Fast Graph Laplacian Regularized Kernel Learning Via Semidefinite-Quadratic-Linear Programming

WU, Xiaoming

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

Master of Philosophy
in
Information Engineering

The Chinese University of Hong Kong
Scptember 2011

Abstract

Abstract

of thesis entitled: Fast Graph Laplacian Regularized Kernel Learning Via Semidefinite-Quadratic-Linear Programming

Submitted by WU, Xiaoming
for the degree of Master of Philosophy at The Chinese University of Hong Kong in September 2011

Kernel learning is a powerful framework for nonlinear data modeling. Using the kernel trick, a number of problems have been formulated as semidefinite programs (SDPs). These include Maximum Variance Unfolding (MVU) (Weinberger et al., 2004) in nonlinear dimensionality reduction, and Pairwise Constraint Propagation (PCP) (Li et al., 2008) in constrained clustering. Although in theory SDPs can be efficiently solved in polynomial time, the high computational complexity incurred in numerically processing the huge linear matrix inequality (LMI) constraints has rendered the SDP approach unscalable. In this thesis, we show that a large class of kernel learning problems which previously were formulated as SDPs, can be reformulated as semidefinite-quadratic-linear programs (SQLPs). The SQLP reformulation only contains a small positive semidefinite constraint, a second-order cone constraint and a number of linear constraints. Compared to the large LMI constraint in previous approaches, these constraints are much easier to process numerically, and the gain in speedup over previous approaches is at
least of the order $m^{2.5}$, where m is the matrix dimension. Experimental results are also presented to show the superb computational efficiency of our approach.

摘要

核學習是模擬非線性數據的強大框架。在機器學習領域中，通過應用核技巧，很多問題都能旑化歸成半正定優化的問題。其中包括應用在非線性降維的最大方差展開方法，以及應用在約束的聚類問題中的兩兩約束傳導方法。儘管在理論上半正定優化問題能夠在多項式時間内有效的解決，在實際中，處理一個大的線性矩陣約束帶來的數值運算複雜度通常使得半正定優化不可行。在這篇論文中，我們發現，現有的很多核學習問題能夠被重新化歸為半正定－二次一線性優化問題。重新化歸後的優化問題只包含了一個小的半正定約束，一個二次約束，以及一些線性約束。相比之前化歸方法中的大的線性矩陣約束，這些約束在數值計算上要容易得多，由此而帶來的加速達到了 m 的 2.5 次方，其中 m 是方陣的長度。我們的䆩驗結果展示了我們的方法在計算上的高效性。

Acknowledgement

I would like to acknowledge the inspirational instruction and guidance of my two supervisors, Prof. Shuo-Yen Robert Li and Prof. Anthony Man-Cho So. I thank them for providing a vibrating academic training environment, for insightful and patient discussions on my research, and for generous support in my academic pursuits. I am greatly indebted to them.

I would also like to acknowledge the support and assistance given me by the Information Engineering Department of the Chinese University of Hong Kong. I have been very lucky to study here.

Finally, I would like to thank my family and friends. There is no doubt in my mind that without their continued support and counsel I could not have completed this process.

Contents

Abstract i
Acknowledgement iv
1 Introduction 1
2 Preliminaries 4
2.1 Kernel Learning Theory 4
2.1.1 Positive Semidefinite Kernel 4
2.1.2 The Reproducing Kernel Map 6
2.1.3 Kernel Tricks 7
2.2 Spectral Graph Theory 8
2.2.1 Graph Laplacian 8
2.2.2 Eigenvectors of Graph Laplacian 9
2.3 Convex Optimization 10
2.3.1 From Linear to Conic Programming 11
2.3.2 Second-Order Cone Programming 12
2.3.3 Semidefinite Programming 12
3 Fast Graph Laplacian Regularized Kernel Learning 14
3.1 The Problems 14
3.1.1 MVU 16
3.1.2 PCP 17
3.1.3 Low-Rank Approximation: from SDP to QS- DP 18
3.2 Previous Approach: from QSDP to SDP 20
3.3 Our Formulation: from QSDP to SQLP 21
3.4 Experimental Results 23
3.4.1 The Results 25
4 Conclusion 28
Bibliography 30

List of Figures

3.1 Swiss Roll. (a) The true manifold. (b) A set of 2000 points sampled from the manifold. 24
3.2 Curves on computational cost for Swiss Roll: Solu- tion Time vs. Problem Scale. 27
3.3 Curves on computational cost for USPS: Solution Time vs. Problem Scale. 27

List of Tables

3.1 Computational Results on Swiss Roll (Time: sec- ond; \# Iter: number of iterations) 26
3.2 Computational Results on USPS (Time: second; \# Iter: number of iterations) 26

Chapter 1

Introduction

Kernel methods provide a principled framework for nonlinear data modeling, where the inference in the input space can be transferred intactly to any feature space by simply treating the associated kernel as inner products, or more generally, as nonlinear mappings on the data (Schölkopf \& Smola, 2002b). Some well-known kernel methods include support vector machines (SVMs) (Vapnik, 2000), kernel principal component analysis (kernel PCA) (Schölkopf et al., 1998), and kernel k-means (Shawe-Taylor \& Cristianini, 2004). Naturally, an important issue in kernel methods is kernel design. Indeed, the performance of a kernel method depends crucially on the kernel used, where different choices of kernels of ten lead to quite different results. Therefore, substantial efforts have been made to design appropriate kernels for the problems at hand. For instance, in (Chapelle \& Vapnik, 2000), parametric kernel functions are proposed, where the focus is on model selection (Chapelle \& Vapnik, 2000). The modeling capability of parametric kernels, however, is limited. A more natural idea is to learn specialized nonparametric k ernels for specific problems. For instance, in cases where only inner products of the input data are involved, kernel learning is equivalent to the learning of a kernel matrix. This is the main focus of recent
kernel methods.
Currently, many different kernel learning frameworks have been proposed. These include spectral kernel learning (Li \& Liu, 2009), multiple kernel learning (Lanckriet et al., 2004), and the Bregman divergence-based kernel learning (Kulis et al., 2009). Typically, a kernel learning framework consists of two main components: the problem formulation in terms of the kernel matrix, and an optimization procedure for finding the kernel matrix that has certain desirable properties. As seen in, e.g., the Maximum Variance Unfolding (MVU) method (Weinberger et al., 2004) for nonlinear dimensionality reduction (see (So, 2007) for related discussion) and Pairwise Constraint Propagation (PCP) (Li et al., 2008) for constrained clustering, a nice feature of such a framework is that the problem formulation often becomes straightforward. Thus, the major challenge in optimization-based kernel learning lies in the second component, where the key is to find an efficient procedure to obtain a positive semidefinite kernel matrix that satisfies certain properties.

