
Data Security and Reliability in Cloud Backup
Systems with Deduplication

RAHUMED, Arthur

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

The Chinese University of Hong Kong

September 2012

Abstract

Cloud storage is an emerging service model that enables individuals and en-

terprises to outsource the storage of data backups to remote cloud providers

at a low cost. This thesis presents methods to ensure the data security and

reliability of cloud backup systems.

In the first part of this thesis, we present FadeVersion, a secure cloud

backup system that serves as a security layer on top of todays cloud storage

services. FadeVersion follows the standard version-controlled backup design,

which eliminates the storage of redundant data across different versions of

backups. On top of this, FadeVersion applies cryptographic protection to data

backups. Specifically, it enables fine-grained assured deletion, that is, cloud

clients can assuredly delete particular backup versions or files on the cloud and

make them permanently inaccessible to anyone, while other versions that share

the common data of the deleted versions or files will remain unaffected. We

implement a proof-of-concept prototype of FadeVersion and conduct empirical

evaluation atop Amazon S3. We show that FadeVersion only adds minimal

performance overhead over a traditional cloud backup service that does not

support assured deletion.

In the second part of this thesis, we present CFTDedup, a distributed

proxy system designed for providing storage efficiency via deduplication in

cloud storage, while ensuring crash fault tolerance among proxies. It synchro-

nizes deduplication metadata among proxies to provide strong consistency.

It also batches metadata updates to mitigate synchronization overhead. We

i

implement a preliminary prototype of CFTDedup and evaluate via testbed

experiments its runtime performance in deduplication storage for virtual ma-

chine images. We also discuss several open issues on how to provide reliable,

high-performance deduplication storage. Our CFTDedup prototype provides

a platform to explore such issues.

ii

摘摘摘要要要

雲存儲是一個新興的服務模式，讓個人和企業的數據備份外包予較低成本的

遠程雲服務提供商。 本論文提出的方法，以確保數據的安全性和雲備份系

統的可靠性。

在本論文的第一部分，我們提出 FadeVersion， 安全的雲備份作為今天

的雲存儲服務上的安全層服務的系統。 FadeVersion 實現標準的版本控制

備份設計，從而消除跨不同版本備份的冗餘數據存儲。 此外，FadeVersion

在此設計上加入了加密技術以保護備份。具體來說，它實現細粒度安全刪

除，那就是， 雲客戶可以穩妥地在雲上刪除特定的備份版本或文件，使有

關文件永久無法被解讀， 而其它共用被刪除數據的備份版本或文件將不

受影響。 我們實現了試驗性原型的 FadeVersion 並在亞馬遜S3之上進行實

證評價。 我們證明了，相對於不支援度安全刪除技術傳統的雲備份服務

FadeVersion 只增加小量額外開鎖。

在本論文的第二部分，提出 CFTDedup 一個分佈式代理系統， 利用通過

重複數據刪除增加雲存儲的效率，而同時確保代理之間的崩潰容錯。代理

之間會進行同步以保持重複數據刪除元數據的一致性。另外，它也分批更

新元數據減輕同步帶來的開銷。我們實現了初步的原型CFTDedup並通過試

驗台試驗， 以存儲虛擬機映像評估其重複數據刪除的運行性能。我們還討

論了幾個開放問題， 例如如何提供可靠、高性能的重複數據刪除的存儲。

我們的CFTDedup原型提供了一個平台來探討這些問題。

iii

Acknowledgments

Special thanks to Patrick P. C. Lee, John C.S. Lui and Henry C. H. Chen

iv

Contents

1 Introduction 1

1.1 Cloud Based Backup and Assured Deletion 1

1.2 Crash Fault Tolerance for Backup Systems with Deduplication . 4

1.3 Outline of Thesis . 6

2 Background and Related Work 7

2.1 Deduplication . 7

2.2 Assured Deletion . 7

2.3 Policy Based Assured Deletion 8

2.4 Convergent Encryption . 9

2.5 Cloud Based Backup Systems 10

2.6 Fault Tolerant Deduplication Systems 10

3 Design of FadeVersion 12

3.1 Threat Model and Assumptions for Fade Version 12

3.2 Motivation . 13

3.3 Main Idea . 14

3.4 Version Control . 14

3.5 Assured Deletion . 16

3.6 Assured Deletion for Multiple Policies 18

3.7 Key Management . 19

v

4 Implementation of FadeVersion 20

4.1 System Entities . 20

4.2 Metadata Format in FadeVersion 22

5 Evaluation of FadeVersion 24

5.1 Setup . 24

5.2 Backup/Restore Time . 26

5.3 Storage Space . 28

5.4 Monetary Cost . 29

5.5 Conclusions . 30

6 CFTDedup Design 31

6.1 Failure Model . 31

6.2 System Overview . 32

6.3 Distributed Deduplication . 33

6.4 Crash Fault Tolerance . 35

6.5 Implementation . 36

7 Evaluation of CFTDedup 37

7.1 Setup . 37

7.2 Experiment 1 (Archival) . 38

7.3 Experiment 2 (Restore) . 39

7.4 Experiment 3 (Recovery) . 40

7.5 Summary . 41

8 Future work and Conclusions of CFTDedup 43

8.1 Future Work . 43

8.2 Conclusions . 44

9 Conclusion 45

vi

Bibliography 47

vii

List of Publications

• Arthur Rahumed, and Patrick P. C. Lee, A Proxy-Based Deduplication

Storage System with Crash Fault Tolerance, Submitted to USENIX 8th

Workshop on Hot Topics in System Dependability

viii

List of Figures

3.1 Illustration of why existing version control systems and assured

deletion systems are incompatible. 15

3.2 Illustration of how version control works. 16

3.3 Illustration of layered encryption, by extending the example

shown in Figure 3.2. 17

4.1 Architecture of FadeVersion. 20

4.2 Metadata format for a single file: Cumulus (left) and FadeVer-

sion (right). 23

5.1 File size statistics for Day 1 and Day 46. 25

5.2 Size of data changes reported by rdiff-backup per day. 25

5.3 Backup time for each incremental backup. 26

5.4 Upload time for each incremental backup. 26

5.5 Restore time for all 46 days of snapshots from local storage. . . 27

5.6 Size of incremental uploads for Cumulus and FadeVersion. . . . 29

6.1 CFTDedup architecture. 33

7.1 Experiment 1 (Archival performance): (a) Cumulative space

usage with and without deduplication; (b) Upload time versus

segment size. 39

ix

7.2 Experiment 2 (Restore performance): (a) Download time versus

segment size; (b) Amount of downloaded data versus segment

size. 40

7.3 Experiment 3 (Recovery performance): (a) Recovery time when

a proxy fails; (b) Recovery time when the client fails. 42

x

List of Tables

5.1 Statistics of our dataset. 25

5.2 Summary of storage space on the cloud using Cumulus and

FadeVersion. 29

5.3 Storage costs per month and overall bandwidth cost of Cumu-

lus and FadeVersion for 46 days of backup with different cloud

providers. 30

xi

Chapter 1

Introduction

Cloud computing is an emerging service model that provides computation and

storage resources on the Internet. One attractive functionality that cloud com-

puting can offer is cloud storage. Individuals and enterprises are often required

to remotely archive their data to avoid any information loss in case there are

any hardware/software failures or unforeseen disasters. Instead of purchasing

the needed storage media to keep data backups, individuals and enterprises

can simply outsource their data backup services to the cloud service providers,

which provide the necessary storage resources to host the data backups.

This thesis focuses on the problem of assured deletion and crash fault tol-

erance of cloud backup systems. We first propose a system called FadeVersion

to introduce assured deletion into cloud backup systems and then later ex-

plore adding crash fault tolerance by proposing another system CFTDedup.

However, due to time constraints, we were not able to add assured deletion to

CFTDedup.

1.1 Cloud Based Backup and Assured Dele-

tion

While cloud storage is attractive, how to provide security guarantees for out-

sourced data becomes a rising concern. One major security challenge is to

1

Chapter 1 Introduction 2

provide the property of assured deletion, i.e., data files are permanently inac-

cessible upon requests of deletion.

Keeping data backups permanently is undesirable, as sensitive information

may be exposed in the future because of data breach or erroneous manage-

ment of cloud operators. Thus, to avoid liabilities, enterprises and government

agencies usually keep their backups for a finite number of years and request

to delete (or destroy) the backups afterwards. For example, the US Congress

is formulating the Internet Data Retention legislation in asking ISPs to retain

data for two years [1], while in United Kingdom, companies are required to

retain wages and salary records for six years [2].

Assured deletion aims to provide cloud clients an option of reliably destroy-

ing their data backups upon requests. On the other hand, cloud providers may

replicate multiple copies of data over the cloud infrastructure for fault-tolerance

reasons. Since cloud providers do not publicize their replication policies, cloud

clients do not know how many copies of their data are on the cloud, or where

these copies are located. It is unclear whether cloud providers can reliably

remove all replicated copies when cloud clients issue requests of deletion for

their outsourced data.

