignment that minimizing the sum 
of entropies of pixel values at each pixel [23], and the least 
squares congealing procedure suggested in [12]. By stacking the 
aligned images as the columns of a matrix, the above congeal-
ing algorithms require the matrix to be rankl. However, in 
practice, due to some other factors such as large illumination 
variation in the images, the aligned images may have an un-
known rank greater than one. Thus, other rank minimization 
techniques are proposed in [40] and [32 . 

Our work can be classified as the pixel-based alignment, which 
is inspired by the recent development of Robust Alignment by 
Sparse and Low-rank Decomposition for Linearly Correlated Im-
ages (RASL) [32]. RASL allows a robust and highly accurate 
batch alignment of faces in images, despite occlusions, corrup-
tions, and even illumination variations. The idea of iterative 
linearization for the transformation is explored. This method 
formulates the batch alignment problem as the solution of con-
vex programs, with the aid of latest advances in rank minimiza-
tion. Unfortunately, it has limitation on scalability. The mem-
ory constraint and computational cost restrain its application 
on very large datasets, like those we have to deal with in talking 
head. The detailed of RASL will be discussed in Chapter 5. Al-
though statistical models of appearance and 3-D model provide 
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fast algorithms, pixel-based alignment allows a more accurate 
aligimient which satisfies our requirement in precision. Thus we 
choose it to be our foundation. 

1.2 Contributions 

In this thesis, our concern focuses on aligning the video dataset 
for photo-realistic talking head which has the properties that 
the pose changes of consecutive frames are small and the range 
of face view is confined to a relatively small angle. We use the 
idea of rank minimization through convex relaxation as well as 
iterative linearization in RASL. However, RASL fails to deal 
with very large datasets. We propose two methods to improve 
the original RASL: multi-RASL and one-by-one approach. We 
show that our approaches lead to more efficient algorithms while 
maintaining the same high precision as RASL. 

Multi-RASL is a direct extension of the original RASL. In-
stead of performing batch alignment to all the images in the 
dataset, we divide the temporal dataset into smaller segments. 
By choosing a suitable reference image, in theory all the images 
can be aligned to the reference pose by using RASL on each 
segment of images. Multi-RASL can tackle the problem due to 
limitations on memory, since every segment can be computed 
individually. So, the memory depends on the size chosen for 
each segment. 

In additional to the method of multi-RASL, we further pro-
pose an one-by-one approach which applies the latest develop-
ment of sparse signal representation and sparse corruption tech-
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niques using /i-norm minimization. Instead of aligning the im-
ages in batch, we align the images individually using some well 
aligned images. In other words, if we are given n RASL-aligned 
images, our approach would try to align the (n + l)th image us-
ing the information provided. One of the advantages is that it 
relaxes the constraint of memory; at each time, we only have to 
store the n RASL-aligned images and the ( n + l)th image, while 
for RASL, all the images have to be taken into the memory for 
the batch alignment. 

In our consideration, the input is a set of misaligned faces of 
the same person obtained from a video sequence and the output 
is a set of faces which aligned in the same head pose. Obvi-
ously, it is useful to align the faces in the frontal normal view. 
In this case, a reference image or a set of reference images with 
upright frontal view have to be selected. Original RSAL does 
not involve any reference images. Therefore, in our proposed 
methods, we introduce the concept of reference image to our 
improvement. We choose an upright frontal image as the refer-
ence in Multi-RASL while in one-by-orie approach we introduce 
a set of reference images forming a basis. 

Moreover, one assumption has been made in our formulation: 
the face is planar in 3D space. This assumption is reasonable 
when the angle of face with the frontal normal view is small and 
the distance between the face and the camera is far relative to 
the depth of the face. With this assumption, we can apply 2D 
affirie transform to align the misaligned images which makes the 
problem simpler. 

Here we would like to distinguish between our pixel-based 
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method and homography. In traditional homography, a 2D im-
age of a 3D plane can be transformed to another view easily 
given at least four pairs of correspondent points. In order to 
find the pairs, one has to find them either manually or using 
some automatic feature detection tochniquos to find sonic in-
variant point pairs. Since a face is a deformable object, feature 
points on the face may vary a lot causing difficulties in getting 
invariant feature points for doing homography. In our appli-
cation, while the mouths and eyes are moving, they are not 
suitable to be the features. Also the nose is not on the face 
plane, which violates our assumption. The relatively invariant 
features on the face are the eyebrows. It is possible to extract 
the positions of the eyebrow corners. Unfortunately, they are 
nearly collinear which causes ill-conditioned situation especially 
in low-resolution cases. Therefore, simple homography is not 
applicable in our task. 

By contrast, our method does not require a face feature ex-
traction process. It only needs face detection as preprocessing 
by which a very rough position of the face is obtained. Besides, 
all pixels of the face image are involved in the calculation which 
means that every pixel can be considered as a 'feature point', 
with the equal importance. Consequently, missing small num-
bers of these 'feature points' does not affect the results, thus 
enhancing the robustness of our method. 
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1.3 Outline of the Thesis 

Here the outline of our thesis is briefly described. In Chapter 
2, a summary of development of sparse signal representation is 
presented by first formulating the problems in well-known ma-
trix notations. Then we give a brief introduction to a technique 
called Basis Pursuit, which replaces Zo-norm minimization by /广 

norm minimization. We will show that Basis Pursuit can solve 
the Zo-norm minimization when there exists a sufficient sparse 
solution. Finally, we will mention some of the algorithms for 
solving the /i-norm minimization. The work is mainly based on 
5], [15] and [45]. The technique of sparse signal representation 

will be the foundation of our face alignment method and will be 
the central concept throughout the thesis. 

In Chapter 3, we introduce two important developments that 
are closely related to sparse representation. They are sparse cor-
ruptions and Principal Component Pursuit respectively. Here 
we first discuss the use of /i-riorm minimization to correct the 
sparse corruptions. Then we link the formulation with that of 
Least Absolution Deviation (LAD), which has been applied on 
regression similar to Least Squares. Inspired by the Zi-regularized 
least squares, we propose the /i-regularized /i-error, allowing to 
search for the sparsest representation and the sparsest error at 
the same time using an /i-norm minimization. For the second 
half of this chapter, the latest sparse and low-rank technique 
Principal Component Pursuit is reviewed. Finally, we provide 
here an empirical evaluation of all of our techniques through an 
experiment on surveillance video. 
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In chapter 4, the split Bregman algorithm is reviewed for 
solving the /i-regularized problem. We start with a brief intro-
duction on the history of its development. Then the formulation 
of Bregman iteration is given as the basis for split Bregman al-
gorithm. After that we demonstrate the application of split 
Bregman on our LILS problem. The work is mainly based on 
31, 50, 20:. 

Chapter 5 starts to consider the problem of face alignment 
using the perspective of low rank approach. Robust Alignment 
by Sparse and Low-rank Decomposition for Linearly Correlated 
Images (RASL) is reviewed, based on [32]. Then we propose our 
improvement on the RASL algorithm, named Multi-RASL, to 
extend its capability on larger dataset. Their Matlab implemen-
tation is discussed and some experiments have been carried out 
and presented, by considering both small and large datasets. 

Finally in Chapter 6 an extension of RASL for video is pro-
posed, using the one-by-one alignment approach. We suggest 
three choices of /i-based algorithm which are previously intro-
duced in Chapter 3, including the /i-regulaized least squares, 
the /i-error, and the /i-regularized li-error. Through several 
experiments we verify the efficacy of our method. It attains 
comparable quality to RASL while allowing fast and large-scale 
alignment. The application of our alignment algorithm in photo-
realistic talking head is published in a conference paper [47 . 



Chapter 2 

Sparse Signal Representation 

2.1 Introduction 

In digital signal processing, it is very common to use matrix 
notations to represent digital signals. For example, a digital 
gray-scale image can be considered as a matrix with entries rep-
resenting the intensity, and sometimes it may be convenient to 
stack it as a vector. A discrete-time signal can also be written 
as a vector, and it is well-known that such a signal can be trans-
formed to the frequency domain using Discrete Fourier Trans-
form (DFT) which is useful in performing analysis. It involves 
representing a signal in terms of the Fourier basis, consisting of 
sine arid cosine functions. Actually, DFT not only serves as an 
effective analysis tool in signal processing, but also be recognized 
as the key for compression of natural signals and images. One 
striking example happens in our daily life while we are taking 
photographs using a digital camera. When we transfer our pho-
tos to the computer, usually the computer will automatically 
help you to transform them to JPEG format. Through the pro-

13 
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cess, the photos are compressed by discarding the coefficients 
corresponding to the high frequencies of Discrete Cosine Trans-
form (DCT), which can be considered as a variant of DFT. This 
practice works based on the principle that human eye cannot 
identify the exact strength of brightness of a relatively small 
area with brightness variation, corresponding to the high fre-
quency components. 

In addition to DFT, there are others transformations which 
also satisfy the compression purpose. Examples include JPEG2000, 
an improved version over JPEG, that uses wavelet transform in-
stead of DCT. Similar to JPEG, it has been discovered that most 
natural images have sparse wavelet representations. Thus, it is 
possible to store an image by using a small number of wavelet 
coefficients, much fewer than the original image size. This pro-
vides many new insights on sparse representations. As we will 
see later, sparse signal representations have an even more sur-
prising ability other than compression; it can uncover embed-
ded semantic information of the data provided that it exhibits 
degenerate structure. That means the data can be described 
originally in a very high-dimension space, but it actually lies on 
a low-dimensional subspace. 

We will use the above property of sparse representations as 
the main ingredient to deal with our face alignment task. The 
most useful information for alignment is the face features of the 
person's face; so as long as the images have a reasonable reso-
lution, it will capture sufficient face features necessary for our 
purpose. In general, sparse representation technique can exploit 
the low-dimensional structure (the face features) of the images 
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without directly extracting it out. However, in our application 
and in other image processing and computer vision problems, 
the basis vectors may not be orthogonal to each other like the 
Fourier or wavelet basis, but is usually over-completed. We build 
the over-complete dictionary from the sample images which are 
specifically chosen for our task. 

2.2 Problem Formulation 

After the introduction from the signal perspective, here we would 
like to state our problem from the mathematical point of view. 
Sparse representation can be viewed as solving linear systems of 
equations. To formulate our problem, let y G ]R爪 be the original 
signal. D G is the over-complete dictionary, where m < n. 

Our major objective is to solve y 二 Dx for x. According to the 
knowledge we get from linear algebra, this is an underdetermine 
system of linear equations which can have infinite many solu-
tions. To make the problem sensible, we add one requirement: 
we would like to search for the sparsest x, that is, the solution 
which contains the least number of nonzero entries. In other 
words, we would like to decompose y using as few columns of 
matrix D as possible. This formulation fits our task as it is 
equivalent to obtaining the sparse representation of a signal. 

2.2.1 Zo-norm minimization 

Using the common notation of optimization, the above sparse 
vector searching problem can be written as an Zo-norai mini-
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mization problem: 

min||:r||Q s.t. y 二 Dx (2.1) 
X 

Here, the ||x||q counts the number of nonzeros in x. Sometimes, 
it is called an /o-norm, however it is not a valid norm, since it 
does not satisfy the positive homogeneity property of norm i. 
We use the Zo-norm to measure the sparsity of a vector. A vector 
X is known to be iC-sparse when ||x||q = K. The optimization 
searches for the sparsest vector x, a vector whose components 
are the coefficients of the linear combination. 

For the underdetermined system of linear equations Dx — y, 
the following questions are of interest: 

1. In what situation will the sparest solution be unique? 

2. In practice, is it possible to obtain the solution in an effi-
cient way? 

In the following section, we will discuss the first question. 

2.2.2 Uniqueness 

There are two ways to discuss the uniqueness of the sparsest 
solution of (2.1). The simpler one is to use the spark of the 
matrix D. Here is the definition of spark. 

Definition 2.1. [15] The spark of a given mMrix D is the 
smallest number of columns from D that are linearly dependent. 

Note that spark is not equivalent to the rank of a matrix 
which is defined as the largest number of linearly independent 

‘ T h e positive homogeneity property = | | . t | | q does not hold for some scalar a . 
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columns. Comparing to rank, spark is much more difficult to 
obtain, which requires a combinatorial search over all possible 
sub-matrices formed using columns of the matrix. 

It is simple to illustrate the uniqueness of sparse solution 
using spark as the criterion: 

Theorem 2.1. [5, 15] If there exists a solution x of Dx — y 
satisfying ||：̂||。 < spark[D)/2, this solution is necessarily the 
sparsest possible. 

Although the result is simple, the calculation of spark is as 
difficult as solving (2.1). So it is better to find another criterion 
for uniqueness. Another way to guarantee uniqueness is to use 
the coherence of the matrix D, which is defined as follows. 

Definition 2.2. [5，15] The coherence of a given matrix D is 
the largest absolute normalized inner product between different 
columns from D. Let d^ be the kth column of D, the coherence 
IS given by 

, \ dldj , \ fi{D) - max � 人 ： ^ (2.2) 
l<k,j<n,k7^j dk 2 dj 9 

Since the inner product of orthogonal columns is zero, orthog-
onal matrix has zero coherence, sometimes called decoherence. 
For over-complete dictionary D, it is impossible to have zero co-
herence. From Theorem (2.1) we see that the optimal solution x 
of (2.1) is unique when the number of nonzero entries in x is less 
than half of the number of dependent columns in D. This means 
that the uniqueness is directly related to the inter-dependence 
of columns of D. The coherence of a matrix can be viewed as a 
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weaker measure of the dependence between columns of the ma-
trix. It is found that there is a relationship between spark and 
coherence, which gives the lower bound of spark as follows. 

Lemma 2.1. [5, 15] The following relationship holds for any 
matrix D, 

spark{D) > 1 + ^ (2.3) 
fAD) 

Then with the lower bound of spark, the uniqueness theorem 
characterizes by the coherence can be written as follows. 

Theorem 2.3. [5, 15] If there exists a solution x of Dx 二 y 
satisfying ||x||�< + l//j{D)), this solution is necessarily the 
sparsest possible. 

Therefore, the first question we raised at the end of Section 
2.2.1 is answered. The second question about the method to 
solve the optimal solution of (2.1) is not so straightforward, be-
cause of the discontinuity of Zo-lorm. We will introduce in next 
section a method called Basis Pursuit, which replaces the / � -
norm by Zi-norm. 