Using the kernel trick, most kernel learning problems (Graepel, 2002; Weinberger et al., 2004; Globerson \& Roweis, 2007; Song et al., 2008; Li et al., 2008) can naturally be formulated as semidefinite programs (SDPs). Although in theory SDPs can be efficiently solved, the high computational complexity has rendered the S DP approach unscalable. An effective and widely used heuristic for speedup is to perform low-rank kernel approximation and matrix factorization (Weinberger et al., 2005; Weinberger et al., 2007; Li et al., 2009). In this paper, we investigate the possibility of further speedup by studying a class of convex quadratic semidefinite programs (QSDPs). These QSDPs arise in many contexts, such as graph Laplacian regularized low-rank kernel learning in nonlinear dimensionality reduction (Sha \& Saul, 2005; Weinberger et al.,

2007; Globerson \& Roweis, 2007; Song et al., 2008; Singer, 2008) and constrained clustering (Li et al., 2009). In the aforementioned papers, a QSDP is reformulated as an SDP with $O\left(m^{2}\right)$ variables and a linear matrix inequality of size $O\left(m^{2}\right) \times O\left(m^{2}\right)$. Such a reformulation is highly inefficient and unscalable, as it has an order of m^{9} time complexity (Ben-Tal \& Nemirovski, 2001, Lecture 6). In this paper, we propose a novel reformulation that exploits the structure of the QSDP and leads to a semidefinite-quadratic-linear program (SQLP) that can be solved by the standard software SDPT3 (Tütüncü et al., 2003). Such a reformulation has the advantage that it only has one positive semidefinite constraint on a matrix of size $m \times m$, one second-order cone constraint of size $O\left(m^{2}\right)$ and a number of linear constraints on $O\left(m^{2}\right)$ variables. As a result, our reformulation is much easier to process numerically. Moreover, a simple complexity analysis shows that the gain in speedup over previous approaches is at least of the order $m^{2.5}$. Experimental results show that our formulation is indeed far more efficient than previous ones.

End of chapter.

Chapter 2

Preliminaries

In this chapter we introduce the relevant technical tools that will be used for the development of our work in this thesis. Just as indicated by our thesis title, it mainly includes concepts and knowledge from three categories: kernel learning theory, spectral graph theory, and convex optimization.

2.1 Kernel Learning Theory

In the past two decades, kernel learning has been one of the most active fields in machine learning. Kernel theory provides a principled and powerful framework for nonlinear data modeling. To facilitate reading, we list some basic concepts and well-known results of kernel theory in the sequel. We refer interested readers to the excellent book Learning with Kernels (Schölkopf \& Smola, 2002a).

2.1.1 Positive Semidefinite Kernel

Definition 1 (Positive Semidefinite Matrix). A $n \times n$ matrix A is called positive semidefinite if it satisfies $\mathrm{x}^{T} A \mathrm{x} \geq 0, \forall \mathrm{x} \in \mathbb{R}^{n}$. If the inequality holds strictly, then A is called positive definite.

In what follows, unless stated otherwise, the symmetric property is included as part of definition for positive semidefinite and positive definite matrix.

Definition 2 (Gram Matrix). Given a function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ and a set of finite objects $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{m}\right\} \subset \mathcal{X}$, the $m \times m$ matrix $K=\left[k_{i j}\right]$ with

$$
\begin{equation*}
k_{i j}:=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \tag{2.1}
\end{equation*}
$$

is called the Gram matrix of k with respect to $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}\right\}$.
Definition 3 (Positive Semidefinite Kernel). Let \mathcal{X} be a nonempty set. A symmetric function $k: \mathcal{X} \times \mathcal{X} \longrightarrow \mathbb{R}$, is called a positive semidefinite kernel, iffor any finite subset $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{m}\right\} \subset \mathcal{X}$, the Gram matrix of k with respect to $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{m}\right\}$ is positive semidefinite.

In the sequel, we refer to a positive semidefinite kernel simply as a kernel. It can be immediately seen by definition that any dot product is a kernel. Therefore, kernels can be regarded as generalized dot products. However, the linearity of dot products does not carry over to general kernels. But another property does, which is the Cauchy-Schwarz inequality.

Theorem 1 (Cauchy-Schwarz Inequality for Kernels (Schölkopf \& Smola, 2002a)). For any kernel k, the following inequality holds

$$
\begin{equation*}
|k(\mathbf{x}, \mathbf{y})|^{2} \leq k(\mathbf{x}, \mathbf{x}) \cdot k(\mathbf{y}, \mathbf{y}), \forall \mathbf{x}, \mathbf{y} \in \mathcal{X} \tag{2.2}
\end{equation*}
$$

Proof. Since the 2×2 Gram matrix $K=\left[k_{i j}\right], k_{i j}=k\left(x_{i}, x_{j}\right)$ is positive semidefinite, its determinant is nonnegative. Therefore, $0 \leq$ $k_{11} k_{22}-k_{12} k_{21}=k_{11} k_{22}-\left|k_{12}\right|^{2}$.

2.1.2 The Reproducing Kernel Map

Since kernel can be regarded as generalized dot product, a question arise naturally: given a kernel k and a nonempty set \mathcal{X}, can we construct a space \mathcal{H} and a feature mapping $\Phi: \mathcal{X} \longrightarrow \mathcal{H}$, such that

$$
\begin{equation*}
k(\mathbf{x}, \mathbf{y})=<\Phi(\mathbf{x}), \Phi(\mathbf{y})>_{\mathcal{H}}, \forall \mathbf{x}, \mathbf{y} \in \mathcal{X} \tag{2.3}
\end{equation*}
$$

where $<\cdot, \cdot>_{\mathcal{H}}$ denotes the inner product defined in \mathcal{H} ? The answer is positive. We proceed as follows.

First, we define a map

$$
\begin{align*}
\Phi: \mathcal{X} & \longrightarrow R^{\mathcal{X}} \tag{2.4}\\
\quad \mathrm{x} & \longmapsto k(\mathrm{x}, \cdot) \tag{2.5}
\end{align*}
$$

where $R^{\mathcal{X}}:=\{f: \mathcal{X} \longrightarrow R\}$ denotes the space of functions mapping \mathcal{X} into R. Now we have mapped each object in \mathcal{X} into a function on the domain \mathcal{X}. We then turn the image of Φ into a vector space by taking linear combinations of the images, i.e., $f=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}_{i}, \cdot\right)$. We denote the vector space as \mathcal{H}.

In the next step, we define a dot product on \mathcal{H} :

$$
\begin{equation*}
<f, g>_{\mathcal{H}}=\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} k\left(\mathbf{x}_{i}, \mathbf{y}_{j}\right) \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
f, g \in \mathcal{H}, f=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}_{i}, \cdot\right), \text { and } g=\sum_{j=1}^{m} \beta_{j} k\left(\mathbf{y}_{j}, \cdot \cdot\right) \tag{2.7}
\end{equation*}
$$

It can be verified that the dot product is valid, i.e., a strictly positive definite bilinear form, and

$$
<\Phi(\mathbf{x}), \Phi(\mathbf{y})>_{\mathcal{H}}=<k(\mathbf{x}, \cdot), k(\mathbf{y}, \cdot)>_{\mathcal{H}}=k(\mathbf{x}, \mathbf{y}) .
$$

Due to the reproducing property, the kernel k is called the reproducing kernel of \mathcal{H}, \mathcal{H} (after completion) is called the Reproducing Kernel Hilbert Space with k as its reproducing kernel, and the map Φ is called the reproducing kernel map.

2.1.3 Kernel Tricks

For any kernel k, there exists a Hilbert space \mathcal{H} and a feature mapping $\phi: \mathcal{X} \longrightarrow \mathcal{H}$, such that

$$
\begin{equation*}
k(\mathbf{x}, \mathbf{y})=<\Phi(\mathbf{x}), \Phi(\mathbf{y})>_{\mathcal{H}}, \forall \mathbf{x}, \mathbf{y} \in \mathcal{X} \tag{2.8}
\end{equation*}
$$

where $<\cdot, \cdot>_{\mathcal{H}}$ denotes the inner product in \mathcal{H}. Note that the Reproducing Kernel Hilbert Space and reproducing kernel map may not be the only feature space and feature map associated with a given kernel. See polynomial kernels for examples.

The benefits of kernel learning framework include:
1 The ability of nonlinear data modeling: by choosing kernels, or equivalently, Φ, we impose a nonlinear transformation of \mathcal{X} into a new feature space \mathcal{H}. The new feature space may be more suitable for a given problem. For examples, the data which is linearly non-separable in the input space may become linearly separable in the feature space.

