
Design and Test for Timing

Uncertainty in VLSI Circuits

YUAN, Feng

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Doctor of Philosophy

in

Computer Science and Engineering

The Chinese University of Hong Kong

June 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CUHK Digital Repository

https://core.ac.uk/display/48550002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

With technology scaling, integrated circuits (ICs) suffer from increasing process,

voltage, and temperature (PVT) variations and aging effects. In most cases, these

reliability threats manifest themselves as timing errors on speed-paths (i.e., criti-

cal or near-critical paths) of the circuit. Embedding a large design guard band to

prevent timing errors to occur is not an attractive solution, since this conservative

design methodology diminishes the benefit of technology scaling. This creates

several challenges on build a reliable systems, and the key problems include (i)

how to optimize circuit’s timing performance with limited power budget for ex-

plosively increased potential speed-paths; (ii) how to generate high quality delay

test pattern to capture ICs’ accurate worst-case delay; (iii) to have better power and

performance tradeoff, we have to accept some infrequent timing errors in circuit’s

the usage phase. Therefore, the question is how to achieve online timing error

resilience.

To address the above issues, we first develop a novel technique to identify

so-called false paths, which facilitate us to find much more false paths than con-

ventional methods. By integrating our identified false paths into static timing

analysis tool, we are able to achieve more accurate timing information and also

save the cost used to optimize false paths. Then, due to the fact that existing de-

lay automated test pattern generation (ATPG) methods may generate test patterns

that are functionally-unreachable, and such patterns may incur excessive (or lim-

i

ited) power supply noise (PSN) on sensitized paths in test mode, thus leading to

over-testing or under-testing of the circuits, we propose a novel pseudo-functional

ATPG tool. By taking both circuit layout information and functional constrains

into account, we use ATPG like algorithm to justify transitions that pose the max-

imized functional PSN effects on sensitized critical paths. Finally, we propose a

novel in-situ correction technique to mask timing errors, namely InTimeFix, by in-

troducing redundant approximation circuit with more timing slack for speed-paths

into the design. The synthesis of the approximation circuit relies on simple struc-

tural analysis of the original circuit, which is easily scalable to large IC designs.

ii

摘要

由於特徵尺寸不斷縮小，集成電路在生產過程中的工藝偏差在運行環境中

溫度和電墨等參數的波動以及在使用過程中的老化等效應越來越嚴重，導

致芯片的時序行為出現很大的不確定性 Q 多數情況下，芯片的關鍵路徑會

不時出現時序錯誤 Q 加入更多的時序餘量不是一種很好的解決方案，因為

這種保守的設計方法會抵消工藝進步帶來的性能上的好處 Q 這就為設計一

個時序可靠的系統提出了極大的挑戰，其中的一些關鍵問題包括(一)

如何有效地分配有限的功率預算去優化那些正爆炸式增加的關鍵路徑的時

序性能(二)如何產生能夠捕捉準確的最壞情況時延的高品質測試向量

(三)為了能夠取得更好的功耗和性能上的平衡，我們將不得不允許芯

片在使用過程中出現一些頻率很低的時序錯誤。隨之而來的問題是如何做

到在線的檢錯和糾錯。

為了解決上述問題，我們首先發明了一種新的技術用於識別所謂的虛假路

徑，該方法使我們能夠發現比傳統方法更多的虛假路徑。當將所提取的虛

假路徑集成到育事態時序分析工具里以後，我們可以得到更為準確的時序分

析結果，同時也能節省本來用於優化這些路徑的成本 Q 按著，考慮到現有

的延時自動向量生成 (ATPG) 方法會產生功能模式下無法出現的測試向

量，這種向量可能會造成測試過程中在被激活的路徑周圍出現過多(或過

少)的電源噪聲 (PSN) ，從而導致測試過度或者測試不足情況 Q 為此，

我們提出了一種新的偽功能ATPG工具 Q 通過同時考慮功能約束以及電路

的物理佈周信息，我們使用類似ATPG的算法產生狀態跳變使其能最大化

已激活的路徑周圍的PSN影響。最後，基於近似電路的原理，我們提出了

一種新的在線原位校正技術，即InTimeF眩，用於糾正時序錯誤。由於實現
近似電路的綜合僅需要簡單的電路結構分析，因此該技術能夠很容易的擴

展到大型電路設計上去。

111

Acknowledgement

At the very beginning, I am deeply indebted to my supervisor, Professor Qiang Xu,

who patiently motivated me to conceive and develop the main ideas in the thesis. I

would like to express to him my sincere gratitude for his seasoned guidance from

the very early stage of this research work as well as providing constructive advices

throughout the entire study. In particular, I also would like to thank him and his

wife for their concerns about my daily life.

Professor Yu-Liang (David) Wu and Professor Rung Tsong (Michael) Lyu,

thank you for your constructive comments in the term presentations which gave me

important suggestion to my research progress. I shall express my great thanks to

Professor Kwang-Ting (Tim) Cheng from University of California, Santa Barbara

for his insightful hints on my research works during several meetings, for serving

as my external marker and reading my thesis.

My research partners Yubin Zhang, Lin Huang, Xiao Liu, Li Jiang, Rong Ye,

Yuxi Liu, Jie Zhang, Chenfei Ma and Zelong Sun in the The CUhk REliable Com-

puting Laboratory (CURE), thank you for your insightful comments on my re-

search work. I am also grateful to all the colleagues who once stayed in 506 EDA

office, Linfu Xiao, Minqi Jiang, Zaichen Qian, Xiaoqing Yang, Zigang Xiao, Yan

Jiang, Xing Wei, Yi Diao and Xu He, it is you who bring me laugher and make my

post-graduate study life colorful. Special thanks are also to my friends Qiang Ma

and Lei Shi, who helped me to settle down when I just came to this campus.

iv

Last but not the least, my father Guangfu Yuan, my mother Guangpin Gui, my

fiancee Rong Huang and all my family members, without your love and support, I

cannot achieve anything. I would like to give my greatest appreciation to you.

v

Contents

Abstract i

Acknowledgement iv

1 Introduction 1

1.1 Challenges to Solve Timing Uncertainty Problem 2

1.2 Contributions and Thesis Outline 5

2 Background 7

2.1 Sources of Timing Uncertainty 7

2.1.1 Process Variation . 7

2.1.2 Runtime Environment Fluctuation 9

2.1.3 Aging Effect . 10

2.2 Technical Flow to Solve Timing Uncertainty Problem 10

2.3 False Path . 12

2.3.1 Path Sensitization Criteria 12

2.3.2 False Path Aware Timing Analysis 13

2.4 Manufacturing Testing . 14

2.4.1 Functional Testing vs. Structural Testing 14

2.4.2 Scan-Based DfT . 15

2.4.3 Pseudo-Functional Testing 17

vi

2.5 Timing Error Tolerance . 19

2.5.1 Timing Error Detection 19

2.5.2 Timing Error Recover 20

3 Timing-Independent False Path Identification 23

3.1 Introduction . 23

3.2 Preliminaries and Motivation . 26

3.2.1 Motivation . 27

3.3 False Path Examination Considering Illegal States 28

3.3.1 Path Sensitization Criterion 28

3.3.2 Path-Aware Illegal State Identification 30

3.3.3 Proposed Examination Procedure 31

3.4 False Path Identification . 32

3.4.1 Overall Flow . 34

3.4.2 Static Implication Learning 35

3.4.3 Suspicious Node Extraction 36

3.4.4 S-Frontier Propagation 37

3.5 Experimental Results . 38

3.6 Conclusion and Future Work . 42

4 PSN Aware Pseudo-Functional Delay Testing 43

4.1 Introduction . 43

4.2 Preliminaries and Motivation . 45

4.2.1 Motivation . 46

4.3 Proposed Methodology . 48

4.4 Maximizing PSN Effects under Functional Constraints 50

4.4.1 Pseudo-Functional Relevant Transitions Generation 51

4.5 Experimental Results . 59

vii

4.5.1 Experimental Setup . 59

4.5.2 Results and Discussion 60

4.6 Conclusion . 64

5 In-Situ Timing Error Masking in Logic Circuits 65

5.1 Introduction . 65

5.2 Prior Work and Motivation . 67

5.3 In-Situ Timing Error Masking with Approximate Logic 69

5.3.1 Equivalent Circuit Construction with

Approximate Logic . 70

5.3.2 Timing Error Masking with Approximate Logic 72

5.4 Cost-Efficient Synthesis for InTimeFix 75

5.4.1 Overall Flow . 76

5.4.2 Prime Critical Segment Extraction 77

5.4.3 Prime Critical Segment Merging 79

5.5 Experimental Results . 81

5.5.1 Experimental Setup . 81

5.5.2 Results and Discussion 82

5.6 Conclusion . 85

6 Conclusion and Future Work 86

Bibliography 100

viii

List of Figures

2.1 Average number of dopant atoms in the channel as a function of

technology node from [28] . 8

2.2 Lithograghy trend [29] . 9

2.3 Aging trend . 10

2.4 Flow to achieve timing closure 11

2.5 Transform the D Flip-Flop to Scan Flip-Flop 16

2.6 Illegal State Identification - An Example 18

2.7 Razor Flip-Flop . 20

3.1 False Path Caused by Illegal State - An Example 27

3.2 Representation of Illegal States as Phantom Gates 30

3.3 Flowchart for the Proposed Prime False Path Segment Identifica-

tion Technique . 33

3.4 Example to Demonstrate False Path Identification 36

4.1 Example of PSN-Related Cells. 47

4.2 Main flow of our proposed pseudo-functional SDD test generation

methodology . 48

4.3 Insertion and Activation of Functional Constraints as Phantom Gates 50

4.4 Flowchart for the pseudo-functional relevant transition generation

algorithm . 52

ix

4.5 Example to show CTG updating 53

4.6 Example to show symbolic justification mechanism 55

4.7 Example to show symbolic multiple backtracing 56

4.8 Example to show impact of implication order 58

4.9 TW -Delay Correlation Plot . 60

4.10 Pattern count comparison . 63

5.1 Timing Error Masking Scheme in [111]. 68

5.2 Equivalent Circuit with Approximate Logic. 71

5.3 Speed-Path Approximation. 74

5.4 InTimeFix Synthesis Framework. 75

5.5 Example to Illustrate the Critical Side-Input. 76

5.6 Prime Critical Segment Merging: An Example. 79

5.7 Flowchart of Prime Critical Segment Merging. 81

5.8 Circuit Timing under Process Variation 83

x

List of Tables

3.1 Implication Lookup Table. 34

3.2 Experimental Results for Static Timing Analysis. 38

3.3 Experimental Results for Prime False Path Segments. 40

3.4 Experimental Results for False Paths Compared against Implication-

Based Method. 41

4.1 Comparison among Different SDD Patterns. 61

5.1 Experimental Results on Improved Timing Slack and Hardware Cost. 81

5.2 Comparison on Timing Slack Improvement: Gate Sizing vs. In-

TimeFix. 82

xi

Chapter 1

Introduction

In the passed decades, semiconductor industry kept evolving the manufacture tech-

nology at the rate indicated by the famous Moore’s law, which leaded to smaller

transistors, higher packing densities, decreased supply voltages and increased clock

frequencies, thereby contributing to the goals of higher performance and lower

power consumption. However, with ultra deep sub-micron technologies, there is an

increasing uncertainty for the timing behavior of today’s integrated circuits (ICs),

often manifesting themselves as infrequent timing errors on speed-paths [104,

103]. There are multiple factors that contribute to this effect: (i) inevitable static

process variation caused by manufacturing imperfection leads to the mismatch

of timing performance between the designed value and the actual one [116, 88];

(ii) dynamic environment fluctuation in supply voltage, temperature, and multiple-

input switchings cause varying circuit delay at runtime [11, 105]; (iii) circuit aging

mechanisms such as hot carrier injection (HCI) and negative-bias temperature in-

stability (NBTI) lead to gradual increase of circuit delay over its lifetime.

1

CHAPTER 1. INTRODUCTION 2

1.1 Challenges to Solve Timing Uncertainty Prob-

lem

In IC design, timing error resilience is fulfilled by cooperating series of works

through timing optimization, at-speed delay testing and online timing error pro-

tection. With ever-increasing timing uncertainty effect, we have to make a com-

prehensive improvement on every respects to achieve the goal.

To achieve ICs’ timing closure, timing optimization techniques [14, 16, 5, 6]

are developed at several phases of the backend design, from synthesis to physical

design. Successfully applying the above techniques heavily relies on timing analy-

sis [7] of logic circuits, by which the speed-paths are first identified and then are fed

as the optimization targets. Unfortunately, traditional timing analysis always fails

to predict the real speed-paths, thus resulting in missing the optimization focus or

even leads to the irrevocable timing failure after product shipping. For one hand,

the essential reason undoubtedly is the variation-induced timing uncertainty. To

solve that, statistical timing analysis method [8] is invented, while one of side ef-

fects is that it exponentially increases number of critical paths. On the other hand,

it is noted that the false path (also known as unsensitizable path), down which sig-

nal cannot propagate by any input pattern, is also a significant factor contributing

to the timing analysis inaccurate. Since the false paths do not induce any timing

error, by identifying those false paths [9] and integrating them in timing analysis

tool [10], it not only helps us to generate better timing result and improves the cir-

cuit performance, but also alleviates the burden of timing optimization algorithms

and saves the unnecessary cost used to reduce the false paths delay.

The false paths identification (FPI) is an important and relevant problem for

IC designers. The path sensitization criteria used in most prior false path iden-

tification techniques are based on automatic test pattern generation (ATPG) like

CHAPTER 1. INTRODUCTION 3

techniques [101]. To be specific, for a given path, it is assumed to be sensitiz-

able if there exists a test vector pair (v1,v2) that activates a transition at the launch

point of a path and propagates to its ending point; if, however, we cannot find

such a test vector pair in any circumstances, this path is deemed as a false path.

Generally speaking, ATPG-based FPI techniques need to exhaustively search in

an input space to prove that a targeted path to be false. To alleviate this problem,

there have also been some implication-based false path identification techniques

(e.g., [91, 94]). Essentially, these methods use the same criteria to identify false

paths. The difference is that they try to prove the non-existence of test vectors us-

ing implication analysis instead of exhaustive search. The above techniques may

miss to identify some false paths due to the fact: for a particular path, even if we

are able to find a test vector pair that activates it, such a test may be functionally-

unreachable. Consider a finite state machine encoded with one-hot code, the legal

combinations of values in the circuit’s state elements are only those with a single

logic ‘1’ and all the others logic ‘0’. Consequently, if a path can be activated in

this circuit only with multiple logic ‘1’s in these state elements (i.e., containing

illegal states), this path is considered to be a true path based on the above criteria,

but in fact it is functionally unsensitizable.

For the taped-out circuits, manufacturing test is applied to verify their tim-

ing correction and guarantee quality of shipped products. As mainstream design-

for-test (DfT) technique, scan-based DfT makes automatic test pattern generation

(ATPG) viable for large ICs, which, however, changes the circuit states in test

mode, making them possibly different from that in functional mode, as mentioned

earlier. Under ever-increasing runtime environment fluctuation, the discrepancy

between functional mode and test mode has severe reverse effect on at-speed delay

testing for ICs fabricated with latest technology, and become a serious concern for

the industry [40, 45, 41]. Recent design evaluations have revealed that at-speed

CHAPTER 1. INTRODUCTION 4

scan patterns were up to 20% slower than any functional pattern [107]. Conse-

quently, some good ICs that would work in application might fail at-speed delay

tests, leading to unnecessary test yield loss (also known as over-testing) [43]. To

reduce over-testing, several power-aware test generation methodologies were pro-

posed to reduce test overkills, by reducing switching activities in scan capture

mode to ensure the power integrity in manufacturing test [39, 47, 50]. This, how-

ever, leads to the concern for under-testing, i.e., if we over-restrict test power,

some defective chips containing speed-related defects may pass manufacturing

test, leading to test escapes [44] (also known as under-testing). Therefore, the real

question is: How do we make sure that circuits’ activities in test mode correlate

well with that in functional mode so that we can exercise the worst-case timing of

the circuits under test (CUTs) in their functional mode during manufacturing test?

With the continuous downscaling of transistor feature size, timing uncertainty

poses significant challenge to IC. On one hand, embedding a large design guard

band to prevent timing errors to occur is not an attractive solution, since this con-

servative design methodology diminishes the benefit of technology scaling [106].

On the other hand, it is increasingly difficult to rely on off-line delay testing to

guarantee circuit timing correctness in functional mode [107]. Consequently, there

is a growing research interest to achieve online timing error resilience.

Most of existing solutions for timing error resilience (e.g., the well-known Ra-

zor technique [31]) try to restore the state of the system to a known-good pre-error

state. These techniques are very effective for timing error correction (TEC) in pro-

cessors with microarchitectural support such as instruction replay, but they are very

difficult, if not impossible, to be applied to general logic circuits, due to the high

cost to checkpoint error-free states in such designs. In-situ timing error correction

techniques that are able to mask errors without any rollback, are therefore very

attractive. Among the few in-situ TEC techniques presented in the literature, most

CHAPTER 1. INTRODUCTION 5

of them [108, 109, 110] rely on time-borrowing technique to correct timing errors,

by delaying the arrival time of the correct data to the next logic level. As these

techniques reduce the timing slack for the logic level that follows speed-paths,

they have difficulty to handle the case when speed-paths exist in consecutive logic

levels, limiting the applicability of such solutions. In [111], the authors proposed

to synthesize a redundant logic block that is activated only when the speed-paths

of the circuit are sensitized, and use it to mask timing errors on targeted paths.

While interesting, their proposed synthesis algorithm is time-consuming and the

redundant logic block incurs large area overhead.

1.2 Contributions and Thesis Outline

In this thesis, we present advanced techniques targeting to solve several challeng-

ing issues caused by ever-increasing timing uncertainty of IC.

Chapter 3 is concerned with finding timing-independent false paths that cannot

be sensitized under any signal arrival time condition in integrated circuits. Existing

techniques regard a path as a true path as long as a vector pair can be found to

sensitize it. This is rather pessimistic since such a path might be activated only

with illegal states in the circuit and hence it is actually functionally-unsensitizable.

In this part, we adapt the illegal state identification technique presented in [100]

and integrate it into our FPI flow. For a given critical path, we present effective

and efficient techniques to check whether it is a true path or a false path. We also

present novel solutions to address the more general problem of finding as many

false paths in a circuit as possible.

Motivated by the fact that current at-speed delay patterns cannot effectively

activate the circuits’ worst case functional delay under more and more severe run-

time environment fluctuation, thus lead to either test yield loss or test escape. In

Chapter 4, we present novel pseudo-functional ATPG techniques to simultane-

CHAPTER 1. INTRODUCTION 6

ously reduce both over-testing and under-testing in at-speed delay testing. Firstly,

by taking the circuit layout information into account, functional constraints related

to critical paths are extracted. Then, we generate functionally-reachable test cubes

for delay faults in the circuit. Finally, we use ATPG-like algorithm to generate

switching activities that pose the worst case power supply noises on sensitized

critical paths under the consideration of functional constraints.

Despite that our proposed at-speed delay test methodology in Chatper 4 has

significantly enhance test quality, it is inevitable that some timing error will escape

to the usage phase and cause fatal timing error. Moreover, considering aging effect,

the delay on circuits’ critical paths gradually degrade and finally exhibit timing

error. In Chapter 5, we propose a novel in-situ correction technique to mask timing

errors, namely InTimeFix, by introducing redundant approximation circuit into the

original design, we are able to create a logically-equivalent yet timing-improved

circuit, and prove its correctness. The proposed low-cost and scalable synthesis

technique timing error masking logic based on simple structural analysis.

In Chapter 6, we summarizes this thesis and points out the directions for future

work.

2 End of chapter.

Chapter 2

Background

For better understanding the content this thesis, we present some background

knowledge relevant research areas. In order to effectively address the timing un-

certainty issues, in section 2.1, we detail the factors that contribute to timing un-

certainty and to understand how do these factors work. Next, we first roughly

introduce the technical flow to solve timing uncertainty problem with section 5.4.

Finally, the main technical background targeting timing uncertainty will be de-

tailed in section 2.3.2, 2.4.3 and 2.5.

2.1 Sources of Timing Uncertainty

2.1.1 Process Variation

Due to the imperfect manufacturing process, it is not possible to precisely control

the design parameters for all the transistors on the silicon.

