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ABSTRACT

Due to the massive size of graphs from various domains nowadays, even simple graph

queries become challenging tasks. In this thesis, three queries with a wide range

of applications are investigated on large graphs. One is shortest distance query, a

fundamental query which computes the shortest distance between two nodes. Another

query, weight constraint reachability (WCR), checks if there is a feasible path between

two nodes where edge weights along the path satisfy a side constraint. And the third

one, a top-k nearest keywords (k-NK) query, reports, for a query node, the k nearest

nodes bearing some user-specified keywords. When confronting with a large-scale

graph with over tens of millions of nodes, we need to develop efficient indexing and

query optimization techniques for these queries.

In this thesis, for a shortest distance query, we devise two landmark embedding

schemes, an error bounded landmark scheme and a local landmark scheme, where

the former can guarantee an error bound for estimated distance, and the latter can

significantly improve the distance estimation accuracy without increasing the offline

embedding or the online query complexity. For a WCR query, we propose a memory-

based approach which promises a constant query time. Besides, in order to increase

its scalability, we devise an I/O-efficient approach for answering a WCR query on

massive graphs. For a k-NK query, we start with a special case when the graph is

a tree, based on which we present our algorithm for approximate k-NK query on a

graph. A global storage technique is devised to further reduce the index size and the

query time. We did extensive experiments on the three queries respectively to show

the effectiveness and efficiency of our methods.
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摘要

由于现今在各个领域涌现的图数据规模都愈加庞大，在这些大规模图数据上进

行任何一种简单的查询都成为一件有富有挑战性的工作。在本文中，我们着

重在大规模图上研究三个具有广泛应用的查询：最短路查询，权重限制查询和

最近k关键字查询。具体来说，最短路查询是一个计算两点间最短距离的基本

查询。而权重限制查询判断两点间是否存在一条沿路边权都满足用户指定条件

的可行路径。对于一个查询节点，最近k关键字查询返回k个距离最近的带有

指定关键字的节点。在面对一个拥有超过一亿节点的图时，我们需要为这些

查询开发有效的索引和查询优化算法。

在本文中，对于最短路查询，我们提出了两个基于地标嵌入的算法，一个

是有误差控制的地标嵌入算法，另一个则是本地化地标嵌入算法。前者通过

对地标的筛选和组织，能对估计的最短距离给予一定的误差保证；而后者提

出的本地化机制能够在不增加预处理复杂度和在线查询复杂度的情况下大幅度

提高估计的精准度。对于权重限制查询，我们先提出一个能够保证常数查询

时间的内存算法。除此之外，为了提高算法对大规模数据的处理能力，我们

使用编码技术设计了一个有效的外存算法。对于最近k关键字查询，我们先在

一个特殊的图，即一颗树上，开发一个有效算法来在常数时间内回答最近k关

键字查询，并由此得出一个图上的近似算法；此外我们还通过一个全局存储

的技术来进一步减少索引大小和缩短查询时间。我们在真实和模拟的数据上

做了大量的实验，实验结果证明我们的算法在大图上对上述三个查询都具有高

效性能。
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CHAPTER 1

INTRODUCTION

1.1. Motivation

It is worth noting that nowadays, the size of graphs from various domains increases

dramatically, and the number of nodes may reach the scale of hundreds of millions.

Due to their massive size, even simple graph queries become challenging tasks. In

this thesis, we concentrate on three important queries on large scale graphs, short-

est distance query, weight constraint reachability query, and top-k nearest keywords

query, and develop efficient indexing and query optimization techniques for them. In

the following, we will introduce the three queries respectively.

1.1.1. Shortest Distance Query

As a fundamental query on graphs, a shortest distance query has been extensively

studied for decades since 1950s. It has a wide range of applications in various domains

including road networks, social networks, communication networks, web graphs, etc.

For example, in a road network, the shortest distance between two locations is a key

element for a route planning task; in a social network, the shortest distance between

two users indicates the closeness of their social relationships such as friendship or

collaboration; while in a communication network, the goal is to find the nearest server

in order to reduce access latency for clients. Although classical algorithms such as

1



Chapter 1. Introduction 2

breadth-first search (BFS), Dijkstra’s algorithm [22], and A∗ search [33, 29, 30] can

compute the exact shortest paths in a network, the massive size of modern information

networks and the online nature of such queries make it infeasible to apply the classical

algorithms online. On the other hand, it is space inefficient to precompute and store

the shortest distances between all pairs of nodes due to its quadratic space complexity.

Recently, there have been many different methods [26, 62, 81, 51, 84, 71, 53,

64, 78, 32, 68] for estimating the shortest distance between nodes based on graph

embeddings. A commonly used embedding technique is landmark embedding, where

a set of graph nodes is selected as landmarks [62, 64, 32] (also called reference nodes

[53, 68], beacons [51], or tracers [26]) and the shortest distances from a landmark to

all the other nodes in a graph are precomputed. Such precomputed distances can be

used online to provide an approximate distance between two graph nodes based on the

triangle inequality.

Error Bounded Landmark Scheme: For an embedding approach of computing the

shortest distance, a theoretical error bound can guarantee the precision of the esti-

mated distance, but the derivation of an error bound is closely related to the landmark

selection strategy. According to the findings in the literature [26, 64], the problem

of selecting the optimal landmark set is NP-hard, by a reduction from the classical

NP-hard problems such as vertex cover or minimum K-center [27]. As a result, the

existing studies use random selection [51, 71] or graph measure based heuristics [64]

such as degree, betweenness centrality, closeness centrality, etc. These heuristics can-

not derive an error bound to control the precision of the estimated distance.

In this thesis, we start with an investigation on how to provide a landmark embed-

ding method with a user-specified error bound ϵ on their estimated distance. Specif-

ically, we formulate a coverage-based landmark selection strategy, i.e., every node

in a graph should be “covered” by some landmarks within a radius c = ϵ/2. The

coverage property will lead to a theoretical error bound of ϵ. Importantly, allowing a

user-specified error bound increases the flexibility of our method in processing queries

at different error tolerance levels. On the other hand, if a user specifies the number of
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landmarks he selects, we can find the corresponding value of c and the error bound.

We will also show through experiments that by adjusting the radius c, we can achieve

a tradeoff between the theoretical error bound and the offline computational time of

the landmark embedding process.

Local Landmark Scheme: Despite that various rules are taken for landmark selection

[51, 64], most existing methods use triangular inequality, which sums of the distances

from two query nodes to a landmark as an estimation. As the landmark selection step

is query independent, the landmark set provides a single global view for all possi-

ble queries which could be diameter apart or close by. Thus it is hard to achieve a

uniformly good performance for all queries. As a consequence, the landmark embed-

ding approach may introduce a large relative error, especially when the landmark set

is distant from both nodes in a query but the two nodes themselves are close to each

other. For example, in a US road network with 24 million nodes and 58 million edges,

landmark embedding (with 50 randomly selected landmarks) has a maximum relative

error of 68 for one query among 10, 000 random queries we tested.

This observation motivates us to find a query-dependent “local landmark” which

is close to both query nodes for a more accurate distance estimation. In contrast, the

original landmarks are called “global landmarks”. In this thesis, we propose a local

landmark scheme which identifies a local landmark specific to a pair of query nodes.

Then the distance between the two query nodes is estimated to be the sum of their

shortest distances to the local landmark, which is much closer than the global one. The

query-dependent local landmark scheme is expected to reduce the distance estimation

error in principle, compared with the traditional global landmark embedding.
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1.1.2. Weight Constraint Reachability Query

Among many types of graph queries, graph reachability is an important type of

query, which asks whether there exists a path from one node to another in a di-

rected graph. Graph reachability has been studied extensively in the literature

[2, 39, 19, 72, 79, 80, 34, 90, 86, 14, 17, 11, 45, 44, 42, 94, 24, 87, 41, 92] and

has many potential applications. Most existing algorithms, however, do not consider

realistic constraints on graph reachability that are very common and challenging in

real-world applications, except a few recent works [42, 24, 41, 92] which consider

adding categorical edge label constraint or distance constraint to reachability queries.

Many real-world networks contain real-value edge or node weights, for example,

the bandwidth of a link in communication networks, the reliability of an interaction

between two proteins in PPI networks, the handling capacity of a warehouse/storage

point in a distribution network, etc. In many real-world applications, the answers to

reachability queries are meaningful only if the edge or node weight is also captured in

the reported path. Thus, in Chapter 4, we study, in weighted undirected graphs, a new

type of reachability query called weight constraint reachability (WCR) query, which

asks: is there a path between nodes a and b, on which each real-value edge (or node)

weight satisfies a range constraint, e.g., ≥ x, ≤ y, or within [x, y]. The WCR query

has many real application scenarios. Here we list several application examples.

Communication Networks: Transmission of multimedia streams imposes a

minimum-bandwidth requirement on all the links on a path to ensure end-to-end

Quality-of-Service (QoS) guarantees [58]. A WCR query can find whether there is

a feasible path between two nodes in a network, on which each link has a bandwidth

≥ x, i.e., a minimum-bandwidth requirement. The resulting path can support a rate

of x bits per second for transmitting a stream, e.g., audio or video, with a bandwidth

guarantee.

Biological Networks: In a PPI network, a node represents a protein, and an edge

represents an interaction between two proteins with a real-value weight to denote the
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reliability of the interaction. A WCR query can find whether there is a path between

two proteins where the reliability of every interaction is ≥ x. A lot of research has

been proposed to find signaling pathways from PPI networks, e.g., [7]. However,

many false positive candidates will be generated. The WCR query can be used to

prune these false positives.

Phone Call Networks: From a phone call log, we can construct a phone call network,

where a node represents a caller ID and an edge represents a phone call labeled with

the time stamp when the phone call is made, between two callers. A WCR query can

find whether there is a chain of calls between two callers, each of which is made during

a time period [t1, t2]. This query can be useful for security reasons such as crime

detection. Similarly the WCR query can be applied to social networks for relationship

analysis.

The WCR query can also be applied to node-weighted networks to ensure that the

weight of each node on the reported path satisfies a constraint. An example is given

below.

Distribution Networks: If a firm plans to ship its products from a factory to a retailer

store located in distant locations, a WCR query can find whether there is a feasible

delivery route between these two locations in the distribution network, on which each

intermediate warehouse, storage point or distribution center has a proper handling

capacity ≥ x. This query can help facilitate delivery and distribution of the products,

and improve the operational efficiency of the supply chain.

To the best of our knowledge, there is no existing reachability study on the real-

value weight constraint. In the literature, [42, 92] study categorical edge label con-

straint reachability (LCR). In addition, Regular Path Query (RPQ) [59], Conjunctive

RPQ (CRPQ) [25] and Reachability Query (RQ) [24] have been proposed for full

or a subclass of regular expression constraint on categorical edge labels. The real-

value weight constraint we study is very different from those in [42, 92, 59, 25, 24]

in the following aspects: (1) there is a total order among real-value weights, but no

order among categorical labels. A much more optimized solution can be designed for
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WCR by exploiting the total-order property; (2) the cardinality of a real-value weight

set is typically much larger than that of a categorical label set. A large weight set

can substantially increase the indexing and query complexity of the existing methods.

Take the Sampling-Tree method proposed in [42] for LCR query as an example, its

index construction time grows exponentially with the number of distinct labels in a

graph, and its query time increases linearly with the number of distinct labels. Given

a large real-value weight set, the WCR query can hardly be answered efficiently by

directly applying Sampling-Tree. Other works including NP-Hard query RPQ [59],

NPC query CRPQ [25], and O(|V |2) query time RQ [24] face the same problem for

handling real-value weight set.

In Chapter 4, we aim to design efficient algorithms to answer the WCR query with

a compact index. We mainly focus on the edge weight constraint, and show that the

node weight constraint can be easily reduced to the edge weight constraint. Given

an undirected graph G and a WCR query, we exploit the cut property of minimum

spanning tree (MST) to show that checking whether two nodes are reachable in G

w.r.t. a constraint can be transformed to checking such reachability in an MST of G.

This property serves as a building block for designing a novel index called Edge-Index.

It organizes the MST edges hierarchically based on an elegant transformation of MST

so that we can answer a WCR query in O(1) time.

Considering the networks emerging nowadays typically contain hundreds of mil-

lions of vertices or even more, the index size of Edge-Index in O(|Σ||V |)1 (Σ is the

edge weight set and V is the vertex set of the graph) may easily exceed the memory

limit. Therefore, to answer the WCR query, we further design an I/O-efficient disk-

based index, Balanced-Index, which is constructed by recursively adjusting an MST

into a balanced tree. A nice property of the balanced tree is the log2 |V |worst-case tree

height, which effectively compresses the disk-based index size to O(|Σ||V | log |V |)

while guaranteeing to answer the WCR query with exactly four I/Os. Our algorithm

1The O(|Σ||V |) space complexity is for handling the general bounded interval constraint [x, y],

x, y ∈ R. For the half-bounded constraint ≥ x or ≤ y, the complexity is O(|V |).
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Balanced-Index proves to be I/O-efficient and highly scalable. This is a very signifi-

cant contribution, as all existing algorithms on graph reachability in the literature are

limited to main memory based algorithms.

1.1.3. Top-k Nearest Keyword Query

Many real-world networks emerging nowadays have labels or textual contents on the

nodes. For example in a road network, a location may have labels such as “Mc-

Donald’s”, “hospital”, and “kindergarten”. In a social network, a person may have

information including name, interests and skills, etc.. In a bibliographic network, a

paper may have keywords and abstract, and an author may have name, affiliation and

email address. In this thesis, we consider the problem of top-k nearest keyword (k-NK)

search on large networks. In a network G modeled as an undirected graph, each node

may be attached with one or more keywords, and each edge is assigned with a weight

measuring its length. Given a query node q in G and a keyword λ, a k-NK query in

the form of Q = (q, λ, k) looks for k nodes which contain λ and are nearest to q. Dif-

ferent from a large body of research on k-nearest neighbor (k-NN) search on spatial

networks [52, 15, 18, 73, 76, 21], we define G as a general graph without coordinates.

Thus our solution can apply to a wide range of networks.

In graph search, a k-NK query is important and useful. As a stand-alone query,

it has a wide range of applications. Furthermore, it can serve as a building block for

tackling complex graph pattern matching problems which impose both structural and

textual constraints. Here we list a few applications of k-NK queries.

Consider the social network Facebook as an example. Note that personalized

search based on graph structure and textual contents has become increasingly pop-

ular in Facebook2. A person looks for 20 friends or potential friends who like hiking

to participate in a hiking activity. Intuitively, if two persons share some common

friends, i.e., they are within two hops away, they are more likely to become friends.

In contrast, if they are far away from each other in the network, they are less likely to

2https://www.facebook.com/about/graphsearch
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establish a link. Thus, for the person who serves as the organizer, the problem is to

find 20 nearest persons who like hiking. It can be answered by a k-NK query. More

generally, we also consider a query containing multiple keywords connected by AND

or OR operators to express more complex semantics, e.g., a person looks for k friends

or potential friends who like hiking AND (OR) photography and are nearest to him.

Take a road network with locations associated with keywords as another example.

For parents looking for k kindergartens nearest to their home for their children, their

requirements can be expressed by a k-NK query where the query node is the home

location, and the keyword is “kindergarten”.

In the third example, we show how k-NK queries serve as a building block for

solving the graph pattern matching problem. Consider a couple who wants to buy a

house. They have some constraints like having a kindergarten and a hospital within 3

km, and a supermarket within 1 km of their home. These constraints can be expressed

as a star pattern, and the pattern matching problem can be decomposed into three k-NK

queries with keywords “kindergarten”, “hospital” and “supermarket” respectively and

k = 1 for each potential house location to be considered.

Recently, Bahmani and Goel [5] have designed a Partitioned Multi-Indexing (PMI)

scheme to answer k-NK queries approximately. PMI is an inverted index built based

on distance oracle [78] which is a distance estimation technique. Given a k-NK query

Q = (q, λ, k), it returns k nodes containing keyword λ in ascending order of their

approximate distance from the query node q. PMI inherits the 2 log2 |V | − 1 approxi-

mation factor for distance estimation from distance oracle [78], where V is the set of

nodes in the graph. The major drawback of PMI is that its distance estimation error

could be quite large in practice. This can greatly distort the ranking of the candidate

nodes carrying the query keywords, and thus lead to a low result quality.

In this thesis, we study how to answer k-NK queries accurately and efficiently us-

ing a compact index. The key to an accurate k-NK result is a precise shortest distance

estimation in a graph. In a general graph model, existing k-NN solutions on spatial

networks [52, 15, 18, 73, 76, 21] cannot be applied, as they usually rely on specialized
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structures that leverage properties of spatial data to optimize their solutions. Instead,

we use distance oracle [78] as the fundamental distance estimation framework. For

each component of a distance oracle, we will build a shortest path tree, based on which

we can estimate the shortest distance between two nodes by their tree distance. The

tree distance is more accurate than the distance estimated by distance oracle, which

we call witness distance to distinguish it. As we transform a distance oracle on a graph

into a set of shortest path trees, the original k-NK query on the graph can be reduced

to answering the k-NK query on a set of trees. Thus we first focus on processing k-NK

queries to find the exact top-k answers on a tree. Then we study how to assemble the

results obtained from the trees to form the approximate top-k answers on the graph.

1.2. Contributions

In this thesis, we devise two landmark embedding schemes for a shortest distance

query, one is an error bounded landmark scheme [68] and the other is a local landmark

scheme [65, 66].

An error bounded landmark scheme is based on a coverage-based strategy, which

leads to a theoretical error bound of estimated distance. Since selecting the minimum

set of landmarks is an NP-hard problem, we propose a greedy solution based on the

submodular property of the proposed objective function. We show that the estimated

distance is within a user-specified error bound of the true distance. To further reduce

the offline computational complexity, we propose a graph partitioning-based heuristic

for landmark embedding with a relaxed error bound.

A query-dependent local landmark scheme is proposed in light of an observation

that in traditional landmark embedding, the query-independent global landmark se-

lection introduces a large relative error, especially for nearby query nodes which are

distant from the global landmarks. It finds a local landmark close to both query nodes

to improve the distance estimation accuracy. The local landmark scheme proves to

be a robust embedding solution that substantially reduces the dependency of query
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performance on the global landmark selection strategy. Given a query node pair, the

proposed local landmark scheme finds a local landmark, which is defined as the least

common ancestor (LCA) of the two query nodes in the SPT rooted at one of the global

landmarks. An O(1) time algorithm for finding the LCA on an SPT is introduced.

We show that the SPT based local landmark scheme can significantly improve the

distance estimation accuracy, without increasing the offline embedding or the online

query complexity. Facing the challenge of immense graphs whose index may not fit

in the memory, we also study to store the embedding in relational database, so that a

query of the local landmark scheme can be expressed with relational operators.

In terms of weight constraint reachability (WCR) problem, to the best of our

knowledge, our work [67] is the first study. We design a novel Edge-Index as an

efficient memory-based index to answer a WCR query by exploiting the cut property

of minimum spanning tree. When the index is too large to fit in the memory, we

design a Balanced-Index as an I/O-efficient disk-based index. Remarkably, our in-

memory algorithm Edge-Index achieves O(1) query time and O(|Σ||V |) index size,

while our I/O-efficient algorithm with Balanced-Index uses four I/Os for query pro-

cessing and O(|Σ||V | log |V |) disk space for indexing. We conducted extensive ex-

periments on large real and synthetic networks. The query time of both Edge-Index

and Balanced-Index algorithms is in microseconds and remains stable regardless of the

network size, the density, the cardinality of the edge weight set or the weight distribu-

tion. Balanced-Index proves to be I/O-efficient and highly scalable for querying large

networks. Finally our query processing is at least three orders of magnitude faster than

basic search approaches.

We delve into top-k nearest keyword problem on graphs and our approaches [69]

significantly outperforms the state-of-the-art solutions. We start with a special case

when the graph is a tree under a common scenario when users are interested in a small

number of answer nodes bounded by a small constant k, i.e., k ≤ k on a tree. We

propose the first algorithm tree-boundk with query time O(k + log |Vλ|), where |Vλ|

is the number of nodes carrying the query keyword λ, and index size O(k · |doc(V )|),
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where |doc(V )| is the total number of keywords on all the nodes in the graph. Next

we remove the k restriction and handle k-NK queries for an arbitrary k on a tree. We

propose the second algorithm tree-pivot with query time O(k · log |V |) and index size

O(|doc(V )| · log |V |) which is independent of k, thus it is more scalable. Based on our

proposed tree algorithms, we present our algorithm for approximate k-NK query on a

graph. We propose a global storage technique to further reduce the index size and the

query time. We also show how to extend our methods to handle a query with multiple

keywords. Our experimental evaluation demonstrates the effectiveness and efficiency

of our k-NK algorithms on large real-world networks. We show the superiority of our

methods in ranking top-k answer nodes accurately when compared with the state-of-

the-art top-k keyword search method PMI [5].

1.3. Roadmap

The rest of the thesis is organized as follows. Chapter 2 reviews the previous works

related to ours. Chapter 3 introduces two landmark embedding schemes, an error

bounded landmark scheme in Chapter 3.2 and a local landmark scheme in Chapter

3.3, for a shortest distance query. Chapter 4 shows both main-memory and disk-based

methods for a WCR query. Chapter 5 elaborates on a series of methods we propose to

answer a k-NK query. Finally, Chapter 6 concludes the thesis.



CHAPTER 2

RELATED WORK

2.1. Shortest Distance Query

As a fundamental query, shortest distance query has been extensively studied for

decades since 1950s. In the literature, existing solutions are proposed either for ex-

act shortest distance queries or approximate ones, so in the following, we will shall

introduce them.

Exact Shortest Distance Query: For computing the exact shortest distance between

two query nodes, there are two extreme approaches. One approach is to perform

Dijkstra’s algorithm (or BFS on unweighted graphs) from the source node online.

It may incur, however, seconds of delay before reporting the result and thus is not

appropriate for large-scale networks. Another approach is to precompute All-Pair-

Shortest-Path(APSP) and then store them as an index. Although it takes O(1) time for

reporting the shortest distance of a query, its cubic precomputation time and quadratic

index size impede the approach from being applied on large-scale networks.

For general graphs, as far as we know, there are two directions for finding a balance

between space and query time. One is 2-Hop Cover [19, 16, 43, 3], also called labeling

method. The basic idea is: each node u precomputes its distance to a set of nodes

L(u) ⊆ V as labels, such that for each node pair u, v ∈ V , L(u)∩L(v)∩SP(u, v) ̸= ∅,

where set SP(u, v) = {a ∈ V |dist(u, a) + dist(a, v) = dist(u, v)} contains all nodes

12
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that lie on some shortest path between u to v. The main drawback of these approaches

is that there is no absolute guarantee on the size of L(·). Another direction is to

devise an indexing and querying scheme based on the tree decomposition of a graph

[13, 91, 4]. However, due to the NP-completeness of the optimal tree-decomposition,

the tree-width found by an approximate algorithm could increase the index size to

quadratic which is not practical for large-scale networks.

Approximate Shortest Distance Query: Approximate shortest distance compu-

tation is studied as a cost-effective balance between space, query time, and pre-

cision. An ideal approximate approach has a constant or logarithmic query time

with a linear or loglinear space requirement. Triangle inequality is used as a part

of landmark embedding technique to estimate the upper bound of a shortest dis-

tance. The basic idea is: each node u precomputes its distance to a set of nodes

L(u) ⊆ V , and for a node pair u, v ∈ V , their approximate distance is estimated as

mina∈L(u)∩L(v){dist(u, a) + dist(a, v)}. The nodes selected for the label set L(·) are

called landmarks( [62, 64, 32]), or reference nodes( [53, 68]), or beacons( [51]), or

tracers( [26]).

Landmark embedding technique [81, 53, 71, 64, 78, 32, 68, 26, 85, 84, 51]

has been widely used to estimate the distance between two nodes in a graph in

many applications including road networks [81, 53], social networks and web graphs

[71, 64, 78, 32, 68] as well as the Internet [26, 62]. Shahabi et al. [81] utilize Linial,

London and Robinovich (LLR) embedding to estimate the distance between two

nodes. Kriegel et al. [53] propose a hierarchical reference node embedding approach

which organizes reference nodes on multiple levels for a better scalability. Potamias et

al. [64] formulate the reference node selection problem to select nodes with high be-

tweenness centrality. [26] proposes an architecture, called IDMaps, which measures

and disseminates distance information on the global Internet. [51] defines a notion of

slack – a certain fraction of all distances that may be arbitrarily distorted as a perfor-

mance guarantee based on randomly selected reference nodes. In addition, distance

oracle [85, 84, 78, 32] reports an approximate distance with a 2k − 1 stretch using an
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O(|V |1+ 1
k ) sized index. To summarize, the major differences between the above meth-

ods lie in the following aspects: (1) landmark selection – some [51, 84, 71, 78, 32]

select landmarks randomly, while others [26, 62, 53, 64] use heuristics; (2) landmark

organization – some methods organize landmarks on multiple levels [84, 53, 78, 32],

while other methods use a flat landmark embedding; and (3) whether they have an

error bound or not – [51, 84, 78, 32, 68] analyze the error bound of the estimated

distances, while most of the other methods have no error bounds or guarantees of the

estimated distances.

Shortest distance in spatial networks: There have been a lot of studies on computing

shortest paths queries in spatial networks [63, 38, 77, 75]. Papadias et al. [63] use the

Euclidean distance as a lower bound to prune the search space and guide the network

expansion for refinement. Hu et al. [38] propose an index called distance signature for

distance computation and query processing, which discretizes the distances between

objects and network nodes into categories to obtain an encoding. For a spatial net-

work of dimension d, [77, 75] can retrieve an ε-approximation distance estimation in

O(log n) time using an index termed path-distance oracle of size O(n ·max(sd, 1
ϵ

d
)).

In addition, on road networks, the problem of route planning has been extensively

studied, where [29, 30] takes graph annotation approaches, and [28, 74, 6, 1] takes

hierarchical approaches.

2.2. Reachability Query

Reachability query on directed graphs has been studied extensively with many algo-

rithms proposed [2, 39, 19, 72, 79, 80, 34, 90, 86, 14, 17, 11, 45, 44, 42, 94, 24, 87, 41,

92]. These algorithms usually design a certain type of coding for graph nodes so that

reachability queries can be answered by checking the coding of the nodes involved.

The codings include tree cover [2], chain cover [39, 14], dual labeling [90], GRIPP

index [86], path-tree cover [45], 2-hop cover [19, 79, 80, 17, 11], 3-hop [44], random-

ized interval labeling [94], and bit vector compression of transitive closure [87].
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Most existing reachability algorithms do not consider vertex or edge label con-

straints except a few recent works [42, 92, 59, 25, 24]. [42] studies label-constraint

reachability, given a set of categorical edge labels as the constraint. It utilizes the

directed maximal weighted spanning tree and sampling techniques to compress the

generalized transitive closure for the edge-labeled graphs. The index construction

time increases exponentially with the label set size |Σ|, thus is not scalable to handle a

large label set. [92] solves the same problem by proposing a Dijkstra-like algorithm to

compute path-label transitive closure. [59] proves Regular Path Query (RPQ), a path

query with regular expression constraints, is NP-Hard; [25] shows Conjunctive RPQ

(CRPQ) is a NPC problem; and [24] studies adding a subclass of regular expressions

(RQ) to specify the reachability via a path of certain edge types and of a possibly

bounded length. [24] proposed two algorithms which answer a query in O(|V |2) time.

One algorithm uses a matrix of shortest distances as index, and the other uses online

bi-directional search. [41] studies distance-constraint reachability in uncertain graphs,

and proposes two probabilistic estimators for the probabilistic reachability.

The existing reachability solutions cannot be directly or efficiently applied to an-

swer the WCR query, as they focus on a different problem setting which does not have

the total-ordering property on edge labels. In addition, all existing reachability algo-

rithms in the literature are main memory based algorithms which assume the index

resides in the memory and do not consider the I/O cost in query processing. Our work

is the first to design a disk-based I/O-efficient algorithm to answer the WCR query.

2.3. Keyword Related Query

Keyword search: Keyword search in a graph(or database) finds a substructure of

the graph containing the query keywords. The answer substructure can be a tree

[37, 10, 47, 23, 35, 31], a subgraph [57, 70] or a r-clique [48]. A survey on keyword

search in databases and graphs can be found in [95]. Keyword search has substantial

differences from the k-NK query studied in this paper. In terms of problem definition,
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keyword search looks for a network structure, the nodes in which jointly contain all

the query keywords, whereas a k-NK query looks for k nearest answer nodes, each

one of which contains all the query keywords. In terms of solution, keyword search

performs BFS or Dijkstra’s algorithm to find the answer networks, whereas our pro-

posed solutions build an index structure based on distance oracles and compact trees

for keywords. Therefore, our query time efficiency is much higher than BFS and Di-

jkstra’s algorithm, which has also been confirmed in our experiments. [93] and [12]

study keyword routing on a road network. Given a keyword set, a source and a target

locations, the goal is to find the shortest path that passes through at least one matching

object for each keyword.

K nearest neighbor in spacial networks(k-NN): k-NN search has been extensively

studied in spatial networks [52, 15, 18, 73, 76, 21]. [52] uses network Voronoi poly-

gons to divide a graph into disjointed subsets for k-NN search. Jagadish et al. [40]

compress high-dimensional data points to one-dimensional values based on a set of

well selected reference nodes and then apply range search using a B+ tree index to

answer KNN queries. [15, 18] use R-tree to embed textual information on nodes, and

augment a tree node with inverted index for spatial document within the MBR. [73]

answers k-NN queries with the shortest path quadtree. [76] answers k-NN queries

based on ε-approximated distance estimated by an index termed path-distance oracle

of size O(n ·max(sd, 1
ϵ

d
)) where d is the network dimension. [21] performs Dijkstra-

like expansion from the query node. However the above approaches designed for

spatial networks cannot be applied to graphs without coordinates.