2 Kernel Trick(Schölkopf \& Smola, 2002a): If a problems is formulated in terms of a kernel k, we can replace k with another kernel \bar{k}, i.e., we can work in another feature space without explicit mapping to that space. This is highly desirable since the new feature space can be high dimensional and the mapping can be computationally intractable. Again see polynomial kernels for examples (Schölkopf \& Smola, 2002a).

2.2 Spectral Graph Theory

In mathematics, spectral graph theory is the study of properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated to the graph, such as its adjacency matrix or Laplacian matrix. In this section, we introduce the graph Laplacian and its eigenvectors. Again, we refer interested readers to the excellent book Spectral Graph Theory (Chung, 1997).

2.2.1 Graph Laplacian

Let $\mathcal{G}=\{V, W\}$ be an undirected graph, where $V=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}$ is the set of nodes and $W=\left[w_{i j}\right]_{n \times n}$ is the weight matrix with entry $w_{i j}$ denoting the similarity between objects \mathbf{x}_{i} and \mathbf{x}_{j}. Since W is assumed to be symmetric and non-negative, it is also called the similarity matrix or affinity matrix.

Definition 4 (Graph Laplacian). The Laplacian of graph \mathcal{G} is defined as

$$
\begin{equation*}
L=D-W, \tag{2.9}
\end{equation*}
$$

where $D=\operatorname{diag}\left(d_{i i}\right)$ is a diagonal matrix with $d_{i i}=\sum_{j} w_{i j}$.
Definition 5 (Normalized Graph Laplacian). The normalized Laplacian of graph \mathcal{G} is defined as

$$
\begin{equation*}
\bar{L}=D^{-1 / 2} L D^{-1 / 2}, \tag{2.10}
\end{equation*}
$$

where $D^{-1 / 2}$ denotes the inverse of the matrix squared root $D^{1 / 2}$ of D, i.e., $D^{-1 / 2} D^{1 / 2}=I, D^{1 / 2} D^{1 / 2}=D$.

Theorem 2. Both Laplacians L and \bar{L} are symmetric and positive semidefinite.

Proof. The first property comes from the symmetry of W. The latter property can be verified from the definition. Note that for any vector $\mathbf{f}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)^{T}$, we have

$$
\begin{align*}
\mathbf{f}^{T} L \mathbf{f} & =\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2} \geq 0, \tag{2.11}\\
\mathbf{f}^{T} \bar{L} \mathbf{f} & =\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(\frac{f_{i}}{\sqrt{d_{i i}}}-\frac{f_{j}}{\sqrt{d_{j j}}}\right)^{2} \geq 0, \tag{2.12}
\end{align*}
$$

where the inequalities follow from $w_{i j}$ being non-negative.
The differences between L and \bar{L}, i.e., the effect of normalization, is beyond the scope of this thesis. Readers are referred to (Chung, 1997)(Von Luxburg et al., 2005)(Johnson \& Zhang, 2007) for indepth analysis.

2.2.2 Eigenvectors of Graph Laplacian

The eigenvectors of Graph Laplacian are of particular interests, since they can be viewed as smooth functions on graph. The eigenvectors of Graph Laplacian are widely used in spectral clustering and spectral embedding (Von Luxburg, 2007).

A function $\mathrm{f}: V \rightarrow \mathbb{R}$ is called smooth over the graph if it maps close nodes to similar values, and distant nodes to different values. To measure the smoothness of \mathbf{f}, we can exploit eq. (2.11) and eq. (2.12) and define

$$
\begin{equation*}
\mathcal{S}: \mathbf{f} \rightarrow \mathbb{R}, \quad \mathcal{S}(\mathbf{f})=\mathbf{f}^{T} L \mathbf{f} \tag{2.13}
\end{equation*}
$$

\mathcal{S} can be used to measure the smoothness of a function on the graph, because it penalizes large variations of f on close nodes. Note that we can also replace L by \bar{L}.

Now let us investigate the smoothness of the eigenvectors of L. Let $\left(\lambda_{i}, \mathbf{v}_{i}\right), i=1,2, \ldots, n$, be the eigenvalues and eigenvectors of L, where $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ and $\left\|\mathbf{v}_{i}\right\|=1$. Then we have

$$
\begin{equation*}
\mathcal{S}\left(\mathbf{v}_{i}\right)=\mathbf{v}_{i}^{T} L \mathbf{v}_{\mathbf{i}}=\lambda_{i} . \tag{2.14}
\end{equation*}
$$

This implies that the smaller the eigenvalue, the smoother the associated eigenvector.

A non-trivial smooth function actually encodes some cluster information of the graph, and a set of independent smooth functions can well capture the whole cluster structure of the graph. For these reasons, the first few eigenvectors of Laplacian are used in spectral clustering and embedding. As we will see in next Chapter, they can also be used to approximate a low rank kernel matrix.

2.3 Convex Optimization

In many problems, the kernel learning task only involves learning the kernel on the input data, so the kernel learning can reduce to learn a kernel matrix. Many learning problems of this category can be formulated as semidefinite programs, which is a class of convex optimization. In this chapter, we briefly introduce three most important convex programs: linear programming (LP), second-order cone programming (SOCP) and semidefinite programming (SDP). The contents introduced are covered in the excellent books Lectures on Modern Convex Optimization (Ben-Tal \& Nemirovski, 2001) and Convex Optimization (Boyd \& Vandenberghe, 2004).

A mathematical optimization problem has the form

$$
\begin{align*}
& \operatorname{minimize} f_{0}(\mathbf{x}) \tag{2.15}\\
& \text { subject to } f_{i}(\mathbf{x}) \leq b_{i}, \quad i=1,2, \ldots, m \tag{2.16}
\end{align*}
$$

Here, $\mathrm{x} \in \mathbb{R}^{n}$ is the optimization variable of the problem, the function $f_{0}(\mathbf{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the objective function, the functions $f_{i}(\mathbf{x}): \mathbb{R}^{n} \rightarrow$ $\mathbb{R}, i=1,2, \ldots, m$, are the constraint functions, and $b_{i}, i=1,2, \ldots, m$, are the bounds for the constraints.

An optimization problem is convex if $f_{0}, f_{1}, \ldots, f_{m}$ are all convex, which means

$$
\begin{equation*}
f_{i}(\alpha \mathbf{x}+\beta \mathbf{y}) \leq \alpha f_{i}(\mathbf{x})+\beta f_{i}(\mathbf{y}), \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}, \tag{2.17}
\end{equation*}
$$

for $\alpha, \beta \in \mathbb{R}$ with $\alpha+\beta=1$ and $\alpha, \beta \geq 0$. Convex optimization is a class of mathematical optimization that can be solved exactly and efficiently (Boyd \& Vandenberghe, 2004).

2.3.1 From Linear to Conic Programming

Linear programming is the simplest convex optimization, which admits the following form:

$$
\begin{equation*}
\min _{\mathbf{x}}\left\{\mathbf{c}^{\top} \mathbf{x} \mid A \mathbf{x} \geq \mathbf{b}\right\} \tag{2.18}
\end{equation*}
$$

where $\mathbf{c} \in \mathbb{R}^{n}, \mathbf{x} \in \mathbb{R}^{n}, \mathbf{b} \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}$. The analytic structure of LP gives rise to a number of theoretical results, forms the basis of the computational techniques that make LP scale very well. Therefore, in order to solve nonlinear problems, one wishes to extend the techniques of LP to other forms of optimization problems.

