
Fixed-Outline Bus-Driven 

Floorplanning 

J I A N G , Y a n 

A Thesis Submitted in Partial Fulfilment 

of the Requirements for the Degree of 

Master of Philosophy 

in 

Computer Science and Engineering 

The Chinese University of Hong Kong 

August 2011 



. . . I 



Thesis/Assessment Committee 

Professor WU Yu Liang [Chair� 

Professor YOUNG Fung Yu [Supervisor] 
Professor LEE Ho Man (Committee Member) 
Professor WONG Ngai (External Examiner) 

. . . 'V * 



Abstract 

Bus routing has become an important research topic as the interconnection of 

chips becomes increasingly congested. Bus is a collection of wires that carry 

signals between different blocks. In order to ease bus routing and avoid unnec-

essary iterations of the physical design cycle, it would be favourable to consider 

bus routing in a floorplanner that minimizes chip area, interconnect cost and bus 

length. Therefore bus-driven floorplaiining becomes an important topic in VLSI 

design. It considers bus assignment during flooiplanning. In many previous works 

[1] [2] [3] [4] [5]，bus-driven floorplanning is mostly aimed at minimizing the chip 

area and total bus length. 

In this thesis, we solve the fixed-outline bus-driven floorplanning problem with 

an objective to minimize the total bus length and interconnect cost. In the first ap-

proach, we focus on the bus length minimization problem. Insteading of adding 

up all the bus length in the cost function of the simulated annealing process, we 

handle the bus length minimization problem globally in a more sophisticated way 

by using a bus-driven partitioning step. In this step, min-cut partitioning is per-

formed recursively to reduce bus length. At the same time, we use a more accurate 

estimation algorithm that connects buses to the block boundaries to estimate bus 

length. We can achieve shorter bus length on average by using this approach. Ex-

perimental results show that we can improve over the most closely related previous “ 

work [4] in terms of bus length, running time and dead space. Besides, we also “ 

i 

V 



improve over a most recent work [5] in terms of bus length on average. 

In the second approach, we focus on the bus roiitability problem. We handle the 

bus routability problem in a more sophisticated manner to increase the searching 

space and give more flexibility by changing the bus shape and the positions of the 

bus bendings. We present a floorplaniier that can give a fixed-outline floorplanning 

solution including bus route that minimizes bus length, number of extra vias and 

interconnect cost. Our goal is to route all the bus components successfully in 

each iteration of the simulated annealing process of this floorplanner. L shape bus 

component is used to route the buses with conflicts with other bus components. 

Experimental results show that we also improve over the most recent work [5] in 

terms of bus length and successful rate on average. Besides, we can improve over 

our first floorplanner in Chapter 3 and the modified floorplanner of [4] in terms of 

both bus length, running time and successful rate. 

ii 



隨著芯片的連接變得越來越密集，總線的佈線成爲了一個重要的 
硏究課題.總線是一組需要經過數個組件的電線傳輸著電子信號.爲 
了簡化總線佈線和避免重複不必要的物理設計流程設計一個考慮總 
線佈線同時最小化芯片面積，連接代價和總線長度的布圖工具是很好 
的選擇.因此，總線主導的布圖規劃成爲了超大規模集成電路設計技術 
中的一個重要硏究課題.在以往所發表的硏究工作中，總線主導的布圖 
規劃主要側重芯片面積和總線長度. 

在這篇論文中，我們關注考慮限定外形同時最小化總線長度和連接 
代價的總線主導的布圖規劃問題.在第一個方法中，我們側重於總線長 
度的最小化問題.不同於其他發表的硏究工作，我們以全局觀處理總線 
的最小化.採用總線主導的分區方法通過尋找最小割集來減少總線長 
度.同時，我們採用更加精確的算法估算總線長度.通過這個方法，我們 
可以獲得相當短的總線長度實驗結果表明和以往的硏究工作比較我 
們可以減少總線長度，運行時間以及空白區域的比例. 

在第二個方法中，我們關注總線可繞性問題.在以往發表的硏究工 
作中，對於模擬退火過程中有不可繞的總線的解，硏究者會用一個很簡 
單的方法處理，比如在代價函數中加一個懲罰.不同於以往的硏究工 
作，爲了擴大搜索空間增加總線形狀以及屈曲位置的靈活度，我們採用 
一種更爲複雜的方法處理這種情況我們硏發了一個考慮限定外形同 
時最小化總線長度，額外傳接孔的數目和連接代價的布圖工具.我們的 
目標是爲每一個模擬退火迭代找到一個所有總線可繞的解採用一個 
新的名爲L型總線分量的模型來爲有衝突約束條件的總線分量佈線. 
實驗結果顯示我們可以比以前的硏究工作工作有更短的平均總線長度 
和更高的平均成功率.同時這個方法比我們的第一個方法有更短的總 
線長度和運行時間以及更高的成功率. 

‘’ iii 



Acknowledgement 

I would like to thank my supervisor, Professor Evangeline F.Y. Young. She is a 

very nice and excellent professor and supervisor. In the last two years, she gave 

me a lot of good advices and encouragements. She encouraged me when I felt 

disappointed. She gave me directions when I felt lost. I must not be able to finish 

my research without the effort she put on me. 

I would like to express my thanks to my marker, Professor David Yu Liang 

Wu. He has given me constructive suggestions, which are very helpful for the im-

provement of my work. 

Finally, I would like to thank all my colleagues in the CAD group. I really 

enjoy the life that we leam, share and research together in Room 506. 

iv 



Contents 

Abstract i 

Acknowledgement iv 

1 Introduction 1 

1.1 Physical Design 2 

1.2 Floorplanning 6 

1.2.1 Floorplanning Objectives 7 

1.2.2 Common Approaches 8 

1.3 Motivations and Contributions 14 

1.4 Organization of the Thesis 15 

2 Literature Review on BDF 17 

2.1 Zero-Bend BDF 17 

2.1.1 BDF Using the Sequence-Pair Representation 17 

2.1.2 Using B*-Tree and Fast SA 20 

2.2 Two-Bend BDF 22 

2.3 TCG-Based Multi-Bend BDF 25 

2.3.1 Placement Constraints for Bus 26 

2.3.2 Bus Ordering 28 

2.4 Biis-Pin-Aware BDF 30 

‘’ V 



2.5 Summary 33 

3 Fixed-Outline BDF 35 

3.1 Introduction 35 

3.2 Problem Formulation 36 

3.3 The Overview of Our Approach 36 

3.4 Partitioning 37 

3.4.1 The Overview of Partitioning 38 

3.4.2 Building a Hypergraph G .39 

3.5 Floorplaiining with Bus Routing 43 

3.5.1 Find Bus Routes 43 

3.5.2 Realization of Bus Routes 48 

3.5.3 Details of the Annealing Process 50 

3.6 Handle Fixed-Outline Constraints 52 

3.7 Bus Layout 52 

3.8 Experimental Results 56 

3.9 Summary 61 

4 Fixed-Outline BDF with L-shape bus 63 

4.1 Introduction 63 

4.2 Problem Formulation 64 

4.3 Our Approach . 65 

4.3.1 Bus Routability Checking 67 

4.3.2 Details of the Annealing Process 79 

4.4 Experimental Results 79 

4.5 Summary 82 

5 Conclusion 85 

vi 



Bibliography 92 

vii � 



List of Figures 

1.1 Physical design cycle 3 

1.2 Examples of the three main kinds of floorplans 8 

1.3 Pseudo code of the genetic algorithm 11 

1.4 Pseudo code of SA 13 

2.1 Cases of relative positions of two horizontal buses 20 

2.2 Two valid 0-bend buses, {A,B,C} and {C,F} 23 

2.3 An example showing a T-shaped bus being able to change into a 

valid 2-bend bus 24 

2.4 The necessary conditions of the position sets to form a valid 2-

bend shape 25 

2.5 Constraint edges added to Gy for a horizontal 0-bend bus 27 

2.6 An example of handling multi-bend buses 27 

2.7 Two horizontal buses with a natural ordering deduced from the 

constraint edges 28 

2.8 Prevention of bus overlap by imposing explicit bus ordering. In 

this example, b] is connecting mi and m^, and b: is connecting 

and 30 

3.1 Examples of possible BDF solutions 37 

3.2 Overview of our approach 38 

viii 



3.3 An example of constructing E\ and E2 41 

3.4 An example of cut 41 

3.5 An example of the modified MST algorithm 47 

3.6 Block alignment for the example in Figure 3.5 49 

3.7 One bus routing solution = {0,5}, = {1,6}, B3 = {2’7’ 10}, 

.54 = {3,8,11,13}，街={4,9’12,14} 54 

3.8 An example of bus layout Bs = {4,9,12,14} 54 

3.9 A new solution after bus layout step 5 � = { 0 , 5 } , 5 2 = {1,6},53 = 

{2,7,10}，B4 = {3,8,11,13}，Bs = {4,9,12,14} 55 

3.10 A bus routing soliitioni?i = {0,1,2,3,4,5,6,7,8,9}, B2 = {10,11,12, 

13,14,15,16，17,18,19}，83 = {20,21,22,23,24,25,26,27,28,29} 61 

4.1 Overview of our second approach 66 

4.2 An L-shape bus for conflicting block alignment constraints . . . . 67 

4.3 Overview of bus routability checking 68 

4.4 Two kinds of L-shape bus 71 

4.5 One example of combining two horizontal bus components . . . . 74 

4.6 Another example of combining two horizontal bus components . 74 

4.7 A bus routing solution = {0,1,2,3，.4，5，6’ 7’ 8,9}，5�={10,11,12， 

13’ 14,15,16,17，18，19}, B] = {20,21,22,23,24,25,26,27,28,29} 84 

/ ix 



List of Tables 

2.1 Terminologies for BDF 18 

3.1 Data Set 57 

3.2 Comparisons on Bus Length, Running Time and DeadSpace be-

tween Fixed-outline BDF and [5] 58 

3.3 Comparisons on Bus Length, Running Time and DeadSpace be-

tween Fixed-outline BDF and [4] 59 

3.4 Comparisons on Bus Length, Running Time and Wire Length be-

tween Fixed-outline BDF and Modified Floorplanner of [4] . . . . 60 

3.5 Pins and NetList Information 61 

4.1 Comparisons on Bus Length, Running Time, DeadSpace and Suc-

cessful Rate between Fixed-outline BDF, Fixed-outline BDF with 

L-shape Bus and [5] 80 

4.2 Comparisons on Bus Length, Running Time, DeadSpace and Siic-

cessflile Rate between Fixed-outline BDF with L-Shape Bus and [5] 

with Similar Deadspace 82 

4.3 Comparisons on Bus Length, Running Time, Wire Length and 

Successful Rate between Fixed-outline BDF, Fixed-outline BDF 

with L-shape Bus and Modified Floorplanner of [4] 83 

X 

. »» 



Chapter 1 

Introduction 

The internet has emerged as a medium to distribute information，communicate, 

plan event and conduct E-commerce. Integrated Circuits (IC) technology is im-

portant in this information revolution because ICs are widely used in devices that 

changes our perspective of work, life at home and provides new tools for entertain-

ment. ICs are used in microprocessor for computers, memory and interface chips. 

ICs are also used in computer networking, switching systems, communication sys-

tems, cars, airplanes and microwave ovens. ICs are even used in toys, hearing aids 

and implants for human. 

The widespread use of ICs is due to the revolution in IC technology. In the 

1960s, the IC technology has evolved from the integration of a few transistors to 

the integration of millions of transistors in Very Large Scale Integration (VLSI) 

chips today. According to Moore's Law [6], it was predicted that the number of 

transistors in a single IC will double in every 1.5 years. As long as a transistor 

becomes smaller, it becomes faster, conducts more electricity, and uses less power. 

The cost of producing each transistor goes down, and more of them can be packed 

on a chip. The technology of IC continues to scale down, to produce faster, more • 

complicated yet more powerful ICs. “ 

<- 1 

>f 



CHAPTER 1. INTRODUCTION 2 

With the rapid growth in the integration technology, it is necessary to bring in 

automation in the design of VLSI chips. As technology continues to scale down, 

and the IC designer can hardly transform a circuit description into a layout all 

manually. VLSI physical design automation provides efficient algorithms and data 

structures to find good arrangements of devices or efficient interconnect schemes 

which play a key role in improving the performance of a chip. In addition, efficient 

algorithms not only lead to fast tum-around time, but also permit designers to make 

iterative improvements to the layouts. 

In the following sections, the physical design cycle will be described briefly. 

After that, the floorplanning problem will be introduced and discussed. 

1.1 Physical Design 

Physical design is the process to transform a circuit description of an IC into a geo-

metric description (layout). Layout is created by converting each logic component 

(cells, macros, gates, transistors) into a geometric representation (specific shapes 

in multiple layers). Physical design is a very complicated process and therefore 

it is usually broken down into several stages, such as partitioning, floorplanning, 

placement, routing and compaction. The different stages of the physical design 

cycle are shown in Figure 1.1. The details of each stage will be discussed in this 

section. 

Partitioning 

In the partitioning stage, the whole circuit is decomposed into several finer sub-

circuits called blocks. The partitioning stage is necessary because a chip may 

actually be comprised of millions of transistors in order to achieve complicated 

functionalities. Huge circuits are hard to be managed efficiently and cannot be 



CHAPTER 1. INTRODUCTION 3 

Circuit Design 

r No 
Physical Partitioning - - - 入 

Design 丨 “ 
• I violation 

I • Floorplanning • 〈 fixed by re- 〉 

L Yes ^ x f j o o r p l a n n i n g j / / 

: I :: 
Placement | No 

No Routinq ‘ Can violation be 
g \ f i x e d by re-routing'?/ 

rou t ing^ . 

I Yes 

No 
4 Yes 

Compaction 

i........ 
. . . i . . . . . , 

i 
Extraction and 

Verification 

No 
< ^ l s timing o k ? " ^ - - — — ‘ — -丨 

.. _ 丨丨 I \ « 
t 

Fabrication . 

Figure 1.1: Physical design cycle 



CHAPTER 1. INTRODUCTION 4 

placed all at once, decomposition into finer sub-systems is thus a must in the de-

sign cycle. After partitioning, each sub-circuit can then be designed effectively, 

independently, and simultaneously so as to ease the design process. Factors like 

the block sizes, block dimensions and interconnections between different blocks 

should be taken into account. The output of paititioniiig is a set of blocks and the 

interconnections required between them. 

Floorplanning 

In the stage of floorplanning, each block is roughly positioned on the chip with 

the objective to optimize the circuit size and performance according to the circuit 

specification. The decisions on block shapes and pin positions are made in this 

stage. Besides the circuit size, many other important aspects are also taken into 

account, such as the block dimensions and overall delay. 

Placement 

During placement, the objective is to find a minimum area arrangement for the 

blocks that allows completion of interconnections between the blocks, while meet-

ing the performance constraints. The blocks are exactly positioned on the chip. 

The difference between floorplanning and placement is that floorplanning needs to 

decide block shapes because block dimensions are to be determined but in place-

ment, block dimensions are known. Floorplanning and placement are very crucial 

in the overall physical design cycle. The overall quality of the layout, in terms of 

area and performance is mainly determined in floorplanning and placement. 

Routing 

During routing, the interconnections between blocks are completed according to 

the specified netlist A router needs to complete all circuit connections on the 



CHAPTER 1. INTRODUCTION 5 

active layers and the metal layers. On the active layers, the routing space, i.e., 

the space not occupied by the blocks is partitioned into channels and switchboxes. 

Routing is done in two phases. They are global routing and detailed routing. 

1. Global Routing: This is a step to plan different routes from a global point 

of view. In this step, a list of routing regions is assigned to each net without 

specifying the actual routing layout. It is a rough plan to check whether 

completion of all interconnections is possible. 

2. Detailed Routing: This is a step to find actual geometric layout of each net 

within the assigned routing regions. After detailed routing, the geometric 

layouts of all the nets will be known. 

If some of the connections are not able to be routed, the rip-up and re-route 

technique will be used. Some of the routed connections are removed and then 

re-routed in a different order. If the problem cannot be solved by this technique, 

engineers may need to go back to the earlier design phases in the physical design 

cycle, or even to the logic design step and start the whole process all over again. 

Compaction 

After the routing stage, the layout is functionally completed. To reduce cost, the 

layout needs to be as small as possible. In the compaction stage, a layout is com-

pressed from different directions in order to reduce the total area without violating 

any design rules. By minimizing the area of the chip, one can reduce the cost of 

manufacturing as more chips can be produced on one wafer. 

Extraction and Verification 

In this stage, the layout is verified. The first process is Design Rule Checking. . 

All the geometric patterns are verified to ensure that they meet the design rules • 



CHAPTER 1. INTRODUCTION 6 

imposed by the fabrication process. After checking the layout for design rule vi-

olations and removing the design mle violations, the functionality of the layout is 

verified by Circuit Extraction that generates a circuit representation from the lay-

out. In the process of Layout Versus Schematics (LVS) verification, the extracted 

description is compared with the original circuit description to verify its correct-

ness. In the process of Performance Verification, accurate calculation of the timing 

of each component, including interconnection is done based on the values of the 

resistances and capacitances that are computed from the extracted geometric in-

formation. In the process of Reliability Verification, the reliability aspects of the 

layout are checked based on the extracted information to ensure that the layout 

will not fail due to electro-migration, self-heating and other effects. If any prob-

lem is found, engineers may need to go back, to the earlier designing steps to fix 

the problem. 

1.2 Floorplanning 

Floorplanning is a crucial step in the early design phase because good planning can 

avoid unnecessary iterations in the design cycle. In the floorplanning phase, the 

position and shape of each block are planned to optimize circuit performance. The 

input to this phase is a set of blocks, the area of each block, the possible shapes 

of each block, the number of terminals of each block and the interconnections 

between the blocks. There are two kinds of blocks. Some blocks' shapes are 

known and cannot be changed. They are called hard blocks. The other kind of 

blocks for which shapes are yet to be determined are called soft blocks. A formal 

definition of the floorplanning problem is given as follows: 

Given a set o f " blocks {b\,h,…,h), where each block bj is associated with 

an area Aj, together with two aspect ratio bounds r j and rf such that r{ <h i /w/ < rf , 

where hi and Wi is the height and width of block hi. The output of the problem is the 



CHAPTER 1. INTRODUCTION 7 

X- and v-coordinates and the dimension (/?,•，of each block bi. There should be 

no overlapping between blocks, and the circuit performance should be optimized. 

To optimize circuit performance，there are some objectives that need to be 

considered in floorplanning. In this section, some floorplanning objectives and 

some common approaches adopted today to solve the floorplanning problem will 

be presented. 

1.2.1 Floorplanning Objectives 

There are several objectives to be optimized in floorplanning, including the total 

chip area, the total wire length, the critical path delay etc. 

Chip Area 

Minimizing chip area implies minimizing wire length and reducing circuit delay. 

Area minimization is one of the most commonly adopted objectives. 

Total Wire Length 

Another important objective is to minimize the total wire length. To reduce the 

production cost, the total wire length is minimized so as to use shorter wires to 

connect blocks. Besides, minimizing the total wire length is good for timing. 

Delay 

111 some cases, minimizing the total wire length is not enough. Timing is an im-

portant issue. To optimize the final circuit performance, the delay on the critical 

path should be minimized. 



CHAPTER 1. INTRODUCTION 8 

Routability 

Routability refers to the possibility of completing all the connections. A good 

floorplan solution should be a solution with high routability because enhancing 

the routability of a floorplan means to reduce the chance of encountering routing 

problems in the downstream designing steps. 

Others 

There are still some other objectives in floorplanning，like minimizing power con-

sumption, minimizing heat dissipation, etc. In our work, we focus on the fixed-

outline bus-driven floorplanning problem by arranging the blocks on the same bus 

in such a way that bus routing can be done effectively. 

1.2.2 Common Approaches 

Much work has been done on floorplan representations. Floorplans can be classi-

fied into three main categories: slicing [10][11][12], non-slicing [13][14][15][16][17] 

[18][19], and mosaic [21][23][22][24] in Figure 1.2. 

. 

(a) Slicing (b) Non-slicing (c) Mosaic 

Figure 1.2: Examples of the three main kinds of floorplans. 