Nearest Keyword Query: The most related work to our k-NK study includes nearest

keyword search on XML documents [83] and top-k nearest keyword search on graphs

[5], both of which will be introduced in detail in Chapter 5.2. Besides, Hermelin et

al. [36] adapt the distance oracle [85] to answer 1-NK queries with a 4k − 5 stretch in

O(k) time using an O(k|V |1+ 1
k ) sized index.



CHAPTER 3

QUERYING SHORTEST DISTANCE

3.1. Landmark Embedding

Consider a weighted undirected graph G = (V,E,w), where V is a set of vertices, E

is a set of edges, and w : E 7→ R+ is a weighting function mapping an edge (u, v) ∈ E

to a positive real number w(u, v) > 0, which measures the length of (u, v). We denote

n = |V | and m = |E|. For a pair of vertices a, b ∈ V , we use dist(a, b) to denote the

shortest distance between a and b, and P (a, b) = (a, v1, v2, . . . , vl−1, b) to denote the

shortest path, where {a, v1, . . . , vl−1, b} ⊆ V and {(a, v1), (v1, v2), . . . , (vl−1, b)} ⊆

E.

Given a pair of query nodes (a, b), to efficiently estimate an approximate short-

est distance between a and b, a commonly adopted approach is landmark embed-

ding. Consider a set of nodes S = {l1, . . . , lk} ⊆ V , or denoted as R, which

are called landmarks. For each li ∈ S, we compute the shortest distances to all

nodes in V . Then for every node v ∈ V , we can use a k-dimensional vector
−→
dist(v) = ⟨dist(l1, v), dist(l2, v), . . . , dist(lk, v)⟩ to represent its distances to the k

landmarks. This is called landmark embedding, which can be used to compute an

approximate shortest distance between nodes a and b based on the triangle inequality

as

d̃ist(a, b) = min
li∈S
{dist(li, a) + dist(li, b)} (3.1)

17
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This general embedding approach has been widely used in many existing methods in

the literature.

Evaluation: For a node pair (s, t), we use the relative error, denoted as err(s, t) de-

fined as below, to evaluate the quality of an estimated distance in Chapter 3.2 and

3.3.

err(s, t) =
|d̃ist(s, t)− dist(s, t)|

dist(s, t)

3.2. Error Bounded Landmark Scheme

3.2.1. Problem Statement

Problem 3.1 (Distance Estimation with a Bounded Error). Given a graph G and a

user-specified error bound ϵ as input, for any pair of query vertices (s, t), we study

how to efficiently provide an accurate estimation of the shortest distance d̃ist(s, t), so

that the estimation error |d̃ist(s, t)− dist(s, t)| ≤ ϵ.

In the rest of Chapter 3.2, we will discuss the following questions: 1) Given a

graph G and an error bound ϵ, how to select the minimum number of landmarks to

ensure the error bound ϵ in the distance estimation? 2) How to estimate the shortest

distance with an error bound given a query (s, t)?

3.2.2. Proposed Algorithm

The quality of the estimated shortest distance is closely related to the landmark se-

lection strategy. Given a graph G and an error bound ϵ, we will first formulate a

coverage-based landmark selection approach to satisfy the error bound constraint. We

will then define an objective function over a set of landmarks and discuss how to select

the minimum set of landmarks according to the objective function.
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Coverage-based Landmark Selection

Definition 3.1 (Coverage). Given a graph G = (V,E,w) and a radius c, a vertex

v ∈ V is covered by a landmark r if dist(r, v) ≤ c.

The set of vertices covered by a landmark r is denoted as Cr, i.e., Cr = {v|v ∈

V, dist(r, v) ≤ c}. In particular, we consider a landmark r is covered by itself, i.e.,

r ∈ Cr, since dist(r, r) = 0 ≤ c. Here we formulate the problem of optimal landmark

selection.

Problem 3.2 (Coverage-based Landmark Selection). Given a graph G = (V,E,w)

and a radius c, our goal is to select a minimum set of landmarks R∗ ⊆ V , i.e., R∗ =

argminR⊆V |R|, so that ∀v ∈ V −R∗, v is covered by at least one landmark fromR∗.

Given a user-specified error bound ϵ, we will show in Chapter 3.2.2, when we set

c = ϵ/2, the coverage-based landmarks selection method can guarantee that the error

of the estimated shortest distance is bounded by ϵ.

 

1r  

2r  

3r  

Figure 3.1: Coverage-based Landmark Selection

Example 3.1. Figure 3.1 shows a graph with three landmarks r1, r2 and r3. The three

circles represent the area covered by the three landmarks with a radius c. If a vertex lies

within a circle, it means the shortest distance between the vertex and the corresponding

landmark is bounded by c. As shown in the figure, all vertices can be covered by

selecting the three landmarks.

Besides the coverage requirement, a landmark set should be as compact as possi-

ble. To evaluate the quality of a set of landmarks R, we define a gain function over
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R.

Definition 3.2 (Gain Function). The gain function over a set of landmarksR is defined

as

g(R) = |
∪
r∈R

Cr| − |R| (3.2)

In Figure 3.1, g({r1}) = 5, g({r2}) = 3, g({r3}) = 2 and g({r1, r2, r3}) = 8.

The gain function g is a submodular function, as stated in Theorem 3.1.

Definition 3.3 (Submodular Function). Given a finite set N , a set function f : 2N →

R is submodular if and only if for all sets A ⊆ B ⊆ N , and d ∈ N \ B, we have

f(A ∪ {d})− f(A) ≥ f(B ∪ {d})− f(B).

Theorem 3.1. For two landmark sets A ⊆ B ⊆ V and r ∈ V \ B, the gain function

g satisfies the submodular property:

g(A ∪ {r})− g(A) ≥ g(B ∪ {r})− g(B)

Proof. According to Definition 3.2, we have

g(A ∪ {r})− g(A) = |CA ∪ Cr| − (|A|+ 1)− |CA|+ |A|

= |CA ∪ Cr| − |CA| − 1

= |Cr − CA| − 1

where Cr − CA represents the set of vertices covered by r, but not by A.

Since A ⊆ B, we have Cr − CB ⊆ Cr − CA, hence |Cr − CB| ≤ |Cr − CA|.

Therefore, the submodular property holds. �

As our goal is to find a minimum set of landmarksR∗ to cover all vertices in V , it

is equivalent to maximizing the gain function g:

max
R

g(R) = max
R

(|
∪
r∈R

Cr| − |R|) = |V | −min
R
|R| = g(R∗)
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In general, maximizing a submodular function is NP-hard [50]. So we resort to a

greedy algorithm. It starts with an empty set of landmarks R0 = ∅ with g(R0) = 0.

Then it iteratively selects a new landmark which maximizes an additional gain, as

specified in Eq.(3.3). In particular, in the k-th iteration, it selects

rk = arg max
r∈V \Rk−1

g(Rk−1 ∪ {r})− g(Rk−1) (3.3)

The algorithm stops when all vertices in V are covered by the landmarks. The greedy

algorithm returns the landmark setR.

Continue with our example. According to the greedy selection algorithm, in the

first step, we will select r1 as it has the highest gain. Given R1 = {r1}, we have

g({r1, r2}) − g({r1}) = 1 and g({r1, r3}) − g({r1}) = 2. So we will select r3 in

the second step. Finally we will select r2 to cover the remaining vertices. Note that

to simplify the illustration, we only consider selecting landmarks from r1, r2, r3 in

this example. Our algorithm actually considers every graph vertex as a candidate for

landmarks.

To effectively control the size of R, we can further relax the requirement to cover

all vertices in V . We observe that such a requirement may cause |R| unnecessarily

large, in order to cover the very sparse part of a graph or the isolated vertices. So we

set a parameter Cover Ratio (CR), which represents the percentage of vertices to be

covered. The above greedy algorithm terminates when a fraction of CR vertices in V

are covered byR.

Error Bound Analysis

In this subsection, we will show that, given a query (s, t), when s or t is covered

within a radius c by some landmark fromR, the estimated distance d̃ist(s, t) is within

a bounded error of the true distance dist(s, t).

Theorem 3.2. Given any query (s, t), the error of the estimated shortest distance

d̃ist(s, t) can be bounded by 2c with a probability no smaller than 1 − (1 − CR)2,

where c is the coverage radius and CR is the cover ratio.
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Proof. Given a query (s, t) and a landmark setR, assume s is covered by a landmark,

denoted as r∗, i.e., dist(s, r∗) ≤ c. Without loss of generality, we assume dist(s, r∗) ≤

dist(r∗, t). Note that the following error bound still holds if dist(s, r∗) > dist(r∗, t).

The error of the estimated shortest distance between (s, t) is bounded by

err(s, t) = d̃ist(s, t)− dist(s, t)

= min
r∈R

(dist(s, r) + dist(r, t))− dist(s, t)

≤ dist(s, r∗) + dist(r∗, t)− dist(s, t)

≤ dist(s, r∗) + dist(r∗, t)− |dist(s, r∗)− dist(r∗, t)|

= 2dist(s, r∗)

≤ 2c

The first inequality holds because minr∈R(dist(s, r) + dist(r, t)) ≤ dist(s, r∗) +

dist(r∗, t); and the second inequality holds because we have the lower bound prop-

erty dist(s, t) ≥ |dist(s, r∗)− dist(r∗, t)|.

The error bound holds when either s or t, or both are covered by some landmarks.

When neither s nor t is covered by some landmarks within a radius c, err(s, t) is

unbounded. The probability for this case is (1 − CR)2. Thus we have P (err(s, t) ≤

2c) ≥ 1− (1− CR)2. �

Given a user-specified error bound ϵ, we will have P (err(s, t) ≤ ϵ) ≥ 1 − (1 −

CR)2, here c = ϵ/2.

When CR = 0.8, the bound is satisfied with a probability P (err(s, t) ≤ ϵ) ≥ 0.96.

3.2.3. Graph Partitioning-based Heuristic

For the landmark embedding method we propose above, the offline complexity is

O(|E|+|V | log |V |) to compute the single-source shortest paths for a landmark v ∈ R.

It can be simplified as O(n log n) (n = |V |) when the graph is sparse. Therefore,

the total embedding time is O(|R|n log n), which could be very expensive when |R|

is large. In this subsection, we propose a graph partitioning-based heuristic for the
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landmark embedding to reduce the offline time complexity with a relaxed error bound.

To distinguish the two methods we propose, we name the first method RN-basic and

the partitioning-based method RN-partition.

Partitioning-based Landmark Embedding

The first step of RN-partition is landmark selection, which is the same as described

in Chapter 3.2.2. In the second step, we use KMETIS [49] to partition the graph into

K clusters C1, . . . , CK . As a result, the landmark set R is partitioned into these K

clusters. We use Ri to denote the set of landmarks assigned to Ci, i.e., Ri = {r|r ∈

R and r ∈ Ci}. It is possible that Ri = ∅ for some i. For a cluster Ci with Ri = ∅,

we can select the vertex from Ci with the largest degree as a within-cluster landmark,

to improve the local coverage within Ci. Note that the number of such within-cluster

landmarks is bounded by the number of clusters K, which is a small number compared

with |R|.

The idea of the partitioning-based landmark embedding is as follows. For the

cluster Ci, we compress all landmarks inRi as a supernode SNi and then compute the

single-source shortest paths from SNi to every vertex v ∈ V . The landmark compres-

sion operation is defined as follows.

Definition 3.4 (Landmark Compression). The landmark compression operation com-

presses all landmarks in Ri into a supernode SNi. After compression, for a vertex

v ∈ V \ Ri, (SNi, v) ∈ E iff ∃r ∈ Ri, s.t. (r, v) ∈ E, and the edge weight is defined

as w(SNi, v) = minr∈Ri
w(r, v).

Then the shortest path between SNi and v is actually the shortest path between a

landmark r ∈ Ri and v with the smallest shortest distance, i.e.,

dist(SNi, v) = min
r∈Ri

dist(r, v)

and we denote the closest landmark r ∈ Ri to v as rv,i, which is defined as

rv,i = arg min
r∈Ri

dist(r, v)
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Note dist(SNi, v) = dist(rv,i, v) = minr∈Ri
dist(r, v). In the following, we will use

dist(SNi, v) and dist(rv,i, v) interchangeably.

The time complexity for computing shortest paths from the supernodes in each of

the K clusters to all the other vertices in V is O(Kn log n). In addition, we compute

the shortest distances between every pair of landmarks within the same cluster. The

time complexity of this operation is O(|R|n/K log n/K), if we assume the nodes are

evenly partitioned into K clusters. We further define the diameter d for a cluster as

follows.

Definition 3.5 (Cluster Diameter). Given a cluster C, the diameter d is defined as the

maximum shortest distance between two landmarks in C, i.e.,

d = max
ri,rj∈C

dist(ri, rj)

where dist(ri, rj) is the shortest distance between ri and rj .

Then the diameter of the partitioning C1, . . . , CK is defined as the maximum of

the K cluster diameters, i.e.,

dmax = max
i∈[1,K]

di

Partitioning-based Shortest Distance Estimation

Given a query (s, t), for the supernode SNi representing a cluster Ci, based on the

triangle inequality we have

dist(s, t) ≤ dist(s, SNi) + dist(rs,i, rt,i) + dist(t, SNi)

Figure 3.2 shows an illustration of the shortest distance estimation between (s, t)

in RN-partition, where the circle represents a cluster Ci. Note that in general s and rs,i

may not necessarily belong to the same cluster, and the shortest distance dist(s, rs,i)

may not necessarily be bounded by the radius c. But these factors will not affect the

distance estimation strategy.
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Figure 3.2: Distance Estimation in RN-partition

By considering all K clusters, we have a tighter upper bound

dist(s, t) ≤ min
i∈[1,K]

(dist(s, SNi) + dist(rs,i, rt,i) + dist(t, SNi))

We denote this estimated distance upper bound as d̃ist
P
(s, t).

Error Bound Analysis

In the following theorem, we will show that, when s or t is covered within a radius c

by some landmark from a cluster Ci for some i, the estimated distance d̃ist
P
(s, t) is

within a bounded error of the true distance dist(s, t).

Theorem 3.3. Given any query (s, t), the error of the estimated shortest distance

d̃ist
P
(s, t) by RN-partition can be bounded by 2(c + dmax) with a probability no

smaller than 1 − (1 − CR)2, where c is the coverage radius, CR is the cover ratio

and dmax is the maximum cluster diameter.

Proof. Given a query (s, t), assume s is covered by at least one landmark from R

within a radius c. Without loss of generality, assume such a landmark is from the

cluster Ci for some i and denote it as rs,i. According to the triangle inequality, we

have

dist(rs,i, t)− dist(s, t) ≤ dist(s, rs,i) ≤ c

By adding dist(s, rs,i) on both sides, we have

dist(s, rs,i) + dist(rs,i, t)− dist(s, t) ≤ 2dist(s, rs,i) ≤ 2c (3.4)
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Denote the closest landmark in Ci to t as rt,i. Then we have

dist(rt,i, t)− dist(rs,i, t) ≤ dist(rs,i, rt,i) ≤ dmax

Since rs,i, rt,i belong to the same cluster, their distance is bounded by dmax. By adding

dist(rs,i, rt,i) on both sides, we have

dist(rs,i, rt,i) + dist(rt,i, t)− dist(rs,i, t) ≤ 2dist(rs,i, rt,i) ≤ 2dmax (3.5)

By adding Eq.(3.4) and Eq.(3.5), we have

dist(s, rs,i) + dist(rs,i, rt,i) + dist(rt,i, t)− dist(s, t) ≤ 2(c+ dmax)

As we have defined d̃ist
P
(s, t) = mini∈[1,K](dist(s, SNi)+dist(rs,i, rt,i)+dist(t, SNi)),

the error of the estimated shortest distance between (s, t) is bounded by

errP (s, t) = d̃ist
P
(s, t)− dist(s, t)

≤ dist(s, rs,i) + dist(rs,i, rt,i) + dist(rt,i, t)− dist(s, t)

≤ 2(c+ dmax)

The error bound holds when either s or t, or both are covered by some landmarks

with a radius c. When it happens that neither s nor t is covered by some landmarks,

Eq.(3.4) does not hold in general, thus errP (s, t) is unbounded. The probability for this

case is (1 − CR)2. For a similar reason as explained in Theorem 3.2, i.e., even when

neither s nor t is covered, if there are landmarks rs,i, rt,i, for some i, on the shortest

path from s to t, we can still have an accurate estimation which satisfies the error

bound. Therefore the probability that the error of an estimated distance is unbounded

is at most (1−CR)2. Thus, we have P (errP (s, t) ≤ 2(c+ dmax)) ≥ 1− (1−CR)2 �

Compared with RN-basic, RN-partition reduces the offline computational com-

plexity to O(Kn log n + |R|n/K log n/K). As long as we choose a reasonably

large K such that |R|/K ≤ K, the complexity of RN-partition is dominated by

O(Kn log n). As a tradeoff, the error bound is relaxed from 2c to 2(c + dmax). The

cluster diameter dmax is determined by the size of the graph and the number of clus-

ters K. Table 3.1 compares RN-basic and RN-partition on time/space complexity and
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Table 3.1: Comparison between RN-basic and RN-partition

RN-basic RN-partition

Offline Time Complexity O(|R|n logn) O(Kn log n+ |R|n/K log n/K)

Offline Space Complexity O(|R|n) O(Kn+ |R|2/K)

Distance Query Complexity O(|R|) O(K)

Error Bound 2c 2(c+ dmax)

the error bound. In experimental study, we will study the relationship between K, the

offline computation time and the accuracy of the estimated distances.

3.2.4. Experiments

We performed extensive experiments to evaluate our algorithms on two types of net-

works – a road network and a social network. The road network and the social network

exhibit quite different properties on: (1) degree distribution, i.e., the former roughly

follows a uniform distribution while the latter follows a power law distribution; and (2)

network diameter, i.e., the social network has the shrinking diameter property [56] and

the small world phenomenon, which, however, do not hold in the road network. All

experiments were performed on a Dell PowerEdge R900 server with four 2.67GHz

six-core CPUs and 128GB main memory running Windows Server 2008. All algo-

rithms were implemented in Java.

Comparison Methods and Evaluation

We compare our methods RN-basic and RN-partition with two existing methods:

• 2RNE [53] by Kriegel et al. uses a two level landmark embedding which ex-

amines K nearest landmarks for both nodes in a query to provide a distance

estimation. We select landmarks uniformly and set K = 3.

• Centrality [64] by Potamias et al. selects landmarks with low closeness cen-

trality. According to [64], the approximate centrality measure is computed by
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selecting a sample of S random seeds, where we set S = 10, 000 in our imple-

mentation.

As it is expensive to exhaustively evaluate all node pairs in a large network, we

randomly sample a set of 10, 000 node pairs in the graph as queries and evaluate the

average relative error on the sample set.

Case Study 1: Road Network

We use the New York City road network, which is an undirected planar graph

with 264, 346 nodes and 733, 846 edges. A node here represents an inter-

section or a road endpoint while the weight of an edge represents the length

of the corresponding road segment. The data set can be downloaded from

http://www.dis.uniroma1.it/∼challenge9/.

The degrees of most nodes in the road network fall into the range of [1, 4] and

the network has no small world phenomenon. For the 10, 000 random queries we

generate, we plot the histogram of the shortest distance distribution in Figure 3.3. The

average distance over the 10, 000 queries is davg = 26.68KM. So if we set the radius

c = 0.8KM, the average relative error can be roughly bounded by 2c/davg = 0.06.
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Figure 3.3: Shortest Distance Distribution

on Road Network

0 2 4 6 8 10 12 14
0

500

1000

1500

2000

2500

3000

3500

Distance

 

 

Total Pairs

Figure 3.4: Shortest Distance Distribution

on Social Network

Parameter Sensitivity Test on CR In this experiment, we vary the cover ratio CR and

compare the average error, the landmark set size and offline index time by RN-basic

and RN-partition with K = 100, 250, 500, respectively. We fix the radius c = 0.8KM.
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Figure 3.5 shows the average error of RN-basic and RN-partition with different

K values. The average error of RN-basic is below 0.01 and slightly decreases as CR

increases. The average error of RN-partition decreases very sharply when the number

of partitions K increases and becomes very close to that of RN-basic when K = 500.

Figure 3.6 shows that the number of landmarks |R| increases linearly with CR. As

RN-basic and RN-partition have the same landmark selection process, the number is

the same for both methods. When CR = 1.0, we need 9, 000 landmarks to cover the

road network with 264, 346 nodes.

Figure 3.7 shows the offline index time in logarithmic scale for RN-basic and

RN-partition to compute the single-source shortest paths from every landmark. RN-

partition reduces the index time of RN-basic by one order of magnitude. In addition,

as the number of landmarks |R| increases linearly with CR, the index time of RN-basic

also increases linearly with CR, because the time complexity is O(|R|n log n). On the

other hand, the index time of RN-partition remains quite stable as CR increases, be-

cause RN-partition only computes the shortest paths from each of the K clusters as

the source.
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Figure 3.5: Average Error
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Road Network

Parameter Sensitivity Test on c In this experiment, we vary the radius c and compare

the average error, the landmark set size and offline index time by RN-basic and RN-

partition with K = 100, 250, 500, respectively. We fix the cover ratio CR = 1.0.

Figure 3.8 shows the average error of RN-basic and RN-partition with different
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K values. We can make the following observations from the figure: (1) RN-partition

(K = 500) achieves an average error very close to that of RN-basic when c ≥ 0.8KM;

(2) The average error of RN-basic monotonically increases with c, which is consistent

with the theoretical error bound of 2c; and (3) Different from RN-basic, the average

error of RN-partition shows a decreasing trend with c. When c is very small, the num-

ber of landmarks is very large. So RN-partition may choose suboptimal landmarks for

distance estimation, which leads to a larger error.
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Figure 3.10: Index Time

vs. Radius (c) on Road

Network

Figure 3.9 shows that the number of landmarks |R| decreases with c. When c <

0.4KM, |R| decreases sharply with c. Figure 3.10 shows the offline index time of RN-

basic and RN-partition in logarithmic scale. As |R| decreases with c, the index time

of RN-basic also decreases with c. RN-partition reduces the index time of RN-basic

by two orders of magnitude or more when c < 0.2KM but the difference becomes

smaller as c increases. RN-basic cannot finish within 10 hours when c ≤ 0.08KM. On

the other hand, the index time of RN-partition increases moderately when c decreases

to 0.2KM or below.

Comparison with 2RNE and Centrality We compare our approaches with 2RNE

[53] and Centrality [64] in terms of average error, index time and average query time,

as we vary the number of landmarks. For our methods, we set CR = 1.0. From Figure

3.11 we can see that both RN-basic and RN-partition (for most cases) outperform

2RNE and Centrality by a large margin in terms of average error. Figure 3.12 shows
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Figure 3.13: Average
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Road Network

that RN-partition reduces the index time of the other three methods by up to two orders

of magnitude. The index time of RN-basic, 2RNE and Centrality increases linearly

with |R|, as they all have the same time complexity of O(|R|n log n), while RN-

partition slightly increases the index time. Figure 3.13 shows that the query time of

RN-partition and 2RNE remain almost constant, while that of RN-basic and Centrality

increase linearly with the number of landmarks.

Case Study 2: Social Network

We download the DBLP dataset from http://dblp.uni-trier.de/xml/ and construct an

undirected coauthor network, where a node represents an author, an edge represents

a coauthorship relation between two authors, and all edge weights are set to 1. This

graph has several disconnected components and we choose the largest connected one

which has 629, 143 nodes and 4, 763, 500 edges. The vertex degree distribution fol-

lows the power law distribution.

We randomly generate 10, 000 queries and plot the histogram of the shortest dis-

tance distribution in Figure 3.4. The average distance between two nodes over the

10, 000 queries is davg = 6.34, which conforms with the famous social networking

rule “six degrees of separation”. Given 2c/davg as a rough estimation of the relative

error bound, if we set c = 3, the relative error bound is 2× 3/6.34 = 94.64%. There-

fore, we only test our methods given c ∈ {1, 2}, to control the relative error bound in
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a reasonably small range. Note that c = 1 defines the coverage of a node based on the

number of its neighbors, i.e., degree; while c = 2 measures the coverage based on the

number of neighbors within two hops.
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Parameter Sensitivity Test on CR We vary the cover ratio CR and compare the aver-

age error, the landmark set size and offline index time by RN-basic and RN-partition

with K = 100, 200, 300, respectively. We fix the radius c = 1.

Figure 3.14 shows that the average error of RN-basic is in the range of [0.009, 0.04]

and it decreases quickly as CR increases. The average error of RN-partition is slightly

higher than that of RN-basic and it decreases as K increases.

Figure 3.15 shows the number of landmarks |R| as we vary CR in the range of

[0, 1.0]. Different from the road network which shows a linear relationship between
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Table 3.2: Parameter Sensitivity Test on Radius c on Social Network

RN-basic RN-partition

Radius c |R| Average Error Index Time (sec) Average Error Index Time (sec)

1 3653 0.009 3778.17 0.030 485.88

2 31 0.138 30.70 0.144 65.71

|R| and CR, we observe that |R| increases slowly when CR is small, but much faster

when CR is large. This is due to the power law degree distribution in the social network

– we first select the authors with the largest number of collaborators as landmarks; but

in the later stage, with the decrease of node degrees, we need to use more landmarks

to achieve the same amount of coverage.

Figure 3.16 shows the offline index time for RN-basic and RN-partition. We ob-

serve that the index time of RN-basic increases quickly when CR increases. When

CR = 0.6, RN-basic is about 10 times slower than RN-partition. We also observe that

the index time of RN-partition slightly increases with CR when K = 100. This is

because a large portion of time is spent on computing the shortest distances between

all pairs of landmarks within the same partition. When CR increases, the number of

landmarks falling into the same partition is larger, which causes the time increase.

Parameter Sensitivity Test on c In this experiment, we vary the radius c ∈ {1, 2}

and compare the average error, the landmark set size and offline index time by RN-

basic and RN-partition (K = 300). We fix CR = 0.6. Table 3.2 shows that the

number of landmarks is reduced by 100 times when c is increased to 2. As a result,

the offline index time for RN-basic is also reduced by 100 times with the increase of

c because the time complexity is O(|R|n log n). The index time for RN-partition is

seven times smaller than RN-basic when c = 1, but slightly higher when c = 2 due

to the within partition computational overhead. The average error of RN-partition is

slightly higher than that of RN-basic, and the error of both methods increases with c,

which is consistent with the theoretical error bound.

Comparison with 2RNE and Centrality We compare our approaches with 2RNE
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and Centrality in terms of average error, index time and average query time, as we

vary the number of landmarks. For our methods, we set c = 1. Figure 3.17 shows that

RN-basic achieves the smallest error, followed by Centrality and RN-partition. 2RNE

performs the worst, because it selects landmarks uniformly, rather than selecting land-

marks with large degrees. Figure 3.18 shows that the index time of RN-partition re-

mains stable when |R| increases, while the time of the other three methods increases

linearly with |R|. Figure 3.19 shows that the query time of RN-partition and 2RNE

remain almost constant, while that of RN-basic and Centrality increase linearly with

the number of landmarks.

3.3. Query-Dependent Local Landmark Scheme

3.3.1. Problem Statement

Landmark Selection

In the landmark embedding approach, a key question is how to select the landmark set

S from V , as the landmarks can heavily influence the estimation accuracy of shortest

distance queries. However, selecting the optimal set of landmarks has been proven

to be NP-hard, by a reduction from the classical NP-hard problems such as vertex

cover [64] or minimum K-center [26]. Due to the hardness of the landmark selection

problem, previous studies (e.g., [26, 64, 68]) proposed various heuristics, including

random selection, degree, centrality, and coverage based selection heuristics. But

the performance of different heuristics heavily depends on the graph properties, e.g.,

degree distribution, diameter, etc. There is no heuristic that excels in all kinds of

graphs.
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Factors on Embedding Performance

Here we briefly discuss the factors that affect the performance of landmark embed-

ding.

A globally selected query-independent landmark set: Most existing methods

select a single set of global landmarks which are independent of queries. Such a

query-independent landmark set provides a single global view for all possible queries

which could be diameter apart or close by, thus it cannot achieve uniformly good

performance on all queries. The landmark set can only provide a very rough distance

estimation for a query, especially when it is distant from both query nodes, and the

two query nodes are close by, as shown in Figure 3.20.
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Figure 3.20: Distance Estimation with a Landmark

The number of landmarks k: In general, increasing the number of landmarks k will

improve the performance of landmark embedding. An extreme case is k = |V | which

leads to zero estimation error. This actually corresponds to computing all pair shortest

paths as an embedding. As a side effect, increasing k will cause an increase of the

query processing time and the index size, as the query complexity is O(k) and the

index space complexity is O(kn). Thus, increasing k is not an efficient or scalable

solution to improve the embedding performance.
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A Query-Dependent Local Landmark Scheme

In this subsection we propose a novel framework, called local landmark scheme, for

estimating the shortest distance with a small number of query-dependent local land-

marks. In this framework, the problem is formulated as follows.

Problem Statement: Given an arbitrary query node pair (a, b) and a global landmark

set S, our goal is to identify a query-specific local landmark which is closer to the

true shortest path P (a, b) than any global landmark in a graph G. The approximate

shortest distance between a and b is computed as the sum of their distances to the local

landmark.

The local landmark can be defined in an abstract way as:

Definition 3.6 (Query-Dependent Local Landmark). Given a global landmark set S

and a query (a, b), a query-dependent local landmark function is

Lab(S) : V
k 7→ V

which maps S to a vertex in V called a local landmark.

With the local landmark, we can estimate a shortest distance of query (a, b) as

d̃ist
L
(a, b) = dist(Lab(S), a) + dist(Lab(S), b) (3.6)

Let us see an example.