Now let \mathbf{K} be a cone in the space \mathbf{E}, K is convex, pointed, closed and with a nonempty interior, $\mathbf{c} \in \mathbb{R}^{n}, \mathrm{x} \in \mathbb{R}^{n}, \mathrm{~b} \in \mathrm{E}$, a linear mapping $\mathrm{x} \mapsto A \mathrm{x}: \mathbb{R}^{n} \rightarrow \mathbf{E}$, consider the optimization problem

$$
\begin{equation*}
\min _{\mathbf{x}}\left\{\mathbf{c}^{\top} \mathbf{x} \mid A \mathbf{x} \geq_{\mathbf{K}} \mathbf{b}\right\}, \tag{2.19}
\end{equation*}
$$

Where $A \mathrm{x} \geq_{\mathrm{K}} \mathbf{b}$ implies $A \mathrm{x}-\mathbf{b} \in \mathbf{K}$ We refer to (2.19) as a conic programming associated with the cone \mathbf{K}. The difference
between (2.18) and (2.19) is that LP deals with the nonnegative orthant, i.e., $\mathbf{E}=\mathbb{R}^{m}, \mathbf{K}=\mathbb{R}_{+}^{m}$. The good news is that although \mathbb{R}_{+}^{m} is a cone simple enough to be processed, it is not the only one. There are two other nice conic problems SOCP and SDP, which inherit many nice properties of LP.

2.3.2 Second-Order Cone Programming

The second-order (or Lorentz) cone is defined as:

$$
\begin{equation*}
\mathbf{L}^{m}=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{m-1}\right)^{\top} \in \mathbb{R}^{m}: x_{m} \geq \sqrt{\sum_{i=1}^{m-1} x_{i}^{2}}\right\} \tag{2.20}
\end{equation*}
$$

and the SOCP is defined as

$$
\begin{equation*}
\min _{\mathbf{x}}\left\{\mathbf{c}^{\top} \mathbf{x} \mid A \mathbf{x} \geq_{\mathbf{L}^{m}} \mathbf{b}\right\} \tag{2.21}
\end{equation*}
$$

where $\mathbf{c} \in \mathbb{R}^{n}, \mathbf{x} \in \mathbb{R}^{n}, \mathbf{b} \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}$. If we partition A and b as

$$
[A ; \mathbf{b}]=\left(\begin{array}{cc}
D & \mathbf{d} \tag{2.22}\\
\mathbf{p}^{\top} & q
\end{array}\right)
$$

where $D \in \mathbb{R}^{(m-1) \times n}, \mathbf{p} \in \mathbb{R}^{n}, \mathbf{d} \in \mathbb{R}^{m-1}$, and q is a scalar, we can write (2.21) explicitly as

$$
\begin{equation*}
\min _{\mathbf{x}}\left\{\mathbf{c}^{\top} \mathbf{x}:\|D \mathbf{x}-\mathbf{d}\|_{2} \leq \mathbf{p}^{\top} \mathbf{x}-q\right\} \tag{2.23}
\end{equation*}
$$

2.3.3 Semidefinite Programming

Let \mathbb{S}^{m} denote the space of all $m \times m$ symmetric matrices. The semidefinite cone \mathbb{S}_{+}^{m} is the cone in the space $E=\mathbb{S}^{m}$ and consists of all positive semidefinite matrices. The SDP is defined as

$$
\begin{equation*}
\min _{\mathbf{x}}\left\{\mathbf{c}^{\top} \mathbf{x} \mid \mathcal{A} \mathbf{x} \geq_{\mathbb{S}_{+}^{n}} \mathbf{b}\right\} \tag{2.24}
\end{equation*}
$$

where $\mathbf{c} \in \mathbb{R}^{n}, \mathbf{x} \in \mathbb{R}^{n}, \mathbf{b} \in \mathbb{S}^{m}, \mathcal{A}: \mathbb{R}^{n} \rightarrow \mathbb{S}^{m}, \mathcal{A} \mathbf{x}=\sum_{j=1}^{n} x_{j} A_{j}$, $A_{j} \in \mathbb{S}^{m}$. (2.24) is called the primal form of SDP. Let us replace $\geq \mathbb{S}_{+}^{m}$ with \succeq, the constraint

$$
\begin{equation*}
\sum_{j=1}^{n} x_{j} A_{j}-\mathbf{b} \succeq 0 \tag{2.25}
\end{equation*}
$$

is usually referred to as Linear Matrix Inequality (LMI).

Schur Complement

Suppose $X \in \mathbb{S}^{n}$ has a partition

$$
X=\left(\begin{array}{cc}
A & B \tag{2.26}\\
B^{T} & C
\end{array}\right)
$$

where $A \in \mathbb{S}^{m}, m<n$. If A is nonsingular, then the matrix

$$
\begin{equation*}
S=C-B^{T} A^{-1} B \tag{2.27}
\end{equation*}
$$

is called the Schur complement of A in X.
Theorem 3 ((Boyd \& Vandenberghe, 2004)). $X \succeq 0$ if and only if $A \succeq 0$ and $S \succeq 0$.

Theorem 4 ((Boyd \& Vandenberghe, 2004)). Given $A \succeq 0$, then $X \succeq 0$ if and only $S \succeq 0$.

Of these three conic programs, SOCP is more general than LP, and SDP is more general than SOCP. While SDP is the most general, it is also the most difficult to solve.

End of chapter.

Chapter 3

Fast Graph Laplacian Regularized Kernel Learning

The rest of the paper is organized as follows. We review related kernel learning problems in Section 3.1 and present our formulation in Section 3.3. Experiment results are reported in Section 3.4. Section 4 concludes the paper.

3.1 The Problems

In this section, we briefly review some kernel learning problems that arise in dimensionality reduction and constrained clustering. They include MVU (Weinberger et al., 2004), Colored MVU (Song et al., 2008), (Singer, 2008), Pairwise Semidefinite Embedding (PSDE) (Globerson \& Roweis, 2007), and PCP (Li et al., 2008). MVU maximizes the variance of the embedding while preserving local distances of the input data. Colored MVU generalizes MVU with side information such as class labels. PSDE derives an embedding that strictly respects known similarities, in the sense that objects known to be similar are always closer in the embedding than those known to be dissimilar. PCP is designed for constrained clustering, which embeds the data on the unit hypersphere such that two objects that
are known to be from the same cluster are embedded to the same point, while two objects that are known to be from different clusters are embedded orthogonally. In particular, PCP seeks the smoothest mapping for such an embedding, thereby propagating pairwise constraints.

Initially, each of the above problems is formulated as an SDP, whose kernel matrix K is of size $n \times n$, where n denotes the number of objects. Since such an SDP is computationally expensive, one can try to reduce the problem size by using graph Laplacian regularization. In other words, one takes $K=Q Y Q^{T}$, where $Q \in \mathbb{R}^{n \times m}$ consists of the smoothest m eigenvectors of the graph Laplacian ($m \ll n$), and Y is of size $m \times m$ (Sha \& Saul, 2005; Weinberger et al., 2007; Song et al., 2008; Globerson \& Roweis, 2007; Singer, 2008; Li et al., 2009). The learning of K is then reduced to the learning of Y, leading to a quadratic semidefinite program (QSDP) that is similar to a standard quadratic program (QP), except that the feasible set of a QSDP resides in the positive semidefinite cone as well. The intuition behind this low-rank kernel approximation is that a kernel matrix of the form $K=Q Y Q^{T}$ actually, to some degree, preserves the proximity of objects in the feature space. Detailed justification can be found in the related work mentioned above.

Next, we use MVU and PCP as representatives to demonstrate how the SDP formulations emerge from nonlinear dimensionality reduction and constrained clustering.