In slicing structure, a floorplan can be obtained by recursively dividing a rect-

angle into smaller rectangles using a horizontal or a vertical cut. normalized Pol-

ish expression [11] is a widely adopted slicing floorplan representation. However, 



CHAPTER 1. INTRODUCTION 9 

most of the real designs are not in slicing structure. Thus slicing representation is 

not general enough. 

A }wn-slicing^\ooYphn is a floorplan that is not necessarily slicing (Figure 1.2(b)). 

It is the most general kind of floorplans. Much work has been done on non-slicing 

floorplan representation, e.g., B*-Tree [13], 0-Tree [14], sequence pair [17], BSG 

[19], and Transitive Closure Graph [20]. 

Mosaic floorplan represents a new class of packing structure. Mosaic floor-

plan is similar to non-slicing floorplan except that there is no empty room in the 

floorplan (Figure 1.2(c)). Each module corner is formed by a T-junction (no +-

junction), except those at the four corners of the floorplan. • 

The floorplanning problem is proved to be NP-compIete. Several research ex-

plored floorplanning algorithms [25][31], including five categories: (1) constraint 

based approach [26], (2) integer programming based approach [25], (3) rectangu-

lar dualization based approach [27], (4) hierarchical tree based approach [28], (5) 

iterative approaches [35]. In constraint based approach, a floorplan of optimal area 

under a given set of horizontal and vertical topological (ordering) constraints. In 

integer programming based approach, floorplanning problem is modeled as a set of 

linear equations with 0/1 integer variables. Overlap constraints and routability con-

straints are considered. In rectangular dualization based approach, floorplanning 

problem is modeled by converting a partition graph into its rectangular dual. In hi-

erarchical tree based approach, a floorplan is represented by a tree generated by us-

ing top-down partitioning or bottom-up clustering method. In iterative approaches, 

it starts from an initial floorplan solution, and performs a series of perturbations 

on candidate solution to search a better solution until no more improvement can be 

achieved. Later on, some timing-driven floorplanning approaches were proposed . 

to solve the performance problems [29][30]. In the following paragraphs, analyti- -

t 



CHAPTER 1. INTRODUCTION 10 

cal approach, genetic algorithm and simulated annealing will be described briefly. 

The first one is an integer programming based approach. The second one and the 

third one are iterative approaches. 

Analytical Approach 

In [32], the floorplanning problem is formulated as a mixed integer linear program 

(MILP), where all the constraints are linear functions, the objective function is a 

linear function, and the variables are real numbers or integers. However, the run 

time to solve the MILP is exponential to the number of variables and equations. 

MILP is also an NP-complete problem. Thus, it is not good to use this approach to 

solve problems of large scale. In [33], the aspect ratios of the blocks are handled 

in an indirect way and a convex formulation is proposed to reduce the number of 

variables and constraints used. 

Genetic Algorithm 

Genetic algorithm [34][35] is a stochastic searching approach to solve NP-complete 

problems. It belongs to the larger class of evolutionary algorithms, which gener-

ates solutions to optimization problems using techniques inspired by natural evo-

lution, such as inheritance, mutation, selection, and crossover. The process starts 

with a set of randomly generated initial solutions named population. In each gen-

eration, the fitness of every solution in the population is evaluated. Multiple solu-

tions are stochastically selected from the current population based on their fitness, 

and modified by using two types of genetic operators, mutation and crossover, to 

form a new population. Mutation means modifying one solution by applying a 

small change to it. Crossover means forming a new solution by re-combing two 

solutions in the population. The new population is then used in the next iteration of 

the algorithm. Usually, the algorithm terminates when either a maximum number 



CHAPTER 1. INTRODUCTION 11 

of generations has been produced, or a satisfactory fitness level has been reached 

for the population. A pseudo code of the general genetic algorithm approach is 

described in Figure 1.3. 

GENETIC-ALGORITHM (P, Rm) 

1 X — {Xl , X2 , … ， X p } 

2 WHILE stopping criteria not met 

3 Knew…中 

4 WHILE number of children created < P x R c 

5 select two solutions Xj and xj from X 

6 AV,e,v ^ crossover {x\, xj) “ 

7 ^new ^ ^iiew U {X/jew} 

8 END WHILE 

9 select P solutions from X U Z腳， a n d call it X 

10 WHILE number of children mutated < P x 

11 select a solution x/、- from X 

12 卜 mutate (x^) 

ew \ 

14 END WHILE 

15 X i^new 

16 END WHILE 

17 RETURN the best solution in X 

Figure 1.3: Pseudo code of the genetic algorithm. 



CHAPTER 1. INTRODUCTION 12 

Simulated Annealing (SA) 

SA is another heuristic searching approach to solve NP-complete problems and it 

belongs to the probabilistic and iterative class of algorithms. The authors of [36] 

proposed a SA algorithm to find the equilibrium configuration of a collection of 

atoms at a given temperature. The authors of [37] then proposed using SA as an 

optimization tool. After that, the authors of [38] suggested that SA can be used as 

a general approach for different global optimization problems. It is widely used to 

solve the floorplanning problem, such as in [17][13][22][39][40]. 

The name and inspiration of SA come from annealing in metallurgy, a tech-

nique involving heating and controlled cooling of a material to increase the size of 

its crystals and reduce their defects. The heat excites the atoms from their initial 

positions (a local minimum of the internal energy) and makes them wander ran-

domly through states of higher energy. The slow cooling gives them more chances 

of finding configurations with lower internal energy than the initial one. 

By analogy with this physical process, each iteration of the SA algorithm re-

places the current solution by a random "nearby" solution, chosen with a prob-

ability that depends both on the difference between the corresponding function 

values and also on a global parameter t (called the temperature), that is gradually 

decreased during the process. The dependency is such that the current solution 

changes almost randomly when t is large, but increasingly "downhill" as t goes to 

zero. The allowance for "uphill" moves saves the method from getting stucked at 

the local optimum. 

In a SA based floorplan'ner, each floorplan solution s represented by a repre-

sentation (e.g., sequence pair representation, B*-tree, etc.) of the search space is 

analogous to a state of a physical system, and the cost function f , to be minimized 

is analogous to the internal energy of the system. The cost function may take area, 

wire length, etc. into consideration to evaluate the quality of a candidate floorplan 



CHAPTER 1. INTRODUCTION 13 

solution. The goal is to get a floorplan solution with the minimum possible cost 

starting from an arbitrary initial solution. SA starts with an initial solution so, and 

an initial temperature /()• In each iteration, the candidate solution is changed a little 

and is evaluated by the cost function fs. If the cost of the new solution is less than 

that of the old one, the new solution is accepted. Otherwise, the new solution is 

accepted according to a probability depending both on the difference between the 

cost function values and also on the temperature t. The temperature t will be low-

ered at a cooling rate c. Finally, the process will terminate when the temperature 

is below a threshold tu. The pseudo code is shown in Figure 1.4. 

SIMULATED-ANNEALING { I T E R , � c ) 

1 ‘？卜.90 

2 t ^ t^ 

3 WHILE t > tu 

4 FOR i from 1 to ITER 

5 s„cw move {s) 

6 A/ cost {s„ew) - cost is) 

7 r f- random number between 0 to 1 

8 IF A/ < 0 OR r < e x p ( - M / / n 

9 S i~ ^new 

10 END IF 

11 END FOR 

12 t txc 

13 END WHILE 

14 RETURN 5 

Figure 1.4: Pseudo code of SA. 



CHAPTER 1. INTRODUCTION 14 

1.3 Motivations and Contributions 

In the deep sub-micron era, the number of transistors and interconnections are 

growing rapidly in VLSI systems. Wires are becoming longer and denser. More 

routing space is needed to ensure design convergence. Bus is a collection of wires 

to carry a set of signals among different modules. As the complexity of chip design 

increases, bus routing becomes more and more important. If we do not carefully 

plan the routes of the buses and reserve sufficient space for them in the layout, 

there will be a high chance of having a lot of unroutable buses. In order to ease 

bus routing and avoid unnecessary iterations in the design cycle, we incorporate 

bus planning in the early designing phase. This is our motivation to solve the 

fixed-outline bus-driven floorplanning problem. 

In many previous works [1] [2] [3] [4] [5]，bus-driven floorplanning aims 

mostly at minimizing the chip area and the total bus length. However, none of 

these works considers fixed-outline constraint and wire length. And in most of 

those works, buses are assumed to be connected to the centers of their correspond-

ing blocks [1] [2] [3] [4] while in reality, bus pins are on the block boundaries 

and it is thus less accurate to connect buses to the block center in estimating bus 

length. Besides, we use general bus shapes to allow more flexible bus shapes and 

more flexible bus bending positions. We also improve the performance to give a 

solution with shorter total bus length. 

In this thesis, we solve the fixed-outline bus-driven floorplanning problem with 

an objective to minimize the total bus length and interconnect cost. In the first 

approach, we focus on the bus length minimization problem. Instead of adding up 

all the bus length in the cost function of the SA process, we handle the bus length 

minimization problem globally in a more sophisticated way by using a bus-driven 

partitioning step. In this step, min-cut partitioning is performed recursively to 

reduce bus length. At the same time, we use a more accurate estimation algorithm 



CHAPTER 1. INTRODUCTION 15 

that connects buses to the block boundaries to estimate bus length. We can achieve 

shorter bus length on average by using this approach. Experimental results show 

that we can improve over the most closely related previous work [4] in terms of 

bus length, running time and dead space. Besides, we also improve over a most 

recent work [5] in terms of bus length on average. 

In the second approach, we focus on the bus routability problem. In all the pre-

vious works [1] [2] [3] [4] [5], for the solutions with infeasible buses in some iter-

ations of the SA process, a very simple method is used to handle it, that is, adding 

penalty to the cost function. Different from them, we handle the bus routability 

problem in a more sophisticated manner to increase the searching space and give 

more flexibility by changing the bus shape and the positions of the bus bendings. 

We present a floorplanner that can give a fixed-outline floorplanning solution in-

cluding bus route that minimizes bus length, number of extra vias and interconnect 

cost. Our goal is to route all the bus components successfully in each iteration of 

the SA process of this floorplanner. L-shape bus component is used to route the 

buses with conflicts with other bus components. Experimental results show that we 

also improve over the most recent work [5] in terms of bus length and successful 

rate on average. Besides, we can improve over our first floorplanner in Chapter 3 

and the modified floorplanner of [4] in terms of both bus length, running time and 

successful rate. 

1.4 Organization of the Thesis 

The rest of this thesis is organized as follows. After giving a brief introduction 

to the background information in this chapter, a literature review on bus-driven 

floorplanning will be given in Chapter 2. In Chapter 3，we propose a method to • 

solve the fixed-outline bus-driven floorplanning problem. After that, a method to . 

solve fixed-outline bus-driven floorplanning with L-shape bus will be presented in ‘ 



CHAPTER 1. INTRODUCTION 6 

Chapter 4. Finally, a conclusion will be presented in Chapter 5. 

• End of chapter. 



Chapter 2 

Literature Review on BDF 

Bus-driven floorplanning (BDF) considers bus assignment during floorplanning. 

In the BDF problem, we are given the following: 

1. A set of blocks and each block has an area and an aspect ratio bound; 

2. A set of buses and each bus has a width and a bus net; 

We need to decide the position of each block and layout the buses on some 

metal layers. No overlapping between any two blocks and between any two buses 

on the same layer are allowed. The objective is to minimize chip area and the total 

bus area. 

Eight terminologies related to BDF are given in Table 2. 

2.1 Zero-Bend BDF 

2.1.1 BDF Using the Sequence-Pair Representation 

The work [1] is the first piece of work on BDF. In this paper, the block information 

and bus information are given. The goal is to decide the position of each block 

. 17 ‘ 

f 



CHAPTER 2. LITERATURE REVIEW ON BDF 18 

Table 2.1: Terminologies for BDF 

Terminology Definition 

Blocks A whole circuit is partitioned into several sub-circuits in the 

partitioning step of the Physical Design cycle. Each sub-

circuit is called a block. 

Buses A bus is a collection of wires, which can be used to carry 

signals among different blocks. Buses are of different 

widths. 

Bus Pins Pins for connect buses to blocks. 

I/O pins Pins for chip's input and output. 

Nets Each net connects several different blocks and I/O pins. 

Netlist A list of nets. 

Vias A via is a small opening in an insulating oxide layer that 

allows a conductive connection between different layers. 

Routability Routability refers to the possibility of completing all the 

connections between blocks pins. 

and the position of each bus. No overlapping between blocks and no overlapping 

between buses on the same layer are allowed. The objective is to minimize the 

chip area and the total bus area. The authors in this paper assume that there are 

two metal layers for bus routing, one horizontal and one vertical. 

The approach is based on SA and the sequence-pair fioorplan representation. 

They derived feasibility conditions on sequence pairs that give feasible BDF solu-

tions by analyzing the relationship between bus ordering and block ordering in a 

floorplan. 



CHAPTER 2. LITERATURE REVIEW ON BDF 19 

The necessary condition on block ordering of feasible horizontal and vertical 

bus is given as follows. If the blocks of a bus violate block ordering in the sequence 

pair, the bus cannot be assigned. 

Block Ordering Given a sequence pair (X,Y) and a bus u = In,…,bk, if w is fea-

sible, then the ordering of the k blocks should be either the same or reverse 

in the two sequences X and Y. Furthermore if the k blocks appear in the 

same order in both X and Y，the orientation of i/ is horizontal; otherwise u is 

vertical. 

If there is more than one bus, bus ordering need to be determined to route buses 

one by one and remove infeasible buses if needed. The bus ordering is influenced 

by the sequence pair. Four cases for bus ordering between two buses are derived. 

Suppose that the buses are horizontal, then there are totally four cases as illustrated 

in Figure 2.1. In case 1, bus it is above bus v and in case 2，bus u is below bus v. In 

case 3, the two buses cannot be routed at the same time. In case 4, the two buses 

simply do not have any ordering between them, p and q are subsequence pair for 

the blocks related to bus v and v. 

As shown in case 3 in Figure 2.1, some buses cannot be routed successfully at 

the same time. A bus ordering constraint graph is constructed to detect infeasible 

buses. In this graph, each vertex represents a bus. If a block on bus ii is above a 

block on bus v, one edge is added from u to v in the graph. After constructing the 

graph, cycle detecting is done on the graph. If any cycle exists, it means that there 

is at least one infeasible bus. A node deleting algorithm is proposed to remove 

infeasible buses. In this algorithm, a node with maximum degree is deleted. After 

infeasible buses are removed and a bus ordering for the feasible buses is obtained, 

the coordinates of blocks and buses are calculated. In the cost function, the chip . 

area, total bus area and the number of infeasible buses are considered. •• 

f 



CHAPTER 2. LITERATURE REVIEW ON BDF 20 

subsequence Pair SubSequence Pc^r 
r - j^ (D A E B F C, A D B E C F) —— (A C D B, C A B D) 

P | I H A | M | B | F | c | 匕 J / I P | A K | � | B| 

1 r e i \ ^ 少 ^ ^ \ , / 
D 4 十 . ： 丨 q | 4 r > | B | F | c | ~ ] A ^ 「 D q| |A|B|::: 

^又 
Case 1 Case 3 

subsequence Pair 巧 P g r 
(ADBCE’DABEC) (A D B E C, A D B E C) 

d J l j J - E P U h - l s l c M n p|aI IbI |c" 

\ 1 X A D 讨 e | 7 ] X I , i 
[ ~ 7 ~ | I I I q|r I aI bI - q| aI :: I b| , |c 

Case 2 Case 4 

Figure 2.1: Cases of relative positions of two horizontal buses. 

2.1.2 Using B*-Tree and Fast SA 

In [2], the problem formulation is the same as that in [1]. The feasibility condi-

tions of the B*-tree representation with bus constraints are explored and a BDF 

algorithm is developed based on the conditions and fast SA (Fast-SA). Three B*-

tree properties for bus routing constraints are explored. 

Property 1 In a B*-tree, the nodes in a left-skewed subtree may satisfy a horizon-

tal bus constraint, i.e., the blocks can be aligned to allow a horizontal bus to 

pass through those blocks. 

For a B*-tree, the left child nj of a node m represents the lowest adjacent block bj, 

on the right side of block b；. Therefore, the blocks in a left-skewed subtree have 

horizontal relationships. 

Property 2 By inserting dummy blocks of appropriate heights, it is guaranteed 

I 



CHAPTER 2. LITERATURE REVIEW ON BDF 21 

that the nodes in a left-skewed subtree can satisfy the horizontal bus con-

straint. 

Blocks are compacted to the bottom and left after packing. Therefore, the blocks 

associated with a left-skewed subtree of a B*-tree may not be aligned horizontally 

if the y-coordinates of some blocks are too small. To align those blocks, dummy 

blocks are inserted below them. The heights of the dummy blocks can be adjusted 

to satisfy the horizontal bus constraint. 

Property 3 In a B*-tree, the nodes in a right-skewed subtree can guarantee the 

feasibility of a vertical bus. . 

For a B*-tree, the right child of a node w/ represents the closest upper block 

bk which has the same x-coordinate as block bi. Therefore, the blocks in a right-

skewed subtree are aligned with their left boundary. It is concluded that the nodes 

in a right-skewed subtree can guarantee the feasibility of a vertical bus if we as-

sume that the minimum width of all the blocks on the bus net is larger than the 

width of the bus. 

A B*-tree with a twisted-bus structure will be discarded during solution per-

turbation in the Fast-SA. To avoid bus overlapping, dummy blocks are inserted. 

B*-tree is first initialized as a complete binary tree at the beginning of the Fast-SA. 

In each iteration of the Fast-SA, after perturbation and non-dummy block packing, 

the bus structure in the B*-tree is checked. If there exists a twisted-bus structure 

in the B*-tree, the B*-tree is discarded and perturbed again. Otherwise, dummy 

blocks are inserted to appropriate nodes and the heights of the dummy blocks are 

adjusted to satisfy the horizontal bus constraints and to avoid bus overlapping. 

Then, the B*-tree with dummy blocks is packed again. Filially, the location of 

each bus is decided. In the cost function, the chip area, total bus area and number 

of infeasible buses are considered. 

t 



CHAPTER 2. LITERATURE REVIEW ON BDF 22 

In addition, the method is extended to multi-bend bus solution. Firstly, the 

blocks on a bus is divided into several groups. Each group of the blocks forms 

a segment of the bus. After deciding the location of each segment, the length 

of each segment is simply extended to connect all segments to form a bus. The 

grouping of the blocks and the number of bendings are decided by the perturbation 

steps in Fast-SA. In this scenario, besides the chip area, the total bus area and the 

number ofinfeasible buses, the number of infeasible segments and the number of 

bus bendings are considered in the cost function. 

2.2 Two-Bend BDF 

In [3], the problem formulation is not exactly the same as that in [1]. Different 

from other previous work, the authors in the paper allow 0-bend bus, 1-bend bus 

and 2-bend bus. This method is based on a SA framework and the sequence-pair 

floorplan representation is used. The necessary conditions for feasible buses are 

derived, for which only 0-bend, 1-bend, and 2-bend are allowed. The details are 

given as follows. 

0-Bend Bus Checking A 0-bend bus is actually a horizontal bus or a vertical 

bus. Given a sequence pair and a bus ii,- that needs to go through blocks in B , = 

{ b i , b 2 , . " M , those blocks in J5/ are extracted from the sequence pair to form 

two extracted sequences without altering their relative positions, spi is used to 

represent the subsequences extracted from the sequence pair for bus z//. For a bus 

Hi to be 0-bend, the orders of the blocks in the two sequences of spi have to be 

either the same (horizontal bus) or reversed (vertical bus). For example, given a 

sequence pair (DEFABC,ABCDEF) and two buses iio 二 A,B,C and = C,F , the 

extracted spo is {ABC,ABC) and sp\ is (FC,CF). Therefore, uo can be realized 

using a 0-bend horizontal bus while ii\ can be realized using a 0-bend vertical bus. 



CHAPTER 2 LITERATURE REVIEW ON BDF 23 

This example is illustrated in Figure 22. 

