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Abstract 

Clock skew caused by variation is one of the most important problems in 

clock network synthesis today. Even if a clock network is designed to have zero 

skew, variation such as capacitive load and power supply will cause differences 

in arrival time of a clock signal. Non-tree clock network is considered to be 

an effective way to address the skew variation problem. Due to its inherent 

redundancy, clock mesh is very tolerant to variation. However, it costs much 

excessive amount of power compared to a clock tree. Link based non-tree clock 

network is an economic way to reduce clock skew caused by variation. Instead 

of using a dense mesh, only a number of links are inserted into a tree, so the 

power increase is small. Several existing works focus on the effect of cross link 

as well as the construction of such cross link structure. However, it is still not 

very clear where cross links should be inserted to achieve the most clock skew 

reduction with small wire resources. In this thesis, we propose a new method 

using linear program to solve this problem. In our approach, clock skew in a 

non-tree clock network is computed using an idea of load redistribution and 

non-tree decomposition. The delay information obtained is then used to select 

the node pairs for cross link insertion. Our methodology tries to insert cross 

links where skew can be reduced most effectively. Our method also considers 

tradeoff between cross link length and skew reduction effect. We compare 

our result with the most similar work on this problem [1] and a recent work 



which inserts links between internal nodes of a tree. Experiments show 

that our method can reduce skew under variation effectively. We achieve 28% 

clock skew reduction with only 40% link resources. 
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Chapter 1 

Introduction 

1.1 Clock Distribution Network 

In a synchronous digital design, a clock distribution network is used to order 

the events happening in a circuit. The distribution of clock signal has a 

strong implication on performance and power consumption. One of the most 

important problems in clock distribution network is clock skew, which is the 

difference in arrival times of clock signal at sinks as show in Fig.1.1. Given 

two different points i and j on an integrated circuit, the clock skew is given 

by tskew = ti — tj where ti and tj are clock arrival times at these two points. 

Ideally, clock paths from source to the sinks are going to be equal. Under 

ideal conditions, there are two basic constraints in a synchronous structure, 

one is 

T > tc-q + tiogic + tsu 

where tc_q is the maximum propagation delay of a register, tt—ic is the max-

imum delay of the combinational logic between the two registers, tsu is the 

setup time for the registers. The clock period T should be long enough for 

the signal to propagate through the register and the logic and be set up at 

1 



CHAPTER 1. INTRODUCTION 

Figure 1.1: Difference in arrival times of clock signal 

the destination register before the start of the next clock signal. On the other 

hand, the hold time constraint is 

thold < tc—q,cd + tlogic,cd 

where tc-q,cd is contamination (minimum) delay through a register, t iogic,cd is 

the minimum delay of the combinational logic. The hold time thoid of the 

destination register should be shorter than the time required to propagate 

though the register and the logic. 

However, clock paths are not perfectly equal, which results in clock skew. 

Clock skew can be positive or negative depending on the routing details. Non-

zero clock skew has a significant impact on the functionality and performance 

of a sequential system. For example, in Fig.1.2, if tcLK2 is delayed by a 

positive tskew, the clock skew will affect the clock period as 

T > tc—q + tlogic + tsu ——tskew 

2 



CHAPTER 1. INTRODUCTION 

Figure 1.2: Basic structure of pipelined datapath circuit [22 

In this scenario, as tskew > 0, the equation indicates that clock skew re-

duces the clock period and therefore improve the performance. However, the 

increased skew may harm the correct operation of the circuit due to race con-

ditions. At the same time, negative clock skew will increase the clock period 

directly and can fundamentally limit the performance. In general, designing 

a clock distribution network with low skew is essential. 

In the past years, efforts have been made towards achieving zero clock 

skew while reducing the total wire length [26] [27] [16] [17] [18] [19]. Some 

works such as [2] [33] explored the problem of non-zero useful skew routing. 

However, even if a clock distribution network is designed to have zero skew, 

process variation and environmental variation such as changes in capacitive 

load, power supply and temperature will influence the delivery of the clock 

signal. Sources of clock skew can be, 

Manufacturing Variation. Clock buffer delay variation is critical to min-

imizing clock skew. Device parameters of the buffers vary along different 

paths, which results in clock skew. This is due to many sources of varia-

tions like dopant variation (that affects the depth of junctions and cause 

variation in threshold and parasitic parameters), oxide variation, etc. 

2. Interconnect Variation. Interconnect resistance and capacitance vary 

3 



CHAPTER 1. INTRODUCTION 4 

across different paths. There is deviation in the width of a wire and 

line spacing, which results in clock skew. 

3. Environment Variation. Temperature is time varying and is usually 

considered to be a skew component. Power supply variation also limits 

the performance of clock networks. 

4. Device Aging. Device aging is a result of the degradation of the gate 

dielectric. It degrades device characteristics and circuit performance 

over time. 

Some of these variations can be modeled while some can not. Designing 

a robust clock network is important to handle the skew variation problem. 

Clock skew caused by variation is now one of the most critical problems that 

the design of large and high performance system is facing today. 

One common structure to route a clock network is tree. The H-tree al-

gorithm delivers signal from a central point to various points using balanced 

paths. An example of such structure is shown in Fig.1.3. The H-tree algo-

rithm is applicable for regular array networks. A more general algorithm is 

RC matched clock distribution [20]. The interconnections delivering clock 

signal are of equal length. This general approach does not rely on a regular 

structure compared with the H-tree structure. 

Mesh 

Non-tree clock network is considered to be a promising way to address the 

variation problem. An example of a clock mesh is shown in Fig.1.4. The 

top level is a clock tree and a mesh is attached to the bottom of that tree. 

Clock sinks are ususally connected to the mesh edges. This clock mesh struc-

ture, because of its inherent redundancy, is more tolerant to process variation 
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Figure 1.3: H-

and is able to provide lower skew variability compared with traditional clock 

tree. However, clock mesh has the disadvantage of causing much more power 

dissipation because of the longer wire length. This type of clock distribu-

tion network is used on several microprocessor chips, achieving very low skew 

5]. A sliding window based scheme is used to analyze a clock mesh [7 . 

A combinatorial algorithm to optimize a clock mesh is proposed in [6]. A 

comprehensive and automated framework for planning, synthesizing and op-

timization of clock mesh networks is proposed in 

network achieving low skew is presented in [25 

A mixed tree-mesh clock 

Cross Link 

Compared to the mesh structure, clock network constructed by inserting cross 

links consumes much less power. An example of clock tree with cross links is 

illustrated in Fig.1.5. Instead of using a dense mesh, only a number of cross 

links are inserted into a clock tree. This structure combines the advantages 

of clock tree and clock mesh. A framework to construct such a non-tree 

5 



CHAPTER 1. INTRODUCTION 

Figure 1.4: Clock Mesh 

network with some analysis on the effect of link insertion on skew variability 

is first proposed in [1]. A statistical based non-tree clock network construction 

technique is presented in [9]. Later, the cross link idea is extended to handle 

buffered clock tree in [10] [11]. Wire sizing is performed to improve skew 

variability in a non-tree topology in [12]. Recently, a link insertion scheme 

that inserts cross links at higher level internal nodes in a clock tree, instead 

of sink nodes as in many previous works, is proposed in [4]. A cross link 

insertion scheme using linear program to select node pairs for link insertion 

is proposed in [28 . 

1.2 Our Contributions 

Although there are a number of research works on non-tree clock network 

construction with cross links, some important questions are still unanswered. 

Most existing works on link insertion attempt to reduce skew variability while 

using shortest wire length. However, these approaches did not consider delay 

and skew when inserting links, which limits the effectiveness of link insertion. 