3.1.1 MVU

The SDP of MVU (Weinberger et al., 2004) is as follows:

$$
\begin{align*}
\max _{K} & \operatorname{tr}(K)=I \bullet K \tag{3.1}\\
\text { s.t. } & \sum_{i, j=1}^{n} k_{i j}=0, \tag{3.2}\\
& k_{i i}+k_{j j}-2 k_{i j}=d_{i j}^{2}, \forall(i, j) \in \mathcal{N}, \tag{3.3}\\
& K \succeq 0, \tag{3.4}
\end{align*}
$$

where $K=\left(k_{i j}\right)$ denotes the kernel matrix to be learned, I denotes the identity matrix, $\operatorname{tr}(\cdot)$ denotes the trace of a square matrix, • denotes the element-wise dot product between matrices, $d_{i j}$ denotes the Euclidean distance between the i-th and j-th objects, and \mathcal{N} denotes the set of neighbor pairs, whose distances are to be preserved in the embedding.

The constraint in (3.2) centers the embedding at the origin, thus removing the translation freedom. The constraints in (3.3) preserve local distances. The constraint $K \succeq 0$ in (3.4) specifies that K must be symmetric and positive semidefinite, which is necessary since K is taken as the inner product matrix of the embedding. Note that given the constraint in (3.2), the variance of the embedding is characterized by $\mathcal{V}(K)=\frac{1}{2 n} \sum_{i, j}\left(k_{i i}+k_{j j}-2 k_{i j}\right)=\operatorname{tr}(K)$ (Weinberger et al., 2004) (see related discussion in (So, 2007), Chapter 4). Thus, the SDP in (3.1-3.4) maximizes the variance of the embedding while keeping local distances unchanged. After K is obtained, kernel PCA is applied to K to compute the low-dimensional embedding.

3.1.2 PCP

The SDP of PCP (Li et al., 2008) is:

$$
\begin{align*}
\min _{K} & \bar{L} \bullet K \tag{3.5}\\
\text { s.t. } & k_{i i}=1, i=1,2, \ldots, n, \tag{3.6}\\
& k_{i j}=1, \forall(i, j) \in \mathcal{M}, \tag{3.7}\\
& k_{i j}=0, \forall(i, j) \in \mathcal{C}, \tag{3.8}\\
& K \succeq 0 \tag{3.9}
\end{align*}
$$

where \bar{L} denotes the normalized graph Laplacian, \mathcal{M} denotes the set of object pairs that are known to be from the same cluster, and \mathcal{C} denotes those that are known to be from different clusters.

The constraints in (3.6) map the objects to the unit hypersphere. The constraints in (3.7) map two objects that are known to be from the same cluster to the same vector. The constraints in (3.8) map two objects that are known to be from different clusters to vectors that are orthogonal. Let $\mathcal{X}=\left\{\mathbf{x}_{i}\right\}_{i=1}^{n}$ be the data set, \mathcal{F} be the feature space, and $\phi: \mathcal{X} \rightarrow \mathcal{F}$ be the associated feature map of K. Then, the degree of smoothness of ϕ on the data graph can be captured by (Zhou et al., 2004):

$$
\begin{equation*}
\mathcal{S}(\phi)=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left\|\frac{\phi\left(\mathrm{x}_{i}\right)}{\sqrt{d_{i i}}}-\frac{\phi\left(\mathbf{x}_{j}\right)}{\sqrt{d_{j j}}}\right\|_{\mathcal{F}}^{2}=\bar{L} \bullet K, \tag{3.10}
\end{equation*}
$$

where $w_{i j}$ is the similarity of \mathbf{x}_{i} and $\mathbf{x}_{j}, d_{i i}=\sum_{j=1}^{n} w_{i j}$, and $\|\cdot\|_{\mathcal{F}}$ is the distance metric in \mathcal{F}. The smaller the value $\mathcal{S}(\phi)$, the smoother is the feature map ϕ. Thus, the SDP in (3.5-3.9) seeks the smoothest feature map that embeds the data on the unit hypersphere and at the same time respects the pairwise constraints. After K is solved, kernel k-means is then applied to K to obtain the clusters.

3.1.3 Low-Rank Approximation: from SDP to QSDP

The SDPs in MVU and PCP are difficult to solve efficiently because their computational complexity scales at least cubically in the size of the matrix variable and the number of constraints (Borchers, 1999). A useful heuristic is to use low-rank kernel approximation, which is motivated by the observation that the degree of freedom in the data is often much smaller than the number of parameters in a fully nonparametric kernel matrix K. For instance, it may be equal to or slightly larger than the intrinsic dimension of the data manifold (for dimensionality reduction) or the number of clusters (for clustering). Another more specific observation is that it is often desirable to have nearby objects mapped to nearby points, as is done in MVU or PCP.

Based on these observations, instead of learning a fully nonparametric K, one learns a K of the form $K=Q Y Q^{T}$, where Q and Y are of sizes $n \times m$ and $m \times m$, respectively, where $m \ll n$. The matrix Q should be smooth in the sense that nearby objects in the input space are mapped to nearby points (the i-th row of Q is taken as a new representation of \mathbf{x}_{i}). Q is computed prior to the learning of K. In this way, the learning of a kernel matrix K is reduced to the learning of a much smaller Y, subject to the constraint that $Y \succeq 0$. This idea is used in (Weinberger et al., 2007) and (Li et al., 2009) to speed up MVU and PCP, respectively, and is also adopted in Colored MVU (Song et al., 2008) and PSDE (Globerson \& Roweis, 2007) for efficient computation.

The choice of Q can be different for MVU and PCP. In (Weinberger et al., 2007), $Q=\left(\mathbf{v}_{2}, \ldots, \mathbf{v}_{m+1}\right)$, where $\left\{\mathbf{v}_{i}\right\}$ are the eigenvectors of the graph Laplacian. In (Li et al., 2009), $Q=\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right)$, where $\left\{\mathbf{u}_{i}\right\}$ are the eigenvectors of the normalized graph Laplacian. Since such Q 's are obtained from graph Laplacians, we call the
learning of K of the form $K=Q Y Q^{T}$ the Graph Laplacian Regularized Kernel Learning problem, and denote the methods in (Weinberger et al., 2007) and (Li et al., 2009) by RegMVU and RegPCP, respectively.

With $K=Q Y Q^{T}$, RegMVU and RegPCP become:

$$
\text { RegMVU : } \max _{Y \succeq 0} \operatorname{tr}(Y)-\nu \sum_{(i, j) \in \mathcal{N}}\left(\left(Q Y Q^{T}\right)_{i i}-2\left(Q Y Q^{T}\right)_{i j}+\left(Q Y Q^{T}\right)_{j, j}-\right.
$$

$$
\begin{equation*}
\text { RegPCP : } \min _{Y \succeq 0} \sum_{\left(i, j, t_{i j}\right) \in \mathcal{S}}\left(\left(Q Y Q^{T}\right)_{i j}-t_{i j}\right)^{2}, \tag{3.11}
\end{equation*}
$$

where $\nu>0$ is a regularization parameter and $\mathcal{S}=\left\{\left(i, j, t_{i j}\right) \mid(i, j) \in\right.$ $\mathcal{M} \cup \mathcal{C}, t_{i j}=1$ if $(i, j) \in \mathcal{M}, t_{i j}=0$ if $\left.(i, j) \in \mathcal{C}\right\} \cup\left\{\left(i, j, t_{i j}\right) \mid i=\right.$ $\left.j, i \in\{1, \cdots, n\}, t_{i j}=1\right\}$. With some algebraic manipulations, both RegMVU and RegPCP can be succinctly rewritten in the unified form:

$$
\begin{align*}
& \min _{\mathbf{y}} \mathbf{y}^{T} A \mathbf{y}+\mathbf{b}^{T} \mathbf{y} \tag{3.13}\\
& \text { s.t. } Y \succeq 0, \tag{3.14}
\end{align*}
$$

where $\mathbf{y}=\operatorname{vec}(Y) \in \mathbb{R}^{m^{2}}$ denotes the vector obtained by concatenating all the columns of Y, and $A \succeq 0$ (Weinberger et al., 2007; Li et al., 2009). Note that this problem is convex since both the objective function and the feasible set are convex.