Therefore the design of a highly secure cloud backup system that enables

assured deletion for outsourced data backups on the cloud, while addressing

the important features for a typical backup application is desirable. One such

feature is to enable version control for outsourced data backups, so that cloud

clients can roll-back to extract data from earlier versions. Typically, each

backup version is incrementally built from the previous version. If the same

file appears in multiple versions, then it is natural to store only one copy of the

file and have the different versions refer to the file copy. However, there are

data dependencies across different versions, and deleting an old version may

make the future versions unrecoverable.

Chapter 1 Introduction 3

In the first part of this thesis, we introduce FadeVersion a work in collab-

oration with Henry Chen Chuk Hin. FadeVersion secure cloud backup system

that supports both version control and assured deletion. FadeVersion allows

fine-grained assured deletion, such that cloud clients can specify particular

versions or files on the cloud to be assuredly deleted, while other versions that

share the common data of the deleted versions or files will remain unaffected.

The main idea of FadeVersion is to use a layered encryption approach. Suppose

that a file F appears in multiple versions. We first encrypt F with key k, and

then encrypt key k independently with different keys associated with different

versions. Thus, if we remove a key of one version, we can still recover key k

and hence file F in another version.

The result was a proof-of-concept prototype of FadeVersion that is com-

patible with today’s cloud storage services. We extend an open-source cloud

backup system Cumulus[3] and include the assured deletion feature. Using

Amazon S3 as the cloud storage backend, we empirically evaluated the perfor-

mance of FadeVersion. We also conducted economical cost analysis for Fade-

Version based on the cost plans of different cloud providers. We showed that

the additional overhead of FadeVersion is justifiable compared to a traditional

cloud backup service that does not possess the assured deletion functionality.

My main contribution to the project was modification of the Cumulus

backup program to support assured deletion, while my partner Henry Chen

was responsible modifying the Cumulus backup restore program to support for

the new backup format generated by FadeVersion.

Chapter 1 Introduction 4

1.2 Crash Fault Tolerance for Backup Systems

with Deduplication

FadeVersion implements versioning via the technique of deduplication. Dedu-

plication [4] is a technique that has been widely used to achieve efficient storage.

It operates by splitting data into blocks and computing cryptographic hashes

on the content for each block. If two blocks have identical content, then they

have the same hash and hence only one physical copy of the block needs to be

stored.

From a client’s perspective, enabling deduplication in cloud storage can

be achieved via a proxy-based approach, in which a proxy (or gateway) serves

as an interface between different clients’ data sources and cloud storage sites.

The proxy applies deduplication to clients’ data before uploading the unique

data blocks to the cloud, and also keeps deduplication metadata to determine

if a data block can be deduplicated. Each client only needs to interface with

the proxy on how to upload/download data, without needing to implement the

deduplication logic. The proxy-based approach has been used and analyzed in

many cloud storage systems in business (e.g., [5, 6, 7, 8]) and academia (e.g.,

[9, 10, 11, 12]).

Deploying a single proxy is clearly prone to the performance bottleneck

and single-point-of-failure problems. If a proxy fails, the upload procedure

will have to be restarted from the beginning with another proxy, extending

the period where computer systems are taken offline to complete the backup.

Furthermore, single proxy systems which perform deduplication will lose their

deduplication metadata which has to be recovered; otherwise the system will

lose the ability to deduplicate the data it is currently backing up with data

previously backed up.

Thus, we consider a distributed proxy system, in which multiple independent

proxies coordinate among themselves in the deduplication process. If a proxy

Chapter 1 Introduction 5

crashes, clients can re-connect to the cloud via a different proxy, and it is

desirable that any subsequently uploaded data blocks can still be deduplicated

with the previously uploaded blocks before the crash so as to preserve storage

efficiency. On the other hand, maintaining consistent deduplication metadata

across multiple proxies is challenging. Our observation is that deduplication is

performed on a per-block basis, and hence updating deduplication metadata

on each data block across all proxies can introduce significant synchronization

overhead. This motivates us to explore the performance trade-off in designing

a fault-tolerant distributed proxy system for deduplication storage.

In the second part of this thesis, we propose CFTDedup, a distributed proxy

system designed for deduplication storage with crash fault tolerance (CFT).

Our current CFTDedup design considers one extreme of consistency known

as strong consistency, such that any updates to the deduplication metadata

are fully serialized, replicated, and synchronized across all proxies. All proxies

share the same view of the deduplication metadata. Any identical data blocks

that are uploaded through different proxies can still be deduplicated with one

another. In particular, we propose to aggregate data blocks into segments,

and batch the updates of deduplication metadata to mitigate synchronization

overhead.

We implement a preliminary prototype of CFTDedup, and evaluate via

testbed experiments its performance in storing virtual machine images. We

show that CFTDedup provides storage efficiency via deduplication, while en-

suring fault tolerance against proxy and client crashes. We believe that our

CFTDedup prototype provides a platform for future research. In view of this,

we conclude by discussing several open issues on how to provide reliable, high-

performance deduplication storage.

Chapter 1 Introduction 6

1.3 Outline of Thesis

The remainder of the report proceeds as follows. Chapter 2 provides the nec-

essary background on deduplication, fault tolerance, and issues in integrating

assured deletion version control. Chapters 3, 4, 5, discusses the threat model,

design, implementation details of FadeVersion, and also the effectiveness and

performance overhead of FadeVersion respectively. Chapter 6 describes the

design and implementation of CFTDedup, and chapter 7 discusses the perfor-

mance of CFTDedup. Furthermore we discuss design tradeoffs in CFTDedup

and future work in chapter 8. Finally, we conclude the thesis in chapter 9.

Chapter 2

Background and Related Work

In this chapter, I will describe previous work related to FadeVersion and

CFTDedup.

2.1 Deduplication

Deduplication refers to the removal of duplicate data[13], which can be used

to reduce storage space and data transmission. It is performed by hashing

the data of interest, and then looking up a deduplication index to determine

if the data has been encountered before, if not, the system will update the

deduplication index to include the hash of the data. The deduplication index

can be implemented using a hash table in memory [14] or a database on the

hard drive[13]. One notable example of a deduplication system is DropBox[15],

a web based file hosting service[16].

2.2 Assured Deletion

There are different ways of achieving assured deletion. One approach is by

secure overwriting [17], in which new data is written over original data to make

the original data unrecoverable. Secure overwriting has also been applied in

versioning file systems [18]. However, this requires internal modifications of a

7

Chapter 2 Background and Related Work 8

file system and is not feasible for outsourced storage, since the storage backends

are maintained by third parties, and it has no guarantee that replicated data

will be over-written.

Another approach is achieved by cryptographic protection, which removes

the cryptographic keys that are used to decrypt data blocks to make the en-

crypted blocks unrecoverable [19, 20, 21, 22, 23, 24]. The encrypted data blocks

are stored in outsourced storage (e.g., clouds), while the cryptographic keys

are kept independently by a trusted entity also known as a key escrow system.

Conversely, to retrieve the data, the users can ask the key escrow for the key

in order to decrypt data downloaded from the cloud. The key escrow system

ensures that the key is only accessible to authorized persons but not to the

cloud operator, and is assumed to securely erase the key when data is deleted.

2.3 Policy Based Assured Deletion

The previously mentioned approach can be extended to support policy based

deletion, where each piece of data is assigned a policy and deleted when the

policy is revoked. Under such a scheme, each piece of data is still encrypted

with a uniquely generated key (known as data keys). However, instead of

storing keys for each individual piece of data in the key escrow, the key escrow

only stores a limited number of keys, each of it associated with a single policy

(known as control keys), which is then used to encrypt the data keys. The

encrypted data key is stored along with the encrypted data, and decrypted by

the key escrow during data retrieval. When a policy is revoked, the associated

control key is securely erased, causing all data keys encrypted by the control

key, and by extension the data encrypted by those data keys irretrievable. The

scheme was proposed by Ephemerizer[25] as a means to reduce the number of

keys stored by the key escrow to simplify key management.

FADE[23] further extends the previous idea by allowing any combination of

Chapter 2 Background and Related Work 9

policies to be applied on a single piece of data. For example, we may want to

keep data, even if one of many policies applied is revoked, or we may want to

delete data if any one of many policies is revoked. In the former case, we can

create multiple copies of the data key and encrypt each with different control

keys such that revocation of a single policy only removes access to only one

copy of the data key, while allowing access to other copies via different policies.

For the latter case, we can encrypt a single copy of the data key with each

of control keys, and the data key cannot be decrypted with revocation of any

policies. By applying a combination of the above two, i.e. multiple copies of

data keys each encrypted multiple times by different groups of control keys,

FADE is able to handle any combination of policies to be applied on data.

We note that existing studies for secure erasure does not consider the is-

sue of version control. In Chapter 3.2, we show that existing version control

systems and assured deletion systems are incompatible with each other.

2.4 Convergent Encryption

Version control follows the notion of deduplication [4], which eliminates the

storage of redundant data chunks that have the same content. In the security

context, recent studies propose convergent encryption [26, 27], such that the

key for encrypting/decrypting a data chunk is a function of the content of

the data chunk, so that the encryptions of two redundant data chunks will

still return the same content. However, in convergent encryption, if we want

to assuredly delete a data chunk of a particular version, we cannot simply

remove its associated key, since it may make the identical chunks in other

versions unrecoverable.

