
Cross Link Insertion for

Variation Driven Clock

Network Construction

QIAN , Fuqiang

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

The Chinese University of Hong Kong

August 2012

Abstract

Clock skew caused by variation is one of the most important problems in

clock network synthesis today. Even if a clock network is designed to have zero

skew, variation such as capacitive load and power supply will cause differences

in arrival time of a clock signal. Non-tree clock network is considered to be

an effective way to address the skew variation problem. Due to its inherent

redundancy, clock mesh is very tolerant to variation. However, it costs much

excessive amount of power compared to a clock tree. Link based non-tree clock

network is an economic way to reduce clock skew caused by variation. Instead

of using a dense mesh, only a number of links are inserted into a tree, so the

power increase is small. Several existing works focus on the effect of cross link

as well as the construction of such cross link structure. However, it is still not

very clear where cross links should be inserted to achieve the most clock skew

reduction with small wire resources. In this thesis, we propose a new method

using linear program to solve this problem. In our approach, clock skew in a

non-tree clock network is computed using an idea of load redistribution and

non-tree decomposition. The delay information obtained is then used to select

the node pairs for cross link insertion. Our methodology tries to insert cross

links where skew can be reduced most effectively. Our method also considers

tradeoff between cross link length and skew reduction effect. We compare

our result with the most similar work on this problem [1] and a recent work

which inserts links between internal nodes of a tree. Experiments show

that our method can reduce skew under variation effectively. We achieve 28%

clock skew reduction with only 40% link resources.

Acknowledgement

At the very beginning, I am deeply indebted to my supervisor, Professor Fung

Yu Young, who patiently motivated me to conceive and develop the main ideas

in the thesis and taught me so much in my research. I couldn't achieve these

academic works without your supervision. I would like to express to her my

sincere gratitude for her seasoned guidance from the very early stage of this

research work as well as providing constructive advices throughout the entire

study. In particular, I also would like to thank her and her family for their

concerns about my daily life. Professor Yu Liang Wu and Profrssor Qiang

Xu, thank you for your help and suggestion in my research work.

My research partners Linfu Xiao, Haitong Tian, thank you for your in-

sightful comments on my research work. I am also grateful to all the col-

leagues, Tao Huang, Xu He, Guxin Cui, Yan Jiang, Yuan Jiang, Ka Chun

Lam, it is you who bring me a colorful postgraduate study life.

Last but not the least, my family and my friends, without your love and

support, I cannot achieve anything. I would like to give my greatest appreci-

ation to you.