Problem (3.13-3.14) is an instance of the so-called convex quadratic semidefinite program (QSDP), where the objective is a quadratic function in the matrix variable Y. Note that similar QSDPs arise in Colored MVU, PSDE, Conformal Eigenmaps (Sha \& Saul, 2005), Locally Rigid Embedding (Singer, 2008), and Kernel Matrix Completion (Graepel, 2002). Before we present our approach for tackling the QSDP (3.13-3.14), let us briefly review existing approaches in the literature.

3.2 Previous Approach: from QSDP to SDP

Currently, a typical approach for tackling a QSDP is to use the Schur complement (Boyd \& Vandenberghe, 2004) to rewrite it as an SDP (Sha \& Saul, 2005; Weinberger et al., 2007; Li et al., 2009; Song et al., 2008; Globerson \& Roweis, 2007; Singer, 2008; Graepel, 2002), and then solve it using an SDP solver such as CSDP ${ }^{1}$ (Borchers, 1999) or SDPT3 2 (Toh et al., 2006). In this paper, we call this approach the Schur Complement Based SDP (SCSDP) formulation. For the QSDP in (3.13-3.14), the equivalent SDP takes the form:

$$
\begin{align*}
& \min _{\mathbf{y}, \nu} \nu+\mathbf{b}^{T} \mathbf{y} \tag{3.15}\\
& \text { s.t. } Y \succeq 0 \text { and }\left[\begin{array}{cc}
I_{m^{2}} & A^{\frac{1}{2}} \mathbf{y} \\
\left(A^{\frac{1}{2}} \mathbf{y}\right)^{T} & \nu
\end{array}\right] \succeq 0, \tag{3.16}
\end{align*}
$$

where $A^{\frac{1}{2}}$ is the matrix square root of $A, I_{m^{2}}$ is the identity matrix of size $m^{2} \times m^{2}$, and ν is a slack variable serving as an upper bound of $\mathrm{y}^{T} A \mathrm{y}$. The second semidefinite cone constraint is equivalent to $\left(A^{\frac{1}{2}} \mathbf{y}\right)^{T}\left(A^{\frac{1}{2}} \mathbf{y}\right) \leq \nu$ by the Schur complement.

Although the SDP in (3.15-3.16) has only $m(m+1) / 2+1$ variables, it has two semidefinite cone constraints, of sizes $m \times m$ and $\left(m^{2}+1\right) \times\left(m^{2}+1\right)$, respectively. Such an SDP not only scales poorly, but is also difficult to process numerically. Indeed, by considering Problem (3.15-3.16) as an SDP in the standard dual form, the number of iterations required by standard interior-point algorithms is of the order m, and the total number of arithmetic operations required is of the order m^{9} (Ben-Tal \& Nemirovski, 2001, Lecture 6). In practice, it takes only a few seconds to solve the aforementioned

[^0]SDP when $m=10$, but can take more than 1 day when $m=40$ (see Section 3.4 for details). Thus, it is not surprising that m is set to a very small value in the related methods-for example, $m=10$ in (Weinberger et al., 2007) and $m=15$ in (Li et al., 2009). However, as noted by the authors in (Weinberger et al., 2007), a larger m does lead to better performance. In (Li et al., 2009), the authors suggest that m should be larger than the number of clusters.

Is this formulation from QSDP to SDP the best we can have? The answer is no. In the next section, we present a novel formulation that leads to a semidefinite-quadratic-linear program (SQLP), which is much more efficient and scalable than the one above. For instance, it takes about 15 seconds when $m=30,2$ minutes when $m=40$, and 1 hour when $m=100$, as reported in Section 3.4.

3.3 Our Formulation: from QSDP to SQLP

In this section, we formulate the QSDP in (3.13-3.14) as an SQLP. Though our focus here is on the QSDP in (3.13-3.14), we should point out that our method applies to any convex QSDP.

Recall that the size of A is $m^{2} \times m^{2}$. Let r be the rank of A. With Cholesky factorization, we can obtain an $r \times m^{2}$ matrix B such that $A=B^{T} B$, as A is symmetric positive semidefinite and of rank r (Golub \& Loan, 1996). Now, let $\mathrm{z}=B \mathbf{y}$. Then, the QSDP in (3.13-3.14) is equivalent to:

$$
\begin{gather*}
\min _{\mathbf{y}, \mathbf{z}, \mu} \mu+\mathbf{b}^{T} \mathbf{y} \tag{3.17}\\
\text { s.t. } \mathbf{z}=B \mathbf{y}, \tag{3.18}\\
\mathbf{z}^{T} \mathbf{z} \leq \mu, \tag{3.19}\\
Y \succeq 0 . \tag{3.20}
\end{gather*}
$$

Next, we show that the constraint in (3.19) is equivalent to a secondorder cone constraint. Let \mathcal{K}_{n} be the second-order cone of dimension n, i.e.,

$$
\mathcal{K}_{n}=\left\{\left(x_{0} ; \mathbf{x}\right) \in \mathbb{R}^{n}: x_{0} \geq\|\mathbf{x}\|\right\}
$$

where $\|\cdot\|$ denotes the standard Euclidean norm. Let $\mathbf{u}=\left(\frac{1+\mu}{2}, \frac{1-\mu}{2}, \mathbf{z}^{T}\right)^{T}$. Then, the following holds.

Theorem 5. $\mathbf{z}^{T} \mathbf{Z} \leq \mu$ if and only if $\mathbf{u} \in \mathcal{K}_{r+2}$.
Proof. Note that $\mathbf{u} \in \mathbb{R}^{r+2}$, since $\mathbf{z} \in \mathbb{R}^{r}$. Also, note that $\mu=$ $\left(\frac{1+\mu}{2}\right)^{2}-\left(\frac{1-\mu}{2}\right)^{2}$. If $\mathbf{z}^{T} \mathbf{z} \leq \mu$, then $\left(\frac{1+\mu}{2}\right)^{2}-\left(\frac{1-\mu}{2}\right)^{2}=\mu \geq \mathbf{z}^{T} \mathbf{z}$, which means that $\frac{1+\mu}{2} \geq\left\|\left(\frac{1-\mu}{2}, \mathbf{z}^{T}\right)^{T}\right\|$. In particular, we have $\mathbf{u} \in \mathcal{K}_{r+2}$. Conversely, if $\mathbf{u} \in \mathcal{K}_{r+2}$, then $\left(\frac{1+\mu}{2}\right)^{2} \geq\left(\frac{1-\mu}{2}\right)^{2}+\mathbf{z}^{T} \mathbf{z}$, thus implying $\mathbf{z}^{T} \mathbf{z} \leq \mu$.