2.3 Basis Pursuit 

Due to the discontinuity of IQ-IOTUI, the formulation in (2.1) is 
a NP-hard problem which is not numerically feasible in general. 
In order to solve (2.1), one way is to regularize the Zo-norni 
with a continuous or even smooth approximation. There are 
many possible choices such as replacing the /o-norm with /p-norm 
for some p G (0, 1] or smooth functions log{l + cy.xj). It is 
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found that the choice using /i-norm is a straight-forward feasible 
strategy. It is the best convex approximant, and solving of the li-
norm minimization is possible with many existing optimization 
algorithms. Researchers sometimes call this method the Basis 
Pursuit; it which was investigated to a great extent in the past 
few years, both in empirical and theoretical aspects [14, 15, 21 • 

2.3.1 From Z�-norm to /i-norm 

By replacing the /o-riorm in (2.1), a new optimization problem 
is formulated: 

min||M :̂r||i s.t. y = Dx (2.4) 
X 

Note that the columns in D are not normalized. Since the l\-
norm can be affected by the magnitude of the entries, thus the 
weighting matrix W G 肥 x " |g needed to compensate the effect. 
W is 'd diagonal positive-definite matrix with the diagonal entries 
w{i) = 11 a.-i 112. 

To provide a better illustration of the efficiency of using the /广 

norm minimization to solve the sparest solution, let us consider 
the 2-D case where m = 1 and n = 2. Figure (2.1) shows the 
line of y = Dx and the /i-ball. By changing the size of the 
/i-ball, the optimal solution x* = [xj x；] is the point where the 
/i-ball touches the line, which is exactly the sparest solution of 
the system of linear equation Dx = y. This simple model can 
be easily extended to higher dimensions, with the line becoming 
a hyperplane. 

The above demonstration provides the evidence for using /广 

norm minimization to find the sparsest solution. The questions 
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Figure 2.1: Illustration with 2-D ease: line oi y = Dx and the /i-ball. The 
optimal solution x* = [x\ x^] is the point where the / � b a l l touchcs the line. 

on when the /i-norm minimization gives the sparsest solution 
and how to solve the /i-norm minimization are of great interest. 
We will give a brief discussion in the following two sessions. 

2.3.2 l^-li Equivalence 

The following theorem shows that Basis Pursuit can solve the 
sparsest solution when x is sufficiently sparse. 

Theorem 2.4. [5, 15] If there exists a solution x of Dx = y 

satisfying ||：1：||。< + 1///(D))，this solution is both the unique 

solution of (2.1) and the unique solution of (2.4)• 

Notice that requirement on x in order to ensure unique sparse 
solution using /i-norm minimization is consistent with Theorem 
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2.3. This provides the theoretical support for /T-sparse vector x 

given that the matrix has a coherent /i < 1/{2K — 1). Actually, 
the theorem gives the sufficient criteria for the IQ-II equivalence, 
but it is not the necessary one. Empirical evidence [5] shows 
even for some ||x||q > + Basis Pursuit still gives the 
correct sparse vector. That means the above theorem considers 
the worst-case behavior which is general to all types of matrix. 
But for some specific ensemble of matrices such as Gaussian 
matrices, typical behavior is observed; the equivalence between 
Iq and li is typical at quite weak level of sparsity [16, 17, 18 . 

After discussing the criteria for the equivalence of li and IQ-
norm minimization, let us introduce some practical methods to 
solve the /i-norrn minimization problem. One advantage of using 
BP is that it can be identified as a linear programming problem 
which has been extensively studied. Many algorithms such as 
simplex methods, interior-point methods [3], can be applied to 
solve the problem. 

2.4 /i-Regularized Least Squares 

In this section, we will extend the idea that /i-riorm as a rep-
resentative for sparseness to two more general situations. The 
first one is the extension of the above formulation to the case 
with noise. Then for the second one, we consider the problem 
where the matrix D G M爪xn becomes a thin matrix, i.e. m > n. 

We would like to find the sparsest solution x such that the dif-
ference between y and Dx is small. Both of the cases leads us 
to the exploration of /i-Regularized Least Squares (LILS). 
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2.4.1 Noisy case 

The underdeterrnined system of linear equations in (2.4) is use-
ful; however it is not very useful as noise always exists in real 
world situation. Consider the case where noise is present in orig-
inal signal y, that is ^ — Dx + e. Here e G IR爪 denotes the noise 
present. Instead of an equality constraint, we replace it with 
an inequality constraint of norm of error ||e|| below the noise 
level e. It is common to use the /2-norm in this case, such that 
|e||2 = \\y — Dx\\2 < 6. So the problem becomes /i-norm mini-

mization with inequality constraint, also known in the literature 
as Basis Pursuit Denoising (BPDN) [8]: 

min||M/a:||i s.t. \\y — DxW^ < e (2.5) 

where W is again the diagonal positive-definite weighting ma-
trix. With an appropriate Lagrange multiplier A, the following 
unconstrained optimization problem gives the same solution as 
in 2.5: 

1 . 
mm - 11̂  - D.XII2 + A (2.6) 
.r 2 Now it becomes an LILS problem. 

2.4.2 Over-determined systems of linear equations 

Now let us consider the ease where m > n, then Dx = y becomes 
an over-deter mined system of linear equations. One possible 
question is, can we find a very sparse solution x such that the 
"difiereiice" between y and Dx is small? One common approach 
is to represent the "difference" in terms of /2-iiorm \\y — DxW^-^ 

2One reason for choosing the least squares is thaX if the noise is in normal distribution 
(Gaussian noise), loast, squares corresponds (,o the maximum likelihood criterion 
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The objective function would be very similar to (2.6): 

1 . 
m i n - \\y - Dx\\i + /i ||VI/x|L , (2.7) 

X 2 
where /i is the weight that trades off the least square error and 
the sparsity of x. 

The above formulation exploits the property that the /i-norm 
can capture sparsity. The regularization improves over ordinary 
Least Squares (LS) in the situation where the signal y contains 
noises other than Gaussian one. LS representation would use all 
the atoms to compensate the non-Gaussian noise, sacrificing the 
important features of the signal. The /i-regularization chooses 
the most representative atoms from the dictionary D to express 
y to reduce the distortion by outliers and thus enhances the 
robustness of LS. 

To solve LILS, there are many possible methods, includ-
ing the general convex optimization techniques such as interior-
point methods [3]. Although these algorithms give high-accuracy 
solution, it is known that in general, the computational cost is 
too expensive. It is not practical in many of the applications 
requiring both fast and accurate solution. 

There are many fast /i-norm minimization algorithms intro-
duced to seek an alternative to solve (2.7) approximately, in-
cluding the gradient projection methods [19], honiotopy meth-
ods [29], iterative shrinkage-thresholding methods [13], proxi-
mal gradient methods [30]’ and augmented Lagrange multiplier 
methods [49]. A review paper [48] gives a comparison of the 
above listed algorithms. 

In this thesis, we investigate a relatively new algorithm called 
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split Bregman method for solving our /i-norm minimization prob-
lem. It is shown that Bregman method [20] gives both accurate 
and fast results for our applications. In [50], it mentions that the 
split Bregman method is equivalent to the iterative process of 
augmented Lagrange multiplier method under some conditions. 
The detail descriptions and derivations will be given in the later 
chapter. 

2.5 Summary 

In this chapter, we have first presented the formulation of sparse 
signal representations using the /o-norm minimization and dis-
cussed the condition of uniqueness. Then the Basis Pursuit ap-
proach is suggested to replace the /o-norm by /i-norm. The IQ-II 
equivalence also enables the LILS which apply in noisy case as 
well as over-determined systems of linear equations. In order to 
solve LILS and other /i-problems, the split Bregman algorithm 
will be introduced in the succeeding chapter. 



Chapter 3 

Sparse Corruptions and 
Principal Component Pursuit 

3.1 Introduction 

In image processing, in addition to the signal noise, there can 
be many different kinds of variations that can lower the infor-
mation quality, such as occlusions and changes in illumination 
conditions, etc. Usually the occlusions would not cover all the 
features; otherwise the useful information can no longer be ex-
tracted. Therefore it is reasonable to consider partial occlusions, 
or, generally, sparse corruptions. We have two major objectives. 
First we have to seek a way to correct the distortions. It is found 
that this aim can be achieved by using the /i-norm miniiiiiza-
tion. Besides the correction, we are also interested in the content 
of images. In other words, we want to extract the information 
inside the images. Robust Principal Component(RPCA) is pro-
posed for this purpose, provided that the hidden content has low 
dimensional hidden structure. It goes through a rank miniiniza-
tioii, which can be viewed as a variant of /o-norm iiiiniinizatioii 

25 
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since minimizing the rank of a matrix is equivalent to mini-
mizing the number of nonzero entries in the eigenvalues of the 
matrix. In principle, RPCA is able to extract the content and 
at the same time correcting the sparse corruptions by applying 
the technique of Principal Component Pursuit. In the follow-
ing, both sparse corruptions and RPCA are explained through 
detailed formulations as well as experiments. 

3.2 Sparse Corruptions 

In this section, we first define sparse corruptions and formu-
late the correction problem for the corruptions using the li-
riorm minimization. Then we mention the connection between 
our /i-error formulation with Least Absolute Deviations (LAD). 
Then we end this section by proposing the formulation of li-
regularized li error. 

3.2.1 Sparse Corruptions and /i-Error 

Sparse corruptions refers to the corruptions appearing in a small 
number of pixels. The locations and magnitudes of the corrup-
tions can be arbitrary. That means we do not assume any pat-
terns or statistical models for the corruptions. Recall that in 
Chapter 2, we wanted to find a representation for a signal or 
an image using a given dictionary. Previously we have men-
tioned how to use /i-norrn minimization to search for the spars-
est representation. Here we are not going to constrain on the 
representation cocfficicnts. Instead, wc would like to obtain a 
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representation such that its difference from the given signal or 
image vector has the smallest number of nonzero entries. Same 
as in Chapter 2, let y G MJ^ be the given signal and D G 
be the dictionary. We can formulate our problem as: 

min \\y — , (3.1) 
X 

where ||.||�represents the /o-norm which counts the number of 
nonzero entries. 

Sometimes, (3.1) can be rewritten in an equivalent form: 

min ||e||�s.t. y 二 Dx + e (3.2) 
X 

where e is known as the corruptions or the error term. 
In fact, (3.2) is a Zo-norm minimization similar to (2.1). So 

applying the same argument as in Chapter 2, we replace the 
/o-norm by /i-norm, and we get 

min ||e||i s.t. y — Dx + e (3.3) 
X 

(3.3) is an /i-norm minimization for the error term. For conve-
nient, we call this /i-error approach. It is easy to see that (3.3) 
can be recast in the form of (2.4): 

miri ||<l>'a;||i s.t. y 二 "^w (3.4) 
w 

where 二 （I> = [Onxn Inxm] and 少 = [ D Imxm]- There-
fore the theorems in Section 2.3.2 are valid for our new optimiza-
tion problem. We will see how to implement a fast algorithm in 
Chapter 4. 
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3.2.2 /i-Error and Least Absolute Deviations 

Our /i-error approach is not a novel one. In fact, it has been 
studied for decades in the field of regression analysis. In this 
section, we provide a brief review on how this can be applied in 
regression, and also make a connection between regression and 
our problem for a better insight. 

In regression analysis, the goal is to fit a set of data using a 
function. One usual attempt is to use least squares. Assume-
ing the errors are identically and independently distributed, the 
least squares is proven to be the most efficient among the unbi-
ased estimation methods. However, for some cases where many 
outliers exist, due to the quadratic weighting of least squares, it 
becomes highly unstable and sample dependent. Thus, it raises 
the research of robust estimation. 

One candidate for robust estimation is Least Absolute Devi-
ation (LAD) [35, 1, 2, 37]. Consider the regression model with 
sample size n: 

Vt = x j p + e, (3.5) 

where 认 is the dependent variable for i — 1 , . . . , n, 二 [1, x i , . . . , 
is a (/c + l)-vector of explanatory variables, f5i = [1, /3 i , . . . , 
is the regression coefficient vector and ê  are uncorrelated distur-
bance terms. Then the LAD estimator of the parameter vector 
f3 in (3.5) is the one that minimizes 

n 
(3.6) 

1=1 

Noticc that it differs from least squares only by minimizing the 
sum of absolute values instead. Although most papers do not 
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mention about the /i-norm, but it is obvious that (3.6) is exactly 
the same as our least /i-error problem (3.3) where (3 corresponds 
to X in our problem. 

Comparing LAD with the least squares, it can be found that 
LAD is robust to outliers. Consider a signal with several entries 
corrupted significantly; the least square solution would smooth 
out the outliers by compensating with the other entries, causing 
an overall changc in resulting linear combination which differs a 
lot from what we would expect. However, LAD can pick out the 
outliers, keeping the others unaffected, so the combination can 
preserve the features of the uncorrupted signal. This explains 
why we can correct the sparse corruption using the least /i-error 
approach. 

Another important property of the regression perspective is 
that the LAD estimator /3 equals the maximum likelihood esti-
mator if the disturbances follow the Laplace distribution with 
parameter A > 0: 

/ ⑷ - ( - ⑦ （3.7) 

In comparison, the least squares estimator is the same as the 
maximum likelihood estimator for Gaussian disturbances. This 
provides a new insight to the least /i-error problem. 

3.2.3 /i-Regularized /i-Error 

In Section 2.4, we extend the ordinary least squares by using 
an li regularization to constrain the sparsity of representation 
and formulate the /i-regularized least squares (LILS). Here we 
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utilize the same idea to the /i-error problem. We propose the 
/i-regularized /i-error (L lLl ) for the problem that sparsity in 
both representation and disturbance vector are of concern. 

The L lL l can be expressed as the following optimization 
problem: 

min \\y — Dx\\-, + fi (3.8) 
X 

or 
min ||e||i + s . t . e = y — Dx (3.9) 

Here is the weight which trades off the least li difference and 
the sparsity of x, while W is the weighing matrix that compen-
sates the effect of imbalance within columns of the dictionary D 

as they may not be normalized. 
Notice that (3.9) can be transformed to the general /i-norm 

minimization problem: 

min s.t. y — ^w (3.10) 
w 

where w — [x e]^, ^ — [/JW INXM] and 屯 = [ D I^xm]]- Thus 
the theorems in Section 2.3.2 is valid for our new optimization 
problem. 