6 



CHAPTER 1. INTRODUCTION 

Figure 1.5: Cross Link 

The tradeoff between the length of a cross link and its ability to reduce clock 

skew is not analytically studied. In this thesis, efforts are made towards 

solving these problems. Our contributions can be summarized as follows. 

• We use the idea of load redistribution and tree decomposition [4] to 

obtain the delay and skew information in a non-tree clock network. We 

study where cross links should be inserted into a clock network. 

• We formulate the cross link insertion problem as a sequence of linear 

programs, with an objective to find a pair of nodes to insert a cross 

link such that the skew variability can be reduced the most while the 

wire length increase due to the link insertion is constrained. We con-

siders tradeoff between cross link length and skew reduction effect. By 

applying this technique recursively, we can add a user-defined number 

of cross links and the clock skew will be reduced progressively. 

• Simulation results show that our method can lead to significant skew 

reduction under variations. 

7 
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1.3 Organization of the Thesis 

The thesis is organized as follows. We first review the literature in clock net-

work construction in Chapter 2, in which we focus on the most recent research 

dealing with skew variability. In Chapter 3, techniques for computing signal 

delay and clock skew in non-tree clock networks will be studied. Our method 

to construct a non-tree clock network with cross links will be presented. We 

formulate the node pair selection problem as a sequence of linear program. 

The result is used to select the node pairs for cross link insertion where skew 

can be reduced most effectively. In Chapter 4, we discuss cross link insertion 

in buffered clock network. Finally, a summary of our work will be included 

in Chapter 5. 

口 End of chapter. 



Chapter 2 

Literature Review 

In this charpter, we will review the literature in clock network construction. 

Firstly, some important papers on zero skew clock routing while minimizing 

the total wire length will be presented. Then we will discuss several papers 

on the synthesis and optimization of clock mesh network. Finally, we will 

reivew some recent papers on clock network construction with cross links. 

2.1 Exact Zero Skew 

In the paper [16], an exact zero skew clock routing algorithm is presented 

based on the Elmore delay model rather that just wire length balancing. Zero 

skewed subtrees are interconnected to a new zero skew tree recursively based 

on the delay computation. The recursive bottom up approach is applied to 

construct a complete zero skew tree. 

Firstly, a linear time delay computation method is studied. A clock tree is 

modeled as a RC tree. Each branch is associated with a resistance value and 

each node is associated with a capacitive value. The capacitance of a node 

can be computed from its own node capacitance and the capacitances of its 

9 
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successors. The delay time can be computed from the delay of its predecessor, 

the node capacitance and the branch resistance. 

Based on the delay model and the delay computation method, a recursive 

bottom up zero skew algorithm is presented. By tuning the tapping point, 

any two zero skew subtrees can be merged to form a new zero skew tree. 

Repeating this process until reaching the root will generate a complete tree. 

In some cases, wire elongation is needed to balance two subtrees. More details 

of the algorithm are discussed blow. 

Consider the case in whch we want to merge the roots of two subtrees. In 

order to have zero skew merging, the following equality should hold: 

ri (ci/2 + Ci) + ti = r2(c2/2 + ) + h 

where ti refers to delay from node i to the sinks, ri and ci (r2 and C2) are 

resistance and capacitance of wire 1 (wire 2). If we assume that the total wire 

length connecting the two nodes is l, and the length of wire 1 is xl. Hence, 

the length of wire 2 is (1 ——x)l. Let a and P be the resistance and capacitance 

per unit length of wire respectively. Then r = al, ri = axl, r2 = a(1 ——x)l, 

c = Pl, ci = Pxl, C2 = P(1 ——x)l. After solving the above equation, we have 

(t2 ——ti) + al(C2 + pl/2) 
x = 

al(Pl + Ci + C2) 

If 0 < x < 1, the tapping point is on the line segment interconnecting the 

roots of the two subtrees. In case if x < 0 or x > 1, extra wire is needed to 

achieve delay balance. For example, if x < 0, the tapping point has to be on 

the root of subtree 1. Assume that the length of the elongated wire is "’ the 

resistance of this wire is al, and its capacitance is P". To balance delay, it 

requires 

ti = t2 + al\C2 + pil/2) 
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or I' is given by 

+ 2al3(ti - t^) - aC^) 
= 

Similarly, we can determine V if x > 1. 

The algorithm is tested on five different sized benchmarks. It is observed 

from the results that the exact zero skew algorithm perferms better than the 

wire length balancing algorithm with zero skew and smaller phase delay. 

2.2 D M E Algorithm 

In the papers [17] [18] [19], an algorithm called Deferred-Merge Embedding 

(DME) is proposed. The algorithm constructs a zero skew clock network 

while reducing the total wire length. It contains a bottom up merging phase 

and a top down embedding phase. The bottom up merging phase computes 

the possible loci of the internal nodes of a tree. Then a top down embedding 

phase determines the exact location of each tree node. 

A Manhattan arc is a line segment with slope +1 or -1. The collection of 

points within a fixed distance of a Manhattan arc is called a tilted rectangular 

region (TRR). The boundary of a TRR is composed of Manhattan arcs. The 

core is the Manhattan arc at the center of a TRR. The radius of a TRR is 

the distance between its core and its boundary. In the bottom up merging 

phase, a tree of merging segments is constructed given a connection topology 

G. A merging segment ms(v) of node v represents the possible placements 

ppl(v) of node v. The merging segment of node v depends on its children a 

and b. If v is a sink Si, then ms(v) = Si. If v is an internal node, ms(v) is 

obtained by intersecting two TRRs, trr^ with core ms(a) and radius lej and 

trvb with core ms(b) and radius |eb . 
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Once the tree of segments has been constructed, the exact embeddings of 

the internal nodes are chosen in a top down phase, 

1. If v is the root node, select any point in ms(v) 

2. If v is an internal node, choose any point in ms(v) that is within distance 

Cv | from the placement of v's parent p 

In summary, the Deferred-Merge Embedding (DME) algorithm was pro-

posed to embed any given connection topology to create a clock tree with 

zero skew while minimizing total wire length. Experimental results show an 

8% to 15% wire length reduction over previous methods in [16]. The DME 

algorithm can be used with both the Elmore and linear delay model. The 

algorithm is very fast, running in linear time of the number of sinks. 

2.3 Combinatorial Algorithms for Fast Clock 

Mesh Optimization 

A mesh offers high tolerance to process variation at the cost of high power 

consumption. The authors of [6] offers designers a tradeoff between power and 

clock skew reduction. A set-cover formulation is used to obtain the minimum 

buffer resource to drive a mesh under slew constraints. After obtaining a 

buffered mesh, based on the survivable network theory, only those critical 

edges are retained to reduce the power consumption of the clock mesh. 

The mesh reduction method is as follows. Let m x n denotes the di-

mension of the clock mesh M. I denotes the set of nodes in the mesh. 

S = {si, S2 . . . Sn} denotes the set of sinks in M. Each sink Si is connected to 

a node i G I . dj denotes the minimum distance between node i and node j in 
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the mesh. When some edges are removed from the mesh, the results should 

satisfy: 

Each sink Si is connected to at least k nodes and for each such node j 

1 .  d i j —  Lmax. 

2. There are at least l paths between node i and node j. 

3. There is at least a buffer on such node j. 

Parameters k, Lmax and l are user defined. The algorithm will maximize the 

number of edges removed. The variables k and l control the tradeoff between 

tolerance to variation and power dissipation. If both k and l are large, the 

number of edges removed will be small, which means more redundancy and 

power dissipation. 

The mesh reduction problem is transformed into a Steiner Network prob-

lem [29] [30] by 

1. Representing the mesh by a graph G = (V, E). 

2. Setting the connectivity requirement function r(u, v) = 0 for all (u, v) G 

V. 