Example 3.2. Figure 3.21 shows an example graph with the global landmark set S =

{l1, l2, l3}. In this graph, a solid line between two nodes represents an edge of unit

length, while a dashed line between two nodes represents a path with zero or more

intermediate connecting nodes and thus a length no less than one.

For a pair of query nodes (a, b), the path in bold (a, e, f, g, b) is the shortest path

between a and b. The shortest paths from the global landmark l1 to a and b are

(l1, . . . , c, e, a) and (l1, . . . , c, d, g, b), respectively. Based on l1, the estimated shortest

distance between a and b is

d̃ist(a, b) = dist(l1, a) + dist(l1, b) (3.7)
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But if we have the shortest distances dist(c, a) and dist(c, b), we can have a more

accurate distance estimation based on c than that based on l1:

d̃ist
L
(a, b) = dist(c, a) + dist(c, b) (3.8)

as we have d̃ist(a, b) = d̃ist
L
(a, b) + 2dist(l1, c).

As opposed to the concept of global landmark, we call node c a local landmark

with respect to query nodes a, b.

a b

c
d

e f g

h p

d

l1 l2

l3
Figure 3.21: Local Landmarks

3.3.2. Shortest Path Tree Based Local Landmark

In landmark embedding, the shortest distances from each global landmark l ∈ S to all

vertices in V are precomputed for the embedding purpose. To preserve more delicate

information, we can further consider the shortest path tree (SPT) rooted at each global

landmark l ∈ S. Here we rephrase the the definition of SPT as follows.

Definition 3.7 (Shortest Path Tree). Given a graph G = (V,E,w), the shortest path

tree rooted at a vertex r ∈ V is a spanning tree of G, such that the path from the root

r to each node v ∈ V is a shortest path between r and v, and the path length is the

shortest distance between r and v.

Figure 3.22 shows an SPT rooted at the global landmark l1 according to the graph

in Figure 3.21. An SPT not only contains the shortest distance information from the

tree root, it also preserves the more delicate structure information on how the two

query nodes are connected. Based on the tree structure, we can identify a node, e.g.,
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Figure 3.22: Shortest Path Tree Rooted at l1

c, which is closer to nodes a and b than l1. Based on this intuition, we propose an SPT

based local landmark function.

SPT Based Local Landmark Function

In Example 3.2, we find that the distance estimation based on node c, i.e., d̃ist
L
(a, b) =

dist(c, a) + dist(c, b) is a tighter upper bound than that based on l1. If we look at the

SPT rooted at l1 in Figure 3.22, it is not hard to find that c is the least common ancestor

(LCA) of a and b.

Definition 3.8 (Least Common Ancestor). Let T be a rooted tree. The least common

ancestor of two nodes u and v in T , denoted as LCAT (u, v), is the node furthest from

the root that is an ancestor of both u and v.

In light of this, we propose an SPT based local landmark function, which returns

the LCA of the query nodes a, b in the SPT rooted at each landmark l ∈ S.

Definition 3.9 (SPT Based Local Landmark Function). Given a global landmark set

S and a query (a, b), the SPT based local landmark function is defined as:

Lab(S) = arg min
r∈{LCATl

(a,b)|l∈S}
{dist(r, a) + dist(r, b)}

where LCATl
(a, b) denotes the least common ancestor of a and b in the SPT Tl rooted

at l ∈ S.
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We can show that the distance estimation with the SPT based local landmarks is

more accurate, or at least the same accurate as that with the global landmark set.

Theorem 3.4. Given a global landmark set S, ∀a, b ∈ V , we have

dist(a, b) ≤ d̃ist
L
(a, b) ≤ d̃ist(a, b).

Proof. First, dist(a, b) ≤ d̃ist
L
(a, b) holds according to the triangle inequality.

Next, ∀l ∈ S, r = LCATl
(a, b), we have

dist(l, a) + dist(l, b) = dist(r, a) + dist(r, b) + 2dist(r, l)

As dist(r, l) ≥ 0, we have

dist(r, a) + dist(r, b) ≤ dist(l, a) + dist(l, b)

Consequently,

d̃ist
L
(a, b) = min

l∈S
{dist(LCATl

(a, b), a) + dist(LCATl
(a, b), b)}

≤ min
l∈S
{dist(l, a) + dist(l, b)}

= d̃ist(a, b)

�

To efficiently calculate d̃ist
L
(a, b), a ̸= b ∈ V , we have:

d̃ist
L
(a, b) = min

l∈S
{dist(LCATl

(a, b), a) + dist(LCATl
(a, b), b)} (3.9)

= min
l∈S
{dist(l, a) + dist(l, b)− 2dist(l, LCATl

(a, b))}

When LCATl
(a, b), ∀l ∈ S is known, Eq.(3.9) can be computed in O(|S|) time. For

each l ∈ S, it simply looks up three embedded distances dist(l, a), dist(l, b) and

dist(l, LCATl
(a, b)).
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LCA Computation

The techniques in [8] can efficiently find the LCA of two nodes in an SPT T in O(1)

time with an O(n) size LCA index, where n is the number of nodes in T .

Complexity Analysis

We analyze the online query complexity and the offline embedding complexity of LLS.

Online Query Time Complexity: The query is based on Eq.(3.9). For each global

landmark l ∈ S, there are three lookup operations to retrieve the embedded distances,

which take O(1) time. In addition, there is an LCA query which can be answered in

O(1) time. For all global landmarks in S, the query time complexity is O(|S|).

Offline Embedding Space Complexity: The space requirement of LLS can be par-

titioned into three parts: (1) embedded distances from each global landmark to every

node in the graph in O(|S|n) space; (2) shortest path trees and the corresponding

trace, L and stamp arrays for all global landmarks in O(|S|n) space; and (3) LCA

index tables for all global landmarks in O(|S|n) space. Combining the above three

factors, the offline embedding space complexity of LLS is O(|S|n) .

Offline Embedding Time Complexity: Given a global landmark set S, the time com-

plexity to compute the single-source shortest paths from a landmark by Dijkstra’s al-

gorithm [22] is O(m + n log n). It can be simplified to O(n log n) when the graph G

is sparse. We also have to build the LCA index in O(n) time for each global landmark

in S. Thus the total embedding time complexity is O(|S|n log n).

When compared with GLS, it is not hard to verify that our LLS has the same online

query complexity and offline embedding complexity, although our complexities have

slightly larger constant factors.
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Extending LLS to Directed Graphs

Our LLS method is mainly designed for undirected graphs. Here we briefly dis-

cuss how to extend it to handle directed graphs. For each landmark l, we build

two SPTs rooted at l. One is a backward tree TBl, where the tree path PTBl
(v, l)

is the shortest path from v to l for v ∈ V . The other is a forward tree TFl, where

the tree path PTFl
(l, v) is the shortest path from l to v for v ∈ V . Given a query

(x, y), for landmark l, we first retrieve two tree paths, PTBl
(x, l) and PTFl

(l, y),

then find one of their common nodes with the smallest distance estimation, i.e.,

minv∈PTBl
(x,l)∩PTFl

(l,y){dist(x, v)+dist(v, y)}, as a local landmark candidate. Finally,

we report

d̃ist(x, y) = min
l∈S
{ min
v∈PTBl

(x,l)∩PTFl
(l,y)
{dist(x, v) + dist(v, y)}}

as the approximate distance. Using hashing techniques, the query time is

O(Σl∈S(|PTBl
(x, l)| + |PTFl

(l, y)|)) where |PTBl
(x, l)| and |PTFl

(l, y)| denote the

number of hops in the corresponding paths. The embedding uses O(|S|n) space to

store the forward and backward SPTs for all landmarks in S.

3.3.3. Optimization Techniques

In this subsection, we propose two additional techniques, graph compression and local

search to further optimize the performance of our local landmark scheme. Graph com-

pression aims to reduce the embedding index size by compressing the graph nodes,

and local search performs limited scope online search to improve the distance estima-

tion accuracy.
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Index Reduction with Graph Compression

As we have shown, the embedding index takes O(|S|n) space, which is a linear func-

tion of the graph node number n. Thus we can effectively reduce the embedding index

size if the graph nodes can be compressed. Towards this goal, we propose graph com-

pression techniques which reduce some simple local graph structures with low-degree

nodes to a representative node. Our compression techniques are lossless, thus do not

sacrifice the distance query accuracy.

Graph Compression and Index Construction

We first define two types of special graph nodes, i.e., tree node and chain node.

Definition 3.10 (Graph Incident Tree and Tree Node). A tree T = (VT , ET , r) with

the root r is a graph incident tree on a graph G = (V,E) if (1) VT ⊆ V , ET ⊆ E; and

(2) for any path P (u, v) between u ∈ VT and v ∈ V − VT , P must go through the tree

root r. A graph incident tree is maximal if it is not contained in another graph incident

tree. The nodes VT − {r} are called tree nodes and the root r is the entry node of all

tree nodes in T .

i j k
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Figure 3.23: Graph Compression Example

For example, in Figure 3.23, the tree with nodes a, b, c, d, e, f is a maximal graph

incident tree, where the root a is the entry node and nodes b, c, d, e, f are the tree

nodes. A graph incident tree can be simply discovered by recursively removing graph

nodes with degree 1 until the entry node is met (with degree > 1). As the entry node is

the only access point for a tree node to connect to the rest of the graph, it is sufficient

to keep the entry node as a representative. The graph incident tree is thus compressed
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to the entry node by removing all the tree nodes. In addition, the distance from each

tree node to the entry node is saved in an array. After we remove all tree nodes, we

next identify the chain nodes.

Definition 3.11 (Chain Node). Given a graph G = (V,E), a chain node v ∈ V is a

non tree node with degree(v) = 2.

If we trace through the two edges incident on a chain node respectively, the two

nodes which are first encountered through the chain with a degree greater than 2 are

called end nodes. The two end nodes may be identical when a cycle exists. For

example in Figure 3.23, nodes i and j are chain nodes with end nodes h and k. We

will remove the chain nodes and the incident edges, and then connect the two end

nodes with a new edge, whose length is equal to the length of the chain. The distances

from a chain node to both end nodes are saved in an array.

After we remove the tree nodes and chain nodes and their incident edges from a

graph G = (V,E), we obtain a compressed graph G′ = (V ′, E ′). Then the index

structures including the embedded distances, shortest path trees and LCA index tables

are constructed on top of G′, instead of G. As |V ′| < |V |, the index size can be

effectively reduced.

One point worth noting is that, as a graph incident tree is compressed to a single

entry node, the tree structure is lost. When given two query nodes from the same tree,

their LCA cannot be identified from the compressed graph G′. For example, for nodes

e, f in Figure 3.23, their LCA d cannot be identified from the compressed graph, as d

has been removed as a tree node. In order to handle such queries, we select one global

landmark l ∈ V and build the embedding index including the shortest path tree and

LCA index on the original graph; and select the other global landmarks from V ′ and

build the index on the compressed graph. For any two tree nodes on the same graph

incident tree, e.g., e, f , their LCA is the same in all shortest path trees rooted at any

global landmarks. Thus it is sufficient to build the full index on the original graph

for one global landmark only. The space complexity is O(n + (|S| − 1)n′), which is

smaller than O(|S|n) on the original graph.
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Query Processing on Compressed Graph

Given a query (a, b), if a, b ∈ V ′, the local landmark based approximate shortest

distance d̃ist
L
(a, b) can be estimated by Eq.(3.9) in the same way as in the original

graph; otherwise, if at least one of a, b is a tree node or chain node and not in V ′, then

d̃ist
L
(a, b) = min

ra∈map(a),
rb∈map(b)

{dist(a, ra) + d̃ist
L
(ra, rb) + dist(b, rb)} (3.10)

where map(a) contains the representative nodes for a, defined as follows: (1) if a

is a tree node, map(a) contains the corresponding entry node; (2) if a is a chain

node, map(a) contains the two end nodes; and (3) if a ∈ V ′, map(a) is a itself. The

intermediate query d̃ist
L
(ra, rb) can be answered by Eq.(3.9), as ra, rb ∈ V ′, according

to the definition of map().

There are two special cases to be handled separately.

1. If a, b are tree nodes from the same graph incident tree, the query d̃ist
L
(a, b) can

be answered with the local landmark from the index on the original graph. For

example, for query (e, f) in Figure 3.23, d̃ist
L
(e, f) = dist(e, d) + dist(f, d),

where d is the LCA of e and f .

2. If a, b are two chain nodes with the same end nodes, then d̃ist
L
(a, b) =

min{d, |dist(a, r) − dist(b, r)|}, where d is estimated by Eq.(3.10), and r is

either one of the two end nodes. For example, for query (i, j) in Figure 3.23,

there are two paths P1 = (i, j) and P2 = (i, h, n, k, j) between i and j. The

distance d̃ist
L
(i, j) is estimated by the shorter one among P1 and P2.

Our graph compression is lossless. Thus in all the above cases, the estimated

distance based on the compressed graph will be the same as that based on the original

graph.
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Improving Accuracy by Local Search

In this subsection, we propose an online local search (LS) technique which performs a

limited scope local search on the graph and may find a shortcut with a smaller distance

than that based on LLS. Given a query (a, b), for each global landmark l ∈ S, we can

find LCATl
(a, b) in Tl rooted at l. The shortest path between a query node and a local

landmark LCATl
(a, b) can also be obtained from the corresponding SPT Tl. If we trace

the shortest paths from a to all the LCAs (similarly from b to all the LCAs), we can

form two partial shortest path trees rooted at a and b respectively, e.g., Ta and Tb in

Figure 3.24 following Example 3.2. A leaf node in such trees must be an LCA; while

it is also possible an LCA is an intermediate node, if it lies on the shortest path from a

query node to another LCA, e.g., the intermediate node c in Ta in Figure 3.24 (a).
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d
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(b) Tb

Figure 3.24: Partial Shortest Path Trees

The local search expands a partial shortest path tree T by a width of c, i.e., for

each node in T , its neighbors within c hops in the graph are included in the expanded

tree T c. For the two expanded trees T c
a and T c

b rooted at the query nodes, the common

nodes of T c
a and T c

b act as bridges to connect the two query nodes. We will find a path

connecting the two query nodes through a bridge with the smallest distance. If the dis-

tance is smaller than the estimation d̃ist
L
(a, b) by LLS, we will report this local search

distance as a more accurate estimation for the query (a, b). Figure 3.25 shows the

1-hop expanded trees T 1
a and T 1

b , where the 1-hop neighbors of every tree node in Ta

and Tb are included. The yellow shade illustrates (in an abstract way) that each node

in the dashed path is also expanded to include its 1-hop neighbor. Based on the ex-

panded trees there are four paths connecting a and b, i.e., (a, e, c, d, g, b), (a, e, f, g, b),
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Algorithm 3.1: Local Search
Input: A query (a, b) and the expansion width c.

Output: The shortest distance of a path.

1 LCA← {LCATl
(a, b)|l ∈ S};

2 Ta ← partial-SPT(a, LCA);

3 Tb ← partial-SPT(b, LCA);

4 T c
a ← Tree-Expansion(Ta, c);

5 T c
b ← Tree-Expansion(Tb, c);

6 dist←∞;

7 for r ∈ T c
a ∩ T c

b do

8 if distT c
a
(a, r) + distT c

b
(b, r) < dist then

9 dist← distT c
a
(a, r) + distT c

b
(b, r);

10 return dist;

(a, e, p, . . . , b) and (a, . . . , h, . . . , p, . . . , b). As (a, e, f, g, b) has the shortest distance

between a and b, we return the distance as the answer.
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Figure 3.25: 1-Hop Expanded Trees T 1
a and T 1

b

Algorithm 3.1 shows the pseudocode of the local search. Lines 2-3 build two

partial shortest path trees rooted at a and b respectively to all the local landmarks.

Lines 4-5 expand the two trees to include the neighbors within c hops for each tree

node. distT c
a
(a, r) in line 8 represents the path length from a to r in the expanded tree

T c
a .
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The setting of the search width c is a trade-off between the accuracy and the online

query cost. If we set c to 2 or above, for graphs with high average degree, e.g., social

networks, the online search space will explode and the query time will become too

long. On the other hand, if we set c = 0 without edge expansion, it will be faster but

much less accurate than the c = 1 case (note that LS with c = 0 is more accurate than

LLS or the same, since it searches a shortcut between two query nodes by connecting

two partial trees directly). Thus, in our experiment, we set c = 1 to achieve a good

balance.

Comparing Local Search with TreeSketch: TreeSketch [32] is a sketch-based

method for shortest distance/path estimation. It also uses online search to improve

the accuracy. The main differences between TreeSketch and LS include different

search order and stop condition. In TreeSketch, the sketch of node s denoted as Ts

is a tree rooted at s. For a query q = (s, d), TreeSketch performs a bi-directional

search on Ts and Td, and the expansion follows a breadth-first search order on each

side. Let VBFS and VRBFS denote the sets of visited nodes from two sides respec-

tively. Consider u ∈ Ts and v ∈ Td that are two nodes under expansion in the

current iteration. TreeSketch checks if there is an edge from u to a node in VRBFS

or from a node in VBFS to v. If yes, then an s-d path is found and added to a queue

Q. Denote the length of the shortest path in Q as lmin, the algorithm terminates if

dist(s, u) + dist(v, d) ≥ lmin. This early stop condition may miss a better shortcut

and thus return a less optimal answer. Figure 3.26 is an example. l1 and l2 are two

landmarks. For query (s, d), all the solid arrows are edges in Ts ∪Td while the dashed

arrows are not. The solid curves are paths with one or more edges in Ts or Td. Dur-

ing the search process, when b is visited, VBFS = {j, a, f} and VRBFS = {e, c, b},

TreeSketch finds the first shortcut p = p(s, a) ◦ (a, b) ◦ p(b, d) = (s, a, b, c, e, d),

and updates lmin = 5. TreeSketch finds dist(s, f) + dist(b, d) = 5 = lmin and then

terminates the search. In contrast, LS can find a better shortcut p∗ = (s, j, f, h, d)

with length 4 by local search, but p∗ is missed by TreeSketch due to its early stop

mechanism.
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Figure 3.26: Comparing Local Search with TreeSketch

3.3.4. Local Landmark Scheme on Relational Database

Although the proposed memory based LLS and LS methods can estimate an approx-

imate shortest distance between two nodes efficiently, the index size in O(|S|n) in-

creases linearly with the graph size. For very large graphs, the index may become too

large to fit in the memory. This limitation motivates us to consider a scalable disk-

based index. In this subsection, we propose to build a disk-based index on relational

database (RDB) due to its powerful indexing and query optimization mechanisms. In

the following, we will study how to design a database schema to store the index and

how to use RDB features to optimize the query performance.

LLS on Relational Database

We first study how to implement the local landmark scheme on relational database,

denoted as LLSdb. To distinguish, the memory based LLS described before is denoted

as LLSmem.

Database Schema For LLSdb

Recall the local landmark scheme estimates a shortest distance of a query (a, b) as

d̃ist
L
(a, b) = dist(Lab(S), a) + dist(Lab(S), b) in Eq.(3.6). If we store dist(Lab(S), a)

and dist(Lab(S), b) in a relational table, they can be retrieved to answer a shortest

distance query. Thus we create a table, called TblD, with TblD schema = (s, t, d)

where s, t ∈ V are two nodes and d = dist(s, t) is the true shortest distance from

s to t. (s, t) is designated as the primary key to support efficient selection and join

operations on them.

We populate TblD to build a local landmark embedding as follows. On an SPT
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rooted at a global landmark l, consider a path P (v, l) = (v, v1, v2, . . . , vt, l) for

any v ∈ V , we calculate dist(v, vi) = dist(v, l) − dist(vi, l) and insert the tuple

⟨v, vi, dist(v, vi)⟩ into TblD, for i = 1, 2, . . . , t. Algorithm 3.2 shows how to popu-

late TblD using SPTs and the shortest distance dist(v, l), ∀v ∈ V and ∀l ∈ S.

Algorithm 3.2: Constructing TblD
Input: SPTs for landmark set S and dist(v, l), v ∈ V, l ∈ S.

1 for ∀v ∈ V, l ∈ S do

2 Obtain P (v, l) = (v, v1, v2, . . . , vt, l) from SPT Tl;

3 for i = 1, . . . , t do

4 dist(v, vi)← dist(v, l)− dist(vi, l);

5 Insert tuple ⟨v, vi, dist(v, vi)⟩ into TblD;
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Figure 3.27: Example for Building TblD

Example 3.3. Figure 3.27 shows a graph with two global landmarks l1 and l2. Based

on the SPTs rooted at l1 and l2 respectively, we can build TblD on the right, which

only lists tuples with attribute s = a or s = b here.
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LLSdb Query For LLSdb, we express the shortest distance query in relational algebra

as follows.

d̃istLLSdb(x, y) ← Gmin(t1.d+t2.d)(ρt1(σs=x(TblD))

◃▹t1.t=t2.t ρt2(σs=y(TblD))) (3.11)

which is composed of a join operation and an aggregation operation. Firstly, it se-

lects two groups of tuples where s = x and s = y and renames them as t1 and t2

respectively, then it joins t1 and t2 using the condition t1.t = t2.t. Such t1.t is a local

landmark. In LLSdb, any node can be a local landmark, as long as it satisfies the con-

dition t1.t = t2.t. This is different from LLSmem which restricts the local landmarks as

LCAs of two query nodes. Finally, the aggregation operator Gmin finds the minimum

t1.d+ t2.d over all joined tuples.

Accuracy Analysis LLSdb is more accurate, or at least the same accurate as LLSmem,

i.e.,

d̃istLLSdb(x, y) ≤ d̃istLLSmem(x, y)

The proof can be sketched as follows. LLSmem uses LCAs on SPTs as local land-

marks. For any global landmark l ∈ S, we denote LCATl
(x, y) as r. Obviously, tuples

⟨x, r, dist(x, r)⟩ and ⟨y, r, dist(y, r)⟩ are in TblD and they satisfy the t1.t = t2.t con-

dition. Thus the LCAs are a subset of local landmarks considered in LLSdb. Under the

aggregation operator Gmin, we prove d̃istLLSdb(x, y) ≤ d̃istLLSmem(x, y). Example 3.4

shows one such case.

Example 3.4. In Figure 3.27, there are two global landmarks l1 and l2. Given a query

(a, b), LCATl1
(a, b) = c, and LCATl2

(a, b) = l2. Therefore, by LLSmem we have

d̃istLLSmem(a, b) = min{dist(a, c) + dist(b, c), dist(a, l2) + dist(b, l2)} = 3

In comparison, in LLSdb, we have two tuples in TblD, ⟨a, g, 1⟩ and ⟨b, g, 1⟩, by joining

which we have a more accurate estimation as

d̃istLLSdb(a, b) = 1 + 1 < 3 = d̃istLLSmem(a, b)

g is a local landmark providing a shortcut between a, b.
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For the memory based LS, if we set c = 0, it will report the same estimated

distance as LLSdb, since both of them essentially find shortcuts between two query

nodes by joining two partial trees without edge expansion. From this perspective, it is

not surprising that LLSdb achieves a better accuracy than LLSmem.

Local Search on Relational Database

We now study how to implement local search on relational database, denoted as LSdb.

Database Schema For LSdb We create another table TblG which stores the graph

edges E and serves for online expansion. We define the schema TblG schema =

(s, t, d) where e(s, t) ∈ E represents an edge and d = w(s, t) is the edge weight. (s, t)

is designated as the primary key to support efficient selection and join operations on

them. For a graph G(V,E,w), we insert all edges in E and a self-loop for each node

in V to TblG:

TblG ← {⟨u, v, w(u, v)⟩|(u, v) ∈ E} ∪ {⟨v, v, 0⟩|v ∈ V }

The purpose of adding self-loops will be made clear shortly.

LSdb Query We define two slightly different local search queries: unidirectional-

expansion, denoted as LSdbu, and bidirectional-expansion, denoted as LSdbb. We first

express LSdbu in relational algebra as follows.

d̃istLSdbu(x, y) ← Gmin(t1.d+TblG.d+t2.d)(ρt1(σs=x(TblD))

◃▹t1.t=TblG.s TblG

◃▹TblG.t=t2.t ρt2(σs=y(TblD))) (3.12)

It is composed of two join operations. The tuples selected by σs=x(TblD) corre-

spond to a set of shortest paths originating from x to some graph nodes t1.t. The

first join operator expands these shortest paths from x by one edge with the condi-

tion t1.t = TblG.s, and the second join operator connects the expanded paths with the

shortest paths originating from y with the condition TblG.t = t2.t. Conversely if we

perform the second join operation before the first join, this corresponds to expanding
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the shortest paths originating from y and then connecting them with the shortest paths

from x. The final result will be the same regardless of the join order. Here we do not

explicitly specify a join order and leave it to DBMS. The aggregation operator Gmin

finds the minimum t1.d+ TblG.d+ t2.d over all joined tuples.

Note that if t1 has a tuple ⟨x, v, dist(x, v)⟩ and t2 has a tuple ⟨y, v, dist(y, v)⟩,

v ∈ V , then LSdbu will join these two tuples through an intermediate tuple ⟨v, v, 0⟩

corresponding to a self-loop on v and generate a distance of dist(x, v)+0+dist(y, v).

This actually performs no edge expansion and is the same as LLSdb. Thus the purpose

of including self-loops in TblG is to allow both edge expansion and no expansion, with

the hope to generate more accurate distance estimations.

Next we define the bidirectional-expansion LSdbb in relational algebra as follows.

d̃istLSdbb(x, y) ← Gmin(t1.d+g1.d+g2.d+t2.d)

(ρt1(σs=x(TblD)) ◃▹t1.t=g1.s ρg1(TblG)

◃▹g1.t=g2.s ρg2(TblG)

◃▹g2.t=t2.t ρt2(σs=y(TblD))) (3.13)

LSdbb expands the shortest paths from both x and y by one edge respectively through

the first and third join operators, and connects the expanded paths by the second join

operator. It is similar to the memory based local search with the search width c = 1.

We do not consider further edge expansions, as that would lead to an explosive number

of joined tuples.

Here we use one example to illustrate the local search process unidirectional-

expansion and bidirectional-expansion.

Example 3.5. LSdbu performs unidirectional-expansion and evaluates all possible paths

between a and b in Figure 3.28(a). LSdbb, on the other hand, performs bidirectional-

expansion and evaluates all possible paths in Figure 3.28(b). The yellow shade in

figures illustrates (in an abstract way) that each node in the dashed path is also ex-

panded to include its 1-hop neighbor. In this example, LSdbb can find the true shortest

path P (a, b) = (a, e, f, g, b). The search space of LSdbu is a subset of that of LSdbb,



Chapter 3. Querying Shortest Distance 53

x
y

a b

c
d

e f g

h p

d

l1 l2

l3z

(a) LSdbu

x
y

a b

c
d

e f g

h p

d

l1 l2

l3z

(b) LSdbb

Figure 3.28: unidirectional-expansion and bidirectional-expansion

thus LSdbu is less accurate than LSdbb but with shorter response time.

LSdbb contains three join operations. The built-in query optimization in RDB may

generate a query plan by specifying a join order. It may reduce the intermediate joined

results only, but cannot reduce the total number of final joined tuples before aggrega-

tion. The final joined results can be huge, thus cause an unacceptable query response

time. Let us see an example as follows.

Example 3.6. Figure 3.29 shows three tables t1, g1 and t1 ◃▹t1.t=g1.s g1. t1 contains

shortest paths between x and nodes a1, a2, . . . , ap, each of which can be joined with a

tuple in g1 leading to the same node m. Thus the join result contains p tuples denoting

paths between x and m with different distances t1.d+g1.d (the distance column t1.d+

g1.d is omitted in Figure 3.29 due to lack of space). Similarly, Figure 3.30 shows tables

g2, t2 and g2 ◃▹g2.t=t2.t t2. The join result contains q tuples denoting paths between m

and y with different distances g2.d + t2.d (the distance column g2.d + t2.d is omitted

in Figure 3.30 due to lack of space).

When we join these two intermediate results using the condition g1.t = g2.s, we

totally get p × q tuples denoting different paths between x and y. By aggregation

on min(t1.d + g1.d + g2.d + t2.d), only one tuple with the smallest distance will be

returned. Thus all but one of these tuples are a waste of effort. We should try to reduce

the intermediate result size before the final join.
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Figure 3.30: Table g2 Joins t2

Optimization of LSdbb: With careful analysis, we optimize LSdbb as follows:

d̃istLSdbb(x, y) ← Gmin(d1+t2.d+g2.d)

((g1.tGmin(t1.d+g1.d) as d1

(ρt1(σs=x(TblD)) ◃▹t1.t=g1.s ρg1(TblG)))

◃▹g1.t=g2.s (ρg2(TblG)

◃▹g2.t=t2.t ρt2(σs=y(TblD)))) (3.14)

The major optimization is the early evaluation on ρt1(σs=x(TblD)) ◃▹t1.t=g1.s ρg1(TblG)

by the inner aggregation operation g1.tGmin(t1.d+g1.d). The aggregation operation groups

the joined tuples by their destination g1.t, and for each distinct g1.t, the tuples with

non-minimum distance on t1.d + g1.d are eliminated, as these tuples cannot lead to

a path with the minimum distance, when further joining with g2 and t2. In Figure
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3.29, this means we only keep one tuple ⟨x, ai,m, di + d′i⟩ for m in the joined table

where di + d′i is the minimum among all tuples. This tuple will join with tuples

in table g2 ◃▹g2.t=t2.t t2 in Figure 3.30 and produce only q joined tuples, instead of

p× q. Finally the outer aggregation operation will return the tuple with the minimum

distance on (t1.d + g1.d + g2.d + t2.d). This optimization greatly boosts the query

efficiency by 5 to 70 times in our experiment.