Given that the dictionary D consists of training data from 
separable groups, for example, D is a face dataset of several 
individuals and there are a few face photos for each person in 
face recognition. It is reported in [46] that one version of L lL l 
is applicable in face recognition under occlusions. We will ex-
ploit this classification property of L lL l to a practical example 
in Section 3.4 where we deal with three combined surveillance 
videos. Besides, we will show that our proposed L lL l approach 
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gives an efficient and accurate result in the application of face 
alignment. 

3.3 Robust Principal Component Analysis (RPCA) 
and Principal Component Pursuit 

Consider the case where we have a set of image data sparsely 
corrupted and we know that the data all lie near some low-
dimensional subspace. We would like to eliminate the corrup-
tions and retain the useful low-dirnensional information. [6] in-
troduces a technique of rank minimization that can exactly fulfill 
our task, which is named Robust Principal Component Analy-
sis (RPCA). It is developed recently through the advancement 
of transforming intractable sparse problem to a feasible convex 
optimization problem. In this section, we will give an intro-
duction to RPCA by distinguishing it from classical Principal 
Component Analysis (PCA) and further introduce the Princi-
pal Component Pursuit, a tractable convex optimization which 
allows solving the RPCA practically. 

3.3.1 Principal Component Analysis (PCA) and R P C A 

PCA is a mathematical procedure which converts a set of ob-
servations of possibly correlated variables into a set of values of 
uncorrelated variables called principal components. This con-
version is defined such that the first principal component has 
as large variance as possible and each succeeding component in 
turn has the highest variance possible under the constraint that 
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it is orthogonal to the preceding components. 
PCA is particularly useful in image classification because dig-

ital images nowadays usually consist of millions of pixels, how-
ever no matter how high the resolution is, the content remains 
the same. That means such data have low dimensionality. PCA 
is efficient for the linear case where the data all lie near some 
low-dimensional subspace. If we stack all the images as column 
vectors of a matrix M, the matrix would be low-rank or approx-
imately low-rank. 

Basically, PCA is an orthogonal transformation process which 
can be achieved by singular value decomposition (SVD). When 
PCA is applied for dimensionality reduction, it can be formu-
lated as a low-rank matrix approximation problem for matrix 
M G股獻“： 

Lo 二 argmin ||M — s.t. rank{L) < k (3.11) 
L 

where Lq G M 鎖 ” is the rank-/c estimate of M and is the 
Frobenius norm, which is the sum of squares of all entries. 

Although PCA is the most widely used statistical tool for 
data analysis and dimensionality reduction, unfortunately it is 
brittle with respect to grossly corrupted observation: a single 
grossly corrupted entry in D could cause the solution of (3.11) 
deviates a lot from the true LQ. RPCA improves the classical 
PCA so that it is able to correct the large value corruptions 
while finding the best rank-/c estimate of Lq, given that the 
corruptions are sparse, which means the number of corrupted 
entries in M is sufficiently small. 
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3.3.2 Principal Component Pursuit 

Here is the formulation of RPCA with reference to [6]. Given a 
large data matrix M G M爪•，we would like to decompose it as 

M 二 L + S (3.12) 

where L G 股默几 jg ^ low-rank matrix and S G M默" i s sparse. 
The exact rank of L and the locations of the nonzero entries of 
S is not given. In order to search for the sparse and low-rank 
solution, the problem can be written as the following optimiza-
tion: 

min ran/c(L) + 7 ||5||o s.t. M 二 L + S (3.13) 

Here 7 > 0 is a parameter that trades off the rank of L against 
the sparsity of S. In fact, (3.13) is the formulation of RPCA 
mentioned in Section 3.3.1. However, since the rank and IQ-
norm are discontinuous and even non-convex. The computation 
is impossible for large-scale problem as it is NP-hard. Fortu-
nately, the recent development of sparse representation which 
we have introduced in Chapter 2 provides an inspiration. It 
shows the possibility to approximate a discontinuous problem 
to a convex one through the convex relaxation technique. Also 
the performance is guaranteed. The convex relaxation of (3.13) 
can be achieved by replacing the rank with the nuclear norm 
and the Zo-norm by /i-norm. The nuclear norm of L is defined 
as 二 which is the sum of all singular values of 

L. It is easy to notice that the idea is the same as the IQ to h re-
laxation, since rank{L) equals to the number of nonzero singular 
values of L. After applying this relaxation, (3.13) yields a new 
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optimization problem which is called the Principal Component 
Pursuit (PCP): 

min ||L||, + A s.t. M 二 L + S (3.14) 
L ̂ S 

Here A is a parameter. Surprisingly, [6] shows that A can be 
a fixed constant for PCP to perfectly decompose into the low-
rank and the sparse component, provided that the rank of the 
low-rank matrix L is not too large, and the sparse matrix S is 
reasonably sparse. [6] suggests that A 二 1/y^max (m, n). PCP 
gives a new objective function which is non-smooth, but at least 
continuous and convex. 

There are several existing algorithms for solving matrix com-
pletion which is also applicable in solving PCP, such as the it-
erative thresholding [44], the accelerated proximal gradient [39 
and the augmented Lagrange multiplier (ALM) [28]. In our ex-
periment, we choose the inexact ALM approach, and implement 
according to the algorithm described in [28 . 

3.4 Experiments of Sparse and Low-rank Ap-
proach on Surveillance Video 

Figure 3.1 shows all the frames of the combined videos. There 
are altogether 210 frames of dimension 192 x 144. The three 
videos contain 100, 10 and 100 frames respectively. Each video 
sequence is taken from a stationary camera and hence the back-
ground is unchanged. In the video there are some moving objects 
such as cars or humans. 
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The simulation is run in Matlab. The frames are stacked as 
the columns of the input matrix M. We set the weight to be 
l/y/m where m 二 192 x 144 which is the size of each frame. The 
resulting low-rank matrix L has rank — 109. The decomposition 
output L and S is displayed in Figure 3.2 and 3.2. 

Figure 3.2 shows that RPCA performs well in the task of 
background modeling. It has the ability to extract the moving 
objects (foreground) which only occupy relatively small areas in 
the images. The background information is obtained in the low-
rank matrix L, while the moving objects, acting as occlusion to 
the background, are extracted in sparse matrix S. 

3.4.1 Least Squares 

First, before discussing the features of /i-techniques, we use the 
ordinary least squares to obtain a contrast. Figure 3.4 shows the 
results using least squares. Figure 3.4a show the original frame 
on the top and the linear combination by D on the bottom, while 
in Figure 3.4b the entries of vector x is displayed in graph. It 
represents the cocfficicnt for the combination of the columns of 
D in representing the test frame. It is found that least squares 
tried to use all the columns in D to form the linear combination 
of the test frame. 

3.4.2 /i-Regularized Least Squares 

Next, we applied to LILS. The weight fi is set to be 10—3. The 
result is shown in Figure 3.5. In contrast to least squares case, 
LILS gives a vector x which allows us to identify which video the 
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frame is corresponding to. As seen in Figure 3.5b, the highest 
peak appears at the 110力〃 entry. Therefore, LILS is better than 
least squares in our application. 

3.4.3 h-Error 

We know that the foreground objects are sparse, i.e. they only 
cover relatively small areas on the images. Therefore, we try 
to apply the /i-error algorithm. Figure 3.6 gives the output of 
/i-error. As seen in the bottom of Figure 3.6a, the combination 
can hardly represent the selected frame. It is not surprising as 
wc restrict the diffcrcncc between the sclccted frame and its rep-
resentation using D to be sparse, without giving any constraints 
on the combination. 

3.4.4 /i-Regularized /i-Error 

To achieve our goal of getting the best representation for the 
chosen frame, we use the L lLl algorithm. The output is shown 
in Figure 3.7 which satisfied all our needs. We can see a clear 
broad peak in Figure 3.7b, showing that most ingredient in the 
combination is corresponding to the 100力̂  to 110"! frames of the 
combined video. That range of frames is exactly the video in 
which the selected frame belongs to. As a result, we confirm that 
LlLl is the best in decomposing the foreground and background 
in a single image using the low-rank and sparse approach. This 
special feature of L lLl inspires us to use this on the application 
of face alignment, which will be introduced in Chapter 6. 



CHAPTER 3. SPARSE CORRUPTIONS AND PRINCIPAL COMPONENT PURSUIT26 

3.5 Summary 

A series of algorithms using /i-norm minimization to compen-
sate sparse corruptions or noise is introduced. It includes the 
/i-error and /i-regularized /i-error. Besides, the relationship be-
tween /i-error and least absolute deviation is discussed. The idea 
of replacing counting number of nonzero entries in a vector by 
computing the absolute sum of all entries gives rise to Principal 
Component Pursuit (PCP). Using PCP, robust Principal Com-
ponent Analysis can be done. In this chapter, we provide an 
experiment using sparse and low-rank approach to separate the 
foreground and background in surveillance videos. It shows the 
ability of PCP to model the background, as well as the advantage 
of /i-regularized minimization in finding the best representation 
given the dictionary of more than one surveillance videos. This 
discovery enables us to use these properties of sparse and low-
rank algorithms to our face alignment. In addition, it raises the 
possibility to apply similar methods in video segmentation and 
other video-based applications. 
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Figure 3.1: The original 210 frames video combined by three independent 
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Figure 3.4: Decomposition using least squares 
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Chapter 4 

Split Bregman Algorithm for 
Zl-Problem 

4.1 Introduction 

In order to solve the LILS problem in (2.6) in chapter 2，many al-
gorithms have been proposed such as the interior-point methods 
3]. The problem is reformulated as a quadratic programming 

problem in [26]. There are other toolbox which applies interior-
point methods including the famous solver for li problem for 
compressed sensing called /i-magic [7], which considers the li-
norm minimization in compressed sensing problem as a second 
order cone program, and employs the logarithmic barrier po-
tential for inequality constraints. Although the interior-point 
approach allows tractable algorithm giving reliable solution, the 
computation is generally slow and unable to deal with large-scale 
problems. In many applications in signal and image processing, 
a fast algorithm is required. Efforts have been made in the past 
few years to develop trustworthy algorithms for tackling the li 
problems. One of the candidates is the split Bregman method. 

45 
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The Bregman method was first introduced in [31] and applied 
to the Rudin-Osher-Fatemi (ROF) image denoising model with 
non-smooth total variation regularization: 

f 1 2 
u = arg min [j, / H~ — \\u — /IL (4.1) 

w J 2 

where u is the denoised image, f is the observed noisy image 
and jj, is a positive parameter related to signal-to-noise ratio. 

In [20], the similarity of ROF denoising and Basis Pursuit is 
discovered and exploited to suggest new efficient li solver us-
ing the extension of ordinary Bregman method: split Bregman 
method. In general, split Bregman can solve the problem 

mm||0(".)||i + E{n) (4.2) 
V 

under the assumption that E is convex and 0 is convex and 
different i able. 

Through introducing the Bregman distance [4], the split Breg-
man iterations can solve the “ problem by repeating simple op-
erations such as shrinkages, matrix multiplications, and a small 
number of matrix inversions. 

4.2 Bregman Distance 

Originally, Bregman iteration originated in functional analysis 
for solving convex optimization problems [4]. To introduce Breg-
man algorithm, we begin with the conccpt of Bregman distance. 

Definition 4.1. [4] The Bregman distance of J between u and 
V IS 

D'j{u,v) = J{u) — J{v) 一 {p. u^ - v) (4.3) 
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where p G dJ{v). 

dJ{v) is the subgradient of J at v which is defined by dJ{v)— 

{p : J{u) > J{v)十(p, u — v) , Vu}. 

Obviously, the Bregman distance is not the usual distance 

as it is not symmetric in general. However, i t does measure the 

closeness of any two points u and v because v) > 0 since J 

is convex and v) > Dj{w, v) for any w on the line segment 

jo ining u and v. Figure 4.1 uses a smooth convex function on 

2-D plane to i l lustrate the Bregman distance. For the smooth 

convex function, the subgradient p of J at point v is the ordinary-

gradient, i.e. the slope. The straight line that touches J{v) can 

be viewed as the first-order expansion of J at f . The Bregman 

distance D^j {u, v) is the difference between the points J{u) and 

J{v) + pT(u — v). I t is easy to see that Dj{u, v) • u) in 

our example. For the non-smooth case, the non-differentiable 

point has more than one subgradients. However by picking a 

fixed subgradient p, we get v) > Dj{w, v) for all iu in 

between u and v. 

4.3 Bregman Iteration for Constrained Opti-
mization 

First let us consider the constrained opti inizat ioi i problem: 

mill J{u) s.t. A a = b ( 4 .4 ) 
'11 ‘ 

where J is a coiivcx function on a, and G M"'^". In usual 

appr'oach, (4.4) wi l l be an approximation to an iincoiLstraiiieci 
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Figure 4.1: I l lustrat ion of Bregman distance. 

optimization problem w i th a penalty function: 

？i/,-+i 二 arg min J(u) H——-\\Au — b\\l (4.5) 
u 2 “ 

where A! < • • • < 入八广 is an increasing sequence of weights for the 

penalty function. For better approximation of Au — 6 ~ 0, Xjv 

should be chosen as large as possible. Unfortunately, for many 

algorithms such as the Newton-type method, i l l-condit ioning oc-

curs for very large A,’ as these methods depend on the eigenvalues 

structure o the Hessian of the objective function. 

To solve the constrained optimization problem (4.4), Breg-

rnaii i teration gives an efficient and reliable approach, which 

prevents the above i l l-condit ioning problem, by recasting (4.4) 

into an unconstrained problem using a quadratic penalty func-

tion: 

min J{u) + - \\A'U - b\\l (4.6) 
u 2 “ 
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Instead of lett ing 入 oc, we iteratively minimize: 

二 mmiy)j\u,u” -{--\\Au- b\\l 
“ 2 入 ( 4 . 7 ) 

二 m i n J[u) - (pk,以—从” + — I X u 一 q g 
u \ , 2 

for k = 0 , 1 , … w i t h u^ — 0 arid p^ = 0. Previously we only 
assume J is convex, but not necessarily differentiable. Thus, 
the subgradient of J may be unique. But we can get the update 
rule for p ⑷ directly as 0 is included in subgradient of J{u) 一 

{p\u- ix"〉+会 \\Au - 6II2, I.e. 0 G (9J(w" ’+i)—/ + A / F ( A / + i — 
b). Therefore, 

= / — — b) (4.8) 

20] claims a, simplified algorithm that is equivalent to (4.7) and 
(4.8): 

i / + i = mm J{u) + - All - ^ (4.9) 
u 2 一 

6⑷ 二 + b - (4.10) 

However, they did not give the proof. Here we provide a 
simple derivation. By (4.8), as p^ = 0, we have 

pi = 一 6 ” (4.11) 

where b^ is defined as b for convenient, 

2 V " 、 " （ 4 . 1 2 ) 

=-XA^\Air - -i-b- Au')) 

Then we let b'- — b^ + b — Au^, (4.12) becomes 
/ = - h') ( 4 . 13 ) 
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By simple induction, it is obvious that we can get 

/ - - h^) (4.14) 

w i th a new sequence defined as 

6⑷ 二 b � b - Ai/ (4.15) 

Now consider (4.7), as u '̂ is a constant in u, (4.7) becomes 

= mm J(u) -〈/’ + ^ \\Au — bill (4.16) 
u 2 

Using (4.14) and (4.15), (4.16) can be further simplified: 

= mm J{u) 一 A — b%u) + b\\l 

二 mi l l J(u) + — au + -{Au — b)^{Au — b) 
>1 2 

二 mm J{u) + ^ ( II — 2(6 — {Au^ — 耗 丁 Au + b l] 
V 2 \ / 

= m m J{u) + ^ Au - (6 - (Ai/ - 6”）； 
1/ 2 “ 

二 mm J(u) + ~ Au — //’ ‘； 
7 / 2 2 

(4.17) 

Hence (4.9) and (4.10) are derived. 

