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Kernel learning is a powerful framework for nonlinear data mod-
eling. Using the kernel trick, a number of problems have been 
formulated as semidefmite programs (SDPs). These include Max-
imum Variance Unfolding (MVU) (Weinberger et aL, 2004) in non-
linear dimensionality reduction, and Pairwise Constraint Propaga-
tion (PCP) (Li et al., 2008) in constrained clustering. Although 
in theory SDPs can be efficiently solved in polynomial time, the 
high computational complexity incurred in numerically processing 
the huge linear matrix inequality (LMI) constraints has rendered the 
SDP approach unscalable. In this thesis, we show that a large class 
of kernel learning problems which previously were formulated as S-
DPs, can be reformulated as semidefinite-quadratic-linear programs 
(SQLPs). The SQLP reformulation only contains a small positive 
semidefinite constraint, a second-order cone constraint and a num-
ber of linear constraints. Compared to the large LMI constraint in 
previous approaches, these constraints are much easier to process 
numerically, and the gain in speedup over previous approaches is at 
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least of the order m^,�where m is the matrix dimension. Experi-
mental results are also presented to show the superb computational 
efficiency of our approach. 
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摘要 
核學習是模擬非線性數據的強大框架。在機器學習領域中，通過應用核技巧， 
很多問題都能夠化歸成半正定優化的問題。其中包括應用在非線性降維的最大 
方差展開方法，以及應用在約束的聚類問題中的兩兩約束傳導方法。儘管在理 
論上半正定優化問題能夠在多項式時間内有效的解決，在實際中，處理一個大 
的線性矩陣約朿帶來的數值運算複雜度通常使得半正定優化不可行。在這篇論 
文中，我們發現，現有的很多核學習問題能夠被重新化歸為半正定-r:次-線性 
優化問題。重新化歸後的優化問题只包含了一個小的半正定約束，一個二次約 
束，以及一些線性約束。相比之前化歸方法中的大的線性矩陣約束，這些約束 
在数值計算上要容易得多，由此而帶來的加速達到了m的2. 5次方，其中m是方陣 
的長度。我們的實驗結果展示了我們的方法在計算上的高效性。 
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Chapter 1 
Introduction 
Kernel methods provide a principled framework for nonlinear data 
modeling, where the inference in the input space can be transferred 
intactly to any feature space by simply treating the associated kernel 
as inner products, or more generally, as nonlinear mappings on the 
data (Scholkopf & Smola，2002b). Some well-known kernel meth-
ods include support vector machines (SVMs) (Vapnik, 2000), kernel 
principal component analysis (kernel PCA) (Scholkopf et al , 1998), 
and kernel /c-means (Shawe-Taylor & Cristianini, 2004). Natural-' 
ly, an important issue in kernel methods is kernel design. Indeed, 
the performance of a kernel method depends crucially on the ker-
nel used, where different choices of kernels of ten lead to quite d-
ifferent results. Therefore, substantial efforts have been made to 
design appropriate kernels for the problems at hand. For instance, 
in (Chapelle & Vapnik，2000), parametric kernel functions are pro-’ 
posed，where the focus is on model selection (Chapelle & Vapnik, 
2000). The modeling capability of parametric kernels, however, is 
limited. A more natural idea is to learn specialized nonparametric k-
emels for specific problems. For instance, in cases where only inner 
products of the input data are involved, kernel learning is equivalent 
to the learning of a kernel matrix. This is the main focus of recent 
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CHAPTER 1. INTRODUCTION 2 

kernel methods. 
Currently, many different kernel learning frameworks have been 

proposed. These include spectral kernel learning (Li & Liu, 2009), 
multiple kernel learning (Lanckriet et al.，2004), and the Bregman 
divergence-based kernel learning (Kulis et al., 2009). Typically, a 
kernel learning framework consists of two main components: the 
problem formulation in terms of the kernel matrix, and an optimiza-
tion procedure for finding the kernel matrix that has certain desir-
able properties. As seen in, e.g., the Maximum Variance Unfolding 
(MVU) method (Weinberger et al., 2004) for nonlinear dimension-
ality reduction (see (So, 2007) for related discussion) and Pairwise 
Constraint Propagation (PCP) (Li et al., 2008) for constrained clus-
tering, a nice feature of such a framework is that the problem for-
mulation often becomes straightforward. Thus, the major challenge 
in optimization-based kernel learning lies in the second component, 
where the key is to find an efficient procedure to obtain a positive 
semidefinite kernel matrix that satisfies certain properties. 