There are several sources of process variation, and the first one is the random

dopant fluctuation. In CMOS technology, dopant atoms are doped into transistors’

channel to control the threshold voltage. As transistor size shrinking, number of in-

jected dopant atoms decreases significantly, which can be observed from Fig. 2.1.

7

CHAPTER 2. BACKGROUND 8

Technology Node (nm)

A
ve

ra
ge

 N
um

be
r

of
 D

op
an

t A
to

m
s

Figure 2.1: Average number of dopant atoms in the channel as a function of tech-

nology node from [28]

According to industrial data [103], there are tens of dopant atoms left for 32-nm

generation. Therefore, the dopant distribution randomness increase dramatically,

leading to significant variability. The second source is sub-wavelength lithography,

which is originated since 0.25-µm technology node. It is noted from Fig. 2.2, 193

nm wavelength of light is used to pattern the transistors since 130 nm. The gap in

light wavelength and transistor size will continue to widen until the appearance of

extreme ultra-violet technology. It is the primary reason for line width roughness,

and the source of transistor delay variation.

It should be noticed that process variation is fixed after fabrication and remains

effective over the entire circuit lifetime. To address the randomness issue, circuit

designer has to optimize numbers of paths which are potentially to be critical, and

leads to severe power waste.

CHAPTER 2. BACKGROUND 9

Figure 2.2: Lithograghy trend [29]

2.1.2 Runtime Environment Fluctuation

Circuit timing behavior is input vector dependent. For one hand, the critical path

exhibits delay only if it is sensitized by input data sequence. On the other hand,

even if a path is sensitized, its delay could vary because of different environment

factors which are related to input vector.

Dynamic power consumption due to the state transition causes local tempera-

ture hot-spot, which in turn creates temperature variations across the die, affect-

ing circuit performance. Power supply variation is another factor causing timing

uncertainty. Inductive overshooting generated by sudden current increasing and

resistive voltage drop due to high computational activity make supply voltage on

power distribution network very sensitive to input vector. Furthermore, the prop-

agation delay of on path transistor also suffers from some other coupling noise

effects, for instance, interconnect cross talking.

Under runtime environment fluctuation, the traditional ATPG tool is increas-

ingly difficult to generate high quality pattern to verify circuit timing correctness.

CHAPTER 2. BACKGROUND 10

Useful life
Infant

mortality
180nm130nm90nm

~ 7 year< 7 year ~ 10 year

Time

Wearout

Figure 2.3: Aging trend

2.1.3 Aging Effect

In the usage phase, circuit performance degrades gradually by all kind of aging

effects. Study in [103] releases that transistor’s saturation current decreases over

year due to the effects such as oxide wear out and hot carrier injection. To cope

with this thread, traditional design relied on simple guardband to bypass the anal-

ysis and optimize these time-dependent effects. As demonstrated by famous bath

tube curve Fig. 2.3, these reliability degradation is exacerbated as the aggressive

scaling, and conservative design will lead to excessive over-margining.

2.2 Technical Flow to Solve Timing Uncertainty Prob-

lem

During circuit’s life cycle, several techniques work cooperatively to guarantee its

timing error resilience, which is demonstrated as Fig. 2.4.

For digital circuit, design engineers start to consider timing issue from the

CHAPTER 2. BACKGROUND 11

At-speed Delay Testing

Logic synthesis

Physical timing
optimization

Timing driven back -end design

Timing error tolerance

Figure 2.4: Flow to achieve timing closure

back-end design phase. With the RTL description, logic synthesis [13, 14, 15] is

used to transfer circuit into multi-level logic network under timing constrain. In

this step, timing analysis is conducted under some rough timing model, for exam-

ple, constant gate delay. Typical physical design is composed of many important

steps such as technology mapping [16, 17], floorplanning [18], placement [19, 20]

and routing [21, 22, 23], and each of them puts significant effort on improving cir-

cuit timing performance. In the above procedures, timing analysis is extensively

applied. Although more and more physical information is available, timing anal-

ysis result is still inaccurate due to timing uncertainty. To alleviate this problem,

false path aware timing analysis is introduced, whose background is presented in

CHAPTER 2. BACKGROUND 12

Section 2.3.2.

Process variation and delay defects introduced in manufacturing process may

lead to timing constrain violation, at-speed delay testing is conducted to verify tim-

ing correctness of circuits. There are of scan based delay testing techniques [23,

35, 25] developed previously. Discrepancy between the circuit in functional mode

and that in test mode may lead to over-test or under-test problem, pseudo-functional

test method, therefore, is proposed to copy this problem recently, which will be de-

tailed in section 2.4.3.

In usage phase, we rely on timing error tolerance mechanism to overcome

timing violation due to the undetected timing error in testing phase or aging effect.

The background overview will be presented in section 2.5.

2.3 False Path

2.3.1 Path Sensitization Criteria

A netlist is composed of simple gates (i.g. AND, NAND, OR or NOR) and connec-

tion between them. A logic path Px is defined as P = (G0, f0,G1, f1... fm−1,Gm),

which is an alternating sequence of gates and connections. Gate G0 is a primary

input and Gm is a primary output. Connection fi,0 6 i 6 m−1, is on-input of Px

which connect Gi to Gi+1. A connect is called a side-input of Px associated with

fi if it is connect to Gi+1 but not originated from Gi. Delay assignment depicts the

assignment of a delay to each connection in a circuit.

Under vector pair < v1,V2 >, the logic value stabilized at connection f and

output of gate G is called stable values at f and G, respectively. For given delay

assignment, the times when the end of f and output of G become stable under v2 is

the stable times at f and G under v2, respectively.

For given < v1,v2 >, the stable value and stable time are known for v2. Con-

CHAPTER 2. BACKGROUND 13

nection f , which is connected to G, is considered to dominate G if the stable value

and stable time of G is determined by f . A path is said to sensitized by v1,v2 if

each on-input of the path dominates its connected gate. Under a delay assignment

M, a path is defined as a sensitizable path if there is at lease one vector pair which

can sensitize the targeted path.

According to [90] if there exists an input vector v such that all side-inputs along

Px are set to non-controlling values, then Px is static sensitizable. if there exists an

input vector v such that that all side-inputs along Px are set to non-controlling

values when the on-inputs of fi has a non-controlling value (no requirement for

the side-inputs of fi when the on-input fi is controlling value), the Px is functional

sensitizable.

It is notice that both static and functional sensitization are independent of the

delay assignment. Furthermore, functional sensitization is more relaxed than static

sensitization, and it is the necessary criteria to sensitize a path.

2.3.2 False Path Aware Timing Analysis

In static timing analysis, based on the connection information and the delay model

of components, a weighted acyclic direct timing graph is constructed. We can then

use a linear structural algorithm to find the longest path (or a number of long paths)

in the timing graph, giving a fast feedback to the designers about the performance

of the circuit. Due to the ignoring of operational conditions and functionalities

of components in the design, however, the critical paths being reported by static

timing verifiers may be not sensitizable, leading to pessimistic timing analysis

results.

Effective removal of false paths from static timing analysis is a critical task.

This is because, STA is used in the inner loop of many circuit optimization tools

to resolve timing issues and the effectiveness of such optimization processes is

CHAPTER 2. BACKGROUND 14

deteriorated with the presence of false paths, leading to sub-optimal solution or

even failure to achieve timing closure.

In a sequential circuit, paths start from primary inputs of the circuit or primary

outputs of sequential elements, namely launch points, and end with primary out-

puts of the circuit or primary inputs of sequential elements, namely ending points.

A path is a true path if a functional vector pair (v1,v2) can satisfy the functional

sensitization criteria. Otherwise, it is a false path.

2.4 Manufacturing Testing

Manufacturing test is typically conducted with the help of automatic test equip-

ment (ATE). When testing a circuit, both test patterns and the expected test re-

sponses are stored in the ATE. During the manufacturing test process, test patterns

are transported from ATE to the circuit, and then the actual responses captured

by the circuit are sent back to ATE to compare against the expected responses.

Those circuits that have different responses from the expected ones are marked as

defective products.

2.4.1 Functional Testing vs. Structural Testing

Functional testing was historically used to test IC products, wherein a large amount

of test patterns are required to completely excise the circuit’s functionalities. Gen-

erally speaking, the number of input patterns for functional testing will be 2n for a

circuit with n inputs. Taking a 64-bit ripple-carry adder as example, 2129 patterns

are needed to apply complete functional test, which would take 2.158×1022 years

to finish such test on a 1 GHz ATE [1]. Due to such exhaustive nature of functional

testing, it is impractical for any reasonable-sized circuits. In addition, due to the

need of applying functional tests at speed, the functional tester is much more ex-

CHAPTER 2. BACKGROUND 15

pensive. The semiconductor industry hence mainly resorts to structural testing for

this duty, wherein test patterns are selected based on circuit structural information

and a set of fault models. One of the greatest advantages of structural test is that it

allows us to develop structural search algorithms to achieve efficient testing. For

the same 64-bit ripple-carry adder, 1728 patterns are enough for structural testing

based on stuck-at fault model (introduced later).

Defects in an electronic system is defined as the unintended differences be-

tween the implemented hardware and its intended design [1]. It is very hard to

generate tests for every possible type of physical defects. Fault models, therefore,

are proposed to abstract faulty behaviors induced by defects. To generate test pat-

terns effectively, faults are always modeled at a certain level of design abstraction,

such as behavioral level, logic/gate level or transistor level. Fault models at behav-

ioral level usually have no clear correlation to manufacturing defects and hence are

used more often in design verification rather than manufacturing test. Transistor

level fault models are also known as technology-dependent faults and are mainly

used in analog circuit testing. Fault models at logic level (i.e., circuit is modeled

as an interconnection of boolean gates, called netlist) are technology-independent

and over time have been proven to be quite efficient and effective for testing digital

circuits [1].

2.4.2 Scan-Based DfT

With the ever increasing transistor-to-pin ratio in IC products, sequential ATPG is

no longer applicable on today’s complex sequential circuits. The main purpose for

scan-based DfT is to increase the controllability (i.e., the ability to set a particu-

lar circuit node to logic ‘0’ or logic ‘1’) and the observability (i.e., the ability to

observe the state of a logic signal within the circuit) of the circuit’s internal node

so that it is easier to generate test patterns for the circuit. In scan-based circuits,

CHAPTER 2. BACKGROUND 16

Figure 2.5: Transform the D Flip-Flop to Scan Flip-Flop

we substitute normal flip-flops (FFs) with scan FFs (SFFs), making them directly

accessible in test mode. By doing so, from the test generation point of view, the

circuit under test is a combinational circuit and hence the more tractable combina-

tional ATPG can be used to generate test patterns.

SFFs can be implemented in various manners, e.g., mux-based SFFs, double

latched SFFs, level sensitive scan latches SFFs [2, 1]. Fig. 2.5 depicts the trans-

formation from a normal FF into a mux-based SFF. In the mux-based SFF, a mul-

tiplexor is inserted before the input of the FF with two inputs D and SD, which

represent the original data input and the scan data input, respectively. Scan enable

(SE) signal is used to select which channel as input of FF. By replacing normal

FFs with SFFs, these state elements can be connected serially to form one or more

long shift registers (called scan chain) through SD input, and the first and the last

SFF of each scan chain are connected with an input pin and an output pins of the

circuit. All the SFFs can be set as arbitrary states by shifting logic values into the

scan chains. Similarly, the states of these SFFs can be observed by shifting out the

contents of the shift registers.

The test procedure in scan-based testing can be divided into three phases.

• Scan in: SE signal is asserted to configure the circuit as scan mode. Test

pattern is then shifted into scan chains for Nsc clock cycles, where Nsc is the

length of longest scan chain;

CHAPTER 2. BACKGROUND 17

• capture: SE signal is de-asserted, and the circuit applies the test pattern in

functional mode and capture its responses into the same SFFs;

• Scan out: test responses are shifted out in the similar manner as the scan in

process.

2.4.3 Pseudo-Functional Testing

When testing delay faults in scan-based designs, it is possible to activate func-

tionally infeasible paths during test application [42]. If a chip fails a particular

at-speed test that exercises such paths, this chip may be able to work in application

but is considered as a bad chip. We solve this problem by the false path identifica-

tion technique in Section 3. However, even if we are able to generate test patterns

for those functionally-testable faults only, it is still possible that they incidentally

detect some structural testable but functional untestable (ST-FU) faults and hence

lead to test overkills [95], since non-functional patterns may generate excessive

delay on the targeted path considering runtime environment fluctuation.

To cope with this problem, several power-aware test generation methodologies

were proposed to reduce switching activities in scan capture mode to ensure timing

safety in delay testing to avoid test overkills [39, 46, 47, 50]. However, if we over-

restrict test power, under-testing might occur as some speed-related defects may

not exhibit themselves, leading to test escapes [44]. Therefore, the real question

is: How can we exercise the worst-case timing of the circuits in their functional

mode during manufacturing test?

Pseudo-functional testing was proposed to tackle the above problem and has

attracted lots of attention recently [51, 52, 53, 97, 99, 102]. In this technique,

instead of identifying ST-FU delay faults in the CUT, functionally-unreachable

states in the circuit are extracted and fed to a constrained ATPG tool, which back-

tracks immediately when illegal states are reached during test generation to obtain

CHAPTER 2. BACKGROUND 18

FF0

FF1

FF2

FF3

FF4

{FF1(1)}->Input(1)

{FF0(1)}->Input(0)

Input0

Input1

Input2

{FF2(0)}->FF0(1)
{FF3(1),FF4(1)}->FF0(1)

{FF2(0),FF4(0)}->FF1(1)
{FF2(0),FF3(0)}->FF1(1)

Figure 2.6: Illegal State Identification - An Example

pseudo-functional patterns [95].

Illegal state identification is one of the fundamental problems in pseudo-functional

testing. Several approaches were proposed for illegal state identification in the lit-

erature, including SAT-based methods [51], implication-based strategies [97, 102],

mining-based techniques [99], and a recent justification-based method [100]. As

[100] is able to effectively and efficiently identify much more illegal states when

compared to other techniques, it is utilized in this work and we briefly introduce

how it works in the following paragraphs, using an example circuit as shown in

Fig. 2.6.

In [100], the authors studied the structural root cause for illegal states and

showed that they are mainly caused by multi-fanout nets in the circuit. That is,

illegal states would imply logic violations at different branches of the same multi-

fanout net, explicitly in the same time frame or implicitly across multiple time

frames. Based on this observation, this work defined the so-called justification

scheme at every circuit node in the format of Cube0 → 0 and Cube1 → 1, denoting

that a state cube Cube0/Cube1 justifies logic ‘0/1’ on this node. For example, a

justification scheme FF0(1)→ Input1(0) in Fig. 2.6 means that FF0 = 1 can jus-

tify logic ‘0’ at circuit node Input1. All such justification schemes are systemati-

cally built for each net. Then, starting from a multi-fanout net, [100] derived illegal

CHAPTER 2. BACKGROUND 19

states using contradictory justification schemes. In this example, for the multi-

fanout at Input1, we have {FF0(1)} → Input1(0) and {FF1(1)} → Input1(1).

We can therefore conclude that the state cube {FF0(1),FF1(1)} is illegal as they

imply logic conflicts on this net. The above procedure are conducted for every

multi-fanout nets to find those illegal states that explicitly cause contradicting val-

ues on them.

Next, [100] expands the above-obtained illegal state cubes to the next sequen-

tial level, again, using the justification scheme information. For the example circuit

in Fig. 2.6, since {FF0(1),FF1(1)} is known to be illegal, obviously, those state

cubes that can justify this state cube are also illegal. Consequently, by combin-

ing those compatible state cubes that lead to FF0(1) and FF1(1), we can obtain

two new illegal state cubes, i.e., {FF2(0),FF4(0)} and {FF2(0),FF3(0)}. In

[100], the above expansion process is conducted for every illegal state cube until

it cannot be expanded any more. Compared to prior work that explicitly unroll the

circuit into a few time frames for illegal state identification, the above illegal state

expansion procedure is able to implicitly walk through unlimited number of time

frames of the circuit efficiently.

2.5 Timing Error Tolerance

In order to achieve timing error resilience, we can either predict the error occur-

rence or take proactive actions to avoid them or we need to be able to detect timing

errors after they occur and recover from them.

2.5.1 Timing Error Detection

There are many timing error detector designs presented in the literature (e.g.,

[12, 26, 27, 30, 31, 32, 33]), and most of them are based on monitoring signal

CHAPTER 2. BACKGROUND 20

Main

Flip-flop

Shadow

latch

Logic

stage

 L2

Logic

stage

 L1

clk

clk_delay

D1
Q1

Error_L

Comparator

ErrorRazor flip-flop

Figure 2.7: Razor Flip-Flop

transitions on speed-paths for a specified period after the clock edge. Let us use

the well-known Razor flip-flop [31] as a representative technique to demonstrate

how such error detectors work.

As shown in Fig. 2.7, Razor flip-flop includes a main flip-flop, an additional

latch called shadow latch and other necessary components. The main flip-flop

latches the output signal at the clock edge while the shadow latch, controlled by

an inverted clock, latches the signal half of the clock period later, which is always

correct. When timing error occurs, the main FF will latch an incorrect value, which

is different from that in the shadow latch. Therefore, results from the comparator

indicate whether there is timing error. Once there is timing error, the correct data in

the shadow latch will be written back to the main flip-flop and the errant instruction

will be flushed. Hence, each suspicious flip-flop, where timing errors most happen,

needs to be replaced with a Razor flip-flop.

2.5.2 Timing Error Recover

One widely-used error recovery scheme is to restore the state of the system to

a known-good pre-error state. Razor first implemented such a recovery scheme

CHAPTER 2. BACKGROUND 21

for timing errors with microarchitectural support. That is, when a timing error

is detected in a Razor flip-flop, the processor pipeline is flushed and the correct

result from the shadow latch is inserted back into the pipeline. Then, by replay-

ing instructions, the processor operates correctly with little performance penalty.

By taking timing error rate into consideration, voltage-scaling is utilized to allow

processor to run robustly at the edge of minimum power consumption, with occa-

sional timing error recovery for heavyweight computations. Razor enables better

than worst-case design by removing design guard band used to guarantee ”always

correct” operations, and has inspired a large amount of later research work (e.g.,

[32, 33]).

While Razor-like techniques are very effective for timing error correction in

microprocessors with the help of instruction replay, they are very difficult, if not

impossible, to be applied to general logic circuits, due to the high cost to check-

point error-free states in them. In-situ timing error correction techniques that are

able to mask errors without any rollback, are therefore very attractive. Existing

techniques in this area can be classified into two categories: logic error masking

and temporal error masking.

Among the few in-situ TEC techniques presented in the literature, most of

them [108, 109, 110] rely on time-borrowing technique to correct timing errors,

by delaying the arrival time of the correct data to the next logic level. As these

techniques reduce the timing slack for the logic level that follows speed-paths,

they have difficulty to handle the case when speed-paths exist in consecutive logic

levels, limiting the applicability of such solutions. In [111], the authors proposed

to synthesize a redundant logic block that is activated only when the speed-paths

of the circuit are sensitized, and use it to mask timing errors on targeted paths.

While interesting, their proposed synthesis algorithm is time-consuming and the

redundant logic block incurs large area overhead.

CHAPTER 2. BACKGROUND 22

2 End of chapter.

Chapter 3

Timing-Independent False Path

Identification

3.1 Introduction

Logic circuits typically contain a large amount of paths down which signals can-

not propagate in functional mode, known as unsensitizable paths, or simply false

paths [90, 9, 96]. These paths should not be considered during the design and test

of integrated circuits (ICs). For example, static timing analysis (STA) is an integral

part in the physical design optimization process (e.g., timing-driven placement) for

today’s IC designs, used extensively to achieve circuit timing closure. Optimizing

false paths, however, does not help to improve the performance of the circuit and

the associated cost of optimization and iteration is expensive [87]. Similarly, tar-

geting false paths during manufacturing test is unnecessary and may lead to over-

testing of the circuit [10]. Therefore, how to effectively and efficiently identify

false paths is an important and relevant problem for IC designers.