3. Finding k closest mesh buffer locations Ti for each sink Si. 

4. Setting r(p, j ) = l, V p G all Si and Ti, V j. 

A greedy heuristic is used to solve the Steiner Network problem. The 

algorithm first initializes the cost of all edges to unity. Then edge disjoint 

paths between clock sinks and the closest k mesh buffers will be indentified. 

In summary, the mesh reduction problem is formulated based on the sur-

vivable network theory. Then the mesh reduction problem is transformed 
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into Steiner Network and solved by a greedy heuristic. The technique allows 

the designers to tradeoff between skew tolerance and power dissipation. The 

algorithm is fast and experimental results show that there are 29% reduction 

in wire length and 28% reduction in power. 

2.4 MeshWorks: An Efficient Framework for 

Planning, Synthesis and Optimization of 

Clock Mesh Networks 

In the paper [8], a comprehensive framework called MeshWorks is presented 

for planning, synthesis and optimization of clock mesh. They address the 

problem of obtaining an initial clock mesh. A simple method considering 

wire length and skew is used to choose a mesh size. An algorithm based on 

the network sensitivity theory is applied to select the mesh edges that can be 

removed to reduce the size of the clock mesh. 

The mesh planning and synthesizing algorithm considers the relationships 

between the total wire length, clock skew and mesh size. For example, suppose 

a mesh is denoted by m * n and the sinks S = {si, S2 . . . Sn} are connected 

to mesh nodes with stubs. The wire length of the mesh is a linear function 

of the mesh size as illustrated in Fig.2.1. As m or n increases, the mesh will 

become more dense. Since each sink is associated with a stub, a denser mesh 

will result in smaller total stub length and the mesh wire length is larger than 

the stub wire length. However, for a sparse mesh, the mesh wire length will 

be less than the stub wire length. An appropriate mesh size can be found to 

minimize the total wire length, as in Fig.2.1. 

Let deli denote the delay of sink Si and q) denote the width of a mesh 

segment between node p and node q. The effect of removing a mesh segment 
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Figure 2.1: Determine mesh size [8 

between node p and node q is defined by 

ddelj 
Cost{p, q) 

— ” ddelk， ( 、 
Max ——r - ^―——rj * w(p, q) 

j,kesinks dw(p, q) dw(p, q) 

The algorithms try to remove the mesh edges with the lowest cost function 

to obtain a optimized mesh structure. 

Details of the mesh optimization approach is as follows: 

1. Cluster sinks close to each other. 

2. Sinks in a cluster will be merged into a single sink with equal total 

capacitance. Therefore, an approximate mesh with fewer nodes can be 

obtained. 

3. Obtain delay sensitivities of merged sinks with respect to the mesh 

edges. Based on the delay sensitivities, obtain the cost(p, q) for each 

mesh edge e(p, q). The cost function is the maximum clock skew change 

in the mesh when a certain edge is removed. 

Experimental results indicate that their algorithms can achieve 26% re-

duction in buffer area, 19% reduction in wirelength and 18% reduction in 
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Figure 2.2: Inserting cross link 

power dissipation compared to a recent work [6]. A compressive framework 

for both mesh planning and optimization is proposed in this work. 

2.5 Reducing Clock Skew variability via Cross 

Links 

Rajaram et al. [1] propose a non-tree clock structure by inserting cross links 

into a tree. This non-tree structure consumes much less power compared to 

the traditional mesh structure. Some analysis of the effect of cross link is 

presented in their work. They also propose two schemes to generate a non-

tree structure with cross links from a tree. These two schemes do not utilize 

delay information to insert cross links. 

The impact of cross link is analyzed by a technique by Chan and Karplus 

3]. Assume that a cross link is inserted between node u and w as illustrated 

in Fig.2.2. The delay at a node i in the clock tree after link insertion is given 
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by 

. / — . t u 一
 t w 

t i — t i o^ I I
 ri 

Ri + ru + rw 

where ti, tu and tw are the delays before link insertion, Ri is the link resistance, 

ri, ru and rw is the delay at node i, u and w respectively when CU — 1, Cw — 

一 1 and other node capacitances are set to zero. 

We assume that the skew between link endpoints node u and node w is 

qu,w, the skew after link insertion is given by 

‘ — Ri 
q u , w —

 Ri + ru 一 rw  q u , w  

It is claimed that a link resistor will reduce the skew variability of two 

zero skew link endpoints. However, the skew between two arbitrary nodes 

after link insertion is not very clear. Skew variability may be reduced or 

increased. On the other hand, the analysis and observations are only based 

on the first link added into the tree. Analysis of more links in the tree will 

be very difficult. 

Based on the analysis, after obtaining a clock tree, their algorithm inden-

tifies node pairs for link insertion. They propose two schemes for selecting 

node pairs for link insertion. The first one is a rule based selection scheme. 

This scheme is simply choosing all sink pairs satisfying three simple rules 

from the analysis. For example, the depth 7 of the nearest common ances-

tor of a selected sink node pair needs to be no greater than a bound jmax. 

Another scheme is a minimum weight matching based selection scheme. For 

different depths, a user defined number of links will be selected. For instance, 

k — (2,1,1) indicates that there are two links for each subtree at depth 7 — 1, 

and there is one link for each subtree at depth 7 — 2 and 7 — 3. The sub-

problem to select a node pair between two subtrees is modeled in a bipartite 

graph problem for selecting node pairs and can be solved by the minimum 

weight matching algorithm. 
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The algorithm is summarized as follows 

1. Obtain an initial clock tree. 

2. Select node pairs for link insertion. 

3. Add link capacitance and tune tapping points. 

4. Insert link resistance. 

The experiments are performed on both mesh and cross link networks. A 

dense mesh usually performs better than cross link structure at the cost of 

significant wire increase. The minimum weight matching-based link method 

always outperforms the naive rule-based method on both skew and wire length 

minimization. 

To summarize, a cross link structure is proposed in this paper to handle the 

skew variation problem. Some analysis of the effect of cross link is presented. 

Based on the analysis, two schemes which did not consider delay are proposed 

to construct clock network with cross links. 

2.6 Statistical Based Link Insertion for Ro-

bust Clock Network Design 

This paper presents a statistical based algorithm for clock network construc-

tion with cross links [9]. The process starts with a tree and incrementally 

insert cross links. The skew variation of the final clock network is within a 

certain confidence interval under variation in wire width. In their work, a 

fitted Elmore delay model is applied to the delay computation of clock trees 

and non-trees. They use statistical timing analysis to obtain the statistical 
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distribution of the clock skew in the network and determine the optimal in-

sertion point. Once a cross link is inserted, the statistical skew distribution 

is updated before more links are inserted. 

The Elmore delay of a wire is expressed as a random variable under wire 

width variation. Once a link is added, RC is updated to obtain the delay 

value. The approach is similar to that in [1] as follows: 

R x C x = [ R x - 1 + V V X T —1 ] ( C x - 1 + A C x ) 

rx 一 Vx R x - i V x 

where Rx_iCx_i refers to the RC delay before link insertion. Hence the term 

can be found starting from R Q C Q . One difference from [1] is that they also 

add the link capacitance which is considered in the term RQ A Cx. 

For each candidate pair of nodes, a link is temporarily inserted. The 

statistical delay and skew after link insertion is computed to decide if the 

candidate link should be inserted permanently. Once a link is inserted, delay 

and skew is updated for the next link insertion. There is a limit on the link 

distance. The reason is to reduce the search space to save run time. Another 

reason is that a long wire length consumes more wire resource and has a large 

perturbation on the original clock network. The other constraint is the height 

of the nearest common ancestor of the link endpoints. The taller the subtree, 

the larger the effect the link has. 