Using the kernel trick, most kernel learning problems (Graepel, 
2002; Weinberger et al., 2004; Globerson & Roweis, 2007; Song 
et al., 2008; Li et al., 2008) can naturally be formulated as semidef-
inite programs (SDPs). Although in theory SDPs can be efficient-
ly solved, the high computational complexity has rendered the S-
DP approach unscalable. An effective and widely used heuristic 
for speedup is to perform low-rank kernel approximation and ma-
trix factorization (Weinberger et al.，2005; Weinberger et al , 2007; 
Li et al., 2009). In this paper, we investigate the possibility of fur-
ther speedup by studying a class of convex quadratic semidefinite 
programs (QSDPs). These QSDPs arise in many contexts, such 
as graph Laplacian regularized low-rank kernel learning in nonlin-
ear dimensionality reduction (Sha & Saul, 2005; Weinberger et al., 
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2007; Globerson & Roweis, 2007; Song et al., 2008; Singer, 2008) 
and constrained clustering (Li et al., 2009). In the aforementioned 
papers, a QSDP is reformulated as an SDP with ©(m^) variables 
and a linear matrix inequality of size O(m^) x Such a re-
formulation is highly inefficient and unscalable, as it has an order 
of m9 time complexity (Ben-Tal & Nemirovski, 2001, Lecture 6). 
In this paper, we propose a novel reformulation that exploits the 
structure of the QSDP and leads to a semidefinite-quadratic-linear 
program (SQLP) that can be solved by the standard software SDP-
T3 (Tiituncii et al., 2003). Such a reformulation has the advantage 
that it only has one positive semidefinite constraint on a matrix of 
size m x m , one second-order cone constraint of size 0{m^) and a 
number of linear constraints on 0{m^) variables. As a result, our 
reformulation is much easier to process numerically. Moreover, a 
simple complexity analysis shows that the gain in speedup over pre-
vious approaches is at least of the order m?气 Experimental results 
show that our formulation is indeed far more efficient than previous 
ones. 

• End of chapter. 



Chapter 2 
Preliminaries 
In this chapter we introduce the relevant technical tools that will be 
used for the development of our work in this thesis. Just as indicated 
by our thesis title, it mainly includes concepts and knowledge from 
three categories: kernel learning theory, spectral graph theory, and 
convex optimization. 

2.1 Kernel Learning Theory 
In the past two decades, kernel learning has been one of the most ac-
tive fields in machine learning. Kernel theory provides a principled 
and powerful framework for nonlinear data modeling. To facilitate 
reading, we list some basic concepts and well-known results of ker-
nel theory in the sequel. We refer interested readers to the excellent 
book Learning with Kernels (Scholkopf & Smola, 2002a). 

2.1.1 Positive Semidefinite Kernel 
Definition 1 (Positive Semidefinite Matrix). An x n matrix A is 
called positive semidefinite if it satisfies x^v4x > 0, Vx G W. If 
the inequality holds strictly, then A is called positive definite. 
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In what follows, unless stated otherwise, the symmetric property 
is included as part of definition for positive semidefinite and positive 
definite matrix. 
Definition 2 (Gram Matrix). Given a function k : X x X R 
—a set of finite objects 讯、C X，the m x m matrix 
K = with 

'•=財x”x力 (2.1) 

called the Gram matrix ofk with respect to {xi,x2,..” x^}. 
Definition 3 (Positive Semidefinite Kernel). Let X be a nonempty 
败 A symmetric function k : X x X Rjs called a positive 
semidefinite kernel, if for any finite subset {xi, X2”..，x^} c the 
Gram matrix ofk with respect to {xi, X2,x^} is positive semidef-
inite. 

In the sequel, we refer to a positive semidefinite kernel simply 
as a kernel. It can be immediately seen by definition that any dot 
product is a kernel. Therefore, kernels can be regarded as general-
ized dot products. However, the linearity of dot products does not 
carry over to general kernels. But another property does, which is 
the Cauchy-Schwarz inequality. 
Theorem 1 (Cauchy-Schwarz Inequality for Kernels (Scholkopf 
& Smola，2002a)). For any kernel k，the following inequality holds 

I財x，y)|2 < k(x,x) . k(y,y),Vx,ye 尤 (2.2) 

P'oof. Since the 2 x 2 Gram matrix K 二： [k批]=k[x”xj) is 
positive semidefinite, its determinant is nonnegative. Therefore, 0 < 
^11^22 一 ^12^21 二 kilk22 - • 
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2.1.2 The Reproducing Kernel Map 
Since kernel can be regarded as generalized dot product, a question 
arise naturally: given a kernel k and a nonempty set ；can we 
construct a space H and a feature mapping $ ： > H, such that 

A:(x,y) 二< $ (x ) , $ (y ) >^ ,Vx ,y G (2.3) 
where < •,. >片 denotes the inner product defined i n W The answer 
is positive. We proceed as follows. 

First, we define a map 

^ ： ^ (2.4) 

X I � . ) (2.5) 
where R'^ {f : X ^ R} denotes the space of functions 
mapping Af into R. Now we have mapped each object in A" in-
to a function on the domain A". We then turn the image of in-
to a vector space by taking linear combinations of the images, i.e., 
f 二 .). We denote the vector space as H. 

In the next step, we define a dot product on H\ 
n m 

< >H= X ] a而y?), (2.6) 
where 

n m 

/ , g G U, f 二 cx树X” .), md g /3]k{y” .). (2.7) 
Z=1 J=1 

It can be verified that the dot product is valid, i.e., a strictly posi-
tive definite bilinear form, and 

< (I)(x), (I)(y) >n = < .), k{y,.) y). 
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Due to the reproducing property, the kernel k is called the repw-
—dng kernel of H, H (after completion) is called the Reproducing 
Kernel Hilbert Space with k as its reproducing kernel, and the map 
(I) is called the reproducing kernel map. 

2.1.3 Kernel Tricks 
For any kernel k, there exists a Hilbert space H and a feature map-
ping 0 ： A' ~ s u c h that 

A;(x,y) 二< (I>(x),^>(y) >^ ,Vx ,y G A', (2.8) 
where denotes the inner product in H. Note that the Re-
producing Kernel Hilbert Space and reproducing kernel map may 
not be the only feature space and feature map associated with a giv-
en kernel. See polynomial kernels for examples. 