E 
D | F 

A � l y i ^ 

Figure 2.2: Two valid 0-bend buses, {A, 8 , 0 } and {C,F}. 

1-Bend Bus Checking 1-bend bus is also called L-shaped bus. For a bus to be 

1-bend, a necessary condition is that it consists of one vertical component and 

one horizontal component. This can be checked easily by identifying the longest 

common subsequence (LCS) in spj first, and then check if the remaining blocks 

(after removing those in LCS) in the two sequences are in reversed order (vertical 

component). 

This is possible because if taking the LCS as the horizontal component fails to 

form a valid L-shaped bus, taking any other shorter subsequences will also fail. If 

there exist more than one LCS, it has been shown that picking either one of them 

will work. 

Note that even if a bus is consisted of one vertical component and one horizon-

tal component only, there are still several possibilities. For example, the blocks 

may be in T-shape or +-shape, however, they are not considered in the approach 

of [3] . The authors claim that for some cases, a T-shaped bus can be changed into 

a valid 2-bend bus as shown in Figure 2.3. T-shaped buses that cannot be changed 

into a valid 2-bend bus are treated as invalid buses in [3]. 

2-Bend Bus Checking If the bus is found to be neither 0-bend nor 1-bend, it 

will be checked for 2-bend. There are several kinds of 2-bend buses, Z-shape 

(as shown in the upper right part of Figure 2.4), mirrored Z-shape (as shown in . 



CHAPTBR2 LJraiMTmEREWEWONBDF 24 

A C I A B I c 

Figure 2.3: An example showing a T-shaped bus being able to change into a valid 

2-bend bus. 

the lower right part of Figure 2.4), C-shape (as shown in the lower left part of 

Figure 2.4), or mirrored C-shape (as shown in the upper left part of Figure 2.4). 

There will be two horizontal (vertical) components and one vertical (horizontal) 

component in the bus, denoted by HVH and VHV. 

For the case of HVH, the vertical component of the bus will be first identified. 

Let the extracted sequence pair spi of bus be (a ,p) , where a and p are strings 

of the block names. The vertical component can be found by finding the LCS in 

(a , p^), where (3尺 denotes the reverse of the string (3. The first block and the last 

block of the LCS will be kept for horizontal component checking. 

After identifying the vertical component, the remaining blocks of the bus will 

be classified into different relationships with the vertical component. The relation-

ships can be deduced from the sequence pair. There are totally eight relationships: 

1) Upper, 2) UpperLeft, 3) Left, 4) LowerLeft, 5) Lower, 6) LowerRight, 7)Right 

and 8)UpperRight. In order to form a valid shape, no blocks should be identified 

in certain relationships. For example, to form a mirrored Z-sliape，there should be 

no block on the upper-left and lower-right of the vertical component. Details are 

shown in Figure 2.4. • 

In each iteration of the SA process, the shape of a bus is first deduced by 

looking at the sequence pair of the floorplan. Whether there are buses that cannot 

be routed is then checked. The buses with conflicting constraints with other buses 

will be removed. A bus ordering between valid buses will be determined. The final 



CHAPTER 2. LITERATURE REVIEW ON BDF 25 

© e ] © ® 1 

：為 八 
y • 匚 ® @ J " 

① upper ® UpperRight Q "cirp^onent) 

0 Lower Q ) UpperLeft # ；̂̂卜“̂篮̂时。』恭。。门曰门七） 

G ) Left 0 LowerRight ( ) Components of H1 or H2 

0 Right ($> LowerLeft (::) Empty set 

Figure 2.4: The necessary conditions of the position sets to form a valid 2-bend 

shape. 

step is to realize the floorplan, i.e., obtaining the coordinates of the blocks and the 

buses. 

2.3 TCG-Based Multi-Bend BDF 

In [4], Transitive Closure Graph (TCG) representation is used. The problem for-

mulation is similar to that in [I] except that the authors in the paper address the 

BDF problem under the constraint that all bendings must occur at the blocks on 

the bus net. There is no limitation on the bus shape and the number of bendings 

f 



CHAPTER 2. LITERATURE REVIEW ON BDF 26 

as long as the above requirement on the bending positions is satisfied. A method 

to deal with placement constraints for bus routing in the TCG representation is 

proposed. 

2.3.1 Placement Constraints for Bus 

For each 0-bend horizontal (vertical) bus, they add a dummy block and some edges 

between related blocks into the vertical (horizontal) constraint graph. 

Take a horizontal bus B with width t and a bus net N as an example. In order 

to allow the bus to pass through all its blocks in the final flootplan，they need to 

maintain a relative relationship between the modules in the vertical direction, i.e., 

the vertical overlap of the modules has to be at least the bus width t. This can be 

done by adding constraint edges to the vertical constraint graph G^. 

A dummy module m^ of height t and zero width to represent bus B is first 

added to Gy. Some constraint edges between m^ and each nij in N are then added 

to Gv. In this case, the distance of w/'s lower right corner relative to m/s lower 

left comer must be in the range of [—/� + /,0]，so a pair of constraint edges are 

added Gy： 

1. An edge from mj to m,- with weight t - hi 

2. An edge f r o m t o n y with weight 0 

Similarly, for a vertical bus, a dummy module m^ of zero height and width t 

will be added to G". A pair of constraint edges will then be added between each 

rrii in N and m^ as follows. 

1. An edge from mj to "2/ with weight t - w/ 

2. An edge from mi to md with weight 0 



CHAPTER 2. LITERATURE REVIEW ON BDF 27 

Figure 2.5 shows the vertical constraint graph Gy after inserting the constraint 

edges. 

(my (m^ ( n ^ •. • 

Figure 2.5: Constraint edges added to Gv for a horizontal 0-bend bus. 

A multi-bend bus is formed by one or more 0-bend bus components. After de-

composing a multi-bend bus into a set of 0-bend bus components, the correspond-

ing sets of additional constraint edges for each component can be inserted into the 

constraint graphs as discussed in the previous paragraphs to align the blocks for the 

bus to pass through. Figure 2.6 shows a placement of four blocks and an L-shaped 

bus with two bus components, one horizontal and one vertical. The constraint 

graphs with the additional constraint edges are shown. 

^ " ^ T T i ' " 1 ( i ) © 
rrh I m 4 Gv 

Floorp 丨卯 

Gh 

Figure 2.6: An example of handling multi-bend buses. 

t 

J 



CHAPTER 2. LITERATURE REVIEW ON BDF 28 

2.3.2 Bus Ordering 

A proper bus order is needed to avoid bus overlapping. For some buses, their 

ordering can be deduced from the vertical constraint graph. 

Given a floorplan of n modules {mi,m2...m„} with constraint graphs G/ ,= 

(V,Eh) and G, = {V,Ey), the edges in Eh and 五•，representing the relative positions 

between the modules, may give a natural ordering between two buses B\ and Bj 

with bus nets N\ and N! respectively as follows: 

Case 1 B\ is on top of B^ when 

1. B\ and Bj are both horizontal bus components, and 

2. 3eij e Ev such that mj e N\ and m/ € N2. 

Case 2 B\ is on the left side of B2 when 

1. B\ and B2 are both vertical bus components, and 

2. 3eij e Eij such that trij e N\ and mj e M . 

Figure 2.7 shows an example in which a natural ordering can be deduced from 

the vertical constraint graph. In this example, the bus going through block m\ and 

m2 must be above that going through m4 and ms since "74 is required to be placed 

below m2. 

Floorplan Gv 

Figure 2.7: Two horizontal buses with a natural ordering deduced from the con-

straint edges. 



CHAPTER 2. LITERATURE REVIEW ON BDF 29 

For those bus pairs which do not have such natural orderings, their orderings 

is assigned explicitly if they may overlap. There are only two cases that two bus 

components b[ and b: may overlap: 

Case 1 Â i nA^2 ^ 0, i.e., b\ and b: share at least one module. 

Case 2 N\ nN2 = 0 and 3m/ € N\ and mj,mk G Nj or € N: and nij,m^ G N\ 

such that eji and e//： G Eh (or ep and e汝 6 E�’), i.e., the modules of b\ and b: 

interleave with each other in the x-direction (or;^-direction). 

In these two cases, an explicit bus ordering is imposed to prevent overlapping. 

Suppose t\ and t: are the widths of/?i and hi respectively and md\ and m^i are their 

corresponding dummy modules in the constraint graphs. An explicit bus ordering 

can be enforced as follows: 

1. When h\ and b: are both horizontal, an edge from to md2 with weight 

is added or an edge from m^a to m n̂ with weight t2 is added to Gy 

2. When b] and b) are both vertical, an edge from men to mj2 with weight t\ is 

added or an edge from w(/2 to m(/i with weight t2 is added to G/, 

Figure 2.8 shows an example of how bus overlapping can be prevented by 

imposing an explicit bus ordering. In this example, the overlapping between the 

two horizontal bus components is removed by adding an edge of weight t j from 

dummy node mdi to node m^i in Gy. 

The method is based on a SA framework. In each iteration of the SA pro-

cess, a pair of reduced constraint graphs are constructed. For each bus, a set of 

bus components is obtained by applying a modified minimum spanning tree algo-

rithm on the common graph that is constructed from the pair of reduced constraint 

graphs. Then, for each bus component, a dummy block and a set of constraint 

t 



CHAPTER 2. LITERATURE REVIEW ON BDF 30 

p s ^ ^ s L n 

[^纖 
— J H me ‘ 

m3 叫 _ J Gv 

Figure 2.8: Prevention of bus overlap by imposing explicit bus ordering. In this 

example, bi is connecting m\ and m^, and h is connecting m^ and ms. 

edges between dummy block and blocks in the bus component are added to the cor-

responding constraint graph to make sure that the bus component can pass through 

the blocks. After that, the bus feasibility is checked. If the bus is infeasible, 

the dummy block and corresponding edges will be deleted from the graph. After 

adding placement constraints for all the buses, a set of constraint edges between 

different dummy blocks are added to the corresponding graph to impose explicit 

bus ordering for those bus pairs which do not have natural orderings. Finally, a 

single source longest path algorithm is performed to determine the positions of the 

blocks and the buses. The cost function considers the chip area, the total bus area 

and the number of infeasible buses. 

At the end, a soft module adjustment process is done to minimize the total chip 

area. It is another SA process. In each iteration, a block on the critical path is 

chosen and its width or height is changed a little bit. 

2.4 Bus-Pin-Aware BDF 

In [5], the problem formulation is a little bit different compared with other previous 

works. Besides block information and bus information, the position of each bus 

. “ 



CHA P TER 2 LITERATURE REVIEW ON BDF 31 

pin is also given. The objective is to decide the position and orientation of the bus 

pins on each block and determine the routing path of each bus such that there is 

no overlapping between different bus on the same layer. The floorplanner needs to 

minimize the chip area and the total bus area. In the paper, it is assumed that the 

two metal layers for bus routing are unreserved layers. 

Wii et al. [5] considered the impacts of bus pins in their BDF algorithm. Bus 

bendings are not restricted to occur at only the blocks in the bus net. Diagonal con-

nection between different blocks is considered to make the bus shape more flexible. 

The number of vias is reduced by assigning the two components of a diagonal bus 

to the same layer. An algorithm is proposed to minimize the bus length deviation 

for the signal integrity issues. In addition, two bus length reduction algorithms to 

improve the total bus length are presented. In the first algorithm, the overlapping 

between different buses is eliminated when constructing minimum spanning trees. 

In the second algorithm, each horizontal (vertical) bus is moved towards the di-

rection with the maximum number of vertical (horizontal) buses intersecting with 

it. 

The method is based on a SA framework and the sequence pair representation 

is used. In each iteration of the SA, a modified Prim's algorithm is used to derive 

the bus routing topologies. In the modified Prim's algorithm, diagonal connection 

between different blocks and the capacity of each block are considered. The weight 

of each edge is derived from the distance between two blocks. The bus length is 

minimized by reducing the redundant parts in the bus routing topologies. The 

second step in each iteration is floorplan realization. This step is further broken 

down to three sub-steps, including bus ordering and coordinates determination, 

bus length reduction, and layer assignment. 

In the first sub-step, an ordering constraint graph (OCG) is first constructed to • 

determine the bus ordering. In OCG, each bus is represented by a vertex. The .. 



CHAPTER 2. LITERATURE REVIEW ON BDF 32 

ordering of any two buses is derived from the relative position of those blocks 

on the buses. If there are vertical constraints between those blocks, there will 

be vertical constraint between the corresponding buses and there will be an edge 

between the two buses. The bus ordering is determined by deleting vertices and 

their edges from the OCG iteratively. The vertices with zero out-degree and their 

corresponding edges are first removed from the OCG. However, some buses may 

conflict with other buses. In this scenario, there is no vertex with zero out-degree. 

One of the vertices with minimum out-degree is regarded as an infeasible bus and 

this vertex and its corresponding edges are deleted from the OCG. This process 

is repeated until all the vertices are deleted from the OCG. The ordering of the 

feasible buses is derived from the order in which they are removed from the OCG. 

After determining the bus ordering, the coordinates of each bus is calculated one 

by one according to the bus order. The coordinates of each horizontal (vertical) bus 

is = max{y/(x/)li = 1，2,…，人'}，where k is the number of blocks passed 

by the bus.少/(x/) is the 少(x)-coordinate of the block. They change the coordinates 

of blocks slightly if needed to make sure that the bus can pass through the blocks. 

In the second sub-step, to reduce the bus length, they move each horizontal 

(vertical) bus toward the direction with the largest number of vertical (horizontal) 

buses intersecting with it. In the third sub-step, a graph is first constructed, where 

each vertex represents a bus and there is an edge between two vertices if the two 

corresponding buses have overlapping with each other. A graph coloring algorithm 

is used to assign each bus to one of two metal layers. A vertex with maximum 

degree is assigned to layer L and all its neighbors are assigned to layer 2. Then 

starting from one of its neighbors, all its neighbors are assigned to layer 1. The 

process is repeated until all vertices are assigned to one of the two layers. If there 

is an odd cycle in the graph, some buses cannot be assigned by using the above two 

coloring algorithm. In this scenario, one of the corresponding buses are regarded 

- ” 



CHAPTER 2. LITERATURE REVIEW ON BDF 33 

as mfeasible. Therefore, not all the buses can be routed successfully in some cases. 

After the SA process, the orientation of each bus pin is detemiined and the 

bus length deviation is minimized based on the solution from the SA process. Bus 

length deviation of each bus Bj = {h\,h2,..,bk} is calculated as the sum of bus 

length deviations of each bus segment sj = { / � ， 1 } , y = 1,..., A： — 1 between two 

blocks. They summarize 24 general patterns for all possible bus shapes between 

any two blocks. For each general pattern, its bus length deviation can be calcu-

lated. The possible patterns can be obtained from the initial positions of the bus 

pins oil the blocks. They start from S] and choose the pattern with minimum ac-

cumulated deviation at block bi and determine the orientation of bus pin on block 

h\. The pattern with minimum accumulated deviation at block bj, j = 3,4,...,A： is 

then chosen and the orientation of the bus pins on each block is detemiined. 

At the end, a soft module adjustment process is done to minimize chip area. It 

is the same as the soft module adjustment in [4]. 

2.5 Summary 

In this chapter, the previous works on BDF are reviewed. All of the previous 

works [1] [2] [3] [4] [5] focus on minimizing the chip area and total bus length. 

On the bus routability problem, it was assumed that only 0-bend buses are al-

lowed [1] [2]. Later, other researchers [3] assumed only 0-bend buses, 1-bend 

buses and 2-bend buses. All these works explored the conditions for feasible bus 

routing on the floorplan representations they used, such as sequence pair and B*-

ti.ee representation. The authors of [4] explored methods that allow no limitation 

neither on bus shape nor on the number of bus bendings as long as the bendings 

occur at blocks on the corresponding buses. In [5], besides allowing no limitation • 

neither on bus shape nor on the number of bus bendings, the bus bendings are ., 

not restricted to occur at blocks on the corresponding buses. On the bus length ‘ 

f 



CHAPTER 2. LITERATURE REVIEW ON BDF 34 

minimization problem, no special method was explored to minimize bus length 

ill the beginning. Later, some researchers [4] [5] explored the modified minimum 

spanning tree construction algorithms to minimize bus length. 

• End of chapter. 



Chapter 3 

Fixed-Outline BDF 

3.1 Introduction 

Bus routing has become an important research topic as the interconnection of chips 

become increasingly congested. It would be favourable to consider bus routing in 

a floorplanner that minimizes chip area, interconnect cost and bus length. BDF 

considers bus assignment during floorplanning. 

The aim of our floorplanner is to give a fixed-outline floorplan solution includ-

ing bus routes that minimizes bus length and interconnect cost. We propose two 

steps to minimize bus length. Firstly, recursive bi-partitioning is used at the begin-

ning to handle the problem globally. We minimize the bus length by performing 

a min-cut partitioning. Secondly, we devise a modified minimum spanning tree 

(MST) algorithm to generate the topology of a bus to reduce the bus length. Ex-

perimental results show that we can improve over the most closely related previous 

work [4] in terms of bus length, mnning time and deadspace. Besides, we also im-

prove over another recent work [5] in terms of bus length on average. 

‘’ 35 

f 



CHAPTER 3. FIXED-OUTLINE BDF 36 

3.2 Problem Formulation 

In this fixed-outline BDF problem, we are given the following: 

1. A set of blocks and each block has an area and an aspect ratio bound 

2. A set of buses and each bus has a width and a bus net 

3. A set of nets 

4. A set of pins and each pin has coordinates 

5. Fixed outline JVxff 

The aim is to obtain a fixed-outline floorplan solution including bus routes that 

minimizes the bus length and interconnect cost. We need to decide the position 

of each block and layout the buses on two metal layers, one horizontal and one 

vertical. No overlapping between any two blocks and between any two buses on 

the same layer are allowed. Besides, in order to minimize the number of vias in 

the chip, all bendings of the buses can only occur on the blocks on the correspond-

ing bus nets [4]. One example is shown in Figure 3.1 to illustrate two possible 

BDF solutions. In this example, there are four blocks b],办2，办3,办4 and one bus B] 

connecting b\ and b^. The first BDF solution is shown in Figure 3.1(A). B\ has a 

bending on b: which does not belong to 5丨.Therefore it is not a feasible solution 

according to the problem definition. The second one is shown in Figure 3.1(B). 

is a horizontal bus and it is a feasible solution. 

3.3 The Overview of Our Approach 

An overview of our approach is given in Figure 3.2. Our approach is composed 

of four steps. The first step is partitioning. Blocks are partitioned recursively into 



CHAPTER 3. FIXED-OUTLINE BDF 37 

b2 l | r ^ b4 

b4 b2 

(A) (B) 

Figure 3.1: Examples of possible BDF solutions 

several groups and the result of this partitioning step is used as the initial can-

didate solution of the next floorplanning step. The second step is a SA process. 

The objective of this step is to find a floorplan solution with feasible bus routing, 

minimizing the bus length, chip area and wire length. In the third step, another an-

nealing process is used to handle the fixed-outline constraint based on the solution 

obtained in the second step. Finally, we layout the buses and decide the positions 

of the bus pins in the last step. The details are discussed in Section 3.4, Section 3.5, 

Section 3.6 and Section 3.7. 

3.4 Partitioning 

Both the block positions and bus topology affect the bus length. To minimize bus 

length, it will be favourable that all the blocks in the same bus net are close to each 

other. However, a block can be in several different bus nets. We use partitioning 

to handle this global bus connection problem. A bus-driven partitioning will first 

be performed to partition blocks into several groups according to the bus net infor-

mation. The result of this partitioning step is used as the initial candidate solution 

of the next floorplanning step. 

I 



CHAPTER 3. FIXED-OUTLINE BDF 38 

〔 s t a r t ) 

Partitioning 

I ： \ Floorplanning 
J * 1 with Bus 

Find Bus 
Routes 

Realization 
P ~ — L ~ I of Bus 

Move Routes 

Floorplan 
Realization 

^^terat ions 
N � " C p C 

Handle Fixed-
Outline Constraints 

I 

Bus Layout 

(腕) 

Figure 3.2: Overview of our approach 

3.4.1 The Overview of Partitioning 

In the partitioning step, blocks are partitioned level by level. In the first level, 

blocks are partitioned into two groups. One is on the left (lower) side and the other 

is on the right (upper) side. In the next level, each of the two groups are further 

partitioned into two groups. One is on the lower (left) side and the other is on the 

upper (right) side. The process is repeated until the number of blocks in each final 

group is less than a certain value. 