Interestingly, we do not apply the same inner aggregation on the join results of

g2 ◃▹g2.t=t2.t t2. Actually we have tested that possibility and it turns out to be slower

than the current version. The reason is when one side is aggregated, the join becomes

an injection; then aggregating the other side will not reduce the number of tuples

generated/evaluated but increase the overhead of inner aggregation evaluation.

Accuracy Analysis In terms of the distance estimation accuracy, we have

d̃istLSdbb(x, y) ≤ d̃istLSdbu(x, y) ≤ d̃istLLSdb(x, y)

The proof can be sketched as follows. LSdbu can subsume LLSdb by joining two tuples

⟨x, v, dist(x, v)⟩, ⟨y, v, dist(y, v)⟩ in TblD, for an arbitrary v ∈ V , through a self-loop

tuple ⟨v, v, 0⟩, which generates an estimated distance dist(x, v) + 0 + dist(y, v). Sim-

ilarly, LSdbb subsumes LLSdb through joining the above two tuples with a self-loop

twice, i.e., joining ⟨x, v, dist(x, v)⟩, ⟨v, v, 0⟩, ⟨v, v, 0⟩ with ⟨y, v, dist(y, v)⟩. LSdbb

subsumes LSdbu through joining with a self-loop and a graph edge, i.e., joining

⟨x, v, dist(x, v)⟩, ⟨v, v, 0⟩, ⟨v, u, dist(v, u)⟩, with ⟨y, u, dist(y, u)⟩. Based on the ag-

gregation operator Gmin, we prove the result. But in terms of query complexity, LSdbb

is the highest, and LLSdb is the lowest. The three RDB approaches LLSdb, LSdbu and

LSdbb are trade-offs between query time and accuracy. A user can choose one method

based on his needs.
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Table 3.3: Network Statistics
Dataset |V | |E| |V ′| |E′| dist

Slashdot 77,360 905,468 36,012 752,478 4.1146

Google 875,713 5,105,039 449,341 4,621,002 7.4607

Youtube 1,157,827 4,945,382 313,479 4,082,046 5.3317

Flickr 1,846,198 22,613,981 493,525 18,470,294 5.5439

NYRN 264,346 733,846 164,843 532,264 27km

USARN 23,947,347 58,333,344 7,911,536 24,882,476 1522km

3.3.5. Experiment

We compare our query-dependent local landmark scheme with global landmark em-

bedding. We present extensive experimental results in terms of accuracy, query effi-

ciency and index size on six large networks. All algorithms were implemented in C++

and tested on a Windows server using one 2.67 GHz CPU and 128 GB memory.

Dataset Description

We use four social networks or webgraphs: Slashdot1, Google Webgraph2, Youtube

[60], and Flickr [60], and two road networks: NYRN3 and USARN3. Table 3.3 lists

the network statistics. |V | and |E| represent the node and edge numbers in the original

graph, while |V ′| and |E ′| represent the numbers in the compressed graph. As we can

see, our proposed graph compression technique effectively reduces the node number

by 38% − 73%. Our embedding index is constructed on the compressed graph. We

also sample 10, 000 node pairs in each network and show the average shortest distance

dist.
1http://snap.stanford.edu/data/soc-Slashdot0902.html
2http://snap.stanford.edu/data/web-Google.html
3http://www.dis.uniroma1.it/∼challenge9/download.shtml
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Figure 3.31: Online Query Time in Milliseconds

Comparison Methods and Metrics

We compare the following embedding methods: (1) Global Landmark Scheme (GLS),

(2) Local Landmark Scheme (LLS) and (3) Local Search (LS) with c = 1. For global

landmark selection, we use random selection and closeness centrality based selection

[64]. We use two landmark set sizes k = 20 and k = 50 in our experiments.

We use the relative error

|d̃ist(s, t)− dist(s, t)|
dist(s, t)

to evaluate the quality of an estimated distance for a query (s, t). As it is expensive to

exhaustively test all node pairs in a large network, we randomly sample 10, 000 node

pairs in each graph as queries and compute the average relative error on the sample

set. In addition, we test the query processing time and the embedding index size.

In the following, we first compare the memory based implementations of different

methods, and then the relational database based implementations.

Memory-based Implementations

Average Relative Error Table 3.4 shows the average relative error (AvgErr) of GLS,

LLS and LS with different global landmark sets selected by Random and Centrality.
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Table 3.4: Average Relative Error
k = 20

SlashD Google Youtube Flickr NYRN USARN

Random

GLS 0.6309 0.5072 0.6346 0.5131 0.1825 0.1121

LLS 0.1423 0.0321 0.0637 0.0814 0.0246 0.0786

LS 0 0.0046 0.0009 0.0001 0.0071 0.009

Centrality

GLS 0.152 0.0426 0.0595 0.0567 0.6458 1.5599

LLS 0.1043 0.029 0.0489 0.0503 0.1536 0.4708

LS 0.0001 0.0074 0.001 0.0003 0.1479 0.4703

k = 50

SlashD Google Youtube Flickr NYRN USARN

Random

GLS 0.4535 0.475 0.4549 0.4559 0.1188 0.0632

LLS 0.0727 0.0142 0.0391 0.0444 0.0103 0.0241

LS 0 0.0022 0.0003 0.0001 0.0042 0.003

Centrality

GLS 0.1385 0.0245 0.0461 0.0524 0.6133 0.7422

LLS 0.0663 0.014 0.0334 0.0284 0.1533 0.4505

LS 0 0.0037 0.0005 0 0.1455 0.4483

LLS reduces the AvgErr of GLS by a large margin in all cases. Under Random

landmark selection strategy, the AvgErr of LLS is one order of magnitude smaller than

that of GLS on most graphs; while under Centrality, LLS reduces the AvgErr by 40%

compared with GLS on average. Furthermore, in most cases the AvgErr of LLS with

k = 20 landmarks is even lower than that of GLS with k = 50 landmarks, and at the

same time, LLS (k = 20) has a smaller embedding index size than GLS (k = 50) (see

the GLS and LLS bars in Figure 3.3.5). This result demonstrates that selecting more

global landmarks for GLS (e.g., k = 50) and using more index space do not necessarily

achieve a better estimation accuracy than LLS (k = 20). Thus simply selecting more

landmarks for GLS may not be an effective solution, as the main bottleneck of GLS is

caused by the query-independent landmark embedding.

LS achieves the best performance in all cases. Its AvgErr is between 0 and the

scale of 10−3 in most cases. In particular, in social networks the average distance is

usually very small, according to the famous rule of “six degrees of separation”. Thus

by a local search with 1-hop expansion, the expanded trees rooted at both query nodes

are very likely to intersect, which helps to find a very short path, or even the shortest
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Figure 3.32: Index Size in MB

path, between the query nodes.

One point worth noting is that, the state-of-the-art techniques for computing short-

est paths and shortest distances on road networks have achieved controlled error rate

and low complexities, with the aid of coordinates [77, 75]. As LLS and LS are designed

for general graphs, the performance improvement by our methods is more significant

on social networks than on road networks.

Online Query Time Figure 3.3.5 shows the query time in milliseconds of different

methods in log scale – GLS, LLS and LS on the compressed graph, LLSori and LSori

on the original uncompressed graph. According to our analysis in Chapter 3.3.2, the

online query complexity is O(|S|) for both GLS and LLS. Even in the largest graph

USARN with 24 million nodes, it only costs 0.196 milliseconds for LLS to process

one query when k = 50. In most cases, LLS is 2− 4 times slower than GLS, which is

a very small factor.

As LS performs online tree expansion and search in query processing, the query

time largely depends on the network size. For example, it costs 0.158 milliseconds to

process one query in Slashdot, but 58 milliseconds in USARN when k = 20, as the

node number of USARN is about 310 times larger than that of Slashdot.

We can also observe that LLS reduces the query time of LLSori by 23% – 70%.

The main reason is that graph compression reduces the index size, thus increases the
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Figure 3.33: Average Relative Error on Queries with Shortest Distance in Different

Ranges

locality of memory access and reduces the amortized time per memory access. Simi-

larly, LS reduces the query time of LSori by 32% on average, as the graph compression

prevents LS from expanding the partial tree to tree/chain nodes unnecessarily.

Index Size Figure 3.3.5 shows the index size in MB of different methods in log scale

– GLS, LLS and LS on the compressed graph, LLSori and LSori on the original uncom-

pressed graph. The index size of LLS is about 2 times that of GLS, as LLS needs to

store extra information including shortest path trees and LCA index tables. LS uses a

little extra space compared with LLS, as LS needs to store the original graph in mem-

ory for edge expansion and local search. Nevertheless, we can see that our LLS and

LS methods use moderate index sizes even for very large networks, e.g., an index of

10 GB (when k = 50) on USARN with 24 million nodes. We can also observe that

the index size of LLS and LS is significantly smaller than that of LLSori and LSori, and

it is reduced by 63% on average, which is consistent with the graph compression ratio

in Table 3.3.

In terms of the index construction time of LLS, it takes less than 1 minute in most

cases, while the longest one takes 354.7 seconds on USARN when k = 50.

Distance Sensitive Relative Error

We evaluate the performance of GLS, LLS and LS on queries in different shortest

distance ranges. For each network, we sort the 10, 000 sample queries in the increasing

order of their actual shortest distances and find the 20th, 40th, 60th, 80th and 100th

percentiles of the shortest distance. Based on this, we partition the 10, 000 queries

into 5 intervals, each containing 20 percent of the queries. We evaluate the AvgErr in
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Figure 3.33 for queries whose shortest distances fall into the five intervals respectively.

For each network we adopt the best landmark selection heuristic, i.e., Centrality for

social networks and Random for road networks. We set k = 50.

We observe that LLS outperforms GLS in all distance ranges on all networks. The

improvement is most significant for queries whose shortest distances are within the

20th percentile. This demonstrates that LLS can provide very accurate estimation for

nearby query nodes while GLS cannot. In particular, we observe that on the two road

networks, the improvement of LLS over GLS within the 20th percentile is about 10

times or more, which is very substantial. This is because the road networks have large

diameters. If two query nodes are nearby but distant from global landmarks, GLS will

provide a very inaccurate distance estimation. In contrast, social networks usually

have a fairly small diameter, which guarantees that the global landmarks will not be

too far from the query nodes. Therefore, on the social networks, the improvement by

LLS is around 2 times within the 20th percentile.

The performance of LS remains very stable in all distance ranges. The AvgErr of

LS is zero or close to zero on most networks. We also observe that, on dense networks

with large average degrees, e.g., Slashdot and Flickr, local search with neighbor ex-

pansion is particularly effective in finding the (nearly) shortest paths. The AvgErr of

LS on Slashdot is zero in all distance ranges.

Relational Database based Implementations

In this experiment, we study the performance of local landmark scheme implemented

on relational database. Specifically we compare LLSdb, LSdbu and LSdbb and report rel-

ative error, query time, index construction time and index size. 20 randomly selected

global landmarks are used. We use Oracle Database 11g, Edition release 11.2.0.1.0

and connect to it through ODBC interface. The disk quota for Oracle system is 100

GB. We find in our experiments that the index size for USARN exceeds the 100 GB

disk quota, so we only report results on the other five networks.

Average Relative Error
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Figure 3.34 shows the average relative error of LLSdb, LSdbu and LSdbb on five

networks. LSdbb has the most accurate estimation. It has zero error on SlashDot and

Youtube, and average error at 10−4–10−3 scale on the other networks. The online

bidirectional search in LSdbb reduces the error of LLSdb by 93% on social networks

on average. LSdbb also outperforms LSdbu. The reduction of relative error is the most

remarkable on SlashDot, Google, and Flickr, i.e., 100%, 76%, and 99%, respectively.

In addition, LSdbu has the second best performance. It outperforms LLSdb with a re-

duction of relative error by 76% on social networks on average. Note that the error on

NYRN is the same for all three methods. This shows that on a network with a large di-

ameter, local search within 1 or 2-hop neighborhood does not help find a shortcut. But

on social networks with much smaller diameters, local search can reduce the relative

error substantially.

In Chapter 3.3.4 we have proved that LLSdb has better precision than LLSmem.

When we compare the average error of LLSdb and LLSmem (in Table 3.4, under 20 ran-

dom global landmarks), we find LLSdb reduces the relative error by 31% on average.

In particular, on NYRN dataset, the average error of LLSdb is only 1
3

that of LLSmem.

This result verifies that LLSdb is more accurate than LLSmem.
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Figure 3.34: Average Relative Error of RDB Algorithms

Online Query Time We report the query time of the three approaches in Figure 3.35

in milliseconds. LLSdb uses the least query time. The query time of LSdbu is 6.67

times that of LLSdb on average. As a disk-based solution with fairly good precision,

LSdbu only uses 13.5 ms query time on average on the five networks, which is very
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cost effective. As for LSdbb, it spends 8 times longer query time than LSdbu on most

networks. Still it spends less than 90.9 ms on 4 out of 5 graphs for query processing,

which is also quite small for a disk-based algorithm.

Index Size Figure 3.36 reports the index size on the disk in MB. LSdbu and LSdbb use

the same disk space since both of them use tables TblD and TblG, thus we use LSdb to

represent both of them. LSdb uses slightly more space than LLSdb since it has to store

the TblG table. The index size of all social networks are within 1 GB in most cases.

However, the index size of NYRN is as large as 8.9 GB although it is a small network

with only 264K nodes. This is because the diameter of NYRN is large while that of

social networks is a small value (less than 8 on the networks in our experiment). The

index time of LLSdb and LSdb shows a similar trend with their index size, as almost all

the index time is spent on database insertion operations on TblD and TblG.

Comparison with TreeSketch

In this experiment, we compare LSdbb with TreeSketch [32], a sketch-based

method implemented in RDF graph database provided by the authors. Figure 3.34

shows that LSdbb reduces the average error of TreeSketch by a large margin. LSdbb has

zero error on SlashDot and Youtube. On the other three networks, the average error of

LSdbb is 2–7 times smaller than that of TreeSketch. Figure 3.35 shows that the query

time of LSdbb is 2–45 times shorter than that of TreeSketch on four out of five graphs.

Furthermore, Figure 3.36 shows the index time and index size of both LSdbb (denoted

as LSdb) and TreeSketch, from which we can see LSdbb uses much smaller index size
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and shorter index time on most graphs than TreeSketch. One reason for the smaller

index size is that we apply our graph compression technique in LSdbb, but TreeSketch

does not have the compression. We also find the implementation of TreeSketch in-

curs an unnecessary index overhead due to the way RDF3x constructs all possible

index configurations which are not really needed for the shortest path estimation. In

conclusion, LSdbb outperforms TreeSketch in all aspects.

3.4. Summary

In this chapter, we devise two landmark embedding schemes for a shortest distance

query, an error bounded landmark scheme and a local landmark scheme. The former

scheme can guarantee an error bound for an estimated distance. Besides, a partition

based method is also proposed which can reduce the offline embedding time by two

orders of magnitude with a slightly increase of estimation error. The latter scheme can

significantly improve the distance estimation accuracy without increasing the offline

embedding or the online query complexity. In addition, it is adapted to the relational

database for better scalability. Extensive experimental results on large-scale social net-

works and road networks demonstrate the effectiveness and efficiency of the proposed

landmark schemes.



CHAPTER 4

QUERYING WEIGHT CONSTRAINT

REACHABILITY

4.1. Problem Definition

4.1.1. Edge Weight Constraint

We first consider an edge-weighted undirected graph G = (V, E, Σ, w), where V is

the set of vertices, E is the set of edges, Σ ⊂ R is the set of real-value edge weights

and w : E 7→ Σ is a function that assigns each edge e ∈ E to a real-value weight

w(e) ∈ Σ. A path P between vertices u and v is denoted as P (u, v) = (u, v1, . . . ,

vl−1, v), where {u, v1, . . . , vl−1, v} ⊆ V and {(u, v1), . . . , (vl−1, v)} ⊆ E. We say

e belongs to P , denoted as e ∈ P , if e is an edge on P . The edge weight constraint

reachability query is defined as follows.

Definition 4.1 (Edge Weight Constraint Reachability (EWCR)). Given a graph

G(V,E,Σ, w), an EWCR query is in the form of q = (a, b, c), where a, b ∈ V and

c is a range constraint on edge weight, e.g., ≥ x, ≤ y, or within [x, y]. q asks whether

there is a path P (a, b) between vertices a and b such that ∀e ∈ P (a, b), w(e) satisfies

the constraint c, e.g., w(e) ≥ x, or w(e) ≤ y, or w(e) ∈ [x, y], where x, y ∈ R. If yes,

we say a and b are reachable w.r.t. the edge weight constraint c.

65
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a gf dcb 22 6 35 73 4e2 h4 6
(a) G(V,E,Σ, w)

a gf dcb 22 33 4e2 h4
(b) The MST T

Figure 4.1: An Example Graph G and Its MST T

Example 4.1. We use a running example throughout this chapter. An undirected graph

G is shown in Figure 4.1(a), where each edge has a real-value weight. To answer an

EWCR query q = (a, g,≤ 4), we can find a path P (a, g) = (a, f, d, b, c, g) in G such

that ∀e ∈ P (a, g), w(e) ≤ 4. Thus vertices a and g are reachable w.r.t. the constraint.

4.1.2. Node Weight Constraint

The WCR query also applies to node-weighted graphs, denoted as G(V,E,Σ, wn),

where wn : V 7→ Σ is a function that assigns each node v ∈ V to a real-value weight

wn(v) ∈ Σ. The node weight constraint reachability query is defined as follows.

Definition 4.2 (Node Weight Constraint Reachability (NWCR)). Given a graph

G(V,E,Σ, wn), an NWCR query is in the form of q = (a, b, c), where a, b ∈ V

and c is a range constraint on node weight, e.g., ≥ x, ≤ y, or within [x, y]. q asks

whether there is a path P (a, b) between vertices a and b such that ∀v ∈ P (a, b), wn(v)

satisfies the constraint c, e.g., wn(v) ≥ x, or wn(v) ≤ y, or wn(v) ∈ [x, y], where

x, y ∈ R. If yes, we say a and b are reachable w.r.t. the node weight constraint c.

Reducing NWCR to EWCR: An NWCR query on a node-weighted graph

G(V,E,Σ, wn) can be reduced to an EWCR query, if we transform G to an edge-

weighted graph G′(V ′, E ′,Σ, w′) as follows. For each edge in G, e(a, b) ∈ E,

we create two weighted edges in E ′, i.e., e(a, vab) ∈ E ′ and e(vab, b) ∈ E ′ with

w′(e(a, vab)) = wn(a) and w′(e(vab, b)) = wn(b). Here vab is a dummy node intro-

duced in V ′. This transformation incurs a small constant-factor overhead on the edge
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set as |E ′| = 2|E|. Then an NWCR query on G can be equivalently answered by an

EWCR query on G′. Hence, we mainly focus on the EWCR query on edge-weighted

graphs. For simplicity, in the following we use WCR to denote the edge weight con-

straint reachability problem.

More generally, our problem setting is not limited to real-value edge or node

weights, actually, it can be extended to any form of edge/node labels as long as they

have a total order, for example, string labels with a total lexicographic order, and

multidimensional features on edges/nodes given a function which maps a multidi-

mensional feature to a total ordered one-dimensional value, e.g., Hilbert curve [55].

Such graphs are commonplace in various scientific areas including bioinformatics and

cheminformatics.

4.1.3. Two Basic Solutions

There are two basic approaches to answer the WCR query. One is online DFS or

BFS search using the weight constraint to confine the search space. Starting from

vertex a, we follow DFS or BFS order to recursively visit all adjacent vertices through

edges whose weights satisfy the constraint, until we reach vertex b or have searched

all reachable vertices without reaching b. The query time is O(|V | + |E|), which is

impractical for online query processing in a realtime system.

The other approach is to pre-compute the weight constraint reachability for all

pairs a, b ∈ V . The query time is O(1), but the space complexity is O(|V |2) for the

constraint ≥ x or ≤ y, or O(|Σ||V |2) for the constraint [x, y], which severely limits

the scalability.

The above two solutions are two extremes in terms of the query time complexity

and index space complexity. In the following we will design novel index structures

for efficient WCR query processing in large-scale networks.
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4.2. An Efficient Memory Algorithm

The user-specified edge weight constraint c can have various forms, such as a half-

bounded interval, e.g., ≥ x, ≤ y, or a bounded interval, e.g., within [x, y]. It is not

hard to see ≥ x and ≤ y are symmetric, thus without loss of generality we assume

the constraint c has the form of ≤ y. We will show later that our proposed algorithms

can be easily extended to handle the bounded interval constraint [x, y]. We first show

a property in WCR for query processing.

4.2.1. Properties of WCR

Given a graph G and a WCR query q(a, b,≤ y), for a path P (a, b) in G, we denote

the maximum edge weight on P (a, b) as P (a, b) = maxe∈P (a,b)w(e). If for every path

P (a, b) in G, P (a, b) > y holds, then we can conclude that a, b are not reachable w.r.t.

the constraint ≤ y. But it is too expensive to enumerate all possible paths P (a, b) in

G and check whether P (a, b) > y holds or not.

Let us consider the cut property [20] of minimum spanning tree (MST) of a graph,

which states that for any cut C in the graph, if the weight of an edge e ∈ C is smaller

than the weights of any other edges in C, then this edge e belongs to all MSTs of

the graph. Let T denote an MST of G. For a vertex pair (a, b), there is a unique

tree path PT (a, b) between a and b on T . Let PT (a, b) = maxe∈PT (a,b)w(e) denote

the maximum edge weight on PT (a, b). Based on the cut property, we can derive the

following lemma.

Lemma 4.1. Given a graph G(V,E,Σ, w), its MST T and an arbitrary vertex

pair (a, b), for any P (a, b) in G, PT (a, b) ≤ P (a, b) holds, i.e., PT (a, b) ≤

minP (a,b){P (a, b)}.

Proof. For an arbitrary vertex pair (a, b), an a-b cut Cab is a set of edges, the removal

of which causes a and b to be in two disjoint components of G. Given an arbitrary

path P (a, b) in G and an arbitrary a-b cut Cab, the intersection of P (a, b) and Cab must
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be non-empty, i.e., P (a, b) ∩ Cab ̸= ∅. Denote the minimum weight of a cut Cab as

Cab = min{w(e)|e ∈ Cab}. Then for any e′ ∈ P (a, b) ∩ Cab, we have

Cab ≤ w(e′) ≤ P (a, b). (4.1)

Let emax denote the edge in PT (a, b) with the largest weight, i.e., emax =

argmaxe∈PT (a,b) w(e). We can divide T into two disjoint components Ta and Tb by

removing emax. Here Ta and Tb represent the connected components in T containing

a and b respectively. Then we obtain an a-b cut C∗
ab of G, C∗

ab = {e(u, v) ∈ E|u ∈

Ta, v ∈ Tb} and emax ∈ C∗
ab. Based on the cut property of MST, emax must be the

edge with the smallest weight in C∗
ab, i.e.,

w(emax) = C∗
ab, (4.2)

as emax belongs to T and no other edges in C∗
ab belong to T .

Combining (4.1) and (4.2), we prove

PT (a, b) = w(emax) = C∗
ab ≤ P (a, b)

for any path P (a, b) in G. �

From Lemma 4.1 we can derive the following theorem to answer a WCR query.

Theorem 4.1. Two vertices a and b are reachable w.r.t. the weight constraint ≤ y in

a graph G⇔ PT (a, b) ≤ y where T is the MST of G.

Proof. 1. ⇒: As a and b are reachable w.r.t. the weight constraint≤ y in the graph

G through a path, denoted as P (a, b), we have P (a, b) ≤ y holds. By Lemma

4.1, we have PT (a, b) ≤ P (a, b) ≤ y.

2. ⇐: As PT (a, b) ≤ y, we know w(e) ≤ y for each edge e ∈ PT (a, b). Thus, a

and b are reachable w.r.t. the weight constraint ≤ y through path PT (a, b) in G.

�

Based on Theorem 4.1, a WCR query q = (a, b,≤ y) can be processed as follows.

We find the unique MST path PT (a, b) between a and b on T and compute the largest
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edge weight PT (a, b). a and b are reachable w.r.t. the weight constraint if and only if

PT (a, b) ≤ y.

Example 4.2. For graph G in Figure 4.1(a), the MST T is shown in Figure 4.1(b).

To answer a WCR query q = (a, g,≤ 4), we find the unique tree path PT (a, g) =

(a, f, d, b, c, g), such that ∀e ∈ PT (a, g), w(e) ≤ 4. Thus vertices a and g are reach-

able w.r.t. the constraint.

An MST can be built in O(|E|) time using Kruskal’s algorithm [54] (with the

union-find technique [20]). All edges in E can be sorted beforehand in O(|E|) time

using radix sort, since the edge weights are from a finite set. A straightforward ap-

proach takes O(|V |) time to find the path PT (a, b) on T to answer a WCR query.

Theorem 4.1 serves as a building block for constructing an efficient index to answer a

WCR query.

4.2.2. Novel Edge Based Indexing

In this subsection, we aim to design a novel index which can answer a WCR query

in O(1) time. According to Theorem 4.1, it is equivalent to solving the following

problem: Given an MST T , compute PT (a, b) for any two vertices a and b in T in

O(1) time.

Let emax be the edge with the maximum edge weight wmax in T . If there are more

than one edge with the same maximum weight wmax, we pick one of them arbitrarily.

We have the following observations.

1. After removing emax, T becomes two disjoint subtrees T1 and T2.

2. For any vertices a in T1 and b in T2, PT (a, b) = wmax.

3. For any two vertices a and b in T1 (or in T2), PT (a, b) can be similarly deter-

mined in T1 (or in T2).

Based on the above observations, for an MST T , we define its edge-based index tree

as follows.
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a
g
fdcb e0=(a,f,2) ee2=(e,f,2)e1=(b,c,2)e3=(b,d,3)e4=(d,f,3)e6=(c,g,4) he5=(g,h,4)

Figure 4.2: The Edge-Based Index Tree T of MST T

Definition 4.3 (Edge-based Index Tree). For an MST T , its edge-based index tree,

denoted as T [T ], is a vertex labeled binary tree, such that: If T contains only one

vertex, T [T ] is a tree with a single vertex labeled 0. Otherwise, let emax be an edge

with the maximum edge weight wmax in T . Suppose after removing emax, T becomes

two disjoint subtrees T1 and T2. T [T ] is recursively defined as follows.

• The root of T [T ] is labeled wmax.

• The left subtree of T [T ] is T [T1].

• The right subtree of T [T ] is T [T2].

For any MST T , from the definition of T [T ], each node v ∈ V (T ) corresponds to a

unique leaf node in T [T ] with a label 0, and each edge e ∈ E(T ) corresponds to a

unique internal node in T [T ] with a label w(e). We use L(v) to denote the label of

any node v in T [T ]. If the context is obvious, we use T to denote T [T ].

Example 4.3. Figure 4.2 shows the edge-based index tree T for the MST T shown in

Figure 4.1(b). A leaf node in circle corresponds to a vertex v ∈ V (T ) and the letter

in the circle denotes the vertex id v. The label of each leaf node in T is 0 and is not

shown in the figure. An internal node with a triple (u, v, w) in rectangle corresponds

to an edge e(u, v) ∈ E(T ) with w = w(e(u, v)). The label of an internal node in T is

w. T organizes all 7 edges in T hierarchically.
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Essentially T is a delicate reorganization of all edges in MST T , and it supports

computing PT (a, b) in O(1) time with little space overhead. T is stored in the memory

as our index named Edge-Index. Next, we discuss query processing using Edge-Index,

followed by the construction algorithm of Edge-Index.

Query Processing: The edge-based index tree T has the following property: for an

internal node v ∈ V (T ), its label L(v) ≤ L(r) where r ∈ V (T ) is any ancestor of v

in T . We have the following lemma.

Lemma 4.2. Given an MST T of a graph G(V, E,Σ, w) and its edge-based index tree

T , ∀a, b ∈ V , we denote the lowest common ancestor of a and b in T as LCAT (a, b).

Then we have

PT (a, b) = L(LCAT (a, b))

Proof. Let us consider the process to construct the edge-based index tree T : We re-

move edges from the MST T one by one in the decreasing order of the edge weight.

After removing a certain edge, the subtree that contains the edge becomes two disjoint

subtrees and the removed edge becomes the root of a subtree in T .

1. Let e be the first edge, whose removal separates a and b in two disjoint subtrees

of T . It means e is the first node created in T that separates a and b, or in other

words, e = LCAT (a, b).

2. Let us consider the time before removing e and all edges with weights > w(e)

are removed. At that time, a and b are still in the same connected subtree in T ,

and e has the largest weight in the remaining edges. It means PT (a, b) ≤ w(e).

3. After removing e in T , a and b are disconnected, which means e is in PT (a, b).

Thus PT (a, b) ≥ w(e).

From items 1–3, we can prove

PT (a, b) = w(e) = L(LCAT (a, b)).

�
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Based on Lemma 4.2, the WCR query q = (a, b,≤ y) can be processed as follows.

On the edge-based index tree T , we find the lowest common ancestor LCAT (a, b)

of a and b. If PT (a, b) = L(LCAT (a, b)) ≤ y, then a and b are reachable w.r.t.

the constraint; otherwise, they are not. The LCA query on an index tree T can be

answered in O(1) time with an O(|V |) size index. [8] provides the technical details of

the indexing and query processing, according to which, the O(|V |) size index can be

constructed in O(|V |) time.

Example 4.4. With the edge-based index tree T in Figure 4.2, to answer the WCR

query q = (a, g,≤ 4), one has to find LCAT (a, g), which is e6 = (c, g, 4). As L(e6) =

4 ≤ 4, a and g are reachable w.r.t. the constraint.

Index Construction: Definition 4.3 gives a straightforward way to build the edge-

based index tree T for an MST T in a top-down fashion. The index construction is

shown in Algorithm 4.1 and is self-explanatory. Line 3 needs O(|V |) time to find

emax with the maximum weight, and it is processed for |V | − 1 times using recursion.