The benefits of kernel learning framework include: 
1 The ability of nonlinear data modeling: by choosing kernels, or 

equivalently, we impose a nonlinear transformation of 义 
into a new feature space T-L. The new feature space may be more 
suitable for a given problem. For examples, the data which is 
linearly non-separable in the input space may become linearly 
separable in the feature space. 

2 Kernel Trick(Scholkopf & Smola, 2002a): If a problems is for-
mulated in terms of a kernel k, we can replace k with another 
kernel k, i.e., we can work in another feature space without 
explicit mapping to that space. This is highly desirable since 
the new feature space can be high dimensional and the map-
ping can be computationally intractable. Again see polynomial 
kernels for examples (Scholkopf & Smola，2002a). 
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2.2 Spectral Graph Theory 
In mathematics, spectral graph theory is the study of properties of a 
graph in relationship to the characteristic polynomial, eigenvalues, 
and eigenvectors of matrices associated to the graph, such as its ad-
jacency matrix or Laplacian matrix. In this section, we introduce 
the graph Laplacian and its eigenvectors. Again, we refer interested 
readers to the excellent book Spectral Graph Theory (Chung, 1997). 

2.2.1 Graph Laplacian 
Let Q {V, W} be an undirected graph, where V = {xi,X2, 
is the set of nodes and W = [w^j]nxn is the weight matrix with en-
try uhj denoting the similarity between objects x, and Xj. Since W 
is assumed to be symmetric and non-negative, it is also called the 
similarity matrix or affinity matrix. 
Definition 4 (Graph Laplacian). The Laplacian of graph Q is de-
fined as 

iv 二 - (2.9) 
^here D = diag{d^i) is a diagonal matrix with = 切ij. 
Definition 5 (Normalized Graph Laplacian). The normalized Lapla-
cian of graph Q is defined as 

L = (2.10) 
^here D-”) denotes the inverse of the matrix squared root D^/^ of 
D, i.e., ^-1/2/^1/2 二 /，/̂ i/2d1/2 二 j j 
Theorem 2. Both Laplacians L and L are symmetric and positive 
semidefinite. 
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Proof. The first property comes from the symmetry of W. The latter 
property can be verified from the definition. Note that for any vector 
f 二（/i,/2,…，we have 

1 

作f 二 iT^ 讀广 (2.11) 
仏 ： 臺 i x j - 务 ) 2 2 0, (2.12) � ^ d j j 

where the inequalities follow from w^j being non-negative. 匚] 

The differences between L and Z, i.e., the effect of normalization, 
is beyond the scope of this thesis. Readers are referred to (Chung, 
1997)(Von Luxburg et al., 2005)(Johnson & Zhang, 2007) for in-
depth analysis. 

2.2.2 Eigenvectors of Graph Laplacian 
The eigenvectors of Graph Laplacian are of particular interests, since 
they can be viewed as smooth functions on graph. The eigenvectors 
of Graph Laplacian are widely used in spectral clustering and spec-
tral embedding (Von Luxburg, 2007). 

A function f : F —> ]R is called smooth over the graph if it maps 
close nodes to similar values, and distant nodes to different values. 
To measure the smoothness of f, we can exploit eq. (2.11) and eq. 
(2.12) and define 

5 ( f ) 二 F L f . (2.13) 
5 can be used to measure the smoothness of a function on the 

graph, because it penalizes large variations off on close nodes. Note 
that we can also replace L by L. 
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Now let us investigate the smoothness of the eigenvectors of L. 
Let (A,, V,), i = 1, 2, ...,n, be the eigenvalues and eigenvectors of 
L, where Ai < A2 < • • • < A^ and ||v,|| : 1. Then we have 

二 v � L v i = (2.14) 
This implies that the smaller the eigenvalue, the smoother the asso-
ciated eigenvector. 

A non-trivial smooth function actually encodes some cluster in-
formation of the graph, and a set of independent smooth functions 
can well capture the whole cluster structure of the graph. For these 
reasons, the first few eigenvectors of Laplacian are used in spectral 
clustering and embedding. As we will see in next Chapter, they can 
also be used to approximate a low rank kernel matrix. 

2.3 Convex Optimization 
In many problems, the kernel learning task only involves learning 
the kernel on the input data, so the kernel learning can reduce to 
learn a kernel matrix. Many learning problems of this category can 
be formulated as semidefinite programs, which is a class of convex 
optimization. In this chapter, we briefly introduce three most im-
portant convex programs: linear programming (LP), second-order 
cone programming (SOCP) and semidefinite programming (SDP). 
The contents introduced are covered in the excellent books Lectures 
on Modern Convex Optimization (Ben-Tal & Nemirovski, 2001) and 
Convex Optimization (Boyd & Vandenberghe, 2004). 

A mathematical optimization problem has the form 
minimize /o(x) (2.15) 
subject to /,(x) < I - l ,2 , . . . ,m. (2.16) 
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Here, x G M" is the optimization variable of the problem, the func-
tion/o(x) : R^ M is the objective function, the functions /,(x) ： —> 

= 1,2, are the C O T以 f u n c t i o n s , and 二 l，2’..”m, 
are the bounds for the constraints. 