4.4 Split Bregman Iteration for /i-Regularized 
Problem 

After introducing the Bregman iteration for constrained opti-

mization, in the following part we wi l l show how to solve our l\ 

J) r obi cm using the improved version of Bregman iteration: the 

split, Bregman. 
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4.4.1 Formulation 

Suppose we are given the opt imizat ion problem w i th an / i - term: 

mm\\(p{u)\\.-\- E{u) (4.18) 
u 

We rewrite the unconstrained opt imizat ion problem (4.18) to an 

constrained one by operator spl i t t ing 

min \\d\\^ + E{u) s.t, d = (4.19) 
u,d 

Then according to Bregman formulat ion (4.7) and (4.8), (4.19) 

can be converted to a series of optimizations: 

( i z " + i ，十 1) = arg min J{u, 一 + - \\d — (p{u)\\l 
i“d 2 -

(4.20) 

P ^ ' = Pt — A(V0(u"十 1)) - (4.21) 

p二十 1 二 p;; — A ( / ’ + i — ( ^ ( i / + i ) ) (4.22) 

By the same simpli f icat ion as in (4.11)-(4.17), the above it-

erations become 

('a人.十i，(i"+i) = arg mm ||d||i + E{u) + 会 一 0(^0 — 
II,d 2 ~ 

(4.23) 

6".十1 = 6 " 、 + ( 0 ( i / + i ) - … ） （4.24) 

To solve (4.23), ones can iteratively mini in izat ion w i th respect-

to u and d separately: 

i / . +】=arc j inmE{u) + ^ d^' — 0(a) — M (4.25) 
‘ u 2 -

" 人 . + 1 = a r g m m + - \ d ~ — ( 4 . 2 6 ) 

(I 2 ‘ 
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I t is found that (4.26) can be easily solved using the shrinkage 

operator. The derivation is given in Appendix A. The opt imal 

d of (4.26) can be computed as 

d^+Y = shrm 職 u)�+ h], 1 /A ) (4 .27) 

for all J as the index of d人w h e r e 

shrink人:T, 7 ) — — — . m a x (|.t| — 7, 0) (4.28) 
X 

Comput ing the shrinkage operator is extremely fast which only 

requires a few operations. Solving (4.24) depends on the func-

t ional form of E(u). Usually there is fast algori thm for solving 

it. The generalized algor i thm is shown in A lgor i thm 4.1. 

20] mentioned that in many applications opt imal efficiency 

is obtained when N — 1, i.e. only on i teration of inner loop is 

performed. Therefore, we keep A^ 二 1 in all our split Bregman 

algorithms in this thesis. 

4.4.2 Advantages of Split Bregman Iteration 

As presented in the previous two sections, the original Bregman 

iteration is an improved version of t radi t ional penalty function 

methods. One of the advantages over penalty function methods 

is that it has a fixed A instead of gett ing a larger and larger 

A. Thus the numerical instabilit ies that occur as A —> 00 are 

avoided. 

Another advantage is that it converges very quickly for cer-

tain types of objective functions such as the /i-regularized prob-

lem. As shown in Appendix A, the simple / i - i i omi minimizat ion 
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Algor i thm 4.1 (Split Bregman Iteration) 

INPUT: E{u), (P{u), d 
I N I T I A L I Z A T I O N : u^ = 0 ， = 0, = 0，A 二 1，tol = 10—5 

W H I L E ||i/’ — w…II2 > tol D O 

I N I T I A L I Z A T I O N : u^ = w " ， = d^ 

F O R 77 二 1 TO TV D O 

f广+1 一 ary rnin Eiu) + ^ J" 一 一 P ^ 
” 2 2 

一 arg mm\d + - d — oUn — b^ l 
d 2 2 

E N D F O R 

SET： 二 h N，d … = ( j N 

…1 6"’ + ((p(“⑷）-d"’+i) 

E N D W H I L E 

O U T P U T : solut ion u* of opt i in izat io i i (4.18) 

wi th the form 
i i i in ||x||, + - 11X — y\\i (4.29) 

:r 2 “ 

has a simple closed form opt imal solution given by the shrinkage 

operator since there is no coupling between entries of x. So 

the tr ick of split Bregman is to convert the opt imizat ion wi th 

coupled /]-regularized term to the decoupled form (4.29). We 

wi l l see several examples in the following section. 
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4.5 Fast li Algorithms 

In this section, we wi l l derive fast algorithms for our / i -norm 

minimizat ion problem using the technique of split Bregman it-

erations. In the preceding two chapters, the /i-regularized least 

squares (L ILS) , the /i-error and the /i-regularized /i-error ( L l L l ) 

have been introduced. Thus in the following their algorithms 

wi l l be proposed respectively. 

4.5.1 /i-Regularized Least Squares 

Recall in Chapter (2.4), we encounter the L I L S problem: 

, 1 2 
min / / ||Vl,:r||i + - — Dx\\2 (4.30) 

.7 

where // is the weight that trades off the least square error and 

the sparsity of x and W is a diagonal positive-definite weighting 

matr ix. 

For convenience, we first consider the following formulation 

of L ILS to fit the setting of split Bregman formulation in (4.18): 

A 2 
min ||I¥.t||| + - ||y - DxW^ (4.31) 

'飞 乙 

By lett ing A 二 1///,, we make it equivalent to (4.30). 

Then by operator spl i t t ing, (4.31) becomes 

min II'⑴111 + — ll.y — Dx\\l s.t. w 二 Wx (4.32) 
. T V / . ’ 2 ‘ " 

Then we use Lagrange mult ipl ier Ai to convcrt it into an uncon-

strained problem: 

mi l l + — \\y — D.tII^ + ^ 11iv — (4.33) 
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Therefore, by split Bregman iterations, 

( x ^ ' ^ ^ = arg min \\w\\. + ^ ||y — Dx\\l + — w — Wx — b^ l 
"“x,w 2 2 

(4.34) 

6 ⑷ = b k + 释 ⑷ - i / ’ + i ) (4.35) 

Then we iteratively solve the minimizat ion (4.34), 

= arg min ^ \\y - Dx\\l + 与 w^ -Wx-b^ l (4.36) 
X 2 2 -

i /十 1 二 o r 仲 in I H l i + ^ w-Wx^^^ — ； (4.37) 

w 2 

For (4,36), the solution can be easily obtained since it is differ-

entiable: 
a：人、+1 二 {XDTd + A i IF^M/ ) -^ {XD^y + W,了(x/ — 6".)) (4.38) 

Then similar to (4.26), (4.37) can be solved by shrinkage oper-

ator for all entries j : 

= sh r i r i k { {Wx^ ' ^ ' ) j + ^ 1 /A i ) (4.39) 

where the shrinkage operator is defined as (4.27). Therefore, the 

algori thm of L I L S can be formulated as shown in Algor i thm 4.2. 

4.5.2 /i-Error 

Next we consider the /i-error problem (3.3), 

mi l l IIe111 s.t. e 二 y — Dx (4.40) 
‘1. 

By Lagrange mult ipl ier, (4.40) bccoines 

A ‘） 

mil l ||e||i + - ||e — {y — Dd-)]]：^ (4.41) 
Z 
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Algor i thm 4.2 (/i-regularized least squares) 

I N P U T : W, D, A, y 

I N I T I A L I Z A T I O N : u。= 0, d" = 0, 6。= 0,入i = 1，tol = 10—5 
W H I L E - .r…II2 > tol D O 

: r “ i 一 {XD^D + + - b^)) 

F O R ALL entry j D O 

⑴广 f— shrink{{\Vx^+^)j + 1/Ai) 

E N D F O R 

f— // + 一 ,+ 1) 

E N D W H I L E 

O U T P U T : solut ion x* of opt imizat ion (4.31) 

Using split Bregman, (4.41) can be separated in the following 

iterative minimizat ion subproblems: 

工⑷ 二 arg min Dx + e" — y — ^ (4.42) 
x. " 

e,’+i = arg min ||e|L + - e — {y — Dx^'^^ — 6") ^ (4.43) 
r 2 “ 

//+1 = // + {{y — DT}'^') - e “ i ) (4.44) 

The solution of (4.43) and (4.44) can be easily obtained: 

= (DTD)-、DT(y - ek + / / ) (4.45) 

= shrink{{ij — + h], l / A ) , V j (4.46) 
The algori thm is shown in A lgor i thm 4.3. 
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Algori thm 4.3 (/i-error) 

INPUT : D, y 

I N I T I A L I Z A T I O N : x。= 0’ e。= 0, 6。= 0，A = 1, tol = 10—5 
W H I L E - 2：…II2 > tol D O 

F O R ALL entry j D O 

<^ shrink{[y - + 1/A) 

E N D F O R 

M+i — 6'’ + ((" - ZXT'.+】）-e“i)) 

E N D W H I L E 

O U T P U T : so lut ion of op t im iza t ion (4.40) 

4.5.3 /i-Regularized /i-Error 

I I I Chapter 3, the L l L l min imizat ion problem was introduced 

as 

mi 11 II e 111 + ji 111411^ s.t. e = y — Dx (4.47) 

Let W 二 fiW, (4.47) can be transformed to an uiicoiistraiiiGcl 

opt imizat ion using Lagrange mult ip l ier : 

\ 2 9 A 9 〜 2 
rniri ||e||i + | | ' ⑴ + — ||e - {y 一 Dx)||； + w — \Vx (4.48) 
x，e’w 2 Z 2 

Using split Breginai i i terat ion, we separate this opt i i i i izat io i i 
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problem into many smaller subproblems: 

/._Li Ai u 2 A2 7 u 2 
卞 二 arg mm — e - [y - Dx) - b^ + — w — Wx — b: 

•r 2 ^ 2 2 

(4.49) 

e � - a r g mm ||e|L e - (y - Dx^^^) — ； (4.50) 

/\ 2 
二 arg mm \\w\\, — w - — ht (4.51) 

“ W 2 ‘ 2 

b，\ = hi + (:y 一 — e,汁 1) (4.52) 

二 hi + — k/,+1) (4.53) 

The solutions of (4.49)-(4.51) wi l l be: 

= {XiD^D + XoW^W)'^ - y- 6》）+ — bQ 

(4.54) 

e ” i 二 shrni秦 一 + 仗、1/Ai)’ V.7 (4 .55) 

= •，"?,:((l!,z?+i)j. + d l ) ” 1/A2),VJ (4.56) 

The generalized algori thm of L l L l is presented in A lgor i thm 

4.4. 

4.6 Summary 

In this chapter, we have derived all the /i algorithms we need 

for our face alignment task using the split Breman. These al-

gorithms have a common characteristic: they all converge very 

fast, and can be coniputcd wi th just a few simple operations. 

Actually, there arc other fast l\ algorithms including the gradi-

ent projection methods [19], hoinotopy methods [29], iterative 

shrinkage-thresholding methods [13], proximal gradient methods 
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Algor i thm 4.4 (/i-regularized /i-error) 

I N P U T : 14/，D 

I N I T I A L I Z A T I O N : = 0, e。= 0，b̂  = 0, Ai = A2 = 1, tol = 10—5 

W H I L E - …II2 > tol D O 

F O R ALL entry j D O 

e)+i — shri魂y — + 1/A) 

E N D F O R 

F O R ALL entry j DO 

⑴)’+i <— + I/A2) 

E N D F O R 

6 广 — R t … ） - e … ) ） 

bt；' — li + 一 ⑴ 

E N D W H I L E 

O U T P U T : solution x* and p* of optimization (4.47) 
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30], and augmented Lagrange mult ipl ier methods (ALM) [49], 

which are discussed in a review paper by Yang et al. [48]. They 

compare different algorithms using the application for robust 

face recognition. The L l L l problem is also formulated using 

those algoritliiris. The conclusion is that there is no definite 

winner that always gives the best performance in terms of both 

accuracy and speed. In their application, Homotopy and A L M 

were found to achieve the highest recognition rates and the low-

est computational cost among the l i algorithms discussed. There 

are papers [50, 38] discussing the equivalence between Bregman 

iteration and A L M when the constraints are all linear. However 

this is out of the scope of our thesis. 



Chapter 5 

Face Alignment Using Sparse 
and Low-rank Decomposition 

5.1 Robust Alignment by Sparse and Low-
rank Decomposition for Linearly Corre-
lated Images (RASL) 

In previous chapters, we have prepared all the algorithms neces-

sary for our proposed face alignment method. So start ing from 

this chapter, we wi l l concentrate on the problem of face align-

ment . T o begin wi th, a pixel-based batch alignment metl iod 

called Robust Al ignment by Sparse and Low-rank Decomposi-

t ion for Linearly Correlated Images (RASL) is explained. RASL 

is able to simultaneously align a batch of linearly correlated im-

ages such as face images despite occlusion or any kinds of gross 

corruption. I t seeks an opt imal set of image domain traiisfonna-

tions such that the matr ix of traiisfonned images can be decom-

posed as the sum of a low-rank matr ix of aligned images and 

a sparse matr ix of errors. Its principle is based on the kiiowl-

G1 
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edge that if the images are well-aligned, they should show good 

low-rank structure up to some sparse corruptions. Face images 

are among the group of l inearly correlated images which possess 

this property. 