Let \mathbf{e}_{i} (where $i=1,2, \ldots, r+2$) be the i-th basis vector, and let $C=\left(\mathbf{0}_{r \times 2}, I_{r \times r}\right)$. Then, we have $\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right)^{T} \mathbf{u}=\mu,\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)^{T} \mathbf{u}=1$, and $\mathbf{z}=C \mathbf{u}$. Hence, by Theorem 5, the problem in (3.17-3.20) is equivalent to:

$$
\begin{gather*}
\min _{\mathbf{y}, \mathbf{u}}\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right)^{T} \mathbf{u}+\mathbf{b}^{T} \mathbf{y} \tag{3.21}\\
\text { s.t. } \tag{3.22}\\
\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)^{T} \mathbf{u}=1, \tag{3.23}\\
B \mathbf{y}-C \mathbf{u}=\mathbf{0}, \tag{3.24}\\
\mathbf{u} \in \mathcal{K}_{r+2}, \tag{3.25}\\
Y \succeq 0
\end{gather*}
$$

which is an instance of the SQLP problem (Tütüncü et al., 2003). Note that in this formulation, we have traded the semidefinite cone constraint of size $\left(m^{2}+1\right) \times\left(m^{2}+1\right)$ in (3.16) with one second-order cone constraint of size $r+2$ and $r+1$ linear constraints. As it turns out, such a formulation is much easier to process numerically and
can be solved much more efficiently. Indeed, using standard interiorpoint algorithms, the number of iterations required is of the order \sqrt{m} (Ben-Tal \& Nemirovski, 2001, Lecture 6), and the total number of arithmetic operations required is of the order $m^{6.5}$ (Tütüncü et al., 2003). This compares very favorably with the m^{9} arithmetic complexity of the SCSDP approach, and our experimental results indicate that the speedup in computation is quite substantial. Moreover, in contrast with the SCSDP formulation, which does not take advantage of the low rank structure of A, our formulation does take advantage of such a structure.

3.4 Experimental Results

In this section, we perform several experiments to demonstrate the viability of our SQLP formulation and its superior computational performance. Since both the SQLP formulation and the previous SCSDP formulation can be solved by standard softwares to a satisfying gap tolerance, the focus in this comparison is not on the accuracy aspect but on the computational efficiency aspect.

We set the relative gap tolerance for both algorithms to be 1e-08. We use SDPT3 (Toh et al., 2006; Tütüncü et al., 2003) to solve the SQLP. We follow (Weinberger et al., 2007; Li et al., 2009) and use CSDP 6.0.1 (Borchers, 1999) to solve the SCSDP. All experiments are conducted in Matlab 7.6.0(R2008a) on a PC with 2.5 GHz CPU and 4GB RAM.

Two benchmark databases, Swiss Roll ${ }^{3}$ and USPS ${ }^{4}$ are used in our experiments. Swiss Roll (Figure 3.1(a)) is a standard manifold model used for manifold learning and nonlinear dimensionality

[^1]

Figure 3.1: Swiss Roll. (a) The true manifold. (b) A set of 2000 points sampled from the manifold.
reduction. In the experiments, we use the data set shown in Figure 3.1 (b), which consists of 2000 points sampled from the Swiss Roll manifold. USPS is a handwritten digits database widely used for clustering and classification. It contains images of handwritten digits from 0 to 9 of size 16×16, and has 7291 training examples and 2007 test examples. In the experiments, we use a subset of USPS with 2000 images, containing the first 200 examples of each digit from 0-9 in the training data. The feature to represent each image is a vector formed by concatenating all the columns of the image intensities. In the sequel, we shall refer to the two subsets used in the experiments simply as Swiss Roll and USPS.

The Swiss Roll (resp. USPS) is used to derive the QSDP in RegMVU (resp. RegPCP). For RegMVU, the 4 NN graph is used, i.e., $w_{i j}=1$ if \mathbf{x}_{i} is within the 4 NN of \mathbf{x}_{j} or vice versa, and $w_{i j}=0$ otherwise. We verified that the 4 NN graph derived from our Swiss Roll data is connected. For RegPCP, we construct the graph following the approach suggested in (Li et al., 2009). Specifically, we have $w_{i j}=\exp \left(-d_{i j}^{2} /\left(2 \sigma^{2}\right)\right)$ if \mathbf{x}_{i} is within 20 NN of \mathbf{x}_{j} or vice versa, and $w_{i j}=0$ otherwise. Here, σ is the averaged distance from each object to its 20 -th nearest neighbor. For the pairwise constraints used in RegPCP, we randomly generate 20 similarity constraints for
each class, and 20 dissimilarity constraints for every two classes, yielding a total of 1100 constraints. For each data set, m ranges over $\{10,15,20,25,30,35,40,50,60,80,100\}$. In summary, for each data set, 11 QSDPs are formed. Each QSDP gives rise to one SQLP and one SCSDP. Therefore, for each data set, 11 SQLPs and 11 SCSDPs are derived.

3.4.1 The Results

The computational results of the programs are shown in Tables 3.1 and 3.2. For each program, we report the total computation time, the number of iterations needed to achieve the required tolerance, and the average time per iteration in solving the program. A dash (-) in the box indicates that the corresponding program takes too much time to solve. We choose to stop the program if it fails to converge within 1 day. This happens for the SCSDP with $m=40$ on both data sets.

From the tables, we see that solving an SQLP is consistently much more faster than solving an SCSDP. To see the scalability, we plot the solution time (Time) against the problem size (m) in Figure 3.3. It can be seen that the solution time of the SCSDP grows much faster than that of the SQLP. This demonstrates the superiority of our proposed approach.

We also note that the per-iteration computational costs of SCSDP and SQLP are drastically different. Indeed, for the same problem size m, it takes much less time per iteration for the SQLP than that for the SCSDP. This is not very surprising, as the SQLP formulation takes advantage of the low rank structure of the data matrix A.

End of chapter.

CHAPTER 3. FAST GRAPH LAPLACIAN REGULARIZED KERNEL LEARNING26

Table 3.1: Computational Results on Swiss Roll (Time: second; \# Iter: number of iterations)

	SCSDP				SQLP			
m	Time	\# Iter	Time per Iter	Time	\# Iter	Time per Iter	$\operatorname{rank}(A)$	
10	3.84	29	0.13	0.96	32	0.03	64	
15	60.36	30	2.01	1.75	31	0.06	153	
20	557.79	32	17.43	4.48	35	0.13	264	
25	2821.76	34	82.99	7.84	37	0.21	403	
30	13039.30	37	352.41	13.39	35	0.38	537	
35	38559.50	33	1168.50	29.74	35	0.85	670	
40	>1 day	-	-	74.01	35	2.12	852	
50	-	-	-	213.26	35	6.09	1152	
60	-	-	-	467.90	35	13.37	1451	
80	-	-	-	1729.65	39	44.35	2062	
100	-	-	-	3988.31	36	110.79	2623	

Table 3.2: Computational Results on USPS (Time: second; \# Iter: number of iterations)

	SCSDP				SQLP			
m	Time	\# Iter	Time per Iter	Time	\# Iter	Time per Iter	$\operatorname{rank}(A)$	
10	2.84	21	0.14	0.47	16	0.03	100	
15	42.96	22	1.95	1.26	17	0.07	225	
20	461.38	27	17.09	3.35	17	0.20	400	
25	2572.72	31	82.99	5.97	14	0.43	625	
30	10576.01	30	352.53	15.72	19	0.83	900	
35	35173.60	30	1172.50	44.53	17	2.62	1225	
40	>1 day	-	-	133.58	20	6.68	1600	
50	-	-	-	362.24	16	22.64	2379	
60	-	-	-	936.58	19	49.29	2938	
80	-	-	-	1784.12	17	104.95	3112	
100	-	-	-	2900.44	17	170.61	3111	

Figure 3.2: Curves on computational cost for Swiss Roll: Solution Time vs. Problem Scale.

Figure 3.3: Curves on computational cost for USPS: Solution Time vs. Problem Scale.

Chapter 4

Conclusion

We have studied a class of convex optimization programs called convex Quadratic Semidefinite Programs (QSDPs), which arise naturally from graph Laplacian regularized kernel learning (Sha \& Saul, 2005; Weinberger et al., 2007; Li et al., 2009; Song et al., 2008; Globerson \& Roweis, 2007; Singer, 2008). A QSDP is similar to a QP, except that it is subject to a semidefinite cone constraint as well. To tackle the QSDP, one typically uses the Schur complement to rewrite it as an SDP (SCSDP), thus resulting in a large linear matrix inequality constraint. In this paper, we argue that this formulation is not computationally optimal and have proposed a novel formulation that leads to a semidefinite-quadratic-linear program (SQLP). Our formulation introduces one positive semidefinite constraint, one second-order cone constraint and a set of linear constraints. This should be contrasted with the two large semidefinite cone constraints in the SCSDP. Our complexity analysis and experimental results have shown that the proposed SQLP formulation scales far better than the SCSDP formulation.