An optimization problem is convex if /o, /i,…’ /爪 are all convex, 
which means 

+ /3y) < a / , (x) + /?/,(y), x, y G IT, (2.17) 
for a, / ? g M with a f 卢二 1 and a, /? 2 0. Convex optimization is 
a class of mathematical optimization that can be solved exactly and 
efficiently (Boyd & Vandenberghe, 2004). 

2.3.1 From Linear to Conic Programming 
Linear programming is the simplest convex optimization, which ad-
mits the following form: 

m m { c ^ x | y l x > b } (2.18) 
where c G K � x G M", b G /I G The analytic structure 
of LP gives rise to a number of theoretical results, forms the basis of 
the computational techniques that make LP scale very well. There-
fore，in order to solve nonlinear problems, one wishes to extend the 
techniques of LP to other forms of optimization problems. 

Now let K be a cone in the space E，K is convex, pointed, closed 
and with a nonempty interior, c G M ,̂ x G b G E, a linear 
mapping x 卜—> Ax : IT —> E，consider the optimization problem 

mm{c^x |Ax > K b } , (2.19) 
Where ylx > k b implies Ax ~ b e K We refer to (2.19) as 

a conic programming associated with the cone K. The difference 
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between (2.18) and (2.19) is that LP deals with the nonnegative or-
thant, i.e., E 二 R爪，K 二 The good news is that although 股？ is 
a cone simple enough to be processed, it is not the only one. There 
are two other nice conic problems SOCP and SDP, which inherit 
many nice properties of LP. 
2.3.2 Second-Order Cone Programming 
The second-order (or Lorentz) cone is defined as: 

( X m-1 

L 饥：二 < X = (xi,. •. ’ ：r 饥—i)T I (2.20) . \ “ ^ 
and the SOCP is defined as m i n { c ^ x | ^ x >L- b } , (2.21) 

X where c e R^, x G b G M^, G K I f we partition A and 
b as …f D d \ 

戎 b] 二 ， (2.22) 
V P q ) 

where D e 股(肌—1)><几，p € 股几，d e ]R爪—i, and g is a scalar, we can 
write (2.21) explicitly as 

mm {c丁X : p x - d||2 < pTx - q} ； (2.23) 

2.3.3 Semidefinite Programming 
Let S爪 denote the space of all m x m symmetric matrices. The 
semidefinite cone is the cone in the space E = S爪 and consists 
of all positive semidefinite matrices. The SDP is defined as 

mm >§;n b} , (2.24) 
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where c G x G K几,b G S爪，^ : R^ ^ S爪，乂x 二 y"几 x A 
‘ zl̂ 户1 山：Ki” 

€ S爪(2.24) is called the primal form of SDR Let us replace 
2ST with the constraint 

n Y ^ X j A j - h h Q (2.25) 
户1 

is usually referred to as Linear Matrix Inequality (LMI). 

Schur Complement 
Suppose X G has a partition 

X 二 ( 伊 C J ’ （2.26) 

where 义 G S饥，m < n. If is nonsingular, then the matrix 
S = BTA-1B (2.27) 

is called the Schur complement of 乂 in X. 
Theorem 3 ((Boyd & Vandenberghe, 2004)). X ^ 0 if and only if 

and 
Theorem 4 ((Boyd & Vandenberghe, 2004)). Given t 0，then 
义 t 0 if and only 

Of these three conic programs, SOCP is more general than LP, 
and SDP is more general than SOCP. While SDP is the most general, 
it is also the most difficult to solve. 

• End of chapter. 



Chapter 3 
Fast Graph Laplacian Regularized 
Kernel Learning 
The rest of the paper is organized as follows. We review related ker-
nel learning problems in Section 3.1 and present our formulation in 
Section 3.3. Experiment results are reported in Section 3.4. Section 
4 concludes the paper. 

3.1 The Problems 
In this section, we briefly review some kernel learning problem-
s that arise in dimensionality reduction and constrained clustering. 
They include MVU (Weinberger et al., 2004), Colored MVU (Song 
et al., 2008)，(Singer, 2008), Pairwise Semidefinite Embedding (PS-
DE) (Globerson & Roweis, 2007), and PCP (Li et al., 2008). MVU 
maximizes the variance of the embedding while preserving local dis-
tances of the input data. Colored MVU generalizes MVU with side 
information such as class labels. PSDE derives an embedding that 
strictly respects known similarities, in the sense that objects known 
to be similar are always closer in the embedding than those known 
to be dissimilar. PCP is designed for constrained clustering, which 
embeds the data on the unit hypersphere such that two objects that 

14 
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are known to be from the same cluster are embedded to the same 
point, while two objects that are known to be from different clusters 
are embedded orthogonally. In particular, PCP seeks the smoothest 
mapping for such an embedding, thereby propagating pairwise con-
straints. 

Initially, each of the above problems is formulated as an SDP, 
whose kernel matrix K is of size nxn, where n denotes the number 
of objects. Since such an SDP is computationally expensive, one can 
try to reduce the problem size by using graph Laplacian regulariza-
tion. In other words, one takes K 二「乂 where Q e 
consists of the smoothest m eigenvectors of the graph Laplacian 
( m � n ) , and Y is of size m x m (Sha & Saul, 2005; Weinberger 
et al., 2007; Song et aL, 2008; Globerson & Roweis, 2007; Singer, 
2008; Li et al” 2009). The learning of K is then reduced to the learn-
mg of y , leading to a quadratic semidefinite program (QSDP) that is 
similar to a standard quadratic program (QP), except that the feasible 
set of a QSDP resides in the positive semidefinite cone as well. The 
intuition behind this low-rank kernel approximation is that a kernel 
matrix of the form K = QYQ^ actually, to some degree, preserves 
the proximity of objects in the feature space. Detailed justification 
can be found in the related work mentioned above. 