Dur ing the decomposition of the mat r ix into a low-rank and 

a sparse matr ix , RASL applies the technique of pr incipal com-

ponent pursuit introduced in Chapter 3 since the original rank 

minimizat ion problem is non-convex. For face alignment, we 

would like to find a set of t ransformation that allows us to trans-

form each image to the same pose. For simplicity, we consider 

that the transformation is 2-D affine transform, i.e. we implic-

i t l y assume the face of an indiv idual is approximately on a plane 

in 3-D space. Therefore, the idea of RASL is to search for a set 

of 2-D affine transformation parameters r such that the rank of 

the transformed images becomes as small as possible and at the 

same t ime the sparse errors are compensated. 

5.2 Problem Formulation 

This section introduced the whole formulat ion of RASL, by pre-

senting two main concepts, convex relaxation and iterative lin-

earization. Then the algor i thm is given as a conclusion. 

5.2.1 Theory 

Given / i , . . . , G W ^ as the original misaligned grayscale im-

ages of a person's face. Define vec : h-> R川 as the operator 

that sclcctns an ？n-pixel region of interest (e.g. the face part, w i th 
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main features such as eyes, nose and mouths) from an image and 

stacks to be a vector. Denote R = {TI, . . . , r ^ } as the set of trans-

formation, and DOT as shorthand for [vec{Ii o n ) | . . . \vec{In 〇 TN)] G 

股mxn，where / o r represents image I after transformed by r . 

The problem is formulated as the minimizat ion in Lagrangian 

form: 

min rank (A) + 7 \\E\\q s.t. DOT = A + E (5.1) 

Here, the |卜！！。represents the number of nonzero entries in the 

error matr ix E , and 7 > 0 controls the weighting between the 

rank of solution and the sparsity of the error. 

The opt imizat ion in (5.1) is not directly tractable: both rank 

and /o-norin are non-convex and discontinuous and the equal-

i ty constraint Dor = A-\-E is nonlinear. [32] introduces two 

techniques, called the convex relaxation and the iterative lin-

earization. 

Convex Relaxat ion 

The convex relaxation involves the replacement of rank�,) and 

1,11。with the sum of the singular values 二 X]二 1 (•4), 

namely the nuclear nor 111, and the / i - i ion i i l ^u I 

respectively. The problem (5.1) becomes: 

mm A ^-{-X E , s.t. D or = A + E (5.2) 
A,E.r 

According to Section 3.3.2 in Chapter 3，it is wise to choose the 

weighting parameter A to be in the form of C/ s/m. where C is a 

constant typically set to 1. 
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Iterative Linearization 

For the nonlinear constraint Dor 二 we can approximate 

it by linearizing about the current estimate of r^ for small change 

of r . Then (5.2) can be wr i t ten as: 

n 

mil l p l l ^ + A \\E\\^ s.t. D o r " + y J.AreJ = A + E (5.3) 
A.E.At ^ “ 1=1 

where J i二条”e c { I i O二丁， i s the Jacobian of the z-th image w i th 

respect to the transformation parameters T^, 丁二 [7"i| . . . |r„J and 

e, denotes the standard basis for R". 

Notice that the linearization only holds locally, so the solu-

t ion of (5.3) r + AT may not exactly solve (5.2). In order to 

find t:ii(、miiiimum of (5.2)，AT has to be iteratively solved by 

(5.3) using the current estimate of r for each iteration. [32] has 

shown that as long as the ini t ia l misalignment is not too large, 

the solution after the iterations cffcctivcly recovers the correct 

transformations r which separates the low-rank structure of the 

aligned images from any sparse errors. 

5.2.2 Algorithm 

The algorithm of RASL is shown in A lgor i thm 5.1. I t involves 

two loops of iterations. The outer loop corresponds to the it-

erations of (5.3) which updates r . The inner loop is the al-

gor i thm for solving the linearized convex optimization in step 

3 of A lgor i thm 5.1. To solve it , [32] suggests to use the Ac-

cck^ratccl Proximal Gradient algorit l im. The algorithm can be 

irnpl(3nicntc(l according to [32]. 
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Algorithm 5.1: R A S L [32 

I N P U T : Image / ! ， … ， / 几 G in i t ia l t ransformat ion r i , . . . , r^ in 

affine group, weight A > 0 

W H I L E not converged D O 
Step 1: computc Jacobiai i matrices w.r . t . t ransformat ion: 

i (vec{hoO\ . 二 
J t ^ O / - II 7 7 “ ’ — 丄 ， . . . ’ “ 

V II 人.。C||2 y C = r , 

Step 2: warp and normalize the images: 

「 t ’eC(/ iOn) I Vec[In O Tn) 
U O T i . . . I 

. Ih^ec( / i o ri)||2 \\yec{Ir i�r„ )||2_ 

Step 3 (inner loop): solve the linearized /i-LS; 

{A\E\ATn <— 
N 

arg in i i i + A \\E\\^ s.t. Z) o r + Y " JAT,^'!^ = A + E 
/二-1 

Step 4: update transfonnatioii: 

T < T + AT* 

E N D W H I L E 
O U T P U T : ‘solution A\E\T of opt imizat ion (5.2) 
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5.3 Direct Extension of RASL: Multi-RASL 

One notable l imi tat ion of RASL appears when the image size is 

large and the amount of images is large. For the batch align-

ment, all the images have to stack into the memory to perform 

the computation. If the amount as well as the size of the im-

ages are large, memory might not be able to store all the data 

during computation. So the original RASL is not capable for 

large-scale problem. 

5.3.1 Formulation 

We propose here a direct extension of RASL. Instead of align-

ing all images in one batch, we divide into smaller batches, so 

that for each batch the memory is enough for the computation. 

However, if we just do RASL as in Section 5.3, every batch 

would have a different alignment. Therefore, a rcfcrcncc im-

age is chosen to be our ground pose, that is, all the images are 

aligned according to the pose in the reference image. I t can 

be achieved by adding the reference image to each batch before 

applying RASL. Our proposed method is named Mul t i -RASL 

because RASL has to be performed many times separately for 

every batch. 

The key of our algorithm is that w i th in each batch, all images 

are supposed to be well-aligned and the transformation parame-

ters T from original to the well-aligned pose are computed. Thus 

we get the inverse transforni for the reference image to transform 

back to the original pose. By applying such an inverse trans-

forrnat-ion to all images wi th in the batch, in principle, all the 
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images can be aligned to the reference. A n d same principle can 

be applied to all batches. Eventual ly all images in the dataset 

can be aligned. 

The inverse transform can be explained as follows: Input one 

batch of images together w i th the reference into A lgor i thm 5.1 

in Section 5.2.2. Then we can get the transform parameters r 

for each image. 

Let Tref be the transform parameters f rom misaligned Iref to 

aligned IREF, i.e. IREF 〇 TREF 二 IREF. So in order to align all the 

images according the reference pose, we apply the inverse trans-

form T;}. on the aligned images. The process can be represented 

as follow: 

“ 二 (5.4) 

二（/̂  • 小 TV；} (5.5) 

二 h。(丁1 o (5.6) 

T h u s , 干 〇 is the transform parameters f rom misaligned 

to aligned w i t h reference pose I ” since the transformation is 

associative. 

5.3.2 Algorithm 

The algor i thm of Mu l i t -RASL is basically the same as that of 

RASL, except there are three extra steps, choosing the refer-

ence, d iv id ing dataset into part i t ions and performing an inverse 

transformation, respectively. 

In choosing the reference, one can either direct ly select from 

the dataset, or pick an aligned image result ing f rom RASL on 
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a uniformly random small subset of the dataset. Empirically, 

the latter usually gives you a better choice if you would like to 

align all the face photos to the frontal normal view. However, 

Mu l t i -RASL is not restricted to the frontal normal view. 

The objective of dividing the dataset into small batches is to 

ensure the memory is enough to go through the RASL compu-

tat ion for each batch. In practice, the alignment would never 

be perfect, thus there wi l l be always some errors in the align-

ment results although i t may not be too large. Even though we 

have set a reference image to reduce the difference in alignment 

among the batches, large alignment difference between batches 

can st i l l occur. Therefore, i t is wise to choose as small as pos-

sible the number of part i t ions such that in each part i t ion the 

memory is enough for computation. For simplicity, we prefer 

equal part i t ion. 

After gett ing the transformation parameters r for every im-

age by RASL, we apply the inverse transform method in (5.4) 

to align all the images to reference pose. The whole algori thm 

is summarized in A lgor i thm 5.2. j 

5.4 Matlab Implementation Details 

After discussing the algorithm, this section wi l l discuss the prac-

t ical implementation of i t using Matlab. Mat lab is universal 

mathematical software for doing simulations. I t is part icularly 

useful in simulating image processing problems as it has a ful ly 

developed image processing toolbox which contains a wide va-

riety of image processing functions such as the one for affine 
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Algor i thm 5.2: Mul t i-RASL 

I N P U T : Image / i , … ， G i n i t i a l t rans fo rmat ion t i , … 山 in 

aff ine group, weight A 

S t e p 1: D i v ide Image / i , . . . ， i n t o K smal l groups (also for i n i t i a l 

t rans fo rmat ion r i , . . . , r „ ) , each group has approx imate ly equal amount 

of images 

S t ep 2: Sclcct a rcfcrcncc by c i ther d i rcc t l y f r om the dataset, or f rom 

result of R A S L on a un i f o rm ly random smal l subset of the dataset 

S t e p 3: F O R A L L B A T C H E S , go t h rough A l g o r i t h m 5.1 respec-

t ive ly 

Step 4: 

F O R A L L I f rom 1 to n D O 

干t 卜 r, o 

E N D F O R 

O U T P U T : T rans fo rmat ion parameters f i , . . . , taUn 
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transform of 2-D images. Our algorithms can be easily imple-

mented using Matlab. Thus we choose it to be our simulation 

platform. 

Basically, the implementation of Mu l i t -RASL is divided into: 

1. Obtain the image sequence. I f the image resolution is high, 

scale down the image to a reasonable resolution. 

2. Detect the faces in the images and cut them out. Save the 

position of face on each image so as to compute the overall 

affine transformation matr ix for the whole image. 

3. Select a reference either directly from the dataset, or from 

result of RASL on a uniformly random small subset of the 

dataset. 

4. Go through the mul t i -RASL algorithm. Then the transfor-

mation parameters for the cut-out faces can be obtained. 

5. Combine the transformation parameters for the cut-out 

faces together w i th the transformation matr ix due to down-

sampling and position of face to calculate the overall trans-

formation matr ix for every image (in original resolution) 

6. Finally, transform the original image sequence using the 

overall transformation matrices calculated. 

5.4.1 Preprocessing 

In order to start our face alignment, f irstly a video sequence of 

a person's face is collected. The video can be an interview of 

a person, or a person giving a speech. I t can be in different 
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formats, for example, M P E G (.mpg), A V I (.avi) or Flash Video 

(•flv), etc. We apply some video processing software to convert 

the video into a set of images so that we can perform our compu-

tat ion on it . For simplicity, we assume there is only one person's 

face on each frame. 

Sometimes the image resolution is too high which may lower 

the efficiency of our algorithm. In fact, so long as the image is 

recognizable by human, its resolution is sufficient for a reason-

able accurate alignment. Therefore, for high resolution images, 

i t is wise to down-sample them. 

Usually, the face may not stay in a fixed position. Also, there 

may be some camera effects such as zooming; in and out, which 

causes the changing in size of the face. Thus, some techniques 

have to be applied in order to capture the face image out so as 

to align them. Two techniques have been tested for this prepro-

cessing step, including face detection and 3-D pose tracking. 

Face De t e c t i o n 

We apply the available face detection algori thm for tracking the 

facc i l l our video scquencc. There arc many off-the-shelf robust 

and fast face detection algorithms using various approaches such 

as neural networks and weak classifier. In our application, i t 

is sufficient to have just a rough estimation of the posit ion of 

face. So for convenient, we pick a face detector running on 

Mat lab plat form [24]. Figure 5.1 demonstrates the output of 

face detection algorithm. I t locates the posit ion of a human 

face. 
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WBM 
m 

Figure 5.1： O u t p u t of face detect ion a lgor i thm 

3-D Pose Track ing 

In our introduct ion of face alignment algori thm in Chapter 1.1.3, 

some 3-D face model alignment methods have been introduced. 

We choose one of the methods called 3-D model-based pose 

tracking to be one choice for our preprocessing. One advantage 

of using results from 3-D pose tracking as the input is that i t in- j 

creases the speed of convergence of RASL and hence lowers the 

computat ional cost since the input has already approximately 

aligned. Figure 5.2 shows the process of 3-D pose tracking^ 

Figure 5.2: 3-D pose t racking 

^The code for 3 -D pose tracking is provided by Microsoft Research Asia. 
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5.4.2 Transformation 

In Mat lab Image Processing Toolbox, there are well-defined 

functions for performing the image transformation. We apply 

two of the major functions for our affine transform. First, the 

function maketformQ is used to create spatial transformation 

structure (TFORM) . We choose the transform type as ”aff ine”. 

Next, the function imtransform{) is uti l ized for 2-D spatial trans-

formation to image given the affine transformation structure 

T F O R M generated in the previous step. 

The function imtransform employs the inverse mapping tech-

nique. Instead of choosing the forward mapping which may 

cause gaps and overlapping in the output space, i t is more sta-

ble to start f rom the output space. Let the position of the k-th 

output pixel be (x^, i/k). The image transform procedure can be 

described as follows: 

1. Set a range for the output image in output space. 

2. W i t h i n the range of output, pick an output image pixel, 

say {xk.Vk)-

3. App ly the inverse spatial transform T—i to determine the 

corresponding location in input space: {u^, Vk) = T "^ ((工/r, Vk))-

In our application, T is the defined affine transform using 

maketform. 

4. Using the input image pixels nearest to (ix人,’ Vk), interpolate 

to get an approximation value for (uk,Vk). Here we choose 

bicubic interpolation. 
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5. Set the approximation value for the output pixel (x^, i/k). 