False paths can be categorized into three types: (i). timing-don’t-care false

paths with asynchronous or varying time budgets, such as those paths in asyn-

23

CHAPTER 3. TIMING-INDEPENDENT FALSE PATH IDENTIFICATION 24

chronous clock domain crossovers; (ii). timing-independent false paths that are

logically unsensitizable in functional mode; and (iii). delay-dependent false paths,

which are logically sensitizable, but cannot be activated since one or more on-path

signals are dominated by side-input signals all the time. Here the on-path signals

refers to those signals that lie on the path being considered, while the side-input

signals are the other signals driving the logic cells on this path. Generally speak-

ing, identifying timing-don’t-care false paths requires the knowledge of the design

and they are typically picked up by designers manually. Various automated false

path identification (FPI) techniques have been presented to identify the other two

types of false paths (e.g., [89, 9, 92, 10, 96, 101]).

When identifying delay-dependent false paths, we need to calculate the sig-

nal arrival times to determine whether the on-path signals are always dominated

by side-input signals. Consequently, if the circuit timing model is not accurate

enough, it is possible that certain true critical paths are claimed to be false and

hence are excluded from optimization, leading to a more serious problem of false

indication of timing closure and possible silicon failures [92]. This problem is ex-

acerbated with the ever-increasing process variations in advanced semiconductor

technology [88], as signal arrival times become statistical values. Therefore, in

this work, we focus on identifying timing-independent false paths, which cannot

be sensitized under any arrival time condition. These paths are guaranteed to be

safely removable in circuit timing analysis and manufacturing test.

The path sensitization criteria used in most prior FPI techniques are based on

automatic test pattern generation (ATPG) like techniques [101]. To be specific, for

a given path, it is assumed to be sensitizable if there exists a test vector pair (v1,v2)

that activates a transition at the launch point of a path and propagates to its ending

point; if, however, we cannot find such a test vector pair in any circumstances, this

path is deemed as a false path. Generally speaking, ATPG-based FPI techniques

CHAPTER 3. TIMING-INDEPENDENT FALSE PATH IDENTIFICATION 25

need to exhaustively search in an input space to prove that a targeted path to be

false. To alleviate this problem, there have also been some implication-based false

path identification techniques (e.g., [91, 94]). Essentially, these methods use the

same criteria to identify false paths. The difference is that they try to prove the non-

existence of test vectors using implication analysis instead of exhaustive search.

For a particular path, even if we are able to find a test vector pair that activates

it, such a test may be functionally-unreachable. Consider a finite state machine

encoded with one-hot code, the legal combinations of values in the circuit’s state

elements are only those with a single logic ‘1’ and all the others logic ‘0’. Con-

sequently, if a path can be activated in this circuit only with multiple logic ‘1’s in

these state elements (i.e., containing illegal states), this path is considered to be a

true path based on the above criteria, but in fact it is functionally unsensitizable.

Motivated by the above, we propose novel techniques to identify those timing-

independent paths that imply illegal states or other logic conflicts when they are

activated. To be specific, we adapt the illegal state identification technique pre-

sented in [100] and integrate it into our FPI flow. For a given critical path, we

present effective and efficient techniques to check whether it is a true path or a

false path. We also present novel solutions to address the more general problem of

finding as many false paths in a circuit as possible.

In our experimental results on ISCAS’89 and IWLS’05 benchmark circuits,

we show that a large amount of the false paths identified using the proposed tech-

nique are treated as true paths with conventional FPI methods. In addition, by

injecting the false paths identified with our technique into a commercial static tim-

ing verifier, the critical path delay for certain circuits can be significantly reduced,

indicating existing STA tools are often over-pessimistic.

The remainder of this Chapter is organized as follows. Section 2 presents the

preliminaries of this work and motivates this paper. In Section 3, we describe our

CHAPTER 3. TIMING-INDEPENDENT FALSE PATH IDENTIFICATION 26

proposed method to examine whether a given path is true or false by taking illegal

states of the circuit into consideration. Section 4 details our proposed techniques

to identify as many timing-independent false paths in a circuit as possible. Ex-

perimental results on several ISCAS’89 benchmark circuits are then presented in

Section 5 to demonstrate the effectiveness of our technique. Finally, Section 6

concludes this paper.

3.2 Preliminaries and Motivation

Most prior works determine whether a path is a true path by checking whether a

test vector pair that sensitizes the path can be found according to the following

criteria: for each logic element on a true path,

• When the on-path signal is a controlling value, there are no side-input signals

with controlling values that arrived earlier;

• When the on-path signal is a noncontrolling value, all side-input signals are

also noncontrolling values and they arrive no later than the on-path signal;

Various FPI techniques have been presented in the literature to find a sensiti-

zation vector pair for a path, typically using ATPG-like techniques [89, 9, 92, 10,

101]. When we consider the signal arrival time constraint in the above criteria, it

is likely that a path is sensitizable under one delay model but false under another

delay model [90]. Because of this, a critical path of the circuit might be mis-

takenly regarded as a delay-dependent false path due to inaccurate delay model,

leading to false indication of timing closure and silicon failures. This problem is

exacerbated with technology scaling, because it is increasingly difficult to con-

struct sufficiently accurate timing models such that we are highly confident that

delay-dependent false paths are guaranteed to be unsensitizable in silicon, espe-

cially considering the ever-increasing process variations in latest semiconductor

CHAPTER 3. TIMING-INDEPENDENT FALSE PATH IDENTIFICATION 27

0

1

Figure 3.1: False Path Caused by Illegal State - An Example

technology. To safely remove false paths from STA [92], this paper is concerned

about identifying those timing-independent false paths in the circuit, which are

guaranteed to be false under any arrival time condition.

3.2.1 Motivation

As discussed earlier, existing FPI techniques regard a path to be a true path as long

as a test vector pair can be found to sensitize it. However, none of them explicitly

considers whether this found vector pair is functionally reachable or not. This

is rather pessimistic because: if a path is activated only with illegal states in the

circuit, this path is a false path.

Let us use the circuit shown in Fig. 3.1 as an example. Consider the path P =

{FF1,A,D,F,G,FF4}, where a rising transition occurs at the launch point FF1

and propagates to the ending point FF4. To activate this transition, we need to have

an input vector to drive logical values for the on-path signals {FF1,A,D,F,G} to

be {0,0,1,1,1} in the first clock cycle and {1,1,0,0,0} in the second cycle, as

shown in the figure. One vector pair on {FF0,FF1,FF2}, < 1,0,1;X ,1,1 >,

can be found to sensitize this path. Consequently, traditional FPI technique (either

CHAPTER 3. TIMING-INDEPENDENT FALSE PATH IDENTIFICATION 28

ATPG-based or implication-based method) would treat this path as a true path.

A closer examination of the vector pair, however, tells us that it is functionally-

unreachable. This is because, FF0 has to be the inverted value of FF2 in func-

tional mode according to the circuit structure, and hence {FF0(1),FF2(1)} is

an illegal state cube. At this moment, however, we still cannot claim path P is

a false path as we are not certain whether there exist other vectors being able to

sensitize it without violating functional constraints. Nevertheless, we can find out

that {FF0(1),FF2(1)} is implied by the transitions occurring on path P through

circuit structural analysis, as shown in Fig. 3.1 (denoted by the arrowed line). In

other words, {FF0(1),FF2(1)} is a necessary condition to activate path P, and

hence we can conclude it is a false path.

The above example motivates us to take illegal states into consideration in false

path identification and use implication-based techniques to efficiently determine

whether a path is a false path or not.

3.3 False Path Examination Considering Illegal States

In this section, we consider the problem of evaluating whether a given path is a

timing-independent false path. This procedure can be integrated into the inner

loop of existing circuit optimization tools. That is, before we try to optimize the

critical path reported by STA tools, we first quickly evaluate whether this path is a

false path to avoid unnecessary optimization efforts.

3.3.1 Path Sensitization Criterion

For identifying timing-independent false paths, we have the following theorem:

Theorem 1 A path is a timing-independent false path if and only if there exists at

least one on-path signal such that when it is a non-controlling value, one or more

CHAPTER 3. TIMING-INDEPENDENT FALSE PATH IDENTIFICATION 29

of its corresponding side-input signals are with controlling values in functional

mode.

proof 1 The sufficiency of this theorem is obvious. That is, when an on-path sig-

nal is a non-controlling value while some side-input signals are with controlling

values, this path cannot be activated and hence is a false path. As for the neces-

sity of the theorem: (i). when the on-path signal is a controlling value, since we

are considering timing-independent false paths where the side-input signals can

arrive at any time, the path is sensitizable even if some side-input signals are with

controlling values since they can arrive later; (ii). when the on-path signal and

its corresponding side-input signals are all non-controlling values, similarly, the

side-input signals are likely to arrive earlier so that the path can be activated to be

a true path. Therefore, only if when the on-path signal is a non-controlling value

while one or more of its side-input signals are with controlling values in functional

mode, we can deem this path as a timing-independent false path.

Apparently, with the above theorem, we can derive the following lemma:

Lemma 1 A path is not a timing-independent false path if and only if, for any

on-path signal, when it is a non-controlling value, all its corresponding side-input

signals are also with non-controlling values in functional mode.

To sensitize a path with either a rising transition or a falling transition at its

launch point, all the on-path signals need to have transitions and hence they are ap-

plied with both logic ‘0’ and ‘1’ in two consecutive clock cycles. According to the

above lemma, for a given path P, to determine whether it is a timing-independent

false path, we only need to propagate logic ‘0’ and logic ‘1’ at its launch point

separately and examine whether those on-path signals with non-controlling values

(e.g., logic ‘1’ for AND gate) and their corresponding side-input signals also with

non-controlling values can co-exist during propagation in functional mode. They

CHAPTER 3. TIMING-INDEPENDENT FALSE PATH IDENTIFICATION 30

A C
A

B

C

FF

Figure 3.2: Representation of Illegal States as Phantom Gates

are called the necessary set-up values to propagate logic ‘0’ and the necessary

set-up values to propagate logic ‘1’ for the path, denoted as NS0(P) and NS1(P),

respectively. To sensitize the path, both NS0(P) and NS1(P) must be satisfiable.

Again, let us use the the example path P = {FF1,A,D,F,G,FF4} shown in

Fig. 3.1. When propagating logic ‘0’ at launch point FF1, we need to justify

NS0(P) = {A(0),C(0),F(1),B(1)} in functional mode; when propagating logic

‘1’ at launch point FF1, we need to justify NS1(P)= {FF1(1),FF2(1),D(0),C(0)}

in functional mode. Since C(0)→FF2(1) and B(1)→FF0(1), satisfying NS0(P)

implies the existence of illegal state cube {FF0(1),FF2(1)}. Therefore, P is a

timing-independent false path.

3.3.2 Path-Aware Illegal State Identification

In [100], the authors try to systematically identify all the illegal states in a circuit,

which takes non-trivial runtime. For a particular path, however, only those illegal

states that are within its fan-in logic cone need to be considered when determin-

ing whether it is functionally-sensitizable or not, denoted as path-relevant illegal

states. Considering the fact that we are mainly interested in critical paths in timing

analysis, we propose to adapt [100] and integrate it into our FYP flow as follows.

We first conduct STA on the targeted circuits to find critical paths and record

their ending points. Next, for each ending point, we perform structural analy-

CHAPTER 3. TIMING-INDEPENDENT FALSE PATH IDENTIFICATION 31

sis to trace the relevant flip-flops within its logic fan-in cone. Different from the

method in [100], when building the justification schemes, we only consider those

state cubes composed of the traced relevant flip-flops. This strategy not only facili-

tates to save the effort to construct a large number of useless justification schemes,

but also automatically avoids to target those non-relevant illegal states. Hence,

it improves the efficiency of both illegal state generation and the later false path

identification procedures.

3.3.3 Proposed Examination Procedure

In the proposed method, we first extract illegal states of the circuit according

to [100]. Next, we insert phantom logic AND gates into the circuit to represent

them. As shown in Fig. 4.3, each phantom gate corresponds to an illegal state

by linking its corresponding flip-flop (directly or through an inverter) with a AND

gate, e.g., illegal state {A(1),C(0)} in Fig. 4.3. This representation has the follow-

ing advantages:

• we do not need to store illegal states as a separate list (e.g., a large number

of independent conjunctive normal form [95]) by naturally integrating them

into circuit structure;

• more importantly, by assigning the outputs of the phantom gates to be logic

‘0’s, if a path is sensitizable only with illegal states, it would result in logic

conflicts on the phantom gates and we automatically know it is a false path

without necessarily generating the vector pair first and checking whether it

includes any illegal state cube;

For a given critical path, according to the path sensitization criterion discussed

earlier, we conduct two-pass processing to determine whether the path is a timing-

independent false path, for justifying NS0(P) and NS1(P), respectively. For each

CHAPTER 3. TIMING-INDEPENDENT FALSE PATH IDENTIFICATION 32

pass, we first assign logic values for the circuit nodes according to NS0(P)/NS1(P)

and logic ‘0’ at all phantom logic gates, while leaving the other circuit nodes to be

unknown values. Then, we conduct forward propagation and backward justifica-

tion to obtain more logic values on those nodes that are initially unknown. If logic

conflicts arise during the above logic reasoning process (either at the phantom

gates representing illegal states with logic ‘1’ or at a multi-fanout net with contra-

dicting values at its branches), we can conclude the path is a timing-independent

false path; otherwise, it is not.

3.4 False Path Identification

In this section, we consider the more general problem of identifying as many

false paths in the circuit as possible, which is especially important for delay test-

ing [91, 94]. Since the number of the paths is exponential to the circuit size, it

is apparently impossible to use the technique shown in Section 4 to check path by

path. Fortunately, as discussed earlier, timing-independent false paths would imply

logic conflicts in the circuit at the phantom gates representing illegal states and/or

multi-fanout nets in the combinational logic network. Based on this observation,

we propose to identify false paths by targeting at their root causes structures, since

the number of inserted phantom gates and multi-fanout nets are much less than the

total number of paths in the circuit.

If a path segment cannot be activated in functional mode, all paths going

through this segment are false paths. In particular, if any section of a false path

segment is sensitizable, the false path segment is called a prime false path segment.

For example, the path segment {D,F,G} shown in Fig. 3.4 is a prime false path

segment since sensitizing it implies illegal state cube {FF0(1),FF2(1)} while

both {D,F} and {F,G} can be activated in functional mode. Therefore, instead of

considering a whole path to be false or not, we target at a path segment in each run

CHAPTER 3. TIMING-INDEPENDENT FALSE PATH IDENTIFICATION 33

Figure 3.3: Flowchart for the Proposed Prime False Path Segment Identification

Technique

because such representation is more efficient.

Based on the above, we propose novel algorithms to systematically identify

prime false path segments in a circuit. The basic idea of our approach is to find the

minimum path segment Ps whose necessary set-up logic values NS1(Ps) or NS0(Ps)

imply logic conflicts in the circuit.

CHAPTER 3. TIMING-INDEPENDENT FALSE PATH IDENTIFICATION 34

index A(1) B(1) C(0) D(1) F(0) G(1)

context FF2(1) FF0(1) FF2(1) FF2(1) FF2(1) FF0(1)

Table 3.1: Implication Lookup Table.

3.4.1 Overall Flow

Fig. 3.3 presents the overall flow for our systematic prime false path segment iden-

tification algorithm.

With given circuit netlist, we first extract illegal states and multi-fanout nets in

the circuit. Next, we iteratively target one illegal state or one multi-fanout net in

each run. Static implication learning is used to build implications for any possible

internal circuit node that can imply values on the targeted illegal state elements or

multi-fanout net (detailed in Section 3.4.2). These implication schemes are then

stored in a lookup table as shown in Table 3.1, e.g., the entry B(1) represents a

implication {B(1)→ FF0(1)} for the circuit shown in Fig. 3.4. For a given path

segment, we are now ready to determine whether it is false by quickly checking

whether the implications stored in the lookup table lead to any logic conflicts. For

example, for path segment Ps = {D,F,G}, it is false since D(1) and G(1) imply

the illegal state cube {FF0(1),FF2(1)} according to the implications stored in

Table 3.1.

However, our objective is to identify as many prime false path segments as

possible, instead of checking a specific path segment is false or not. Apparently,

we cannot afford to consider every circuit node to be the starting point of a false

path segment. Fortunately, based on the implication lookup table built earlier, we

can extract a set of suspicious nodes as the possible starting point of prime false

path segments (detailed in Section 3.4.3). Then, for each suspicious node, we

create a so-called S-Frontier to record the path segment we have visited, which

contains the following items:

CHAPTER 3. TIMING-INDEPENDENT FALSE PATH IDENTIFICATION 35

• segment is used to record all the circuit nodes on the current path segment;

• launch value with 1/0 represents that we propagate logic ‘1/0’ at the launch

point of the segment stored in S-Frontier;

• implied cube records all the corresponding implication schemes of segment

in the implication lookup table;

Then, false segment identification is conducted by propagating S-Frontiers, as

detailed in Section 3.4.4. Our program terminates when all the illegal states and

multi-fanout nets have been considered.

Again, let us use the example circuit shown in Fig. 3.4 to illustrate our iden-

tification procedure. For illegal state cube {FF0(1),FF2(1)}, we build its corre-

sponding implication lookup table as shown in Table 3.1. Consider the suspicious

node D with D(1) → FF2(1), we create a S-Frontier with launch value ‘1′ at

node D and then propagate it along the path. Accordingly, newly-implied values

are continuously added into implied cube, and once we reach node G, we obtain

{FF0(1),FF2(1)} in the implied cube of the updated S-Frontier and hence we find

a false path segment {D,F,G}.

3.4.2 Static Implication Learning

For each targeted illegal state or multi-fanout net, single node implication is uti-

lized to learn which circuit nodes can justify the expected values on them.

Consider the illegal state {FF0(1),FF2(1)} for the circuit shown in Fig. 3.4,

we first conduct implication for their inverse values FF0(0) and FF2(0) inde-

pendently. For example, we can obtain {FF0(0) → B(0)} since FF0(0) is a

controlling value for the AND gate. Similarly, we have {B(0) → G(0)}, and

hence {FF0(0) → G(0)} according to the transitivity of implication. By apply-

ing counter-positive law, the following implications are stored in the implication

CHAPTER 3. TIMING-INDEPENDENT FALSE PATH IDENTIFICATION 36

lookup table: {B(1)→ FF0(1)} and {G(1)→ FF0(1)}. When conducting static

implication learning on multi-fanout net, we imply both logic ‘0’ and logic ‘1’

from the targeted multi-fanout net, apply counter-positive law and store the learned

information in the same format.

3.4.3 Suspicious Node Extraction

The starting point of a S-Frontier determines whether a false segment can be found

and which false segment can be found. Therefore, we need to carefully extract the

set of suspicious starting points to create S-Frontiers. The selection should satisfy

the following requirements: (i). all the possible false segment can be detected; (ii).

the selected starting points should be as less as possible.

After static implication learning, we define those nodes that have implications

as the affected nodes, e.g., nodes A, B, C, D, F and G in Fig. 3.4. Only affected

nodes can serve as the starting point of a prime false segment because the other

nodes do not contribute any implications to justify values on the targeted ille-

gal states or multi-fanout nets, and hence they cannot be part of the prime false

Prime False Segment

N
O

R
T

H N
O

R
T

H

N
O

R
T

H

Segment: D

Launch Value: 1

Implied Cube: FF2(1)
Segment: D,F,G

Launch Value: 1

Implied Cube: FF0(1)

FF2(1)

Segment: D,F

Launch Value: 1

Implied Cube: FF2(1)

S-Frontier

Figure 3.4: Example to Demonstrate False Path Identification

CHAPTER 3. TIMING-INDEPENDENT FALSE PATH IDENTIFICATION 37

segment. At the same time, not all affected nodes need to be considered as the

starting point of prime false path segments. Take node C as example, which has

one implication {C(0) → FF2(1)}. It has two following logic elements D and

F . To propagate C(0), we can only generate D(1) and F(0). As can be easily ob-

served in Table 3.1, however, both D(1) and F(0) imply FF2(1), therefore making

{C(0)→ FF2(1)} in fact a redundant implication scheme.

Based on the above observation, we conduct pre-processing for the affected

nodes and we remove those nodes that only contain redundant implication schemes.

The rest of the affected nodes are defined as the suspicious nodes (e.g. nodes D, F

and G), and S-Frontier can only be created and propagated from them.

3.4.4 S-Frontier Propagation

The S-Frontier propagation is essentially a breadth-first search process. Firstly,

an S-Frontier is created at each suspicious node with launch value 0(1) and is

propagated along the path. Once an S-Frontier reaches a multi-fanout net, it will

be split into several copies and delivered to all branches of the multi-fanout net.