The total time complexity of Algorithm 4.1 is O(|V |2) for constructing Edge-Index.

When the graph contains hundreds of millions of vertices, this time complexity is

unacceptable.

Thus we propose a novel linear-time method (in Algorithm 4.2) to build the edge-

based index tree T from the MST T in a bottom-up fashion, in a way similar to

Kruskal’s algorithm [54].

In Algorithm 4.2, the edge-based index tree T is built with a function R : V (T ) 7→

V (T ) which maps a node to its root. Initially, R maps each node to the node itself as

the root (line 2–3). So all nodes in T are isolated. In each iteration, we pick an MST

edge e(a, b) ∈ E(T ) in the ascending order of w(e), and create an internal node with

a label w(e) in T (line 5–6). In line 7–8, Find-Root returns the current root of a and b

in T respectively. Line 9–10 unions the two subtrees where a and b reside into one, by

linking the two root nodes to the new internal node created in line 6. After inserting

all edges e ∈ E(T ) as internal nodes in T , the edge-based index tree T is constructed.

Algorithm 4.2 adopts the classical union-find algorithm [20]. The Find-Root
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Algorithm 4.1: Edge-Index-Construct-Naive(T )
Input: An MST T .

Output: An edge-based index tree T for T .

1 if T contains a single node then

2 return a tree of a single node labeled 0;

3 emax ← an edge in T with the maximum weight wmax;

4 remove emax from T to generate two trees T1 and T2;

5 T ← a tree with root labeled wmax;

6 T .left← Edge-Index-Construct-Naive(T1);

7 T .right← Edge-Index-Construct-Naive(T2);

8 return T ;

procedure returns the current root of a node in T . It adopts the path compres-

sion technique [20], thus the amortized time complexity for each Find-Root opera-

tion is O(α(|V |)). Here α(n) is the inverse Ackermann function which is a very

slowly growing function, and can be considered as a small constant. As an indicator,

α(22
265536 − 3) = 4. As we totally perform O(|V |) Find-Root operations, the time for

all Find-Root operations is O(|V |). In addition, sorting all edges in E(T ) can be done

in O(|V |) time using radix sort since all edge weights are from a finite set. Hence the

overall time complexity of building an edge-based index tree T is O(|V |).

Example 4.5. The edge-based index tree T in Figure 4.2 is constructed from T in

Figure 4.1(b) as follows. Initially all leaf nodes are isolated and the root of each node is

itself. We first sort the edges in E(T ) in the ascending order of their weights to be the

edge sequence e0, . . . , e6. In the first step, we create an internal node corresponding

to e0(a, f, 2), and link nodes a and f as two children of the e0 node. Next, we create

an internal node corresponding to e1(b, c, 2) and link nodes b and c to it. In the third

step, we create an internal node corresponding to e2(e, f, 2) and link node e and the

current root of node f , i.e., node e0(a, f, 2) to the e2 node. This process iterates until

we insert all 7 edges e0, . . . , e6 as internal nodes into T .
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Algorithm 4.2: Edge-Index-Construct(T )
Input: An MST T .

Output: An edge-based index tree T for T .

1 T ← ∅;

2 R(v)← v, ∀v ∈ V (T );

3 R(e)← e, ∀e ∈ E(T );

4 create a leaf node v labeled 0 in T , ∀v ∈ V (T );

5 for e(a, b) ∈ E(T ) in ascending order of w(e) do

6 create an internal node e labeled w(e) in T ;

7 e.left← Find-Root(a);

8 e.right← Find-Root(b);

9 R(e.left)← e;

10 R(e.right)← e;

11 return T ;

12 Procedure Find-Root(v)

13 if R(v) = v then

14 return v;

15 R(v)← Find-Root(R(v));

16 return R(v);

Lemma 4.3. Constructing Edge-Index takes O(|E|) time and O(|V |) space. Using

Edge-Index, the query time is O(1).

Proof. We first build an MST from G in O(|E|) time, then build the edge-based index

tree and the LCA index in O(|V |) time. Thus the time complexity for constructing

Edge-Index is O(|E| + |V |), or simplified as O(|E|), as |V | ≤ |E| + 1 usually holds,

assuming G is a connected graph. The spaces for both the edge-based index tree and

the LCA index are O(|V |), thus the space complexity is O(|V |). The query time is

O(1) for finding LCAT (a, b) on T . �
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4.2.3. Extension to Other Constraint Formats

In the previous discussions we assume the edge weight constraint has the form of≤ y.

If the user-specified weight constraint is ≥ x, Edge-Index can be applied similarly,

since ≥ x and ≤ y are symmetric. The only change is to build a maximum spanning

tree T ′ of G, instead of a minimum spanning tree. All the complexity results apply to

the ≥ x constraint.

When the weight constraint is a bounded interval [x, y], we can show that

Edge-Index can also be easily extended to handle this more general constraint.

When the Weight Constraint is [x, y]

In this subsection, we describe how to extend Edge-Index to handle the constraint [x, y]

respectively.

The y constraint can be handled in the same way. To satisfy the x constraint as

well, we can simply remove all e ∈ E with w(e) < x. For this purpose, we define the

l-Graph.

Definition 4.4 (l-Graph). Given l ∈ R, we define the l-Graph Gl(V,El,Σl, w) as a

subgraph of G(V,E,Σ, w), such that El = {e|e ∈ E,w(e) ≥ l} and Σl = {l′|l′ ∈

Σ, l′ ≥ l}.

Index Construction: For each l ∈ Σ, we first construct the MST Tl from the l-Graph

Gl. A Tl may be a forest, due to the removal of edges with w(e) < l. It is trivial to

handle this case by adding a virtual root. In the following, we assume Tl is connected

for each l. For each MST Tl, ∀l ∈ Σ, we invoke Algorithm 4.2 to build an edge-based

index tree Tl and build the LCA index for Tl. Both the index tree Tl, ∀l ∈ Σ, and the

LCA index are kept in the memory.

Query Processing: Given a query q = (a, b, [x, y]), we find Tl where l = minl′∈Σ{l′ ≥

x}. Then we compute LCATl(a, b) on Tl. a and b are reachable w.r.t. [x, y] if and only

if PTl
(a, b) = L(LCATl(a, b)) ≤ y. Algorithm 4.3 lists the pseudo code for query

processing by Edge-Index to handle the constraint [x, y].
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Algorithm 4.3: Query-Processing-Edge-Index(Tl, q)
Input: Index Trees Tl, ∀l ∈ Σ, and a WCR q(a, b, [x, y]).

Output: Whether a and b are reachable w.r.t. [x, y].

1 l← minl′∈Σ{l′ ≥ x};

2 r ← LCATl(a, b);

3 return L(r) ≤ y;

Lemma 4.4. To handle a bounded interval constraint [x, y], building Edge-Index takes

O(|Σ||E|) time and O(|Σ||V |) space. Using Edge-Index, the query time is O(1).

We can see from Lemma 4.4, to handle a bounded constraint [x, y], the index

construction time and space complexities increase by a factor of |Σ|, but the query

time complexity is the same as that for the constraint ≥ x or ≤ y.

4.3. An I/O-Efficient Index

The indexing scheme Edge-Index assumes the index can entirely fit into the main

memory, with a space complexity of O(|Σ||V |) to handle the weight constraint [x, y].

When |Σ| or |V | is large which is very common for emerging massive graphs contain-

ing hundreds of millions of vertices, the index size may exceed the memory limit. In

this section we propose an I/O-efficient algorithm which builds compact disk-resident

index for query processing with low I/O cost. We use the basic external memory model

[89] which moves B data items continuously between external and internal memory

as one I/O communication.

A straightforward implementation of the disk-based algorithm is to store all

the |Σ| MSTs on the disk. Given a query q = (a, b, [x, y]), the MST Tl where

l = minl′∈Σ{l′ ≥ x}, is fetched into the memory to answer q. The disk-based in-

dex size is O(|Σ||V |). However, it needs O(|V |/B) I/O for query processing where B

is the page size, as it fetches the whole MST Tl into the memory. Thus indexing MSTs

directly on the disk is not I/O-efficient for query processing. Another approach is to
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store the edge-based index tree Tl as well as its LCA index, ∀l ∈ Σ on the disk. How-

ever, answering queries using the disk-based LCA index is not I/O-efficient because

of the complex structure used in the LCA index [8]. Our goal is to design a compact

disk-based index based on the MSTs to reduce the I/O cost in query processing.

4.3.1. Vertex Coding

For efficient storage and indexing, coding is a commonly used technique. To design

an I/O-efficient disk index, we have an intuitive vertex coding scheme on an MST T

as follows. We pick an arbitrary vertex r ∈ V (T ) as the root of T , thus T becomes a

rooted MST. Given two vertices a and b, we denote the lowest common ancestor of a

and b on such a tree as rab. Since rab lies on the tree path between a and b, we have

PT (a, b) = max{PT (a, rab), PT (b, rab)}.

where PT (a, rab) denotes the tree path between a and rab.

Based on the above equation, we generate a code for every vertex v ∈ V (T ). In

the rooted MST T , we define the level of the root as 0, and the level of a child node

increases that of its parent by 1. For any vertex v at level l of T , we find its ancestors

ri at level i, 0 ≤ i ≤ l− 1. We also pre-compute the maximum edge weight PT (v, ri)

on the path PT (v, ri) from v to ri on T . The code of a vertex v, code(v), is

code(v) = {(ri, PT (v, ri)) | ri is v’s ancestor at level i,

0 ≤ i ≤ l − 1}

The code is stored on the disk as index.

To answer a query q = (a, b, [x, y]), we retrieve the pages containing code(a) and

code(b), from both of which we find the lowest common ancestor rab of a and b in

the rooted MST. Thus PT (a, b) = max{PT (a, rab), PT (b, rab)} can be determined

by the two codes with no extra overhead. The I/O cost for a query is O(h/B) on

retrieving code(a) and code(b), where h is the tree height of the rooted MST (h is also

the maximum number of ancestors). The code based index uses O(|V |h) space for

one MST, or O(|Σ||V |h) for |Σ|MSTs.
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Figure 4.3: Rooted MST and Its Balanced Tree

Example 4.6. Figure 4.3(a) shows a rooted MST of T where vertex b is an arbitrarily

picked root. To answer a query q = (a, g, [2, 4]), we retrieve

code(a) = {(b, PT (a, b)), (d, PT (a, d)), (f, PT (a, f))},

code(g) = {(b, PT (g, b)), (c, PT (g, c))}.

We can find LCA(a, g) = b. So

PT (a, g) = max{PT (a, b), PT (g, b)} = 4.

The above coding method is not I/O efficient, because an MST may appear in

arbitrary shape and thus the height h of an MST is O(|V |) in the worst case, which

causes O(|V |/B) I/O cost for query processing and O(|Σ||V |2) index size in the worst

case, and is too expensive. To address this issue, we design a novel tree re-balancing

technique to reorganize the MST into a balanced rooted tree, such that the height has

an upper bound of log2 |V |. With the balanced tree, our disk-based algorithm only

needs four I/Os for query processing and O(|Σ||V | log |V |) index size on the disk.

In the following, we will first introduce the tree re-balancing technique in Chapter

4.3.2, and then propose the disk-based index construction method in Chapter 4.3.3 and

query processing algorithm in Chapter 4.3.4.
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4.3.2. MST Re-balancing

In the vertex coding scheme, the key to reduce the I/O cost in query processing and the

disk-based index size is to make the height h of a rooted MST T as small as possible.

However, when T is a chain, even if we pick the center node of T as its root, its height

h is still as large as |V |
2

. Thus we need to re-balance T in order to make h small.

Suppose we select a certain vertex r ∈ V (T ) as the root of T . Underneath the root r,

T has p ≥ 1 disjoint subtrees T1, T2, . . . , Tp. For each subtree Ti, we select a vertex

ri ∈ V (Ti) as the root of Ti for the balance purpose. This re-balancing process is

recursively done in a top-down fashion to the leaf nodes. Although the re-balanced

tree is no longer an MST, the vertex coding based index and query processing can still

be applied based on the following property.

Property 4.1. Once the root r of T is fixed, no matter how the subtrees T1, T2, . . . , Tp

under r are re-balanced, for any two vertices a ∈ V (Ti) and b ∈ V (Tj) for i ̸= j,

their LCA in the re-balanced tree is still r, as a and b are from disjoint subtrees. Fur-

thermore, r must lie on PT (a, b). The maximum weights PT (a, r) and PT (b, r) are

pre-computed based on the MST paths PT (a, r) and PT (b, r) in the original unbal-

anced MST. PT (a, b) = max{PT (a, r), PT (b, r)} can be computed in the same way

regardless of how the subtrees T1, T2, . . . , Tp are re-balanced.

The main purpose of the balanced tree is to reduce the tree height, thus reduce the

code length and the disk-based index size. For an MST T , we define its balanced tree

B[T ].

Definition 4.5 (Balanced Tree). For an MST T , its balanced tree, denoted as B[T ], is

a rooted tree such that

• The root node r of B[T ] corresponds to a node in T .

• The height of B[T ] is at most log2 |V (T )|.

• Underneath the root r, T has p ≥ 1 disjoint subtrees T1, T2, . . . , Tp, then the

subtrees under root r in B[T ] are B[T1],B[T2], . . . ,B[Tp].
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Algorithm 4.4: Find-Median-Node(T )
Input: An MST T .

Output: The median node vm of T .

1 Traverse T from an arbitrarily picked root r′;

2 vm ← the lowest node u with subtree rooted at u satisfying |V (Tu)| > ⌊ |V (T )|
2
⌋;

3 return vm;

If the context is obvious, we will use B to denote B[T ].

Example 4.7. Figure 4.3(b) shows the balanced tree B for the unbalanced rooted MST

in Figure 4.3(a). We pick node b as the tree root at level 0, and nodes f and g as the

roots of the left and right subtrees at level 1. The tree height h = 2 < log2 8 = 3, as

|V (T )| = 8. For vertices a and g, we can see that their lowest common ancestor in B

is still vertex b, although the left and right subtrees are re-balanced.

Before introducing our algorithm to construct the balanced tree, we first study a

special type of node in an MST T called median node which is defined as follows.

Definition 4.6 (Median Node). Given an MST T , a node vm ∈ V (T ) is a median node

of T , if for each neighbor of vm, i.e., ∀v′ ∈ {v|(vm, v) ∈ E(T )}, |V (Tv′)| ≤ ⌊ |V (T )|
2
⌋

holds, where Tv′ is the incident subtree of vm rooted at a neighbor node v′ and |V (Tv′)|

is the number of nodes in Tv′ .

We will select vm as the root of a balanced tree B. However, does the median node

always exist? If yes, how to find it?

Algorithm 4.4 gives a constructive proof that such a median node always exists

– the lowest node u with the subtree size satisfying Su = |V (Tu)| > ⌊ |V (T )|
2
⌋ is the

median node. We start from an arbitrarily picked root r′ ∈ V (T ) to traverse the tree

and find the median node. By ‘lowest’, we guarantee for each child node uc of u,

|V (Tuc)| ≤ ⌊
|V (T )|

2
⌋ holds. We denote u’s parent as up. After we re-root the tree on u,
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Algorithm 4.5: Balanced-Tree-Construct(T )
Input: An MST T .

Output: A balanced tree B for T .

1 if |V (T )| = 1 then

2 return a tree with the only node in T ;

3 r ← Find-Median-Node(T );

4 B ← a tree of a single node r;

5 consider disjoint subtrees T1, T2, . . . , Tp under r in T ;

6 for i = 1 to p do

7 Bi ← Balanced-Tree-Construct(Ti);

8 add Bi to be a subtree under r in B;

9 return B;

the size of subtree rooted at node up is

|V (Tup)| = |V (T )| − Su

≤ |V (T )| − ⌊|V (T )|
2
⌋ − 1

≤ ⌊|V (T )|
2
⌋

Therefore, we prove for each neighbor v of u, the subtree rooted at v has a size satis-

fying |V (Tv)| ≤ ⌊ |V (T )|
2
⌋. Thus u is a median node by definition. Algorithm 4.4 costs

O(|V (T )|) time to traverse the tree and find the median node.

Given an MST T , we choose the median node as the root, and construct a balanced

tree recursively based on Definition 4.5. The algorithm to construct the balanced tree

B for T is shown in Algorithm 4.5 and is self-explanatory. We have the following

theorem.

Theorem 4.2. Given an MST T , the height of the balanced tree B[T ] built is at most

log2 |V (T )|.

Proof. Let h(B) be the height of the tree B, and h(n) be the maximum height of the
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Table 4.1: Complexity Results for Bounded Interval Constraint [x, y]
Methods Index Time Index Size Query Time

Edge-Index (memory-based) O(|Σ||E|) O(|Σ||V |) O(1)

Balanced-Index (disk-based) O(|Σ||E|+ |Σ||V | log |V |) O(|Σ||V | log |V |) 4 I/Os

balanced tree B[T ] of any tree T with n nodes. Obviously, h(n) is a nondecreasing

function. In Algorithm 4.5, we find a median node r in T , whose removal from T

generates p disjoint trees T1, T2, . . . , Tp. Since r is a median node, we have |V (Ti)| ≤

⌊ |V (T )|
2
⌋, ∀1 ≤ i ≤ p. From the construction of B, we know

h(B[T ]) = max
1≤i≤p

h(B[Ti]) + 1

≤ max
1≤i≤p

h(⌊|V (T )|
2
⌋) + 1 = h(⌊|V (T )|

2
⌋) + 1

Thus,

h(n) = max
∀T,s.t.|V (T )|=n

h(B[T ])

≤ h(⌊n
2
⌋) + 1

≤ h(⌊ n
22
⌋) + 2

≤ · · · ≤ h(1) + log2 n = log2 n

Hence we prove h(B[T ]) ≤ h(|V (T )|) ≤ log2 |V (T )|. �

Lemma 4.5. The time complexity for Algorithm 4.5 to construct the balanced tree B

for tree T is O(|V (T )| log |V (T )|).

Proof. There are at most log2 |V (T )| levels in B, and in each level, finding median

nodes for all subtrees on the level takes at most O(|V (T )|) time. The total time com-

plexity is O(|V (T )| log |V (T )|). �
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Algorithm 4.6: Balanced-Index-Construct(G)

Input: A graph G(V,E,Σ, w).

Output: Balanced-Index for G.

1 I ← an empty external code index;

2 O ← an empty external offset index;

3 for all l ∈ Σ do

4 Tl ←MST for Gl;

5 Bl ← Balanced-Tree-Construct(Tl);

6 for all v ∈ V (Bl) do

7 code(v)← ∅;

8 for all v’s ancestor u in a top-down fashion do

9 PTl
(v, u)← the path from v to u on Tl;

10 code(v).Append((u, PTl
(v, u)));

11 O.Append(I.offset);

12 I.Append(code(v));

4.3.3. Disk-Based Index Construction

Our disk-based Balanced-Index includes two parts, namely, a code index I and an

offset index O. I stores all the codes code(v), ∀v ∈ Tl and ∀l ∈ Σ. For each node

v, code(v) is a list of (key, value) pairs, where key is the node id for each ancestor

of v in B[Tl] from the root to v, and value is the maximum edge weight on the path

from v to key in Tl, i.e., PTl
(v, key). O stores the offsets for all codes in I, because

codes are of different sizes, as nodes at different levels in B[Tl] have different number

of ancestors.

Algorithm 4.6 constructs the Balanced-Index from a graph G. We first initialize I

and O to be two empty lists. Then for each weight l ∈ Σ, we construct the balanced

tree Bl from the MST Tl. For each node in Bl, we calculate its code as described above.

Note that the maximum edge weight PTl
(v, u) on the path from v to v’s ancestor u is
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calculated in Tl, not in Bl. Finally we append the code and the offset to I and O

respectively.

Lemma 4.6. Using Algorithm 4.6, Balanced-Index for graph G can be constructed

using O(|Σ||E|+ |Σ||V | log |V |) time and O(|Σ||V | log |V |) disk space. The I/O cost

to store the index is O( |Σ||V | log |V |
B

) where B is the page size.

Proof. We first build |Σ| MSTs in O(|Σ||E|) time, and |Σ| balanced trees in

O(|Σ||V | log |V |) time. This uses O(|V |) memory space for processing one MST

and balanced tree at a time. We also need O(|Σ||V | log |V |) time and disk space to

calculate and store all the codes from the balanced trees, because each balanced tree

has |V | codes and each code has at most log2 |V | (key, value) pairs. Since creating I

and O uses sequential I/Os, the total I/O cost is O( |Σ||V | log |V |
B

). �

4.3.4. Query Processing

We show how to process queries using the disk-based offset indexO and code index I

in Algorithm 4.7. Given a query q = (a, b, [x, y]), find l = minl′∈Σ{l′ ≥ x}. Suppose

l is ranked rl in Σ, and the id of node a in graph G is ida. Let p = rl × |V |+ ida, we

can get the offset of code(a) in I by retrieving the p-th element from indexO with one

I/O. Using the offset, we can retrieve code(a) from index I, which contains at most

log2 |V | (key, value) pairs. This operation needs one I/O since one page is enough to

hold log2 |V | pairs in a code for a very large |V |, i.e., in the scale of O(2B), where B

is the page size. We set B = 4096 bytes in our implementation. Similarly, we retrieve

code(b) from index I. We compare the i-th element in code(a) with the i-th element

in code(b) one by one in a top-down fashion, until they are not referring to the same

node. The last node with code(a)[i].key = code(b)[i].key corresponds to the LCA of

a and b in Bl. We have

PTl
(a, b) = max{code(a)[i].value, code(b)[i].value}

Thus we return true if PTl
(a, b) ≤ y, and return false otherwise. We totally need four

I/Os to retrieve the index entries for a and b to answer a WCR query. The offset index
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Algorithm 4.7: Query-Processing-Balanced-Index(I,O, q)
Input: The code index I and the offset index O, and a WCR query

q(a, b, [x, y]).

Output: Whether a and b are reachable w.r.t. [x, y].

1 l← minl′∈Σ{l′ ≥ x};

2 oa ← O.Get-Offset(l, a); code(a)← I.Get-Code(oa);

3 ob ← O.Get-Offset(l, b); code(b)← I.Get-Code(ob);

4 i← max{j|code(a)[j].key = code(b)[j].key};

5 return max{code(a)[i].value, code(b)[i].value} ≤ y;

O contains |Σ||V | offset values, and is typically small enough to fit in the memory.

Thus if O is in the memory, we only need two I/Os for query processing.

Lemma 4.7. Answering a WCR query with Balanced-Index by Algorithm 4.7 takes

O(log |V |) time and four I/Os.

Proof. The I/O cost is on retrieving the offsets fromO and the codes from I. We need

one I/O to retrieve each offset. The number of (key, value) pairs in a code is at most

log2 |V | and is small enough to fit into one page, thus we can use one I/O to retrieve

the code for each node. Thus we totally need four I/Os. After retrieving the codes into

memory, in the worst case, we need to traverse all elements in the two codes once to

find the LCA of a and b in Bl, which needs O(log |V |) time. �

The disk-based algorithm can be applied directly to solve the half-bounded con-

straint ≥ x and ≤ y. The only difference is that, we build only one balanced tree B

from the MST of the graph G. Thus the index construction time is O(|E|+|V | log |V |)

and the disk index size is O(|V | log |V |). The query time is the same as in Lemma

4.7. Finally, Table 4.1 summarizes the complexities of our proposed algorithms.
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4.4. Experiments

In this section we perform extensive experimental studies on real and synthetic

datasets. We systematically test our memory algorithm Edge-Index and the I/O-

efficient algorithm Balanced-Index. We report three performance measures, index

construction time (IT), index size (IS), and query time (QT). All our algorithms are im-

plemented in C++, and our experiments are performed on a machine with a 2.67GHz

CPU and 12GB memory.

Besides the two algorithms we proposed, we also test the following baseline meth-

ods for comparison.

1. Naive-Search Methods: We take three basic search approaches, depth-first

search (DFS), breadth-first search (BFS), and bi-directional search (BIS) [24],

as memory-based baselines. Given a query q = (a, b, [x, y]), to find a valid path

between a and b, Naive-Search only visits edges which satisfy the [x, y] con-

straint. Being different only on the searching order, they share the same index

time O(|E| log |E|) (for pre-sorting all graph edges according to the start node

id of the edges, if the input is not sorted), index size O(|V | + |E|) (for storing

the original graph G), and worst-case query time O(|V |+ |E|).

We also use them as disk-based baselines by adapting them to external memory,

denoted as Ext-DFS, Ext-BFS, and Ext-BIS respectively. In the preprocessing

phase, we need to pre-sort all edges in memory in O(|E| log |E|) time, and then

sequentially store the adjacency lists on disk with O(|E|/B) I/Os. The disk-

based index takes O(|E|) size. In the online phase, when extending a node v,

it needs O(1 + degree(v)/B) I/Os to fetch v’s neighbors from disk. Thus the

total number of I/Os for query processing is O(
∑

v∈V (1 + degree(v)/B)) =

O(|V |+ |E|/B) I/Os in the worst case.

2. MST-Index: MST-Index is a memory-based baseline, which builds |Σ|MSTs in

memory, denoted as Tl, ∀l ∈ Σ. Given a query q = (a, b, [x, y]), MST-Index
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Table 4.2: Real Network Statistics
Network |V | |E| |Σ|

Facebook (Day) 63,731 440,384 862

Facebook (Hour) 63,731 440,384 19,657

USARN 23,947,347 29,166,672 12

finds l = minl′∈Σ{l′ ≥ x} and computes PTl
(a, b) on Tl. The index time and

space complexities of MST-Index are the same as those of Edge-Index, but its

query time is O(|V |).

3. External-MST: External-MST is a disk-based baseline, which stores |Σ| MSTs

on disk. Given a query q = (a, b, [x, y]), External-MST finds l = minl′∈Σ{l′ ≥

x} and fetches the MST Tl into the memory. Then it computes PTl
(a, b) on Tl.

It uses O(|V |/B) I/Os for query processing.

4. Sampling-Tree [42] and 2-Label-Hop [92]: These two approaches handle label-

constraint reachability (LCR) on directed graphs, where the labels appearing

on the path from a node u to another node v should be a subset of a user pro-

vided label set. In terms of problem hardness, LCR is more difficult than WCR.

But since LCR is the closest to our WCR problem in the literature, we adapt

Sampling-Tree and 2-Label-Hop to answer WCR query on undirected graphs for

performance comparison.

4.4.1. Experiments on Real Datasets

In this experiment, we evaluate the performance of different methods on two real

world datasets. The first is the Facebook New Orleans network1 [88] over a period

of two years. A node represents a user and an undirected edge denotes a user-to-user

friendship link. Each edge has a weight denoting the UNIX timestamp with the time of

link establishment. We generalize the timestamps into two granularities, hour and day.

The two resulting networks are denoted as Facebook (Hour) and Facebook (Day). The

1http://socialnetworks.mpi-sws.org/data-wosn2009.html
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Table 4.3: Memory-based Algorithms on Real Dataset Results (IT in Seconds, IS in

GB, QT in Microseconds)
Naive-Search MST-Index Edge-Index

IT IS QT IT IS QT IT IS QT

DFS BFS BIS

Facebook(Day) 0.4 0.01 1,098 1,429 2,324 27.9 0.66 1 48.9 2.20 1

Facebook(Hour) 0.4 0.01 1,500 1,377 1,860 - > 12G - - > 12G -

USARN 33.7 0.89 32,462 30,868 31,325 119.0 3.45 1,382 469.9 11.49 4

Table 4.4: Disk-based Algorithms on Real Dataset Results (IT in Seconds, IS in GB,

QT in Microseconds)

Naive-Search External-MST Balanced-Index

IT IS QT IT IS QT IT IS QT

Ext-DFS Ext-BFS Ext-BIS

Facebook(Day) 0.6 0.01 31,368 48,152 45,405 41.8 0.66 772 125.6 2.98 11

Facebook(Hour) 0.5 0.01 35,325 57,366 47,533 922.3 15.03 749 3336.3 68.43 11

USARN 48.8 0.89 294,521 64,471 29,385 146.9 3.45 422,810 1425.9 6.19 18

second graph is the USA road network2, a representative of very large-scale networks.

A node represents an intersection or endpoint while an edge represents a road segment.

We generate 12 weights from 10 to 120 with a step size of 10, and randomly assign a

weight to each edge to represent the road speed limit. Table 4.2 lists the statistics of

these real networks.

We generate and test 10,000 queries for each real network. All the queries have

the constraint format of [x, y], where x, y are randomly picked from Σ. Table 4.3

and Table 4.4 show the index time (in seconds), index size (in GB) and average

query time (in microseconds) of memory-based and disk-based algorithms respec-

tively. Sampling-Tree and 2-Label-Hop cannot finish index construction on any of

these datasets within 12 hours. The comparisons are as follows.

Memory-based Algorithms (Table 4.3). The query time of Edge-Index and

MST-Index are the same on Facebook (Day), but on USARN with 24 million nodes,

2http://www.dis.uniroma1.it/∼challenge9/download.shtml
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the query time of MST-Index increases dramatically to 1382 microseconds, which

is 345 times slower than Edge-Index. This is because the query time complexity

of MST-Index is O(|V |). The index time of Edge-Index is 1.75–3.95 times that

of MST-Index, and the index size of Edge-Index is about 3 times larger, because

Edge-Index needs to build edge-based index trees and LCA index. Both methods run

out of memory on Facebook (Hour) on indexing due to the large number of weights,

|Σ| = 19, 657. Edge-Index uses 13.9–122.3 times longer index time and 12.9–220.0

times larger index size than Naive-Search due to the |Σ| factor. But its query time

is within 4 microseconds, three orders of magnitude faster than that of Naive-Search,

which takes 1,098 to 32,462 microseconds.