Chapter 2 Background and Related Work 10

2.5 Cloud Based Backup Systems

There are a few cloud backup systems in the market. Examples include com-

mercial systems like Dropbox [15], Jungle Disk [28], and Nasuni [6], as well as

the open-source Cumulus system [3], all of which provide version control and

archive different versions of backups. Specifically, Cumulus considers a thin

cloud interface, meaning that the cloud only provides basic functionalities for

outsourced storage, such as put, get, list, and delete1 . It splits a file into

chunks, and only modified chunks will be uploaded to the cloud. New versions

may refer to the identical chunks in older versions, so no redundant chunks

across versions will be stored. Note that Cumulus does not provide assured

deletion.

In March 2011, Nasuni announced that its system enables the new snapshot

retention policy that allows assured deletion of backup snapshots [29]. On the

other hand, there is no formal study about their implementation methodologies

and performance evaluation. We address this issue in the first part of this

thesis. We provide a comprehensive study that describes the design details of

how to integrate assured deletion into a general version-controlled system with

deduplication. We also provide extensive empirical evaluation and monetary

cost analysis for our design.

2.6 Fault Tolerant Deduplication Systems

Deduplication was first proposed in Venti [4] as a means to eliminate the stor-

age of redundant blocks in archival storage. Data Domain [30] and Foundation

[31] are proposed to improve the archival throughput of Venti via new dedu-

plication indexing techniques. Such systems are centralized. They mainly

focus on improving the deduplication performance without considering fault

1The delete operation only requests the cloud to remove the physical copy of a file, but
there is no guarantee that the file is assuredly deleted.

Chapter 2 Background and Related Work 11

tolerance.

Our work in the second part of this thesis studies deduplication in a dis-

tributed setting, which is also considered in the literature. Farsite [32] and

Pastiche [33] are distributed systems that apply file-level deduplication and

block-level deduplication, respectively. Hydrastor [34] implements decentral-

ized, fault-tolerant deduplication for archival storage. It distributes both dedu-

plication metadata and archival data in a distributed hash table. DeDe [35]

implements fault-tolerant deduplication for virtual machine images in a decen-

tralized SAN environment where no centralized metadata server is required.

Note that DeDe applies offline deduplication (i.e., deduplication after writes),

while we apply inline deduplication when data is about to be uploaded to

the cloud (see Chapter 6.3 for details). Extreme Binning [36] and MAD2 [37]

propose various performance optimization techniques to achieve high dedupli-

cation throughput for distributed storage. Our work in the second part of

this thesis has a different design space from the above work, as we consider

a distributed proxy system for cloud storage. Our objective is to maintain

deduplication metadata in a fault-tolerant proxy system, while relying on the

cloud infrastructure to provide high-availability storage for data.

Proxy-based solutions for cloud storage have been proposed in commercial

solutions (e.g., Amazon’s AWS Storage Gateway [5], Nasuni [6], Panzura [7],

StorSimple [8]) and academic projects (e.g., RACS [9], DepSky [10], BlueSky

[12], and NCCloud [11]). Commercial solutions provide limited implemen-

tation details, so it is difficult to evaluate their performance in maintaining

fault tolerance. For academic projects, NCCloud [11] and BlueSky [12] use a

single-proxy design. RACS [9] considers a distributed proxy system and uses

Zookeeper-based [38] distributed locks to synchronize the states among mul-

tiple proxies. DepSky [10] uses low-contention file locks to support multiple

writes on the same file. Our work focuses on evaluating the performance-

consistency trade-off in the deduplication context.

Chapter 3

Design of FadeVersion

In this chapter, we present the design of FadeVersion, a secure cloud backup

system that works seamlessly with today’s cloud storage services such as Ama-

zon S3. It is a client-side system which integrates both version control and

assured deletion.

3.1 Threat Model and Assumptions for Fade

Version

We consider a retrospective attack threat model: an attacker wants to recover

specific files that have been deleted. This type of attack may occur if there is a

security breach in the cloud data center, or if a subpoena is issued to demand

data and encryption keys. We assume that the attacker is omnipotent, i.e., it

can obtain copies of any encrypted data, as well as keys on any machines.

Our security goal is to achieve assured deletion of files for a cloud backup

system with version control. We adopt the cryptographic approach [19, 20, 21,

22, 23, 24], i.e., by removing the keys that are used to decrypt the data backups

stored on the cloud. We make two assumptions for this approach. First, the

encryption operation is secure, in the sense that it is computationally infeasible

to revert the encrypted data into the original data without the decryption key.

Second, we assume that the decryption keys are maintained by a key escrow

12

Chapter 3 Design of FadeVersion 13

system that is totally independent of the cloud and can be fully controlled by

cloud clients. If a file is requested to be assuredly deleted, then we require the

associated key be securely erased [17], which we believe is feasible given that

the size of a key is much smaller compared to a backup file. In chapter 3.7, we

discuss in more detail the design of the key escrow system.

3.2 Motivation

We argue that existing version-controlled cloud backup systems (e.g., Cumulus

[3]) and assured deletion systems (e.g., Vanish [21] and FADE [23]) are incom-

patible. To elaborate the issue, we consider a scenario in which we archive data

backups using two independent systems, i.e., a version control system and an

assured deletion system, and explain how they break certain functionalities.

There are two approaches of deployment. In the first approach, we first

pass data backups through the version control system, followed by the assured

deletion system, as shown in Figure 3.1(a). Suppose that Version V1 is first

generated, followed by Version V2. In this case, if there are some identical file

copies in both versions, then Version V2 can keep references to point to the

identical file copies in Version V1 instead of storing redundant file copies. In

other words, Version V2 may depend on some files in Version V1. Then we pass

the versions through the assured deletion system, which we assume is based

on cryptographic protection as described in chapter 2. Now, if we want to

assuredly delete Version V1, then we can remove the cryptographic key that

encrypts Version V1. However, since Version V2 shares some files in Version V1,

some files in Version V2 also become inaccessible. In short, assuredly deleting

one version may also affect future versions.

In the second approach, we first pass data backups through the assured

deletion system, followed by the version control system, as shown in Fig-

ure 3.1(b). First, each backup file is encrypted with different cryptographic

Chapter 3 Design of FadeVersion 14

keys by the assured deletion system. If two identical files are encrypted with

different keys, then their encrypted copies will have different format. Thus, if

we pass these encrypted files through the version control system, then the ver-

sion control system cannot discover any commonality between the encrypted

copies and cannot share identical files across versions.

3.3 Main Idea

Our goal is to make both version control and assured deletion compatible with

each other in a single design. The main idea of FadeVersion is as follows. We

first start with the design of a version-controlled cloud backup system that

has similar ideas as in Cumulus [3], in which we create different data objects

that are to be archived on the cloud. On top of the version control design, we

add a layered approach of cryptographic protection, in which data is encrypted

with the first layer of keys called the data keys, and the data keys are further

encrypted with another layer of keys called the control keys. The control keys

are defined by fine-grained policies that specify how each file is accessed. If a

policy is revoked, then its associated control key is deleted. If the data object

is associated solely with the revoked policy, then it will be assured deleted;

if the data object is associated with both the revoked policy and another

active policy, then we still allow the data object to be accessed through the

active policy. We elaborate how this idea is designed and implemented in the

following chapters.

3.4 Version Control

In FadeVersion, each backup version (or snapshot) arranges data files into file

objects. Each file object is of variable size with a configurable maximum-size

threshold (e.g., currently set as 1 MB). If a file has size less than the threshold,

Chapter 3 Design of FadeVersion 15

Figure 3.1 Illustration of why existing version control systems and assured
deletion systems are incompatible.

Data
backups

Version
Control
System

Assured
Deletion
System

Version V1Version V2 Version V1Version V2

dependency

Purging key of Version V1
will make files in V2

unrecoverable

(a) First version control, followed by assured deletion

Data
backups

Version
Control
System

Assured
Deletion
System

File 1File 2 Version V1Version V2

Files cannot
be shared

(b) First assured deletion, followed by version control

then it can be represented by a single object; otherwise, we split the file into

multiple objects. Thus, if there is any modification to a large file, then we only

need to upload the modified objects, rather than the whole file, to the cloud so

as to save the upload and storage costs. To further reduce the upload cost, we

can group multiple objects into a segment, and each transfer request is done

on a per-segment basis [3].

In many cases, the same file (or object) may appear in multiple backup

versions, or different files (or objects) may have the same content in the same

or different versions. We employ deduplication [4] to further reduce storage.

Specifically, if two objects have the same content, then we only need to store

one object on the cloud and create smaller-size pointers to reference the stored

object. To determine if two objects have the same content, we apply a cryp-

tographic hash function (e.g., SHA-1) to the content of each object and check

if both objects return the same hash value.

We may further look for the identical content that can be deduplicated

within an object using a more fine-grained technique like Rabin Fingerprints

[39]. However, we note that it does not always significantly improve the stor-

age efficiency, such as using the datasets in our experiments (see Chapter 5).

Therefore in this thesis, we assume that an object is the smallest unit of data

Chapter 3 Design of FadeVersion 16

Figure 3.2 Illustration of how version control works.

Version V1

O1 O2 O3 O4

O1 O2 O3 O4

O3 O4 O5 O6

O5 O6

time t1

Metadata
objects

file
objects

Version V2

time t2 > t1

backups.