Next, we use MVU and PCP as representatives to demonstrate 
how the SDP formulations emerge from nonlinear dimensionality 
reduction and constrained clustering. 
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3.1.1 MVU 
The SDP of MVU (Weinberger et al.，2004) is as follows: 

max tr(/<) = I • K (3.1) 
n 

s.t. E = 0, (3.2) 

A:“ + k j j — 2 % 二 4，V(z, j ) G AT, (3.3) 
(3.4) 

where K = (k,j) denotes the kernel matrix to be learned, I denotes 
the identity matrix, tr(-) denotes the trace of a square matrix, • de-
notes the element-wise dot product between matrices, d^j denotes 
the Euclidean distance between the z-th and j-th objects, and M de-
notes the set of neighbor pairs, whose distances are to be preserved 
in the embedding. 

The constraint in (3.2) centers the embedding at the origin, thus 
removing the translation freedom. The constraints in (3.3) preserve 
local distances. The constraint ^ 0 in (3.4) specifies that K must 
be symmetric and positive semidefinite, which is necessary since K 
is taken as the inner product matrix of the embedding. Note that 
given the constraint in (3.2), the variance of the embedding is char-
acterized by V{K)=去 Yn养I + kjj — 2%) = ix{K) (Weinberger 
et al., 2004) (see related discussion in (So, 2007), Chapter 4). Thus, 
the SDP in (3.1-3.4) maximizes the variance of the embedding while 
keeping local distances unchanged. After K is obtained, kernel PCA 
is applied to K to compute the low-dimensional embedding. 
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3.1.2 PCP 
The SDP of PCP (Li et al., 2008) is: 

^̂ ^ L .K (3.5) 
s丄 fe 二 1, " l , 2”..， n , ( 3 . 6 ) 

〜 二 1’ G M, (3.7) 

A：”•二 0，V(z,力 GC, (3.8) 
KtO, (3.9) 

where L denotes the normalized graph Laplacian, M denotes the 
set of object pairs that are known to be from the same cluster, and C 
denotes those that are known to be from different clusters. 

The constraints in (3.6) map the objects to the unit hypersphere. 
The constraints in (3.7) map two objects that are known to be from 
the same cluster to the same vector. The constraints in (3.8) map two 
objects that are known to be from different clusters to vectors that 
are orthogonal. Let 二 {x j f^^ be the data set, T be the feature 
space, and 0 : A" —> be the associated feature map of K. Then, 
the degree of smoothness of 0 on the data graph can be captured by 
(Zhou et al., 2004): 

柳 ) = (3.10) Z 1,3 = 1 美 V^JJ J： 

Where w,, is the similarity of x, and d“ 二 [“ 川小 and ||. is 
the distance metric in T . The smaller the value 5 ( 0 ) , the smoother 
is the feature map 0. Thus, the SDP in (3.5-3.9) seeks the smoothest 
feature map that embeds the data on the unit hypersphere and at 
the same time respects the pairwise constraints. After K is solved, 
kernel A:-means is then applied to K to obtain the clusters. 
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3.1.3 Low-Rank Approximation: from SDP to QSDP 
The SDPs in MVU and PCP are difficult to solve efficiently because 
their computational complexity scales at least cubically in the size of 
the matrix variable and the number of constraints (Borchers, 1999). 
A useful heuristic is to use low-rank kernel approximation, which 
is motivated by the observation that the degree of freedom in the 
data is often much smaller than the number of parameters in a fully 
nonparametric kernel matrix K. For instance, it may be equal to or 
slightly larger than the intrinsic dimension of the data manifold (for 
dimensionality reduction) or the number of clusters (for clustering). 
Another more specific observation is that it is often desirable to have 
nearby objects mapped to nearby points, as is done in MVU or PCP. 

Based on these observations, instead of learning a fully nonpara-
metric K, one learns a iT of the form K = QYQ^, where Q and Y 
are of sizes n x m and m x m, respectively, where m � n . The 
matrix Q should be smooth in the sense that nearby objects in the 
input space are mapped to nearby points (the z-th row of Q is taken 
as a new representation of x^). Q is computed prior to the learning 
of [ In this way, the learning of a kernel matrix K is reduced to the 
learning of a much smaller Y, subject to the constraint that F ^ 0. 
This idea is used in (Weinberger et al., 2007) and (Li et al., 2009) to 
speed up MVU and PCP, respectively, and is also adopted in Colored 
MVU (Song et al., 2008) and PSDE (Globerson & Roweis，2007) for 
efficient computation. 

The choice of Q can be different for MVU and PCP. In (Wein-
berger et al., 2007), Q - (v2,…’ v肌+i), where { v j are the eigen-
vectors of the graph Laplacian. In (Li et al., 2009), Q 二 ( m ,... ’ u 爪)， 

where {u,} are the eigenvectors of the normalized graph Laplacian. 
Since such Q's are obtained from graph Laplacians, we call the 
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learning of K of the form K = QYQ^ the Graph Laplacian Regu-
larized Kernel Learning problem, and denote the methods in (Wein-
berger et al., 2007) and (Li et al., 2009) by RegMVU and RegPCP, 
respectively. 