The flow can be summarized as follows 

1. For each sink pair considered for link insertion, find the worst skew 

violation 

2. Insert the link has the best worst case violation 

3. Update skew 

In the experiments, the skews are evaluated based on a normal distri-

bution of the wire width. Monte Carlo simulations are performed on the 



CHAPTER 2. LITERATURE REVIEW 20 

original clock tree and the link-inserted tree. To summarize, their approach 

is only able to handle wire variation which effects clock skew. The analysis is 

complicated and the runtime is very long even for a benchmark with several 

hundred sinks. 

2.7 Variation Tolerant Buffered Clock Net-

work Synthesis with Cross Links 

The work [11] deals with the problem of constructing a link based buffered 

clock network. Their approach makes use of ordinary buffer and does not 

require SPICE for tuning the location of the tree nodes. A balanced buffered 

clock network with cross links is constructed which is tolerant to variation. 

Their approach requires a link insertion friendly clock tree (a balanced 

buffered clock tree) which is more tolerant to variation. A merging scheme 

to construct a balanced buffered clock tree while simultaneously trying to 

minimize the total wire length is introduced. The general framework is similar 

to the DME algorithm. In their approach, the slew information is propagated 

in a bottom up fashion. When merging a given pair of subtrees, the subtree 

capacitance and slew information will also be obtained. Subtrees are merged 

when the capacitance after merging is less than the capacitance limit. Buffers 

are inserted at the roots of all the subtrees when there is no node pair merging 

satifying the capacitance limit. Their approach results in a balanced tree and 

the numbers of buffers from the source to every sink are the same. 

The key merging step is described below. They maintain two separate lists 

F for flagged nodes and U for unflagged nodes. The nodes in U are considered 

for link node pair selection. For a node i in U, if a suitable node pair for 

merging without exceeding the effective downstream capacitance limit is not 
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found, this node will be removed from U and added to the list F. The node 

pair selection process will be repeated until the list U is finished. Buffered 

will be added to the unmerged nodes in F. Delays, slews and downstream 

capacitance will be updated and the nodes in F are moved back to list U. 

The process will continue until a complete clock tree is obtained. 

After a balanced clock tree is constructed, sink node pairs will be se-

lected for link insertion by a modified MST algorithm. The cost function is a 

weighted function of delay and link length. This top level algorithm is similar 

to [1]. The steps can be summarized as follows: 

1. Construct a balanced buffered clock tree using the techniques discussed 

above. 

2. Select node pairs for link insertion using a modified MST algorithm. 

3. Add extra link capacitance and construct buffered clock tree with the 

same topology. 

4. Insert link to obtain the final clock network. 

In the experiments, their buffered clock network with links has the best 

skew reduction compared with other algorithms. The percentage for extra 

link length is small. Runtimes are much less that those algorithms using 

SPICE to tune the locations of the tree internal nodes. 
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Figure 2.3: Cross link between internal nodes 

2.8 Cross Link Insertion for Improving Toler-

ance to Variations in Clock Network Syn-

thesis 

Instead of inserting links between sinks, the authors of [4] propose a scheme 

to insert links between internal nodes of a clock tree. An example is shown 

in Fig.2.3. In this example, a cross link is inserted between two zero skew 

internal nodes u and v below buffers rather than inserted between sink nodes. 

The link insertion process is integrated into the tree construction process. 

Both the clock skew variability and the total link length are reduced. 

The scheme comprises of merging, buffer insertion and link insertion. The 

high level framework is similar to the DME approach. Nearest neighbor 

graph is constructed using root nodes of subtrees as vertices. When two 

nodes are merged to form a new subtree, slew check is performed to decide 

if buffers should be inserted on top of the two nodes using stem wire. The 

stem wire length is found by binary search using NGSPICE. Each buffer bufi 
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has a merging region mr^ufi associated with it. The problem of blockage 

is considered by chopping off the part of a merging region lying within a 

blockage. 

It is claimed in [1] that a link is beneficial only when it is inserted between 

two zero skew nodes. So they propose to insert a link between two zero skew 

internal nodes on the stem wire. The location search process is also guided 

by NGSPICE simulations. The proposed link insertion flow helps to control 

link length and reduce the total clock network capacitance. Cross link helps 

improving the correlation of sink delays between the two subtrees where cross 

links are inserted. Links are inserted below buffers, which helps to reduce 

variation effects of buffers. 

Simulation results on the ISPD 2010 contest benchmark demonstrate the 

effective of their approach. In the experiments, they used a 15% supply 

voltage variation and a 10% wire width variation. The buffers used consists 

of 10 parallel buffers driving 40 parallel buffers (10 buffers in the first layer, 

40 buffers in the second layer). The proposed scheme obtains less capacitance 

compared with the top three teams of the ISPD contest while satisfying the 

local clock skew constraints. 

口 End of chapter. 



Chapter 3 

Clock Network Construction 

with Cross Links 

3.1 Signal Delay and Clock Skew in Non-tree 

Clock Network 

We will first review the delay calculation technique in general RC network 

13]. Using this technique, a non-tree clock network can be decomposed into a 

tree with some way of load redistribution. Signal delay in the decomposed tree 

is exact the same as that in the original non-tree network. Therefore, finding 

delay in a non-tree network becomes simply calculating Elmore delay in a RC 

tree. Secondly, we will study the effect of a cross link from the perspective of 

load redistribution. We deduce and verify that the skew reduction effect of 

a cross link is affected by the resistance of the link Riink. If a link resistance 

is large, its skew reduction effect will be small. So a cross link with small 

resistance has more potential to improve skew performance. This observation 

can be used to guide our link insertion process. 

24 
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3.1.1 Comput ing Delay in Non-tree Network 

Calculation of the delays in a non-tree network is non-trivial, because there 

are loops between the nodes, which makes possible that one node is driving 

and loading another node at the same time. The relationships between nodes 

are not explicit in a non-tree clock network. In the past, several techniques 

have been suggested to model the delay in a general RC network [3] [13] [14 . 

Based on the Elmore delay model, a technique called tree decomposition 

and load redistribution is proposed in [13]. Their approach can be used to 

calculate the delays of the nodes in a general RC network with resistance 

loops. Suppose that N is an arbitrary node in a general RC network and 

N has k neighboring nodes, denoted by Mi where i = 1,... ,k. Node N is 

connected to Mi through edge Ei with a resistance of value Ri. Denote the 

load capacitance of N as C. The idea is to partition and distribute C into 

N's k neighboring edges. Let Ci be the equivalent load distributed to edge 

Ei, where Ci can be positive or negative. According to Elmore delay, if the 

delay of node Mi is Ti, the delay of node N will be T = Ti + RiCi. Then 

there is a set of constraints as follows: 

^ Ci = C (3.1) 

i = i 

T = Ti + RiCi i = 1,...,k (3.2) 

With the above constraints, a general RC network can be decomposed into 

a tree with some way of load redistribution. Signal delay in the decomposed 

tree is exact the same as delay in the original non-tree. Since the delays in 

a tree can be determined efficiently, we are able to calculate the delay in the 

original RC network. 

Consider the effect of inserting a link between two nodes Ni and Nj with 

delays Di and Dj respectively in a tree as shown in Fig.3.1. Assume that the 
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Figure 3.1: Load Redistribution through a Link 

load capacitances of node Ni and Nj are Ci and Cj respectively before link 

insertion. After a link is inserted between node N and Nj, node Nj becomes 

one of the neighboring nodes of Ni. The loading capacitance of node Ni will 

be redistributed as in Fig.3.1. In this example, the load capacitance of node 

Ni is redistributed. Note that we can also split Nj instead of Ni. Suppose 

Ci,i is the capacitance remaining at node Ni and Ci,2 is the load redistributed 

from node Ni to node Nj through the inserted link. Let Di and Dj be the 

new delays at node Ni and Nj respectively, which can be calculated after this 

decomposing step. 