After propagating S-Frontier to a new node, we first add the new node at the

end of segment stored in S-Frontier, and we add new implications to its implied

cube, if any. If the on-input of the current node is with non-controlling value,

non-controlling value is assigned on the side-inputs and implications for the side-

input signals will be also added into implied cube of this S-Frontier. As shown

in Fig. 3.4, let us consider the propagation of S-Frontier from node F(1) to node

G(1). Since the on-input of node G is non-controlling value, we also need to

assign B with logic ‘1’ and add the implication {B(1)→ FF0(1)} into the implied

cube. Also, we should check whether the implication schemes with the new node

include all the implications with the first node kept in segment of the S-Frontier.

If so, the implication schemes of the first node are redundant and hence we update

CHAPTER 3. TIMING-INDEPENDENT FALSE PATH IDENTIFICATION 38

Benchmark
Flip-flop

#

Illegal states

(#)[100]

Path-Related

Illegal states (#)

Longest paths

(#)

PrimeTime

WCD

[91] Proposed

False path (#) WCD False path (#) WCD Runtime (s)

s1196 18 138 9 1000 4.05 78 4.05 82 4.05 1.67

s1238 18 126 5 1000 4.19 112 4.19 116 4.19 1.15

s5378 179 8516 392 1000 3.89 696 3.89 742 3.89 1.38

s9234 211 1109 271 1000 9.01 798 8.99 798 8.99 1.85

s13207 638 82651 1185 5000 13.06 4692 12.89 4986 12.15 37.62

s38417 1636 90983 1220 5000 11.42 3582 9.89 4440 9.76 8.9

s38584 1426 63558 791 5000 15.07 4380 15.04 4624 15.03 25.62

wb conmax 3316 2083 122 5000 4.72 89 4.72 102 4.72 16.9

DMA 3131 2097 97 5000 5.99 2330 5.98 2375 5.98 49.05

pci 3720 2442 141 5000 5.09 943 5.09 1120 5.08 12.083

usb 1960 30676 388 5000 4.34 2102 4.34 2322 4.32 64.3

ethernet 10752 4205 195 5000 9.78 355 9.33 431 9.02 236.267

vga lcd 17265 3096 90 5000 10.36 539 10.36 793 10.36 660.883

Table 3.2: Experimental Results for Static Timing Analysis.

S-Frontier by removing this node to guarantee that the obtained false path segment

is a prime one.

Finally, since we may obtain the same prime false path segments starting

from different suspicious nodes. Before propagating an S-Frontier, we first check

whether its starting point is the first node of an existing false path segment. If so,

we simply delete this S-Frontier as it must have been propagated earlier.

3.5 Experimental Results

To evaluate the effectiveness of the proposed solution, we perform three sets of

experiments on several ISCAS’89 and IWLS 2005 benchmark circuits. Our exper-

iments are performed on a 2GHz PC with 1GB memory.

In our first experiment, we extract a number of critical paths using Synopsys’s

CHAPTER 3. TIMING-INDEPENDENT FALSE PATH IDENTIFICATION 39

static timing analyzer PrimeTime [98]. As shown in Table 2, we use the proposed

method and the implication-based method presented in [91] to examine them. As

can be observed, both techniques determine that a large percentage of the reported

critical paths are actually false paths. For example, for s13207, by applying our

method, only 14 paths out of the the 5000 longest paths are deemed as true paths;

while 308 paths are reported to be true with [91]. Consequently, the proposed

method is more effective for false path identification.

In terms of timing analysis result, Columns 6, 8 and 10 present the worst case

delay (WCD) reported by PrimeTime1, [91] and the proposed method, respec-

tively. It can be observed that the three methods report the same WCD for several

circuits (e.g., s1196, s5378 and vga lcd). This is because the longest paths of these

circuits are in fact true paths. For other circuits, the true critical path delay can

be reduced after considering the false paths. Due to that our method can detect

more false paths, our WCD results is shown to be less pessimistic when compared

to [91]. In particular, for s13207, the worst case timing delay reported by us is

12.15ns while [91] returns 12.89ns. Our proposed FPI technique is very efficient

as indicated by the short runtime, which is an extremely important feature since it

can thus be tightly integrated into the inner loop of circuit optimization tools. It

should be highlighted that the above runtime includes the time used for path-aware

illegal state identification, and as can be seen in Columns 3 and 4, the number of

illegal states related to long paths is quite small.

In the second experiment, we present results for our systematic prime false path

segment identification algorithm, as shown in Table 5.2. Column 2 is the number

of prime false path segments acquired with the proposed method. We then feed

these segments into an ATPG engine built on top of an academic tool Atalanta [93]

to check whether we can find a vector pair to sensitize them. Column 3 gives the

1PrimeTime can report true critical path delay with its own FPI feature.

CHAPTER 3. TIMING-INDEPENDENT FALSE PATH IDENTIFICATION 40

Benchmark
False seg.

F (#)

Justified seg.

J (#)

Unjustified seg.

U (#)

Improvement (%)

I = J
U ×100%

Runtime

(s)

s1196 108 18 90 20.00 56.35

s1238 202 16 186 8.60 60.59

s5378 755 316 439 71.98 85.9

s9234 929 106 823 12.88 93.85

s13207 80510 11826 68684 17.22 356.32

s38417 68864 10647 58217 18.29 290.52

s38584 37168 5056 32112 15.74 593.65

wb conmax 941 42 899 4.67 127.77

DMA 414 36 378 9.52 923.26

pci 5052 4644 408 1138.24 1561.48

usb 2351 1433 918 156.10 1738.60

ethernet 979 153 826 18.52 665.15

vga lcd 1105 97 1008 9.62 464.58

Average 107.28

Table 3.3: Experimental Results for Prime False Path Segments.

number of segments that the ATPG engine can find a solution to activate them.

Conventional method therefore would regard them as true path segments. On the

other hand, we also present, in Column 4, the number of segments that the ATPG

cannot find a vector pair to activate them. As can be seen in Column 5, in average

we can find 107% more false path segments using our proposed method, each of

which may correspond to multiple false paths. In particular, for some extreme

cases such as pci, most of the false segments are treated as true path segments

with ATPG-based FPI technique. It should be emphasized that, if we are not able

to find a sensitization vector pair for a path segment because ATPG engine aborts

computation, we cannot conclude such a path segment is false. The improvement

results reported in Table 5.2 is hence rather conservative. It is also important to

note that ATPG-like FPI techniques operate on a ‘path-by-path’ basis and cannot

identify prime false path segments efficiently.

CHAPTER 3. TIMING-INDEPENDENT FALSE PATH IDENTIFICATION 41

Benchmark
Implication-based [91]

B (#)

Proposed

O (#)

Improvement (%)

I = O−B
B ×100%

s1196 843 1509 79.01

s1238 1809 2687 48.54

s5378 4908 6389 30.18

s9234 282567 322827 14.25

s13207 2927528 20526546 601.16

s38417 253691 297198 17.15

s38584 1198836 1745552 45.60

wb conmax 653128 680372 4.17

DMA 9945 13261 33.34

pci 1569350 13076785 733.26

usb 79851 130086 62.91

ethernet 50417 67023 32.94

vga lcd 119472 149083 24.78

Average 132.87

Table 3.4: Experimental Results for False Paths Compared against Implication-

Based Method.

Finally, we compare the number of false paths identified with [91] and that

with our method, as shown in Column 2 and Column 3 in Table 3.4. Since we

only identify prime path segment, for fair comparison, the path counting algorithm

in [91] is implemented to count the corresponding false paths for our identified

segments. As can be observed, our proposed method are able to find much more

false paths than [91], around 132% more on average. In particular, for s13207 and

pci, we identify six times and 7 times more false path when compared to [91],

respectively. We attribute the reason for our improvement to the fact that a large

number of illegal states are considered in false path identification.

CHAPTER 3. TIMING-INDEPENDENT FALSE PATH IDENTIFICATION 42

3.6 Conclusion and Future Work

Effective removal of false paths from static timing analysis is a critical task to

achieve timing closure for state-of-the-art IC designs. It also facilitates to identify

untestable path delay faults. Traditionally, a path is regarded as a true path as

long as a vector pair can be found to sensitize it. In this work, we show that

the above criteria is rather pessimistic since certain paths are activated only with

illegal states in the circuit and hence they are functionally-unsensitizable. Based

on this observation, we develop efficient and effective FPI techniques to identify

those timing-independent false paths that cannot be sensitized under any signal

arrival time condition in integrated circuits. Experimental results on ISCAS’89

benchmark circuits show that our proposed technique are able to find much more

timing-independent false paths than existing implication-based and ATPG-based

FPI techniques.

In our future work, we plan to integrate the proposed efficient FPI technique

into existing circuit optimization tools (e.g., the open-source logic synthesis tool

ABC [86]) and conduct experiments on large industrial circuits.

2 End of chapter.

Chapter 4

PSN Aware Pseudo-Functional Delay

Testing

4.1 Introduction

Power supply noise (PSN) has an ever-increasing adverse impact on circuit tim-

ing with technology scaling. As demonstrated in [34], a 1% voltage change can

cause approximately a 4% change in gate delay in 90-nm, 0.9-V technology. Con-

sequently, it is essential to take PSN effects into consideration in at-speed delay

testing to guarantee that integrated circuits (ICs) fully meet customer performance

expectations.

Some prior works advocated to generate test patterns that induce maximum

PSN effects in delay testing to ensure the timing correctness of the shipped IC

products even in the worst-case scenario [35, 36, 37]. As shown in [107], however,

at-speed scan patterns can be up to 20% slower than any functional patterns due

to the discrepancy between functional mode and test mode in scan-based testing.

Consequently, such methodologies may lead to over-testing and induce significant

test yield loss. To resolve this issue, on the other hand, various low capture-power

43

CHAPTER 4. PSN AWARE PSEUDO-FUNCTIONAL DELAY TESTING 44

and low IR-drop testing techniques were presented to reduce the PSN effects in

at-speed testing [46, 47, 48, 50]. These test methodologies, unfortunately, lead to

the concern for under-testing. That is, if we over-restrict the PSN effects during

delay testing, some defective chips that cannot meet circuit timing requirement

may pass manufacturing test, leading to test escapes [38]. Therefore, to avoid

both over-testing and under-testing, the real question is: How can we exercise the

worst-case timing of the circuits under test (CUTs) in their functional mode during

manufacturing test?

To tackle the above problem, a layout-aware pseudo-functional testing tech-

nique targeting path delay faults was presented in [49]. By extracting functionally-

unreachable states (also known as illegal states or functional constraints) in the

circuit and feeding them into automatic test pattern generation (ATPG) tools, [49]

first generates functionally-reachable test cubes for every true critical path in the

circuit. Then, they used a heuristic to fill the don’t-care bits in the test cubes to

maximize power supply noises on critical paths under the consideration of func-

tional constraints. As pseudo-functional testing naturally minimizes the possibility

of over-testing while their proposed X-filling strategy is able to maximize PSN ef-

fects, [49] is able to simultaneously reduce both test overkills and test escapes.

Although the above pseudo-functional path delay testing technique is quite ef-

fective, it is inherently non-scalable due to the exponential number of paths in

the circuit and hence can only be used to generate a few top-up patterns for se-

lected critical paths. Today, timing-aware ATPG for transition faults has gained

wide acceptance in the industry to detect those small delay defects (SDDs) that

cause quality and reliability concerns for high-performance ICs. In this work, we

present novel pseudo-functional ATPG techniques to simultaneously reduce both

test overkills and test escapes in SDD testing. Firstly, by taking the circuit layout

information into account, functional constraints related to critical paths are ex-

CHAPTER 4. PSN AWARE PSEUDO-FUNCTIONAL DELAY TESTING 45

tracted. Then, we generate functionally-reachable test cubes for SDD faults in the

circuit. Finally, we use ATPG-like algorithm to generate switching activities that

pose the worst-case power supply noises on sensitized critical paths under the con-

sideration of functional constraints. Experimental results on benchmark circuits

demonstrate the effectiveness of the proposed technique.

The remainder of this chapter is organized as follows. Section 2 reviews

related work and motivates this paper. In Section 3 and Section 4, we detail

our proposed methodology. Experimental results on several large ISCAS’89 and

IWLS’05 benchmark circuits are then presented in Section 5 to show the effective-

ness of the proposed solution. Finally, Section 6 concludes this paper.

4.2 Preliminaries and Motivation

Layout-Aware Pseudo-Functional Testing for Critical Paths

With a large set of identified illegal states, applying pseudo-functional patterns nat-

urally minimizes the possibility of over-testing, but under-testing may occur with-

out taking PSN effects into consideration during the ATPG process. To address

this issue, in [49], the authors proposed a pseudo-functional test pattern generation

technique to maximize the PSN effects on selected critical paths, targeting path

delay faults.

As [49] is well-related to this paper, we briefly review it here. In [49], a so-

called PSN effect weight (PEW) was proposed to evaluate the PSN effect caused

by transitions on aggressors1. As the location of the aggressors should be close

enough to that of the victim so that they are competing for power supply, the

authors defined a so-called E f f ectiveRange as a pre-defined maximum distance

1For a critical path under test, the on-path logic cells and the cells that induce power

supply noise on them are denoted as victims and aggressors, respectively.

CHAPTER 4. PSN AWARE PSEUDO-FUNCTIONAL DELAY TESTING 46

between the aggressors and the victims. Within this range, PEW is defined as

follows.

PEW = 1−|Xagg −Xvic|/E f f ectiveRange (4.1)

where Xagg and Xvic denote the row-coordinate of the aggressor and the victim,

respectively, which represents the closer an aggressor is to a victim cell, the higher

PSN it induces on it.

At the same time, as pointed out in [37], the transition type of aggressor cells

(e.g., rising or falling) also plays an important role for PSN effects on a victim cell.

Consider an on-path victim cell in Fig. 4.1, to maximize power supply noise on it,

for those aggressor cells that are in the same row, they are desired to have the same

transition type as the victim cell; for those aggressor cells that are in different

row but share a common power wire with it, they are desired to have a rising

transition; while for the remaining aggressor cells that are in different row but

share a common ground wire with it, they are desired to have a falling transition.

Based on the above, [49] also defined a probability-based transition PSN metric

to evaluate the impact of X-bits on the PSN of targeted path from transitions of

relevant gates. Based on above, a novel X-filling heuristic is proposed to assign

logic values for X-bits in the test cube to maximize the PSN effects on selected

critical paths under functional constraints.

4.2.1 Motivation

As shown in [49],simply maximizing or minimizing PSN effects in at-speed de-

lay testing is not a good strategy since such one-sided solutions are inevitable to

result in the concern of the other side. The work in [49] made a good attempt to

tackle this problem considering path delay faults. However, since the number of

paths in a circuit increases exponentially as the circuit size grows, it is infeasible

CHAPTER 4. PSN AWARE PSEUDO-FUNCTIONAL DELAY TESTING 47

Ground

Power

Cell on the Path (Victim)

Cells in PSN-Related
Region (Aggressors)

Required
Transition Type

Rise

Fall

Same
Ground

Power

Figure 4.1: Example of PSN-Related Cells.

to consider every path in the circuit explicitly. Instead, only those critical paths

identified by timing analysis tools can be considered during test generation. Un-

fortunately, the ever-increasing process variation makes circuits’ timing behavior

unpredictable, and hence there might be a large number of paths being critical.

Consequently, only a subset of critical paths can be tested based on path delay

fault model, which cannot guarantee test quality and can only be used to generate

some top-up patterns.

Due to the above, small delay defect testing has been widely accepted by the

industry, wherein we try to detect transition faults by propagating their faulty ef-

fects through long paths whenever possible. Compared to path delay testing, the

number of SDD test patterns increases almost linearly with the circuit size and we

can achieve good transition fault coverage by being able to flexibly choosing the

sensitization paths.

The above motivates us to take the circuit layout into consideration and maxi-

mize power supply noise effects for SDD testing under the consideration of func-

tional constraints. By doing so, we are able to achieve high quality delay testing

by simultaneously reducing both test escapes and test overkills of the CUTs.

CHAPTER 4. PSN AWARE PSEUDO-FUNCTIONAL DELAY TESTING 48

Static Timing

Analysis

Physical

Layout

Pseudo-Functional SDD Test Cube

Generation

Netlist

Relevant Transition Identification and PSN

Impact Evaluation

Fault List

Pseudo-Functional Transition Activation

for PSN Effect Maximization

Illegal State

Identification

Fault Drop

PSN Effect

Maximization

Figure 4.2: Main flow of our proposed pseudo-functional SDD test generation

methodology

4.3 Proposed Methodology

Fig. 5.4 presents the overall framework for our proposed layout-aware pseudo-

functional SDD test pattern generation procedure. Given the layout and netlist

information of circuit, we first obtain critical paths with commercial timing anal-

ysis tool, and then extract illegal states related to these critical paths based on the

method presented in [100, 49]. As can be observed from Fig. 5.4, our proposed

ATPG flow mainly contains two parts: (i). pseudo-functional SDD test cube gen-

eration; and (ii) PSN effect maximization.

To generate pseudo-functional SDD test cube, we extend the conventional SDD

test generation method presented in [54] by integrating the functional constraints

checking and breaking mechanism, which is to sensitize SDD through critical

CHAPTER 4. PSN AWARE PSEUDO-FUNCTIONAL DELAY TESTING 49

paths whenever possible, meanwhile, it guarantees that no illegal states is included

in the test cube. In order to satisfy functional constraints, as in [49], we repre-

sent functional constraints as phantom gates and virtually inserts these gates in

the CUT as shown in Fig. 4.3. By doing so, we can selectively activate a subset

of functional constraints by assigning logic ‘1’ at the output of the corresponding

phantom AND gates during the test pattern generation process. For example, in

order to avoid any one of {A(0),C(1)} and {A(1),B(1)} to appear in test cube, we

will assign logic ‘1’ on both F1 and F2. Then, suppose that input B has been set

as logic ‘1’ during pattern generation, implication function automatically implies

logic ‘0’ at A to break illegal state {A(1),B(1)}. Similarly, C will be then assigned

as logic ‘0’ to break illegal state {A(0),C(1)}.

Next, in terms of PSN effect maximization, for the critical paths sensitized by

the test cube, we first parse the circuit layout to identify those relevant transitions

that may induce power supply noise on it, and estimate the delay impact caused by

each transition. Then, several algorithms are introduced to justify as many relevant

transitions as possible by judiciously filling the X-bits of the test cubes without

violating functional constraints, so that the PSN effects incurred by the final test

pattern is nearly the worst-case scenario that exists in functional mode (detailed in

Section 4). After obtaining each pattern as above, we drop those transition faults

that are located on the same sensitized critical path. To note, we do not conduct

fault simulation and drop the other detected transition faults since PSN effects are

not considered for their sensitized paths yet.

CHAPTER 4. PSN AWARE PSEUDO-FUNCTIONAL DELAY TESTING 50

A B

A C
A

B

C

PPI

F1

F2

Figure 4.3: Insertion and Activation of Functional Constraints as Phantom Gates

4.4 Maximizing PSN Effects under Functional Con-

straints

After obtaining pseudo-functional test cubes, our objective is to fill the X-bits to

maximize PSN effects on the sensitized critical path under functional constraints

of each SDD test pattern. We do not simply reuse the probability-based X-filling

technique presented in [49] due to its computational complexity2. Instead, we

propose an effective ATPG-like technique to fill X-bits, which is able to directly

justify the targeted transitions on relevant aggressors to required values by filling

X-bits in the test cubes. As we cannot justify all the relevant transitions simul-

taneously, the main challenge is how to effectively justify those highly-relevant

transitions as many as possible without violating functional constraints.

To tackle the above problem, we first parse the circuit layout to identify those

relevant aggressors that may induce power supply noise affecting the targeted

fault’s behavior. Then based on the distance and required transition type of ag-

gressors, the PEWagg−vic is calculated according to Eq. (1) for each pair of the

2As there is no direct correlation between X-bits within test cube and the relevant sig-

nals with required transitions, time-consuming probability-based simulation is conducted

in [49] to guide the filling procedure for every test pattern.

CHAPTER 4. PSN AWARE PSEUDO-FUNCTIONAL DELAY TESTING 51

on-path victim cells and their respective aggressors. The PSN impact for rele-

vant transition on a specific aggressor is then calculated by summing up all the

PEWagg−vic between this transition and all the on-path victims and we denote it as

transition weight (TW). By formulating the problem as above, our objective be-

comes to maximize the total TW by justify relevant transitions as many as possible

using X-bits in the test cube, without violating functional constraints.