With K 二 QyQT’ RegMVU and RegPCP become: 
RegMVU : max tr(y) - v [ ((QYCfh — 2(QYQ% + (QYCf)” 一 , 

— it.j)eAf 
(3.11) 

RegPCP: mm [ i m Q ^ - i n ] ? , (3.12) 
where" > 0 is a regularization parameter and S = | g 

U C，Uj -二 1 if (z, J) GM, U, = 0 if (z, J) gC}U {(z, j, Uj) = 
e {1，...，几}，力” = 1 } . With some algebraic manipulations, 

both RegMVU and RegPCP can be succinctly rewritten in the uni-
fied form: 

mm y^^Ay + b^y (3.13) 
s . t . y t 0， ( 3 . 1 4 ) 

where y 二 vec(y) G M^' denotes the vector obtained by concate-
nating all the columns of F , and A t 0 (Weinberger et al, 2007; 
Li et al., 2009). Note that this problem is convex since both the 
objective function and the feasible set are convex. 

Problem (3.13-3.14) is an instance of the so-called convex quadrat-
/c semidefmite program (QSDP), where the objective is a quadratic 
function in the matrix variable Y. Note that similar QSDPs arise in 
Colored MVU, PSDE, Conformal Eigenmaps (Sha & Saul, 2005), 
Locally Rigid Embedding (Singer, 2008), and Kernel Matrix Com-
pletion (Graepel, 2002). Before we present our approach for tack-
ling the QSDP (3.13-3.14), let us briefly review existing approaches 
in the literature. 
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3.2 Previous Approach: from QSDP to SDP 
Currently, a typical approach for tackling a QSDP is to use the Schur 
complement (Boyd & Vandenberghe, 2004) to rewrite it as an S-
DP (Sha & Saul，2005; Weinberger et aL, 2007; Li et al , 2009; 
Song et al., 2008; Globerson & Roweis, 2007; Singer, 2008; Grae-
pel, 2002), and then solve it using an SDP solver such as CSDP i 
(Borchers, 1999) or SDPTS^ (Toh et al., 2006). In mis paper, we 
call this approach the Schur Complement Based SDP (SCSDP) for-
mulation. For the QSDP in (3.13-3.14), the equivalent SDP takes 
the form: 

min + (3.15) y," ， 
— — T 2 zl 2 V 

s.t. y ^ 0 and r \ ^ t o , (3.16) 
( 御 ) “ 

where A2 is the matrix square root of A, /肌2 is the identity matrix 
of size m^ x m^, and v is a slack variable serving as an upper bound 
of Y^Ay. The second semidefinite cone constraint is equivalent to 
{A^yY^A^y) < V by the Schur complement. 

Although the SDP in (3.15-3.16) has only m{m + 1)/2 + 1 vari-
ables, it has two semidefinite cone constraints, of sizes m x m and 
(m2 +1) X (m2 +1), respectively. Such an SDP not only scales poor-
ly. but is also difficult to process numerically. Indeed, by consider-
ing Problem (3.15-3.16) as an SDP in the standard dual form, the 
number of iterations required by standard interior-point algorithms 
is of the order m, and the total number of arithmetic operations re-
quired is of the order m^ (Ben-Tal & Nemirovski，2001, Lecture 6). 
In practice, it takes only a few seconds to solve the aforementioned 

'https://projects.coin-or.org/Csdp/ 
2http://www.math.nus.edu.sg/~mattohkc/sdpt3.html 

https://projects.coin-or.org/Csdp/
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html


CHAPTER 3. FAST GRAPH LAPLACIAN REGULARIZED KERNEL L EARN ING ] 8 

SDP when m = 10, but can take more than 1 day when m 二 40 (see 
Section 3.4 for details). Thus, it is not surprising that m is set to a 
very small value in the related methods—for example, m 二 10 in 
(Weinberger et al.，2007) and m = 15 in (Li et al., 2009). However, 
as noted by the authors in (Weinberger et al., 2007), a larger m does 
lead to better performance. In (Li et al., 2009), the authors suggest 
that m should be larger than the number of clusters. 

Is this formulation from QSDP to SDP the best we can have? The 
answer is no. In the next section, we present a novel formulation that 
leads to a semidefinite-quadratic-linear program (SQLP), which is 
much more efficient and scalable than the one above. For instance, 
it takes about 15 seconds when m = 30, 2 minutes when m 二 40, 
and 1 hour when m = 100, as reported in Section 3.4. 

3.3 Our Formulation: from QSDP to SQLP 
In this section, we formulate the QSDP in (3.13-3.14) as an SQLP. 
Though our focus here is on the QSDP in (3.13-3.14), we should 
point out that our method applies to any convex QSDP. 