Disk-based Algorithms (Table 4.4). The query time of Balanced-Index is very stable

on all networks, taking 11 or 18 microseconds. The query time of External-MST is

orders of magnitude longer than that of Balanced-Index, especially on USARN with

24 million vertices, as it takes O(|V |/B) I/Os to fetch an MST. The index size of

Balanced-Index is 2.85–4.3 times larger than that of External-MST and the index

time is 3–10 times longer. Both methods do not suffer from the memory limit as

they build disk-based index. Balanced-Index’s index size is 6.95–6843 times larger

than that of Naive-Search, since the index size of Balanced-Index is linear with |Σ|

whereas that of Naive-Search is O(|E|), not affected by |Σ|. But the query time of

Balanced-Index is within 18 microseconds in all cases, 2,851–16,362 times faster than

that of Naive-Search, which takes 29,385 to 294,521 microseconds.

Summary. Our memory method Edge-Index has a very low and stable query time.

But the memory index size can be a bottleneck for Edge-Index (also for baseline

MST-Index). Naive-Search only stores the original graph which is compact, but its

query time is three orders of magnitude longer. In fact, all the baseline methods,

Naive-Search, MST-Index and External-MST have a long query time especially when

|V | is large. In contrast, our disk-based Balanced-Index is very scalable and the query

time remains very low and stable regardless of the network size, the edge density, or

the distinct weight number. The choice of algorithm depends upon the network size
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Figure 4.4: Memory-based algorithms on synthetic datasets, varying |E|/|V | from 2

to 1024, |V | = 105, |Σ| = 100
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Figure 4.5: Memory-based algorithms on synthetic datasets, varying |V | from 105 to

107, |E|/|V | = 2, |Σ| = 100

and the available memory.

4.4.2. Memory-based Algorithms on Synthetic Datasets

To test the parameter sensitivity of different methods, we generate a collection of

random graphs based on Erdös-Rényi model [46] by varying three parameters |E|/|V |,

|V | and |Σ|. |E|/|V | is the density of the graph. The default values are |E|/|V | = 2,

|V | = 105 and |Σ| = 100. We assign a random weight to each edge in the graphs. The

edge weights follow a uniform distribution.

We first test our memory algorithm Edge-Index. For comparison, we also test the

baselines, main memory Naive-Search (DFS, BFS and BIS) and MST-Index. We test

10, 000 random queries on each graph, and report index construction time (in seconds),
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Figure 4.6: Memory-based algorithms on synthetic datasets, varying |Σ| from 102 to

104, |E|/|V | = 2, |V | = 105

index size (in GB) and the average query time (in microseconds). All the queries have

the constraint format of [x, y], where x, y are random real numbers from Σ.

Varying Density: In this experiment, we vary the edge density |E|/|V | from 2 to

1024 in log scale, and fix |V | = 105 and |Σ| = 100. Figures 4.4(a)-(c) show the index

construction time, index size and query time in log scale, respectively.

The index time of Edge-Index and MST-Index increases with the density |E|/|V |,

or equivalently with |E| as |V | is fixed, since they both take O(|Σ||E|) time to build

MSTs. In addition, Edge-Index needs to build edge-based index trees and LCA index

in O(|Σ||V |) time, thus its index time is longer. But the margin between Edge-Index

and MST-Index decreases with the increase of |E|, as the MST construction time

dominates LCA index building time given a large |E|. The index time of Naive-Search

is linear with |E| since it is dominated by the loading cost of the graph, |E|/B I/Os,

which is much larger than O(|E| log |E|) sorting cost.

The index size of Edge-Index and MST-Index is not affected by the density.

MST-Index uses 0.12 GB space for indexing MSTs, each of which contains |V | ver-

tices; Edge-Index uses 0.40 GB to store the edge-based index trees, each of which

contains ≤ 2|V | vertices, as well as the LCA index. In contrast, the index size of

Naive-Search increases linearly with |E|. When |E|/|V | = 1024, Naive-Search uses

6 times larger index size than Edge-Index.

Edge-Index takes 2 microseconds for query processing via an O(1) LCA operation.
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Thus its query time is not affected by the density. The query time of MST-Index

is around 3–4 microseconds when the density changes. As it needs to search the

MST online for the path between two query nodes, the query time depends on the

MST structure and how distant two query nodes are on the MST. The query time

of Edge-Index is 915–3,682 times faster than that of DFS and BFS on graphs with

different density. Although BIS slightly improves DFS and BFS (by 2–10 times) by

reducing the searching space, it is still at least two orders of magnitude slower than

Edge-Index.

Varying Vertex Number: In this experiment, we vary |V | from 105 to 107 in log scale,

and fix |E|/|V | = 2 and |Σ| = 100. Figures 4.5(a)-(c) show the index construction

time, index size and query time in log scale, respectively.

The index time of all algorithms increases with |V |, as |E| increases with |V |

given a fixed density. Since Edge-Index needs to build edge-based index trees and

LCA index, its index time is about 2.6 times that of MST-Index, and 93 times longer

than that of Naive-Search. The index size of all methods increases linearly with

|V |. Edge-Index uses index size about 3.3 times more than MST-Index, and 71 times

more than Naive-Search. When |V | = 107, the index size of both Edge-Index and

MST-Index exceeds the 12 GB memory limit, but the index size of Naive-Search is

much smaller by keeping the original graph only. The query time of Edge-Index re-

mains 2 microseconds when |V | increases, whereas that of MST-Index increases lin-

early with |V | as the query time is O(|V |). When |V | = 106.5, the query time of

MST-Index is 20 times that of Edge-Index, which is a very big difference. The query

time of Naive-Search increases linearly with |V | and is three to five orders of mag-

nitude longer than Edge-Index. When |V | = 107, it takes 1.5 seconds on average to

answer one query.

Varying Distinct Weight Number: In this experiment, we vary |Σ| from 102 to 104

in log scale, and fix |E|/|V | = 2 and |V | = 105. Figures 4.6(a)-(c) show the index

construction time, index size and query time in log scale, respectively.

The index time and size increase linearly with |Σ| for both Edge-Index and
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Table 4.5: Online Performance of Memory-based Algorithms
Dependency Response Time

Naive-Search Linear with |V | 481 – 1, 892, 083 µs

MST-Index Linear with |V | 3 – 57 µs

Edge-Index None 2 µs

MST-Index. The index time of Edge-Index is 2.4 times that of MST-Index, and the

index size of Edge-Index is 3.3 times larger. Both methods run out of memory when

|Σ| = 104. The query time of Edge-Index remains 2 microseconds, while that of

MST-Index remains 3 microseconds. This demonstrates that our query processing is

not affected by the weights appearing in the graph or in the query. The index time, in-

dex size and query time of Naive-Search remain stable when increasing |Σ|. Its query

time is three orders of magnitude longer than that of Edge-Index and MST-Index.

Summary. Edge-Index takes only 2 microseconds query time in all networks which

is very stable and fast. The query time difference between Edge-Index and MST-Index

increases with |V | linearly, thus can be very significant when |V | is large. Edge-Index

uses 2–3 times more index time and space than MST-Index, which is a small overhead.

When |V | = 107 or |Σ| = 104, both Edge-Index and MST-Index run out of the 12 GB

memory limit. Naive-Search uses much smaller index time and size. But its query

time is at least three orders of magnitude longer than that of Edge-Index, moreover,

it increases linearly with |V | and |E|. This is prohibitive for an online system. The

online performance is summarized in Table 4.5.

4.4.3. Disk-based Algorithms on Synthetic Data

We test our disk-based algorithm Balanced-Index on the identical set of random graphs

with that of our memory-based approaches. For comparison, we also test the following

baseline methods, Naive-Search (Ext-DFS, Ext-BFS and Ext-BIS) and External-MST.

Naive-Search stores sorted adjacency lists on disk and External-MST stores |Σ|MSTs

on disk. In query processing, Naive-Search traverses along edges which satisfy the
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Figure 4.7: Disk-based algorithms on synthetic datasets, varying |E|/|V | from 2 to

1024, |V | = 105, |Σ| = 100

 0.1

 1

 10

 100

 1000

 10000

 100000

 100000  1e+06  1e+07

Naive-Search

External-MST

Balanced-Index

(a) Index Time (seconds)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100000  1e+06  1e+07

Naive-Search

External-MST

Balanced-Index

(b) Index Size (GB)

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100000  1e+06  1e+07

Ext-DFS

Ext-BFS

Ext-BIS

External-MST

Balanced-Index

(c) Query Time (microseconds)

Figure 4.8: Disk-based algorithms on synthetic datasets, varying |V | from 105 to 107,

|E|/|V | = 2, |Σ| = 100

[x, y] constraint, while External-MST loads an MST Tl where l = minl′∈Σ{l′ ≥ x} to

answer a WCR query.

Varying Density: In this experiment, we vary the edge density |E|/|V | from 2 to 1024

in log scale, and fix |V | and |Σ|. Figures 4.7(a)-(c) show the performance measures.

The index time of Balanced-Index is about 4 times that of External-MST when the

density is small, i.e., |E|/|V | = 2− 16, but the margin decreases with the density in-

crease. Balanced-Index uses 32 times longer index time than Naive-Search on average,

but the margin decreases dramatically to less than 2 when |E|/|V | ≥ 100.

The index size of External-MST is 0.12 GB under different density values. The

index of Balanced-Index is about 4.5–7.3 times larger, as the vertex coding based index

takes O(|Σ||V | log |V |) space. Naive-Search’s index size increases linearly with |E|,
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Figure 4.9: Disk-based algorithms on synthetic datasets, varying |Σ| from 102 to 104,

|E|/|V | = 2, |V | = 105

and is 2.8 times larger than that of External-MST when |E|/|V | = 1024.

There is a very large margin between the query time of External-MST and

Balanced-Index. External-MST takes 1635 microseconds, while Balanced-Index

takes 23 microseconds, which is 71 times faster. The query time of External-MST

and Balanced-Index is not affected by the density. In contrast, the query time of

Naive-Search varies with different densities. Ext-BIS is the most efficient among the

three variants. On average, the query time of Naive-Search is three to four orders of

magnitude longer than Balanced-Index.

Varying Vertex Number: In this experiment, we vary |V | from 105 to 107 in log

scale, and fix |E|/|V | and |Σ|. Figures 4.8(a)-(c) show the performance measures.

The index time of Balanced-Index is about 5–10 times longer than that of

External-MST, and its index size is about 4.5–6.4 times larger. The index time

and index size of all the three methods increase near linearly with |V |. The query

time of Balanced-Index remains 23 microseconds when |V | increases. In contrast,

the query time of External-MST and Naive-Search increases linearly with |V |, be-

cause External-MST takes O(|V |/B) I/Os to load an MST, and Naive-Search uses

O(|V | + |E|/B) I/Os to search online. When |V | = 107, External-MST takes

176,901 microseconds to answer a query, 7,691 times slower than Balanced-Index.

Naive-Search is even slower, with 2,722–764,514 times longer query time than

Balanced-Index.
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Varying Distinct Weight Number: In this experiment, we vary |Σ| from 102 to 104 in

log scale, and fix |E|/|V | and |V |. Figures 4.9(a)-(c) show the performance measures.

The index time and size increase linearly with |Σ| for both External-MST and

Balanced-Index. The index time of Balanced-Index is about 5 times longer than

that of External-MST, while the index size of Balanced-Index is about 4.5 times

larger. The query time of both methods remains very stable as |Σ| increases. The

query time of Balanced-Index is about 23 microseconds while that of External-MST

is 1770 microseconds, which is 77 times slower. The index time and index size of

Naive-Search is independent of |Σ|, which remain 0.25 seconds and 5.6 MB respec-

tively. Naive-Search’s query time does not vary much with |Σ| either. For comparison,

DFS, BFS, and BIS take 89,000, 153,000 and 53,000 microseconds respectively for

query processing on average, whereas Balanced-Index only takes 23 microseconds,

which is three orders of magnitude faster.

Summary. Balanced-Index scales to very large networks while at the same time

providing 23 microseconds response time. It uses 5–10 times more index time and

space than External-MST, which is a small overhead. Naive-Search has a low index

time and size in most cases. But when the density |E|/|V | is large, the index size

of Naive-Search can be much larger than that of Balanced-Index. The index size of

Balanced-Index is independent of |E|/|V | or |E|. The query time of Naive-Search

is three to four orders of magnitude longer than that of Balanced-Index. The online

performance of disk-based approaches is summarized in Table 4.6.

Table 4.6: Online Performance of Disk-based Algorithms
Dependency Response Time

Naive-Search Linear with |V | 1, 883 – 37, 277, 978 µs

External-MST Linear with |V | 1, 573 – 176, 901 µs

Balanced-Index None 23 µs
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Table 4.7: Edge-Index vs. Sampling-Tree and 2-Label-Hop, Uniform Weights (IT in

Secs, IS in MB, QT in Microseconds)
Edge-Index Sampling-Tree 2-Label-Hop

|E|/|V | IT IS QT IT IS QT IT IS QT

1 0.01 0.2 1 72 0.1 86 24 4.55 22

1.5 0.01 0.2 1 339 0.1 106 225 9.74 18

2 0.01 0.2 1 627 0.3 193 574 10.88 20

2.5 0.01 0.2 1 737 0.4 158 1757 12.41 13

3 0.01 0.2 1 953 0.6 135 3773 13.81 13

|V | IT IS QT IT IS QT IT IS QT

1000 0.01 0.2 1 339 0.1 106 226 9.45 20

2000 0.01 0.4 1 1500 0.3 362 1994 43.59 13

3000 0.01 0.6 1 3630 0.6 454 6299 94.88 12

4000 0.01 0.8 1 14432 1.4 565 17390 182.89 14

5000 0.02 1 1 > 12h - - 34019 277.36 13

|Σ| IT IS QT IT IS QT IT IS QT

5 0.01 0.2 1 339 0.1 106 228 9.59 23

10 0.01 0.4 1 > 12h - - 28140 102.83 21

15 0.01 0.6 1 > 12h - - > 12h - -

20 0.02 0.8 1 > 12h - - > 12h - -

25 0.02 1 1 > 12h - - > 12h - -

4.4.4. Comparing Edge-Index with Sampling-Tree and

2-Label-Hop

We compare our solution with Sampling-Tree [42] and 2-Label-Hop [92] in this ex-

periment. Sampling-Tree and 2-Label-Hop are memory algorithms to solve the label-

constraint reachability on directed graphs. In terms of problem hardness, LCR is much

more difficult than WCR. So adapting LCR solutions to answer WCR queries is un-

necessarily complicated, thus is not very fair. Nevertheless, as LCR is the closest

problem in the literature to WCR, we compare Edge-Index with Sampling-Tree and

2-Label-Hop in terms of index time, index size and average query time. We adapt both

methods to handle undirected graphs. Given a query q(a, b, [x, y]), we rewrite it into

the query format of Sampling-Tree and 2-Label-Hop by forming a categorical label set

A = {l ∈ Σ|x ≤ l ≤ y}.
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Table 4.8: Edge-Index vs. Sampling-Tree and 2-Label-Hop, Power Law Weights (IT in

Secs, IS in MB, QT in Microseconds)
Edge-Index Sampling-Tree 2-Label-Hop

|E|/|V | |Σ| IT IS QT IT IS QT IT IS QT

1 14 0.02 1 1 125 0.1 311 12 2.90 20

1.5 17 0.02 1.2 1 154 0.4 716 49 3.41 17

2 20 0.02 1.4 1 2376 1.8 837 78 2.96 18

2.5 22 0.02 1.5 1 18078 6.2 663 114 2.68 12

3 24 0.03 1.7 1 > 12h - - 148 2.63 12

|V | |Σ| IT IS QT IT IS QT IT IS QT

1000 17 0.02 1.2 1 154 0.4 716 44 3.45 15

2000 24 0.04 3.4 1 681 1.4 1252 404 15.22 12

3000 30 0.07 6.2 1 2579 5.5 1280 1114 31.61 12

4000 34 0.09 9.6 1 4309 10 3275 3110 61.45 12

5000 38 0.13 13.4 1 6633 17.4 3308 6106 96.03 13

Random Graphs with Uniform Weight Distribution. In this experiment, we gen-

erate a set of random graphs by varying the parameters |E|/|V |, |V | and |Σ|. The

default values are |E|/|V | = 1.5, |V | = 1000 and |Σ| = 5. The edge weights follow

a uniform distribution. We report the performance in Table 4.7.

We vary the density |E|/|V | from 1.0 to 3.0 with a step size of 0.5, and fix |V | =

1000 and |Σ| = 5. The index time, index size and query time of Edge-Index are not

affected by the density. In contrast, the index time of Sampling-Tree and 2-Label-Hop

increases with the density and is four to five orders of magnitude longer than that of

Edge-Index. The index size of 2-Label-Hop is 50 times larger than that of Edge-Index

on average. The query time of Sampling-Tree is two orders of magnitude longer than

that of Edge-Index, and the query time of 2-Label-Hop is about 20 times longer.

When we vary |V | and |Σ|, the index time and query time of Edge-Index remain

stable, while the index size increases linearly with |V | and |Σ|. In contrast, the index

construction time of Sampling-Tree and 2-Label-Hop increases dramatically. When

|V | ≥ 5000 or |Σ| ≥ 10, Sampling-Tree cannot finish index construction within 12

hours. 2-Label-Hop cannot finish index construction within 12 hours when |Σ| ≥ 15.

The index size of 2-Label-Hop is 150 times larger than that of Edge-Index. The query
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time of Sampling-Tree is two orders of magnitude longer than that of Edge-Index, and

the query time of 2-Label-Hop is 12–23 times longer.

Random Graphs with Power Law Weight Distribution. In this experiment, we test

random graphs with weights following a power law distribution with the parameter

α = 2 [61], the same setting as in [42]. According to the power law weight distri-

bution, only a few weights appear frequently, while the majority of weights appear

infrequently. The default values of the parameters are |E|/|V | = 1.5 and |V | = 1000.

Under a power law distribution, the number of distinct weight values that actually ap-

pear in a network depends on |E|, thus we do not vary |Σ| here. Table 4.8 shows the

performance when we vary |E|/|V | and |V |. The actual weight number |Σ| is listed

in the second column of Table 4.8.

First we vary the density |E|/|V | from 1.0 to 3.0 with a step size of 0.5, and fix

|V | = 1000. We observe that the index time and index size of Edge-Index increase

slightly, and the query time remains 1 microsecond. In contrast, the index time of

Sampling-Tree and 2-Label-Hop is three to five orders of magnitude longer. The query

time of Sampling-Tree is two orders of magnitude longer than that of Edge-Index

and the query time of 2-Label-Hop is 16 times longer. When |E|/|V | = 3.0,

Sampling-Tree cannot finish index construction within 12 hours.

When we vary the vertex number |V |, the index time and index size of Edge-Index

increase by at most 6.5 and 11 times respectively, as |V |, |E| and |Σ| all increase. The

query time remains 1 microsecond. The index time of Sampling-Tree and 2-Label-Hop

is three to four orders of magnitude longer than Edge-Index. Both index time and

index size of Sampling-Tree and 2-Label-Hop increase with |V |. The query time of

Sampling-Tree is three orders of magnitude longer than that of Edge-Index and the

query time of 2-Label-Hop is 13 times longer.

Summary. In the above experiments the query time of Edge-Index remains 1

microsecond in all cases, which is one to three orders of magnitude faster than

that of Sampling-Tree and 2-Label-Hop. In addition, both Sampling-Tree and

2-Label-Hop suffer from the index construction efficiency. In [42], the indexing
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time of Sampling-Tree is O(n|V ||E|
( |Σ|
|Σ|/2

)
+ n/n0(|E| + |V | log |V |)), which in-

creases exponentially with the label set size |Σ|, and also increases with |V | and |E|.

2-Label-Hop [92] needs to pre-compute the local transitive closure in index construc-

tion. That is why Sampling-Tree and 2-Label-Hop cannot finish index construction

within 12 hours in many cases, even for very small scale, e.g., |V | = 1000 and

|Σ| = 15. This demonstrates that both Sampling-Tree and 2-Label-Hop are not ef-

ficient to answer the WCR query.

4.5. Summary

In this chapter we study a type of reachability query called weight constraint reacha-

bility WCR on undirected graphs with real-value edge or node weights. WCR is very

common and has a wide range of real-world applications. We design two novel index

structures for the memory and disk scenarios respectively. To answer a WCR query,

we can guarantee O(1) query time with the memory-based index Edge-Index and O(1)

I/O cost (exactly four I/Os) with the disk-based index Balanced-Index. Experimental

results on real and synthetic graphs demonstrate that both the memory and disk-based

approaches answer a query in microseconds with very compact index and efficient

index construction. The disk-based algorithm is highly scalable in large networks and

I/O-efficient in query processing.



CHAPTER 5

QUERYING TOP K-NEAREST

KEYWORD

5.1. Problem Definition

We model a weighted undirected graph as G(V,E), where V (G) represents the set of

nodes and E(G) represents the set of edges in G. We use V and E to denote V (G) and

E(G) if the context is obvious. Each edge (u, v) ∈ E has a positive weight, denoted

as weight(u, v). A path p = (v1, v2, · · · , vl) is a sequence of l nodes in V such that

for each vi(1 ≤ i < l), (vi, vi+1) ∈ E. The weight of a path is the total weight of

all edges on the path. For any two nodes u ∈ V and v ∈ V , the distance of u and

v on G, dist(u, v), is the minimum weight of all paths from u to v in G. Each node

v ∈ V contains a set of zero or more keywords which is denoted as doc(v). The union

of keywords for all nodes in G is denoted as doc(V ). Note that doc(V ) is a multiset

and |doc(V )| =
∑

v∈V |doc(v)|. We use Vλ ⊆ V to denote the set of nodes carrying

keyword λ in V .

Definition 5.1. Given a graph G(V,E), a top-k nearest keyword (k-NK) query is a

triple Q = (q, λ, k), where q ∈ V is a query node in G, λ is a keyword, and k is

a positive integer. Given a query Q, a node v ∈ V is a keyword node w.r.t. Q if v

contains keyword λ, i.e., v ∈ Vλ. The result is a set of k keyword nodes, denoted as

R = {v1, v2, · · · , vk} ⊆ Vλ, and there does not exist a node u ∈ Vλ \ R such that
102



Chapter 5. Querying Top K-Nearest Keyword 103

rb

u

j

o

s

p
v

h

e

tc

a

n

k

i

dg f

m

β

λ,α

 λ

α,β

λ

λ,α β

λ

Figure 5.1: A Graph G with Keywords

dist(q, u) < maxv∈R dist(q, v). To further report the distance in the top-k result, we

can use the form R = {v1 : dist(q, v1), v2 : dist(q, v2), · · · , vk : dist(q, vk)}.

In this chapter, we aim at answering a k-NK query Q = (q, λ, k) on a graph G. For

simplicity, we assume that there is only one keyword λ in the query. We will discuss

how to answer a query containing multiple keywords with AND and OR semantics.

Example 5.1. Fig. 5.1 shows a graph G. Assume that the weight of each edge is 1. For

a k-NK query Q = (f, λ, 3), the keyword node set is Vλ = {b, c, k, n, t}. The result of

Q is R = {b : 2, n : 4, k : 5} since dist(f, b) = 2, dist(f, n) = 4, and dist(f, k) = 5.

5.2. Existing Solutions

A straightforward approach to answering a k-NK query Q = (q, λ, k) on G is to use

Dijkstra’s algorithm to search from the query node q and output k nearest keyword

nodes in nondecreasing order of their distances to q. The time complexity is O(|E|+

|V | · log |V |). Obviously, Dijkstra’s algorithm is inefficient when the size of the graph

is large or the keyword nodes are far away from q.

In the literature, [5] and [83] design different indexing schemes to process (top-k)

nearest keyword queries on a graph or a tree. We introduce the two methods in the

following two subsections.



Chapter 5. Querying Top K-Nearest Keyword 104

5.2.1. Approximate k-NK on a Graph

Bahmani and Goel [5] find an approximate answer to a k-NK query in a graph based

on a distance oracle [78].

Distance Oracle: Distance oracle is a technique for estimating the distance of two

nodes in a graph [78]. Given a graph G, a distance oracle is a Voronoi partition

of V (G) determined by a set of randomly selected center nodes. More specifically,

given a number nc, we randomly select nc nodes from V (G) as the center nodes to

construct a distance oracleO. Then the partition is constructed by assigning each node

v ∈ V (G) to its nearest center node, denoted as witO(v), which is called the witness

node of v w.r.t. O. If v is a center node, witO(v) = v. For each node v ∈ V (G),

the shortest distance from v to its witness node, i.e., dist(v,witO(v)), is precomputed.

After constructingO, given two nodes u and v in G, if u and v are in the same partition

in O, i.e., witO(u) = witO(v), we compute the estimated distance, called witness

distance, as distO(u, v) = dist(u,witO(u))+dist(v,witO(v)). If u and v are not in the

same partition in O, distO(u, v) = +∞.

One distance oracle is usually not enough for distance estimation in a graph G. It

cannot estimate the distance of two nodes in different partitions. Even for two nodes

in the same partition, the estimation may have a large error. Therefore, a set of r = p×

log |V | distance oracles {O1,O2, · · · ,Or} are constructed, where p can be considered

as a constant1. The algorithm is processed in log |V | phases. In phase i (0 ≤ i <

log |V |), p distance oracles are constructed where each distance oracle contains 2i

randomly selected center nodes. Given r distance oracles, the distance of two nodes u

and v in G can be estimated as an upper bound dist(u, v) = min1≤i≤r distOi
(u, v).

The time complexity to compute the estimated distance dist(u, v) for any two

nodes u and v in a graph G is O(log |V |). The distance oracles consume O(|V | ·

log |V |) space. Das Sarma et al. [78] prove that when p = Θ(|V |1/ log |V |), the esti-

mated distance can be bounded by dist(u, v)≤ dist(u, v)≤ (2 log2 |V |−1) ·dist(u, v)
1In [78], the set {O1,O2, · · · ,Or} is defined as a distance oracle.
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Figure 5.2: Two Distance Oracles O1 and O2

with a high probability.

Example 5.2. Fig. 5.2 shows two distance oracles O1 and O2 for the graph shown

in Fig. 5.1. There is one center node r in O1, and four center nodes r, n,

o and t in O2. The distance of nodes j and s is estimated as dist(j, s) =

min{distO1(j, s), distO2(j, s)} = min{dist(j, r)+ dist(s, r), dist(j, n)+ dist(s, n)} =

5.

Answering k-NK with Distance Oracle: [5] designs a Partitioned Multi-Indexing

(PMI) scheme which uses a set of distance oracles to answer a k-NK query in a graph.

For each partition in a distance oracle Oi, an inverted list is constructed for each key-

word in the partition. Specifically, for a partition with a center node c and a keyword

λ, the inverted list contains all nodes in the partition that contain keyword λ ranked

in nondecreasing order of their distances to c. Given a k-NK query Q = (q, λ, k) and

a distance oracle Oi, the algorithm first finds the partition that q belongs to in Oi.

The result w.r.t. Oi is the first k elements in the inverted list for λ in the partition,

denoted as ROi
= {u1 : dist(c, u1) + dist(c, q), u2 : dist(c, u2) + dist(c, q), · · · , uk :

dist(c, uk) + dist(c, q)}. The final result R is computed by merging the nodes in each

ROi
and maintaining k nodes with the shortest distances to q. The query time com-

plexity is O(k · log |V |). We illustrate the algorithm using the following example.

Example 5.3. Consider the graph in Fig. 5.1 and two distance oracles in Fig. 5.2. For

keyword λ, the inverted list for the partition centered at node r in O1 has 5 elements

{b : 1, n : 3, k : 4, c : 5, t : 6}. The inverted list for the partition centered at node o in

O2 has 1 element {k : 2}. Given a k-NK query Q = (m,λ, 2), from O1, we can get a

result RO1 = {b : 1+ dist(r,m), n : 3+ dist(r,m)} = {b : 5, n : 7}, and fromO2, we
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can get a result RO2 = {k : 2 + dist(o,m)} = {k : 3}. By merging RO1 and RO2 , the

final answer is R = {k : 3, b : 5}. The exact answer is R = {c : 1, k : 1} according to

Fig. 5.1.

Limitation: Although in theory, the witness distance used by [5] can be bounded by

a factor of 2 log2 |V | − 1 of the exact distance with a high probability, in practice,

however, we find the distance estimation error can be quite large. For example, for the

graph G in Fig. 5.1 and two distance oracles O1 and O2 in Fig. 5.2, for two nodes s

and v, the witness distance in O1 is distO1(s, v) = dist(s, r) + dist(v, r) = 10, and

that in O2 is distO2(s, v) = dist(s, n) + dist(v, n) = 6. However, the exact distance is

dist(s, v) = 2 in G, which is much smaller than both distO1(s, v) and distO2(s, v). The

inaccurate distance estimation can greatly distort the ranking of the nodes carrying the

query keyword, and thus lead to a low result quality, as illustrated in Example 5.3.

5.2.2. Exact 1-NK on a Tree

Tao et al. [83] compute the exact answer to a 1-NK query on a tree T (V,E). Given

a query Q = (q, λ, 1), the result is the nearest node in T that contains keyword λ,

denoted as NN(q, λ). The basic idea is as follows. We label a node v with the sequence

number of v in the preorder traversal of T . For a certain keyword λ, all nodes with the

preorder label in the interval [1, |V |] can be partitioned into several disjointed intervals,

such that any node v in the same interval shares an identical NN(v, λ). The partition

is called tree Voronoi partition of λ, denoted as TVP(λ). By precomputing TVP(λ)

for all keywords λ on the tree, a query Q = (q, λ, 1) can be answered in O(log |Vλ|)

time using a binary search in TVP(λ).

In order to compute TVP(λ) for all keywords λ in T efficiently, two new data

structures, namely, Compact Tree CT(λ) and Extended Compact Tree ECT(λ), are

proposed in [83].