FadeVersion allows users to archive backup files at different time instants,

and organizes backups into different versions (snapshots). For each version,

there is a metadata object that describes the file objects. Figure 3.2 illustrates

how we upload different backup versions. Suppose that at time t1, we want

to upload a version V1 of four file objects: (O1, O2, O3, O4). Suppose later at

time t2 > t1, we do not include O1 and O2, but add new file objects O5 and

O6. Thus, the new version V2 will upload the physical copies of O5 and O6,

and its metadata object has pointers to refer to the physical copies of O3 and

O4 in version V1. Finally, all the metadata objects and file objects are stored

on the cloud.

3.5 Assured Deletion

We now incorporate assured deletion into the version control design discussed

in the previous sections. To simplify our discussion, we focus on the case where

we want to assuredly delete a particular backup version.

FadeVersion employs two-layer encryption to achieve assured deletion. Fig-

ure 3.3 illustrates the idea. Denote {.}k as the symmetric-key encryption (e.g.,

AES [40]) with key k. For each object Oi, we generate a data key ki, and en-

crypt Oi with ki via symmetric-key encryption (i.e., compute {Oi}ki). For

each version Vi, we generate a control key si, and encrypt all data keys of the

objects associated with version Vi using si via symmetric-key encryption (i.e.,

Chapter 3 Design of FadeVersion 17

Figure 3.3 Illustration of layered encryption, by extending the example shown
in Figure 3.2.

{O1}k1

Metadata
objects

{O2}k2 {O3}k3 {O4}k4

{k1}s1 {k2}s1 {k3}s1 {k4}s1

O1 O2 O3 O4

{O5}k5 {O6}k6

{k3}s2 {k4}s2 {k5}s2 {k6}s2

O3 O4 O5 O6

File
objects

Version V1 Version V2

time t1 time t2 > t1

compute {ki}si). The encrypted data keys are stored in the metadata object

of version Vi, and will be later uploaded to the cloud. The control keys are

kept by a key escrow system (see Chapter 3.7). To recover a file object of

a version, we need to get the corresponding control key of the version from

the key escrow system, and decrypt the corresponding data key and hence the

encrypted file object.

The deduplication feature is still maintained. For example, in Figure 3.3,

both the encrypted copies O3 and O4 are still shared by both versions V1 and

V2. Their respective data keys k3 and k4 are separately encrypted with s1 and

s2. To recover O3 and O4, we can use either s1 or s2 to decrypt their data

keys.

We now explain how FadeVersion enables assured deletion of a particular

version. Suppose that we request to assuredly delete a particular version V1.

Then FadeVersion will purge the control key s1 from the key escrow system.

Since s1 is purged, we cannot decrypt the encrypted data keys associated with

snapshot V1, even if there are many replicated copies on the cloud. Note that

file objects O1 and O2 only appear in the assuredly deleted version V1, but

not in other active versions. Thus, both of them will become permanently

inaccessible.

Note that the assured deletion of one version does not affect other active

versions, even if different versions have data dependency. When we purge the

control key s1, we can still retrieve version V2 that is protected by a different

Chapter 3 Design of FadeVersion 18

control key s2, and hence recover the file objects O3 and O4. The layered

encryption approach in essence decouples the data dependency across versions.

3.6 Assured Deletion for Multiple Policies

We can generalize the idea of assured deletion for multiple policies, each of

which specifies the access privilege of a file object. Each file object can be

simultaneously associated with multiple policies. If any one of the policies

is revoked, then the file object will be assuredly deleted. This enables us to

perform fine-grained assured deletion on data backups that are stored on the

cloud.

To formalize, we now revise our notation associating a file object with

multiple policies as follows. Let kid be the data key for file object with a

unique identifier id. Let P denote the policy that describes the access right for

a file object, and sP be the control key associated with policy P . Let {m}k

denotes the symmetric-key encryption of message m with key k. Thus, to

protect a file object O with identifier id with policies P1, P2, · · · , and Pn, we

apply layered encryption as follows:

{O}kid and {{{kid}sP1
}sP2

...}sPn
.

If any control key sPi
(1 ≤ i ≤ n) is purged, then kid becomes inaccessible, so

does file object O.

We illustrate how fine-grained assured deletion is achieved. Suppose that

we archive the data files of Alice on a regular basis. Then we can associate each

file object for file F with three policies: (i) user-based policy (e.g., “accessible

by Alice only”), (ii) file-based policy (e.g., “accessible via file F only”), and

(iii) version-based policy (e.g., “accessible via backup version Vi only”). Then

we can support three different operations of assured deletion, respectively:

(i) assuredly deleting all files of Alice across all backup versions by revoking

Chapter 3 Design of FadeVersion 19

the user-based policy, (ii) assuredly deleting file F across all backup versions

by revoking the file-based policy, (iii) assuredly deleting a particular backup

version by revoking the version-based policy. We point out that we can readily

generalize the assured deletion scheme for other combinations of policies.

3.7 Key Management

The control keys are maintained by a key escrow system, which we assume can

securely remove the control keys associated with revoked policies to achieve

assured deletion (see Chapter 3.1). On the other hand, it is still important

to maintain the robustness of the existing control keys that are associated

with active policies. Here, we discuss two possible approaches to address the

robustness of key management.

One approach is by encrypting all control keys with a single master key,

while this master key is stored in secure hardware (e.g., trusted platform mod-

ule [41]). The justification is that protecting the robustness of a single key is

easier than protecting the robustness of multiple keys. However, if the hard-

ware that stores the master key is failed, then all control keys will be lost.

Another approach is by using a quorum scheme based on threshold secret

sharing [42]. Each control key is split into N key shares and are distributed

to N independent key servers, such that we need at least K < N of the key

shares to recover the original control key. The justifications of applying the

quorum scheme are two-fold. First, even if one key server is failed, we can still

obtain the key shares from the remaining N − 1 key servers. This ensures the

fault-tolerance of key management. Second, an attacker needs to compromise

at least K key managers in order to obtain the control key for decrypting the

data on the cloud. This increases the attack resources required by the attacker.

On the other hand, the challenge is that it increases the management overhead

of maintaining multiple key servers.

Chapter 4

Implementation of FadeVersion

We now present how FadeVersion is implemented to support both version

control and assured deletion. FadeVersion is an extension of Cumulus [3],

upon which we add new cryptographic implementation for assured deletion.

The cryptographic operations are implemented with OpenSSL [43].

4.1 System Entities

FadeVersion is built on several system entities, as illustrated in Figure 4.1.

Their functionalities are described as follows.

Backup storage. It is the target destination where data backups are stored.

The current implementation of FadeVersion uses Amazon S3 [44] as the stor-

age backend. This can be easily extended to other third-party cloud storage

Figure 4.1 Architecture of FadeVersion.

Backup
storage

Key escrow
system

Backup
module

Object
database

encrypted
backup versionsdata files

Stat
Cache

20

Chapter 4 Implementation of FadeVersion 21

services that offer generic file access semantics such as put, get, list, and

delete.

Backup module. This is to (i) create backup versions from data files and

upload them to the cloud, and (ii) retrieve backup versions from the cloud

and recover the original data files. It acts as an interface for other entities. It

queries the object database for deduplication optimization, and communicates

with the key escrow system to obtain the keys for encryption/decryption.

Object database. It maintains the identifiers and hash values of all file

objects that are stored in the backup storage. It also stores the data key for

each file object. During the backup operation, the backup module queries

the object database to check by hash values whether an identical file object

is created in the previous backup version, so as to perform deduplication if

possible. If an identical file object is found, then the corresponding data key

will be retrieved, encrypted with the corresponding control keys, and included

in the new backup version. The backup module also records new file objects in

the database. We currently deploy the object database locally with the backup

module. We also use SHA-1 as the hashing algorithm, but this can be easily

configurable.

Key escrow system. It creates and manages control keys associated with

policies (see Chapter 3.6). It creates mappings between each policy (defined

by a unique identifier) and the corresponding control key. Currently, the key

escrow system is implemented as a single key server process, which is deployed

locally with the backup module. However, it can be extended for a higher

degree of fault tolerance (see Chapter 3.7).

Stat Cache [3]. It keeps metadata locally generated by the system from

completed backups (see Chapter 4.2) to improve backup performance. During

the backup process, it can use the stored metadata to check if a file has been

modified by comparing the last modification time of the file1on the filesystem

Chapter 4 Implementation of FadeVersion 22

and in the metadata. If the file has not been modified, then the backup

module will directly reuse the information from the stat cache to construct

the metadata of the unmodified file for the current backup version, without

needing to process the unmodified file again.

4.2 Metadata Format in FadeVersion

We use the metadata object to keep the information of all archived file objects

in a backup version (see Chapter 3.4). FadeVersion extends the metadata

format in Cumulus [3] to include the policy information and the encrypted

cryptographic keys, both of which are used for assured deletion.