5.4.3 Jacobian Ĵ  

In step 1 of Algor i thm 5.1, the Jacobian matrices corresponding 

to the transformation r^ for z — 1,. . . , n is computed as 

J, 一 I ( « ) (5.7) 
dC \ \ 2 J C=r, 

However in practice, Jacobian Ĵ  cannot directly computed using 
(5.7). The following describes the procedure for obtaining the 
Jacobian. For simplicity, we omit the subscript so that J repre-
sents the Jacobian matr ix for a single image. Here the image is 
expressed as a column vector I in which each entry represents 
one pixel of the image. Also, since there are 6 parameters for 
affine transformation 丁 which can use the affine transformation 
matr ix a to represent. The affine transformation can be wr i t ten 
as 

«2 <̂3 
0̂4 0̂ 5 0̂ 5 

1T 
Next we let r : 0̂ 2 0̂ 3 04 0̂5 a^] . Then let us consider the 

iterative linearization where the Jacobian appears: 
/ O T •二 / O (T。+ AT) M / O T。+ JAT (5.8) 

So we defined A / 二 J A t . In order to get Jacobian J, we 

consider each entry of AI can be represented 

AU 二 V,,/,A.t + VyIAy == [VaJz V,/,] Ap (5.9) 

where Ap = [Ax Ay] and Vxit and Vyk are the gradient of 
image intensity at each pixel in x and y direction respectively. 
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These gradients can be computed using Sobel operator. There 

is corresponding function in Matlab. Here Ax and Ay are the 

change in posit ion due to the image transformation A r which 

is assumed to be very small. Then for affine transform, we have 

the following relation: 

A p ^ J a f f A r (5.10) 

X ^ 1 0 0 0 
where J^/ / 二 which is the Jacobian for po-

0 0 0 X y 1 
sition change in terms of transformation matr ix a and A r = 

Aai Aa2 Aas A0^5 Aao]. 
Thus we can obtain the Jacobian for each pixel by computing 

WyU] Jaff 二 ["^X^lX ^xky X Vyhx Vyky v] (5.1l) 

which is the i力"row of the Jacobian J. 

5.5 Experiments 

In this section two experiments have been performed to demon-

strate the capabil ity and efficacy of RASL and our extension 

Mul t i -RASL. First the performance of RASL and Mu l t i -RASL 

is compared using a small dataset w i th 100 images. The reason 

for using a small dataset is that we want to show the perfor-

mance of Mu l t i -RASL is comparable w i th that of RASL. Then 

for large dataset where ordinary RASL fails, we evaluate our 

proposal quanti tat ively for different division of batches. The 

eyebrow corners have been extracted and used for our compari-

son. 



CHAPTER 5. FACE ALIGNMENT USING SPARSE AND LOW-RANK D E C O M P O S I l Y(,丨�')！ 

5.5.1 Qualitative Evaluations Using Small Dataset 

In this test, a dataset w i th tota l number of images N — 100 of 

the same person is obtained from an interview video collected 

from the internet^. The original dimension of each images is 

344 X 260. Since the size of the faces from distinct frames may 

be different due to zooming effect, i t is suitable to transform all 

the faces into the canonical frame for computation. We set the 

size of face in canonical frame to be 65 x 75. First we perform 

the 3D pose tracking as pre-processing. Therefore our method 

can be viewed as an enhancement of 3D pose tracking. 

R A S L 

Figure 5.3 displays the output of RASL. This includes the origi-

nal images D after 3D pose tracking, aligned images DOT, low-

rank component A and sparse corruption E respectively. Fig-

ure 5.3b is decomposed into the low-rank matr ix (Figure 5.3c) 

and sparse matr ix (Figure 5.3d). Notice that Figure 5.3d cap-

tures the mouth part due to movement and also the eye part 丨 

for closed eyes. This validates our assumption that the moving 

mouth and bl inking eyes can be considered as sparse noise or 

corruption. Comparing Figure 5.3a and 5.3b, i t is obvious that 

RASL improves over the results of 3D pose tracking. 

M u l t i - R A S L 

Now divide the original 100 images into two batches, each w i th 

50 images. In order to apply our Mu l t i -RASL algorithm, we 

T̂hc video is collcctcd from http: //www.beet. tv/2008/09/microsof ts-crai .html. 

http://www.beet
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(a) Original images D (b) Aligned images Dot 
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(c) Low-rank coiiipoiient A ((1) Sparse corruption E 

Figure 5.3: O u t p u t of R A S L 
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choose the reference from one of RASL results from Figure 5.3b 

for a fair comparison. The chosen reference is shown in Figure 

5.4. The input is given in Figure 5.5. 

Figure 5.4: Reference image for M u l t i - R A S L 

We test the two situations, Mu l t i -RASL w i th 2 batches and 

10 batches. In each case, the amount of images in all batches is 

equally divided by spl i t t ing the temporal video sequence. Figure 

5.6a and 5.6b show the output for cases w i t h 2 batches and 

10 batches respectively. For comparisons, we put together the 

results of RASL in colour in Figure 5.6c. 

The above experiment shows Mu l t i -RASL algorithms can 

achieve comparable quali ty of alignment as RASL. Besides, we 

can fix the reference pose such that all the images in the dataset 

are aligned to i t . Careful inspection would discover that the 

alignment using 10 batches is not as good as that using 2 batches. 

Al though the difference is small, i t is st i l l noticeable. The more 

of the batches the more misalignment observes among different 

batches. 

M e m o r y a n d Speed 

Our experiment are carried out on a 2.66GHz Intel Core 2 Quad 

machine w i th 3.25GB R A M and 32-bit Operating System. 
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酵觀觀• 
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綠 l _ f _ f # 

睡隨I输I赫 

露 露 f i f i f I ’ 

餘 i f 浦 f 彌 
Figure 5.5: I npu t images 

A l g o r i t h m Approx imate T ime required 

R A S L ^ 

M u l t i - R A S L (2 batch) i m s 

M u l t i - R A S L (10 batch) 60s 

Table 5.1: Approx imate r i in i i i i ig t ime for 100 images in R A S L and M i i l t i -

R A S L experiment 
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The problem of l imi ted memory always exists due to physical 

constraints. RASL requires to store all N images in memory 

during alignment. I t may be practical for hundreds of images, 

but not for thousands or mill ions of images. In comparison, our 

extension algori thm requires to store only the number of images 

in each batch at one t ime, thus the use of RASL is possible. 

The speed of RASL depends much on the number of outer 

loop iterations as the inner loop algori thm for sparse and low 

rank decomposition is extremely slow because of SVD. For im-

ages w i th large misalignments, the t ime required would increase 

significantly as more outer loop iterations are needed. The ap-

proximate running t ime for the above test is shown in Table 

5.1. I t is found that the t ime require for more batches is less. 

I t may be due to our temporal spl i t t ing, so w i th in each batch, 

the face pose is similar. Hence i t is easy for all images in the 

batch to converge to one aligned pose, providing a fast speed of 

convergence. This reveals a tradeoff })etweeii quality and speed 

of Mu l t i -RASL. 

5.5.2 Large Dataset Test 

In this test, we use the video of Oval Office Address of the 

US President Obama'^. 5000 consecutive frames w i th dimension 

280 X 270 were chosen to be the sample dataset of our exper-

iment. This t ime we apply the off-the-shelf face detector [24 

as preprocessing. We set the size of face in canonical frame to 

be 60 X 65. We follow the same stopping criteria as in previous 

•'̂ Tlie v ideo is collected from h t t p : / /www. y o u t u b e . com/watch?v=Gh76oepKFc8. 
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experiment. 

Since the amount of images has exceeded the l imi t that RASL 

can handle, the only way to deal w i th this large-scale problem by 

sparse and low-rank decomposition is to use Mul t i -RASL. Three 

Mu l t i -RASL tests have been performed using different number 

of batches. 

Figure 5.7 shows the reference image. I t is chosen from output 

of RSAL on 100 uniform samples of the 5000 images. 

E Q 

Figure 5.7: Reference image for M u l t i - R A S L 

Quantitat ive Evaluation: Eyebrow Corners Positions 

In order to have a quanti tat ive evaluation, we have to select a 

fair feature on the face so as to obtain the statistics of errors for 

comparison. The eye corners have been chosen as the features 

i l l [47, 32]. However, in our dataset the eyes are not always 

open. I t is impossible to obtain the eye corners in our case. 

We have assumed the face is a flat plane, so i t is not suitable 

to use the nose position to evaluate the alignment as i t is defi-

nitely not on the plane. Besides, the mouth is moving causing 

(lifficiiltias in gett ing fair ieatums points for our test. Hence we 

decidc to get the eyebrow corners positions as our fair features 
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since the shapes of the eyebrows on 3D faces basically remain 

unchanged no matter what k ind of movement due to the eyes 

and mouths. Also, the eyebrows corners are hardly displaced 

even under different emotional expressions. 

To fair ly compare using distances in pixels, wc first go through 

a normalization process. The distance between left and right 

eyebrow corners are normalized to 50 pixels. Since all the face 

images are expected to align according to the reference, so we 

define the distance between the estimated eyebrow corners of 

the aligned face and the reference face to be the error. Table 

5.2 shows the statistics of the errors in eyebrow corners using 

the three approaches in our experiment. To make some sense to 

the numbers, we include also the statistics of the errors for the 

output of RSAL on 100 uniform samples of the 5000 images in 

Table 5.3. This t ime there is no specific reference for the 100 

samples, thus we calculate the error by measuring the distance 

from the estimated eyebrow corners to their statistical center. 

Result reveals that using fewer batches allows more accurate 

alignments. However, comparing w i th RASL for 100 images, the 

errors are st i l l far too large (more that one pixel). 

Qua l i t a t i v e Eva l u a t i o n 

To i l lustrate the effectiveness of Mu l t i -RASL, using just the eye-

brow corners is not enough. We provide in Figure 5.8 some of the 

alignment output using the three different Mul t i -RASL. We pick 

one frame from every 50 consecutive frames so that at least one 

image from each batch is included, w i th a tota l 100 frames. For 
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Left eyebrow Right eyebrow Average 

(a) 2.1690 3.6629 2.9160 

Mean error (b) 2.4742 3.7808 3.1275 

(c) 2.7513 3.8790 3.3152 

(a) 1.1367 1.7701 1.4534 

Standard error (b) 1.3352 1.8133 1.5743 

(c) 1.4223 1.8377 1.6300 

(a) 6.1304 8.2817 7.2061 

M a x i m u m error (b) 6.1320 8.9388 7.5354 

(c) 6.1345 8.9425 7.5535 

Tabic 5.2: Eyebrow corncrs comparison of M u l t i - R A S L w i t h (a) 25 batchcs, 

(b) 50 batchcs and (c) 100 batchcs. Here the distances arc measured f rom 

the est imated eyebrow corncrs on faces to tha t of reference. 

Left eyebrow Right eyebrow Average 

Mean error 1.5635 1.8973 1.7304 

Standard error 0.7698 0.8791 0.8245 

M a x i m u m error 3.9696 3.5957 3.7827 

Tabic 5.3: Eyebrow corncrs comparison of R A S L on 100 images. Here the 

distances arc measured f rom the estimated eyebrow corncrs to their ccntcr. 
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the three Mu l t i -RASL outputs, the eyebrow corners are marked 

in whi te for better comparison. The 25-batch approach gives the 

best alignment which is consistent w i t h the quanti tat ive evalu-

ation. 

Computat iona l Time 

Our experiment are carried out on a 2.66GHz Intel Core 2 Quad 

machine w i t h 3.25GB R A M and 32-bit Operating System. The 

approximate CPU t ime for the 5000 images dataset for different 

Mu l t i -RASL is given in Table 5.4. I t shows that the 100-batch 

approach runs the fastest. 

A l g o r i t h m Approx imate T ime required 

M u l t i - R A S L (25 batch) 17180s 

M u l t i - R A S L (50 batch) 10660s 

M u l t i - R A S L (100 batch) 6680s 

Table 5.4: Approx imate runn ing t ime for 5000 images in M u l t i - R A S L exper-

iment 

5.5.3 Conclusion 

Experiment results have shown that our Mu l t i -RASL algori thm 

gives a comparable alignment output as RASL. However, as seen 

in Figure 5.8, using more batches may cause a significant mis-

alignment across different batches. One reason may due to the 

inaccurate of our assumption that the face is the flat plane in 

3D space. This assumption is generally false and hence i t in-

troduces errors in the alignment. W i t h i n each batch, the error 

is relatively small and thus hardly noticeable. But for different 
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batches, since the alignments are independent, the alignment 

errors become significant. I t concludes that i t is wise to use as 

few batches as possible for a better alignment result. 

Unfortunately, using fewer batches usually lead to a longer 

running time. As shown in Table 5.1 and 5.4, there may be a 

tradeoff between the accuracy and speed. Therefore, in prac-

tice, the number of batches would depend on the condit ion and 

requirement of the specific task. 

5.6 Sensitivity analysis on selection of refer-
ences 

One important difference of Mu l t i -RASL from RASL is that we 

have to choose a reference. In our application of photo-realistic 

ta lk ing head, the frontal normal view is the most useful pose. 

Therefore, we would like to choose the best frontal normal view 

reference so that every face image can transform to that pose. 

However, one can only identify the frontal normal view qual-

i tat ively; i t is diff icult to pick the absolute normal view out. 

In this section, we would like to analyze the sensitivity in the 

performance upon different selection of references. Two tests 

have been carried out. First we choose consecutive frames in 

frontal normal view. Since the change in pose among consecu-

tive frames is small, we would expect the alignment should be 

nearly the same. We verify this in both qualitative and quan-

t i tat ive tests. In our second experiment, instead of choosing 

consccutivc frames, wc sclcct different rcfcrcnccs from the small 

set of RASL-aligned images where the images are expected to 
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be well-aligned. We discover that even if we choose the small 

set of images before RASL, wi thout knowing if i t is in frontal 

normal view, we can st i l l get an acceptable alignment output. 

The experiment data applied in our test is the same as that in 

Section 5.5.2. 5000 consecutive frames w i th dimension 280 x 270 

were chosen to be the sample. For the small set of RASL-aligned 

images, we select through uniform sampling: we pick an image 

out from every 50 image to form a small image set w i th 100 

frames. Their original head poses are not considered in the 

selection. Since we have found that less batches ensure better 

alignment, 25-batch Mu l t i -RASL is used in our analysis. 