According the set of constraints (3.1) and (3.2), we have the following 

equality constraints for this particular example: 

Ci,i +  Ci,2 =  Ci 

D/ = Dj ‘ + Diink 

(3.3) 

(3.4) 

The delay difference between node Ni and node Nj becomes Diink = RiinkCi,2. 

Note that if Ci,2 is positive, it indicates that node Nj is actually driving node 

Ni after this link insertion step and node Nj load part of node NiS capacitance, 

which is Ci,2. If Ci,2 is negative, it indicates that node Ni is driving node Nj 

instead. 
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3.1.2 Effect of a Cross Link on Clock Skew 

The Elmore delay of node Ni in a tree T is 

Ri,k Ck (3.5) 

where k G all nodes in T, Ri,k is the shared path resistance between node 

Ni and node Nk and Ck is the capacitance of node Nk. Consider the same 

example in Fig.3.1, a link is inserted between node Ni and node Nj. For a 

given tree, the resistances of edges and capacitances of the nodes are known, 

so the delays at nodes Ni and Nj can be expressed by Ci and Cj as follows 

with constants ki, where i = 1, 2,..., 6: 

Di = kiCi + k2Cj + ks 

Dj = k^Ci + hCj + ke 

The skew between node Ni and Nj before link insertion is 

qij = Di - Dj 

(3.6) 

(3.7) 

(3.8) 

After a link is inserted between Ni and Nj as in Fig.3.1, the delays become 

Di' = ki(Ci - Ci,2) + k2(Cj + Ci,2) + ks 

Dj‘ = k4(Ci - Ci,2) + k5(Cj + Ci,2) + ke 

The skew becomes qj‘ = D i ' — Dj', which is given by 

Qij ‘ =  qij  — ( k 1 — k 4 ) C i , 2 + ( k 2 — k 5 ) C i , 2 

which equals RiinkC i,2, so we have 

Ci,2 

qij 

ki - k2 - k4 + k5 + Rlink 

After solving Ci,2, the skew after link insertion can be written as 

qij ‘ =  Rlink  Ci,2 

Rlink qij 

kl 一 k2 一 k4 + k5 + Rlink 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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The skew after link insertion is scaled by a factor ^-R+ks十R. k compared 

with the skew before link insertion. As k̂  are constants, the skew 

reduction effect is determined by the resistance of the cross link Riink. If the 

link resistance is large, its skew reduction effect will be small. A link with 

smaller resistance has a higher potential to improve the skew performance. 

Although the above analysis is based on a structure that is a tree, the same 

argument can be applied even after several links are inserted since a non-tree 

network can be represented by a tree structure by applying the above load 

redistribution method. 

3.2 Link Insertion for Non-tree Clock Net-

work 

Based on the techniques discussed in section 3.1.1, we are able to calculate 

signal delays in a clock network. In our approach, the sink load capacitances 

are modeled as variables and each node's Elmore delay is written as a function 

of the sink capacitances and the redistributed load capacitance. Each sink 

node delay will change according to the values of these capacitances. There-

fore, there is a worst case skew under a sink capacitance variation. The worst 

case skew is defined as the maximum delay difference that might appear in 

the clock network under the variation of the sink capacitance. It is used as a 

metric to evaluate the clock skew performance in our work. 
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Figure 3.2: Clock Network with Links 

3.2.1 Motivation of Computing Delay for Link Inser-

tion 

Adding links between the node pairs which are most susceptible to have the 

worst case clock skew will be beneficial. Therefore, one important step is to 

identify the node pairs which will have large skew under variation. A shared 

path length lij is the length of the path shared between the path from the 

root s to sink node Si and the path from s to Sj. It is obvious that if two 

nodes share a long common path from the source in a tree topology, the delay 

difference will be small. If the shared path length lij is small or even zero, 

the delay difference between Si and Sj can be high. Those node pairs with 

small shared path length are topologically far away. In a clock tree, adding 

a link to those topologically far away node pairs will be beneficial because 

they are likely to exhibit a large clock skew. For example, in Fig.3.2, adding 

a link between node b and node c will generally be better than adding a link 

between node b and node d, because node pair (b, d) is less likely to have a 

large skew. 
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When the clock network is no longer a tree structure after some cross links 

are inserted, the relationship between nodes becomes unexplicit. It is difficult 

to tell if a node pair is topologically far away or not. In Fig.3.2, if we consider 

node pair (a, b) and node pair (d, c), node pair (a, b) are topologically closer 

if no links are inserted, since the lowest common ancestor (LCA) of (a, b) is 

at level 1 while the LCA of (d, c) is at the root (level 0). However, if a link 

is inserted between node b and node c, it is not possible to tell which node 

pair are topologically closer thus less likely to exhibit the worse skew without 

calculation. Therefore, we will use the non-tree delay calculation technique 

(Section 3.1.1) to obtain the Elmore delay and the worst case skew of each 

sink node pair under variation. Then we can decide the node pairs which 

have the highest potential to reduce clock skew after link insertion between 

them. 

3.2.2 Overall Flow for Cross Link Insertion 

In our approach, we will insert the first link between the two subtrees of the 

root in a clock tree network. We will find the node pair with the smallest 

physical distance and thus the smallest link resistance. Starting from the 

second link, we will formulate a sequence of linear programs to find the most 

beneficial node pair for inserting a link. Fig.3.3 shows an overall flow of our 

algorithm to insert links. For each sink node pair considered in link insertion, 

we find the maximum under capacitance variation. A link will be added to 

the node pair with the maximum possible skew. The linear program is then 

updated to find the next node pair for the third link insertion. In the following 

section, we will discuss in more details of the linear program. 
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Algoritlun: Add Links 

Input: A clock distiibiitioii network 

Output: w crosslinks 

1. Insert the first link between node pair (a, b) where a and b are in 

the left and right subtree of the root and are closest to each other 

physically 

2A— 1 

3. While/r< w 

4. For each sink node pair {u, v) 

5. Construct an LP to find the largest人v vfilue 

"^人vis an objective fimctioii described below 

6. Retimi tlie node pair with the largest/^^v value for adding a link 

7. k 1 

8. End 

Figure 3.3: Link Insertion Overview 

3.2.3 Linear Program for Selecting Node Pairs 

Given a non-tree clock network, we will first make use of the techniques 

discussed in Section 3.1.1 to decompose a network into a tree structure and 

redistribute the load capacitances. An example is illustrated in Fig.3.4. In 

Fig.3.4, a link k is added between sink nodes Si and S2, with load capacitances 

Ci and C2 respectively. First we add half of the link capacitance Cunk to 

endpoints Si and S2 of the link. When the tree is decomposed, we pick 

one of the link endpoints to decompose. In this example, we pick node Si 

to be viewed as being split into two nodes as in Fig.3.4. The new node S3 

is connected to S2 through the added link. The new loading capacitance 

at node Si is Ci + Cunk/2 一 Ck where Ck is the capacitance distributed to 

node S2. Suppose that there are m links in the clock distribution network, 

similar decomposition can be done for all the links. We can use m variables 

Ci, C2,..., Cm to describe the load redistribution from one endpoint of a link 
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Figure 3.4: Decomposition of Clock Network with Links 

to the other. Finally, we obtain a tree structure with some way of load 

distribution. Node's delay in the decomposed tree is exact the same as that 

in the original non-tree network. 