Figure 4.2 shows the metadata formats for a single file in Cumulus and

FadeVersion, assuming that the file contains three file objects (i.e., A/1, A/2,

A/3). In FadeVersion, we add an additional field named key, which stores the

data key of each associated data object. The data key is encrypted with the

control keys of the corresponding policies, and the control keys are kept by

the key escrow system. In our prototype, each file object is associated with

three policies (see Chapter 3.6): (i) user-based policy, which is described by

the user field, (ii) file-based policy, which is described by the name field, and

(iii) version-based policy, which is described by the version in which the file

resides. Based on the information, FadeVersion can know how to restore a file,

i.e., by using the correct control keys from the key escrow system to decrypt

the data keys, and how to revoke a policy and its associated files.

We use AES [40] as the encryption algorithm to encrypt file objects and

their corresponding data keys. AES is a block-cipher encryption scheme with

block size 128 bits, so the size of the encrypted data key remains the same even

it is encrypted multiple times with different policies. In our implementation,

we use the 128-bit key size for both data keys and control keys, so the size

1The modification time of a file is obtained using the stat() system call.

Chapter 4 Implementation of FadeVersion 23

Figure 4.2 Metadata format for a single file: Cumulus (left) and FadeVersion
(right).

name: fileA
checksum: sha1=...
ctime: 1300000000
data: A/1
 A/2
 A/3
group: 1 (root)
inode: ...
mode: 0755
mtime: 1300000000
size: 3000000
type: f
user: 1 (root)

name: fileA
checksum: sha1=...
ctime: 1300000000
data: A/1
 A/2
 A/3
group: 1 (root)
inode: ...
key: ENCRPYTED KEY FOR A/1
 ENCRYPTED KEY FOR A/2
 ENCRYPTED KEY FOR A/3
mode: 0755
mtime: 1300000000
size: 3000000
type: f
user: 1 (root)

of the encrypted data key is fixed to be 128 bits (16 bytes). If a file object

has a large size, then the storage overhead for its encrypted data key will be

insignificant.

Chapter 5

Evaluation of FadeVersion

In this chapter, we conduct an empirical study on the prototype of FadeVer-

sion. We compare FadeVersion with Cumulus [3]. Our goal is to evaluate the

performance overhead of adding assured deletion on top of a version-controlled

cloud backup system. We explore the overhead from three perspectives: (i)

backup/restore time, (ii) storage space, and (iii) monetary cost, and we show

that the overhead of adding assured deletion is reasonable or minimal in all

three perspectives.

5.1 Setup

Our experiments use Amazon S3 Singapore as our cloud storage backend. We

deploy both Cumulus and FadeVersion on a Linux machine that resides in

Hong Kong. The Linux machine is configured with Intel Quad-Core 2.4GHz

CPU, 8GB RAM, and Seagate ST3250310NS hard drive.

We drive our experiments with real-life workload. We conduct nightly

backups for the file server of our research group. The dataset that we use

consists of 46 days of snapshots of the home directory of one of the users.

Table 5.1 summarizes the statistics of the dataset, including the summaries of

the full snapshots on the first day (i.e., Day 1) and last day (i.e., Day 46).

Figure 5.1 shows the cumulative distribution functions of file sizes of the

24

Chapter 5 Evaluation of FadeVersion 25

Table 5.1 Statistics of our dataset.
Day 1 Day 46

Number of files 5590 11946
Median 2054 B 1731 B
Average 172 KB 158 KB

Maximum 56.7 MB 100 MB
Total 940 MB 1.85 GB

Figure 5.1 File size statistics for Day 1 and Day 46.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10
 100

 1000
 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

P
ro

ba
bi

lit
y

file size (in bytes)

Day 1
Day 46

full snapshots on Day 1 and Day 46, respectively, and Figure 5.2 shows the size

of data changes per day reported by rdiff-backup [45]. Since the size of data

changes is less significant compared to the size of the entire home directory, we

expect that the distributions of file sizes across different days of data backups

remain fairly stable throughout the entire backup period.

Figure 5.2 Size of data changes reported by rdiff-backup per day.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20 25 30 35 40 45 50

F
ils

iz
e

(b
yt

es
)

Days

Changes per day

Chapter 5 Evaluation of FadeVersion 26

Figure 5.3 Backup time for each incremental backup.

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30 35 40 45

D
at

a
cr

ea
tio

n
tim

e
(s

)

Day

FadeVersion
Cumulus

Figure 5.4 Upload time for each incremental backup.

 0

 5

 10

 15

 20

 25

 5 10 15 20 25 30 35 40 45

U
pl

oa
d

tim
e

(s
)

Day

FadeVersion
Cumulus

5.2 Backup/Restore Time

We first evaluate the backup operation. On Day 1, both Cumulus and Fade-

Version start the initial backup, which uploads the full snapshot of the home

directory to the cloud; from Day 2 onwards, both systems will conduct the

incremental backups, which store the backup versions that are incrementally

built from the previous backup versions.

The backup times for performing a full snapshot on the first day for Cu-

mulus and FadeVersion are 43.18s and 44.55s, respectively (i.e., FadeVersion

uses 3.2% more time). The additional overhead of FadeVersion is mainly due

to the key management and cryptographic operations, but such overhead is

minimal compared to Cumulus.

Chapter 5 Evaluation of FadeVersion 27

Figure 5.5 Restore time for all 46 days of snapshots from local storage.

 0

 10

 20

 30

 40

 50

 60

 70

 5 10 15 20 25 30 35 40 45

D
at

a
re

st
or

e
tim

e
(s

)

Day

FadeVersion
Cumulus

The backup time of storing each incremental backup on the cloud is com-

posed of two parts: (i) the time for creating a backup version based on the

previous backup versions, and (ii) the time for uploading the created backup

version to the cloud (i.e., Amazon S3 Singapore). Our measurements are av-

eraged over three times.

Figure 5.3 shows the time for creating incremental backups for Cumulus

and FadeVersion. FadeVersion introduces higher creation time. On average,

FadeVersion uses 9.8% more time than Cumulus in creating incremental back-

ups.

Figure 5.4 shows the time for uploading incremental backup versions to the

cloud. We only measure the time to upload the incremental backups but not for

the initial backup, as the latter takes much longer time than the incremental

backups that follow. We observe that both Cumulus and FadeVersion have

very similar values of upload time, and the average values are 6.624 s and

7.106 s, respectively.

We also evaluate the time for restoring a backup. The restore operation

includes: (i) downloading the necessary file objects from the cloud and (ii)

restoring the original view of the entire home directory. We note that the

former part takes the dominant portion of time, and the overhead added by

our restore module becomes insignificant. For instance, we try restoring the

snapshot for Day 46 from S3, and the time taken (averaged over 10 trials each)

Chapter 5 Evaluation of FadeVersion 28

by Cumulus and FadeVersion are 26.47 minutes and 26.13 minutes respectively,

in which 25.11 minutes and 24.47 minutes are used in downloading files. Thus,

both systems have very similar restore time, and the overhead of FadeVersion

is easily masked by the downloading time. In order to minimize the effect

of network fluctuations in restore time, we try restoring from local storage.

Figure 5.5 shows the results of restoring snapshots from all 46 days in sequence

from the local storage. On average, FadeVersion uses 55.1% more time than

Cumulus in restoring backups. The overhead of FadeVersion is mainly due to

the cryptographic operations of decrypting all encrypted file objects, and this

accounts for 97.25% of the overhead on average. Note that the increase in

restore time around day 40-45 for both systems is due to the increase of the

size and number of files of the dataset on those days, both systems will have

to process and copy more data from the file objects in order to recover the

filesystem when compared to the previous snapshots.

5.3 Storage Space

FadeVersion includes encrypted copies of data keys in data backups for as-

sured deletion (see Chapter 4.2), and this introduces storage space overhead.

Here, we evaluate the space overhead of FadeVersion due to the storage of

keys. Table 5.2 summarizes the storage space of both systems. Note that the

actual storage space on the cloud is less than the full snapshot sizes as shown

in Table 5.1, mainly because both Cumulus and FadeVersion exploit dedupli-

cation to reduce the storage of redundant data (see Chapter 3.4). On average,

FadeVersion introduces 19.4% more space increment per month compared to

Cumulus.

We now focus on incremental backups. Figure 5.6 illustrates the storage

space of both Cumulus and FadeVersion in the incremental backups on different

days. We observe that FadeVersion introduces fairly similar storage space

Chapter 5 Evaluation of FadeVersion 29

Table 5.2 Summary of storage space on the cloud using Cumulus and Fade-
Version.

Initial Storage Total Storage Increment
on Day 1 on Day 46 per month

Cumulus 597.03 MB 755.73 MB 105.67 MB
FadeVersion 597.51 MB 786.88 MB 126.24 MB

Figure 5.6 Size of incremental uploads for Cumulus and FadeVersion.

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40 45 50

S
iz

e
(M

B
)

Days

FadeVersion
Cumulus

overhead on each day.

5.4 Monetary Cost

We estimate the monetary cost overhead of FadeVersion after adding assured

deletion. Here, we focus on the backup operation. We consider the monetary

costs due to two components: (i) the storage cost of storing 46 days of backup

for a month and (ii) the bandwidth cost of uploading 46 days of incremental

backups to the cloud since the initial backup. We consider the pricing plans

of various cloud providers in addition to Amazon S3.

Table 5.3 shows the costs of Cumulus and FadeVersion. We observe that

when compared to Cumulus, the additional storage cost of FadeVersion is

within $0.008 per month, and its additional bandwidth cost is within $0.003.