4.4.1 Pseudo-Functional Relevant Transitions Generation

The task to justify the maximum number of compatible transitions that lead to

PSN effects is quite challenging, as certain relevant transitions cannot be justified

simultaneously due to logic conflicts in the circuit. Since it is obviously unaccept-

able to enumerate all the possible combinations, we propose to justify the set of

relevant transitions in an incremental manner.

The flowchart of our proposed algorithm is shown in Fig. 4.4. It is composed

of four main parts. Firstly, we conduct a fast pre-processing step on the rele-

vant transition set, and try to form a compatible transition graph (CTG) in such a

way that some possible concurrently-justifiable transitions are identified by logic

implication. Next, we conduct incremental transition extraction, in which we ex-

tract the maximum clique on the CTG. The subset of transitions on this clique is

our focus in the next transition justification step, wherein several heuristics are

used to justify as many as transitions in this subset as possible3. To avoid being

trapped into local optimal solution, we also equip our algorithm with the flexibility

to search within certain range (denoted as backtracking mechanism), so as to find

better solution in the end. After processing each clique, we update CTG, find the

maximum clique and conduct transition justification again. The above procedure

3Not all transitions can be concurrently justified even for this subset in the clique as

logic implication is usually incomplete.

CHAPTER 4. PSN AWARE PSEUDO-FUNCTIONAL DELAY TESTING 52

Compatible Transition Graph Generation

Maximum clique Extraction

Symbolic Transition-Aware Implication

Symbolic Multiple

Backtracing
Backtracking

Threshold

Degradation

Compatible Graph Updating

FTR > trn or

Function constraints

violated

nBT > maxBT

Thresholds have

been tried ?

More relevant

transitions possible?

End

No Yes

Yes

No

Yes

No

Yes

No

Generation Failed

All Reached

the PI/PPI?

Yes

No

No node in

searching tree ?

No

Preprocessing

Transition

Justification
Backtracking

Mechanism

Incremental

Transition

Extraction

Figure 4.4: Flowchart for the pseudo-functional relevant transition generation al-

gorithm

iterates until no more relevant transitions can be achieved under the consideration

of functional constraints.

Compatible Transition Graph Generation

The relevant transitions identified from the layout information may logically-conflicting

with each other. Although we are able to identify these conflicts during the logic

CHAPTER 4. PSN AWARE PSEUDO-FUNCTIONAL DELAY TESTING 53

TW = 0.12

TW = 0.43

TW = 0.28

TW = 0.18

TW = 0.22

TW = 0.55

TW = 0.28

TW = 0.18

TW = 0.22

Figure 4.5: Example to show CTG updating

value justification process, too many conflicting transitions will dramatically in-

crease the processing burden and hence severely impact the runtime of our solu-

tion.

To resolve this problem, we conduct a pre-processing step to reduce the prob-

lem complexity, by using logic implication to build the so-called compatible tran-

sition graph (CTG) as follows. Given a test cube, two relevant transitions are

treated as compatible if there is no conflict after applying logic implication for the

two transitions. As shown in Fig. 4.5, every node on the CTG denotes a relevant

transition which is weighted by TW value, and two transitions are connected with

a edge if they are compatible. It is worth noting that building such CTG graph

is very efficient since the implication can be conducted very fast and CTG graph

construction is a one-time effort.

Incremental Transition Extraction

Before transition justification, we first extract the maximum clique of CTG in a

greedy manner and target the transitions within it.

Updating Compatible Transition Graph

After each round of transition justification , the CTG graph is to be updated.

Take the CTG depicted in Fig. 4.5 as an example. The initial clique composes of

CHAPTER 4. PSN AWARE PSEUDO-FUNCTIONAL DELAY TESTING 54

transitions A, B and C. Then, suppose A and B are justified while C fails. since

it is still possible that E is justifiable together with A and B, we update the CT G

by merging the justified transitions into a super-node in the graph and then cutting

off the links between the super-node and the unjustified transitions. Next, we fix

those transitions that have been justified and only put the untried transitions that

have links with the super-node into the next round of justification process. This

mechanism guarantees that our algorithm is performed on the complete relevant

transition set, i.e., not restricted by the maximum clique that we have selected at

the very beginning.

Transition Justification

We introduce two techniques to justify the required transitions as many as possible.

As both of them are based on the so-called symbolic justification mechanism, we

discuss it first.

To justify a transition, it is necessary to concurrently justify two values for the

same node in the circuit in two consecutive timeframes. As the example shown in

Fig. 4.6, wherein the circuit has been unrolled and we want to justify three transi-

tions at B, D and E. Taking transition at D as an example, there are two objects

located at B and B′ in the two timeframes, respectively. For justifying B = 1, we

need to justify both C = 0 and I = 1 on different branches since logic ‘1’ is the

non-controlled value for NOR gate. Initially, three values need to be justified for

one transition, and this number keeps increasing as justification proceeds. Suppose

that a particular transition is failed because it cannot be justified at any branch, it

is meaningless to justify the rest of the branches. Hence, we need to hold such

information at the unjustified gates to indicate which transitions it is related to.

Moreover, the to-be-justified transitions may be treated differently as they may

have different impact on PSN effects.

CHAPTER 4. PSN AWARE PSEUDO-FUNCTIONAL DELAY TESTING 55

1 0

1

D

F

Q

Q
SET

CLR

S

R

Input0

Input1

D’

F’

Input0'

Input1'

Q

Q
SET

CLR

S

R

C B

A

E

G

FF0

FF1

G’

E’

A’

B’
C’

0

1 0

Input2 Input2

I
I

0

0

0
js0: (B , 0.23, UF)

0

js0: (B , 0.15, UF)

1

js1: (D , 0.15, UF)

js0: (E , 0.08, UF)

 (D , 0.15, UF)

js0: (E , 0.08, UF)

js0: (E , 0.08, UF)

js0: (B , 0.23, UF)

Figure 4.6: Example to show symbolic justification mechanism

To represent all of above, we introduce two sets of the so-called justifying sym-

bols (js0 and js1) at the unjustified gates. Each justifying symbol is composed of a

three-tuple element including the correlated transition, the weight of the transition

and the state of the transition (i.e., the un-failed transition is labeled as UF while

the failed transition is labeled as F). js0 and js1 list the set of transitions that

require the gate to be ‘0’ and ‘1’, respectively.

Symbolic Multiple Backtracing

Starting from several unjustified values, we employ multiple backtracing tech-

nique to trace them concurrently. In conventional ATPG, the technique propagates

n0 and n1 to indicate how many times that the signal is required to be logic ‘0’

and logic ‘1’, and it simply treats every unjustified value equally important. For

our problem, however, different transitions have non-equal weight as indicated by

their TW values, and we need to have higher priority to justify those transitions

with larger TW . At the same time, we also need to remove the state of some rel-

evant transitions, since it does not make sense to consider those failed transitions.

Therefore, we propose a symbolic multiple backtracing technique that propagates

CHAPTER 4. PSN AWARE PSEUDO-FUNCTIONAL DELAY TESTING 56

1 0

1

D

F

Q

Q
SET

CLR

S

R

Input0

Input1

D’

F’

Input0'

Input1'

Q

Q
SET

CLR

S

R

C B

A

E

G

FF0

FF1

G’

E’

A’

B’
C’

0

1 0

Input2 Input2'

I
I

0

0

0
js0: (B , 0.23, UF)

0

js0: (B , 0.23, UF)

1

js1: (D , 0.15, UF)

js0: (E , 0.08, UF)

 (D , 0.15, UF)

js0: (E , 0.08, UF)

js0: (E , 0.08, UF)

js0: (B , 0.23, UF)

P
0

js0: (B , 0.23, UF)

js1: (E , 0.08, UF)

 (D , 0.15, UF)

js1: (D , 0.15, UF)

js0: (B , 0.23, UF)

js0: (B , 0.23, UF)

Figure 4.7: Example to show symbolic multiple backtracing

the justifying symbol list js0 and js1, based on the following rules:

• For NOT gate, duplicate the js0/ js1 to js1/ js0 of its fan-in gate;

• For the other kinds of gates, if vo at output and vi at input are the non-

controlled and non-controlling values for the gate respectively, we duplicate

the jsvo to the jsvi of all the fan-in gates; otherwise when they are the con-

trolled and controlling values for the gate respectively, we duplicate the jsvo

to the jsvi of the easiest justifiable fan-in gate, which is defined as the gate

closest to the primary/pseudo-primary input.

Following the example shown in Fig. 4.6, we use Fig. 4.7 to illustrate the pro-

cedure for justifying symbol propagation, which is depicted by the arrowed lines.

All the backward propagations stop at multi-fanout nets or at the inputs. For ex-

ample, for FF1, some transitions require it to be logic ‘1’ while others require it

to be logic ‘0’, hence we need to make value decision on such multi-fanout nets,

which is detailed in the following symbolic transition-aware implication.

Symbolic Transition-Aware Implication

CHAPTER 4. PSN AWARE PSEUDO-FUNCTIONAL DELAY TESTING 57

There are two major tasks in the symbolic transition-aware implication pro-

cedure. The first one is to guarantee no functional constraints is violated during

justification process. This is achieved by representing functional constraints in the

same way as depicted in Fig. 4.3. As the example shows in Fig. 4.8, suppose flip-

flops FF0 and FF1 should have the same value, we insert a phantom XOR gate P

into the circuit and assign logic ‘0’ to it. By doing so, we can detect the logic con-

flict on P if and only if these two flip-flops are assigned with the same logic value.

Once any functional constraint is violated, we stop implication for backtracking

by inverting the logic value that is last assigned at the multi-fanout net.

The second task is to make value assignment decision when multi-fanouts are

reached during the multiple backtracing process. We can observe that different

implication orders result in failures of different relevant transitions. As shown in

Fig. 4.8, starting from multi-fanout FF0 first, it is assigned with logic ‘1’ since the

js0 set is empty on it. Next, when making decision on FF1, we specify it as logic

‘0’ because the TW on B is larger than that on D. Functional constraint violation

is then detected on gate P, and backtracking is conducted to invert the logic value

on the last multi-fanout FF1. Consequently, transition on B fails.

However, suppose the decision making order is first to assign ‘0’ on FF1 and

then specify ‘1’ on FF0, the functional constraint violation results in backtracking

to invert the logic value on FF0. In this case, the justifications for E(0) and A(1)

are both dependent on Input0. According to justifying symbols on these two nodes,

we specify Input0 as logic ‘0’. This assignment inverts the logic value on A, and

correspondingly, the logic values on D, G and E ′ are all flipped, making transitions

on both E and D failed.

Based on the above observation, we propose a symbolic transition-aware im-

plication procedure that heuristically reduces the total amount of weighted failed

transitions as follows. For each reached multi-fanout during the multiple back-

CHAPTER 4. PSN AWARE PSEUDO-FUNCTIONAL DELAY TESTING 58

1 0

1

D

F

Q

Q
SET

CLR

S

R

Input0

Input1

D’

F’

Input0'

Input1'

Q

Q
SET

CLR

S

R

C B

A

E

G

FF0

FF1

G’

E’

A’

B’
C’

0

1 0

Input2 Input2'

I
I

0

0

0

0

1
P

0

js0: (B , 0.23, F)

js1: (E , 0.08, UF)

 (D , 0.15, UF)

js1: (D , 0.15, UF)

js0: (B , 0.23, UF)

js0: (B , 0.23, F)
1

0 1
1

0

R R

js0: (E , 0.08, UF)

 (D , 0.15, UF)

js1: (D , 0.15, UF)

Figure 4.8: Example to show impact of implication order

tracing process, we check its js0 and js1 lists and calculate the weighted sum of

the un-failed justifying symbols on js0 and js1, which are defined as WSUJB0 and

WSUJB1, respectively. Next, WSUJB is used to store the larger value between

WSUJB0 and WSUJB1 on every reached multi-fanout. We then sort the set of

reached multi-fanouts in a non-decreasing order based on their WSUJB values.

Finally, we make value decision on multi-fanouts and perform logic implication

one by one. To be specific, starting from the first gate in sorted multi-fanout list,

we assign the corresponding logic value according to WSUJB. Then we conduct

logic implication process and some transitions may fail, hence we update the states

of the justifying symbols on each reached multi-fanout or input and then check the

multi-fanout list again. The above procedure iterates until all the reached multi-

fanouts and inputs have specified values. By doing so, the multi-fanout with higher

weighted sum of un-failed justifying symbols is processed with higher priority, and

hence we can effectively reduce the total amount of failed transitions.

CHAPTER 4. PSN AWARE PSEUDO-FUNCTIONAL DELAY TESTING 59

Multi-Level Backtracking Mechanism

In conventional ATPG process, backtracking is conducted as soon as a logic con-

flict is detected during implication. While for our problem, we can accept certain

amount of temporary logic conflicts that reduce the number of desired transitions

and resolve them in later stage. Consequently, we need to design a new backtrack-

ing mechanism for maximizing PSN effects, as shown in the following.

During transition justification, we denote the T TW f /T TW as the failed transi-

tion ratio (FT R), where T TW f and T TW are the total TW of the failed transitions

and that of total relevant transitions. Our initial thinking is to set one threshold

ratio value T R, and backtracks once the FT R is larger than T R. However, this

strategy is not quite effective because the optimal T R values for different set of

to-be-justified transitions vary significantly, and hence a universal threshold value

is not preferred. In order to overcome this problem, we set a series of threshold

T R = {tr0, tr1, tr2...} arranged in an increasing order and there is some interval

between any neighboring pair. For example, T R = {10%,20%,30%...}. For a

given set of transitions to be justified, we try the threshold values one by one in

the T R vector, and record the number of backtrackings (denoted as nBT). Clearly,

later trials are easier with smaller nBT . In each trial, if nBT is larger than a a

pre-defined constant value maxBT , we use the next more relaxed threshold. This

procedure terminates when either a solution is found with nBT ≤ maxBT or all the

threshold levels have been tried.

4.5 Experimental Results

4.5.1 Experimental Setup

We implement our layout-aware pseudo-functional SDD pattern generation frame-

work on top of an academic ATPG tool Atalanta [93], which originally targets

CHAPTER 4. PSN AWARE PSEUDO-FUNCTIONAL DELAY TESTING 60

100 150 200 250 300
3

3.5

4

4.5

5

5.5

TW

D
el

ay

Path1
Path2

(a) s38417

160 180 200 220
24.5

25

25.5

26

26.5

27

27.5

28

TW

D
el

ay
(b) des

Figure 4.9: TW -Delay Correlation Plot

stuck-at faults using FAN algorithm [55]. Experiments are conducted on the largest

ISCAS’89 and IWLS’05 benchmark circuits that are available to us. We synthesize

them using UMC’s 130nm CMOS technology with 1.08V power supply voltage,

and layout them using commercial tools.

It is important to note, while the benchmark circuits used in our experiments

are still small when compared to industrial designs, we believe they are sufficient to

prove the effectiveness of the proposed technique. This is because, power supply

noises are rather “local” effects and the number of aggressors for a particular

critical path is usually not related to the overall circuit size.

4.5.2 Results and Discussion

As we mentioned in the previous section, our proposed technique does not directly

optimize the delay caused by PSN effects since we can only obtain relatively accu-

rate delay value by applying both PSN simulation and timing analysis and it is not

CHAPTER 4. PSN AWARE PSEUDO-FUNCTIONAL DELAY TESTING 61

Benchmark
TFC

(%)

Path A.R.

(%)

Random-fill under F. C. PSN Max. without F. C. Our proposed

TWr Runtime(s) TWw Runtime(s) TWo ORTW (%) OWTW (%) Runtime(s)

s5378 80.57 77.82 19.15 217.68 29.36 481.39 26.56 38.69 -9.54 591.18

s9234 80.29 81.68 24.31 120.36 38.17 892.1 30.85 26.90 -19.18 982.33

s13207 83.82 83.27 35.98 608.96 61.37 1584.29 48.65 35.21 -20.73 1985.38

s15850 82.28 64.13 28.79 267.32 50.07 983.57 38.58 34.00 -22.95 1289.65

s38417 92.76 79.32 57.8 1025.15 105.25 3215.61 91.83 58.88 -12.75 3606.9

s38584 86.29 72.56 73.45 1329.28 132.89 3504.27 115.68 57.49 -12.95 4138.5

Average 84.33 76.46 41.86 -16.35

Table 4.1: Comparison among Different SDD Patterns.

affordable to integrate such time-consuming process into our algorithm. Instead

of doing so, we employ the transition weight metric TW to evaluate the PSN ef-

fects caused by certain transition to a sensitized path and then try to maximize the

overall effective TW by generating relevant transitions on top of the original SDD

pattern. To demonstrate the effectiveness of our method, it is important to observe

the correlation between TW and the real circuit delay.

In our first experiment, we randomly select two original SDD test patterns

for s38417 and one pattern for des, and then we randomly fill the X-bits in test

pattern and calculate the TW sum of the activated relevant transitions for several

rounds. To obtain the delay information under PSN effects, we first perform IR-

Drop analysis on the layout with the commercial tool to extract the exact voltage on

each node of the sensitized path, and then feed this information into static timing

analysis tool to obtain the delay for the targeted path. After acquiring the delays

on corresponding pathes for these patterns, we plot TW -delay figure as shown in

Fig.4.9. It can be observed that they are not perfectly correlated. However, the

trend is quite similar and the delay increases as the growth of the activated TW in

most cases. Hence, it is with sufficient accuracy to use TW as the optimization

target in our algorithm.

CHAPTER 4. PSN AWARE PSEUDO-FUNCTIONAL DELAY TESTING 62

Table 5.1 shows our main experimental results, in which we generate pseudo-

functional SDD test cubes first using the techniques presented in Section 3, but fill

the X-bits in test cubes differently to obtain three kinds of SDD patterns: (1) our

proposed pseudo-functional patterns that try to maximize the PSN effects under

functional constraints; (2) pseudo-functional patterns with randomly-filled X-bits;

(3) test patterns that are generated with maximum PSN effects without considering

functional constraints.

Column 2-3 in Table 5.1 present the quality for small delay defect detection.

Transition fault coverage (T FC) is shown in Column 2 and it can be observed

that at least 80% transition faults can be covered by our pseudo-functional SDD

patterns for all the benchmark circuits. Column 3 (i.e., Path A.R.) represents the

critical path activation ratio, which is calculated as follows. We first extract those

critical paths which have at most 10% slack from the longest path in the circuit

according to static timing analysis results. Next, we remove those false paths

that are not sensitizable in functional mode and denote the remaining paths as

sensitizable paths. We then count those paths that are sensitized by our SDD

test pattern, denoted as sensitized paths. The Path A.R. is the ratio between the

sensitized paths and the sensitizable pathes. On average, there are 76% sensitizable

paths activated by our SDD patterns. This result shows that our SDD test patterns

can effectively sensitize most sensitizable critical paths in the circuit.

Columns 4-11 list the comparison among the three kinds of SDD patterns.

Columns TWr, TWw and TWo represent the average activated transition weight for

the three different kinds of patterns. ORTW and OWTW are calculated as ORTW =

TWo−TWr
TWr

× 100% and OWTW = TWo−TWw
TWw

× 100%, respectively. Let us first com-

pare patterns generated using the proposed solution against pseudo-functional pat-

terns with randomly-filled X-bits first. It can be observed from Column 3 that our

method can achieve up to 59% improvement for benchmark s38417, and for all

CHAPTER 4. PSN AWARE PSEUDO-FUNCTIONAL DELAY TESTING 63

0

500

1000

1500

2000

2500

3000

3500

4000

Result in [12] Result of our method

Figure 4.10: Pattern count comparison

the benchmark circuits the average improvement is around 40%. As stated ear-

lier, while pseudo-functional testing inherently minimizes over-testing problem, it

may suffer from serious under-testing problem. The above results demonstrate the

effectiveness of our proposed algorithm by explicitly taking PSN effects into con-

sideration. When comparing against patterns with maximum PSN effects without

considering functional constraints, we can observe more than 16% less PSN effects

on average for all benchmark circuits, and scan patterns for benchmark s15850 can

result in up to 22% more power supply noises than our patterns that try to maxi-

mize PSN effects under functional constraints. This comparison indicates that it is

crucial to take functional constraints into consideration when generating SDD test

patterns. Otherwise, circuits can be over-tested, leading to significant test yield

loss. In terms of computational time, our proposed method is 10-20% longer than

that of [54], which is acceptable considering the test quality improvement provided

by our solution.