Definition 5.2. (Compact Tree and Extended Compact Tree) For a tree T and a

keyword λ, a compact tree CT(λ) is a tree that keeps only two types of nodes in
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T : a keyword node that contains keyword λ, and a node that has at least two direct

subtrees containing nodes carrying keyword λ. In the preorder traversal of T , for two

successive nodes u and v, if NN(u, λ) ̸= NN(v, λ), v is called a change node. An

extended compact tree ECT(λ) is a tree constructed by adding all change nodes into

the compact tree CT(λ).

Using ECT(λ), TVP(λ) can be constructed easily. In [83], the authors prove that

the total size of all compact trees and all extended compact trees for all keywords in

the tree T (V,E) is bounded by O(|doc(V )|). The time to compute all compact trees

and all extended compact trees for all keywords in the tree T (V,E) is bounded by

O(|doc(V )| · log |V |).

Example 5.4. Fig. 5.3 shows a tree with the preorder label from 1 to 20 on its nodes.

For keyword λ, there are 5 keyword nodes b, c, k, n, t. For node s, NN(s, λ) = c. The

compact tree of λ, CT(λ), is shown on the left part of Fig. 5.4. Node r is in CT(λ)

because r has three direct subtrees with nodes carrying keyword λ. e is not in CT(λ)

because e is not a keyword node and e has only one direct subtree rooted at m with
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nodes carrying keyword λ. The extended compact tree of λ, ECT(λ), is shown in the

middle part of Fig. 5.4 with the preorder label marked beside each node. Node e is

in ECT(λ), because for its parent node h, NN(h, λ) = b ̸= NN(e, λ) = c. The tree

Voronoi partition of λ, TVP(λ), is shown on the right part of Fig. 5.4. For node s with

preorder label 14, it is in the interval [11, 16], thus NN(s, λ) = c as listed in TVP(λ).

5.3. Solution Overview

Answering k-NK on a Graph using Tree Distance: To address the drawback of

witness distance, in this chapter, we propose to use tree distance in processing a k-NK

query. We observe that for a partition of a distance oracle, we can construct a shortest

path tree rooted at the center node of the partition. Since a tree contains more structural

information than a star, using tree distance will be more accurate than using witness

distance for estimating the distance of two nodes. For a distance oracle Oi, let the set

of trees constructed in Oi be Ti. Ti can be considered as a tree by adding a virtual

root and several virtual edges with weight +∞ that connect the new virtual root to

every root node in Ti respectively. Let the k-NK result on tree T be RT . Suppose we

have an algorithm to compute RT on a tree T , we can solve the k-NK problem in a

graph by merging RTi
for each tree Ti, 1 ≤ i ≤ r. Obviously, such a result will be

more accurate than the result by [5]. The following example illustrates the k-NK query

processing based on tree distance.

Example 5.5. For the distance oraclesO1 andO2 shown in Fig. 5.2, the corresponding

shortest path trees T1 and T2 are shown in Fig. 5.5. For T1, there is only 1 tree rooted

at r because there is only 1 partition in O1. For T2, there are 4 trees rooted at nodes

n, o, r, t respectively, because there are 4 partitions in O2. In each tree, the path from

any node to the root node is a shortest path in the original graph. For two nodes s and

v, their tree distance is 2 in both T1 and T2, the same as the exact distance dist(s, v) in

G. For a k-NK query Q = (m,λ, 2), we have RT1 = {c : 1, t : 2}, and RT2 = {k : 1}.

By merging RT1 and RT2 , we get R = {c : 1, k : 1}. Such a result is much better than
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the result in Example 5.3 computed using witness distance for the same query.

With the tree distance formulation, the key operation in answering a k-NK query

on a graph is to answer the k-NK query on a tree. Therefore, we start with processing

a k-NK query on a tree.

Answering k-NK on a Tree: We show that it is nontrivial to answer a k-NK query

on a tree efficiently even if k is bounded. Our first attempt is to extend the existing

1-NK solution on a tree T (V,E) in [83]. Recall that in [83], for a certain keyword

λ, the range [1, |V |] is partitioned into several disjoint intervals, and nodes with the

preorder label in an identical interval share the same 1-NK result. When k ≥ 2, each

interval needs to be further partitioned to ensure that all nodes with the preorder label

in the same interval share an identical k-NK result. The number of intervals increases

exponentially w.r.t. the number of keyword nodes on the tree until it reaches |V | for

a keyword λ. Clearly, using such an approach, the index size is too large in practice

even for a small k. Our second attempt is that, for each node v on the tree T (V,E) and

each keyword λ, we precompute its k nearest nodes that contain λ. When processing

a query Q = (q, λ, k) with k ≤ k, we can simply retrieve the precomputed result on

node q and output the first k nodes directly. Such an approach is impractical because

for each keyword λ, we need O(k · |V |) space to store the precomputed results.

In the following, we first introduce two algorithms for answering exact k-NK on

a tree T (V,E). Our first algorithm tree-boundk can only handle bounded k values

with query processing time O(k + log |Vλ|) and index size O(k · |doc(V )|) for all

keywords where k is an upper bound value of k. Our second algorithm tree-pivot

can handle an arbitrary k with query processing time O(k · log |V |) and index size

O(|doc(V )| · log |V |) for all keywords which is independent of k. We then show our

algorithm for approximate k-NK on a graph by merging results on a bounded number

of trees. We propose a global storage technique to further reduce the index size and

the query time on a graph. Finally we show how to extend our method to handle a

query with multiple keywords.
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Figure 5.5: Shortest Path Trees T1 and T2

5.4. K-NK on a Tree for a Small K

In this subsection, we study how to answer a k-NK query Q = (q, λ, k) on a tree

T (V,E). We first consider a common scenario when users are interested in a small

number of answer nodes bounded by a small constant k, i.e., k ≤ k. Recall that for

a keyword λ, its compact tree CT(λ) keeps all the structural information of λ on the

tree T . Our idea is to precompute the top-k results for every keyword λ and every

node on CT(λ). Since the total size of all compact trees is bounded by O(|doc(V )|),

the total space to store the top-k results of nodes on all compact trees is bounded by

O(k · |doc(V )|). Given a query Q = (q, λ, k), if q is on CT(λ), we can simply report

the precomputed answer on CT(λ). If q is not on CT(λ), we need to find a way to

construct the answer using the precomputed results as well as the structure of CT(λ)

and T . In the following, we first introduce how to answer a k-NK query using CT(λ),

followed by discussions on the construction of the index.

5.4.1. Query Processing

For a keyword λ, and each node v in the compact tree CT(λ), we use a candidate

list candλ(v) to denote the precomputed k-NK results for k = k on node v ranked

in nondecreasing order of their distances to v, in the form of candλ(v) = {v1 :

dist(v, v1), v2 : dist(v, v2), · · · , vk : dist(v, vk)} where dist(v, v1) ≤ dist(v, v2) ≤

· · · ≤ dist(v, vk). Given a query Q = (q, λ, k) on a tree T (V,E) where k ≤ k, if q
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Algorithm 5.1: tree-boundk (Q,T )
Input: A k-NK query Q = (q, λ, k), and a tree T .

Output: Answer for Q on T .

1 R← ∅;

2 (u, u′)← the entry edge of q on CT(λ);

3 R← R⊗k (candλ(u)⊕ dist(q, u));

4 R← R⊗k (candλ(u
′)⊕ dist(q, u′));

5 return R;

is in CT(λ), we can simply report the first k elements in candλ(q) as the answer. The

difficult case is when q is not in CT(λ). In order to answer such a query, we define

an entry edge to be the edge in CT(λ) that is nearest to q. Intuitively, the entry edge

plays a role of connecting the query node q to the compact tree CT(λ). The formal

definition of entry edge is as follows.

Definition 5.3. (Entry Node and Entry Edge) Given a compact tree CT(λ), for each

edge (u, u′) on CT(λ) with u′ being a child node of u, (u, u′) represents a unique path

from u to u′ on the original tree T . For any node v on T , we say v sticks to CT(λ),

denoted as v ∈s CT(λ), if and only if there exists an edge (u, u′) on CT(λ) such that

v is on the path from u to u′ on T , otherwise v does not stick to CT(λ), denoted as

v /∈s CT(λ). For a node q on T , let v be the first node on the path from q to the root

node of T such that v ∈s CT(λ). v is called the Entry Node of q w.r.t. λ, denoted as

ENλ(q). The corresponding edge (u, u′) on CT(λ) is called the Entry Edge of q w.r.t.

λ, denoted as EEλ(q).

Note that for a node q and a keyword λ, EEλ(q) is an edge on the compact tree

CT(λ), and ENλ(q) is a node on the original tree T . We use an example to illustrate

the entry node and entry edge.

Example 5.6. For the tree T shown in Fig. 5.3 and keyword λ, the compact tree CT(λ)

is shown on the left part of Fig. 5.4. For ease of illustration, we also mark the nodes

in CT(λ) dark on the tree T in Fig. 5.3. For edge (r, c) in CT(λ), h ∈s CT(λ) because
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h is on the path from r to c in T . p /∈s CT(λ) since p is not on the tree path of any

CT(λ) edge. For node v, its entry node is ENλ(v) = e, as e is the first node on the

path (v, p, e, h, d, r) such that e ∈s CT(λ). The entry edge for v is EEλ(v) = (r, c)

since the entry node e for v is on the path from r to c in T . The entry nodes and entry

edges for some other nodes in T are listed in the following table.

Node g j d e p u

ENλ g j d e e b

EEλ (r, a) (a, k) (r, c) (r, c) (r, c) (r, b)

The Algorithm: Given a tree T (V,E), for keyword λ, all keyword nodes are con-

tained in CT(λ). For any node q ∈ V , the path from q to any keyword node will

go through the entry node ENλ(q). Based on such property, the result of a query

Q = (q, λ, k) is identical with the result of the query Q′ = (ENλ(q), λ, k). However,

ENλ(q) may not be on CT(λ), thus the result of Q′ is not necessarily precomputed. Let

(u, u′) = EEλ(q), since ENλ(q) is on the path from u to u′ on the tree T , the path from

ENλ(q) to any keyword node in T will go through either u or u′. Thus, the answer

for Q′ can be constructed by merging the precomputed candidate lists candλ(u) and

candλ(u
′) on CT(λ).

Our algorithm for processing a query Q = (q, λ, k) on a tree T is shown in Al-

gorithm 5.1. We assume that the compact tree CT(λ) for each keyword λ and the list

candλ(u) for every node u on CT(λ) have been computed. After initializing the result

R in line 1, we find the entry edge (u, u′) for q on CT(λ) (line 2). We add a distance

dist(q, u) to every node in candλ(u) using the ⊕ operator, to reflect the distance from

q to a keyword node via u. We then merge the new result into R using the⊗k operator

(line 3). Similarly we apply the two operators to candλ(u
′) with the distance dist(q, u′)

(line 4). We will describe the operators⊕ and⊗k later. We use the following example

to illustrate the algorithm.

Example 5.7. Given the tree T shown in Fig. 5.3 and CT(λ) on the left part of Fig. 5.4,

for a query Q = (o, λ, 2), the entry edge EEλ(o) = (r, c). Suppose the lists candλ(r) =
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Algorithm 5.2: operator R⊕ δ

Input: Candidate list R = {u1 : du1 , u2 : du2 , · · · }, distance δ.

Output: A candidate list by adding δ to all distances in R.

1 R′ ← ∅;

2 for i = 1 to |R| do

3 R′ ← R′ ∪{ui : dui
+ δ};

4 return R′;

{b : 1, n : 3} and candλ(c) = {c : 0, t : 1} are precomputed. By adding dist(o, r) = 5

to candλ(r), and adding dist(o, c) = 2 to candλ(c), we get the new lists {b : 6, n : 8}

for r and {c : 2, t : 3} for c. We merge the two lists and get the final result R = {c :

2, t : 3}.

The efficiency of Algorithm 5.1 depends on three operations. The first operation is

to find the entry edge for any node on T (line 2). The second operation is to calculate

the distance of any two nodes on T , e.g., dist(q, u) and dist(q, u′) (line 3-4). The

third operation is to merge two sorted lists into a new one using operators ⊕ and ⊗k

(line 3-4). Next, we discuss the three operations separately.

Finding the Entry Edge: Given a keyword λ, for any node v on a tree T (V,E),

our idea of finding the entry edge EEλ(v) of v is similar to the idea of finding the

1-NK answer using the tree Voronoi partition TVP(λ) in [83]. For the range [1, |V |],

we partition it into several disjoint intervals, such that nodes with the preorder label

in the same interval share an identical entry edge. We call such partition an entry

edge partition for λ, denoted as EEP(λ). Given EEP(λ), EEλ(v) can be computed

easily using a binary search in EEP(λ) in O(log |Vλ|) time. In the next subsection, we

show how to build EEP(λ) for all keywords efficiently and prove that the total size of

EEP(λ) for all keywords in T is bounded by O(doc|V |).

Computing Tree Distance: Given a tree T (V,E) with root r, suppose the distance

from r to every node in T has been precomputed. For any two nodes u and v on T ,
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we denote LCA(u, v) as their lowest common ancestor. The distance of u and v can

be computed as dist(u, v) = dist(r, u) + dist(r, v) − 2dist(r, LCA(u, v)). Using the

techniques in [9], LCA(u, v) can be found in O(1) time using O(|V |) index space.

Thus dist(u, v) for any two nodes u and v on T can be computed in O(1) time using

O(|V |) index space.

Merging Results: The results are merged using two operators ⊕ and ⊗k. Algorithm

5.2 shows the operator ⊕, which takes a candidate list R and a distance δ as input,

and outputs a candidate list by adding δ to all distances in R. The time complexity

for the ⊕ operator is O(|R|). Algorithm 5.3 shows the operator ⊗k, which takes two

candidate lists R1 and R2 sorted in nondecreasing order of the distances, and a value

k as input, and outputs the merged candidate list R. R contains at most k elements

sorted in nondecreasing order of the distances. R can be constructed by visiting each

element in R1 and R2 at most once. The time complexity for the ⊗k operator is

O(min{|R1|+ |R2|, k}). The⊗k and⊕ operators satisfy the commutative, associative

and distributive laws as follows.

(Commutative Law) R1 ⊗k R2 = R2 ⊗k R1.

(Associative Law) (R1 ⊗k R2)⊗k R3 = R1 ⊗k (R2 ⊗k R3).

(Distributive Law) (R1 ⊗k R2)⊕ d = (R1 ⊕ d)⊗k (R2 ⊕ d).

Theorem 5.1. Algorithm 5.1 computes the exact k-NK answer for a query Q =

(q, λ, k) on a tree T (V,E) in O(k + log |Vλ|) time.

Algorithm 5.1 uses the novel idea of entry edge, and elegantly extends the 1-NK

method [83] to handle k-NK (k > 1) with the same query time complexity, except for

an extra linear cost O(k) indispensable for reporting the results.

Given the tree T , the compact tree CT(λ) for every keyword λ in T can be con-

structed using the algorithm in [83]. Two more indexes need to be constructed. The

first index is the entry edge partition EEP(λ) for every keyword λ, to find the entry

edge for any node on T . The second index is the candidate list candλ(v) for every

node on CT(λ) for each keyword λ. In the following, we introduce how to construct

the two indexes separately.
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Algorithm 5.3: operator R1 ⊗k R2

Input: Two sorted candidate lists R1 = {u1 : du1 , u2 : du2 , · · · }

R2 = {v1 : dv1 , v2 : dv2 , · · · }, and result size k.

Output: The merged candidate list.

1 R← ∅; i← 1; j ← 1;

2 while (i < |R1| or j < |R2|) and |R| ≤ k do

3 if i < |R1| and (dui
≤ dvj or j ≥ |R2|) then

4 if ui /∈ R then R← R
∪
{ui : dui

};

5 i← i+ 1;

6 else if j < |R2| and (dvj ≤ dui
or i ≥ |R1|) then

7 if vj /∈ R then R← R
∪
{vj : dvj};

8 j ← j + 1;

9 return R;

5.4.2. Construction of Entry Edge Partition

Given a tree T (V,E), for each keyword λ, sharing the similar idea with the tree

Voronoi partition TVP(λ), we construct an entry edge partition EEP(λ), which di-

vides [1, |V |] into several disjoint intervals, such that nodes in V with preorder in the

same interval share an identical entry edge on CT(λ). In order to construct the en-

try edge partition, for each edge (u, u′) on CT(λ), we label (u, u′) with an interval

according to the following definition.

Definition 5.4. (Labeled Compact Tree) Given a tree T , a node v on T has an interval

[sv, tv] where sv is the preorder label of v on T and tv is the maximum preorder label

for all nodes in the subtree rooted at v. Given a compact tree CT(λ), for any edge

(u, u′) on CT(λ), let the branching node of (u, u′) be the first node along the path

from u to u′ on T , and denote it as ub. We label edge (u, u′) with the interval of ub.

The label of every edge on a compact tree CT(λ) can be computed easily when

constructing CT(λ). Given any node v on a tree T and an edge (u, u′) on a compact
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tree CT(λ), denote the branching node of (u, u′) as ub, then v is in the subtree rooted at

ub if and only if the preorder label of v on T is in the interval of ub, which is identical

with the label of edge (u, u′). For ease of presentation, for each labeled compact tree

CT(λ), we add a virtual root ϕ and an edge from ϕ to the original root of CT(λ). We

use the following example to illustrate the labeled compact tree.

Example 5.8. For the tree T shown in Fig. 5.3, we mark the preorder and the interval

of each node on the tree. For the node h, its interval is [10, 18] because the preorder of

h on T is 10 and the maximum preorder for all nodes on the subtree rooted at h is 18.

The labeled compact tree CT(λ) for keyword λ is shown on the left part of Fig. 5.6.

For the edge (r, c) on CT(λ), its branching node is d because d is the first node along

the path (r, d, h, e,m, c) on T . The label of edge (r, c) is the interval of node d, which

is [9, 18].

For a compact tree CT(λ) of tree T and a keyword λ, suppose (u, u′) on CT(λ)

is an entry edge of a node v on tree T , i.e., EEλ(v) = (u, u′). The preorder of v

is in the interval of (u, u′), because the interval of (u, u′) contains all nodes under

the subtree rooted at the branching node of (u, u′). Based on such an observation,

by excluding the intervals of all edges under the subtree rooted at u′ in CT(λ) from

the interval of (u, u′), nodes with preorder in the remaining intervals will use (u, u′)

as the entry edge. For example, in the compact tree CT(λ) shown in Fig. 5.6, the

edge (ϕ, r) has an interval [1, 20]. r has three branches with intervals [2, 6], [9, 18]

and [19, 20] respectively. By excluding the three intervals from [1, 20], two intervals

[1, 1] and [7, 8] are left. Thus nodes with preorder in either of the two intervals [1, 1]

and [7, 8] share the same entry edge (ϕ, r). For edge (r, c) with interval [9, 18], by

excluding interval [17, 17] of the only branch of c, nodes with preorder in either of the

two intervals [9, 16] and [18, 18] share the same entry edge (r, c).

Algorithm 5.4 shows the construction of the entry edge partition EEP(λ) on CT(λ)

for a keyword λ. After initializing EEP(λ) (line 2), the main operation is a recursive

procedure partition (line 3), to partition the interval [1, |V |] to several disjoint intervals.

Each entry in EEP(λ) is in the form of ([s, t], (u, u′)) denoting that nodes with the
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Algorithm 5.4: EEP-construct (T ,CT(λ))
Input: A tree T (V,E) and a labelled compact tree CT(λ).

Output: Entry edge partition EEP(λ).

1 r ← the original root of CT(λ);

2 EEP(λ)← ∅;

3 partition(EEP(λ), [1, |V |], (ϕ, r),CT(λ));

4 return EEP(λ);

5 Procedure partition(EEP(λ), interval [s, t], edge (u, u′), CT(λ))

6 foreach subnode u′′ of u′ on CT(λ) in increasing preorder do

7 [s′, t′]← interval of (u′, u′′);

8 if s < s′ then add ([s, s′ − 1], (u, u′)) to EEP(λ);

9 partition(EEP(λ), [s′, t′], (u′, u′′),CT(λ));

10 s← t′ + 1;

11 if s ≤ t then add ([s, t], (u, u′)) to EEP(λ);

preorder label in the interval [s, t] share the same entry edge (u, u′). For an edge

(u, u′) with interval [s, t], the procedure processes every child node u′′ of u′ on CT(λ)

in increasing preorder of u′′ (line 6). For each edge (u′, u′′) with interval [s′, t′], the

interval [s, t] is partitioned into three parts: [s, s′ − 1], [s′, t′] and [t′ + 1, t]. The first

part is added to EEP(λ) with the entry edge (u, u′) if it is not empty (line 8). The

second part is processed recursively for edge (u′, u′′) (line 9), and the third part is left

to be further partitioned by other child nodes of u′ by simply setting s to be t′ + 1

(line 10). After processing all child nodes of u′, if [s, t] is still not empty, we add [s, t]

to EEP(λ) with the entry edge (u, u′) (line 11).

The time complexity of Algorithm 5.4 is O(|V (CT(λ))|) since every node on

CT(λ) is visited once. For each edge (u, u′) on CT(λ), at most two intervals are

added into EEP(λ). One is added before invoking partition for edge (u, u′) (line 8)

and the other is added at the end of partition for (u, u′) (line 11). Thus the total number

of intervals in EEP(λ) is no more than 2× |V (CT(λ))|.
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Figure 5.6: Labeled Compact Tree and Entry Edge Partition

Example 5.9. For the labeled compact tree CT(λ) shown in Fig. 5.6, when in-

voking partition(EEP(λ), [1, 20], (ϕ, r),CT(λ)), we process the three child nodes

a, c, b of r in order. We first process edge (r, a) with interval [2, 6], which di-

vides the interval [1, 20] into three parts: [1, 1], [2, 6], and [7, 20]. [1, 1] is added

into EEP(λ) with the entry edge (ϕ, r). [2, 6] is processed recursively by invoking

partition(EEP(λ), [2, 6], (r, a),CT(λ)), and [7, 20] is processed by the other two child

nodes c and b similarly. EEP(λ) is shown on the right part of Fig. 5.6.

Theorem 5.2. For a tree T (V,E) with the compact trees for all keywords constructed,

the edge entry partition EEP(λ) for all keywords can be constructed in O(|doc(V )|)

time and stored in O(|doc(V )|) space.

5.4.3. Construction of Candidate List

Given a compact tree CT(λ) for a tree T and a keyword λ, we need to compute the

candidate list candλ(v) for every node v on CT(λ). Since CT(λ) keeps the struc-

tural information of all keyword nodes in T , it is sufficient to search only on CT(λ)

to calculate candλ(v). A naive solution is to compute each candλ(v) separately on

CT(λ). This approach may take O(|V (CT(λ))|) time to calculate candλ(v) for a node

v, thus O(|V (CT(λ))|2) time to calculate all candidate lists in CT(λ) for one keyword

λ, which is too slow.

In order to save the computational cost, we design a novel method to update the

candidate list of a node using those of its nearby nodes on the tree CT(λ). Note
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Algorithm 5.5: cand-construct (T ,CT(λ), k)

Input: A tree T , a compact tree CT(λ), and the upper bound of k, k.

Output: candλ(v) for each v on CT(λ).

1 candλ(v)← ∅ for each node v on CT(λ);

2 candλ(v)← {v : 0} for each node v on CT(λ) that contains λ;

3 foreach v on CT(λ) in a bottom-up fashion do

4 u← the parent node of v on CT(λ);

5 candλ(u)← candλ(u)⊗k (candλ(v)⊕ dist(u, v));

6 foreach v on CT(λ) in a top-down fashion do

7 u← the parent node of v on CT(λ);

8 candλ(v)← candλ(v)⊗k (candλ(u)⊕ dist(u, v));

that in CT(λ), the path between two nodes u, v is unique: from node u to the lowest

common ancestor of u and v, LCA(u, v), and then from LCA(u, v) to v. Based on this

observation, we can follow the path to propagate the candidate list on u to v. Using

this idea, we just need to traverse the tree CT(λ) twice to build the candidate lists for

all nodes on CT(λ). The first traversal on CT(λ) is a bottom-up one, such that the

candidate list on each node is propagated to all its ancestors on CT(λ). The second

traversal on CT(λ) is a top-down one, such that the candidate list on each node is

further propagated to all its descendants.

Algorithm 5.5 shows the construction of the candidate lists on CT(λ). We first

initialize the candidate list for each keyword node to be the node itself and initialize the

candidate list for each non-keyword node to be ∅ (line 1-2). We then traverse CT(λ)

in a bottom-up fashion, e.g., using postorder traversal. For each node v traversed, we

merge candλ(v) into that of its parent node u by adding a distance dist(u, v) to the

list candλ(v) (line 3-5). At last, we traverse CT(λ) in a top-down fashion, e.g., using

preorder traversal. For each node v traversed, we merge the list of v’s parent node u,

candλ(u), into that of v by adding a distance dist(u, v) to the list candλ(u) (line 6-

8). Since the ⊗k operator takes O(k) time, the time complexity of Algorithm 5.5 is
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Figure 5.7: Constructing Candidate Lists

O(k · |V (CT(λ))|) using O(k · |V (CT(λ))|) space.

Example 5.10. Fig. 5.7 shows the candidate lists after the bottom-up phase and the top-

down phase for the compact tree CT(λ) shown on the left part of Fig. 5.4. Initially,

the candidate list for t is {t : 0} and the candidate list for c is {c : 0}. Since c is a

parent node of t, in the bottom-up phase, the list of t is propagated and merged into

that of c by adding a distance dist(c, t) = 1, thus candλ(c) = {c : 0, t : 1} after the

bottom-up phase. In the top-down phase, the list of c is propagated and merged into

that of t, thus candλ(t) = {t : 0, c : 1} after the top-down phase.

Theorem 5.3. Given a tree T , an upper bound of k, k, and CT(λ) for all keywords

λ, the candidate lists candλ(v) for all keywords λ and all nodes v on CT(λ) can be

constructed in O(k · |doc(V )|) time and stored in O(k · |doc(V )|) space.

5.5. K-NK on a Tree for a Large K

Algorithm 5.1 can only process a k-NK query Q = (q, λ, k) with a bounded k, i.e.,

k ≤ k, on a tree T . If k can be arbitrarily large, the index size cannot be bounded.

In this subsection, we will remove the restriction on k and introduce an algorithm to

handle a k-NK query for an arbitrary k, with an index size independent of k.
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5.5.1. A Basic Pivot Approach

Recall that for a node u that contains keyword λ and an arbitrary node v in a tree

T , the path from v to u is unique on T , and can be divided into two segments: the

first segment is from v to their lowest common ancestor LCA(u, v), and the second

segment is from LCA(u, v) to u. Our basic idea is to compute the first segment online

and precompute the results regarding the second segment offline. Thus, in the pre-

computing phase, instead of propagating a keyword node u to all nodes in T to update

their candidate lists, we just need to propagate u to its ancestors in T . In the query

processing phase, we do not search the whole tree to get the answer for a query, but

instead, we just need to merge the precomputed candidates along the path from the

query node to the root node of the tree T . Using this method, the size of the index

to keep the candidate nodes can be largely reduced at the expense of longer query

processing time.

We use depth(T ) to denote the depth of tree T , and depth(u, T ) to denote the

depth of node u on tree T . For any two nodes u and v on T , u is a pivot of v if and

only if u is an ancestor of v on T . For each node v, we denote the set of pivots of

v on T as PV(v, T ). We have |PV(v, T )| = depth(v, T ). Given a keyword λ, for

each node u on tree T , we use the candidate list candλ(u) to denote the set of nodes

that contain keyword λ on the subtree rooted at u on tree T , sorted in nondecreas-

ing order of their distances to u. The candidate list is in the form of candλ(u) =

{u1 : distT (u, u1), u2 : distT (u, u2), · · · } where distT (u, u1) ≤ distT (u, u2) ≤ · · · .

In order to handle an arbitrary k, the size of candλ(u) is not bounded by any pre-

defined k. Clearly, a node v ∈ candλ(u) if and only if v contains keyword λ and

u ∈ PV(v, T ). In other words, a keyword node v only appears in the candidate lists of

its pivots. As a result, for any keyword λ, the total size of all candidate lists for λ is∑
v∈Vλ
|PV(v, T )| =

∑
v∈Vλ

depth(v, T ). We use the following example to illustrate

the pivot based approach.

Example 5.11. Fig. 5.8 shows a tree T with depth(T ) = 6. For keyword λ, the nodes
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that contain λ are marked with bold circles. For every node v, we create a candidate

list candλ(v) that contains all keyword nodes in its subtree, sorted in nondecreasing

distances to v. For example, candλ(g) = {n : 2, k : 3} means there are two keyword

nodes n and k in the subtree rooted at g with distances 2 and 3 to g respectively. For

node p, PV(p, T ) = {r, d, h, e}. For a k-NK query Q = (d, λ, 3), the path from d to

the root r contains two nodes d and r. We merge the lists candλ(d) and candλ(r) by

adding a distance dist(r, d) = 1 to all elements in candλ(r). The final answer for Q is

{b : 2, c : 4, n : 4}.

5.5.2. Pivot Approach with Tree Balancing

The problem is not perfectly solved using the basic pivot approach above. The rea-

sons are twofold. First, in the precomputing phase, the index size for each keyword

λ is
∑

v∈Vλ
depth(v, T ), which can be large if depth(v, T ) is large. Second, when

processing a query Q = (q, λ, k), we need to traverse all nodes from the query node q

to the root of T . This is also costly if depth(q, T ) is large. Thus the key to optimizing

both index space and query time is to reduce the average depth of nodes on the tree.