Once the network is decomposed into trees and the load capacitances are 

redistributed, according to equation (3.5), we can write the Elmore delay of 

each sink node as a linear function of the sink load capacitances. Let n be 

the total number of sinks and m be the number of links, the delay of a sink 

node Su is a linear function of the sink load capacitances Ci, 62” . ” C^ and 

the redistributed load capacitance ci, C2,..., Cm, 

u , cm) (3.14) 

The skew between sink node Su and Sv is 

qu t'a ——tv 1 (3.15) 

Then we can formulate the worst case skew between a pair of nodes under 

capacitance variation. However, adding a link between the pair with the worst 

skew might result in a significant increase in link length. If the length of the 

link is large, the resistance of the link will be high. Firstly, this will make the 

clock network have very long route and thus not practical. Secondly, a long 
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wire will have lower skew reduction effect as discussed in Section 3.1.2. For 

instance, in Fig.3.2, if we do not consider the resistance of the link, adding 

a link between node b and node c will be better than adding a link between 

node a and node b, since node a and node b share some parts of their paths 

from the source and thus the delay difference will be smaller. However, if the 

physical distance and thus the link resistance between node b and node c is 

larger than that between node a and node b, it will be difficult to tell which 

link is better. Therefore a tradeoff between the length of a link and its clock 

skew reduction effect is needed. When selecting node pairs, we consider both 

clock skew and link length to find the node pairs which are most beneficial 

for link insertion. We thus define an objective function to strike a balance 

between the worst case skew and the link resistance ru,v as follows: 

fuv = ^ (3.16) 

ru,v 

This objective function is established empirically. From the experimental 

results, we find that this objective function can achieve low clock skew effec-

tively. 

We can find the maximum of fu,v subject to changes in the load capaci-

tance values and a set of linear equality constraints as described below. 

The sink load capacitances have upper and lower bounds according to the 

distribution of the capacitance values. For each sink node Si 

li < Ci < Hi (3.17) 

We also have a set of linear equality constraints to describe the delay equalities 

due to the links. Let S i f k ) and Sright(k) be the two endpoints of link k. 

W.l.o.g, let Sieft{k) be the node being split and Sieft{k) becomes S^ieft{k) and 

Smid{k) after splitting. Assume that the delays at S^ieft{k) and Sright{k) are tki 

and tk2 respectively, and the delay at Smid{k) is tks. D\nk is the delay on 
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the link connecting Smid{k) and Sright{k). Assume that the link resistance is 

R kiink, the equality constraints due to the k仇 link is given by: 

t k 1
 — t k 3

 — t k 2 + Delink (3 .18) 

Delink
 —  R^link  ck (3 .19) 

To summarize, the optimization problem to maximize the objective function 

fu,v between node Su and Sv is: 

Maximize: 
力u——tv 1 

(3.20) 

Subject to: 

tu — ^fv^Cl, C2，. . .
 , Cn,  c1 ,  c2 , • • •  ,  cm) (3.21) 

tv
 —  fv ( C 1 ， C 2 , ...  , Cn, c 1  , c2 , • • •  ,  cm) (3 .22) 

li < Ci < u i — 1 , . . . ,n (3.23) 

tk1 — tk2 + Relink ck k — 1 , . . . ,m (3.24) 

where Ci for i — 1,... ,n and cj for j — 1,... ,m are variables in the LP. 

The absolute value in equation (3.20) is handled in the implementation. For 

each pair (i,j), we do optimizations twice. In one of them, we maximize 

(tu 一 tv) to obtain the positive maximum. And in the other one, we minimize 

(tu 一 tv) to obtain the negative minimum. In our implementation, instead of 

calling a linear solver, we will first use Gaussian elimination to solve the k 

equality constraints (3.24), so the k variables ci can be expressed by linear 

combinations of C1, C2 , . . . , Cn. Equation (3.21) and (3.22) become 

tu
 —  fu ( C 1， C 2 , . . . ,  Cn ) (3.25) 

tv — fv\C1，C2，...，Cn) (3.26) 

Then the maximum objective value subject to changes in the sink load ca-

pacitances can be computed directly from the upper and lower capacitance 

bounds. 

r 
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The maximum value of fu,v (called pu,v) for a pair of node Su and Sv 

can be obtained by solving the above linear program. Finally, we can find 

a node pair with the largest pu,v, which is denoted as pmax. A cross link is 

added between this node pair to reduce the clock skew while constraining the 

wire length of the link. By applying the technique recursively, we can add a 

user-defined number of cross links to construct a link based clock network. 

3.2.4 Reducing the Number of Optimizations 

Although the optimization problem for a pair of nodes can be solved quickly 

as formulated above, we need to run it for all pairs of nodes to get the node 

pair with pmax. The running time will increase quickly when the number of 

nodes increases to thousands. Therefore, we devised a method to speed up 

the process when the number of sinks is large. In order to reduce the running 

time, instead of trying all pairs of sinks, we will choose some node pairs which 

are more likely to have the pmax. Actually there are some pairs that we do not 

need to consider, e.g., nodes that are topologically close to each other. This 

is because these node pairs share a long mutual sub-path from the source and 

the delay difference between them will not be big. 

Starting from the sink node level, we will travel up to find a set of internal 

nodes I such that the set S of subtrees rooted at these internal nodes cover 

all the sink nodes. The detailed procedure to find the internal nodes is shown 

in Fig.3.5. Compared with the total number of sinks, the number of these 

internal nodes will be smaller. Since the sink nodes within a subtree in S 

will likely to have similar delays, we do not consider the skews among these 

internal nodes. We will pick one node from each subtree in S in order to find 

the pmax in the clock network, as illustrated in Fig.3.6. In our implementation, 

we consider the number of sinks in each subtree in S and limit them to be 
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Algoritlmi: Find Subtrees 

Input: A clock network 

Output: Internal node set I that reduce the inmiber of optimizations 

=0 

For each sink node St 

If is contained m a subtree rooted at fi node in I 

Contimie 

Else 

r -hh 

While r < lower bomid in the siiik number of a subtree 

hst—If 一 li丄 一 parent of/f 

r 一 iniiiiber of sinks contained in die subtree rooted fit 

Eud 

If r > upper bound in the suit mmiber of a subtree 

It ^ last L 

10 

13. Add 7, to/ 

Figure 3.5: Find a Set of Internal Nodes 

Figure 3.6: Reducing the number of nodes 
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less than or equal to 16. In this way, even benchmarks with a large number 

of sinks can be solved in a reasonable amount of time. 

3.2.5 Experimental Results 

Benchmark and Experimental Setup 

Our algorithm to select node pairs for non-tree clock network construction 

with cross links is implemented in C. The experiments are performed on a 

3.2 GHz Intel CPU Linux machine with 4GB memory. The key difference 

between our work and the existing works is that most of existing works did 

not consider non-tree delay when inserting links, which inevitably limits the 

effectiveness of the link insertion step. 

To verify the effectiveness of our method, we will compare our link inser-

tion scheme with the algorithm proposed in [1]. We implemented the mini-

mum weight matching-based link insertion method which is the best method 

in [1]. We start with the same zero skew clock tree which is obtained from 

the bounded skew tree method [2]. Both the benchmarks and the bounded 

skew tree code are downloaded from the GSRC bookshelf [21]. 

In our implementation and simulations, the per unit wire resistance is 10-4 

Ohm/nm and the per unit wire capacitance is 2 x 10-4 fF/nm. Ngspice is used 

to simulate our clock distribution network. Process variation is accounted in 

the simulations for VDD variation and sink capacitance variation. We allow 

15% variation in the VDD and the sink capacitances and all the variations 

follow a normal distribution. For each clock network, 500 spice simulations 

are performed to obtain the worst case skew (WCS). 
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Table 3.1: Benchmark information 

BM #Sinks WCS (ps) Cap (fF) 

r1 267 0.364 264.1 

r2 598 0.802 523.7 

r3 862 1.250 678.2 

r4 1903 2.504 1357.8 

r5 3101 2.612 2005.5 

s1423 74 0.048 21.30 

s5378 179 0.061 35.10 

s15850 597 0.136 89.65 

Results and Discussion 

All the benchmark information are shown in Table 3.1 and the experimen-

tal results of our work and the method in [1] are shown in Table 3.2. The 

benchmark sizes, worst case skews (WCS), and the wire capacitances of the 

clock trees are given. We list the number of links inserted, WCS results, link 

capacitance results of the Link-M method and our work. The Link-M method 

refers to the minimum weight matching based link insertion method in [1 . 