In [54], once a SDD pattern is generated, fault simulation is conducted and

CHAPTER 4. PSN AWARE PSEUDO-FUNCTIONAL DELAY TESTING 64

all the faults that are propagated through long paths are dropped. In our method,

however, we drop those undetected faults if and only if they are located on the path

targeted in relevant transition justification, since we need to guarantee the dropped

faults have been affected by sufficient PSN effects. Consequently, our solution

generates more test patterns than [54]. We compare the pattern count between the

two methods, as shown in the Fig.4.10. It can be observed that, the pattern count

increase is moderate and we attribute this to the fact that long paths are difficult to

be sensitized if we do not target on them during the test pattern generation process.

4.6 Conclusion

The ever-increasing sensitivity of circuits’ timing behavior to PSN effects is a se-

rious challenge for at-speed delay testing. Without considering functional con-

straints, conventional ATPG may incur either excessive or limited PSN effects on

critical paths, leading to over-testing or under-testing of the CUT. In this work,

we present a novel pseudo-functional ATPG technique to simultaneously reduce

both test overkills and test escapes in SDD testing. Experimental results on large

benchmark circuits demonstrate the benefits of the proposed solution.

2 End of chapter.

Chapter 5

In-Situ Timing Error Masking in

Logic Circuits

5.1 Introduction

With the continuous downscaling of transistor feature size, there is an increasing

uncertainty for the timing behavior of today’s integrated circuits (ICs). On one

hand, embedding a large design guard band to prevent timing errors to occur is not

an attractive solution, since this conservative design methodology diminishes the

benefit of technology scaling [106]. On the other hand, it is increasingly difficult to

rely on off-line delay testing to guarantee circuit timing correctness in functional

mode [107]. Consequently, there is a growing research interest to achieve online

timing error resilience.

Most of existing solutions for timing error resilience (e.g., the well-known Ra-

zor technique [31]) try to restore the state of the system to a known-good pre-error

state. These techniques are very effective for timing error correction (TEC) in

processors with microarchitectural support such as instruction replay, but they are

very difficult, if not impossible, to be applied to general logic circuits, due to the

65

CHAPTER 5. IN-SITU TIMING ERROR MASKING IN LOGIC CIRCUITS 66

high cost to checkpoint error-free states in such designs.

In-situ timing error correction techniques that are able to mask errors without

any rollback, are therefore very attractive. Among the few in-situ TEC techniques

presented in the literature, most of them [108, 109, 110] rely on time-borrowing

technique to correct timing errors, by delaying the arrival time of the correct data

to the next logic level. As these techniques reduce the timing slack for the logic

level that follows speed-paths, they have difficulty to handle the case when speed-

paths exist in consecutive logic levels, limiting the applicability of such solutions.

In [111], the authors proposed to synthesize a redundant logic block that is acti-

vated only when the speed-paths of the circuit are sensitized, and use it to mask

timing errors on targeted paths. While interesting, their proposed synthesis algo-

rithm is time-consuming and the redundant logic block incurs large area overhead.

In this paper, we propose a novel in-situ timing error correction technique,

namely InTimeFix. Similar to [111], we introduce redundant logic into the orig-

inal circuit to mask timing errors on speed-paths when they are sensitized. Un-

like [111] that tries to synthesize the Boolean function that activates speed-paths

in a ”brute-force” manner, the redundant TEC circuit in InTimeFix is generated

based on the concept of approximation circuit [112, 113] and can be obtained by

simple structural analysis of the original circuit, which is of low cost and is eas-

ily scalable to large IC designs. Since the corresponding approximation circuits

for speed-paths is with simpler logic structure, a large timing slack is guaranteed

for those flip-flops driven by speed-paths (denoted by suspicious FFs) and hence

is able to mask timing errors occurring on them. The main contributions of this

paper include:

• we present a novel technique to add redundant approximation circuit into the

original design to create a logically-equivalent yet timing-improved circuit,

and prove its correctness;

CHAPTER 5. IN-SITU TIMING ERROR MASKING IN LOGIC CIRCUITS 67

• we propose a low-cost and scalable technique to synthesize timing error

masking logic based on simple structural analysis, without necessarily ac-

quiring the characteristic function for the set of all speed-path activation

patterns;

From another perspective, InTimeFix can be also regarded as a timing opti-

mization technique, since it facilitates to improve circuit timing slack with low

hardware cost, as demonstrated in our experimental results. It is important to em-

phasize that, as a redundancy scheme, InTimeFix is compatible with other tim-

ing/power optimization techniques such as gate sizing [114] and dual Vth alloca-

tion [115], and in fact, these techniques can be combined to further improve circuit

performance under variation.

The remainder of this chapter is organized as follows. Section 5.2 surveys prior

work for online timing error resilience and motivates this work. In Section 5.3 and

Section 5.4, we detail the proposed InTimeFix technique for in-situ correction of

timing errors on speed-paths. Experimental results on various benchmark circuits

are then presented in Section 5.5. Finally, Section 5.6 concludes this paper.

5.2 Prior Work and Motivation

In order to achieve timing error resilience, we can either predict the error occur-

rence and take proactive actions to avoid them or detect and correct timing errors

(or their effects) when they occur. Generally speaking, timing error prediction

techniques (e.g., [116]) are applicable to detect gradual increase of circuit delay

resulting from aging effects only. While Razor-like techniques are very effective

for timing error correction in microprocessors with the help of instruction replay,

they are very difficult, if not impossible, to be applied to general logic circuits, due

to the high cost to checkpoint error-free states in them. It is therefore imperative

CHAPTER 5. IN-SITU TIMING ERROR MASKING IN LOGIC CIRCUITS 68

f(x1,x2,...xn)

x
1
,x

2
,.
..
x

n

y1

yk-1

yk

ym

yk

ek

ym

em

0

1 y
1
,y

2
,.
..
y

m

Critical outputs

~

~

Figure 5.1: Timing Error Masking Scheme in [111].

to develop in-situ timing error correction techniques that are able to mask errors

without any rollback. There are a few such techniques presented in the literature

and they can be classified into two categories: temporal error masking and logic

error masking. Time-borrowing techniques for timing error correction have the

inherent weakness of error effect propagation. That is, the timing slack of the suc-

cessive logic level driven by suspicious FFs is reduced and hence some initially

non-suspicious flip-flops in this level may become suspicious ones and need to be

replaced by sequential elements with time-borrowing capability again. Due to this

timing error propagation effect, the hardware cost for such temporal error masking

techniques can be quite high.

In [111], Choudhury and Mohanram proposed to add a redundant logic block

to predict the outputs of the circuit upon application of inputs that sensitize speed-

paths. With this exact sensitization constraint, the error-masking circuit tends to

have more timing slack when compared to the original circuit, and hence is im-

mune to timing errors. As shown in Fig. 5.1, targeting those timing-critical outputs

yk, ...,ym, error masking circuit generates two outputs for each of them, e.g., ỹk and

ek for yk with potential timing error. To be specific, when a speed-path driving yk

is sensitized, ek is set correspondingly and the original circuit’s output yk is sub-

CHAPTER 5. IN-SITU TIMING ERROR MASKING IN LOGIC CIRCUITS 69

stituted with the fast predicted value ỹk to achieve timing error resilience. While

the idea is interesting, construction of the proposed redundant logic block incurs

quite large area/power overhead, as demonstrated in their experimental results. In

addition, to synthesize such error-masking circuits is quite complex, requiring to

obtain the characteristic function for the set of all speed-path activation patterns,

which is only practical for small circuit blocks.

To sum up, process, voltage, and temperature (PVT) variations have an ever-

increasing adverse impact on the timing behavior of integrated circuits with tech-

nology scaling. While there are a few techniques shown in the literature, they

either rely on certain assumptions about the circuit structure and hence limit their

applicability, or suffer from scalability issues and cannot be easily applied in large

IC designs. This motivates the proposed InTimeFix technique to achieve low-cost

and scalable timing error resilience in logic circuits.

5.3 In-Situ Timing Error Masking with Approximate

Logic

The concept of approximation circuit was proposed in [112], which tries to in-

crease a microprocessor’s clock frequency by replacing a complete logic function

with a simplified circuit that mimics the function and uses rough calculations to

speculate and predict results. In [113], the authors defined approximate logic in

digital circuit as: Given two Boolean functions F and G, G0 is a 0-approximate

logic of F if G0 = 0 ⇒ F = 0. Similarly, G1 is a 1-approximate logic of F if

G1 = 1 ⇒ F = 1. Consider a Boolean function F = a+ b+ ācd, there are 13

out of total 16 minterms in its truth table that output logic 1 while the other 3

minterms output logic 0. A 1-approximate logic function of F is G1 = a+b. This

approximate function covers 12 out of 13 minterms for F = 1 minterms and can

CHAPTER 5. IN-SITU TIMING ERROR MASKING IN LOGIC CIRCUITS 70

be implemented with one logic gate. Similarly, a 0-approximate logic function of

F is G0 = a+b+ c, which covers 2 out of 3 minterms for F = 0.

Generally speaking, since the approximate logic is with much simpler logic

structure when compared to the original circuit, the computation latency is smaller.

The basic idea of the proposed InTimeFix technique is to generate approximate

logic for the original logic function of suspicious FFs in such manner that it covers

all the logic minterms that sensitize speed-paths.

5.3.1 Equivalent Circuit Construction with

Approximate Logic

Given a logic circuit that implements Boolean function F , suppose G0 is a 0-

approximate logic for F and G1 is a 1-approximate logic for F and we denote by P,

P0 and P1 all the minterms in F’s truth table, the minterms covered by G0 and the

minterms covered by G1, respectively. Now, let us construct a circuit F ′ =F ·G0+

G1 as shown in Fig. 5.2. We define dG0(P0), dG1(P0) and dF(P0) as the worst-

case delay among all minterms in P0 through circuit G0, G1 and F , respectively.

Similarly, dG0(P1), dG1(P1), dF(P1) and dF(P−P0−P1) are defined. dAB is the

total propagation delay of AND gate A and OR gate B. Assuming approximate

logic G0 and G1 are implemented with simpler logic structures when compared to

original circuit F and hence has less computation latency (e.g., dG0(P0)¡dF(P0),

dG1(P0)¡dF(P0) and dG1(P1)¡dF(P1)), we have the following theorem:

Theorem 2 The circuit shown in Fig. 5.2, F ′=F ·G0+G1, is logically-equivalent

to the original circuit F, and its worst-case timing delay is max{dF(P − P0 −

P1),dG0(P0),dG1(P0),dG1(P1)}+dAB.

proof 2 When the original circuit F outputs 1, by applying counter-positive law,

CHAPTER 5. IN-SITU TIMING ERROR MASKING IN LOGIC CIRCUITS 71

Figure 5.2: Equivalent Circuit with Approximate Logic.

its 0-approximate logic must also output 1 (i.e., G0 = 1), and hence F ′ = 1. Sim-

ilarly, when the original circuit F outputs 0, by applying counter-positive law, its

1-approximate logic must also output 0 (e.g., G1 = 0), and hence F ′ = 0. Conse-

quently, F and F ′ are logically-equivalent.

To obtain the worst-case delay for this equivalent circuit F ′, let us consider the

circuit delay before the shaded logic block in Fig. 5.2 for the following three cases,

corresponding to application of inputs belonging to different set of minterms of the

truth table of F/F ′.

• When the inputs applied to the circuit belong to P0, G0 outputs control-

ling value 0 for AND gate A after dG0(P0) and dominates the path through

the original circuit F with longer delays. The worst-case delay would be

max{dG0(P0),dG1(P0)}. Note that dG1(P0) is the time spent to settle G1 to

be non-controlling value 0 for OR gate B.

• When the inputs applied to the circuit belong to P1, G1 outputs controlling

value 1 for OR gate B after dG1(P1) and it dominates the path through the

original circuit F and G0. The worst-case delay in this case is therefore

simply dG1(P1).

CHAPTER 5. IN-SITU TIMING ERROR MASKING IN LOGIC CIRCUITS 72

• When the inputs applied to the circuit belong to P−P0−P1, we have to

wait for the original circuit F to settle down, and hence the worst-case delay

would be dF(P−P0−P1).

The worst-case timing delay for circuit F’ is therefore max{dF(P−P0−P1),

dG0(P0), dG1(P0), dG1(P1)}+ dAB, after considering the time spent on gates A

and B.

From manufacturing test perspective, adding redundancy into the circuit may

introduce untestable faults, and there is no exception for the above design. For

example, the stuck-at-1 fault at the output of G0 is untestable, because to activate

this fault, we need to set it as logic ‘0’, but when G0 = 0, the original circuit F

will also output logic ‘0’, preventing the propagation of its faulty effect to outputs.

Similarly, the stuck-at-0 fault at the output of G1 is untestable. It is important to

note that, the presence of such faults would not affect the functional correctness

of the circuit. At the same time, they do render the corresponding timing error

masking logic to be ineffective, but the likelihood for such faults to exist is quite

low due to their small sizes.

One way to make these faults testable is to add some design-for-testability

(DfT) circuit, e.g., adding additional flip-flop to be driven by G0/G1 directly. This,

however, increases the hardware cost and also prolongs the propagation delay on

approximate logic paths due to extra load. Alternatively, we can rely on delay

testing to guarantee the timing correctness of the corresponding speed-paths. In

other words, as long as the path can pass at-speed test, its timing correctness is

guaranteed and we do not need to care whether these untestable faults exit or not.

5.3.2 Timing Error Masking with Approximate Logic

Generally speaking, a suspicious FF is driven by multiple paths, and timing errors

may occur only when speed-paths are sensitized. In other words, timing errors

CHAPTER 5. IN-SITU TIMING ERROR MASKING IN LOGIC CIRCUITS 73

may be activated by only a few minterms of the truth table for a suspicious FF,

denoted as critical minterms. Motivated by this observation and the performance

upper bound theorem shown earlier, if all the critical minterms are covered with

approximate logic, we can achieve large timing slack and mask potential timing

errors. The question now becomes how to efficiently construct redundant approxi-

mate logic for speed-paths?

Consider an example circuit shown in Fig. 5.3, wherein path P {Input1, A, D,

H, F , G, I, J} is a speed-path. When logic ‘1’ is applied at Input1 and propagates

along this path to generate logic ‘0’ at the receiving end, we have to assign logic

‘1’ at the side-input1 of gate A. This is because, logic ‘1’ is a non-controlling

value of AND gate, and the output of A will be dominated by the side-input if it is

assigned with controlling value. Similarly, side-inputs of gate F and gate I have to

be assigned as non-controlling value (see Fig. 5.3).

Let us define the side-inputs on the path that need to have deterministic non-

controlling values (marked in shade) as essential side-inputs. Based on the above

discussion, we have the following lemma:

Lemma 2 To cover all the critical minterms that sensitize a particular speed-path

is equivalent to approximate its essential side-inputs.

With the above, we can construct redundant approximate logic for each speed-

path by simple structural analysis. Again, take path P in Fig. 5.3 as an example.

Suppose we would like to construct 0-approximate logic for this path, we first

duplicate the entire path and then gradually remove those gates without essential

side-inputs.

To be specific, the removing process is conducted structurally by analyzing the

targeted speed-path P reversely from the ending gate (i.e., gate G) to the sending
1Given a path P = {G0, G1,...Gm}, for a specific gate Gi, Gi−1 is the on-input signal of

Gi, while other input signals of Gi are side-inputs.

CHAPTER 5. IN-SITU TIMING ERROR MASKING IN LOGIC CIRCUITS 74

E

D
Input2

Input1

Input0

F

C

A

G

B

1

1 0

00

1

0X

X

A’
H’

F’

C

H1 I J

0

0

B

I’

D’’
H’’

G’’ J’’C B
Input2

0

0-approximation (launch ‘1’)

1-approximation (launch ‘0’)

essential critical

value assignment

Masking Logic

Original Circuit

Redundant Circuit for In -Situ Timing

Error Masking on Speed-Paths

Figure 5.3: Speed-Path Approximation.

gate (i.e., gate A). Consider gate J, since it is dominated by its on-input with

controlling value 0, we can remove it from the approximate logic. Similarly, gate

G and gate D are not needed. While the outputs of gates F and A are determined

by both on-input and side-input signals, two gates need to be duplicated in the 0-

approximate logic, and the side-inputs are connected to the same net as path P in

the original circuit. As shown in Fig. 5.3, the 0-approximate logic constructed as

above will output logic ‘0’ if and only if the speed-path P in the original circuit

is sensitized with launching value logic ‘1’. The 1-approximate logic for speed-

path P can be constructed similarly (see Fig. 5.3). Since the approximate logic is

with much simpler logic structure and the delay of the masking logic is usually

insignificant (without necessarily sizing it up), we can achieve large timing slack

and mask potential timing errors on speed-paths.

Note that, not all kinds of logic cells have controlling values for their inputs,

CHAPTER 5. IN-SITU TIMING ERROR MASKING IN LOGIC CIRCUITS 75

e.g., XOR/XNOR gate. If a speed-path contains such kind of logic cells, their

side-inputs will be treated as essential side-inputs to have deterministic values to

approximate and the proposed methodology is applicable to such designs.

5.4 Cost-Efficient Synthesis for InTimeFix

Adding redundant approximate logic facilitates to achieve timing error resilience

on speed-paths. As the construction of the approximate logic needs to take side-

input signals from the original circuit, however, two potential problems arise: (i)

the latencies for side-inputs may become a concern for the propagation delay of

the approximate logic and such side-inputs are denoted as critical side-inputs (for-

mally defined later); (ii) the increased loading capacitance on side-inputs can pro-

long the delay of those paths going through them. The above observation motivate

us to propose a cost-efficient and scalable synthesis framework to resolve these

issues, as illustrated in Fig. 5.4.

Figure 5.4: InTimeFix Synthesis Framework.

CHAPTER 5. IN-SITU TIMING ERROR MASKING IN LOGIC CIRCUITS 76

5.4.1 Overall Flow

Fig. 5.4 describes the synthesis overflow for InTimeFix. With the optimized circuit

netlist and the corresponding timing information in standard delay format (SDF),

we firstly identify those suspicious FFs that are driven by speed-paths and thus

need to be considered. Speed-paths are defined as those paths whose propagation

delays exceed a threshold value, e.g., 80% of the maximum path delay. Note

that, although static timing analysis is not able to output accurate timing values,

its accuracy is sufficient for suspicious FF identification because we only need a

comparative relationship among paths and we can always tune the threshold to

tradeoff between the hardware cost and protection strength.

Next, a set of so-called prime critical segments is extracted from speed-paths,

defined as the segments of speed-paths that do not include any critical side-inputs,

with which approximate logic can be safely generated with more timing slack.

Then, a heuristic method is used to merge prime critical segments to minimize

the hardware cost of the approximate logic and the extra loading capacitance of

side-inputs. Finally, approximate logic is generated for the merged prime critical

segments and inserted into the original circuit as redundant resources, as shown in

Section 3.2. In the following, we present the algorithms for prime critical segment

extraction and prime critical segment merging in detail.

H

H

CFF

Figure 5.5: Example to Illustrate the Critical Side-Input.

CHAPTER 5. IN-SITU TIMING ERROR MASKING IN LOGIC CIRCUITS 77

5.4.2 Prime Critical Segment Extraction

Before introducing the details of our proposed algorithm, let us first formally de-

fine the criteria used to classify critical side-input, as depicted in Fig. 5.5. Tak-

ing side-input H as an example, when considering the critical flip-flop CFF, we

have the worst case arrival time ATH on side-input H, the propagation delay PDH

from H to CFF, and the worst case arrival time ATCFF on CFF. Suppose RD is

a pre-defined reduced delay (i.e., extra slack) that we want to achieve and MD is

the delay of the masking logic, then H is a critical side-input if ATCFF − (ATH +

PDH +MD) > RD. The basic idea behind this definition is that, if this criteria

is not satisfied, there is sufficient timing slack on this side-input and it does not

affect the timing of the approximate logic at all. Based on the above definition,

we denote a gate on speed-path to be prime critical gate if all its side-inputs are

non-critical. Furthermore, a segment of a speed-path is a prime critical segment if

it only consists of prime critical gates.

Our proposed prime critical segment extraction algorithm (denoted as ExPriSeg)

is shown in Algorithm 1, where, Gate is one gate on the speed-path and Segment

is the parameter to store the targeted segment; SegmentSet denotes the set of ex-

tracted prime critical segments; while Ogate and Cside represent the on-input and

critical side-input of Gate, respectively.