To partition a set of blocks into two groups, a hypergraph G is first built accord-

ing to the Exact Net-Weight Modeling [8] that maps bus length to cut cost of the 



CHAPTER 3. FIXED-OUTLINE BDF 39 

corresponding hypergraph. This is to guarantee that finding a min-cut of the hy-

pergraph is equivalent to minimizing the total bus length estimated using the half 

parameter wire length (HPWL). The details of building this type of hypergraph 

will be given in Section 3.4.2. The method hMetis [7] is then used to partition the 

hypergraph. The final result of this partitioning step is used as the initial candidate 

solution of the annealing process in the floorplanning step. i 

3.4.2 Building a Hypergraph G 

To partition a set of blocks into two groups, a hypergraph G is first built accord-

ing to the Exact Net-Weight Modeling [8] that maps bus length to cut cost of the 

corresponding hypergraph. Suppose that we want to partition a group of blocks 

by a vertical cut. The group of w blocks are packed in a region with 

a fixed width and height. Let A denote the region. Suppose that there is a bus 

B = {b\,b2,...,/yg} that has at least one of its q blocks in the set 

Let B\ = denote the set of j blocks in the set {Z?i,̂ 2,".，^n} and 

B2=B-B\ 二 , 办 I/}. The construction of the corresponding hypergraph G 

is given as follows. 

Vertices of the Hypergraph G 

Each block in the set corresponds to a vertex in G and the weight 

of a vertex is the area of the corresponding block. Two dummy vertices are added 

to G and the weight of each dummy vertex is zero. One dummy vertex bi is fixed 

'Our floorplanner is different from many other partitioning-based floorplanners as follows. By 

the end of the partitioning step, we get several groups of blocks. We will then merge all the groups 

back to get an initial candidate solution for the subsequent B D F process, instead of treating each 

group separately. It is important for us to treat all the partitions simultaneously since we are doing ‘ 

BDF and need to make sure that all the buses are routable at the end while the buses may cross •‘ 

between several partitions. ‘ 



CHAPTER 3. FIXED-OUTLINE BDF 40 

on the left (upper) part of the region and the other dummy vertex b,. is fixed on the 

right (lower) part of the region. Their positions are at the center of the left sub-

region 67 and the center of the right sub-region c,. respectively, b/ and b,. are used 

to discriminate the left sub-group and the right sub-group of A. After partitioning 

(using hMetis), all the blocks that are in the same group as bi belong to the left 

(upper) part of the region and all the blocks that are in the same group as br belong 

to the right (lower) part of the region. 

Hyperedges of the Hypergraph G 

According to the Exact Net-Weight Modeling, each bus net will be represented by 

two hyperedges E\ and Ei in G. Assume that all the blocks in a region are at the 

center of the region. Each region is divided evenly because we want to keep two 

sub-groups balanced in terms of area. 

An example is given to show how to construct E\ and Ei in Figure 3.3. In the 

example, we assume that j = 2,q =成’ that is, B = {1,2,3,4}, B] = {1,2} and 

B2 = {3A}. • 

The first hyperedge E\ corresponding to the bus net B is composed of the 

blocks in B\ and /；/ (or hr). Suppose that Wi is the HPWL value for bus B when 

we assume that all the blocks in Bi are at q (the center of the left part of region 

A) as shown in Figure 3.3(a). Suppose that W’- is the HPWL value for bus B when 

we assume that all the blocks in Bi are at c,. (the center of the right part of region 

A) as shown in Figure 3.3(b). If W! <= W,.’ hyperedge Ei is composed by the 

blocks in Bi and bi. Otherwise, hyperedge E] is composed by the blocks in B[ 

and br. The weight ofEi = max{Wu W,-} - min{Wi, Wr}. For the example in Fig-

ure 3.3, Wi < Wr, the first hyperedge E[ = {1,2,^/}. The weight of E\ is defined 

as Wr — Wi. 

The second hyperedge E2 corresponding to B is composed of the blocks in B], 



CHAPTER 3. FIXED-OUTLINE BDF 41 

1 

r t i " ^ 
b . f - 1 f - Ob. 
2 I 

i 
— • " 4 (a) HPWL = W, 

I — i 1 i 1 
. J . 
i ！ i 
i 1 ‘ 1 

b 丨〇 j I ~ i tv 
1 ： 2 1 I 
I ： 
i I 

——j 
(b) HPWL = W, E, = { b , , 1 , 2 } 

• 3 weight of E , = W,-Wi I j 
j j i 
i I j 

； r: : •： 
！ I ！ 
！ — 1 - i _ ： E2 = {1 ,2 } 
! _ . � • ！ weight of E2 = W„-W, 

4 (c) HPWL = W„ 

Figure 3.3: An example of constructing 五 i and 五 2 

書3 

b,© I I 

‘ 4 ‘ 
HPWL=W, HPWL = W, 

cut = weight of Ei 

Figure 3.4: An example of cut 

Suppose that W/,. is the HPWL value for bus B when we assume that some blocks 

in B] are at the position c! while the others are at Cr as shown in Figure 3.3(c). 



CHAPTER 3. FIXED-OUTLINE BDF 42 

The weight of £2 is defined as Wir - max{ff,., Wi]. For the example in Figure 3.3, 

£2 = {1,2} and W! < Wr, so the weight of £2 is W!丨.-JV,： 

By constructing two hyperedges for each bus net, we can map bus length to 

cut cost. For each bus，we can guarantee that HPWL = min{JV!具} + cut. Take 

figure 3.4 as an example. HPWL is Wr and the cut cost is the weight o i E \ , that 

is, Wr — Wi. So we can obtain the below equations. Since W/ and W,. are constants 

for a given partition, it is guaranteed that finding a min-cut of the hypergraph is 

equivalent to minimizing the total bus length estimated using HPWL. 

mm{Wi, Wr} + cut = Wi + Wr-Wi==Wr= HPWL 

After the hypergraph is constructed, the method hMetis is used to partition 

the hypergraph. Blocks are partitioned into two groups. All the blocks that are 

in the same group as bi belong to the left (upper) part of the partition. All the 

blocks that are in the same group as b,. belong to the right (lower) part of the 

partition. The process is repeated until the number of blocks in each group is 

less than a certain value. In the end of the partitioning step, we obtain several 

groups of blocks with the vertical and horizontal constraints between them. For 

example, some groups are on the left side of other groups. The final result of 

this partitioning step will be used as an initial candidate solution of the annealing 

process in the floorplanning step. All the blocks are packed according to their 

horizontal and vertical constraints. Besides, we assume that the blocks in each 

group are packed horizontally since the initial position of each block in the same 

group does not affect the bus length a lot. We then use a SA process starting with 

that initial solution of all thQ blocks in each group being packed horizontally to 

search for a better solution. 



CHAPTER 3. FIXED-OUTLINE BDF 43 

3.5 Floorplanning with Bus Routing 

The floorplanning step is done by SA. The objective of this step is to find a floor-

plan solution with feasible bus routing and minimizing the bus length, chip area 

and wire length. In each iteration of this process, the topology of each bus is gen-

erated by the method to be described in Section 3.5.1. According to the bus topol-

ogy generated, we obtain several bus components. The bus routing constraints (i.e. 

aligning blocks to allow buses to pass through them and assigning bus ordering to 

avoid bus overlapping) are handled by adding a dummy block and some constraint 

edges into the horizontal constraint graph G/； or the vertical constraint graph Gy 

for each bus component. Details will be presented in Section 3.5.2. Finally, the 

coordinates of the blocks and the bus components are calculated by performing a 

single source longest path algorithm in G" and G�,. 

3.5.1 Find Bus Routes 

Both the block positions and bus topology affect the bus length. A new algorithm is 

proposed to generate a good topology for a bus net. For each candidate floorplan 

solution, we are given a sequence pair and the width and height of each block. 

The objective is to connect all the blocks in the same bus net and minimize the 

total bus length. Buses are connected to the boundaries of their corresponding 

blocks. Our work is different from most previous works on BDF in the following 

aspect. In most previous works [1] [3] [2] [4], buses are assumed to be connected 

to the centers of their corresponding blocks. In reality, bus pins are on the block 

boundaries. It is thus more accurate to connect buses to the block boundaries in 

estimating the bus length. 

We generate a bus topology by constructing a minimum spanning tree (MST) • 

T in the combined constraint graph Gc = Gh U Gy. There are two issues that we . 

/ 

f 



CHAPTER 3. FIXED-OUTLINE BDF 44 

need to take special care of. Firstly, since buses are connected to the boundaries 

of their corresponding blocks, it is not accurate to use the distance between the 

lower left comers of two blocks as the weight of the corresponding edge in Gc, 

Secondly, some MST do not correspond to any feasible bus because we do not 

allow too many bus components of the same bus net passing through a block as 

we want to minimize the number of vias used. The number of bus components of 

the same bus net passing through a block should not exceed a maximum number, 

called the capacity of the block. 

A modified MST algorithm is used to find the topology of a bus. The modified 

MST algorithm is similar to the Prim's algorithm except that the weight of each 

edge is updated dynamically. In this modified MST algorithm, the weight of an 

edge ejj between block bi and block bj is the distance between a selected point on 

one block and a boundary of the other block. Block bi's selected point is decided 

when bi is. added into the MST and the weight of each edge is calculated dynami-

cally when constructing the MST. The selected point of the first block is its upper 

right corner. If block bi is not the first block, its selected point is the point that is 

on bi's boundary and nearest from b/s selected point.(Suppose the edge e” from 

bi to bj is the edge with minimum weight.) We will also consider the capacity of 

each block. In our method, we assume that the capacity of each block is one. That 

means, for each bus net, each block can be passed through by at most one horizon-

tal bus component on its left side, one horizontal bus component on its right side, 

one vertical bus component on its upper side and one vertical bus component on 

its lower side. . 

Similar to the Prim's algorithm, a heap data structure H is used to store ele-

ments {bj.eij, weight of e/y) for an edge e/y connecting b； and bj. The modified 

MST algorithm has four steps. Its details are shown in Algorithm 1. Firstly, the 

block that is nearest from the point (0,0) is selected to be the starting block. Its 



CHAPTER 3. FIXED-OUTLINE BDF 45 

selected point will then be decided. A selected point a! of a block b! can only be 

on bi,s boundary. For the starting block, its upper right comer will be chosen as 

its selected point. Now, the tree T contains only the starting block. Secondly, the 

weights of the edges connecting to the blocks in T are updated. The weight of an 

edge Cij between block bj and block bj is the distance between the selected point 

on one block and a boundary of the other block, and is calculated as follows. If 

hi has been added into T and bj is not, the weight of e/y is the nearest distance 

between bj's selected point a! and one of the four boundaries of block bj. An ele-

ment (bj�eij, weight of eij) will then be inserted into heap H. Thirdly, the nearest 

block that satisfies the capacity constraint will be chosen to be added into T. The 

position of its selected point is then decided. Details of this step are explained as 

follows. We select the first element (^/c, e/j^, weight of e^k) from heap H. If block 

bk is not in T, the capacity of bh and bk will be checked. If the capacity limit is not 

violated, we can add bk and edge Chk. into T. Otherwise, the process is repeated 

for the next min element in H until we choose a block to add it into T or when H 

is empty. If H is empty, no feasible bus topology is generated. After we choose a 

block, the block's selected point will be decided. The method of finding selected 

point is shown in an example in the next paragraph. The second step and the third 

step are repeated until all the blocks in the bus net are included in T. Note that this 

MST construction will fail sometime. Then the bus is considered as an infeasible 

bus. 

An example is given in Figure 3.5. Suppose that the bus net is 5 二 , / 72，办3,办4}. 

As shown in Figure 3.5(a), block b\ is the nearest block from the point (0,0). Block 

b\ is thus the starting block. Its selected point a\ is its upper right corner. Now, 

block b\ is ill T and the other three blocks ^>2，办3,办4 are not. We can see that the 

nearest distance between a\ and those three blocks is J14 and d\2 respectively. • 

Since du is the smallest, block /?3 and edge e n are selected to be added into T. •‘ 



CHAPTER 3. FIXED-OUTLINE BDF 46 

Algorithm 1 Modified MST Algorithm 
1： se lec t a starting b l o c k /?/ and c h o o s e its upper right corner as its se lected point 

2: add the starting b l o c k bi into T 

3: while number o f b locks in T is less than n do 

4: / * « is the number o f b locks in the bus* / 

5: f o r each b lock bj not in T d o 

6: calculate the w e i g h t o f e d g e e// b e t w e e n bi and bj 

7: insert weight of eij) into heap H 

8: end for 

9： while TRUE do 

10: if H is not empty then 

11: get the first e l ement {bk,ei,k, weight of cm) in H 

12: ifZjA- is not in T then 

13： i f neither bh,s capacity l imit nor bk's capacity l imit is v io lated /*eM is the 

e d g e b e t w e e n hi, and bk*/ then 

14: se lec t h and e/汝 

15; g o t o l ine 2 2 

16: end if 

17: end if 

18: else 

19: return False (bus topo logy generat ion fai led) 

20: end if 

21; end while 

22: add bk and ehk into T, d e c i d e bkS se lec ted point 

23: i = k • 

24: end while 

Block Z?3’s selected point is chosen to be at a � a s shown in the Figure 3.5(a). Af-

ter adding b; into T, the weights of ^34 and ^32 are calculated. We then insert 

(Jm, ^34, J34) and [b:, 632,南2) into the heap H. Four edges in H are shown in Fig-



CHAPTER 3. FIXED-OUTLINE BDF 47 

lire 3.5(b). We can see that block b4 is the nearest one and the capacity constraint 

is satisfied, so Z?4 and the edge <234 are added into T. The position of its selected 

point is chosen to be at ^4. Similarly, block bi and edge (?42 are added into T as 

shown in Figure 3.5(c). Finally, a MST is constructed and a good bus topology is 

generated as shown in Figure 3.5(d). 

I I 0 

b2 

⑷ 

^ i|d|”i 丫 J 

� I © 
(b) 

I 、 丨 

邵 ” d4;Y�： I. T “ 

. ( i (i) 

(c) 

I b3 33 — _ 

bi b2 
(d) 

Figure 3.5: An example of the modified MST algorithm • 



CHAPTER 3. FIXED-OUTLINE BDF 48 

3.5.2 Realization of Bus Routes 

In this section, we use the basic techniques from [4] in bus routing to do the real-

ization of bus routes. We consider how to align blocks to allow bus components 

to pass through. Bus ordering is considered to avoid bus overlapping on the same 

metal layer. Since the techniques are already described in [4] in a formal way, we 

will just describe them with examples in the following 2 sub-sections. 

Block Alignment 

We will give an example to illustrate how to align blocks in the same bus net 

component to guarantee that the bus component can pass through them. Suppose 

that we want to handle the block alignment constraint for a horizontal bus B = 

{办1，办2,知} and its width is w. The vertical overlap of b\J)2 and b: must be at 

least the bus width w so that B can pass through b\,b2 and by We first add a 

dummy block h> of height w and width 0 to represent bus B. Some constraint 

edges between t! and the three blocks b\,b2 and b̂ , are then added to the vertical 

constraint graph Gy. Note that the vertical distance from Zj/'s lower left corner 

to /;''s lower left comer must be in the range of [0,/2/ - w], / = 1,2,3. A pair of 

constraint edges are added to Gv to achieve this: 

1. Edges from b! to bj with weight w - /?/, i= 1,2,3. 

2. Edges from bi to h! with weight 0, i = 1,2,3. 

Similarly, we can handle the block alignment constraint for a vertical bus by adding 

a dummy block and a set of constraint edges to G/,. Multi-bend bus can be handled 

by decomposing it into a number of horizontal and vertical bus components and 

the block alignment constraint for each bus component is handled by the above 

method. 



CHAPTER 3. FIXED-OUTLINE BDF 49 

For example, three bus components are generated in the example shown in 

Figure 3.5 after the finding bus routes step. Two of them C\ = {^i,办 3} and C2 = 

{b2,b4} are vertical components and one of them C3 = {^>3,̂ )4} is a horizontal bus 

component. For each bus component, one dummy block and two pairs of edges 

will be inserted to allow each bus component to go through their blocks as shown 

in Figure 3.6. Take C3 as an example. A dummy block b'̂  is inserted to the vertical 

constraint graph. A pair of edges between b'̂  and b � a r e inserted to the vertical 

constraint graph according to the above method. Besides, a pair of edges between 

and /?4 are inserted into the vertical constraint graph. In this way, b^ and b* are 

aligned to allow bus component C3 to pass through. Similarly, two dummy blocks 

and four pairs of constraint edges are inserted into the horizontal constraint graph 

for bus component Ci and C2. 

働 " f t 

H o r i z o n t a l V e r t i c a l 

Figure 3.6: Block alignment for the example in Figure 3.5 

Bus Ordering 

A proper bus order is needed to avoid bus overlapping. We will give the following 

two examples to illustrate how to impose bus order. Consider two vertical bus 

components, B\ — [bx.bi] and Bj = {^3,^4}. If there is an edge e n from b\ to Z?3 

in the horizontal constraint graph G/„ we can deduce a natural bus ordering, i.e., 

Bi must be on the left of ^2. In this case, we do not need to impose an ordering . 



CHAPTER 3. FIXED-OUTLINE BDF 50 

between B\ and Bj because we can deduce a bus ordering from the constraint 

obtained from the sequence pair. An example is shown in Figure 3.6, b\ is on the 

left of bi, thus bus component C\ is on the left of C2. For those bus pairs whose 

ordering cannot be deduced naturally from the constraint graphs, we need to assign 

bus orderings for them if they may overlap. Let's consider another example. In 

this example, suppose there are two vertical bus components B\ = {b],b2} and 

B2 = [ b i M ] and both vertical bus components pass through b!. We need to 

assign a bus ordering for B\ and B2 in order to avoid overlapping between B\ and 

Bi because their ordering cannot be deduced naturally from the constraint graphs. 

In this case, we will assign Bi on the left ofB2 or B2 on the left side o f ^ i randomly 

and uniformly. We can then impose orderings for vertical bus components in Gh 

by adding edges between the dummy blocks of the corresponding bus components. 

For horizontal bus components, similar steps are taken to impose a bus ordering. 

3.5.3 Details of the Annealing Process 

111 the SA process, the objective is to find a floorplan solution with feasible bus 

assignment and to minimize the bus length, total area and wire length. 

Initial sequence pair 

The initial sequence pair is obtained from the result of the partitioning step as 

follows. Each group in the final partitioning level is treated as a super block. The 

initial sequence pair representation for these super block packing can be obtained 

easily from the relationship of these super blocks in the partitioning stage. Wi thin 

each super block, all the blocks are packed horizontally. 

Random move 

The following set of moves is used. 



CHAPTER 3. FIXED-OUTLINE BDF 51 

1. Rotate a block; 

2. Interchange two blocks in the first sequence; 

3. Interchange two blocks in both sequences. 

In moves 2 and 3，besides choosing two blocks in the same partition, we can also 

choose two blocks from two partitions if none of them is on any bus net from differ-

ent partitions. In this way, the interconnect cost can be reduced without changing 

the bus length significantly. 

Cost function 

In the annealing process, we want to minimize the total area, bus length and wire 

length with a feasible bus connection. The cost function is defined as: 

Cost = aCostArea + PCtW//肌 + yCostwire + ^Costp (3.1) 

where Cost Area ； Cost bus, Costwu-e are the total area, total bus length and total wire 

length of the floorplan solution respectively. The total area is minimized because 

we want to search for a solution with feasible bus routes, minimum chip area, 

minimum bus length and minimum wire length in this step. The wire length is es-

timated with HPWL. Costp is the penalty for solutions with infeasible bus routing 

and it is the number of infeasible buses. (A bus is regarded as infeasible if the bus 

cannot be routed.) The parameters a , p, yand 5 are weights obtained by performing 

random walk at the beginning of the annealing process. With this cost function, 

we minimize the total area of the packing first, and the fixed-outline constraints 

will be handled by a post-processing step as described below. 