The numbers inside the brackets are the ratios of methd in [1] and our work. 

The CPU time is listed in seconds in the table. 

From Table 3.2, we observe that our method always outperforms the Link-

M method in terms of clock skew reduction. Besides, for a same number of 

links, Link-M method costs much more link capacitance comparing with our 

algorithm. On average, we achieve 28% clock skew reduction with only 40% 

link resources. The reason is that the Link-M method does not consider 

non-tree delay when inserting links, which may result in ineffective cross link 

insertion into the clock tree. By considering the balance between clock skew 

and link resistance, we can achieve more clock skew reduction with less link 

capacitance resource. The CPU time for the Link-M method is ignorable so 



CHAPTER 3. CLOCK NETWORK CONSTRUCTION WITH CROSS LINKS39 

it is not listed in the table. We use the technique discussed in Section 3.2.4 to 

control the running time and we can see that our running time is acceptable 

even for the largest benchmark. 

口 End of chapter. 
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Table 3.2: Worst case skew and wire cap results with 15% variations in vdd 

and sink capacitances 

Link-M Our Link-M Our CPU 

BM #Sinks Links WCS WCS Cap Cap (s) 

(ps) (ps) (fF) (fF) 

4 0.314 (1 .33) 0.236 (1) 9.7 (3.24) 2.9 (1) 0.81 

r1 267 16 0.162 (1.41) 0.115 (1) 16.3 (1.23) 13.2 (1) 3.21 

22 0.122 (1.20) 0.102 (1) 60.0 (3.14) 19.1 (1) 4.52 

4 0.772 (1.68) 0.460 (1) 6.9 (4.93) 1.4 (1) 9.23 

r2 598 20 0.286 (1 .39) 0.206 (1) 21.0 (1.60) 13.1 (1) 46.47 

40 0.192 (1.42) 0.135 (1) 40.7 (1.46) 27.9 (1) 94.09 

6 0.470 (1 .09) 0.433 (1) 10.2 (1.96) 5.2 (1) 2.74 

r3 862 24 0.305 (1 .08) 0.282 (1) 25.9 (1.07) 24.3 (1) 11.73 

48 0.229 (1 .36) 0.168 (1) 101.6 (1.91) 53.2 (1) 27.21 

8 1.565 (1.55) 1.008 (1) 41.6 (8.67) 4.8 (1) 9.21 

r4 1903 40 0.448 (1.21) 0.370 (1) 57.3 (1.23) 46.5 (1) 64.34 

68 0.336 (1.03) 0.327 (1) 125.3 (1.42) 88.3 (1) 140.3 

8 1.451 (1.14) 1.276 (1) 43.2 (7.20) 6.0 (1) 36.17 

r5 3101 40 0.740 (1.14) 0.648 (1) 76.2 (1.67) 45.7 (1) 229.8 

72 0.589 (1 .16) 0.506 (1) 95.9 (1.08) 89.0 (1) 510.5 

s1423 74 
4 0.042 (1.83) 0.023 (1) 1.33 (1.17) 1.14 (1) 0.03 

s1423 74 
8 0.036 (2.57) 0.014 (1) 2.77 (1.07) 2.60 (1) 0.03 

s5378 179 
4 0.063 (1.75) 0.036 (1) 1.60 (2.86) 0.56 (1) 0.29 

s5378 179 
12 0.025 (1 .09) 0.023 (1) 5.94 (2.57) 2.31 (1) 0.89 

s15850 597 
4 0.111 (1 .34) 0.083 (1) 0.56 (1.27) 0.44 (1) 10.62 

s15850 597 
22 0.053 (1 .39) 0.038 (1) 3.88 (1.56) 2.48 (1) 59.82 

AVG 0.396 (1 .39) 0.309 35.6 (2.49) 21.4 60.10 



Chapter 4 

Buffered Clock Network with 

Cross Links 

4.1 Link Insertion in Buffered Clock Network 

The cross link insertion algorithm proposed in [1] is applied to unbuffered 

clock tree. In the real world, buffer plays a key role in the design of a clock 

system. Buffers are used in a clock network to reduce signal delay and to 

preserve clock waveform [31]. Several works [23] [24] [32] address the problem 

of buffer insertion in a clock network. Cross link insertion in a buffered clock 

network to achieve target skew is more challenging in comparison with the 

unbuffered case. It is claimed in [10] that the effect of cross link on skew 

variability still holds for a buffered clock tree. We also want to extend our 

cross link insertion to buffered clock tree. The major difference between 

buffered and unbuffered clock tree for our linear program approach is the 

formulation of delay. To handle a clock network with buffers, we must consider 

the buffering effect when formulating the Elmore delay in equation (3.14) and 
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(3.18): 

tu = fu ( C1, C 2， . . .
 , C n ，

c 1 , c 2 ,
 . . .

 , Cm) 

tk l = t k 3 = t k 2 + Delink 

where Cl, 62,..., Cn are the sink capacitances and ci^c】,...,cm are m vari-

ables describing the load redistribution from one endpoint of a link to the 

other. tkl and tk2 are the delays at S ' i e f t ( k ) and Sright(k) respectively. tk3 is 

the delay at S m i d ⑷ . D e l i n k is the delay on the link connecting Smid⑷ and 

Sright{k). 

4.1.1 Delay Calculation in Buffered Clock Network 

Tsay [16] proposes a method computing Elmore delay in a clock tree with 

linear time complexity. Let Ci be the capacitance of node i and ri be the 

resistance of edge i in a clock tree. Edge i is defined as the edge between 

node i and its parent. Denote by IS(i) the set of all immediate successors of 

node i, the subtree capacitance Ci of Ti is 

Ci = Cci + [ Ck 

keis{i) 

The subtree capacitance can be computed in a recursive bottom up fashion. 

To calculate delay, assuming that node i is a predecessor of node j and N(i, j) 

is a collection of nodes on the path between node i and node j, the delay time 

tij between node i and node j is 

tij ——〉:  rn Cn 

neN ( i j 

The delay to each node can be calculated from the delay to its parent, the 

edge resistance and the subtree capacitance. To account for a buffered RC 
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tree, the subtree capacitance is modified as 

Ci if node i is associated with a buffer 
Ct = < 

Ci + T^ke i s i i ) Ck otherwise 

Delay computation between a node i and its successor j is extended as 

tij = / .  rn Cn + 
dn 

neN (i,j) 

where dn is the buffer internal delay. The calculation is done in the same way 

with an appropriate buffer modeling and remains linear time complexity. 

4.1.2 Linear Program Formulation for Buffered Clock 

Network 

Linear program for inserting cross links into a buffered clock network is similar 

to that discussed in Section 3.2.3: 

t'U ——t o I 
Maximize: fu,v 

ru,v 

Subject to: 

tu = / U ( C 1 ， C 2 ” . . , Cn  C1  , c2 , ...  ,  cm) 

tv =  fv  ( C 1 ,  C 2 , ...  ,  Cn  C 1  , c 2 , . . . )  cm) 

li < Ci < Ui i = 1, ... ,n 

tk1 = tk2 + R kiink ck k =\,...,m 

where the objective function is a balance between the worst case skew and the 

link resistance r^^v. li < Ci < Ui describe upper and lower bounds of the sink 

load capacitances. tk1 = tk2 + Rkiink ck is a set of linear equality constraints 

to describe the delay equalities due to the links. 
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When we formulate the delays tu, t^, tki and tk2 in the linear program, we 

need to consider the buffering effect. The buffer model used in our work fol-

lows the ISPD contest benchmark [15], which has three parameters: an input 

load capacitance, an output parasitic capacitance and an output resistance. 