The monetary cost overhead of FadeVersion is minimal in general.

Chapter 5 Evaluation of FadeVersion 30

Table 5.3 Storage costs per month and overall bandwidth cost of Cumulus
and FadeVersion for 46 days of backup with different cloud providers.

Storage Fade- Bandwidth for Fade-
Providers $/GB/month Cumulus Version updates $/GB Cumulus Version

S3 (Singapore) 0.14 $0.103 $0.108 0.10 $0.0154 $0.0185
Rackspace 0.15 $0.111 $0.115 0.08 $0.0124 $0.0148

Nirvanix SDN 0.25 $0.184 $0.192 0.10 $0.0154 $0.0185
Windows Azure 0.15 $0.111 $0.115 0.10 $0.0154 $0.0185
Google Storage 0.17 $0.125 $0.131 0.10 $0.0154 $0.0185

5.5 Conclusions

We present the design and implementation of FadeVersion, a system that pro-

vides secure and cost effective backup services on the cloud. FadeVersion is

designed for providing assured deletion for remote cloud backup applications,

while allowing version control of data backups. We use a layered encryption

approach to integrate both version control and assured deletion into one de-

sign. Through system prototyping and extensive experiments, we justify the

performance overhead of FadeVersion in terms of time performance, storage

space, and monetary cost.

We note that the main performance overhead of FadeVersion is the ad-

ditional storage of cryptographic keys in data backups. In future work, we

explore possible approaches of minimizing the number of keys to be stored

and managed.

Chapter 6

CFTDedup Design

This chapter presents the design and implementation details of CFTDedup.

The main use of CFTDedup is to provide deduplication for archival applica-

tions in cloud storage via a fault-tolerant distributed proxy design.

6.1 Failure Model

CFTDedup is deployed as a distributed proxy system in which each client

connects to one of multiple proxies. In this work, we assume a crash (or fail-

stop) failure model, in which both a proxy and a client may stop operating

and lose all states maintained by them.

The goal of CFTDedup is to ensure crash fault tolerance (CFT) against

proxy/client crashes. In case a proxy crashes, it loses all deduplication meta-

data that identifies whether an uploaded block can be deduplicated. We re-

quire that CFTDedup enable a client to connect to a different proxy that keeps

the same deduplication metadata when the failed proxy crashes. CFTDedup

achieves this by enforcing a strong consistency model, in which the deduplica-

tion metadata is fully synchronized across all proxies. On the other hand, in

case a client crashes while uploading data, its current upload session aborts.

We require that CFTDedup roll back the upload session of the failed client

and restore the deduplication metadata to the state right before the upload

31

Chapter 6 CFTDedup Design 32

session starts.

Here, we do not consider Byzantine faults, in which faulty nodes may be-

have arbitrarily [46]. We also assume that the cloud storage site provides

fault-tolerant storage and is always available.

6.2 System Overview

Figure 6.1 illustrates the architecture of CFTDedup. Each Client uploads/-

downloads data to/from the cloud via a proxy. Each proxy comprises several

building blocks. The Backup Module executes the deduplication algorithm, and

coordinates other modules to perform deduplication. The Dedup Store keeps

the deduplication metadata, which will be replicated across all proxies. The

Sync Module broadcasts changes of deduplication metadata to all proxies. The

Lock Module implements distributed locking that ensures that only one proxy

can modify deduplication metadata at any time. The Client Monitor monitors

whether a client is alive, and rolls back the client’s upload process if the client

fails. The Storage Layer is an abstraction layer between a proxy and the cloud

storage site.

CFTDedup is designed with modularity in mind. This enables us to easily

add new functionalities into each module and address different open issues (see

Chapter 8.1).

CFTDedup contains multiple proxies that we assume are deployed as inde-

pendent servers. Since the proxies need to maintain a synchronized view, we

assume that they are interconnected via a high-speed local area network so as

to exchange view updates with low latency.

Chapter 6 CFTDedup Design 33

Figure 6.1 CFTDedup architecture.

Client

Broadcast

Proxy

Client

S
to

ra
g

e
L

ay
er

Client Monitor

Lock
Module

Dedup
Store

Sync
Module

Backup Module

Other Proxies

Storage

6.3 Distributed Deduplication

We now describe how a CFTDedup proxy operates on a client’s data stream

(called a snapshot) being uploaded to the cloud and synchronizes the dedupli-

cation operation among several proxies.

Deduplication design. The Backup Module divides a client’s snapshot

into blocks, and applies cryptographic hashing to the block content. Multiple

blocks with identical content all have the same hash, and only the blocks with

unique content will be uploaded to the cloud. We assume that the probability

that two distinct blocks have the same hash is negligible [4]. Our current

implementation assumes fixed-size blocks of size 4KB each, but we can also

apply deduplication on variable-size blocks (e.g., using Rabin fingerprinting

[39]). Also, our current cryptographic hashing scheme is based on SHA-256.

Our deduplication approach is inline, meaning that deduplication is applied

on the write path (i.e., when the data is about to be uploaded to the cloud).

Inline deduplication not only improves storage efficiency, but also eliminates

the transmission overhead of uploading redundant data to the cloud.

Chapter 6 CFTDedup Design 34

Each proxy keeps the deduplication metadata, which is used to identify if an

uploaded block can be deduplicated with any identical blocks of the currently

and previously uploaded snapshots. It holds the meta records of all unique

blocks that have been uploaded. Each block record has the hash value, the

block address, and a reference count that specifies the number of uploaded

blocks sharing the same hash. The deduplication metadata is stored in Dedup

Store.

Locking and synchronization. Our current design enforces strong con-

sistency, such that only one proxy can handle data upload and modify the

deduplication metadata at any time. Our goal is to have all proxies share the

same view of the deduplication metadata. To achieve this, the Backup Module

must first acquire a distributed lock from the Lock Module whenever accessing

and modifying the deduplication metadata. The distributed lock can be held

by one process at any time. Also, we use an atomic broadcast model [47] to syn-

chronize a deduplication metadata update among all proxies. By atomic, we

mean that when the Sync Module broadcasts an update, all surviving proxies

must reliably receive the update.

Batching. If we update the deduplication metadata for each uploaded

block, the overheads due to locking and synchronized broadcast will signifi-

cantly increase. Thus, we apply the batching concept as follows. After the

Backup Module locks the deduplication metadata, it keeps collecting uploaded

blocks from the Client. It checks if each block can be deduplicated, and mean-

while updates its own copy of the deduplication metadata. It aggregates the

unique blocks into a segment. If the segment size exceeds a pre-defined thresh-

old or when the snapshot reaches the end, then it uploads the segment as a

data object to the cloud and broadcasts the batched update of the deduplica-

tion metadata to other proxies. Finally it releases the lock. With batching, we

perform locking and synchronization operations on a per-segment basis rather

than on a per-block basis, thereby reducing the overheads incurred.

Chapter 6 CFTDedup Design 35

Putting it all together: upload/download. A client performs the up-

load/download operations as follows. In upload, a client provides a snapshot of

data to a proxy, which applies deduplication and broadcasts the deduplication

updates as described above. The proxy also constructs a snapshot metadata,

which contains the block addresses describing how the snapshot can later be

downloaded and reconstructed. The snapshot metadata generally has a much

smaller size than the actual snapshot data, and will also be stored on the cloud.

In download, the client first downloads, via one of the proxies, the snapshot

metadata, followed by the segments that contain the blocks of the snapshot.

The proxy can cache the downloaded blocks locally, so any subsequent blocks

with identical content need not be downloaded again. Here, the unit of down-

load is a segment. Since a segment may contain blocks referenced by other

snapshots, a large segment size can increase the likelihood of downloading

unnecessary data blocks.

6.4 Crash Fault Tolerance

We discuss how CFTDedup recovers from crash failures.

Proxy failure. Suppose that the proxy that currently handles the upload

operation fails before broadcasting the deduplication metadata updates. Then

the client re-connects to another surviving proxy, and resumes uploading the

segment currently handled by the failed proxy. Note that the failures of other

proxies do not affect the current upload session.

Client failure. If the client fails during upload, then all proxies decrement

all the reference counts of the blocks that have been uploaded, implying that

the upload session of the client is rolled back. The blocks that have already

been uploaded to the cloud may be reclaimed later via garbage collection.

Chapter 6 CFTDedup Design 36

6.5 Implementation

We implement a preliminary prototype of CFTDedup in Java. CFTDedup re-

quires two specific services: distributed locking and atomic broadcast, which we

currently implement by Zookeeper [38] and Spread [48], respectively. We also

leverage Zookeeper, a distributed coordination service, to monitor all clients

and proxies. Any client/proxy that has no response after a pre-configured

timeout is considered to be failed.

Note that our CFTDedup prototype is still in its early development stage

and hence only provides baseline performance. Its performance could be im-

proved via careful optimizations.

Chapter 7

Evaluation of CFTDedup

We conduct testbed experiments to evaluate different operations of our CFTD-

edup prototype, and to understand the performance overhead of CFTDedup

in maintaining strong consistency among multiple proxies.

We show that by increasing the segment size, we are able to reduce the

overhead of synchronization to a reasonable percentage with a small penalty

on restore time, and the time required by clients to switch proxies to resume

backup when proxies fail is small when compared with restarting backup from

the beginning.