To relax the timing slack to a critical flip-flop by RD, we need to reduce the

delay of all the speed-paths connected to it. Here we regard an extracted prime

critical segment as a legal one if the approximate logic for it is able to reduce the

delay of the targeted speed-path for at least RD. Starting from a specific critical

flip-flop, our algorithm extracts the prime critical segments by recursively tracing

its fan-in cone in a depth-first manner. Initially, Segment is empty and Gate is the

input gate of the targeted critical flip-flop. During the tracing procedure, once a

primary input or a flip-flop, denoted as PI or FF, is reached (Line 2), function

CHAPTER 5. IN-SITU TIMING ERROR MASKING IN LOGIC CIRCUITS 78

Algorithm 1: Extract Prime Critical Segment(ExPriSeg)
input: Gate,Segment

begin1

if PI or FF is reached then2

if Segment is not illegal then3

return FailToExtract;4

else5

add Segment into SegmentSet;6

return SucceedToExtract;7

if Gate is prime critical gate then8

add Gate into Segment;9

find the on-input Ogate;10

return ExPriSeg(Ogate,Segment);11

else12

if Segment is legal then13

add Segment into SegmentSet;14

return SucceedToExtract;15

else16

foreach Cside do17

new Segment;18

if ExPriSeg(Cside,Segment)==FailToExtract then19

return FailToExtract;20

return SucceedToExtract;21

end22

returns FailToExtract if there is no legal prime critical segment found, otherwise

we keep the Segment and return SucceedToExtract. Suppose Gate is detected to

be a prime critical gate, we add Gate into Segment and keep on tracing its on-

input gate. On the other hand, if Gate is not a prime critical gate (Line 12), we

first check whether the current Segment is legal or not. The searching process is

stopped by storing Segment and return SucceedToExtract if Segment is legal prime

critical segment, otherwise, we empty the current Segment and start to trace each

critical side-input separately. Clearly, the extracted prime critical segments can

CHAPTER 5. IN-SITU TIMING ERROR MASKING IN LOGIC CIRCUITS 79

cover all the speed-paths ending at the targeted flip-flop if the final returned value

is SucceedToExtract. Suppose it returns FailToextract, we will try to reduce the

value of RD by a pre-defined ratio, and the same search is conducted again. One

thing to note is that our method tends to extract legal prime critical segments that

are close to the targeted flip-flops, and they are able to cover more speed-paths, if

any.

5.4.3 Prime Critical Segment Merging

The prime critical segments extracted from different critical flip-flops are likely to

be merged to further reduce hardware cost. As the example shown in Fig. 5.6, two

prime critical segments {E,D, ...C,A} and {E,D, ...C,B} can share a merged prime

critical segment {E,D, ...C}. Furthermore, we notice that our extracted prime crit-

ical segments are not in the most compact format. Taking segment {E,D, ...C,A}

as an example, it is not necessary to approximate the entire segment, instead, only

by approximating {E,D, ...C} is enough to achieve RD delay reduction. We denote

the length (i.e., the number of logic gates) of the shortest legal subpart of prime

critical segment as the essential length, and represent the length of the remaining

part as the redundant length. For the sake of simplicity, we regard a subpart of a

prime critical segment still legal if the length of the subpart is larger than the es-

sential length. Therefore, two prime critical segments can be merged if the length

of the shared part is larger than both of their essential lengths.

Merged Prime

Critical Segment

Figure 5.6: Prime Critical Segment Merging: An Example.

The main flow of our proposed prime critical segment merging algorithm is

CHAPTER 5. IN-SITU TIMING ERROR MASKING IN LOGIC CIRCUITS 80

shown in Fig. 5.7, comprising the following steps:

1. Starting from the extracted prime critical segment set, we first sort them

in non-decreasing order in terms of their redundant length. The basic idea

behind this step is that we need to first fix those prime critical segment with

less flexibility. Then, all the segments are merged by iteratively applying the

following steps.

2. We always select the top un-processed segment and employ a heuristic method

to find the optimal subpart. First of all, the closest-to-output gate on the

selected segment shared by most remaining un-processed segments is iden-

tified. Taking the circuit shown in Fig. 5.6 as example, gate C is picked

first if the selected segment is {E,D,C,A} since it has higher probability

to replace the most remaining un-processed segments by backwardly trac-

ing the selected segment from this gate, say, segment {E,D,C}. Suppose

that the length of {E,D,C} is less than the essential length, we extend this

sub-segment to {E,D,C,A} and such extension is conducted until the length

requirement is satisfied. Suppose the length of {E,D,C} is larger than the

essential length, we enumerate all the possible legal subparts to identify the

one that includes minimal number of side-inputs in the hope that increased

loading capacitance is minimized when inserting approximate logic. Finally,

the optimal segment is fixed.

3. The remaining un-processed segments are checked to determine whether

they can be replaced by newly fixed segment. The replaceable segments are

labeled as processed.

4. The procedure terminates if all the segments have been processed, otherwise

it goes back to step 2.

CHAPTER 5. IN-SITU TIMING ERROR MASKING IN LOGIC CIRCUITS 81

Sort the Prime Critical Segment Set into Non-Decreased

Redundant Length Order

Extracted Prime

Critical Segment set

Find the Top un-Fixed Prime Critical Segment &

Find Its optimal Subpart and Fix it

All the Segment Fixed

Detect All the Replaceable Prime Critical Segment &

Fix Them

Terminate

No

Yes

Figure 5.7: Flowchart of Prime Critical Segment Merging.

Benchmark
Circuit Size

(# of gates)

FF

(#)

Cri. FF

(#)

Cost

(# of gates)

Inc. Ratio

(%)

Ori. WCD

(ns)

Our WCD

(ns)

Relaxed Slack

(ns)

Imp. Ratio

(%)

Runtime

(s)

s38417 24370 1636 78 570 2.34 35.34 31.93 3.41 9.64 0.09

s38584 21066 1426 12 98 0.47 20.50 18.49 2.01 9.80 0.1

des perf 154323 9105 89 592 0.38 7.80 6.68 1.12 14.36 0.95

wb conmax 75352 3316 277 1160 1.54 8.47 7.74 0.73 8.59 0.4

ethernet 157841 10752 28 386 0.24 8.21 7.11 1.10 13.38 1.083

Ave. 0.89 11.15

Table 5.1: Experimental Results on Improved Timing Slack and Hardware Cost.

5.5 Experimental Results

5.5.1 Experimental Setup

To evaluate the effectiveness of our proposed InTimeFix technique, we conduct

experiments on two large ISCAS’89 benchmark circuits, s38417 and s38584, as

CHAPTER 5. IN-SITU TIMING ERROR MASKING IN LOGIC CIRCUITS 82

Benchmark

Gate Sizing with Area Constraint vs. InTimeFix InTimeFix on top of Gate Sizing

Area Constraint

(# of gates)

Gate Sizing

WCD (ns)

InTimeFix

WCD (ns)

Improvement

(%)

Gate Sizing

WCD (ns)

Area Cost

(# of gates)

InTimeFix

WCD (ns)

Area Cost

(# of gates)

Further Improvement

(%)

s38417 570 34.70 31.93 7.99 31.93 1050 27.90 508 12.63

s38584 98 19.96 18.49 7.36 15.18 1217 13.85 71 8.81

des perf 592 6.95 6.68 3.88 6.43 5937 6.06 1309 5.85

wb conmax 1160 7.47 7.74 -3.61 5.38 4008 4.88 561 9.42

ethernet 386 7.23 7.11 1.73 6.15 8257 5.25 314 14.61

Ave. 3.47 10.26

Table 5.2: Comparison on Timing Slack Improvement: Gate Sizing vs. InTimeFix.

well as three large IWLS benchmark circuits, wb conmax, ethernet and des perf,

which are the largest benchmark circuits available to the public domain.

In the experimental flow, we first synthesize the benchmark circuits with a

commercial tool to obtain the optimized circuit netlist and its SDF timing informa-

tion, under 0.13µm CMOS technology. They are then fed to InTimeFix to generate

redundant approximate logic to mask potential timing errors, targeting speed-paths

within 20% of the longest path delay. Finally, commercial timing analyzer is ap-

plied to evaluate the solution, and the quality of the solution is demonstrated by the

extra timing slack achieved with the new circuit when compared with the original

one.

5.5.2 Results and Discussion

Table 5.1 present our experimental results. When comparing the worst case delay

(WCD) between the original circuit and the one equipped with redundant approx-

imiate logic (Columns 6-9), it can be observed that the proposed solution is able to

achieve 11.15% timing slack relaxation on average. On the other hand, as shown

in Column 3, the hardware cost (the unit of cost is the area of smallest 2 input AND

gates) introduced in the proposed InTimeFix technique to achieve the above timing

CHAPTER 5. IN-SITU TIMING ERROR MASKING IN LOGIC CIRCUITS 83

5.5 6 6.5 7 7.5 8 8.5 9 9.5
0

10

20

30

40

50

60

70

80

WCD

N
um

be
r

of
 C

hi
ps

Original
Proposed

(a) des perf

7.2 7.4 7.6 7.8 8 8.2 8.4 8.6 8.8 9
0

10

20

30

40

50

60

70

80

90

WCD

N
um

be
r

of
 C

hi
ps

Original
Proposed

(b) wb conmax

6.5 7 7.5 8 8.5 9 9.5
0

10

20

30

40

50

60

70

80

WCD

N
um

be
r

of
 C

hi
ps

Original
Proposed

(c) ethernet

Figure 5.8: Circuit Timing under Process Variation

slack is extremely low, less than 0.89% on average. As can be seen from Column

10, the runtime to process the largest benchmark circuit ethernet takes less than

one second. Consequently, we believe the proposed methodology can be easily

scalable to large industrial designs.

A close examination of the experimental results show that benchmark circuits

s38417 and wb conmax consume the largest percentage of hardware overhead. The

reason is that the speed-paths in these two benchmarks are quite evenly distributed

and the prime critical segments identified from different critical flip-flops are more

likely to be independent to each other. Therefore, the hardware cost is higher than

other benchmark circuits. To have a better design tradeoff, we try to reduce the

CHAPTER 5. IN-SITU TIMING ERROR MASKING IN LOGIC CIRCUITS 84

hardware cost for these two benchmarks by gradually removing the approximation

logic on the shortest speed-paths. Even when the hardware cost is reduced to less

than 1%, we can still achieve 7.1% and 11.6% slack relaxation for wb conmax and

s38417, respectively.

With the above experimental results, we can observe clear advantages of the

proposed InTimeFix technique over [111], without performing direct comparisons.

In [111], the authors conducted experiments on a number of benchmark circuits

whose sizes are less than 2000 gates. Their experimental results show that, on

average 18% area overhead is required to mask timing errors on speed-paths within

10% of the longest path delay (the minimum overhead is 4%).

While not targeting timing error resilience, gate sizing is an effective technique

to improve circuit timing. In our next experiment, we compare our InTimeFix

solution against a greedy gate sizing technique [114]. Firstly, when we constrain

the area overhead for gate sizing solution to be the same as the one with InTimeFix

in earlier experiment, it can be seen that InTimeFix outperforms gate sizing in most

cases (except wb conmax), and the average improvement is 3.47%, which proves

the cost-efficiency of the proposed solution. Next, since InTimeFix is compatible

with gate sizing technique, we combine the two solutions in such manner that we

first employ gate sizing to improve circuit timing until no further benefits can be

achieved and then apply InTimeFix on top of it. We can observe that, without

area constraints, gate sizing can significantly improve circuit performance, but at

considerable area and power cost. InTimeFix is able to provide additional 10.26%

timing slack on average, and the area cost is still quite small.

Finally, we evaluate the impact of process variation on the proposed InTimeFix

architecture, using Monte Carlo simulation. According to [119], we assume there

is 10% variation on each standard cell. The results are depicted in Fig. 5.8, where

we plot and compare the WCD distributions of two sets of circuits (i.e. the black

CHAPTER 5. IN-SITU TIMING ERROR MASKING IN LOGIC CIRCUITS 85

pile represents set of processed circuits and the gray one denotes the original set

of circuits) for the three large IWLS circuits. As can be seen from the figure,

even for circuit with InTimeFix approximate logic under the worst case process

variation corner, it has smaller or similar WCD when comparing with that of the

original circuit under the best case scenario. Moreover, it can be observed that

the number of the closer-to-mean chips increases and the standard deviation of

WCD distribution shrinks with InTimeFix. In particular, as can be observed in

Fig. 5.8(a), benchmark circuit des perf with InTimeFix has only one third of the

distribution width when compared to that of the original circuit.

The above phenomenon demonstrates that the proposed InTimeFix technique

facilitates to tolerate process variation effects. The reason is that our proposed

method effectively reduces the number of logic elements on the critical paths and

also shrinks the variation, behind which the mathematic principle can be explained

by the example given in [120]: assuming inverters have independent gaussian de-

lay distribution (µ,σ), the delay of a path including n inverters obey the gaussian

distribution (nµ,
√

nσ). Clearly, less n leads to smaller deviation.

5.6 Conclusion

In this paper, we propose a novel in-situ timing error correction technique, namely

InTimeFix, by introducing redundant approximate logic with more timing slack for

speed-paths in the circuit. The proposed synthesis methodology for the redundant

circuit only relies on simple structural analysis of the original circuit, and hence it

can be easily scalable to large IC designs. Experimental results demonstrate that

the proposed solution can effectively increase circuit timing slack with very low

cost.

2 End of chapter.

Chapter 6

Conclusion and Future Work

Timing uncertainty issue caused by aggressive technology scaling has significantly

threatened ICs’ reliability, which creates several challenges on building a reliable

system with unreliable devices.

To address the above issues, we develop efficient and effective FPI techniques

to identify those timing-independent false paths that cannot be sensitized under

any signal arrival time condition in integrated circuits, which facilitate us to find

much more false paths than conventional methods. The identified false paths not

only helps us to generate better timing result and improves the circuit performance,

but also alleviates the burden of timing optimization algorithms and saves the un-

necessary cost used to reduce the false paths delay. Then, we present a novel

pseudo-functional ATPG technique to simultaneously reduce both test overkills

and test escapes in SDD testing. The proposed method enhance test quality by

capturing accurate worst-case delay. Finally, we propose a novel in-situ timing

error correction technique, by introducing redundant approximate logic with more

timing slack for speed-paths in the circuit. The proposed synthesis methodology

for the redundant circuit only relies on simple structural analysis of the original

circuit, and hence it can be easily scalable to large IC designs.

86

CHAPTER 6. CONCLUSION AND FUTURE WORK 87

There are several important topics yet to explore for future work. To continue

the technology scaling, we have to accept some infrequent timing errors in circuit’s

the usage phase in the near future. As mentioned in this thesis, several works have

been done to tolerate timing error. In order to obtain better power and performance

tradeoff, it is possible to construct cross layer timing error resilience mechanism,

which is able to tolerate errors at different abstract layer with different cost. To

achieve this, several fundamental issues need be solved: (i) how to evaluate error

propagation impact at different layers? (ii) how to design the error information in-

terface to pass the error status from circuit layer to high layer; (iii) how to estimate

recover or masking cost for different layers? (iv) how to verify the correctness and

the error coverage of proposed error tolerant mechanism? Secondly, motivated

by the factor that error recover or masking cost is related to timing error rate, it

is essentially to take into consideration the error rate information when designing

a error tolerant system, so that the power consumption and performance benefits

can be enhanced. Moreover, since the timing error rate is dependent on input

vector sequence, which can only be extracted at online stage. Therefore, we can

explore the online tuning techniques such as voltage frequency scaling to achieve

application-aware timing error tolerance. Finally, the traditional at-speed delay

test is performed in a deterministic manner, yet the timing error tolerant circuit is

inherently timing error resilience. Therefore, how to conduct delay testing on such

a circuit is questionable.

2 End of chapter.

Bibliography

[1] M. Bushnell and V. Agrawal. Essentials of Electronic Testing. Kluwer Aca-

demic Publishers, 2000.

[2] M. Abramovici, M. Breuer, and A. Friedman. Digital Systems Testing and

Testable Desige. IEEE Press, 1990.

[3] G. D. Micheli. Synchronous logic synthesis: algorithms for cycle-time min-

imization. In IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, pages 63–73, Jan 1991.

[4] K. Chaudhary and M. Pedram. A near optimal algorithm for technology map-

ping minimizing area under delay constraints. In Proceedings ACM/IEEE

Design Automation Conference (DAC), pages 492–498, 1992.

[5] A. B. Kahng, S. Mantik and I. L. Markov. Min-max placement for large-scale

timing optimization. In Proceedings international symposium on Physical

design (ISPD), pages 143–148, 2002.

[6] M. Cho, D. Z. Pan, H. Xiang and R. Puri. Wire density driven global rout-

ing for CMP variation and timing. In Proceedings IEEE/ACM international

conference on Computer-aided design (ICCAD), pages 487–492, 2006.

[7] L.T. Pillage. Asymptotic waveform evaluation for timing analysis. In Pro-

ceedings IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, pages 352–366, 1990.

[8] K. Ravindran, K. Kalafala, S.G. Walker, S. Narayan, D.K. Beece, J. Pi-

aget, N. Venkateswaran and J.G. Hemmett. First-Order Incremental Block-

88

BIBLIOGRAPHY 89

Based Statistical Timing Analysis. In Proceedings IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, pages 2170–

2180, October 2006.

[9] D. H. Du, S. H. Yen, S. Ghanta. On the general false path problem in tim-

ing analysis. In Proceedings of ACM/IEEE Design Automation Conference

(DAC), pages 555–560, October 1989.

[10] J. J. Liou, A. Krstic, L. C. Wang, K.-T. Cheng. False-path-aware statistical

timing analysis and efficient path selection for delay testing and timing vali-

dation. In Proceedings of ACM/IEEE Design Automation Conference (DAC),

pages 566–569, 2002.

[11] T. Sato, Y. Kunitake. A simple flip-flop circuit for typical case design for

DFM. In Proceedings Intl Symposium on Quality Electronic Design, pages

539–544, 2007.

[12] C. Metra, M. Favalli and B. Ricco. Online detection of logic errors due

to crosstalk, delay and transient faults. In Proceedings Intl.Test Conference

(ITC), pages 524–533, 1998.

[13] J. A. Darringer, D. Brand, J. V. Gerbi, W. H. Joyner and L. Trevillyan. LSS:

A system for production logic synthesis. In IBM Journal of Research and

Development, pages 537–545, 1984.

[14] G. D. Micheli. Synchronous logic synthesis: algorithms for cycle-time min-

imization. In IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, pages 63–73, 1991.

[15] K. Bartlett, W. Cohen, A. D. Geus and G. Hachtel. Synthesis and Optimiza-

tion of Multilevel Logic under Timing Constraints. In IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, pages 582–596,

October 1986.

BIBLIOGRAPHY 90

[16] K. Chaudhary and M. Pedram. A near optimal algorithm for technology map-

ping minimizing area under delay constraints. In Proceedings of ACM/IEEE

Design Automation Conference, pages 492–498, 1992.

[17] Y. Kukimoto, R. K. Brayton and P. Sawkar. Delay-optimal technology map-

ping by DAG covering. In Proceedings of ACM/IEEE Design Automation

Conference, pages 348–351, 1998.

[18] W. P. Lee, H. Y. Liu and Y. W. Chang. Voltage Island Aware Floorplanning

for Power and Timing Optimization. In Proceedings of IEEE/ACM Interna-

tional Conference on Computer-Design Automation, pages 389–394, 2006.

[19] M. Marek-Sadowska and S. P. Lin. Timing driven placement. In Proceedings

of IEEE/ACM International Conference on Computer-Design Automation,

pages 94–97, 1989.

[20] W. Swartz and C. Sechen. Timing Driven Placement for Large Standard

Cell Circuits. In Proceedings of ACM/IEEE Design Automation Conference,

pages 211–215, 1995.

[21] J. Hu and S. S. Sapatnekar. A timing-constrained algorithm for simultaneous

global routing of multiple nets. In Proceedings of ACM/IEEE International

Conference on Computer-Design Automation, pages 99–103, 2000.

[22] H. P. Tseng, L. Scheffer and C. Sechen. Timing- and crosstalk-driven area

routing. In IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, pages 528–544, Apr., 2001.

[23] C. f. Chieh, Y. C. Hsu and F. S. Tsai. Timing optimization on routed designs

with incremental placement and routing characterization. In IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, pages

188–196, Feb., 2000.