5.6.1 References from consecutive frames 

We choose three consecutive frames w i th frontal normal view as 

references for our sensitivity analysis. They are shown in Figure 

5.9. Al though there is noticeable mouth movement among the 

three frames, the head movement remains small. The qualita-

tive comparison is presented in Figure 5.10. 100 images out of 

5000 were chosen for the comparison. I t is found that the align- ‘ 

merits using different references are almost the same. We further 

present the quanti tat ive result using average errors of eyebrow 

corner positions in Table 5.5. The difference is very small, show-

ing the alignment is insensitive to the choice of different frontal 

normal view references. 
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BBip^^^^^iSH HHHP̂ ^̂ ^̂ ^̂ ^̂ ^̂ mn 

• ^ g m K ^ S K i f l H 

R H P I i H i i l W I 
(a) 518tli frame (b) 519tli frame (c) 520tli frame 

Figure 5.9: Three consecutive refereiieces for our sensi t iv i ty analysis 

Lef t eyebrow Right eyebrow Average 

518th frame 0.9067 1.9103 1.4085 

519th frame 0.8748 1.8957 1.3853 

520th frame 0.9833 1.8872 1.4353 

Table 5.5: Mean error of eyebrow corner posit ions of 25-batcl i M u l t i - R A S L 

using three consecutive references. Here the distances are measured f rom the 

est imated eyebrow corners to their center. 
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5.6.2 References from RASL-aligned images 

Since i t is not always easy to find faces in frontal normal view 

from the original video sequence, we propose a method to handle 

this problem. Rather than directly choose the reference from 

the sequence, we first select a small set of frames from the video 

and then apply RASL to align them. The resulting images are 

expected to be aligned well. Empir ical results show that we can 

get an approximate frontal view from RASL provided that the 

video is taken in frontal view of the person. 

We select three images from the small set of 100 RASL-

aligned images, as shown in Figure 5.11, to be the reference. 

Their corresponding original images before alignment are shown 

in Figure 5.12. The quali tat ive result is presented in Figure 5.13. 

I t is found that the alignment is acceptable, although there are 

some small differences among the alignment using different ref-

erences. For comparison, the alignment results using the original 

image wi thout aligning w i t h RASL are provided in Figure 5.14 

w i t h references shown in Figure 5.12. In Figure 5.14, although 

the images are aligned to the reference, they are not in frontal 

normal pose. I t is found that our suggestion can achieve a better 

frontal normal view alignment than random selection from the 

original images. The eyebrow corner test results are shown in 

Table 5.6. I t is discovered that although the reference images 

are expected to be aligned to the same pose, the errors in the 

eyebrow corner positions can st i l l be very distinct. One of the 

reasons is that the small set RASL is not accurate enough and 

errors accumulated after two alignment processes. However, the 
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alignment results are st i l l acceptable for the case that we cannot 

choose a reference in the frontal normal view directly from the 

original video sequence. 

H F * " " " ! ! l l p i P P T ? ^ 

mmmMmm • • • 
If • H I R B I H I H 

(a) 51tli frame (b) lOltli frame (c) 401th frame 

Figure 5.11: Three references chosen f rom 100 RASL-al igned images 

H P I M I ^ V 
(a) 51tli frame (b) lOltli frame (c) 401tli frame 

Figure 5.12: The three chosen reference images before al igi i ir iei i t using R A S L 

5.7 Summary 

We have provided a complete explanation on how to apply sparse 

and low-rank decomposition algori thm for large-scale face align-

ment problem. Our algori thm is based on the latest advance-

ment of RASL. We extend RASL to Mu l i t -RASL in order to 
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N S H N t l l N H N M R M r o M P M S f N H H i f l b B F I ^ P H V ^ B H B M P H I M H N W M M 
(a) Original images (b) Using the 51tli frame as reference 

_ i i P i P M g g l g i p g p s i i 

(c) Using the 101 tli f m m e as reference • (d) Using the 401tli frame as reference 

Figure;厂).14: Aligimiciit results using three (liffeixnit refcnxnice without aligii-
inout, witli RASL 
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Left eyebrow Right eyebrow Average 

51th frame 1.9555 2.3331 2.1443 

101th frame 2.169 3.6629 2.9160 

401th frame 1.C941 2.0321 1.8631 

Tabic 5.6: Mean error of eyebrow corncr posit ions of 25-batch M u l t i - R A S L 

using three refcrcnccs f rom 100 RASL-a l igncd images. Here the distances arc 

measured f rom the est imated eyebrow corncrs to their ccntcr. 

tackle the large-scale problem. Through Mat lab simulation, i t 

is discovered that our proposed extension not only enables us 

to apply on large datasets, but also improves the speed and at 

the same t ime ensure the accuracy. In addit ion, we present the 

comparison of different Mu l t i -RASL approach, using different 

number of batches. In order to have more accurate alignment, 

we should use fewer batches. Unfortunately in most situations, 

the number of batches is lower-bounded by the machine. Thus 

the misalignment among the batches is impossible to solve using 

Mul t i -RASL. Moreover, Mu l t i -RASL is not capable in real-time 

videos. To deal w i th these l imitat ions, another sparse and low-

rank algori thm is introduced. Details wi l l be explained in the 

coming chapter. 



Chapter 6 

Extension of RASL for video: 
One-by-One Approach 

6.1 One-by-One Approach 

The main theme of this chapter is to propose an extension 

of RASL for video, using the one-by-one alignment algorithm. 

We suggest three choices of /i-based algori thm which are previ-

ously introduced in Chapter 3, including the /i-regulaized least 

squares, the /i-error, and the /i-regularized /i-error. Through 

several experiments wc verify the officacy of our method. I t at-

tains comparable quality to RASL while allowing fast and large-

scale alignment. The application of our alignment algori thm in 

photo-real talk ing head is published in a conference paper [47 . 

This section gives the motivat ion of our one-by-one approach. 

The theory and the algorithm wi l l also be introduced. 

9C 
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6.1.1 Motivation 

In Chapter 5, RASL and Mu l i t -RASL are introduced for face 

alignment in batch. However, batch alignment is not an effi-

cient method of video sequence since it is not able to exploit the 

property of video for enhancing its cfficicncy. Also i t is impos-

sible to directly extend RASL to the real-time case. Therefore, 

we propose the one-by-one approach, which seeks a way to ful ly 

uti l ize the power of sparse and low-rank alignment approach so 

that i t may be possible to tackle the real-time problem. 

Besides, our one-by-one approach provides a flexible alterna-

tive for alignment. Since the memory required for every image 

remains unchanged, even in a very l imited resources situation 

such as low memory, our algori thm can sti l l be applied. 

6.1.2 Algorithm 

The basic principle is to align the (n 十 l ) t h image using n well-

aligned images. Such aligned images can be viewed as a training 

set or basis, which can be prepared by using RASL. We wi l l show 

that in our experiment that it is sufficient to use a very small ri 

to align total N face images, i.e. n << N. 

Recall that the solution of RASL there is a low rank matr ix 

A*. The first step of our approach is to select n images from 

the video sequence arid align using RASL, producing a low rank 

solution Then we use it as a dictionary which acts as the 

basis to allow forming linear combination to approximate our 

(n + l ) t h image so that it is aligned w i th the n RASL-aligned 

images. Finally, we repeat this step to all the images in the 
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dataset, regardless of the size of dataset. 

Align n images with RASL 

In this step, the procedure is basically the same as described 

in Chapter 5.2. Apply ing RASL on the n images chosen from 

the dataset would give us the opt imal solutions r * , A*, E*. We 

form A e 脱爪 xranMi) whose columns consist of rank (A*) (out 

of n) independent columns of A*. I t acts as a dictionary for 

the aligned images, which wi l l be used in the next step. RASL 

extracts and stores all the important features of the aligned faces 

in A*. Therefore, we can use this set of occlusion-free images 

to be the basis. We would like our dictionary to cover as many 

features and variations as possible. 

Empir ical results show that uniformly-spaced selection rather 

than consecutive sampling can ensure the convergence of 

w i th fewer selected images. I t is reasonable since consecutive 

frames usually have similar features (e.g. the variations in il-

lumination), which do not provide sufficient variations to form 

the basis. 

In choosing the n input images, there is a tradeoff between 

quality of dict ionary and computational cost. Selecting more 

images (larger n) would probably lead to a better dictionary, 

however at the same time increases the speed of computation, 

mainly due to increase in size of dictionary. 
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Prom n to n + 1 

Here we are going to align an addit ional image w i th those n 

images already aligned by RASL. The principle of our method 

is to search for an opt imal transformation parameter of the 

(n + l ) t h image r^+i such that Ax forms the best approxima-

t ion of In+i 〇 r^+i- However, there can be different criteria for 

the quality of the approximation. We propose three different 

criteria which can be formulated into opt imizat ion problems. 

They are the /i-regulaized least squares, the / i-error, and the 

/i-regularized /i-error respectively. The details wi l l be discussed 

in Section 6.2. 

This step can be divided into two parts: outer loop and inner 

loop. The outer loop is the process of iterative linearization 

(shown in A lgor i thm 6.1). Inside the loop, there is an inner 

loop for the algori thm mentioned in the previous paragraph w i th 

split Bregman method which is fast and efficient. As we wi l l see 

in Section 6.3, if the in i t ia l misalignment is not too large, this 

i terat ion recovers the correct transformations t^^+i in an efficient 

manner. 

From n to N 

We apply the above step to all the remaining images. The A is 

kept unchanged. Therefore, the memory usage is independent of 

the number of images N in the dataset. Empirically, we obtain 

comparable results to RASL in a reasonable t ime for thousands 

of images. 
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A l g o r i t h m 6.1 (Ou t e r loop) 

I N P U T : Image I ^+ i G raSL solut ion in i t ia l t ransformat ion 

i l l affine group, weight //. 

W H I L E no t converged D O 

S tep 1: computc Jacobian matrices w.r . t . t ransformat ion: 

' ^ dC,\ ||/n+l °Cll2 J C = r„+I 

Step 2: warp and normalize the images: 

vec(ln+l O Tn+l) 
^ n + 1 〇 Tn+\ < 1 7 7 N ~ 

Step 3 ( inner loop) : solve the opt imizat ion so as to scarch for an opt imal 

t ransformat ion parameter of the (n + l ) t h image such that Ax forms the 

best approx imat ion of In+ i 〇 

S t e p 4: update t ransformat ion: 

E N D W H I L E 

O U T P U T : solut ion ] 
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6.2 Choices of Optimization 

We introduce three choices of optimization for the inner loop 
in Algor i thm 6.1. The algorithms follow the split Bregman ap-
proach described in Chapter 4. As we wi l l see, the computation 
is fast so it allows efficient alignment. 

6.2.1 /i-Regularized Least Squares 

First, we formulate the inner loop in Algor i thm 6.1 using the 

following /i-regularized least squares (L ILS) problem: 

1 ~ 2 
min — o Tri+1 — Ax + /x ||x||^ (6.1) 

+ l 2 2 

Here A is the dictionary we defined in Section 6.1. The goal 
of this optimization is to search for opt imal r^+i such that Ax 
forms the best approximation of /,i+i07""+i w i th the least number 
of columns of A. x is a vector w i th dimension rank [A*) which 
represents the coefficients of the linear combination by columns 
of Ax. [1 is the weight that trades off. the least square error and 
the sparsity of x. 

However, the above optimization 6.1 is rion-linear which is 
hard to solve. Similar to that in RASL, we manage to linearize 
the optimization wi th iterative linearization. We write /"十1 • 

Tn+i = Ia+\ o + ^ /n+1 • + 仏T.n+i, wliere J IS 

the Jacobian matr ix w i th respect to the affine transform 
Thus, the minimization (6.1) becomes 

1 2 
rnin - 〇 t•二+i + — Ax + “ \\x\\^ (6.2) 

+ i Z '2 
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which can easily be rewri t ten into the usual form of / i-LS: 

(6.3) 
y 乙 

r 1 � ] T 
where J^+i 二 /n+i • r^J+i, B ^ ^A - J J, y = x A r ^+ i , 

and C 二 1 0 . (6.2) can be solved by L I L S in A lgor i thm 

4.2. 

Since the linearization only holds locally, in order to find the 

minimal solution of (6.1), we have to repeat (6.2) about our 

current estimation of for many times unt i l i t converges. 

Empirically, wc find that / i -LS is more stable than the con-

ventional least squares (LS). LS has similar performance in the 

case when only Gaussian noise exists in the image In+i- How-

ever, even a small amount of non-Gaussian noise would generate 

many extra local minima in the objective function, leading to 

an incorrect opt imal solution. The addit ional /i-regularized term 

can act as a smoother, which eliminates the unwanted local min-

ima by penalizing the number of atoms used in the dictionary 

A to form the approximation. 

6.2.2 /i-Error 

Next, rather than using L ILS, we replace the objective function 

in (6.1) by an / i -norm minimization: 

rnin /„+1 o t奸 i — Ax (6.4) 

Again, using similar tr ick as in last subsection, we linearize the 

optimizat ion by lett ing I^+i 〇 Tn+i = 1 〇 + A t "十 i ) ^^ 
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In+1 or^+i + JArn+1, where J is the Jacobian matr ix w i th respect 

to the affine transform t > i + i . Thus, (6.4) becomes 
A 〜 

m i n / n + i o t:。+i + J A t v 什 i — A r ( 6 . 5 ) 
:C,ATn + 】 1 

I t can be easily converted into the /i-error form as (4.40): 

m i n ||e||i s.t. e — /jj+i — By (6.6) 
y 

where …=/n+i • B =入一 J , y = z. Ar^+i . 

As discussed in Chapter 3 Section 3.2, / i-error opt imizat ion 

is nearly identical to minimizing the sparse corruption in the 

test image. In our video of face, the mouth is continuously 

moving and the eyes are frequently bl inking. Since the eyes 

and mouth only covers a relatively small area of the face, and 

they are supposed to be at the same position on the face, i t is 

reasonable to consider the movement of the eyes and mouth as 

the sparse corruption in the images. This idea is consistent w i th 

that of RASL, where the sparse matr ix S representing the sparse 

difference between the face for align and the low-rank face. 

6.2.3 /i-Regularized /i-Error 

Now we combine the advantages of / i-regularizatioi i and /i-error 

to formulate the /i-regularized /i-error for solving our alignment 

problem as follows: 

min In+i o — Ax + ll i ' l l i (6.7) 
工,丁U+L 1 

Using the linearization tr ick, let 十i o r.^+i 二 o (T^^+i + 

Arn+i) ~ In+i o + where J is t l ie Jacobian ma-

t r ix w i th respect to the affiiie transforni (6.7) becomes a 
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linearized opt imizat ion problem: 

A � 

mil l o T „+ i + J A t v m - A r + / i | | ; r | | i (6.8) 
XATu+I 1 

By transforming it into the usual L l L l form: 

min||40 - 御 | | i + " | | C y | | i (6.9) 
y 

r ~ 1 r ] T 

where fj^+i = In+i • r^+i , B 二 入-J , y 二 x A r ^+ i . 