7.1 Setup

Dataset. We consider a dataset of 21 virtual machine (VM) images that are

used by students for their programming projects in a university undergradu-

ate course. Each VM is initially installed with Ubuntu 10.04 and allocated

with 10GB disk space. It is also configured to download and install any latest

patches from the Internet when it is online. Students develop their programs

and install applications on their assigned VMs during a 3-month semester. At

the semester end, we collect a snapshot of the 21 VM images for our experi-

ments.

Testbed. Our testbed comprises two client machines and three proxy

37

Chapter 7 Evaluation of CFTDedup 38

machines. We also configure a FTP server that mimics a cloud storage site.

Each machine is equipped with 2.66GHz CPU and 4GB RAM. All machines

are interconnected with a Gigabit Ethernet switch.

Metrics. Our experiments mainly focus on two metrics: storage space

usage and runtime performance of different operations. In runtime measure-

ments, we obtain average results over three runs.

7.2 Experiment 1 (Archival)

We evaluate the archival performance of uploading all VM images in our

dataset, in terms of storage space used and upload runtime. Here, we up-

load all VM images as a single snapshot.

Figure 7.1(a) shows the cumulative space usage for storing all VM images

using deduplication with 4KB block size. Compared to without deduplication

(in which we exclude zero-filled blocks), we reduce the storage space by around

40%. Note that the snapshot metadata in our CFTDedup implementation only

introduces 0.323% of storage space overhead to the snapshot of VM images (not

shown in the figure).

We also measure the runtime performance of uploading all VM images

under different settings: a single proxy without CFT (denoted by NFT), two

proxies with CFT (denoted by CFT-2), and three proxies with CFT (denoted

by CFT-3). All the above settings use only one client. Also, we run two clients

connecting to two different proxies with CFT (denoted by 2xCFT-2). We split

the dataset into two subsets of roughly the same size and have both clients

upload the subsets concurrently. We then measure the time it takes for both

clients to complete the upload.

Figure 7.1(b) shows the upload time versus the segment size for each of the

settings. Compared to NFT, the CFT settings have higher upload times due

to the locking and synchronization overheads. However, such overheads can

Chapter 7 Evaluation of CFTDedup 39

Figure 7.1 Experiment 1 (Archival performance): (a) Cumulative space usage
with and without deduplication; (b) Upload time versus segment size.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20

S
to

ra
ge

 s
iz

e
(in

 G
B

)

VM images

No dedup
CFTDedup

 3500

 4000

 4500

 5000

 5500

 6000

1MB 2MB 3MB 4MB 5MB

U
pl

oa
d

tim
e

(in
 s

ec
)

Segments size

NFT
CFT-2
CFT-3

2xCFT-2

(a) (b)

be reduced as the segment size increases. For example, comparing CFT-2 and

CFT-3 (both of which have very similar performance) to NFT, the increase in

upload time drops from 52.9% to 8.7% when the segment size increases from

1MB to 5MB. In addition, 2xCFT-2 has slightly higher upload time than CFT-

2 by 3.3-4.6%, since the proxies compete for the distributed lock during the

upload.

7.3 Experiment 2 (Restore)

We now evaluate the performance of restoring VM images on the client. We

download each VM image individually that was uploaded in Experiment 1, in

which we vary the segment size. The disk and memory cache on the proxy are

cleared after each VM image is downloaded.

Figure 7.2(a) shows the times needed to download each VM image for

different segment sizes. It also shows the time of downloading each VM image

directly from the FTP server when no deduplication is applied to the VM image

storage. Compared to without deduplication, CFTDedup incurs an overhead

of 29-50%. The reason is that blocks of a VM image can be deduplicated with

Chapter 7 Evaluation of CFTDedup 40

Figure 7.2 Experiment 2 (Restore performance): (a) Download time versus
segment size; (b) Amount of downloaded data versus segment size.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25

D
ow

nl
oa

d
tim

e
(in

 s
ec

)

VM images

1MB
2MB
3MB
4MB
5MB
FTP

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 5 10 15 20 25

D
ow

nl
oa

d
si

ze
 (

in
 G

B
)

VM images

1MB
2MB
3MB
4MB
5MB

(a) (b)

those of other VM images, and there are additional seeks for reconstructing a

VM image from different segments. This problem is called fragmentation [31]

and is inherent in deduplication. Also, the download time increases with the

segment size. For example, the 5MB case incurs 3.4% more download time

than the 1MB case.

To see why the download time increases with the segment size, Figure 7.2(b)

shows the amount of downloaded data during restore. As the segment size

increases, more data is downloaded. The reason is that data is downloaded

on a per-segment basis (see Chapter 6.3). A segment that we download may

contain blocks not being used by the current VM image file. A larger segment

generally contains more such unused blocks. For example, the 5MB case has

9.55% more data than the 1MB case.

7.4 Experiment 3 (Recovery)

We now measure the recovery performance of CFTDedup when a proxy or

a client fails. Here, we configure two proxies with CFT, and have a client

upload all VM images as a single snapshot via one of the proxies using 1MB

Chapter 7 Evaluation of CFTDedup 41

segment size. In the middle of the upload, we disable either the proxy that

handles the upload or the client to resemble a failure. We leverage Zookeeper

to detect failures using timeouts (see Chapter 6.5). In our experiment, we set

the timeout to be 10s.

We first consider the recovery of a proxy failure. We disable the proxy that

handles the upload at a certain time after the upload begins. The client will

switch to another proxy and resume the upload session. We then measure the

recovery time from when the failure happens until the upload session resumes.

Figure 7.3(a) shows the recovery time required versus the proxy’s lifetime. The

recovery time generally takes 10-12s, and this is mainly determined by the 10s

timeout in our Zookeeper configuration.

We next consider the recovery of a client failure, in which the proxy needs to

roll back the client’s upload session. We disable the client at a certain time after

the upload begins. We then measure the recovery time from when the failure

happens until the entire client’s upload session is rolled back. Figure 7.3(b)

shows the recovery time versus the client’s lifetime. The recovery time increases

with the client’s lifetime as more data has already been uploaded and needs

to be rolled back. Nevertheless, the recovery time is fairly small. For example,

if the client fails 1500s (or 25 minutes) after the upload session starts, the

recovery time is within 4.5 minutes.

7.5 Summary

We summarize our findings in the previous sections below to better illustrate

the trade-offs of introducing fault tolerance:

• When a proxy fails during backup, the time for a client to switch proxies

is near constant (around 10-12s).

• Overhead in upload time can be as small as 8.7% by increasing segment

Chapter 7 Evaluation of CFTDedup 42

Figure 7.3 Experiment 3 (Recovery performance): (a) Recovery time when a
proxy fails; (b) Recovery time when the client fails.

 0

 5

 10

 15

 20

 250 500 750 1000 1500

R
ec

ov
er

y
tim

e
(in

 s
ec

)

Lifetime of proxy (in sec)

 0

 50

 100

 150

 200

 250

 300

 250 500 750 1000 1500

R
ec

ov
er

y
tim

e
(in

 s
ec

)
Lifetime of client (in sec)

(a) (b)

size to 5MB, while incurring a 3.4% time overhead during restore oper-

ations.

Therefore, we can conclude that for less than 10% of backup time overhead,

users are able to avoid restarting their backup tasks due to proxy failures, while

only incurring a small penalty for restore operations.

Chapter 8

Future work and Conclusions of

CFTDedup

8.1 Future Work

Our CFTDedup prototype provides a platform for future research. We now

highlight several open issues, and we plan to extend CFTDedup to address

them.

Consistency models. We currently consider one extreme of consistency

called strong consistency on deduplication metadata management. To further

mitigate synchronization overhead, we can use a weaker form of consistency

and allow proxies to have inconsistent deduplication metadata. It is possible

that two identical blocks that are simultaneously uploaded to different proxies

cannot be deduplicated with each other, since the updates of the deduplication

metadata are not yet reflected among the proxies. Understanding the trade-

offs between synchronization overhead and storage efficiency for different forms

of consistency models is our future work.

Upload throughput. The current CFTDedup design fully serializes the

data upload and deduplication operations, such that only one proxy can per-

form such operations at any time. However, with a weaker consistency model,

we may parallelize the operations with multiple proxies and achieve higher

43

Chapter 8 Future work and Conclusions of CFTDedup 44

upload throughput. In addition, load balancing among multiple proxies is

possible to further improve the upload performance.

Deduplication design. We currently maintain a synchronized copy of the

deduplication metadata that centrally coordinates the deduplication process

among all proxies. To improve the deduplication performance, we may explore

a decentralized approach similar to DeDe [35], in which each proxy locally

applies deduplication and synchronizes the global deduplication updates later.

Also, for some data workloads such as archival data, we can exploit data

locality and design specific deduplication approaches [30]. Integrating more

elegant deduplication designs into CFTDedup is an ongoing work.

Other issues. Other future directions include: (i) extending CFTDedup

to support Byzantine fault tolerance, (ii) evaluating CFTDedup in larger-scale

deployment, (iii) integrating CFTDedup with multiple cloud vendors as in

[9, 10, 11], etc.