» 



CHAPTER 3. FIXED-OUTLINE BDF 52 

3.6 Handle Fixed-Outline Constraints 

After a good floorplanning solution is obtained from the SA process in Section 3.5, 

the fixed-outline constraint will be handled on the solution in a post-processing 

step. We change the aspect ratios of some blocks and use another SA process to 

search for good block dimensions. In this post-processing step, the dimensions of 

the soft blocks are adjusted in the move operations of the annealing process. In 

each iteration, we choose a block lying on the critical path and change its aspect 

ratio slightly. The cost function Costs is defined as in [9]. 

Costs = max{0, h - H } + max{0, w - W } , (3.2) 

where W and H denote the width and height of the given outline. 

3.7 Bus Layout 

In the floorplanning step, each bus net is decomposed into several horizontal bus 

components and vertical bus components. Figure 3.7 is one result of the SA pro-

cess. We can see that some bus components are not connected to each other. Take 

bus Bs — {4,9,12,14} as an example. It has three bus components C] — {4,9}, 

Oi = {9,12}, C3 = {4,14}. Ci and C2 share block 9 but they are not connected 

to each other yet as shown in Figure 3.8(a). We can connect C] and Cj by simply 

extending the length of Ci and C2 as shown in Figure 3.8(/7). But there is a bet-

ter solution in terms of bus length as shown in Figure 3.8(<i). In our bus layout 

step, we will improve the solution in Figure 3.8(<a) to a better solution as shown in 

Figure 3.8(^/). The new solution after our bus layout step is shown in Figure 3.9. 

To obtain the solution as shown in Figure 3.8(c/), two steps are needed to be 

done. In the first step, some bus components may need to be moved first. Moving 

a bus component means that the y-coordinate of a horizontal bus component is 



CHAPTER 3. FIXED-OUTLINE BDF 53 

Algorithm 2 Bus Layout 
1: for each bus net Bj do 

2: " m o v e bus components*/ 

3: for each bus component C； do 

4: /*let C/ is a horizontal (vertical) bus component, C； = {b],b2,...,h„} from left (up) to 

right (bottom)*/ 

5: if one of b�and is on another vertical (horizontal) bus component Q of Bi then 

6: /* let Ẑ i be on another bus component and b„ is not*/ 

7: if b\ is the uppermost (leftmost) / bottommost (rightmost) block of Q then 

8: move Cj to the bottommost (rightmost) / uppermost (leftmost) feasible position so 

as to shorten 5； as much as possible 

9: end if 

10: else 

11: if b\ is on other vertical (horizontal) bus components C/, of 5/ and is on other 

vertical (horizontal) bus components Q of 5/ then 

12: if b\ is the uppermost (leftmost) / bottommost (rightmost) of Ch and b,, is the 

uppermost (leftmost) / bottommost (rightmost) of Q then 

13: move Cj to the bottommost (rightmost) / uppermost (leftmost) feasible position 

14: end if 

15: end if 

16: end if 

17: end tx)r/*move bus components*/ 

18: "connecting bus components and remove redundancy*/ 

19: for each bus component Cj do 

20: /*let Cj is a horizontal (vertical) bus component, C； = {b\,b2,...,b„} from left (up) to 

right (bottom)*/ 

21: if h\ is on another vertical (horizontal) bus component Q of 5/ then 

22: connect Cj to C" 

23: else 

24: connect Cj to the right (bottom) boundary of b\ 

25: end if 

26: if bn is on another vertical (horizontal) bus component C又of B, then 

27: connect Cj to Q 

28: else 

29: connect Cj to the left (upper) boundary of b„ • 

30: end if 

31: end for/*connecting bus components and remove redundancy*/ 

32: end for 

f 



CHAPTER 3. FIXED-OUTLINE BDF 54 

l i i i l i i P S ^ P f i S P l i P 
:::�::：:；#£：* ii:::::：？:::::Sil WII 

；iViiiiiiifiii'V ,• •:;fSi vg^ ^(M： |；；)：：|1 
J:纖 i； 塵®、：：誦_纏 

...I ：：:麵:| : _ : Siil 
纖藤:：%:：：：：；•：;, sa；：. .；̂：||；|1：；1| 

: : : 稱 誦 
琴丨：難̂ :丨5•爾:麗丨丨§灣_痛 

一5 冬 、'：；•’〉‘ A “ � “ , � � 

； I ' l l ‘ 丨 ‘ , r ~ 

id-'. • \12 . 
�、5、…、•^ ，： \ “ 

Figure 3.7: One bus routing solution B\ = {0,5}, B2 = {1,6}, B^ = {2,7，10}, 

C2 C2 

•__£!__ p j ^ 
• 9 12 9 12 

c i , m p i u N C3 

4 14 4 14 

C2 (a) C2 (b) 

9 \ 12 9 1 12 

CI ~~PBailMr^-- CI 一 
^ C3 C3 

4 14 4 14 

(c) (d) 

Figure 3.8: An example of bus layout Bs = {4,9,12,14} 

changed or the x-coordinate of a vertical bus component is changed. Bus compo-

nents are moved towards the direction which results in a solution with shorter bus 

length. For a vertical bus component, if there are other bus components belonging 

to the same bus net on its right (left) side and there is no bus component belonging 

to the same bus net on its left (right) side, the bus component will be moved to its 

rightmost (leftmost) feasible position.(A position is called a feasible position for a 



CHAPTER 3. FIXED-OUTLINE BDF 55 

“ L I 卜 
乂 ‘ ~~ W - FT-' 
‘ I , \ 

s … I ——对、 
"""f I � � … ^ � � \ 

\ — s i - � 
0 5 、、、 、、<!：、、>••、、 

、 广、、!4/ V � … 
i™1|:丄.!二二1:1," 乂 m.'''： “ � 2 9 

1 . -
fi V ^ \ 

“ , � L " " " " 
… ] : 卜 々 [；、“f�. 
、？ •.》、• * , ‘ y�V ‘ 

Figure 3.9: A new solution after bus layout step B\ = {0,5}, J52 = {1,6}, = ‘ 

{2,7,10}, B4 = {3,8,11,13}, = {4,9,12,14} • 

bus component if the bus component does not overlap with other bus components 

at that position and the original bus topology is maintained.) Similarly, for a hor-

izontal bus component, if there are other bus components belonging to the same 

bus net below (above) it and there is no bus component belonging to the same 

bus net above (below) it, the bus component will be moved to its lowest (upper-

most) feasible position. Take bus B5 as an example. It has three bus components 

Ci 二 {4,9}, C2 = {9，12} and C3 = {4，14}. To connect C\ and C2, the best choice 

is to move C\ to the rightmost feasible position and move C2 to the bottommost 

feasible position as shown in Figure 3.8(c). 

In the second step, the redundant part of every bus component will be removed 

by connecting the bus component to the corresponding block boundary or to an-

other bus component. Details are shown in Algorithm 2. If the block on the bus 

component Q is not passed through by other bus components belonging to the 

same bus net, the bus component Q is connected to the boundary of the block. 

Otherwise, if it is also passed through by another bus component Cj belonging to • 

the same bus net, the bus component C/ is connected to Cj. In this example, we . 

connect the right part of C3 to the boundary of the corresponding block 14 and • 



CHAPTER 3. FIXED-OUTLINE BDF 56 

connect the left part of C3 to the bus component Q • We also connect the right part 

of Q to the boundary of block 12 and connect the left part of C2 to bus component 

Q. We then connect the upper part of Q to C'2 and the lower part of C\ to C3. 

Finally, we get the new bus layout as shown in Figure 3.8(<i). The position of a 

bus pin can be decided by finding the intersecting point of a bus component and 

the boundary of the corresponding block. 

3.8 Experimental Results 

Our approach is implemented using the C language. We run the flooiplanner of [4] 

and our floorplanner on the same machine, an Intel Core2 Duo 2.33GHz CPU with 

2GB memory. The floorplanner of [5] is run on a 1.86-GHz Linux machine with 

2GB memory. The detailed information of all the benchmarks are shown in Ta-

ble 3.1. The weights in Equation (3.1) are set automatically by random walk, so 

each test case is run ten times and the average is reported. We have performed 

two experiments. In the first experiment, we compare our result with the result 

of [4] and that of [5]. For fair comparison, we just minimize the bus length and 

total area in our floorplanner because the works in [4] and [5] just minimize bus 

length and total area without the fixed-outline constraint and the interconnect cost 

minimization. The buses are connected to the block boundaries in both [5] and 

our approach (Table 3.2). In [5], the position of each bus pin is not fixed at one 

single point on block boundary and the authors move the bus pin along the block 

boundary to reduce the total bus length. However, for fair comparison, when we 

compare our results with that of [4], we connect buses to the block centers because 

the floorplanner in [4] will connect buses to the block centers (Table 3.3). The 

results are shown in Table 3.2 and Table 3.3. The values after the slashes are the 

normalized values. The comparisons for all the data sets are reported in terms of 

bus length, running time and deadspace. In [5]，no results are reported for bench-

. ” 



CHAPTER 3. FIXED-OUTLINE BDF 57 

Table 3.1: Data Set 

Data No. o f Blocks No . o f Buses Average/Max. No. o f Blocks on a Bus Net 

ami33- l 33 8 4 . 1 7 / 6 

ami33-2 33 18 2 . 3 9 / 4 

ami33-3 33 1 1 0 / 10 

ami33-4 33 3 1 0 / 10 

ami33-5 33 5 10 / 1 0 

ami33-a 33 5 3 / 4 

ami33-b 33 5 4 / 5 

ami33-c 33 5 5 / 6 

ami33-d 33 5 6 / 7 

aiTii33-e 3 3 5 7 / 8 “ 

ami33- f 33 5 8 / 9 

ami49-I 49 9 4 .00 / 6 

ami49-2 4 9 12 3 .58 / 6 

ami49-3 49 15 3 . 5 3 / 6 

ami49-4 4 9 1 1 5 / 1 5 

anu49-5 49 3 1 1 . 6 7 / 15 

ami49-6 49 4 11.25/ 15 

ami49-a 49 1 10 

ami49-b 4 9 1 20 

ami49-c 49 1 30 

ami49-d 49 1 40 

ami49-e 49 1 49 

mark ami33-l to ami33-5 and ami49-l to ami49-6, so we do not compare those 

results. Compared with [5], their bus length is 1.28X of ours and their deadspace 

is 1.03X of ours on average. The two floorplanners are run on different machines, 

so we do not compare the running time. Compared with [4], their bus length is 

1.32X of ours, their running time is 2.42X of ours and their deadspace is 1.43X 

of ours on average. Our bus length in Table 3.3 is much different from that in 

Table 3.2 for two reasons. Firstly, we connect buses to the block boundaries in . 

t 



CHAPTER 3. FIXED-OUTLINE BDF 58 

Table 3.2: Comparisons on Bus Length, Running Time and DeadSpace between 

Fixed-outline BDF and [5] 
Test Cases Fixed-outline UOF 

Bus Length* Running Time (sec) Bciulspacc (%) Bus Length* Running Time (sec) Deacl.space (%) 

ami33-a 550.45 / 1 5.64 1.75/ 1 710.50/ 1.29 4.11 1.56/0.K9 

ami33-b 986.09/1 7.73 1 .72/1 13«,.7l)/1.39 ^ 1.67/(1.97 

ami33-c 1389.27/1 10.91 1.22/1 24.U.20/I .75 7.35 1.72/1.41 

ami33-d 1898.09/ 1 12.55 U 3 / l 33IK.4()/1,75 «.05 1.87/ 1.6S 

ami33-c 2799.27 / 1 15.36 1.65 / 1 4578,60/1,64 8.91 I.XK/ 1.14 

ami33-f 2741,91/1 丨 8.27 1.02/1 5078.60/ 1.85 10.01 1.98/ 1.94 

ami49-a 5154.64/ 1 15.82 1.54/1 5304.40/ 1.03 0 .86/0 .56 

ami49-b 11651.36/ 1 23.73 1.64/1 8189.40/0.70 10.14 0 .95/0 ,58 

ami49-c 16164.18/ 1 30.09 1.66/ 1 丨 2764.60/0.79 12.K4 I .3 /0 .78 

nmM9-d 19439.55/1 34.91 1.92/1 16955.80/0.S7 16.% 1.56/0.81 

ami49-e 22277.90/ 1 48.1 2.42/ 1 22452.60/1.01 21.86 1.5/0.62 

Average 1 + 1 1.28 U)3 

• The buses arc conncctcd to the block boundaries ill both [5] and our appronch. 

+ The results of 151 is from that paper, thus tlie two tloorplaniicrs are mil on diflci-cnt nwchiiics and their niniiing times arc hard lo toniprirc. 

Table 3.2 and connect buses to the block centers in Table 3.3. Connecting buses to 

the block boundaries and connecting buses to the block centers are two different 

issues. Secondly, our method is aimed to optimize the bus length connecting to 

the boundaries. Compared with other previous works, it is more accurate that we 

use the modified MST algorithm to generate the topology of a bus net when we 

estimate the bus length connecting to the boundaries. Therefore, our bus length in 

Table 3.2 is much shorter. The floorplanner of [4] cannot give a feasible solution 

after miming ten times on the data sets ami49-c, ami49-d and ami49-e. 

In the second experiment, we handle the fixed-outline constraint and minimize 

both the bus length and the interconnect cost. In our experiment, deadspace thresh-

old r is set to 10% and the aspect ratio R of the chip is 1.0. Therefore the W and 

H are computed as y/l.l x J^Aj where A,- is the area of block bi. The aspect ratio 

bound of a soft block b! is [// 一 0.8，// + 0.8] where // is the original aspect ratio of 

block bj. We use HPWL to estimate wire length. The information of the pins and 



CHAPTER 3. FIXED-OUTLINE BDF 59 

Table 33 : Comparisons on Bus Length, Running Time and DeadSpace between 

Fixed-outline BDF and [4] 
Tost Cases Fixctl-outlinc HDl- [4] 

+ Bus Length* Running Time (see) Dcadspacc (%) Bus Length* Running Time (see) Dcudsipacc (%) 

ami33-l 4826.55 / I 15.36/ 1 1.70/1 6589.17/1.37 21.67/1.41 2.13/1.25 

aiTii33-2 4539.36/ 1 19.18/1 1.92/1 8684.33/1.91 20.17/1.05 2.18/1.14 

14.16.91 / 丨 4,45 / 丨 1.37/ 丨 1913.17/1.33 9.67/2.17 1.16/0.85 

anii33-4 4242.27/ 丨 9 .91/1 1.88/ 1 5158.00/ 1.22 39.17/3.95 4.03/2.14 

ami33-5 8625.00/ 1 18.36/ 1 5.16/ 1 9458.33/110 78.67/4.28 4.53/0.88 

atTii33-a 1 8 3 5 . 5 5 / 1 5 . 6 4 / 1 0 . 9 0 / 1 3 3 8 1 . 0 0 / 1 .84 9 . 3 3 / 1 .65 2 . 0 9 / 2 . 3 2 

ami33-b 2737.18/1 7.18/1 1.18/ 1 4882.17/ 1.78 11.00/ 1.53 1.78/ 1.51 

amill-c 3552.64 / 1 10.27/1 1.31/1 5124.83/1.44 13.33/1.30 1.58/1.21 

ami33-d 4439.73 /1 12.00/! 1.43/1 5886.00/1.33 22.50 / 1.88 1.48 / 1.03 

nmi33-c 5067.91 /1 14.73/1 2.03/ 1 5903.17/1.16 69.00/4.68 4.76/2.34 

aini33-f 5579.55/1 17.27/ 1 1.23/ 1 5942.00/ 1.06 33.00/ 1.91 -2.91/2.37 

30778.55/1 50.73 / 丨 1.91/ 1 39218.80/ 1.27 62.40/ 1.23 2.44/ 1,28 

:nni49-2 4183155/1 85.91 i 1 2.37/ 1 48009.17/ 1.15 96.17/ 1.12 2.27/0.96 

iimi49-3 47215.20/1 丨 m . 5 0 / 1 4.68/ 1 54117.00/ 1.15 丨 10.40/1.10 2.28/0.49 

nmi49-4 12861.50/1 15.80/1 1.20/ i 13178.83/ 1.02 31.50/1.99 1.61 / 1.34 

aini49-5 24315.36/ I 28.00/ 1 1.70/1 32069.00/ 1.32 90.00/3.21 2.06/ 1.21 

ami4t)-6 29647.36/1 44,45/1 丨.56/ 丨 43057.00/ 1.45 347.33/7.81 3.49/2.24 

Limi49-a 10263.80/1 13.10/1 1.25/ 1 11778.83/ 1.15 30.33/2.32 1.54/1.23 

aini49-b 15641.27/ 丨 19.73/1 1.34/1 15727.50/ 1.01 28.50/ 1.44 1.7S/l ,33 

！imi49-c 20276.82 /1 26.82 / 1 1,68/1 NA**/ NA/ NA/ 

unii49-d 25591.18/1 30.45/1 1.39/1 NA/ NA/ N八 / 

ami'lQ-c 31295.00/1 43.00 / 1 1.68/ 1 NA/ NA/ NAy 

Average 1 1 I 1.32 2.42 1.43 

* Wc connect buses to the block ccntcrs because the floorplanncr in [4� jus t connccts buses to the block centers. 

TIk llooiplaiincrof [4] cannot give a feasible solution after running ten times on the data sets ami49-c, ami49-d and ami49-c. 

netlist is shown in Table 3,5. We compare our approach with a modified version 

of the floorplanncr in [4p. In this modified floorplanner, we add the fixed-outline 

post-processing step and consider interconnect minimization in the objective func-

tion of the annealing process. We also use our bus layout step presented in Sec-

tion 3.7 to connect buses to the block boundaries at the end. Experimental results 

are shown in Table 3.4. The results for all the data sets are reported in terms of 

-We choose to modify the noorplanner in [4] for two reasons. Firstly, we have the source code .‘ 

of the floorplanner in [4]. Secondly, the flow of the floorplanner in [4] is similar to ours. 

f 



CHAPTER 3. FIXED-OUTLINE BDF 60 

bus length, wire length and running time. Experimental results show that the bus 

length of the modified version of [4] is on average 2.03X of our bus length and 

their wire length is on average almost the same as ours. This modified floorplan-

ner of [4] cannot give a feasible solution after running ten times on the data sets 

aini49-ci and ami49-e. A floorplanning solution is shown in Figure 3.10. The com-

plexity and run time of our method do not increase with an increasing number of 

metal layers. 