[24] A. Krstic, Y.-M. Jiang and K.-T. Cheng. Delay testing for non-robust

untestable circuits. In IEEE Transactions on Computer-Aided Design of In-

tegrated Circuits and Systems, pages 416–425, Mar., 2001.

BIBLIOGRAPHY 91

[25] V. Iyengar, T. Yokota, K. Yamada, T. Anemikos, B. Bassett, M. Degregorio,

R. Farmer, G. Grise, M. Johnson, D. Milton, M. Taylor and F. Woytowich.

At-Speed Structural Test For High-Performance ASICs. In Proceedings of

International Test Conference (ITC), pages 1–10, 2006.

[26] M. Favalli and C. Metra. Sensing circuit for on-line detection of delay faults.

In IEEE Trans.VLSI Systems, pages 130–133, 1996.

[27] Y. Tsiatouhas, S. Matakias, A. Arapoyanni and T. Haniotakis. A sense ampli-

fier based circuit for concurrent detection of soft and timing errors in CMOS

ICs. In Proceedings Intl.On-line Testing Symposium, pages 12–16, 2003.

[28] Intel’s 45nm CMOS Technology. In Intel Technology Journal, Vol. 12, June,

2008.

[29] Mark Bohr. The New Era of Scaling in an SoC World. In Proceedings IEEE

International Solid-State Circuits Conference, pages 23–28, 2009.

[30] M. Nicolaidis. Time redundancy based soft error tolerance to rescue nanome-

ter technologies. In Proceedings VLSI Test Symposium, pages 86–94, 1999.

[31] D. Ernst et al. Razor: a low-power pipeline based on circuit level timing

speculation. In Proceedings Intl. Symposium on Microarchitechture, pages

7–18, 2003.

[32] G. Brian et al. Blueshift: Designing processors for timing speculation from

the ground up. In Proceedings High Performance Computer Architecture,

pages 213–224, 2009.

[33] L. Wan et al. DynaTune: Circuit-level optimization for timing specula-

tion considering dynamic path behavior. In Proceedings Intl. Conference

Computer-aided Design (ICCAD), pages 172–179, 2009.

[34] C. Tirumurti, S. Kundu, S. Sur-Kolay, and Y.-S. Chang. A Modeling Ap-

proach for Addressing Power Supply Switching Noise Related Failures of

Integrated Circuits. In Proceedings IEEE/ACM Design, Automation, and Test

in Europe (DATE), pages 1078–1083, 2004.

BIBLIOGRAPHY 92

[35] A. Krstic, Y.-M. Jiang, and K.-T. Cheng. Pattern Generation for Delay Test-

ing and Dynamic Timing Analysis Considering Power-Supply Noise Effects.

In IEEE Transactions on Computer-Aided Design, pages 416–425, March

2001.

[36] J.-J. Liou, A. Krstic, Y.-M. Jiang, and K.-T. Cheng. Path Selection and Pat-

tern Generation for Dynamic Timing Analysis Considering Power Supply

Noise Effects. In Proceedings International Conference on Computer-Aided

Design (ICCAD), pages 493–496, 2000.

[37] J. Ma, J. Lee, and M. Tehranipoor. Layout-Aware Pattern Generation for

Maximizing Supply Noise Effects on Critical Paths. In IEEE VLSI Test Sym-

posium (VTS), pages 221–226, 2009.

[38] M. K. Butler and O. N. Mukherjee. Power-Aware DFT-Do We Really Need

it?. In Proceedings IEEE International Test Conference (ITC), 2007.

[39] D. Czysz, M. Kassab, X. Lin, G. Mrugalski, J. Rajski, and J. Tyszer. Low

Power Scan Shift and Capture in the EDT Environment. In Proceedings IEEE

International Test Conference (ITC), paper 13.2, 2008.

[40] J. Rearick. Too Much Delay Fault Coverage Is A Bad Thing. In Proceedings

IEEE International Test Conference (ITC), pages 624–633, Nov. 2001.

[41] C. Shi and R. Kapur. How Power Aware Test Improves Reliability and Yield.

EE Times, Sept. 15, 2004.

[42] L.-T.Wang, C. E. Stroud, and N. A. Touba. System-on-Chip Test Architec-

tures: Nanometer Design for Testability. Morgan Kaufmann Pub., 2007.

[43] P. Maxwell, I. Hartanto, and L. Bentz. Comparing Functional and Structural

Tests. In Proceedings IEEE International Test Conference (ITC), pages 400–

407, 2000.

[44] Moderator: K. Butler, Organizer: N. Mukherjee. Power-Aware DFT - Do We

Really Need it? Panel, International Test Conference, 2008.

BIBLIOGRAPHY 93

[45] J. Saxena, K. Butler, V. Jayaram, and S. Kundu. A Case Study of IR-Drop in

Structured At-Speed Testing. In Proceedings IEEE International Test Con-

ference (ITC), 2003.

[46] J. Li, Q. Xu, Y. Hu, and X. Li. iFill: An Impact-Oriented X-Filling Method

for Shift- and Capture-Power Reduction in At-Speed Scan-Based Testing. In

Proceedings IEEE/ACM Design, Automation, and Test in Europe (DATE),

pages 1184–1189, 2008.

[47] S. Remersaro, I. Pomeranz, X. J. Lin, J. Rajski, and S. M. Reddy. Scan-Based

Tests with Low Switching Activity. In IEEE Design & Test of Computers,

pages 268–275, June 2007.

[48] J. Wang and D. M. Walker. Modeling Power Supply Noise in Delay Testing.

In IIEEE Design & Test of Computers, pages 226–233, June 2007.

[49] X. Liu, Y. Zhang, F. Yuan, and Q. Xu. Layout-Aware Pseudo-Functional

Testing for Critical Paths Considering Power Supply Noise Effects. In Pro-

ceedings IEEE/ACM Design, Automation, and Test in Europe (DATE), 2010.

[50] X.Wen, K. Miyase, T. Suzuki, S. Kajihara, Y. Ohsumi, and K. K. Saluja.

Critical-Path-Aware X-Filling for Effective IR-Drop Reduction in At-Speed

Scan Testing. In Proceedings ACM/IEEE Design Automation Conference

(DAC), pages 527–533, 2007.

[51] Y.-C. Lin, F. Lu, and K.-T. Cheng. Pseudofunctional Testing. In IEEE Trans-

actions on Computer-Aided Design, pages 25(8):1535–1546, 2006.

[52] Y.-C. Lin and K.-T. Cheng. A Unified Approach to Test Generation and Test

Data Volume Reduction. In Proceedings IEEE International Test Conference

(ITC), pages 18.2, 2006.

[53] I. Polian and H. Fujiwara. Functional Constraints vs. Test Compression in

Scan-Based Delay Testing. In In Proceedings IEEE/ACM Design, Automa-

tion, and Test in Europe (DATE), pages 1039–1044, 2006.

BIBLIOGRAPHY 94

[54] X. Lin, K. Tsai, C. Wang, M. Kassab, J. Rajski, T. Kobayashi, R. Klingen-

berg, Y. Sato, S. Hamada, and T. Aikyo Timing-Aware ATPG for High Qual-

ity At-speed Testing of Small Delay Defects. In Proceedings IEEE Asian

Test Symposium (ATS), pages 139–146, 2006.

[55] H. Fujiwara and T. Shimono. On the Accelaration of Test Generation Algo-

rithms. In Proceedings IEEE Transactions on Computers, Pages 1137–1144

, 1983.

[56] A. B. T. Hopkins and K. D. McDonald-Maier. Trace Algorithm for Deeply

Integrated Complex and Hybrid SoCs. In Proceedings Adaptive Hardware

and Systems (AHS), pages 1–6, 2007.

[57] H. F. Ko and N. Nicolici. Automated Trace Signals Identification and State

Restoration for Improving Observability in Post-Silicon Validation. In Pro-

ceedings Design, Automation, and Test in Europe (DATE), pages 1–6, April

2008.

[58] Y. C. Hsu, F. Tsai, W. Jong, and Y. T. Chang. Visibility Enhancement for

Silicon Debug. In Proceedings ACM/IEEE Design Automation Conference

(DAC), pages 13C18, July 2006.

[59] Brglez. On Testability Analysis of Combinational Networks. In Proceedings

IEEE Symposium on Circuits and Systems, pages 221–225, 1984.

[60] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and

D. Miller. A Reconfigurable Design-for-Debug Infrastructure for SoCs. In

Proceedings ACM/IEEE Design Automation Conference (DAC), pages 7–12,

July 2006.

[61] M. Abramovici. Experience and Opinon (Design for Debug). In Proceedings

IEEE International Workshop on Silicon Debug and Diagnosis, 2006.

[62] D. D. Josephson. The Mannic Depression of Microprocessor Debug. In Pro-

ceedings IEEE International Test Conference (ITC), pages 657–663, October

2002.

BIBLIOGRAPHY 95

[63] D. D. Josephson and B. Gottlieb. The Crazy Mixed Up World of Silicon

Debug. In Proceedings IEEE Custom Integrated Circuits Conference, pages

665–670, October 2004.

[64] Altera Inc. Design Debugging Using the SignalTap II Embedded Logic An-

alyzer. http://www.altera.com.

[65] E. Anis and N. Nicolici. On Using Lossless Compresstion of Debug Data in

Embedded Logic Analysis. In Proceedings IEEE International Test Confer-

ence (ITC), pages 1–10, October 2007.

[66] E. Anis and N. Nicolici. Low Cost Debug Architecture using Lossy Com-

pression for Silicon Debug. In Proceedings Design, Automation, and Test in

Europe (DATE), April 2007.

[67] ARM Ltd. Embedded Trace Macrocell Architecture Specification.

http://www.arm.com/.

[68] A. B. Hopkins and K. D. McDonald-Maier. Debug Support for Complex

Systems On-chip: A Review. In IEE Proceedings, Computers and Digital

Techniques, pages 197–207, July 2006.

[69] A. B. T. Hopkins and K. D. McDonald-Maier. Trace Algorithms for Deeply

Integrated Complex and Hybrid SoCs. In NASA/ESA Conference on Adaptive

Hardware and Systems, pages 641–646, 2007.

[70] G. Rootselaar and B. Vermeulen. Silicon Debug: Scan Chains Alone Are Not

Enough. In Proceedings IEEE International Test Conference (ITC), pages

892–902, September 1999.

[71] MIPS Technologies Inc. EJTAG Trace Control Block Specification.

http://www.mips.com.

[72] Semiconductor Industry Association (SIA). The International

Technology Roadmap for Semiconductors (ITRS): 2003 Edition.

http://public.itrs.net/Files/2003ITRS/Home2003.htm, 2003.

BIBLIOGRAPHY 96

[73] N. Stollon, R. Leatherman, B. Ableidinger, and E. Edgar. Multi-Core Em-

bedded Debug for Structured ASIC Systems. http://www.fs2.com/.

[74] B. Vermeulen, T. Waayers, and S. Bakker. IEEE 1149.1-Compliant Access

Architecture for Multiple Core Debug on Digital System Chips. In Pro-

ceedings IEEE International Test Conference (ITC), pages 55–63, Baltimore,

MD, Oct. 2002.

[75] B. Vermeulen, T. Waayers, and S. K. Goel. Core-Based Scan Architecture

for Silicon Debug. In Proceedings IEEE International Test Conference (ITC),

pages 638– 647, October 2002.

[76] D. Josephson and B. Gottlieb. Debug Methodology for the McKinley Proces-

sor. In Proceedings IEEE International Test Conference (ITC), pages 451–

460, October 2001.

[77] Xilinx Inc. Chipscope Pro Software and Cores User Guide.

http://www.xilinx.com.

[78] B. Vermeulen and S. K. Goel. Design for Debug: Catching Design Errors in

Digital Chips. IEEE Design & Test of Computers, 19(3):37–45, May 2002.

[79] B. R. Quinton and S. J. E. Wilton. Concentrator Access Networks for Pro-

grammable Logic Cores on SoCs. IEEE International Symposium on Circuits

and Systems, pages 45– 48, May 2005.

[80] M. J. Narasimha. A Recursive Concentrator Structure with Applications

to Self-Routing Switching Networks. IEEE Trans. on Communication,

42(2):896–897, April 1994.

[81] S. Nakamura and G. M. Masson. Lower bounds on crosspoints in concentra-

tors. IEEE Trans. on Computers, C(31):1173–1178, 1982.

[82] X. Liu and Q. Xu. Trace Signal Selection for Visibility Enhancement in Post-

Silicon Validation. In Proceedings Design, Automation, and Test in Europe

(DATE), Apr 2009.

BIBLIOGRAPHY 97

[83] M. Li, P. Ramachandran, S. Adve, V. Adve and Y. Zhou. Understanding the

propagation of hard faults to software and its implications on Resilient Sys-

tems Design. In Proceedings Architecture Support for Programming Lan-

guages and Operating Systems (ASPLOS), March 2008.

[84] F. K. Hwang. The Mathematical Theory of Nonblocking Switching Net-

works. World Scientific, New Jersey, 1998.

[85] M. Boulé, J. S. Chenard and Z. Zilic. Adding debug enhancements to asser-

tion checkers for hardware emulation and silicon debug. In Proceedings EEE

Int. Conf. on Computer Design (ICCD), pages 294– 299, 2006.

[86] Berkeley Logic Synthesis and Verification Group. ABC:

A System for Sequential Synthesis and Verification.

http://www.eecs.berkeley.edu/ alanmi/abc/.

[87] D. Blaauw, R. Panda, and A. Das. Removing User Specified False Paths from

Timing Graphs. In Proceedings ACM/IEEE Design Automation Conference

(DAC), pages 270–273, 2000.

[88] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De.

Parameter Variations and Impact on Circuits and Microarchitecture. In Pro-

ceedings ACM/IEEE Design Automation Conference (DAC), pages 338–342,

2003.

[89] H.-C. Chen and D.-C. Du. Path Sensitization in Critical Path Problem. IEEE

Transactions on Computer-Aided Design, 12(2):196–207, Feb. 1993.

[90] K.-T. Cheng and H.-C. Chen. Classification and Identification of Nonrobust

Untestable Path Delay Faults. IEEE Transactions on Computer-Aided De-

sign, 15(8):845–853, August 1996.

[91] K. Heragu, J. H. Patel, and V. D. Agrawal. Fast Identification of Untestable

Delay Faults Using Implications. In Proceedings International Conference

on Computer-Aided Design (ICCAD), pages 642–647, 1997.

BIBLIOGRAPHY 98

[92] Y. Kukimoto and R. K. Brayton. Timing-Safe False Path Removal for Com-

binational Modules. In Proceedings International Conference on Computer-

Aided Design (ICCAD), pages 544–550, 1999.

[93] H. K. Lee and D. S. Ha. On the Generation of Test Patterns for Combina-

tional Circuits. Technical Report 12-93, Dept. of Electrical Eng., Virginia

Polytechnic Institute and State University, 1993.

[94] Z. Li, Y. Min, and R. K. Brayton. Efficient Identification of Non-Robustly

Untestable Path Delay Faults. In Proceedings IEEE International Test Con-

ference (ITC), pages 992–997, 1997.

[95] X. Liu and M. S. Hsiao. A Novel Transition Fault ATPG that Reduces Yield

Loss. IEEE Design & Test of Computers, 22(6):576–584, Nov.-Dec. 2005.

[96] E. McCluskey. Integrating Functional and Temporal Domains in Logic De-

sign: The False Path Problem and Its Implications. Kluwer Academic Pub-

lishers, Norwell, 1991.

[97] M. Syal, K. Chandrasekar, V. Vimjam, M. S. Hsiao, Y.-S. Chang, and

S. Chakravarty. A Study of Implication Based Pseudo Functional Testing.

In Proceedings IEEE International Test Conference (ITC), page paper 24.3,

2006.

[98] Synopsys Inc. User Manuals for SYNOPSYS Toolset Version 2007.12.

[99] W. Wu and M. S. Hsiao. Mining Sequential Constraints for Pseudo-

Functional Testing. In Proceedings IEEE Asian Test Symposium (ATS), pages

19–24, 2007.

[100] F. Yuan and Q. Xu. On Systematic Illegal State Identification for Pseudo-

Functional Testing. In Proceedings ACM/IEEE Design Automation Confer-

ence (DAC), pages 702–707, 2009.

[101] J. Zeng, M. Abadir, and J. Abraham. False Timing Path Identification Using

ATPG Techniques and Delay-Based Information. In Proceedings ACM/IEEE

Design Automation Conference (DAC), 2002.

BIBLIOGRAPHY 99

[102] Z. Zhang, S. Reddy, and I. Pomeranz. On Generate Pseudo-Functional De-

lay Fault Tests for Scan Designs. In Proceedings IEEE International Sympo-

sium on Defect and Fault Tolerance in VLSI Systems (DFT), pages 215–226,

2005.

[103] S. Borkar. Designing reliable systems from unreliable components: the

challenges of transistor variability and degradation. IEEE Micro, 25(6):10–

16, 2005.

[104] D. Frank, R. Puri, and D. Toma. Design and CAD Challenges in 45nm

CMOS and beyond. In Proc. International Conference on Computer-Aided

Design (ICCAD), pp. 329–333, 2006.

[105] K. Bowman, et al. Circuit techniques for dynamic variation tolerance. In

Proc. ACM/IEEE Design Automation Conference (DAC), pp. 4–7, 2009.

[106] T. Austin and V. Bertacco. Deployment of better than worst-case design:

solutions and needs. In Proc. International Conference on Computer Design

(ICCD), pp. 550–555, 2005.

[107] S. Sde-Paz and E. Salomon. Frequency and Power Correlation between

At-Speed Scan and Functional Tests. In Proc. IEEE International Test Con-

ference (ITC), paper 13.3, 2008.

[108] M. R. Choudhury and K. Mohanram. TIMBER: Time borrowing and error

relaying for online timing error resilience. In Proc. Design, Automation, and

Test in Europe (DATE), pp. 1554–1559, 2010.

[109] M. Kurimoto, et al. Phase-adjustable error detection flip-flops with 2-stage

hold driven optimization and slack based grouping scheme for dynamic volt-

age scaling. In Proc. ACM/IEEE Design Automation Conference (DAC), pp.

884–889, 2008.

[110] K. Hirose, et al. Delay-compensation flip-flop with in-situ error monitor-

ing for low-power and timing-error-tolerant circuit design. Japan Journal of

Applied Physics, 47(4):2779–2787, April 2008.

BIBLIOGRAPHY 100

[111] M. R. Choudhury and K. Mohanram. Masking timing errors on speed-paths

in logic circuits. In Proc. Design, Automation, and Test in Europe (DATE),

pp. 87–92, 2009.

[112] S.-L. Lu. Speeding up processing with approximation circuits. Computer,

37(3):67–73, Mar. 2004.

[113] M. R. Choudhury and K. Mohanram. Approximate logic circuits for low

overhead, non-intrusive concurrent error detection. In Proc. Design, Automa-

tion, and Test in Europe (DATE), pp. 903–908, 2008.

[114] O. Coudert, R. Haddad and S. Manne. New Algorithm for Gate Sizing:

A Comparative Study. In Proc. ACM/IEEE Design Automation Conference

(DAC), pp. 734-739, 1996.

[115] M. Mani, A. Devgan, and M. Orshansky. An Efficient Algorithm for Statis-

tical Minimization of Total Power under Timing Yield Constraints. In Proc.

ACM/IEEE Design Automation Conference (DAC), pp. 309-314, 2005.

[116] M. Agarwal, B. C. Paul, M. Zhang, and S. Mitra. Circuit Failure Prediction

and Its Application to Transistor Aging. In Proc. IEEE VLSI Test Symposium

(VTS), pp. 277–286, 2007.

[117] S. Das, et al. RazorII: In Situ Error Detection and Correction for PVT and

SER Tolerance. IEEE Journal of Solid-State Circuits, 44(1):32–48, 2009.

[118] B. Greskamp, et al. Blueshift: Designing processors for timing speculation

from the ground up. In IEEE International Symposium on High Performance

Computer Architecture, pp. 213–224, 2009.

[119] G. Yu, et al. Statistical Static Timing Analysis Considering Process Vari-

ation Model Uncertainty. In Proc. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, pp. 1880-1890, 2008.

[120] J. L. Tsai, et al. A Yield Improvement Methodology Using Pre- and Post-

Silicon Statistical Clock Scheduling. In Proc. International Conference on

Computer-Aided Design (ICCAD), pp. 611-618, 2004.