Although we have made significant progress in speeding up a class of kernel learning problem, there are some issues need to be addressed. First, the SQLP formulation of QSDP is still not fast
enough, say, when $m>60$. Efforts are made in optimization community to exploit the sparsity of A and design faster interior point algorithms (Toh et al., 2007) (Toh, 2008). Another issue is to diagonalize Q, this is also very time consuming when the size of the problem is large. The reported experimental results in our work does not include the computation time of computing eigenvectors of Q.

The publication of this work is (Wu et al., 2009).

Bibliography

Ben-Tal, A., \& Nemirovski, A. (2001). Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. MPS-SIAM Series on Optimization. Philadelphia, Pennsylvania: Society for Industrial and Applied Mathematics.

Borchers, B. (1999). CSDP, a C Library for Semidefinite Programming. Optimization Methods and Software, 11/12, 613-623.

Boyd, S., \& Vandenberghe, L. (2004). Convex Optimization. Cambridge: Cambridge University Press. Available online at http://www.stanford.edu/~boyd/cvxbook/.

Chapelle, O., \& Vapnik, V. (2000). Model Selection for Support Vector Machines. In S. A. Solla, T. K. Leen and K.-R. Müller (Eds.), Advances in Neural Information Processing Systems 12: Proceedings of the 1999 Conference, 230-236. Cambridge, Massachusetts: The MIT Press.

Chung, F. (1997). Spectral graph theory. American Mathematical Society.

Globerson, A., \& Roweis, S. (2007). Visualizing Pairwise Similarity via Semidefinite Programming. Proceedings of the 11th International Conference on Artificial Intelligence and Statistics (pp. 139-146).

Golub, G. H., \& Loan, C. F. V. (1996). Matrix Computations. Baltimore, Maryland: The Johns Hopkins University Press. Third edition.

Graepel, T. (2002). Kernel Matrix Completion by Semidefinite Programming. Proceedings of the 12th International Conference on Artificial Neural Networks (pp. 694-699). Springer-Verlag.

Johnson, R., \& Zhang, T. (2007). On the effectiveness of laplacian normalization for graph semi-supervised learning. Journal of Machine Learning Research, 8, 1489-1517.

Kulis, B., Sustik, M. A., \& Dhillon, I. S. (2009). Low-Rank Kernel Learning with Bregman Matrix Divergences. The Journal of Machine Learning Research, 10, 341-376.

Lanckriet, G. R. G., Cristianini, N., Bartlett, P., El Ghaoui, L., \& Jordan, M. I. (2004). Learning the Kernel Matrix with Semidefinite Programming. The Journal of Machine Learning Research, 5, 27-72.

Li, Z., \& Liu, J. (2009). Constrained Clustering by Spectral Kernel Learning. To appear in the Proceedings of the 12th IEEE International Conference on Computer Vision.

Li, Z., Liu, J., \& Tang, X. (2008). Pairwise Constraint Propagation by Semidefinite Programming for Semi-Supervised Classification. Proceedings of the 25th International Conference on Machine Learning (pp. 576-583).

Li, Z., Liu, J., \& Tang, X. (2009). Constrained Clustering via Spectral Regularization. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2009 (pp. 421-428).

Schölkopf, B., \& Smola, A. (2002a). Learning with kernels. The MIT Press.

Schölkopf, B., \& Smola, A. J. (2002b). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, Massachusetts: The MIT Press.

Schölkopf, B., Smola, A. J., \& Müller, K.-R. (1998). Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation, 10, 1299-1319.

Sha, F., \& Saul, L. K. (2005). Analysis and Extension of Spectral Methods for Nonlinear Dimensionality Reduction. Proceedings of the 22nd International Conference on Machine Learning (pp. 784-791).

Shawe-Taylor, J., \& Cristianini, N. (2004). Kernel Methods for Pattern Analysis. Cambridge: Cambridge University Press.
Singer, A. (2008). A Remark on Global Positioning from Local Distances. Proceedings of the National Academy of Sciences, 105, 9507-9511.

So, A. M.-C. (2007). A Semidefinite Programming Approach to the Graph Realization Problem: Theory, Applications and Extensions. Doctoral dissertation, Stanford University.

Song, L., Smola, A., Borgwardt, K., \& Gretton, A. (2008). Colored Maximum Variance Unfolding. In J. C. Platt, D. Koller, Y. Singer and S. Roweis (Eds.), Advances in Neural Information Processing Systems 20: Proceedings of the 2007 Conference, 1385-1392. Cambridge, Massachusetts: The MIT Press.

Toh, K. (2008). An inexact primal-dual path following algorithm for convex quadratic sdp. Mathematical Programming, 112, 221-254.

Toh, K., Tütüncü, R., \& Todd, M. (2007). Inexact primal-dual pathfollowing algorithms for a special class of convex quadratic sdp and related problems. Pac. J. Optim, 3, 135-164.

Toh, K. C., Tütüncü, R. H., \& Todd, M. J. (2006). On the Implementation and Usage of SDPT3 - A MATLAB Software Package for Semidefinite-Quadratic-Linear Programming, Version 4.0. User's Guide.

Tütüncü, R. H., Toh, K. C., \& Todd, M. J. (2003). Solving Semidefinite-Quadratic-Linear Programs using SDPT3. Mathematical Programming, 95, 189-217.

Vapnik, V. N. (2000). The Nature of Statistical Learning Theo$r y$. Statistics for Engineering and Information Science. New York: Springer-Verlag. Second edition.

Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17, 395-416.

Von Luxburg, U., Bousquet, O., \& Belkin, M. (2005). Limits of spectral clustering. Advances in Neural Information Processing Systems (NIPS), 17, 857-864.

Weinberger, K. Q., Packer, B. D., \& Saul, L. K. (2005). Nonlinear Dimensionality Reduction by Semidefinite Programming and Kernel Matrix Factorization. Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics (pp. 381-388).

Weinberger, K. Q., Sha, F., \& Saul, L. K. (2004). Learning a Kernel Matrix for Nonlinear Dimensionality Reduction. Proceedings of the 21st International Conference on Machine Learning (pp. 8592).

Weinberger, K. Q., Sha, F., Zhu, Q., \& Saul, L. K. (2007). Graph Laplacian Regularization for Large-Scale Semidefinite Programming. Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference (pp. 1489-1496). Cambridge, Massachusetts: The MIT Press.

Wu, X., So, A., Li, Z., \& Li, S. (2009). Fast graph laplacian regularized kernel learning via semidefinite-quadratic-linear programming. Advances in neural information processing systems, 22, 1964-1972.

Zhou, D., Bousquet, O., Lal, T. N., Weston, J., \& Schölkopf, B. (2004). Learning with Local and Global Consistency. Advances in Neural Information Processing Systems 16: Proceedings of the 2003 Conference (pp. 595-602). Cambridge, Massachusetts: The MIT Press.

[^0]: ${ }^{1}$ https://projects.coin-or.org/Csdp/
 ${ }^{2}$ http://www.math.nus.edu.sg/~mattohkc/sdpt3.html

[^1]: ${ }^{3}$ http://www.cs.toronto.edu/~roweis/lle/code.html
 ${ }^{4}$ http://www-stat.stanford.edu/~tibs/ElemStatLearn/