Recall that the size of A is rn^xm^. Let r be the rank of A. With 
Cholesky factorization, we can obtain an r x m^ matrix B such that 
A = B^ B, A is symmetric positive semidefinite and of rank r 
(Golub & Loan, 1996). Now, let z 二 By. Then, the QSDP in 
(3.13-3.14) is equivalent to: 

min Id + b^y (3.17) 
s.Lz = By, (3.18) 

z^z < 仏 (3.19) 
Y to. (3.20) 
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Next, we show that the constraint in (3.19) is equivalent to a second-
order cone constraint. Let /C^ be the second-order cone of dimension 
n, i.e., 

JCn - {(xo;x) ：xo > ||x||}, 
where |卜 || denotes the standard Euclidean norm. Let u = z � . 
Then, the following holds. 
Theorem 5. z^z < fi if and only i f n G /C 杆 2. 
Proof. Note that u e ir+2, since z G IT. Also, note that /a = 
(1^)2 — (1^)2. i f^T^ < h then (宇 ) 2 —(1^)2 二 " 2 z了z, which 
means that ^ ^ > In particular, we have u G /C,+2. 
Conversely, if u G /C,+2, then (̂ 尸̂ > z^ z, thus implying 
z'̂ z < fi. • 

Let e, (where z 二 1，2，... ’ r + 2) be the i-ih basis vector, and let 
c '二 (Orx2，/rxr)- Then, we have ( e i - e 2 ) ^ u 二 /i, (ei + e2)^u = 1, 
and z = Cu. Hence, by Theorem 5, the problem in (3.17-3.20) is 
equivalent to: 

min (ei 一 es j^u + b^y (3.21) 
y’u ^ 
S.t. (61+62)「了11= 1， (3.22) 

By— Cm 二 0’ (3.23) 
u G lCr+2, (3.24) 
y t 0, (3.25) 

which is an instance of the SQLP problem (Tiitiincu et al , 2003). 
Note that in this formulation, we have traded the semidefinite cone 
constraint of size (m^ + l) x (m^ + l) in (3.16) with one second-order 
cone constraint of size r + 2 and r + 1 linear constraints. As it turn-
s out, such a formulation is much easier to process numerically and 
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can be solved much more efficiently. Indeed, using standard interior-
point algorithms, the number of iterations required is of the order 
a M (Ben-Tal & Nemirovski, 2001, Lecture 6), and the total num-
ber of arithmetic operations required is of the order (Tutiincii 
et al., 2003). This compares very favorably with the m^ arithmetic 
complexity of the SCSDP approach, and our experimental results 
indicate that the speedup in computation is quite substantial. More-
over, in contrast with the SCSDP formulation, which does not take 
advantage of the low rank structure of A, our formulation does take 
advantage of such a structure. 

3.4 Experimental Results 
In this section, we perform several experiments to demonstrate the 
viability of our SQLP formulation and its superior computational 
performance. Since both the SQLP formulation and the previous 
SCSDP formulation can be solved by standard softwares to a satisfy-
ing gap tolerance, the focus in this comparison is not on the accuracy 
aspect but on the computational efficiency aspect. 

We set the relative gap tolerance for both algorithms to be le-08. 
We use SDPT3 (Toh et al., 2006; Tiituncu et al” 2003) to solve the 
SQLP. We follow (Weinberger et al., 2007; Li et al., 2009) and use 
CSDP 6.0.1 (Borchers, 1999) to solve the SCSDP. All experiments 
are conducted in Matlab 7.6.0(R2008a) on a PC with 2.5GHz CPU 
and 4GB RAM. 

Two benchmark databases, Swiss Roll^ and USPS* are used in 
our experiments. Swiss Roll (Figure 3.1(a)) is a standard mani-
fold model used for manifold learning and nonlinear dimensionality 

^http://www.cs.toronto.edu/~roweis/lie/code.html 4http://www—Stat•stanford.edu/~tibs/ElemStatLearn/ 

http://www.cs.toronto.edu/~roweis/lie/code.html
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書 : 
(a) (b) 

Figure 3.1: Swiss Roll, (a) The true manifold, (b) A set of 2000 points sampled 
from the manifold. 
reduction. In the experiments, we use the data set shown in Fig-
ure 3.1(b), which consists of 2000 points sampled from the Swiss 
Roll manifold. USPS is a handwritten digits database widely used 
for clustering and classification. It contains images of handwritten 
digits from 0 to 9 of size 16 x 16, and has 7291 training examples 
and 2007 test examples. In the experiments, we use a subset of USP-
S with 2000 images, containing the first 200 examples of each digit 
from 0-9 in the training data. The feature to represent each image 
is a vector formed by concatenating all the columns of the image 
intensities. In the sequel, we shall refer to the two subsets used in 
the experiments simply as Swiss Roll and USPS. 

The Swiss Roll (resp. USPS) is used to derive the QSDP in Reg-
MVU (resp. RegPCP). For RegMVU, the 4NN graph is used, i.e., 
^ij = 1 if is within the 4NN of Xj or vice versa, and w^j 二 0 
otherwise. We verified that the 4NN graph derived from our Swiss 
Roll data is connected. For RegPCP, we construct the graph follow-
ing the approach suggested in (Li et al., 2009). Specifically, we have 
^zj = exp(—dl/(2(j2)) if X, is within 20NN of x̂ - or vice versa, 
and wy 二 0 otherwise. Here, a is the averaged distance from each 
object to its 20-th nearest neighbor. For the pairwise constraints 
used in RegPCP, we randomly generate 20 similarity constraints for 
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each class, and 20 dissimilarity constraints for every two classes, 
yielding a total of 1100 constraints. For each data set, m ranges over 
{10,15, 20, 25, 30, 35，40，50, 60, 80,100}. In summary, for each da-
ta set, 11 QSDPs are formed. Each QSDP gives rise to one SQLP 
and one SCSDP. Therefore, for each data set, 11 SQLPs and 11 SCS-
DPs are derived. 