6.3 Experiments 
In this section we use the 5000-images dataset of Obama's speech 

in Section 5.5.2 again to perform the test of our one-by-one 

approach. The experiments are carried out in Matlab. The 

stopping criterion of outer loop is when | |A t奸 1II2 < 10—6 or 

number of iterations exceeds 300. For L ILS , the weight in 6.1 

is set to be 10—3, while for L l L l , // = 10—2. We choose n = 100 

samples uniformly to form our dictionary by performing RASL 

to align them. The ini t ia l transformation is taken to be identity 

for all frames. 
6.3.1 Evaluation for Different li Algorithms 

We verify the accuracy of our algori thm using both quantitative 

and qualitative evaluation. Similar to the experiment of RASL 

and Mu l t i -RASL in Chapter 5, we identify the eyebrow corners 

positions as fair features for quantitative comparisons of our 

proposed algorithms. 



CHAPTER 6. EXTENSION OF RASL FOR VIDEO： ONE-BY-ONE APPROACHm 

Q u a n t i t a t i v e Eva l u a t i o n 

I t is found that not all the frames achieve convergence wi th in 

300 iterations. This may due to the original orientation of the 

head in some frames is too extreme. The number of frames that 

unable to converge in 300 iterations is given in Table 6.1. In fact, 

the convergence depends on the in i t ia l condit ion as well as the 

complexity of the objective function. From Table 6.1 we discover 

that L I L S has the largest number of non-convergent frames, 

while L l L l has the least. This may reveal that the objective 

function of L I L S is not as good as L l L l for face alignment. 

A lgo r i t hm rion-convorgcnt frames 

L I L S 2 3 

l i error 11 

L l L l 8 

Tabic G.l: Number of frames tha t arc not converge w i t h i n 300 i terat ions 

Next the eyebrow corners test is considered. Same as in pre-

vious chapter, in order to eliminate the effect of scaling effect on 

our quanti tat ive comparison, we normalize the distance between 

the left and right eyebrow corners to be 50 pixels. We neglect the 

non-convergent frames. In last chapter, we have already given 

the statistics of errors for the 100 images dictionary in Table 

5.3. This t ime we do not have one specific reference, therefore 

we use the mean eyebrow corners positions of the 100 images 

i l l dict ionary as the reference for comparison. The statistics of 

errors in eyebrow corners are as shown in Table 6.2. It is found 

that the errors are approximately the same as that of RASL re-

sults for the 100 images, and smaller than that of Mu l t i -RASL 
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(comparing w i th Table 5.2). The alignment results for the three 

different algorithms are very similar in this case. 

Left eyebrow Right eyebrow Average 

^ 1.5176 1.8746 1.6961 

Mean error (b) 1.5078 1.8700 1.6889 

(c) 1.5030 1.8757 1.6894 

^ 0.7453 0.8367 0.7910 

Standard error (b) 0.7401 0.8297 0.7849 

(c) 0.7377 0.8305 0.7841 

(a) 4.5665 4.3926 4.4800 

Max imum error (b) 4.5678 4.3938 4.4808 

(c) 4.5666 4.3927 4.4797 

Tabic 6.2: Eyebrow corncrs comparison w i th (a) L I L S , (b) / i -crror and (c) 

L l L l . Here the distances arc measured from the estimated eyebrow corncrs 

on faccs to mean eyebrow corncrs positions. 

Qua l i t a t i ve Eva lua t i on 

To il lustrate the effectiveness of our one-by-one approadi, we 

provide also the alignment outputs using the three / i-algorithms 

for qualitative comparisons in Figure 6.1. The eyebrow corners 

are marked in white as reference. 

M e m o r y and Speed 

The problem of l imited memory always exists due to physical 

constraints. RASL requires to store all N images in memory 

during alignment. I t may be practical for hundreds of images, 

but not for thousands or millions of images. In comparison, 

our algori thm only have to store n + 1 frames in i i ieinoiy at a, 
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t ime, and n can be flexible depending on the dataset and the 

maximum memory size. 

The speed of RASL depends much on the number of outer 

loop iterations as the inner loop algori thm for sparse and low 

rank decomposition is extremely slow (because of Singular Value 

Decomposition). For images w i th large misalignments, the t ime 

required would increase significantly as more outer loop itera-

tions are needed. In contrast, we employ fast split Bregman 

algori thm in the inner loop of our algorithm. Assume we are 

given a dictionary w i th all necessary features captured wi th in, 

then the number of outer iterations are similar for each images, 

thus the overall computational t ime is linearly proport ional to 

the number of images N in the dataset. In above experiment, 

the approximate coinputat ioi i t ime for different / i-algorithms is 

as shown in Table 6.3. I t is found that -error is the fastest 

among the three. Unfortunately, i t is st i l l far from real-time 

speed. 

A l g o r i t h m App rox ima te T i m e required 

L I L S 34720s 

/ i - e r r o r 26980s 

L l L l 38530s 

Table G.3: App rox ima te i .mmi i ig t ime for 5000 images in one-by-oiie experi-

m(、iit using (liff(、i.(nit /】-algoi.itlims 

6.3.2 Conclusion 

Comparing w i th Mul t i -RASL, one-by-one approach attains a 

hotter aligii i i icnt i)crforinance for most of tl io images. However, 
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the average t ime per frame is longer than that of Mul t i -RASL. 

This may be caused by those non-convergent frames. Actually, 

90% of the frames can be aligned wi th in 50 iterations. Thus 

the running t ime can be much faster if the maximum number 

of iterations is l imi ted to a smaller number, for example, 100 

iterations. However, this risks an increase in number of non-

convergent frames which may lead to misalignment. Al though 

our one-by-one approach is not fast enough to achieve real-time 

speed, i t lays the foundation for efficient face alignment for video 

sequence. The improvement in processing power of computers 

nowadays would definitely allow real-time processing in future. 

Among the three / i-algorithms, L l L l gives the best perfor-

mance in terms of convergence. In theory, L I L S is not as robust 

to occlusion as /i-error and L l L l . In some cases where the eyes 

are bl inking, there wi l l be an elongation effect on faces. Our 

experiment also shows that L I L S it is not as cfficicnt as /i-error 

and L l L l . Therefore, for efficient and accurate face alignment, 

the /i-error based algorithms, including L l L l , are recommended. 

6.4 Exploiting Property of Video 

In this section, we demonstrate the use of video property to 

enhance our proposed algorithm. In a video sequence, there 

is usually a relation between consecutive frames. One relation 

in the face video of our application is that the inovenieiit of 

the head is slow and continuous. Therefore, the transfoni iat ioi i 

change is expected to be small between the frames. This leads 

to a way to increase the speed of convergence and eventually 
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lower the overall computational cost. 

Assume the previous frame is aligned appropriately, we use 

that transformation parameters r to be the in i t ia l transforma-

t ion parameters for the following frame since the change in trans-

formation parameters is expected to be small. This strategy is 

verified using the same example as in Section 6.3. The running 

t ime for each frame is about 2 seconds, which is aproximately 

two times faster than using a fixed in i t ia l condition. 

Unfortunately, this strategy has its disadvantage. I f the pre-

vious frame has not aligned properly, the next frame would tend 

to misalignment. Figure 6.2 shows the case where such mis-

alignment occurs. This shows the solution of the optimizat ion 

is sensitive to the in i t ia l condition. One way to prevent it to 

happen is to use the first in i t ia l transformation after perform a 

specific number of images, say every 50 images, to ensure the 

error would not be inherited by successive frames. 

6.5 Summary 

The one-by-one /i-based face alignment approach is proposed. 

The details are ful ly i l lustrated and explained. Three algorithms 

are tested, including L ILS, /i-error and L l L l . Both qualita-

tive and quanti tat ive evaluation shows that one-by-one approach 

outperforms batch Mu l t i -RASL approach in Chapter 5. More-

over, among our three / i-algorithms, L l L l performs the best. 

Therefore, for efficient and accurate large-scale face alignment, 

one-by-one L l L l is recommended. 
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Chapter 7 

Conclusion and Future Work 

In this thesis, the efficient and accurate face alignment approach 

is introduced, which is based on the recent advancement in 

sparse and low-rank opt imizat ion theory. The latest develop-

ment of sparse representations is reviewed and generalized. More-

over, the sparse representation techniques are extended to deal 

w i t h sparse corrupt ion problem, where /i-error is introduced 

based on / i -norm minimization. Extensive experiments have 

shown that our proposed /i-error approach is promising and ap-

plicable in various image processing problems such as face align-

ment. 

In addit ion, the algorithms for / i-error and its variants were 

derived using split Bregman algorithm. I t is proved that split 

Bregman approach is one of the fastest algori thm specialized 

for / i-problem. Furthermore, our experiment using surveillance 

videos illustrates the efficiency of our algorithms. 

A iming at solving the large-scale face alignment problem, two 

techniques have been proposed. The first one is named Mul t i -

RASL, which can be viewed as a direct extension of RASL. 

112 
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Original RASL is not capable in the large-scale case where the 

memory restrains its ability. Since RASL has been proven to 

achieve high precision alignment of images both in theory and 

in practice, our extension also ensures a reliable result. The 

tr ick of Mu l t i -RASL is to set a reference and divide the whole 

dataset into smaller batches. For each batch, we align all the 

images w i th in to the reference pose based on the ordinary RASL. 

By performing this process for all batches, all the face images 

can be aligned to the reference in theory. 

Al though Mu l t i -RASL provides a reliable result, i t st i l l has 

some weaknesses. First, if the number of batches increases, the 

misalignment among different batches becomes significant. An-

other disadvantage of Mu l t i -RASL is that if a few more new 

images are added to the dataset, the whole computat ion may-

have to start over again in order to prevent large misalignment 

for the newly added images. In contrast to the batch alignment 

in RASL, we introduce the one-by-one approach, which tries to 

prevent the weaknesses of Mu l t i -RASL. We modify the tricks of 

convex relaxation and iterative linearization in RASL to satisfy 

our requirement using / i -norm minimizat ion algorithms includ-

ing L ILS , /i-error and L l L l . Experiments have discovered that 

our one-by-orie approach outperforms the batch Mul t i -RASL. 

Besides, L l L l has shown the best performance in handling our 

face alignment task. 

In fact, our prel iminary result of using one-by-one L I L S has 

been published in [47], That work is collaborated w i th the 

speech group in Microsoft Research Asia (MSRA). There is a 

project of ta lk ing head in which accurate face alignment is a 
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crucial step, since even a small misalignment would cause the 

generated talk ing head unnatural. We have tested out our al-

gor i thm using real data for the talk ing head. I t improves over 

the t radi t ional method (3D pose tracking). However, due to the 

copyright issue, the results cannot be completely presented here. 

The investigation of better face alignment for the talking head 

is st i l l on-going. 

Here we list several possible directions of work in future based 

on our contr ibution, both in face alignment and also sparse and 

low-rank approach: 

1. We have developed the framework for efficient and accu-

rate face alignment, aimed at improving the conventional 

talk ing head technology. Dur ing the alignment, we obtain 

the affine transform parameters for each image. A question 

is raised: can we generalize a relation between the head 

movement w i th the transform parameters? The parame-

ters are somehow representing the 3-D orientations of the 

head. If we are able to find out the relationship in between, 

it is possible to generate natural head movement using the 

transformation parameters. That would lead to a huge im-

provement in talk ing head technology. 

2. The efficiency of our one-by-one approach depends greatly 

on the speed of / i -algori thm. The further development of 

faster / i-algorithms may allow more cfficicnt alignment and 

even achieve the real-time speed. Besides, our face align-

ment approach can be set as one of the benchmark for the 

/ i -norm minimizat ion algorithms. 
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3. We are dealing w i th video clips of faces, which is very com-

mon in nowadays technology such as instant messenger and 

video conferencing. The possibility of transplanting our al-

gor i thm to these applications is worth investigating. Be-

sides, i t may be able to combine w i th the technology of 

cell phones and develops apps for both entertainment and 

educational purposes. 

4. As mentioned in Chapter 3, there is some similarities be-

tween our proposed /i-error minimizat ion w i th the least ab-

solute deviation (LAD) technique in regression. L A D has 

been an old discipline when fast algori thm is not yet de-

veloped. Our derived fast algori thm of / i-error using split 

Bregman tr ick may be able to improve the tradi t ional L A D 

applications in speed and accuracy. Further investigations 

have to be conducted. 

5. We have generalized the essence of sparse and low-rank 

techniques and we have also seen the capabil ity of such tech-

niques in image processing. One possible direct application 

is in video segmentation. For example, we get a video clip 

f rom a movie, how to automatical ly identify and segment 

into different scene, and for each scene, is i t possible to ob-

ta in a key frame to conclude that scene? In our experiment 

using surveillance videos, we have seen that L l L l has the 

property to identify the correspondence of selected frame 

to which video. Also in one scene, the background remains 

unchanged while the camera may involve in a motion such 

as translation and rotation, as well as zooming in and out. 
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In fact, this is similar to our face alignment problem where 

the face may be translated, rotated and scaled up or down. 

Therefore, I believe similar techniques may be able to apply 

on video segmentation problems. 



Appendix A 

Appendix 

In this appendix, the derivation of solution for the simplest form 

of /i-regularized least squares problem is presented. 

Theorem A . l . Solution of the li-regularized least squares: 
A 2 

min \\x\\. + — ||x — u\\2 (A . l ) 
X 2 

is given by the shrinkage operator 

Xi = shrink{u” 1/A) (A.2) 

where Xi and u^ are the entries of x and u respectively. The 

shrinkage operator is defined as shrink{x, 7 ) = 商 . m a x (|x| — 7. 0). 

Proof. First we take the first derivative of the objective function 

w i th respect to x and set i t to be 0: 

0 = -f- x\ . + - ( x - uf{x - u) (A.3) 
dx [ 2 _ 

= X . + A(x - u) (A.4) 
dx 

Notice that A.3 is separable, i.e. entries are independent w i th 

each other. Let us consider the entry, 

0 二 + X{x, - u,) (A.5) 
dx 
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To deal w i th the absolute value we separate into different 

cases: When > 0, 

二？ i ? , —与〉 0 ( A . 6 ) 
A 

When .T, < 0, 

X^=U^ + - < 0 (A.7) 
A 

Then we obtain the solution of Xi by 
f 

\ui \ — 1/A for Ui > l / A 

X,^ I - + 1/A for u, < - 1 / A (A.8) 

0 for — 1/A < iH < 1/A 
\ 

Finally, A.8 can be generalized using the shrinkage operator 

= shrmk{u” 1/A) (A.9) 

• 
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