Table 3.4: Comparisons on Bus Length, Running Time and Wire Length between 

Fixed-outline BDF and Modified Floorplanner of [4] 
Test Cases Fixed-outline BDF Modified rioorplanncr 0!'[4| 

Bus Lcngtli* Running Time (sec) Wire Length Bus Length* Running Time (see) Wire Length 

ami3M 2593.50/ 1 15.12/1 88721.62/ 丨 5295.20/2.04 24.80/1.64 89721.00/ 1.01 

ami33-2 丨 132.丨4/ 1 22.86 / 1 87674.00/1 4996.00/4.41 22.50/0.98 91004.00/ 1.04 

nmi33-3 1282.64/ 1 4.55 / 1 81766.9) / 1 1875.10/1.46 6.90/ 1.52 «S012.90/ \ M 

:imi33-4 3427.00/ 1 10.71 / 1 85935.29/ I 5233.8fi/1.53 17.71/1.65 92861.29/ 1 .OS 

aini33-5 5978.75 / 1 22.50/1 96991.88/ 丨 S855.00/ 1.48 33.00/1.47 97217.00/1.00 

ami33-a 104!.89/丨 6.44/ 丨 88626.33/ 1 2151.89/2.07 8.56/1.33 84692.56/0.% 

ami33-b 1435.33/ 1 9.11/ 1 90474.78 /1 3823.80/2.66 丨丨.70/ 1.28 86SSK.60 / 0.96 

ami33-c 1704.44/1 丨2.56/ 1 93100.78/ 丨 4223.40/2.4H 16.70/ 1.33 92181.50/0.99 

ami33-d 2446.00/ 1 13.75/ 1 95060,38/1 4864.71 /1.99 21.43 /1.56 95789.00/ 1.01 

ami33-e 3276.44 / 丨 丨 6.56 / 丨 99669.44 / 丨 5875.86 / 1.79 2K.14/ 1.70 95498.K6 / 0.96 

ami33-f 3291.91 / 1 20.91 / 1 76746.64/ 丨 6473.86/ 1.97 23.00/ 1.H) 91879.43/ 1.20 

；mii49-丨 13395.00/1 33.00/1 丨5丨5660,00/ 丨 34523.50/2.58 79.67/：2.4丨 1452卯0.67/0.% 

anii49-2 14060.67/ 丨 54.67/ 丨 1602456.00/ 丨 丨63.40/2.7丨 97.40/ 1.7K 1430490.20/0.89 

ami49-3 丨8584.83/1 58.67/ 丨 1622：*；)0.67/ 丨 4 .W2.33/2.33 191.00/3.26 1324948.33/0.82 

ami49-4 丨2044.78/1 17.78/ 丨 丨207856.00/ ！ 12633.50/1.05 32.83 /1.85 1204466.50/ 1.00 

ami49-5 22143.33/ 1 34.56 / 1 1163613.11/1 28692.00/ 1.30 72.50/2.10 1228114.00/ 1.06 

ami49-6 22879.18 / 丨 42.45 / ！ II 02990.64 / 丨 38318.00 / 1.67 97.50 / 2.30 1303445.50 / U S 

ami49.a 4511.33/ 1 16.67/ 1 1086896.00/ I 10066.30/2.23 35.40/2.12 1240945.60/1.14 

ami49-b 9609.00/I 41.33/1 It 50908.33 / 1 丨 64 卯.50 / 丨.72 ^6.25 / 0.88 1285767.00/ 1.12 

ami49-c 18672.20/1 22.00/1 1381215.00/1 19302.00/ 1.03 61.00/2.77 11039K6.0() / O.SO 

ami49-d 19888.00/1 20 .00 /1 ' 1459632.00/1 NAl / NA/ NA / 

ami49.c 27090.00/1 40.00/1 1396458.00/1 NA/ NA/ 

Average 1 1 1 2.03 ^ !川 

• The buses are connected to the block boundaries in both our Hooiplanner and the modified lloorplanncr of |4J. 

I This modified floorplanner of paper (4] cannot give a feasible soliuion after running ten times on the diilu nets {mii49-d and ami49-c. 



CHAPTER 3. FIXED-OUTLINE BDF 61 

Table 3.5: Pins and NetList Information 

Test Cases No. of Blocks No. of Pins No. of Nets 

ami33-x 33 42 123 

ami49-x 49 22 408 

30 “ 
1 丨 譽 麟 � J ” 

画 丨 叫 I 轉妊kf乂 
_ _ . '；| ：-v： •• 

. I - 7 “ b丄二 

^ « 微 I 難 、 

j ^ i l ^ s ——I 歸 

‘ ’ .、•！ 

Figure 3.10: A bus routing solution Bi = {0,1,2,3,4,5,6,7,8,9}, B2 = 

{10,11,12, 13’ 14,15,16,17，18,19}, = {20,21,22,23,24,25,26,27,28,29} 

3.9 Summary 

In this chapter, we presented a floorplanner that can give a fixed-outline floorplan-

ning solution including bus route that minimizes bus length and interconnect cost. 

We proposed two steps to minimize bus length. Firstly, we devised a bus-driven 

partitioning step to minimize the total bus length. Recursive bi-partitioning is ap-

plied at the beginning to handle the problem globally. Secondly, we propose a 

modified MST construction algorithm to generate a bus topology to reduce bus 

length. Experimental results show that we can improve over the previous work [4] 



CHAPTER 3. FIXED-OUTLINE BDF 62 

in terms of both bus length, running time and deadspace. Besides, we also improve 

over another recent work [5] in terms of bus length on average. 

• End of chapter. 

- “ 



Chapter 4 

Fixed-Outline BDF with L-shape bus 

4.1 Introduction 

For some sequence pairs, there are no feasible solutions if only zero-bend buses, 

one-bend buses and two-bend buses are allowed or if the turning points of the 

buses are only allowed to occur on the blocks on the bus net. Some bus com-

ponents may have conflicting block alignment constraints. Let's see an example. 

Suppose two bus components Bi = {b 1,1)4} and B2 = { / ； 2 , ^ 3 } . The sequence pair 

is { ( / ? ! , 6 2 , ^ 4 ) , ( ^ 2 , ^ 3 ) } . B\ and B2 are horizontal bus components but 

only one of them can be routed successfully by block alignment because b j and b^ 

cannot be aligned if and b4 are aligned or vice versa in this scenario. 

In this chapter, bus routability problem is handled in a more sophisticated man-

ner. We propose a method to insert L-shape bus components. Our floorplanner can 

give a fixed-outline floorplanning solution including bus routes that minimizes bus 

length, number of extra vias and interconnect cost. In each iteration of the simu-

lated annealing process, our goal is to route all the bus components successfully by 

inserting L-shape bus components. We first present a method to detect conflicting 

block alignment constraints and select some bus components to be converted into 

63 



CHAPTER 4. FIXED-OUTLINE BDF WITH L-SHAPE B US 64 

L-shape bus components to make sure that there is no conflicting block alignment 

constraint. The selected bus components are then routed in L-sliape according 

to the method described in Section 4.3.1. In addition, some bus components can 

be combined to reduce the number of bus components. We propose a method to 

combine bus components to reduce the number of bus components. 

Experimental results show that we also improve over the recent work [5] in 

terms of bus length and successful rate on average. Besides, we can improve over 

our first floorplanner in chapter 3 and modified floorplanner of [4] in terms of both 

bus length, running time and successful rate. 

4.2 Problem Formulation 

The problem we consider in this chapter is similar to that in chapter 3 except that 

the bendings of the buses are allowed to occur on non-bus blocks. We are given 

the following: 

1. A set of blocks and each block has an area and an aspect ratio bound 

2. A set of buses and each bus has a width and a bus net 

3. A set of nets 

4. A set of pins and each pin has coordinates 

5. Fixed outline W xH 

The aim is to obtain a fixed-outline floorplan solution including bus routes that 

minimizes the bus length, number of extra vias and interconnect cost. We need to 

decide the position of each block and layout the buses on two metal layers, one 

horizontal and one vertical. No overlapping between any two blocks and between 

any two buses on the same layer are allowed. Besides, the bendings of the buses 



CHAPTER 4. FIXED-OUTLINE BDF WITH L-SHAPE BUS 65 

can occur on non-bus blocks. For the example in Figure 3.1, the possible BDF 

solution in Figure 3.1(A) is also a feasible solution. 

4.3 Our Approach 

An overview of our approach is given in Figure 4.1. Our approach is composed of 

four steps. The first step is partitioning that is presented in Section 3.4. Blocks are 

partitioned into several groups and the result of this partitioning step is used as the 

initial candidate solution of the next floorplanning step. The second step is a SA 

process. The floorplanning step is done by SA. The objective of this step is to find 

a floorplan solution with feasible bus routing that minimizes the bus length, chip 

area, number of extra vias and wire length. In each iteration of this process, the 

topology of each bus is generated by the method described in Section 3.5.1. Ac-

cording to the bus topology generated, we obtain several bus components. The bus 

routability is checked to make sure that all the bus components can be routed suc-

cessfully. If some bus components have conflicting block alignment constraints, a 

set of bus components will be selected to be converted into L-shape bus compo-

nents. To reduce the total number of bus components, some bus components will 

then be combined to form new bus components. Detailed discussion will be given 

in Section 4.3.1. The bus routing constraints (i.e. aligning blocks to allow buses 

to pass through and assigning bus ordering to avoid bus overlapping) are handled 

by adding a dummy block and some constraint edges into the horizontal constraint 

graph Gh or the vertical constraint graph Gv for each bus component in the new set 

of bus components. Details are presented in Section 3.5.2. Finally, the coordinates 

of the blocks and the bus components are calculated by performing a single source 

longest path algorithm in G/, and Gy. In the third step, another annealing process . 

described in Section 3.6 is used to handle the fixed-outline constraint based on the . 

solution obtained in the second step. Finally, we layout the buses and decide on 



CHAPTER 4. FIXED-OUTLINE BDF WITH L-SHAPE B US 66 

〔 S t a r t ) 

Partitioning 

Floorplanning 
with Bus Routing 

Find Bus Routes 

Bus Routability 
Checking 

Move w 
——J—— Realization of Bus 

Routes 

i 
Floorplan Realization 

/ Z ‘ o u g h � � � 

^alterations 7 
No z Z 

� ‘ z Yes 

Handle Fixed-Outline 
Constraints 

Bus Layout 

C End -) 

Figure 4.1: Overview of our second approach 



CHAPTER 4. FIXED-OUTLINE BDF WITH L-SHAPE BUS 67 

the positions of the bus pins. Details are discussed in Section 3.7. 

4.3.1 Bus Routability Checking 

Some bus components may have conflicting block alignment constraints. In our 

method, some bus components are selected to be divided into an L-shape bus com-

ponent. An L-shape bus component contains two bus components, one is horizon-

tal and the other is vertical. We add a virtual block with width t and height t (t is 

the width of the bus) for the intersection of these two bus components. Take the 

example described in Section 4.1, in Figure 4.2，B\ is divided into an L-shape bus 

component. In this way, B[ and B2 can be routed successfully although there is an 

extra via for the turning point of the bus. However, the number of extra vias will 

be minimized in our objective function of the SA process. 

b i b 3 b i 

卜 b2 b 4 _ _ _ _ _ . 
b 4 

Figure 4.2: An L-shape bus for conflicting block alignment constraints 

Therefore, the bus routability needs to be checked to see if all the bus com-

ponents can be routed successfully. In the bus routability checking process, three 

steps will be done. The first step is to detect violations of block alignment con-

straints. After this step, some bus components are selected to be converted into • 

L-shape. The second step is to convert those bus components into L-shape and to “ 

sort all the bus components. The horizontal bus components will be sorted such ‘ 

r 



CHAPTER 4. FIXED-OUTLINE BDF WITH L-SHAPE B US 68 

that a horizontal bus component Bi is in front of another horizontal bus component 

Bj if none of the blocks in B-, is above any of the blocks in Bj. The vertical bus 

components are also sorted such that a vertical bus component Bj is in front of 

another vertical bus component Bj if none of the blocks in Bj is on the right hand 

side of any of the blocks in Bj. The third step is to combine some bus components 

to reduce the total number of bus components. After this process, we get a new set 

of bus components. An overview of this process is given in Figure 4.3. 

〔 S t a r t ) 

t 
Detect Conflicting 

/ S , / > Block Alignment 
Constraints 

No 

——-~Conflict ？ 〉 

I Yes 

Divide Some Bus • 
Components into L 

Shape Bus 
I 

Reduce the Number 
of Bus Components 

—— 

Figure 4.3: Overview of bus routability checking 

Detect Violations of Block Alignment Constraints 

After we construct a MST for each bus net, we get two sets of bus components, a 

set of horizontal bus components BusH and a set of vertical bus component BusV. 

Each bus component connects two blocks. For some sequence pairs, the block 

alignment constraints for some bus components are conflicting with each other. In 



CHAPTER 4. FIXED-OUTLINE BDF WITH L-SHAPE BUS 69 

this scenario, some bus components will be selected to be converted into L-shape. 

In our method, to detect violations of block alignment constraints, two bus con-

straint graphs (horizontal bus constraint graph and vertical bus constraint graph) 

are constructed according to the relationship of the blocks in different bus compo-

nents. Take the horizontal bus constraint graph as an example. Each horizontal bus 

component Bj in busH is represented as a vertex v/ in the horizontal bus constraint 

graph. For any two horizontal bus components B! = {bk,bi} and Bj = {办众'，办/'}, 

we will insert an edge from vj and v/ in the horizontal bus constraint graph if and 

only if there is any block of above any block of BJ. The pseudo code of the 

method to construct the horizontal bus constraint graph is given in Algorithm 3. 

The construction of the vertical bus constraint graph can be done similarly. 

If there are cycles in the graph, it means that some block alignment constraints 

for bus routing are conflicting with each other. The cycles can be detected by 

checking if the in-degree of each vertex is larger than zero. If all the vertices' 

in-degrees are larger than zero, there are cycles in the graph. We need to select 

some bus components and convert them into L-shape bus components.The detailed 

method is given as follows. The vertices with zero in-degree will be removed from 

the horizontal bus constraint graph. The edges incident on those vertices are also 

removed. These two steps are repeated until there is no vertex with zero in-degree. 

If this occurs before all vertices are removed, it means that there is at least one 

cycle in the horizontal bus constraint graph. The vertex with the maximum degree 

will then be deleted from the graph and all edges incident on this vertex will be 

deleted until there is at least one vertex with zero in-degree in the graph. The cor-

responding bus components of those deleted vertices (with maximum degree) will 

be selected to be divided into L-shape bus components. The detailed method will 

be discussed in next section. An initial horizontal/vertical sorted bus component • 

list is constructed when bus components with zero in-degree are removed. For ex- “ 

I 



CHAPTER 4. FIXED-OUTLINE BDF WITH L-SHAPE B US 70 

Algorithm 3 Construct horizontal bus constraint graph 
1 ： for each horizontal bus component Bj do 

2: add one vertex v； in the horizontal bus constraint graph 

3： end for 

4: for any two horizontal bus components Bj and Bj do 

5： flagl = 0andf/ag2 = 0 

6： for each block bj in bus component Bi do 

7： for each block Zy in bus component BJ do 

8： if bj is above hj then 

9: flagl = 1 

10： else 

11： if b / is above bj then 
J •’ 

12: flag2=\ 

13： end if 

14: end if 

15： end for 

16： end for 

17： if flagl = 1 then 

18： add an edge from vj to v/ in the horizontal bus constraint graph 

19： end if 

20： if flagl = 1 then 

21： add an edge from v, to v, in the horizontal bus constraint graph 

22： end if 

23： end for 

ample, if we remove three horizontal bus components in the order B2,B\,B2, the 

initial horizontal sorted bus component list is B2^B\,^3. After all the vertices are 

removed from the graph, we get an ordering of those bus components that are not 



CHAPTER 4. FIXED-OUTLINE BDF WITH L-SHAPE BUS 71 

converted into L-shape. 

Insert L-Shape Bus Component 

As we discussed before, an L-shape bus component contains two bus components. 

One is horizontal and the other is vertical. We will add a virtual block with width 

t and height t (t is the width of the bus) for the intersection of these two bus 

components. The use of L-shape buses will increase the number of extra vias but 

it will be minimized in our objective function of the SA process. There are two 

kinds of L-shape bus components as shown in Figure 4.4. 

The L-shape bus component is different from the 1-bend bus in [3]. For a bus 

connecting two blocks, either a horizontal bus or a vertical bus between the two 

blocks is allowed in [3]. However, in our method three solutions are allowed, a 

horizontal bus, a vertical bus or L-shape bus as shown in Figure 3.1(A). More 

sophisticated shapes are not allowed in this method because they will introduce 

more vias. 

] I b 2 b 2 

V I I I 丄 , y 

Figure 4.4: Two kinds of L-shape bus 

After all the bus components are divided into L-shape bus components, two 

sets of bus components from L-shape bus components are generated, the set of 

horizontal bus components BLh and the set of vertical bus components BL^. All . 

the bus components can be routed after certain bus components are divided to L- . 

shape bus components since there is no conflicting block alignment constraint. • 

I 



CHAPTER 4. FIXED-OUTLINE BDF WITH L-SHAPE B US 72 

Construction of Sorted Bus Component List 

To check if the number of bus components can be reduced, a structure called 

sorted bus component list will be constructed according to the relative position 

of the blocks on each bus component. A sorted bus component list is a list of 

bus components sorted according to their blocks' horizontal constraints or ver-

tical constraints. Two sorted bus component lists are generated. For horizontal 

bus components, a horizontal sorted bus component list is generated by sorting 

the horizontal bus components according to their blocks' vertical constraints. The 

horizontal sorted bus component list is constructed based on the initial horizontal 

sorted bus component list generated in the first step. Note that the initial horizon-

tal sorted bus component list does not include the bus components that need to be 

converted into L-shape. If there are bus components that need to be converted into 

L-shape, the L-shape bus components are then inserted into the initial sorted bus 

component list according to their blocks' horizontal constraints or vertical con-

straints. Each bus component BJ in the set of horizontal bus components BLF, for 

L-shape bus components is inserted into the initial horizontal sorted bus compo-

nent list. The pseudo code of constructing horizontal sorted bus component list 

is given in Algorithm 4. Note that there will be no conflict resulted because all 

the conflicting constraints are detected and solved by converting some bus compo-

nents into L-shape in the step of detecting confl icting block alignment constraints. 

At the end, the horizontal sorted bus component list is constructed. For vertical 

bus components, a vertical sorted bus component list can also be generated by 

performing the similar operations. 

Reduce the Number of Bus Components 

After we detect conflicting block alignment constraints and convert some bus com-

ponents into L-shape, four sets of bus components are generated. Some bus com-



CHAPTER 4. FIXED-OUTLINE BDF WITH L-SHAPE BUS 73 

Algorithm 4 Construct horizontal sorted bus component list 
1 ： for each bus component Bi in BLfj do 

2: for each bus component Bj in the initial horizontal sorted bus component 

list do 

3： if there exists one block related to Bj above one block related to Bj then 

4： insert Bi at the position before Bj in the initial horizontal sorted bus 

component list and break 

5： end if 

6: end for 

7： end for 

ponents will be combined to reduce the total number of bus components. For 

example, consider two buses B = {h\MM] and 5 ' = {^2,^3}- Assume that the 

sequence pair is {(办 1 ,办5,办2’知’("2,办 1,办5，"4,知）}• B and B' are horizontal 

buses. Suppose that we have three bus components B] = {b4,b5}, Bi = [biM] 

and B2 = {^1,^5} from the step described in Section 3.5.1. Only one of B\ and 

B2 can be routed successfully because bi and b) cannot be aligned if 1)4 and hs 

are aligned or vice versa. Suppose that B\ is divided into L-shape bus component. 

Then we have three horizontal bus components and one vertical bus component as 

shown in Figure 4.5. We can combine B2 and the horizontal part of B\ into a new 

bus component B4 to reduce the number of horizontal bus components from 3 to 

2. 

However, some bus components cannot be combined as shown in Figure 4.6. 

In this example, the sequence pair is {(/?i,/)4，/)2，/)5,办 3)，（如,办i’/?2,/�,办 5)}. There 

are two bus nets B = {/)i,/)2’办3} and B' = {h4,b5}. Suppose that we have three 

horizontal bus components from MST. B] — {54,5$}, Bi = {b\,b2} and B^ = 

{^2,^3}- We cannot combine Bi and i?3 although they belong to the same bus net 

B. If we combine them, there will be conflicting block alignment because b\ and 



CHAPTER 4. FIXED-OUTLINE BDF WITH L-SHAPE B US 74 

r ~ — 
b i 七5 丨丨 B . b i — 

M ^ M W I 〒 ， ” � J 1 

U I u 
b 4 b 4 

Figure 4.5: One example of combining two horizontal bus components 

b3 cannot be aligned if b* and bs are aligned or vice versa. 

b i � 「 一 

, L ^ b J I 
0 4 |"| ^ I r i r 1 

——L__E^3�b 3 

Figure 4.6: Another example of combining two horizontal bus components 

A set of bus components (two or more bus components) satisfying the follow-

ing five conditions can be combined to a new bus component. 

C l . l The bus components belong to the same bus net. 

C1.2 All the bus components are of the same type, such as, all are horizontal bus 

components or all are vertical bus components. 

C1.3 For any bus component Bi in the set, there exists another bus component 

B.I in the set sharing one block with it. For example, B\ = {bj.bj} and 



CHAPTER 4. FIXED-OUTLINE BDF WITH L-SHAPE BUS 75 

B2 = {bj,bk} are two horizontal bus components that belong to the same 

bus net and share one block bj. 