3.4.1 The Results 
The computational results of the programs are shown in Tables 3.1 
and 3.2. For each program, we report the total computation time, the 
number of iterations needed to achieve the required tolerance, and 
the average time per iteration in solving the program. A dash (一) 
in the box indicates that the corresponding program takes too much 
time to solve. We choose to stop the program if it fails to converge 
within 1 day. This happens for the SCSDP with m 二 40 on both 
data sets. 

From the tables, we see that solving an SQLP is consistently 
much more faster than solving an SCSDP. To see the scalability, we 
plot the solution time (Time) against the problem size (m) in Fig-
ure 3.3. It can be seen that the solution time of the SCSDP grows 
much faster than that of the SQLP. This demonstrates the superiority 
of our proposed approach. 

We also note that the per-iteration computational costs of SCSDP 
and SQLP are drastically different. Indeed, for the same problem 
size m, it takes much less time per iteration for the SQLP than that 
for the SCSDP. This is not very surprising, as the SQLP formulation 
takes advantage of the low rank structure of the data matrix A. 

• End of chapter. 
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Table 3.1: Computational Results on Swiss Roll (Time: second; # Iter: number of 
iteration^ 
————丁―ZHŝ csDP r—一― sqET 
饥 l ime # Iter Time per Iter Time # Iter I Time per Iter rank(]) 
10 3.84 29 —— 一 0.13 '~Q796 3�— o i M 
15 60.36 2m L ^ ——sT" 0X)6 [53— 
20 32 17.43 — 4.48 0.13 ‘ 2 6 � -
25—一2821^^ 82.99 0^1 403— 
30 1 3 0 3 9 3 0 " ^ 1139 — 0 ^ 3 8 

—35__38559.50 33 —1168.50 — ‘ 29.74 ~35 石Q — 

40 > 1 day 一 ^ 74.01 1T2 852— 
J O —一一 213.^35— KO9 iTsT" 

— — — 467.90 —35 1 3 3 7 ~ 1 4 7 � 
J O 二 二一 — 1729̂ 65 39 44^5 2062—— 
JooJ__ ——___I — I — I ^ S S j T 11^79 262^ 

Table 3.2: Computational Results on USPS (Time: second; # Iter: number of it^ration^ 
I——二：：―s—cs5P "1 ^ 

爪 Time — ̂ # Iter Time per Iter Time # It汉 Time per Iter rank(/l) 
� 0 一 2.84 21 ai4 0T47 16 003 

15 — 一42.96 22 ~T95 — L ^ 17 0:07— 225-
20 461.38 27 17.09 — 一3 五 17 020 40「-

—252572.72 31 82.99 5.97 1 043 625—一 
30 10576.01 30 _ 352.53 — 15.72 19 a83 ^ 
35 30 1172.50 —~44.53 17 1 2 ^ " 

—40 > J day — 二 133.58 ~ 2 0 ^ � 
J 0 — — — 362.24 16 2379—— 
—60 一 一 一 936.58 19 4 9 ^ " ^ 3「 

80 —— — 一 1784.12 17 — 104.95 
100 丨—一 P ^ I — 2900.44 17 170^ sTTT" 
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Figure 3.2: Curves on computational cost for Swiss Roll: Solution Time vs. Prob-
lem Scale. 
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Figure 3.3: Curves on computational cost for USPS: Solution Time vs. Problem 
Scale. 



Chapter 4 
Conclusion 
We have studied a class of convex optimization programs called con-
vex Quadratic Semidefinite Programs (QSDPs), which arise natu-
rally from graph Laplacian regularized kernel learning (Sha & Saul, 
2005; Weinberger et al.，2007; Li et al., 2009; Song et al , 2008; 
Globerson & Roweis, 2007; Singer, 2008). A QSDP is similar to 
a QP，except that it is subject to a semidefinite cone constraint as 
well. To tackle the QSDP, one typically uses the Schur complemen-
t to rewrite it as an SDP (SCSDP), thus resulting in a large linear 
matrix inequality constraint. In this paper, we argue that this for-
mulation is not computationally optimal and have proposed a nov-
el formulation that leads to a semidefinite-quadratic-linear program 
(SQLP). Our formulation introduces one positive semidefinite con-
straint, one second-order cone constraint and a set of linear con-
straints. This should be contrasted with the two large semidefinite 
cone constraints in the SCSDP. Our complexity analysis and exper-
imental results have shown that the proposed SQLP formulation s-
cales far better than the SCSDP formulation. 

Although we have made significant progress in speeding up a 
class of kernel learning problem, there are some issues need to be 
addressed. First, the SQLP formulation of QSDP is still not fast 

28 
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enough, say, when m�60. Efforts are made in optimization com-
mimity to exploit the sparsity of ^ and design faster interior point 
algorithms (Toh et al., 2007) (Toh, 2008). Another issue is to di-
agonalize Q, this is also very time consuming when the size of the 
problem is large. The reported experimental results in our work does 
not include the computation time of computing eigenvectors of Q. 

The publication of this work is (Wu et al , 2009). 

口 End of chapter. 
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