A simple solution is to rotate the tree T to find a proper root such that the average

depth of nodes is minimized. However, such an approach cannot essentially solve the

problem, as illustrated by the following example. Let T (V,E) be a chain of 2n + 1

nodes where every node contains keyword λ. The best way is to select the middle

node on the chain as the root to minimize the average depth of nodes. The total index
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size is
∑

v∈Vλ
depth(v, T ) =

∑
v∈V (T ) depth(v, T ) = n(n− 1), which is O(n2). Fur-

thermore, we need to traverse n nodes to answer a query when the query node q is at

one end of the chain, leading to O(n) query time. This example shows that both the

index space and query processing can still be very costly, even though we rotate the

tree.

In order to reduce the average depth of nodes to optimize both index space and

query processing time, we introduce a new structure called distance preserving bal-

anced tree for T (V,E), denoted as DT(T ). Generally speaking, DT(T ) preserves

all distance information for any node pair on T and the height of DT(T ) is at most

log2 |V |. The formal definition of DT(T ) is as follows.

Definition 5.5. (Distance Preserving Balanced Tree) Given a tree T (V,E) with a

positive weight on each edge, a Distance Preserving Balanced Tree of T , denoted as

DT(T ), is an unweighted tree with the following three properties.

P1: V (DT(T )) = V (T ).

P2: depth(DT(T )) ≤ log2 |V |.

P3: For any two nodes u and v, let the lowest common ancestor of u and v on

DT(T ) be o = LCADT(T )(u, v). The following equation always holds: distT (u, v) =

distT (u, o) + distT (v, o).

Note that DT(T ) is unweighted and the distances distT (u, v), distT (u, o) and

distT (v, o) in P3 are calculated on the original tree T , but not DT(T ). The lowest

common ancestor LCADT(T )(u, v) is not necessarily the ancestor of u or v on the orig-

inal tree T . Based on P3, we can also divide our algorithm into two phases using
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DT(T ). In the preprocessing phase, for each keyword λ, and each node v that con-

tains keyword λ, we propagate v into the candidate lists of its pivots on DT(T ). In the

query processing phase, we traverse from the query node q to the root node on DT(T ).

Using the balanced tree DT(T ), the total size of the candidate lists for a keyword λ

is bounded by
∑

v∈Vλ
depth(v,DT(T )) ≤

∑
v∈Vλ

log2 |V |, and the total size for all

keywords is bounded by O(|doc(V )| · log |V |). For processing a query, we need to

traverse at most log2 |V | + 1 nodes on the path from the query node to the root of

DT(T ).

Example 5.12. A tree T with depth(T ) = 3 and a distance preserving balanced tree

of T , DT(T ) with depth(DT(T )) = 2 are shown in Fig. 5.9. The weight of each

edge is marked on T . Edge (b, d) is on T but not on DT(T ), and edge (b, f) is on

DT(T ) but not on T . For two nodes a and d, LCADT(T )(a, d) = f , thus distT (a, d) =

distT (a, f) + distT (d, f) = 2 + 3 = 5. Note that f is not an ancestor of d on the

original tree T . PV(v,DT(T )) for each node v in DT(T ) is listed on the right part of

Fig. 5.9.

Here we introduce our algorithm of processing a k-NK query on a tree T using

DT(T ), and in the next subsection, we will show that DT(T ) always exists for any tree

T . We will also describe how to construct DT(T ) for a tree T and how to compute all

candidate lists candλ(v) for all keywords λ and all nodes v on the tree DT(T ).

Query Processing: Given a tree T and DT(T ), Algorithm 5.6 shows how to process

a query Q = (q, λ, k). We traverse all nodes on the path from q to the root of DT(T ),

which is PV(q,DT(T ))
∪
{q} (line 2). For each traversed node v, we add distT (q, v)

to all elements in candλ(v) and then merge the list into the current result R, since we

need to first go from node q to node v (the first segment), and then go from v to the

keyword nodes in candλ(v) (the second segment). Note that the time complexity of

the ⊕ operator in line 3 is O(|candλ(v)|). However, by combining ⊕ with ⊗k, it is

easy to reduce the time complexity of line 3 to O(k).

Example 5.13. Fig. 5.10 shows a distance preserving balanced tree DT(T ) for the

tree T shown in Fig. 5.8, with depth 4. For keyword λ, the nodes that contain λ are
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Algorithm 5.6: tree-pivot (Q,T )
Input: A k-NK query Q = (q, λ, k), and a tree T .

Output: Answer for Q on T .

1 R← ∅;

2 foreach v ∈ PV(q,DT(T ))
∪
{q} do

3 R← R⊗k (candλ(v)⊕ distT (q, v));

4 return R;

marked with bold circles in Fig. 5.10. For a query Q = (e, λ, 3), we just need to

merge 2 candidate lists candλ(e) and candλ(r) by adding a distance distT (e, r) = 3 to

all elements in candλ(r). However, if we use the basic pivot approach on the original

tree T without tree balancing, we need to merge 4 candidate lists for nodes e, h, d and

r respectively. The answer for Q is {c : 2, t : 3, b : 4}.

Theorem 5.4. The time complexity for answering a k-NK query on a tree T (V,E)

using Algorithm 5.6 is O(k · log |V |).

5.5.3. Index Construction

Given a tree T , in order to answer a query Q = (q, λ, k) using Algorithm 5.6, we need

to build two indexes. The first index is the distance preserving balanced tree DT(T )

for T and the second index is the candidate list candλ(v) for each keyword λ and each

node v on DT(T ). We introduce them separately in the following.

Constructing DT(T ): Before introducing how to construct a tree DT(T ) to satisfy
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the three properties in Definition 5.5, we first present an approach to constructing a

tree T ′ from T , which satisfies properties P1 and P3. In other words, T ′ is distance

preserving but not necessarily balanced. Let the initial T ′ be T . We change T ′ by

performing the following steps.

(1) Randomly select a node r on T ′ as the new root and rotate T ′ accordingly.

(2) For each direct subtree T ′
c of r on T ′, perform steps (1) and (2) on T ′

c recur-

sively.

Clearly, after steps (1) and (2), T ′ may not be isomorphic to T . We have the

following two observations on T ′. O1: After performing step (1) on T ′, two nodes

u and v are in different direct subtrees of r if and only if LCAT ′(u, v) = r. Such

a property also holds after performing step (2) on T ′ because step (2) only changes

the structure within a subtree of r. O2: Since the structure of T ′ is not changed after

step (1), we have distT (u, v) = distT (u, r) + distT (v, r) on the original tree T . From

O1 and O2, we have distT (u, v) = distT (u, LCAT ′(u, v))+ distT (v, LCAT ′(u, v)) after

step (2) on T ′. Such a property also holds for any subtree of T ′ because it is processed

using steps (1) and (2) recursively. As a result, T ′ satisfies property P3.

Our DT(T ) is constructed in a similar way as T ′. In order to construct a balanced

tree, in step (1), the root node r should be selected more carefully, instead of random

selection. In our method, we select a median node to be the root node in step (1),

which is defined as follows.

Definition 5.6. (Median Node) Given a tree T , the Median Node of T is a node r

on T such that when using r as the root of T , for each direct subtree Tc of r on T ,

|V (Tc)| ≤ |V (T )|
2

holds.

The median node r is used to balance the size of each direct subtree of T when

using r as the root of T , as a direct subtree of r in T contains at most half of the nodes

in T . Clearly, if a median node always exists for any tree, we can select a median node

of tree T as the root and recursively do this for each direct subtree of the root. In this

way we can construct a tree T ′ with depth(T ′) ≤ log2 |V (T )|. The following lemma
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Algorithm 5.7: DT-construct (T )
Input: A tree T .

Output: A distance preserving balanced tree DT(T ).

1 r ← the median node of T ;

2 rotate T with r as the root;

3 DT(T )← a tree with a single node r;

4 foreach direct subtree Ti of r in T do

5 DT(Ti)← DT-construct(Ti);

6 add DT(Ti) as a subtree of r in DT(T );

7 return DT(T );

shows that the median node always exists on any tree T , and also gives a method to

find the median node of T .

Lemma 5.1. Given a tree T , the median node of T is the node r, such that the subtree

rooted at r contains more than |V (T )|
2

nodes and depth(r, T ) is the maximum.

According to Lemma 5.1, the median node r is unique on T . Otherwise if there

are two such nodes with the same maximum depth, the size of the tree will be larger

than |V (T )|. Given a tree T , we can easily find the median node of T using time

O(|V (T )|) by traversing each node in T only once.

Algorithm 5.7 shows how to construct DT(T ) for a tree T . Specifically, given

a tree T , we first find the median node r of T as the new root and then rotate T

accordingly (line 1-2). The median node r is also the root of DT(T ) (line 3). For each

direct subtree Ti of r in T , we create DT(Ti) recursively and add DT(Ti) as a subtree

of DT(T ) (line 4-6).

Example 5.14. For the tree T shown in Fig. 5.8, DT(T ) is shown in Fig. 5.10. DT(T )

is constructed as follows. Since r is the median node of T , the root of DT(T ) is r.

For the first subtree under r in T , its median node is a, thus the first subtree under r

in DT(T ) is rooted at a. All other nodes in DT(T ) are constructed similarly. We have

depth(DT(T )) = 4 ≤ log2 |V (T )| = log2 20.
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Theorem 5.5. Given a tree T (V,E), Algorithm 5.7 constructs a distance preserving

balanced tree DT(T ) for T using O(|V | · log |V |) time and O(|V |) space.

Constructing candλ(v): For a tree T (V,E), given DT(T ), the algorithm for con-

structing the candidate list candλ(v) for each node v and each keyword λ is quite

simple. For each node v, we propagate its keyword information to all its pivots in

DT(T ). Our algorithm is shown in Algorithm 5.8. We first initialize every candidate

list to be ∅ (line 1). Then we traverse each node v in DT(T ) and each keyword λ that

is contained in node v (line 2-3). For each pivot p of v as well as v itself, we calculate

distT (p, v) on the original tree T , and add the element v : distT (p, v) to the candidate

list candλ(p) (line 4-5). After all candidate lists are created, we sort the elements in

every candidate list in nondecreasing order of the distances. The time complexity for

line 2-5 is O(|doc(V )| · log |V |) since each keyword is propagated into at most log |V |

candidate lists in DT(T ). For line 6-7, we need O(|doc(V )| · log2 |V |) time to sort all

candidate lists in DT(T ).

Theorem 5.6. For a tree T , Algorithm 5.8 computes the candidate lists candλ(v)

for all nodes v and all keywords λ on DT(T ) using O(|doc(V )| · log2 |V |) time and

O(|doc(V )| · log |V |) space.

5.6. Approximate K-NK on a Graph

In this subsection, we discuss how to answer a k-NK query Q = (q, λ, k) on a graph

G. We introduce two algorithms graph-boundk and graph-pivot for a bounded k and

an arbitrary k respectively. We then propose a global storage technique to reduce

the index size and query processing time. We also show how our approach can be

extended to handle multiple keywords. Finally, we summarize the complexities of all

algorithms introduced in this chapter.

Query Processing: Our general idea for query processing on a graph is intro-

duced in Chapter 5.3. Suppose we have computed r = O(log |V |) distance oracles
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Algorithm 5.8: cand-construct (T ,DT(T ))
Input: A tree T , a distance preserving balanced tree DT(T ).

Output: candλ(v) for each v on DT(T ) and each keyword λ.

1 candλ(v)← ∅ for each node v on DT(T ) and each keyword λ;

2 foreach v ∈ V (DT(T )) do

3 foreach λ ∈ doc(v) do

4 foreach p ∈ PV(v,DT(T ))
∪
{v} do

5 candλ(p)← candλ(p)
∪
{v : distT (p, v)};

6 foreach v ∈ V (DT(T )) and keyword λ do

7 sort elements in candλ(v) in nondecreasing order of distances;

Algorithm 5.9: graph-knk (G,Q)
Input: A graph G(V,E) and a k-NK query Q = (q, λ, k).

Output: The answer for Q on G.

1 R← ∅;

2 foreach Distance Oracle Oi do

3 Ti ← shortest path tree for Oi;

4 R← R⊗k tree-knk(Ti, Q);

5 return R;

O1,O2, · · · ,Or using the algorithm in [78]. Let the shortest path trees for the oracles

be T1, T2, · · · , Tr respectively. Algorithm 5.9 shows our framework for answering Q

on G. The algorithm simply enumerates all shortest path trees and answers the k-NK

query using a tree based approach, denoted as tree-knk, on each shortest path tree Ti,

and merges all the results using the⊗k operator (line 4). Since we have two tree based

solutions, namely, tree-boundk and tree-pivot, we have two corresponding algorithms

on graphs, denoted as graph-boundk and graph-pivot, by instantiating tree-knk (line 4)

to tree-boundk and tree-pivot respectively.
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Global Storage: As discussed above, we have r shortest path trees T1, T2, · · · , Tr. For

a keyword λ and a node v, let candiv,λ be the candidate list of v on tree Ti, 1 ≤ i ≤ r.

To answer a k-NK query Q = (q, λ, k) on a graph, consider a case when the candidate

lists of node v on two different trees Ti and Tj are both merged into the result, in the

form of

R← R⊗k (cand
i
v,λ ⊕ distTi

(q, v))⊗k (cand
j
v,λ ⊕ distTj

(q, v)).

This expression can be generalized to the case of merging the candidate lists of

node v on more than two trees. Instead of keeping a candidate list candiv,λ for each

tree Ti (1 ≤ i ≤ r) separately, we propose a technique called global storage which

keeps a global candidate list of node v and keyword λ for all trees T1, T2, · · · , Tr.

Denote the global candidate list of node v and keyword λ as candv,λ. It is computed

by

candv,λ = cand1v,λ ⊗ cand2v,λ ⊗ · · · ⊗ candrv,λ.

For a node v, a node v′ ∈ candv,λ may appear in the candidate list candiv,λ of

multiple trees Ti, but will be stored at most once in the global candidate list candv,λ.

Therefore, the global storage technique can effectively reduce the index size, but it

adds difficulty to query processing due to two reasons: (1) we need to add distTi
(q, v)

to candiv,λ using the ⊕ operator, i.e., candiv,λ ⊕ distTi
(q, v), but distTi

(q, v) is query

dependent, thus cannot be precomputed; (2) the global candidate list may provide a

different result list from the one computed by Algorithm 5.9 without using global stor-

age. In the following, we will show that the global candidate list can be used to answer

k-NK queries without sacrificing the result quality. We first define the domination re-

lationship between two candidate lists.

Definition 5.7. For two candidate lists R1 = {u1 : du1 , u2 : du2 , · · · } and R2 = {v1 :

dv1 , v2 : dv2 , · · · } sorted in nondecreasing order of distances, R1 is dominated by R2,

denoted as R1 ≥ R2, if and only if |R1| ≤ |R2| and dui
≥ dvi for all 1 ≤ i ≤ |R1|.

Clearly, the domination relationship is transitive, i.e., if R1 ≥ R2 and R2 ≥ R3, then

R1 ≥ R3.
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Figure 5.11: Global Storage Example for graph-pivot

To solve the first problem, we need to find a merge method that is independent

of distTi
(q, v) and at the same time, can generate an answer that is no worse than

the answer computed without global storage. The solution is expressed in Equ. 5.1.

For any two candidate lists candiv,λ ⊕ distTi
(q, v) and candjv,λ ⊕ distTj

(q, v), using

Equ. 5.1, we can generate a better result by merging candiv,λ and candjv,λ using ⊗k

first, then taking distances distTi
(q, v) and distTj

(q, v) out and applying the minimum

value of them. Clearly, (candiv,λ⊗k cand
j
v,λ)⊕min{distTi

(q, v), distTj
(q, v)} is a valid

candidate list for query Q, because candiv,λ ⊗k cand
j
v,λ is a candidate list for node v

and min{distTi
(q, v), distTj

(q, v)} suggests a path from q to v in G.

(candiv,λ ⊕ distTi(q, v))⊗k (cand
j
v,λ ⊕ distTj (q, v)) ≥

(candiv,λ ⊗k cand
j
v,λ)⊕min{distTi(q, v), distTj (q, v)}

(5.1)

The second problem can be solved if we prove that by merging more candidate lists

using the⊗ operator, the answer will not get worse. Consider a node v′ ∈ candv,λ, the

merging operation finds the minimum distance between v′ and v over multiple trees,

which is a refined estimation of their distance on graph. We formulate such a situation

using Equ. 5.2.

candiv,λ ≥ candiv,λ ⊗ candjv,λ (5.2)

Equ. 5.1 and Equ. 5.2 also hold for multiple candidate lists. Therefore, we show

that using global storage will not sacrifice the result quality. More importantly, global

storage can effectively reduce the index size and query processing time. It applies to

both graph algorithms graph-boundk and graph-pivot. We use the following example
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Table 5.1: Algorithm Complexities on Trees (T ) and Graphs (G)

boundk pivot

Query Time (T ) O(log |Vλ|+ k) O(k · log |V |)

Index Time (T ) O(k · |doc(V )|) O(|doc(V )| · log2 |V |)

Index Size (T ) O(k · |doc(V )|) O(|doc(V )| · log |V |)

Query Time (G) O((log |Vλ|+ k) · log |V |) O(k · log2 |V |)

Index Time (G) O(k · |doc(V )| · log |V |) O(|doc(V )| · log3 |V |)

Index Size (G) O(k · |doc(V )| · log |V |) O(|doc(V )| · log2 |V |)

to illustrate global storage.

Example 5.15. We take the graph-pivot algorithm as an example. Fig. 5.11 shows

two trees DT(T1) and DT(T2) for the shortest path tree T1 and T2 shown in Fig. 5.5,

with candidate list marked beside each node for keyword λ. Using global storage, for

the same node on different trees, we merge all its candidate lists using ⊗ and only

keep one global candidate list. The global candidate lists for nodes r, e and m are

marked on the top of Fig. 5.11. For query Q1 = (p, λ, 2), without global storage,

we need to merge three candidate lists, cand1e,λ ⊕ distT1(p, e), cand
1
r,λ ⊕ distT1(p, r)

and cand2r,λ ⊕ distT2(p, e). Using global storage, only two candidate lists cande,λ ⊕

min{distT1(p, e), distT2(p, e)}, candr,λ ⊕ distT1(p, r) need to be merged. For query

Q2 = (h, λ, 2), without global storage, we get the result R = {c : 3, t : 4}. Using

global storage, we can get a result R′ = {n : 2, c : 3} with R ≥ R′.

Handling Multiple Keywords: We discuss how to extend our approach to handle a

k-NK query of multiple keywords with AND (denoted as ∧) and OR (denoted as ∨)

semantics. Without loss of generality, we assume the format of a keyword expression

is (λ1,1 ∧ λ1,2 · · · ) ∨ (λ2,1∧λ2,2 · · · )∨ · · · . It is easy to handle ∨, by answering each

λi,1∧λi,2 · · · separately and merging the results using the ⊗ operator. For handling

λi,1∧λi,2 · · · , we select a keyword λi,j from {λi,1, λi,2, · · · } with the least frequency

|Vλi,j
| as the primary keyword and consider other keywords as filter keywords. We

answer the query for the single keyword λi,j . Before merging each candidate list
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Table 5.2: Dataset Statistics

|V | |E| |doc(V )| keywords

DBLP 1, 695, 469 4, 726, 801 12, 842, 501 331, 301

FLARN 1, 070, 376 1, 356, 399 6, 966, 665 2, 730

using the ⊗ operator, we remove the candidate nodes that do not contain one or more

of the filter keywords from the candidate list. In this way, each element in the final

answer satisfies the predicate specified in the keyword expression.

Comparison: Table 5.1 summarizes and compares the query time, index time and

index size for boundk and pivot on trees and graphs. Here, the listed complexities of

index time and index size are for all keywords in the tree/graph. boundk is faster than

pivot in query processing on both trees and graphs. When k is small, the index time

and index space for boundk are smaller than pivot on both trees and graphs. However,

when k is large, the index time and index space for boundk are large, while the index

time and index space of pivot are independent of k on both trees and graphs.

5.7. Experiments

In this subsection, we report the performance of our methods boundk, pivot, and their

global storage implementations boundk-gs and pivot-gs, with two baseline solutions

BFS and PMI. BFS is a brute-force search that uses Dijkstra’s algorithm to identify

the nearest k keyword nodes, and PMI (Partitioned Multi-Indexing) [5] is the state-

of-the-art approximate algorithm based on distance oracle [78]. For all the distance

oracles involved we set the parameter r = log2 |V |. We implemented all methods

in GNU C++, and conducted all experiments on a Windows machine with an Intel

Xeon 2.7GHz CPU and 128GB memory. All methods run in main memory. A 32GB

memory limit is set for index size.
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Figure 5.12: Hit rate, Spearman’s rho and Error by Varying k

Datasets and Queries. We use two real graphs, DBLP2, and Florida road network

FLARN3, with statistics listed in Table 5.2.

DBLP includes 1, 060, 763 articles, 631, 589 authors and 3, 117 confer-

ences/journals, all of which are treated as nodes. There is an edge between nodes

u and v, if u is an author of article v, or u is an article published in conference/journal

v. The keywords of an author node include first name and last name, the key-

words of an article node include title words, editor, year, publisher, isbn, etc., and

the keywords of a conference/journal node include association and name. A weight

(log2 deg(u) + log2 deg(v)) is assigned to edge (u, v), where deg(u) denotes the de-

gree of node u. Compared with the unit edge weight setting, the numerical edge

weights can effectively differentiate the weights of all edges in a graph. Thus for any

k-NK query, this helps produce a ranking of top-k answer nodes with less ties in their

distances as the ground truth, which is important for fair and unambiguous ranking

quality evaluation.

In FLARN, a node represents an intersection or endpoint, an edge denotes a road

segment, and the edge weight is the distance of the road segment. We obtained the

2http://www.informatik.uni-trier.de/∼ley/db
3http://www.dis.uniroma1.it/challenge9/download.shtml
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keywords of nodes from the OpenStreetMap project4 with a bounding box. How-

ever, only 7, 172 nodes out of 1, 070, 376 have keywords. To address the keyword

sparseness issue and better discriminate different methods, we assign a random num-

ber (between 0 and 4) of keywords to the nodes with no keyword. After this step, there

are still 213, 081 nodes without any keyword in FLARN.

We remove stop words in DBLP and FLARN. For each dataset, we generate 500

k-NK queries in the form of Q = (q, λ, k), where q ∈ V is a randomly selected query

node, and λ is a keyword randomly selected by following the keyword frequency

distribution in the document collection. We test k = 1, 2, . . . , 128.

Evaluation Metrics. We use six metrics for evaluation: hit rate, Spearman’s rho

[82], error, query time, index time, and index size. Spearman’s rho measures the rank

correlation between an approximate rank result and the ground truth. Hit rate and

error, defined as follows, measure the quality of an approximate result. For a query

Q = (q, λ, k), denote the exact result as R = {u1 : d1, . . . , uk : dk} in nondecreasing

order of their distances, and d = dk as the upper bound distance of the result R.

Denote an approximate result set as R′ = {u′
1 : d′1, . . . , u

′
k : d′k} in nondecreasing

order of their distances. The hit rate is defined as:

hit(R′) = |{i ∈ [1, k]|dist(u′
i, q) ≤ d}|/k

and the error is the average relative error of the estimated distances w.r.t. the ground

truth:

err(R′) =
∑
1≤i≤k

|d′i/di − 1|/k

Hit rate, Spearman’s rho and Error. Figures 5.12(a)–(c) show the hit rate, Spear-

man’s rho, and error on DBLP respectively when we vary k. Our method pivot im-

proves the hit rate of PMI by 96%, and improves Spearman’s rho by 111% on average.

The error of pivot is within 0.066 for all k values, demonstrating that the distance es-

timated by pivot is very close to the exact distance. Notably, pivot reduces the error of

PMI by an order of magnitude, i.e., from 0.630 to 0.063 on average. Furthermore, the
4http://wiki.openstreetmap.org/wiki/Main Page
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Figure 5.13: Query Time in Microseconds by Varying k

error of pivot does not increase with k, while that of PMI increases by 40% with the

increase of k. Note when k = 1, Spearman’s rho is constantly 1.

Figures 5.12(d)–(f) show the hit rate, Spearman’s rho, and error on FLARN respec-

tively. pivot improves both the average hit rate and Spearman’s rho of PMI by 14%.

The error of pivot is below 0.168 for all k values and is 4 times smaller than that of

PMI on average.

Note that the performance of BFS is omitted in Figure 5.12, as it returns the exact

result. Furthermore, the result quality between using and not using global storage does

not differ substantially, for the sake of clarity, the global storage methods boundk-gs

and pivot-gs are also omitted in Figure 5.12. But we do observe that global stor-

age technique improves the hit rate of boundk/pivot by 1.3% on DBLP and 0.7% on

FLARN, and reduces the error by 6.7% on DBLP and 16.9% on FLARN on average.

Given the memory limit of 32GB for index size, boundk can only support k ≤ 4 on

DBLP and k ≤ 8 on FLARN in Figure 5.12 as its index size increases linearly with k.

Query Time. Figure 5.13 shows the query time of different methods in log scale

when we vary k. The query time of BFS is 105–106 microseconds, which is two to

three orders of magnitude slower than the other methods.

Figure 5.13(a) shows the query time on DBLP. The query time of all methods

increases with the increase of k. PMI is the most efficient. The query time of boundk,

boundk-gs, pivot and pivot-gs is less than 2 times that of PMI, which is quite close.



Chapter 5. Querying Top K-Nearest Keyword 137

200

300

400

500

600

670 1888 4766 14457 49998

Q
ue

ry
T

im
e(

µ
s) boundk

boundk-gs

(a) DBLP

150
200
250
300
350
400
450

1958 2402 3514 4474 5328

Q
ue

ry
T

im
e(

µ
s) boundk

boundk-gs

(b) FLARN

Figure 5.14: Query Time of boundk Varying Keyword Frequency

Global storage reduces the query time of boundk by 22% and that of pivot by 25%.

Remarkably, each of our proposed approaches can report a result within 1 millisecond

for all k values.

Figure 5.13(b) shows the query time on FLARN. We can observe that PMI is the

fastest, closely followed by boundk and boundk-gs, whose query time is less than two

times that of PMI and one third that of pivot for all k values. pivot and pivot-gs take

a little longer as their query time depends on the tree depth which is large on FLARN.

But their query time is within 3 milliseconds for k = 128, which is still quite efficient.

Global storage helps reduce the query time of boundk by 20% and that of pivot by

15%.

Figure 5.14 further plots the query time of boundk and boundk-gs on the 500 k-NK

queries in ascending order of the query keyword frequency in the graph. We set k = 4

in this experiment. For illustration, we also label a few query keyword frequencies on

the x axis. The query time shows a sharper increasing trend on DBLP than FLARN, as

the frequency difference between DBLP keywords is larger. These empirical results

are consistent with the theoretical result, i.e., the query time complexity of boundk

depends on log |Vλ|, where |Vλ| is the frequency of keyword λ.

Index Time and Index Size. Figure 5.15 shows the total index time (IT) and index

size (IS) for indexing all keywords by different methods. We observe that the index

time of pivot is 2.6 times that of PMI on DBLP, and 8.2 times on FLARN. The index

construction time of pivot is longer on FLARN than on DBLP. This is because the
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complexity of pivot grows linearly with the tree depth, and the larger diameter of

FLARN leads to a larger tree depth. All methods can finish the index construction for

all keywords in a graph within 1.15 hours.

Given the memory limit of 32GB for index size, boundk can only support k ≤ 4

on DBLP and k ≤ 8 on FLARN, as its index size increases linearly with k. In contrast,

pivot/pivot-gs have no such limitation. The index size of pivot is 2.5 times that of PMI

on DBLP and 7.9 times on FLARN, due to the larger diameter of FLARN. By keeping

a global candidate list and removing duplicate index items, global storage reduces the

index size of pivot by 61% on DBLP and 55% on FLARN. It also reduces the index

size of boundk by 44% on DBLP and 54% on FLARN. Remarkably, the index size

of pivot-gs is 6.7GB on DBLP, which is even smaller than that of PMI (6.8GB). This

result proves the superiority of global storage.

5.8. Summary

In this chapter, we study top-k nearest keyword (k-NK) search on large graphs. We

propose two exact k-NK algorithms on trees to handle a bounded k and an arbitrary

k respectively. We extend tree based algorithms to graphs and propose a global stor-

age technique to further reduce the index size and query time. Extensive performance

studies on real large graphs demonstrate the effectiveness and efficiency of our algo-

rithms.
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CONCLUSIONS AND FUTURE WORK

Due to the massive size of graphs from various domains nowadays, even simple graph

queries become challenging tasks. Three queries with a wide range of applications

are investigated in this thesis, shortest distance query, weight constraint reachability

query, and top-k nearest keywords query.

For a shortest distance query, we devise two landmark embedding schemes, an

error bounded landmark scheme and a local landmark scheme, where the former can

guarantee an error bound for estimated distance, and the latter can significantly im-

prove the distance estimation accuracy without increasing the offline embedding or

the online query complexity. For a WCR query, we propose a memory-based approach

which promises a constant query time. Besides, in order to increase its scalability, we

devise an I/O-efficient approach for answering a WCR query on massive graphs. For a

k-NK query, we start with a special case when the graph is a tree, based on which we

present our algorithm for approximate k-NK query on a graph. A global storage tech-

nique is devised to further reduce the index size and the query time. We did extensive

experiments on the three queries respectively to show the effectiveness and efficiency

of our methods.

The investigation on graph query processing is still far from an end. New applica-

tions are posing new challenges. For example, in a location based social network such

as Gowalla and Brightkite, users report locations from their mobile devices to share

activities with their friends, therefore, a personalized query processing based on both
139
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social networks and road networks is in demand which is one of our future works. In

addition, we intend to increase the scalability of the existing query processing by tech-

niques including summarizing, sampling and sketching, or by developing I/O efficient

solutions instead of memory-based approaches in the near future.
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