As discussed in Section 3.2, for each sink node pair considered for link in-

sertion, we find the maximum possible skew under capacitance variation. A 

link will be inserted to the node pair with the maximum possible skew. The 

linear program is then updated to find the next node pair for link insertion. 

This process will continue until a user defined number of links are added into 

the clock network. 

4.2 Experimental Results and Comparison 

We compare our work with a recent approach in [4] which inserts cross links 

into the internal nodes of a tree while constructing the clock network. The ex-

periments are performed on the ISPD 2010 contest benchmark. The per unit 

wire resistance is 10-4 Ohm/nm and the per unit wire capacitance is 2 x 10-4 

fF/nm. Process variation is accounted in the simulations with 15% variation 

in the VDD and 15% variation in sink capacitances. All the variations follow 

a normal distribution. For comparison with [4], we use the Local Clock Skew 

(LCS) as a metric to measure the skew variability instead of using the Worst 

Case Skew (WCS). Local clock skew is the clock skew between any two sinks 

within a certain distance from each other, which is defined in the ISPD 2010 

High Performance Clock Network Synthesis Contest [15]. For each clock net-

work, 500 ngspice simulations are performed to obtain the worst Local Clock 

Skew (LCS). 

Table 4.1 lists the results that compares our work with the method in [4]. 

We list the benchmark size, the LCS results, the capacitance usage and the 
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Table 4.1: Comparison of our method with the work in 

Bench 

-mark 
#Sinks Method LCS (ps) 

Ratio of 

Link Cap 
CPU (s) 

01 1107 
[4] 

Our work 

7.88 

10.67 

1.007 

1 

1092 

52.4 

02 2249 
[4] 

Our work 

8.32 

8.17 

1.223 

1 

4314 

424 

03 1200 
[4] 

Our work 

6.34 

5.89 

1.073 

1 

383 

10.6 

04 1845 
[4] 

Our work 

7.42 

7.33 

1.001 

1 

934 

33.8 

05 1016 
[4] 

Our work 

5.90 

5.87 

1.199 

1 

278 

5.36 

06 981 
[4] 

Our work 

6.78 

8.98 

1.003 

1 

285 

6.69 

07 1915 
[4] 

Our work 

6.77 

6.05 

1.228 

1 

818 

49.8 

08 1134 
[4] 

Our work 

6.42 

8.59 

1.225 

1 

327 

8.34 

running time. Note that the CPU time of our work in the table is for the link 

insertion phase only, while the tree construction time is not included. 

We obtain the clock network results from the authors of [4]. Firstly, the 

links added between the internal nodes using their algorithm are removed. 

Then our method is applied to generate cross links into the clock network. 

In general, our work uses less link resources to achieve similar LCS results. 

Please note that the two results are not directly comparable, because in [4], 

the links are inserted while the trees are being constructed, so their tree 

construction performs in such a way to favor their link insertion step. In 

our case, we take their trees and insert the links in a post processing way, 

so the results are hard to be compared. However, we still want to display 

the comparisons to show that our method can also handle clock trees with 
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buffers and can perform actually quite well comparing with [4] in which the 

link insertion and the tree construction are performed simultaneously. 

4.3 Possible Extensions 

4.3.1 Link Insertion at Internal Nodes 

The algorithm in [4] inserts cross links between the internal nodes of a clock 

tree instead of sink nodes. Their link insertion is integrated into the clock 

tree construction process. In addition to reducing the skew variability, their 

approach also try to minimize the total cross link length. Our method pro-

posed in Section 4.1 inserts cross links between sink node pairs in a buffered 

clock network. We have explored whether our method can be extended to 

insert cross links between internal nodes of a tree as well. 

The linear program formulated in Section 3.2 computes the maximum 

possible skew for each sink node pair. Then a link will be inserted to the 

node pair with the largest such value. Linear program is then updated for 

the next link insertion. This process continues until a user defined number of 

links are inserted into the clock network. 

However, our method cannot be easily extended to internal cross link in-

sertion. This is because the load redistribution effect of an inserted cross link 

can not be easily seen from the delay of the sink nodes when the link is in-

serted between two internal nodes. Consider the example in Fig.4.1, when we 

select a sink node pair (SU, SW) after solving the linear program, a correspond-

ing internal cross link is added between two zero skew nodes u and w on the 

buffered wire segments below the Nearest Common Ancestor node. Inserting 

between two zero skew nodes helps to aviod effecting the nominal skew of the 

clock network. When we formulate the linear program under sink capacitance 
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Figure 4.1: Cross Link Between Internal Nodes in a Clock Network 

variation, the Elmore delay of internal nodes above the buffer does not change 

as it depends on the buffer rather than the sink capacitances. Therefore, the 

skew variation on sink nodes cannot be addressed by the internal cross link 

and there is no load redistribution effect through the link. 

We can model other variations such as wire width variation and buffer 

delay variation to make internal link insertion possible. For example, if we 

model wire width variation in our problem formulation, the node delay will 

become a function of both sink capacitance variation and wire width variation. 

The node delay above the buffers after internal link insertion will change 

accroding to the variations. The internal cross link can be used to redistribute 

load and therefore reduce skew variability. 

4.3.2 Modeling Clock Buffer Delay Variation 

In our problem formulation, we model sink capacitance as source of varia-

tion. On the other hand, clock buffer delay variation is very critical to clock 

skew variability. We can also model clock buffer delay variation in our linear 

program. As discussed in section 4.1.1, the delay between a node i and its 
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successor j in a buffered clock network is 

tij — 〉 :  rn Cn +  dn 

neN ( i j 

where rn is the edge resistance, Cn is the subtree capacitance and dn is the 

buffer internal delay. If we model buffer internal delay dn as randam variation, 

assuming that there are l buffer internal delays, we can still write the delay 

as a linear function of the variations as follows 

tu — f u ( C 1 , 0 2 , . . . ) Cni  c1 ,  c2 , . . .  , Cmi d1, d2, . . . , di) 

Thus, our problem formulation can be extended to handle the clock buffer 

delay variation as well. 

口 End of chapter. 



Chapter 5 

Conclusion 

Reducing clock skew caused by variation is now one of the most important 

problems in clock network synthesis. Link based clock network is considered 

to be a promising way to handle the skew variation problem. In this thesis, 

we explore where links should be inserted into a clock network to achieve the 

most effective skew reduction. Our contributions are summariez as follows: 

Delay Calculation in Non-tree Clock Network 

In our approach, a non-tree clock network is decomposed into a tree with 

some way of load redistribution. We are able to formulate the signal delay 

and clock skew in the network. Based on this delay information, our new 

method selects node pairs analytically for cross link insertion. Compared with 

existing works on this cross link problem, this analytical delay calculation in 

node pair selection results in more effective link insertion. 

Solving Problem with an Efficient Linear Program 

We formulate the problem as a linear program, with an objective function 

considering tradeoff between clock skew reduction and link length. For each 
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sink node pair considered, we formulate a LP to find the maximum possible 

skew value under capacitance variation. A link will be added to the node pair 

with the largest such value. The linear program is incrementally updated and 

solved until a user defined number of links are inserted into the clock network. 

Effectiveness of Our Approach 

We devise a way to reduce the number of optimizations and use a Gaussian 

elimination based method to speed up solving the linear program. Therefore, 

even the largest benchmark can be solved in just a few miniutes. Experiments 

on the two sets of benchmarks verified the effectiveness of our approach. We 

achieve 28% clock skew reduction with only 40% link resources. Our method 

can be applied to insert links very effectively while reducing the total wire 

length. 

口 End of chapter. 
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