8.2 Conclusions

This thesis proposes the design and implementation of CFTDedup, a dis-

tributed proxy system which improves storage efficiency via deduplication in

cloud storage, while ensuring crash fault tolerance among proxies. We imple-

ment a preliminary prototype of CFTDedup, and show via benchmarks that

the tradeoffs of adding fault tolerance can be small. We plan to use it as a base-

line to explore different consistency models, throughput enhancement tech-

niques, and deduplication designs. Our preliminary CFTDedup prototype is

currently available at: http://ansrlab.cse.cuhk.edu.hk/software/cftdedup.

Chapter 9

Conclusion

This thesis has presented methods to ensure the data security and reliability

of cloud backup systems.

In the first part of this thesis (chapters 3 - 5), we presented FadeVersion,

a secure cloud backup system that serves as a security layer on top of to-

days cloud storage services. It achieves fine-grained assured deletion on top of

deduplication by employing two-layer encryption. Cloud clients can assuredly

delete particular backup versions or files on the cloud while making them

permanently inaccessible to anyone, while other versions that share common

data of the deleted versions or files will remain unaffected. We implemented

a proof-of-concept prototype of FadeVersion and conduct empirical evaluation

atop Amazon S3, and showed that FadeVersion only adds minimal performance

overhead over a traditional cloud backup service that does not support assured

deletion.

In the second part of this thesis (chapters 6 - 8), we presented CFTDedup,

a distributed proxy system designed for providing storage efficiency via dedu-

plication in cloud storage, while ensuring crash fault tolerance among prox-

ies. It synchronizes deduplication metadata among proxies to provide strong

consistency, and batches metadata updates to mitigate synchronization over-

head. We implemented a preliminary prototype of CFTDedup and evaluated

via testbed experiments its runtime performance in deduplication storage for

45

Chapter 9 Conclusion 46

virtual machine images.

Both systems provide a platform for further research, especially CFTDedup

with open issues described in chapter 8.1. With the increasing popularity of

cloud storage, we anticipate that the techniques described in this thesis will be

essential to ensuring security and reliability when using cloud storage systems

for backup.

Bibliography

[1] D. McCullagh, Fbi, politicos renew push for isp data retention laws,

http://news.cnet.com/8301-13578_3-9926803-38.html, 2008.

[2] Watson Hall Ltd, Uk data retention requirements, https:

//www.watsonhall.com/resources/downloads/paper-uk-data-

retention-requirements.pdf, 2009.

[3] M. Vrable, S. Savage, and G. Voelker, Cumulus: Filesystem backup to

the cloud, in Proc. of USENIX FAST, 2009.

[4] S. Quinlan and S. Dorward, Venti: a new approach to archival storage,

in Proc. USENIX FAST, 2002.

[5] A. S. Gateway, http://aws.amazon.com/storagegateway/.

[6] Nasuni, http://www.nasuni.com.

[7] Panzura, http://www.panzura.com.

[8] StorSimple, http://www.storsimple.com.

[9] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon, RACS: A Case

for Cloud Storage Diversity, in Proc. of ACM SoCC, 2010.

[10] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, DEPSKY:

Dependable and Secure Storage in a Cloud-of-Clouds, in Proc. of ACM

EuroSys, 2011.

47

[11] Y. Hu, H. Chen, P. Lee, and Y. Tang, NCCloud: Applying Network

Coding for the Storage Repair in a Cloud-of-Clouds, in Proc. of USENIX

FAST, 2012.

[12] M. Vrable, S. Savage, and G. M. Voelker, BlueSky: A Cloud-Backed File

System for the Enterprise, in Proc. of USENIX FAST, 2012.

[13] S. Quinlan and S. Dorward, Venti: a new approach to archival storage,

in Proceedings of the FAST 2002 Conference on File and Storage Tech-

nologies, volume 4, 2002.

[14] B. Zhu, K. Li, and H. Patterson, Avoiding the disk bottleneck in the data

domain deduplication file system, in Proceedings of the 6th USENIX Con-

ference on File and Storage Technologies, page 18, USENIX Association,

2008.

[15] Dropbox, http://www.dropbox.com, 2010.

[16] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, Hey, you, get

off of my cloud: exploring information leakage in third-party compute

clouds, in Proceedings of the 16th ACM conference on Computer and

communications security, pages 199–212, ACM, 2009.

[17] P. Gutmann, Secure deletion of data from magnetic and solid-state mem-

ory, in Proc. of USENIX Security Symposium, 1996.

[18] Z. N. J. Peterson, R. Burns, J. Herring, A. Stubblefield, and A. D. Rubin,

Secure Deletion for a Versioning File System, in Proc. of USENIX FAST,

2005.

[19] D. Boneh and R. Lipton, A Revocable Backup System, in Proc. of

USENIX Security Symposium, 1996.

48

[20] R. Geambasu, J. P. John, S. D. Gribble, T. Kohno, and H. M. Levy,

Keypad: An Auditing File System for Theft-Prone Devices, in Proc. of

ACM EuroSys, 2011.

[21] R. Geambasu, T. Kohno, A. Levy, and H. Levy, Vanish: Increasing data

privacy with self-destructing data, in Proc. of USENIX Security Sympo-

sium, 2009.

[22] R. Perlman, File System Design with Assured Delete, in ISOC NDSS,

2007.

[23] Y. Tang, P. Lee, J. Lui, and R. Perlman, FADE: Secure Overlay Cloud

Storage with File Assured Deletion, in Proc. of SecureComm, 2010.

[24] S. Yu, C. Wang, K. Ren, and W. Lou, Attribute Based Data Sharing with

Attribute Revocation, in ACM Symposium on Information, Computer and

Communications Security (ASIACCS), 2010.

[25] R. Perlman, (2005).

[26] P. Anderson and L. Zhang, Fast and Secure Laptop Backups with En-

crypted De-duplication, in Proc. of USENIX LISA, 2010.

[27] M. W. Storer, K. Greenan, D. D. E. Long, and E. L. Miller, Secure Data

Deduplication, in Proc. of StorageSS, 2008.

[28] JungleDisk, http://www.jungledisk.com/, 2010.

[29] Nasuni, Nasuni Announces New Snapshot Retention Functionality

in Nasuni Filer; Enables Fail-Safe File Deletion in the Cloud, 2011,

http://www.nasuni.com/news/press-releases/nasuni-announces-new-

snapshot-retention-functionality-in-nasuni-filer-enables-fail-safe-file-

deletion-in-the-cloud/.

49

[30] B. Zhu, K. Li, and H. Patterson, Avoiding the Disk Bottleneck in the

Data Domain Deduplication File System, in Proc. of USENIX FAST,

2008.

[31] S. Rhea, R. Cox, and A. Pesterev, Fast, Inexpensive Content-Addressed

Storage in Foundation, in Proc. of USENIX ATC, 2008.

[32] A. Adya et al., FARSITE: Federated, Available, and Reliable Storage for

an Incompletely Trusted Environment, in Proc. of USENIX OSDI, 2002.

[33] L. Cox, C. Murray, and B. Noble, Pastiche: Making backup cheap and

easy, in Proc. of USENIX OSDI, 2002.

[34] C. Dubnicki et al., Hydrastor: a Scalable Secondary Storage, in Proc. of

USENIX FAST, 2009.

[35] A. Clements, I. Ahmad, M. Vilayannur, and J. Li, Decentralized Dedu-

plication in SAN Cluster File Systems, in Proc. of USENIX ATC, 2009.

[36] D. Bhagwat, K. Eshghi, D. Long, and M. Lillibridge, Extreme Binning:

Scalable, Parallel Deduplication for Chunk-based File Backup, in Proc.

IEEE MASCOTS, pages 1–9, IEEE, 2009.

[37] J. Wei, H. Jiang, K. Zhou, and D. Feng, MAD2: A Scalable High-

Throughput Exact Deduplication Approach for Network Backup Services,

in Proc. of IEEE MSST, 2010.

[38] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, ZooKeeper: Wait-Free

Coordination for Internet-Scale Systems, in Proc. of USENIX ATC, 2010.

[39] M. O. Rabin, Fingerprinting by random polynomials, Technical Report

Tech. Report TR-CSE-03-01, Center for Research in Computing Technol-

ogy, Harvard University, 1981.

50

[40] NIST, Advanced Encryption Standard, http://csrc.nist.gov/

publications/fips/fips197/fips-197.pdf, 2001, FIPS PUB 197.

[41] Trusted Computing Group, http://www.trustedcomputinggroup.org/.

[42] A. Shamir, CACM 22, 612 (1979).

[43] OpenSSL, http://www.openssl.org/, 2010.

[44] Amazon S3, http://aws.amazon.com/s3/.

[45] rdiff-backup, http://www.nongnu.org/rdiff-backup/.

[46] L. Lamport, R. Shostak, and M. Pease, ACM Trans. on Programming

Languages and Systems 4, 382 (1982).

[47] X. Défago, A. Schiper, and P. Urbán, ACM Computing Surveys 36, 372

(2004).

[48] Y. Amir, C. Danilov, M. Miskin-Amir, J. Schultz, and J. Stanton, The

Spread Toolkit: Architecture and Performance, Technical report, TR

CNDS-2004-1, Johns Hopkins University, 2004.

51