CI.4 For horizontal bus components, there is no vertical constraint between blocks 

on different bus components in the set. For vertical bus components, there is 

no horizontal constraint between blocks on different bus components in the 

set. 

C1.5 There should be no cycle formed in the bus constraint graph if we delete 

Bx.Bi and add a new bus component B-̂  where B3 is formed by combining 

B\yB2 such that the edges incident on B\ and B2 are combined to form the 

edges incident on B^ in the bus constraint graph. 

To check if two bus components can be combined, the above five conditions 

should be checked. We can check if two bus components satisfy conditions C l . l 

to CI .4 easily. We can then check if those bus components satisfying conditions 

CI. 1. to CI .4 satisfy condition CI.5 by checking the bus components' indices in the 

sorted bus component list. Two bus components Bj and Bj satisfying conditions 

C l . l to CI.4 will satisfy condition CI.5 (can be combined) if they satisfy one 

of the following two conditions: Suppose that the index of Bi in the sorted bus 

component list is x and the index of Bj in the sorted bus component list is y and 

X < 乂 

C2.1 y — x= 1 or 

C2.2 Bi can be swapped with the bus components with bigger indices (the defini-

tion of swapping two bus components will be given in the next paragraph) 

while can be swapped with the bus components with smaller indices such 

that Bj’s new index x and B/s new index satisfy |;c' — 3/1 = 1 . 

For horizontal bus components, a bus component Bj can be swapped with another “ 

bus component Bj in the horizontal sorted bus component list if and only if there 



CHAPTER 4. FIXED-OUTLINE BDF WITH L-SHAPE B US 76 

is no vertical constraint between the blocks on B! and the blocks on Bj. Similarly 

for vertical bus components, Bi can be swapped with Bj in the vertical sorted bus 

component list if and only if there is no horizontal constraint between the blocks 

on Bj and the blocks on Bj. 

For any two horizontal bus components B,- and Bj, if their indices •x and y 

satisfy condition C2.1, they can be combined to form a new bus component B]. 

The reason is that the bus components below Bi can be routed below B] and the bus 

components above Bj can be routed above Bj. That means, the new bus component 

b'i have no conflicting block alignment constraint with other bus components. Thus 

the two horizontal bus components Bj and Bj can be combined to form a new bus 

component. Similarly, for any two horizontal bus components Bj and B卜 if their 

indices jc m d y satisfy condition C2.2, they can also be combined to form a new 

bus component b]. Since we only swap two horizontal bus components if and only 

if there is no horizontal constraint between the blocks on Bi and the blocks on Bj, 

there is no conflicting block alignment constraint if the two bus components are 

combined to form a new one. 

Suppose that the horizontal sorted bus component list is B\,B2,... and we 

want to check if Bx and By can be combined to form a new bus component accord-

ing to conditions C2.1 and C2.2. Let x,y be the indices of the bus components in 

the horizontal sorted bus component list and they satisfy x < The pseudo code 

is given in Algorithm 5. 

If two bus components Bi and Bj satisfy condition C2.1 or C2.2, they are com-

bined to form a new bus component B ; The corresponding sorted bus component 

list is then updated by deleting Bi and Bj and adding to the final position of Bj. 

The indices of all the other bus components are also updated. 

If three or more bus components satisfy conditions C l . l to CIA, there are 

two possibilities for combining bus components. The first option is that all the bus 



CHAPTER 4. FIXED-OUTLINE BDF WITH L-SHAPE BUS 77 

Algorithm 5 Checking if two horizontal bus components Bx and By can be com-

bined (Suppose that the index of in the sorted bus component list is x and the 

index of By in the sorted bus component list is y and x < y.) 
1: i f > - A- — 1 then 

2: return B � a n d By can be combined (satisfying C2.1) 

3: else 

4: flag] = 0 and flag2 = 0 

5: w h i l e � 1 do 

6: if nag 1 - 0 then 

7: if Bx and 5v+i can be swapped then 

8: x = x + 1 

9: else 

10: flag I = 1 

11: end if 

12: end if 

13: If tlag2 = 0 then 

14: if By and 5y_i can be swapped then 

15： 少= 

16: else 

17: flag2 = 1 

18: end if 

19: end if 

20: if flagl = 1 and flag2 二 1 then 

21: return B^ and By cannot be combined 

22: end if 

23: X = X a n d y = y 

24: end while 

25: i f ; / - V = 1 then 

26: return Bx and By can be combined (satisfying C2.2) 

27: else 

28: return B^ and By cannot be combined “ 

29: end if • 

30: end if . 



CHAPTER 4. FIXED-OUTLINE BDF WITH L-SHAPE B US 78 

components in the set will be combined to form a new bus component. The second 

option is that some of them will be combined and several new bus components are 

formed at the end. 

In our method, if three or more bus components satisfy conditions CIA to 

CI .4, two bus components are checked every time to see if they satisfy C2.1 or 

C2.2 by using the Algorithm 5. For example, if we want to check if the bus com-

ponents B\ ,B2”. . ,B,„ (sorted according to their indices in the horizontal sorted 

bus component list) can be combined, the checking process starts from checking 

Bi and B2. If the two bus components can be combined, they will be combined 

to form a new bus component b\ . Then, the new bus component B\ and B^ are 

checked. If Bi and B2 cannot be combined, Bi forms a new bus component b\ . 

We continue to check Bj and B^. The checking process is stopped until all the bus 

components are checked. At the end, we can obtain all the new bus components 

b'j {J < m). The pseudo code is given in Algorithm 6. 

Algorithm 6 Combine a set of bus components 

1： J= 1 and b ' j = Bj 

2: for each bus component Bj after (except do 

3： if BI and B'j can be combined then 

4： update b'j (using B'j = b'j U B!) 

5： update index of each bus component 

6： else 

7: 

8 ： update b'j (using B',. '= Bf) 

9: end if 

10： end for 



CHAPTER 4. FIXED-OUTLINE BDF WITH L-SHAPE BUS 79 

4.3.2 Details of the Annealing Process 

In the SA process, the objective is to find a floorplan solution with feasible bus 

assignment and to minimize the bus length, total area and wire length. 

Cost function 

In the annealing process, we want to minimize the total area, bus length and wire 

length with a feasible bus connection. The cost function is defined as: 

Cost = aCostArea + + yCostwire + 各 Costp (4.1) 

where C ostArea ̂  Cost bus] Costwire are the total area, total bus length and total wire 

length of the floorplan solution respectively. The wire length is estimated with 

HPWL. Costp includes the penalty for solutions with extra vias and it is the number 

of extra vias. The parameters and 5 are weights obtained by performing 

random walk at the beginning of the annealing process. With this cost function, 

we minimize the total area of the packing first, and the fixed-outline constraints 

will be handled by a post-processing step as described in Section 3.6. 

4.4 Experimental Results 

Our approach is implemented using the C language. We compare our results with 

the results of our first floorplanner described in the previous chapter, and the results 

of [5]. We run our first floorplanner and our second floorplanner on the same 

machine, an Intel Core2 Duo 2.33GHz CPU with 2GB memory. The floorplanner 

of [5] is run on a 1.86-GHz Linux machine with 2GB memory. The weights in 

Equation (4.1) are set automatically by random walk, so each test case is run ten . 

times and the average is reported. We have performed two experiments. In the first .. 

experiment, we compare our results with the results of our first floorplanner and • 



CHAPTER 4. FIXED-OUTLINE BDF WITH L-SHAPE B US 80 

Table 4.1: Comparisons on Bus Length, Running Time, DeadSpace and Successful 

Rate between Fixed-outline BDF, Fixed-outline BDF with L-shape Bus and [5] 

Test Cases Fixed-outline BDF*** Fixed-outline BDF wiih L-shapc bus [5] 

Uus Running Dead Siiccessftil Bus Kumiing Dead Succcssful iJus Running Dcixd Successful 

Length* Time Spacc Rfitc** Length* Time Spacc Rate** Length* Time Spacc Riih:** 

(see) (%) (%) (see) (%) (%) (tiCCj (%) (%) 

ami33-a 550.45 / 5.64 ！ 1.75 / 100/ 1 474.5 / 1 5.67 / 0.94 / 100/ 1 710.5 / 4.11 1.56 / 99 .8/1 

L16 … 0.99 1.86 I 1 ^ 

ami33-b 986.09 / 7.73 / 丨.72 / 100/1 835.5 / 1 6 .5 /1 1.99 / 100/1 1366.7 / 6.13 1.67 / 99.28 / 

1.18 1.19 0.86 1 1.64 ().K4 0.99 

ami33-c 1389.27/ 10.91 / 1.22 / 丨00/1 丨649.5/ 6.6/丨 1.6/丨 丨00/1 2433.2 / 7.35 1.72 / 98.18 ！ 
0.84 1.65 0.76 1 1.48 1.08 0.9S 

ami33-ti 1898.09/ 12.55 / 1.13 / 99.45 / 1949.1 / 7.6/ 1 1.27 / 100/1 3318,4 / 8.05 1.87 1 97.81 / 

0.97 1.65 0.89 0.99 1 丨 1.7 丨.47 0.98 

ami33-c 2799.27/ 15.36 / 1.65 / 99.49 / 2601.1 / 8 .1 /1 2.57 / 100/1 457K.6 / K.9I 1.KK / 95.46 / 

1.08 1.9 0.64 0.99 1 i 1.76 0.73 0.95 

ami33-f 2741.91 / 18.27 / 1.02 / 98.72 / 2921.6 / M/l 2.0S / 100/1 5078.6 / 10.01 1.9H / 95.12 / 
0.94 1.66 0.49 0.99 I 1 1.74 0.95 0.05 

ami49-a 5LM.64/ 丨 5 .82/ 丨.54 / 98.32 / 6S92.33 / 18/丨 丨.75 / 丨 00/丨 5304.4 / S.96 0.86 / 100/1 

0.75 0.88 0.S8 0.98 丨 丨 0.77 0.49 

ymW9-b 11651.36 23.73 ！ 1.64 / 98.12 / 11252/ ！ 26 / I 1.42 / 100/1 81X9.4 / \().U\ 0.95 / 100/ I 

；1.04 0.91 1.15 0.98 1 0.73 0.67 

ami49-c 丨6164.18 30.09/ 1.66 / 97.66 / 13253/1 4 5 / 1 1 . 5 7 / 丨00/1 丨2764.6/ 12.K4 丨.；1 / 100/ 1 

/ 1.22 0.67 丨.06 0.98 I 0.96 0.83 

ami49-d 19439.55 34.91 / 1.92 / 99.12 / 19632/1 .10 /1 / 100/ 1 I6955.S/ 16.% 1.56 / 100/ I 
/0 .99 ！.16 1.04 0.99 1 0.86 0.K4 

ami49-e 22277.9/ 48.1 / 2.42 / 99.8/ 1 22408/1 5 7 / 1 3.08 / 100/ 1 22452.6/ 21.86 i.5 / 100/1 

0.99 0.84 0.79 丨 丨 0.49 

Average 1.01 1.23 0.95 0.99 1 1 1 1 1.29 **** 0.91 0.99 

• The buses are conncctod to the block boundaries in both [5] and our approach. 

** Successful Rate refers to the pcrccntagc of the floorplans generated by the SA in which all the buses arc feasible. 
*** The values after the slashes arc the normalized values. 

****[5) nin on different machines, so wc do not compnrc running time. 

that of [5]. Similar to chapter 3, we just minimize the bus length and total area 

in our floorplanner because the works in [5] minimize bus length and total area 

without the fixed-outline constraint and the interconnect cost minimization. The 

buses are connected to the block boundaries in the three approaches (Table 4.1). 

The values after the slashes are the normalized values. The comparisons for all 

the data sets are reported in terms of bus length, running time, deadspace and 

successful rate. Successful rate refers to the percentage of the floorplans generated 

T 



CHAPTER 4. FIXED-OUTLINE BDF WITH L-SHAPE BUS 81 

by the SA have all the buses feasible. In [5], no results are reported for benchmark 

ami33-l to ami33-5 and ami49-l to ami49-6, so we do not compare those results. 

Compared with [5], their bus length is 1.29X of ours, their deadspace is 0.9 IX 

of ours and their successful rate is 0.99X of ours on average. We have also tried 

to tune the parameter of the SA process in order to produce similar dead space 

as in [5] and compare the bus length. The results are shown in Table 4.2. The 

approach in [5] is run on different machine, so we do not compare running time. 

Compared with our first floorplanner, the bus length is 1.0 IX of our second one, 

the running time is 1.23X of our second one, the deadspace is 1.2X of our second 

one and the successful rate is 0.99X of our second one on average. • 

In the second experiment, we handle the fixed-outline constraint and minimize 

both the bus length and the interconnect cost. In our experiment, deadspace tliresh-

old r is set to 10% and the aspect ratio R of the chip is 1.0. Therefore the W and 

H are computed as \ / l . l x J^A-, where A-, is the area of block bi. The aspect ratio 

bound of a soft block bi is [// - 0.8，// + 0.8] where ti is the original aspect ratio of 

block /;,-. We use H.PWL to estimate wire length. The information of the pins and 

net list is shown in Table 3.5. We compare our approach with our first floorplanner 

in chapter 3 and modified floorplanner of [4]. Experimental results are shown in 

Table 4.3. The results for all data sets are reported in terms of bus length, wire 

length, running time and successful rate. Experimental results show that the bus 

length of modified floorplanner of [4] is on average 2.33X of our bus length, their 

running time is on average 4.33X of our running time, their successful rate of our 

first floorplanner is on average 0.85X of ours, and their wire length is on average 

1.04X of our wire length. Besides, experimental results also show that the bus 

length of our first floorplanner is on average 1.08X of our bus length, the running 

time of our first floorplanner is on average 2.29X of our running time, the success- ’ 

fill rate of our first floorplanner is on average 0.98X of ours, and the wire length of ” 



CHAPTER 4. FIXED-OUTLINE BDF WITH L-SHAPE BUS 82 

Table 4.2: Comparisons on Bus Length, Running Time, DeadSpace and Success-

fule Rate between Fixed-outline BDF with L-Shape Bus and [5] with Similar 

Deadspace 

Test Cases Fixed-outline DDF with L-shapo bus [5] 

Bus Length* Running Time (sec) Dcadspacc (%) Successful Rate **(%) Bus Lcngili* Running Time (see) Dcatiiipacc (%) Siicccssfiil R:ile (%) 

fimi33-a 477.5 / 1 5.43 0 . 9 8 / I 100/ 1 710.5/1.49*** 4.11 1 / 1 . 5 9 9<).K / 1 

ami33-b 850.2 / 1 6.8 1.77/ 1 100/ 1 1366.7/1.61 6.13 1.67/0.94 99.2H/0.()9 

ami33-c 1648 .9 / ! 6.5 1.61 / 1 UX)/ 1 2433.2/ 1.48 7.35 i .72 /1 .07 9S,1H/0.9S 

ami33-d 1939.1 / 1 7.9 1 .45/1 100/ I .VMS.4/ 1.71 8.05 1.87/ 1.29 97.KI /0.(州 

ami33-e 2706.5 / 1 7.9 2 . 1 1 / 1 I Of)/ 1 4578.61 ! .69 8.91 1.88/ 0.89 95.46 / 0.95 

nmi33-f 2955 .9 /1 12 2 . 0 1 / 1 丨M/ I 5()7«.6/1.72 10.01 1.98/0.99 9 1 1 2 / 0 . 9 5 

ami49-a 6 1 8 4 / 1 15 0 . 7 7 / 1 100/ I 5304.4/0.86 8.96 0.86/ 1.12 100/ 1 

ami49-b 11263/ 1 28 1.2! / 1 1 0 0 / 1 8189.4/0.73 10.14 0})5 / 0.79 100/ 1 

ami49-c 丨 5 2 5 3 / 1 43 1 . 3 4 / ! 丨 00 /丨 / 0.84 12.K4 1.3/(M)7 lt)()/ l 

ami49-d 20322/ 1 32 1.58/丨 100 /1 16955.X/O.JO 丨 6.96 1.56/0.09 100 /1 

ami49-c 23255 / 1 58 1.7/ 1 100/ 1 22452.6/0.97 21.86 1.5/0.K8 100/ 1 

Average 1 1 1 I 1.26 **** 1.05 0.99 

• The buses arc conncctcd to the block boundaries in both [5J aiul our npproncli. 

** Succcssful Rate refers to the percentage of the floorplaiis generated by the SA in which nil the buses arc feasible. 

The values after the slashes arc the nonnalizcil values. 

****[5] run on difTcrcni muchincs, so wc do not compijrc running lime. 

our first floorplanner is on average 1.03X of our wire length. The complexity and 

run time of our method do not increase with an increasing number of metal layers. 

A floorplanning solution is shown in Figure 4.7. 

4.5 Summary 

In this chapter, bus routability problem is handled. We present a floorplanner that 

can give a fixed-outline floorplanning solution including bus route that minimizes 

bus length, number of extra vias and interconnect cost. In each iteration of SA 

process, our goal is to route all bus components successfully by inserting an L-

shape bus component for each bus component whose block alignment constraint is 

conflicting with that of other bus components. We first present a method to detect 

conflicting block alignment constraints and select some bus components to be con-

• I 

- . I 

J 

- . ！ 

1 



CHAPTER 4. FIXED-OUTLINE BDF WITH L-SHAPE BUS 83 

Table 4.3: Comparisons on Bus Length, Running Time, Wire Length and Success-

ful Rate between Fixed-outline BDF, Fixed-outline BDF with L-shape Bus and 

Modified Floorplanner of [4] 

Test Cases Fixed-outline UDF** Fixed-outline BDF with L-shape bus Modified Flooivlaiincrof | 4 | * " 

Bus Running Wire Succcssfiil Bus Running Wire Succcssful Bus Running Wire Successful 

Length* Time Lcnph Rate (%) Length* Time Length Rate (%) Length* Time Length Rate (';i) 

(sec) (see) (see) 

a m i l l - l 2593.5 丨5.12 / 8X721.62 / 100 /1 23R5.88 6.8S / 78107.75 / 丨00/1 5295.2 24.S / 89721 / 91.33 / 

/I.09 2.2 1.14 / I I 1 ,.2.22 3.6 1.13 0,91 

！imi3.V2 1132.14 22.86 / 8767-1 / 100 /1 704 / 1 8 / 1 85202.86 / 100/ 1 4996 / 22.5 / 91004 / 88.32 / 

2.86 1.03 1 7.1 2.81 1.07 0.88 

•""133-3 12S2.64 4,55 / 81766.91 / 98.35 / 1(H9.5 5.42 i 79005.58 / 1 0 0 / I 1875.1 6.9 i 8S012.9 / 74.47 i 

" . 2 2 0.S4 1.03 ( m / I 1 1 /1 .79 1.27 1.11 0.74 

aiiii33-4 3427 / 10.71 / 85935.29 / 99.01 / 3261.75 8.75 / 83199.25 / 100/ 1 5233.86 17.71 / 92861.29 / 87.73 / 

' • ‘» I ” 1-03 0.99 / 1 1 1 / I . 6 2.02 1.12 0.88 

anii.53-5 597X.75 22.5 / 96991.8S / 100/ 1 6325 / 11.5 / 93162.5/1 100/ 1 8855 / 33 / 97217 / 80.06 / 

1.04 1 I 1.4 2.87 1.04 0.8 

ami33-a 1041.89 6.44 / 88626.33 / 96.S3 / 875.6 / 5 / 1 81483/ 1 100/ 1 2151.89 8.56 / 84692.56 / 92.25 / 

1.29 1.09 0.97 1 /2 .46 1.71 1.04 ().<)2 

amilU-b 1435..U 9.11 i 90474.78 / 97.89 i 1339.S；! 5.83 i 91585.83 / 丨00/I 3823.8 11.7 i S6R8R.6 / 85.74 ！ 

川)7 1.56 0.99 ( m / I 1 1 /2 .85 2.01 0.95 0.S6 

！imi33-c 1704.44 12.56/ 931()0.7S / 96.45 / 1976.83 6.33 / 91207.67 / 100/ 1 4223.4 16.7 / 92181.5 / 73 X8 / 

/ 嶋 1.98 1.02 ^ / I 1 1 /2 .14 2.M 1.01 0.74 

anii.?:Vd 2446 / 13.75 / 95060.38 / 98.02 / 2180 / 6 / 1 % 1 5 7 / 1 100/ 1 4864.71 21.43 / 9 5 7 8 9 / 1 72.12 / 

1.12 2.29 0.99 0.98 1 12.23 3.57 0.72 

！>mi33-c ；!276.+4 16.56/ 99669.44 / 97.66 I 3648.33 8.67 / 96934/ 1 100/ 1 5875.86 28.14 / 95498.86 / 75.88 / 

/ 0 . 9 1.91 1.03 0.98 / I 1 / 1.61 3.25 0.99 0.70 

wtii lVf 3291.91 20.91 / 76746.64 / 97.56 / 3630.12 1 0 / 1 73739.25 / 100/ 1 6473.86 23 i 91879.43 / 70.14 / 

/0-91 2.09 1.04 0.98 / I 1 / 1.78 2.3 1.25 0.7 

ami4(J-l 13395 33 / 15156(50 / 11)0/ 1 12749.33 11.67 / 1544481.5/ 100/ 1 3452:5.5 ‘ 79.67 / 1452900.67 91.01 / 

2.83 Q.9X / I I 1 /2.71 6.83 /().94 0.91 

ami49-2 14060.67 54.67 / 1602456 / 96.33 / 丨5667.8:5 1 3 / 1 1688731.67 100/ 1 38163.4 97.4 / 丨«0 4 9 0 . 2 / 89.74 / 

/ 0 . 9 4.21 0.95 0,96 / I / I /2 .44 7.49 0.85 0.9 

ami卯 .3 l!!:5)(4.X：? 58,67 / 1«:!W().67 98.92 / 19072 1 3 / 1 1526998.67 100 /1 >13292.33 l<)l / 1324948.33 X5.28 / 

4.51 / I . 0 6 ^ / I / I / 2 .27 14.69 /0 .87 0.85 

ami4!M 12044.78 17.78 / 1207ii56 / 96.91 / 9249 / 9 / 1 1122439/1 丨00/ 1 12633.5 32.83 / 1204466.5 / 92.44 / 

/ ' • 3 1.9B 1.08 0 J 7 1 / 1.37 3.65 1.07 0.92 

ami4y-5 22143,33 34.56 / 1163613.11 97.01 / 17510.5 14.5 / 1183525/ 1 100/ 1 28692 72.5 / 1228114 / S9,25 / 

/1 .26 2.38 /0 .98 0.97 / I 1 /1 .64 5 1.04 0.89 

ami49-6 22X79.18 42.45 / 11()299().64 100/ 1 20864 13/ 1 1170611 / 1 100/ 1 38318 97.5 / 1303445.5/ 84.46 / 

" . I 3.27 /0 .94 n / 1.84 7.5 1.11 0.84 

:mii<19-a 451133 1(U>7/ l(W(iS% / ')7.34 / 445S / 8 / 1 丨07883(1/1 1 0 0 / 1 10066.3 35.4 / 1240945.6/ ')2.24 / 

川)l 道 I.OI ( W 1 / 2.26 4.4J 1,15 0.92 

nmi49.b %() ( ) / 41 .33 / U5()90SJ3 99.S8 / 1 9332 / 7.78 / 丨 100516/1 1 0 0 / I 16498.5 36.25 / 1285767 / 90.54 / • 

"•仍 1 1 - /1.77 4.66 1.17 0.91 

ami4y-i; 丨8(>72.2 22 / 1381215 / 97,9 / 16095 1 4 / 1 U 2 3 8 4 7 / 1 1 0 0 / 1 19302 61 / 1丨_8 ( ; / 83.76 / " 

0.卯 J J / 1.2 4.36 0.83 ().X4 , 

ami49-d 19888 20 / 145%32 / 98.44 / 21413 2 6 / 1 1407030/1 1 0 0 / 1 N A / N A / N A / N A / 

/ 0.93 0.77 1.04 0.98 / I _ 

27090 / ( ) / 1396458 / 98.67 / 23615 3 2 / 1 1253930/1 1 0 0 / 1 N A / N A / N A / N A / 

/1 .15 1.25 I.II ().')•) / I 

Avemjje l.OK 2.29 1.03 0.9S | l 1 1 1 2.23 4.33 1.04 

* buses arc conncctcd (o tlic block boundaries in bolli our floorplanner and the modified flooiplanncr of [4). • • Fixed-outline BDF refers o the floorp anncr 

descritecl in tlie pruvioiis chapter. » • • Tliis modified floorplanner of [4] cannot give a feasible solution after runnin!； ten limes on the Jatu sets anii49-d ami :mii49-e. 



CHAPTER 4. FIXED-OUTLINE BDF WITH L-SHAPE B US 84 

, 、 *、。”、， ‘‘ 4 ,、’、‘ ,„,,„ 丨丨丨丨丨丨,,„„„'„ I 

wm^ aiiiii-iiiinijp；^ . 
” “ ~ , ： ： "'："：'|"" n 

«〜> 广 、 \ ；‘、 

> 、 ‘ > 、 ， � ’ � ’ L m丨丨丨丨、丨丨丨丨丨,.—1 

‘、、• … 

,、、 ： 5 、 、 、 八 ~ 

— ^ \」 <、 《、 ！?> , 
、 � ‘ � � � ’ ’ 2 � 心 ’� ’ ’ ’ I • J丨，，_,'丨,丨 

‘ � � - ‘ � \ � \ VJ ‘ � S , � 
,,川,,,,,,,广•;••,,„;••,“,,,,•••_,,, 、 、 ， „ 

�、生 ‘ - , > ' * ‘ � � > ' � , � IJ i9‘ 

•、，\、“ ('''___1_''""V I ） ^ "X :��'2r< I � „ ,„;,,：： � � \ ‘,— , � ” - 、I. �� n r - -
放； I \ \ U 

l i i i j _ i� 、“， J 1 — 
J, < � S N 

Figure 4.7: A bus routing solution = {0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9} , = {10,11，12, 

13,14,15,16,17,18,19}’ B3 二 {20,21,22,23,24,25,26,27,28,29} 

verted into L-shape bus components to make sure that there is no conflicting block 

alignment constraint. The selected bus components are then divided into L-shape 

bus components according to the method described in Section 4.3.1. In addition, 

some bus components satisfying certain conditions are combined to reduce the 

number of bus components. We list the conditions and also propose a method to 

combine bus components to reduce the number of bus components. Experimental 

results show that we also improve over the recent work [5] in terms of bus length 

and successful rate on average. Besides, we can improve over our first floorplanner 

and the modified floorplanner of [4] in terms of both bus length, running time and 

successful rate. 

• End of chapter. 



Chapter 5 

Conclusion 

In this thesis, the fixed-outline BDF is discussed. We solve the fixed-outline BDF 

problem with an objective to minimize the total bus length and interconnect cost. 

In the first approach, we focus on the bus length minimization problem. Instead of 

adding up all the bus length in the cost function of the SA process, we handle the 

bus length minimization problem globally in a more sophisticated way by using a 

bus-driven partitioning step. In this step, min-cut partitioning is performed recur-

sively to reduce bus length. At the same time, we use a more accurate estimation 

algorithm that connects buses to the block boundaries to estimate bus length. We 

can achieve shorter bus length on average by using this approach. Experimental 

results show that we can improve over the most closely related previous work [4] 

in terms of bus length, running time and dead space. Besides, we also improve 

over a most recent work [5] in terms of bus length on average. 

Based on our first approach, we can increase the searching space to find a solu-

tion with more flexible bus shape and more flexible positions of the bus bendings. 

Ill the second approach, we focus on the bus routability problem. We handle the 

bus routability problem in a more sophisticated manner to increase the searching 

space and give more flexibility by changing the bus shape and the positions of the 

85 



CHAPTER 5. CONCLUSION 86 

bus bendings. We present a floorplanner that can give a fixed-outline floorplanning 

solution including bus route that minimizes bus length, number of extra vias and 

interconnect cost. Our goal is to route all the bus components successfully in each 

iteration of the SA process of this floorplanner. L-shape bus component is used 

to route the buses with conflicts with other bus components. Experimental results 

show that we also improve over the most recent work [5] in terms of bus length and 

successful rate on average. Besides, we can improve over our first floorplanner in 

Chapter 3 and the modified floorplanner of [4] in terms of both bus length, running 

time and successful rate. Future work will be focused on improving the run time 

for each test case. 

• End of chapter. 



Bibliography 

[1] Hua Xiang,Xiaoping Tang,Wong, M.D.F., bus driven floorplanning, IEEE 

Trans. Computer-AidedDesign of Integrated Circuits and Systemsyo\22>, pages 

1522- 1530, 2004. ‘ 

[2] T.-C.Chen and Y.-W. Chang, Modern floorplanning based on B*-Tree and fast 

simulated annealing, IEEE Trans, on Computer-aided design of integrated cir-

cuits and systems ,vol. 25, No. 4, pages 637-650, 2006. 

[3] Jill H.Y. Law, Evangeline F.Y. Young, Multi-bend bus driven floorplanning, 

IEEE Tmns.Integration, the VLSI Journal，Vol. 41(2),pages 306-316，2008. 

[4] Tilen Ma, Evangeline F.Y. Young, TCG-based Bus Driven Flooiplanning, 

Proc. IEEE Asia South Pacific Design Automation Conference,200%. 

[5] B.-S. Wu and T.-Y. Ho, Bus-Pin-Aware Bus-Driven Flooiplanning, Proceed-

ings of ACM Great Lake Symposium on VLSI ,2010. 

[6] G. E. Moore, Gramming More Components onto Integrated Circuits, Elec-

tronics, Vol.38, 1965. 

[7] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Sliekhar, Multi-

level Hypergraph Partitioning: Applications in VLSI Domain, IEEE Trans, on . 

VLSI Systems, Vol 7，No. 1, pages 69-79，1999. ” 

87 



BIBLIOGRAPHY . 88 

[8] Tung-Chieh, Chen Yao-Wen, Chang Shyh-Chang Lin, IMF: interconnect-

driven multilevel floorplanning for large-scale building-module designs, Proc. 

2005 IEEE/ACMInternatiojial conference on Computer-aided design, 2005. 

[9] Saurabh N. Adya，Igor L. Markov, Fixed-outline Flooiplanning: Enabling hi-

erarchical design, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. ,vol. 11，no. 

6, pages 1120-1135, Dec. 2003. 

[10] R. H. Otten, Automatic Floorplan Design, in Proceedings of the 19th con-

ference on Design automation, pages 261-267, 1982. 

[11] D.F.Wong and C.L.Liu, A New Algorithm for Floorplan Design, in Proceed-

ings of the 23rd ACM/IEEE conference on Design automation, pages 101-107, 

1986. 

[12] W. Shi, An Optimal Algorithm for Area Minimization of Slicing Floorplans, 

in Proceedings of the 1995 IEEE/ACM International Conference on Computer-

AidedDesign, pages 4 8 0 4 8 4 , 1995. 

[13] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu, B*-Trees: A New Rep-

resentation for Non-Slicing Floorplans, in Proceedings of the 37th Conference 

on Design Automation, pages 4 5 8 4 6 3 , 2000. 

[14] P.-N. Guo, C.-K. Cheng, and T. Yoshimura, Aii 0-tree Representation 

of Non-slicing Floorplan and Its Applications, in Proceedings of the 36th 

ACM/IEEE Conference on Design Automation, pages 268-273, 1999. 

[15] H. Onodera, Y. Taniguchi, and K. Tamam，Branch-and-Bound Placement for 

Building Block Layout, in Proceedings of the 28th Conference on ACM/IEEE 

Design Automation, pages 433-439, 1991. 



BIBLIOGRAPHY . 89 

[16] T.-C. Wang and D.F.Wong, An Optimal Algorithm for Floorplan Area Op-

timization, in Proceedings of the 27th ACM/IEEE Conference on Design Au-

tomation, pages 180-186, 1990. 

[17] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, Rectangle-Packing-

Based Module Placement, in Proceedings of the 1995 IEEE/ACM International 

Conference on Computer-Aided Design, pages 472-479, 1995. 

[18] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani, Module Placement 

on BSG-Structiire and IC Layout Applications, in Proceedings of the 1996 

IEEE/A CM International Conference on Computer-Aided Design, pages 484-

491, 1996. 

[19] Y. Pang, C.-K. Cheng, and T. Yoshimura, An Enhanced Perturbing Algorithm 

for Floorplan Design Using the 0-Tree Representation, in Proceedings of the 

2000 International Symposium on Physical Design, pages 168-173, 2000. 

[20] J.-M. Lin and Y.-W. Chang, TCG: A Transitive Closure Graph-Based Rep-

resentation for Non-Slicing Floorplans, in Proceedings of the 38th Conference 

on Design Automation, pages 764—769, 2001. 

[21] X. Hong et al.’ Corner Block List: An Effective and Efficient Topolog-

ical Representation of Non-slicing Floorplan, in Proceedings of the 2000 

IEEE/A CM International Conference on Computer-Aided Design, pages 8—12， 

2000. 

[22] E. F.Y.Young, C. C.N.Chu, and C. Shen, Twin Binary Sequences: A Non-

Redundant Representation for General Non-Slicing Floorplan, in Proceedings 

of the 2002 International Symposium on Physical Design, pages 196-201，2002. . 



BIBLIOGRAPHY . 90 

[23] B. Yao, H. Chen, C.-K. Cheng, and R. Graham, Revisiting Floorplan Rep-

resentations, in Proceedings of the 2001 International Symposium on Physical 

Design, pages 138-143, 2001. 

[24] K. Sakanushi and Y. Kajitani, The Quarter-State Sequence (Q-sequence) to 

Represent the Floorplan and Applications to Layout Optimization, in Proceed-

ings of the 2002 IEEE Asia-Pacific Conference on Circuits and Systems, pages 

829-832, 2000. 

[25] Naveed Slierwani, Algorithm For VLSI Physical Design Automation, 3rd 

ed., Kluwer Academic Publishers, pages 193-196, 1999. 

[26] G. Vijayan and R. Tsay, A new method for floorplanning using topologi-

cal constraint reduction, IEEE Trans, on Computer-Aided Design, pages 1494-

1501, Dec.,1991. 

[27] B. Lokanathan and E. Kinnen, performance optimized floorplanning by 

graph planarization, Proceedings of ACM/IEEE Design Automation Confer-

ence, pages 116-121, 1989. 

[28] W. W. Dai, B. Eschemiann，E. Kuh, and M. Perdram, Hierarchical place-

ment and floorplanning in bear, IEEE Transactions on Computer-A ided Design, 

Vol.8, pages 1335-1349，Dec. 1989. 

[29] S. M. Sait, H.Youssef and M. S. T. Benten, Timing influenced general-cell ge-

netic floorplanner, Proceedings of the ASP-DAC '95/CHDL '95/VLSI '95., IFIP 

International Conference on Hardware Description Languages; IFIP Interna-

tional Conference on Very Large Scale Integration., Asian and South Pacific, 

pages 135-140, 1995. 

[30] H. Youssef, S. M. Sait and K J . Al-Farra, Timing influenced force directed 

floorplanning Proceedings EURO-DAC'95, pages 156-161, 1995. 



BIBLIOGRAPHY . 91 

[31] S. M. Sait and H.Youssef, VLSI Physical Design Automation - Theory and 

Practice, McGraw-Hill Book Company Europe and IEEE PRESS, pages 80-

130, 1995. 

[32] S. Sutantliavibul and Rosen., An Analytical Approach to Floorplan Design 

and Optimization, in IEEE Transaction on Computer-AidedDesign, pages 761-

769, 1991. 

[33] T. Chen and M. K. H. Fan, On Convex Formulation of the Floorplan Area 

Minimization Problem, in Proceedings of the 1998 International Symposium 

on Physical Design, pages 124-128, 1998. -

[34] J. H. Holland, Adaptation in Natural and Artificial Systems, in Ann Arbor, 

MI: The University of Michigan Press, 1975. 

[35] M. Rebaiidengo and M. Reorda, Gallo: A Genetic Algorithm for Floor-

plan Area Optimization, in IEEE Transaction on Computer-Aided Design, vol-

ume 15，pages 943-951, 1996. 

[36] N. Metropolis, A. Rosenbluth, M. N. Rosenblutli, A. Teller, and E. Teller, 

Equations of State Calculations by Fast Computing Machines, in J. Chem. 

Phys 21, pages 1087-1092，1958. 

[37] M. Pincus, A Monte Carlo Method for the Approximate Solution of Certain 

Types of Constrained Optimization Problems, in Open Res. 18, pages 1225-

1228，1970. 

[38] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by Simulated 

Annealing, in Science, volume 220，pages 671—680，1983. 



BIBLIOGRAPHY . 92 

[39] C. W. Sham and E. F. Y. Young, Routability Driven Floorplanner with Buffer 

Block Planning, in Proceedings of the Internationa] Symposium on Physical 

Design, pages 50-55, 2002. 

[40] K. K. C. Wong and E. F. Y. Young, Fast Buffer Planning and Congestion 

Optimization in Interconnect-Driven Floorplanning, in Proceedings of the con-

ference on Asia South Pacific Design Automation Conference, pages 411-416, 

2003. 



. . . . • . - • • , , 

• . 

- ‘ 

… . . . ， . ， • . . . ， . . 

...,、•:: ： . : . . . . , . ： • 、 . ： , . 

f � . , …“广 ,仏、�I紀 

_ 



. 5 ； -

• • ‘ 

： - • • . - - • 

. • • -

々...，•‘ ： . � . I 
: . ’ . . • • I . ‘ 

• . . . ‘ • , 
• . 镇、 » 

, ：、 •. 

• ‘ . ！ 

•一 - . • , •！ 

» 、 , . 

‘• 、：’.. ， . 

..., . 

• ‘ •, ‘ 
. ： . ‘ . . . ‘ , • ： 

‘ • • • ( . 、‘ 

. . , • .V 
.. ‘ I . 

, , • . . • ^ •• - 1 ： 

. ：； • - ， ‘ . • 

. , . . . - 工 ^ .':‘:-_: ‘ . . ‘‘ . 

• '• ； - 'f* > . . . . - . 

, . ‘ . ， • 

. . - • . , - ... , ‘ . ‘ .. - • •• ‘ ； 

. . . • 广 

. • ； • . . • . , • • , • . •-‘ 
‘ . . • • • • ‘ • , • , . , • ^ 

• ..... . . ~ ；ifV- .、...，.•. - . . ？.、:. 
“ .‘ . . ： • 批 ： : . . , ： . : ' , - ， . 

• . . •,'：• • ... .. . ：. .‘.•、.>.:••: • 

_ i;' . ‘ . . ； ： •‘ 

, . . . . . . : : t � . " , . : ” .. • 

. .... ‘.:.、.,，：:：：〜•.. 

._ ：•• - . - 、 . ‘ .. • • • . \. • 、.‘• 

• . .. ,...,.,、".......。、•::、 ， 

“ V" . ’ ...… 
• - i ‘ • . ' 

, ‘ 、 ’ ‘ ‘ 
• . • . 

、• ... _ . . . , ” • 《 - +• . ‘ , “’-..、 ，. ‘， ‘ X ‘.’ . . • 

. . . . . . . • • 參 t n i : " . . � - ..,.:..’"：.. 

•• � . • • ... . ：•••• • • - - • • V � , 1 . - v . � . ’ • •； 

. •. ‘ > ： .- • • , . 、• ： - - ‘ •••.,. . . . . ... 

. ： � . • '-vJ •••• ； , J. • 

- ？ V ‘ ；• \ - ‘ . . 
…： 、....，•、 - ....... 

, 4 • • .V . ‘ > 
. . . _ • . . •“ ).,，、 :、•:、 : . . . 、.： 

.• - . . . , 

.... .、.. . • • . . , 
。 - ‘ ；； . . • ： . . , .. • 

^ 寧— :. . . . 'I 

‘。、»: . :: 、 - , MM^ 
‘ � ^ ^ ^ ... • .. :: V . . / . : : : ,‘， . , ;、 . , _ _ 

^ ^ -： ‘ . . • • • • I CUHK L i b r a r i e s 礙 . ： . : 、 ） 