iii

Contents

Abstract i

Acknowledgement iii

1 Introduction 1

1.1 Clock Distribution Network 1

1.2 Our Contributions 6

1.3 Organization of the Thesis 8

2 Literature Review 9

2.1 Exact Zero Skew 9

2.2 DME Algorithm 11

2.3 Combinatorial Algorithms for Fast Clock Mesh Optimization . 12

2.4 MeshWorks: An Efficient Framework for Planning, Synthesis

and Optimization of Clock Mesh Networks 14

2.5 Reducing Clock Skew variability via Cross Links 16

2.6 Statistical Based Link Insertion for Robust Clock Network Design 18

2.7 Variation Tolerant Buffered Clock Network Synthesis with Cross

Links 20

2.8 Cross Link Insertion for Improving Tolerance to Variations in

Clock Network Synthesis 22

iv

3 Clock Network Construction with Cross Links 24

3.1 Signal Delay and Clock Skew in Non-tree Clock Network . . . 24

3.1.1 Computing Delay in Non-tree Network 25

3.1.2 Effect of a Cross Link on Clock Skew 27

3.2 Link Insertion for Non-tree Clock Network 28

3.2.1 Motivation of Computing Delay for Link Insertion . . . 29

3.2.2 Overall Flow for Cross Link Insertion 30

3.2.3 Linear Program for Selecting Node Pairs 31

3.2.4 Reducing the Number of Optimizations 35

3.2.5 Experimental Results 37

4 Buffered Clock Network with Cross Links 41

4.1 Link Insertion in Buffered Clock Network 41

4.1.1 Delay Calculation in Buffered Clock Network 42

4.1.2 Linear Program Formulation for Buffered Clock Network 43

4.2 Experimental Results and Comparison 44

4.3 Possible Extensions 46

4.3.1 Link Insertion at Internal Nodes 46

4.3.2 Modeling Clock Buffer Delay Variation 47

5 Conclusion 49

Bibliography 51

v

List of Figures

1.1 Difference in arrival times of clock signal 2

1.2 Basic structure of pipelined datapath circuit [22] 3

1.3 H-tree 5

1.4 Clock Mesh 6

1.5 Cross Link 7

2.1 Determine mesh size [8] 15

2.2 Inserting cross link [1] 16

2.3 Cross link between internal nodes [4] 22

3.1 Load Redistribution through a Link 26

3.2 Clock Network with Links 29

3.3 Link Insertion Overview 31

3.4 Decomposition of Clock Network with Links 32

3.5 Find a Set of Internal Nodes I 36

3.6 Reducing the number of nodes 36

4.1 Cross Link Between Internal Nodes in a Clock Network 47

vi

List of Tables

3.1 Benchmark information 38

3.2 Worst case skew and wire cap results with 15% variations in

vdd and sink capacitances 40

4.1 Comparison of our method with the work in [4] 45

vii

Chapter 1

Introduction

1.1 Clock Distribution Network

In a synchronous digital design, a clock distribution network is used to order

the events happening in a circuit. The distribution of clock signal has a

strong implication on performance and power consumption. One of the most

important problems in clock distribution network is clock skew, which is the

difference in arrival times of clock signal at sinks as show in Fig.1.1. Given

two different points i and j on an integrated circuit, the clock skew is given

by tskew = ti — tj where ti and tj are clock arrival times at these two points.

Ideally, clock paths from source to the sinks are going to be equal. Under

ideal conditions, there are two basic constraints in a synchronous structure,

one is

T > tc-q + tiogic + tsu

where tc_q is the maximum propagation delay of a register, tt—ic is the max-

imum delay of the combinational logic between the two registers, tsu is the

setup time for the registers. The clock period T should be long enough for

the signal to propagate through the register and the logic and be set up at

1

CHAPTER 1. INTRODUCTION

Figure 1.1: Difference in arrival times of clock signal

the destination register before the start of the next clock signal. On the other

hand, the hold time constraint is

thold < tc—q,cd + tlogic,cd

where tc-q,cd is contamination (minimum) delay through a register, t iogic,cd is

the minimum delay of the combinational logic. The hold time thoid of the

destination register should be shorter than the time required to propagate

though the register and the logic.

However, clock paths are not perfectly equal, which results in clock skew.

Clock skew can be positive or negative depending on the routing details. Non-

zero clock skew has a significant impact on the functionality and performance

of a sequential system. For example, in Fig.1.2, if tcLK2 is delayed by a

positive tskew, the clock skew will affect the clock period as

T > tc—q + tlogic + tsu ——tskew

2

CHAPTER 1. INTRODUCTION

Figure 1.2: Basic structure of pipelined datapath circuit [22

In this scenario, as tskew > 0, the equation indicates that clock skew re-

duces the clock period and therefore improve the performance. However, the

increased skew may harm the correct operation of the circuit due to race con-

ditions. At the same time, negative clock skew will increase the clock period

directly and can fundamentally limit the performance. In general, designing

a clock distribution network with low skew is essential.

In the past years, efforts have been made towards achieving zero clock

skew while reducing the total wire length [26] [27] [16] [17] [18] [19]. Some

works such as [2] [33] explored the problem of non-zero useful skew routing.

However, even if a clock distribution network is designed to have zero skew,

process variation and environmental variation such as changes in capacitive

load, power supply and temperature will influence the delivery of the clock

signal. Sources of clock skew can be,

Manufacturing Variation. Clock buffer delay variation is critical to min-

imizing clock skew. Device parameters of the buffers vary along different

paths, which results in clock skew. This is due to many sources of varia-

tions like dopant variation (that affects the depth of junctions and cause

variation in threshold and parasitic parameters), oxide variation, etc.

2. Interconnect Variation. Interconnect resistance and capacitance vary

3

CHAPTER 1. INTRODUCTION 4

across different paths. There is deviation in the width of a wire and

line spacing, which results in clock skew.

3. Environment Variation. Temperature is time varying and is usually

considered to be a skew component. Power supply variation also limits

the performance of clock networks.

4. Device Aging. Device aging is a result of the degradation of the gate

dielectric. It degrades device characteristics and circuit performance

over time.

Some of these variations can be modeled while some can not. Designing

a robust clock network is important to handle the skew variation problem.

Clock skew caused by variation is now one of the most critical problems that

the design of large and high performance system is facing today.

One common structure to route a clock network is tree. The H-tree al-

gorithm delivers signal from a central point to various points using balanced

paths. An example of such structure is shown in Fig.1.3. The H-tree algo-

rithm is applicable for regular array networks. A more general algorithm is

RC matched clock distribution [20]. The interconnections delivering clock

signal are of equal length. This general approach does not rely on a regular

structure compared with the H-tree structure.

Mesh

Non-tree clock network is considered to be a promising way to address the

variation problem. An example of a clock mesh is shown in Fig.1.4. The

top level is a clock tree and a mesh is attached to the bottom of that tree.

Clock sinks are ususally connected to the mesh edges. This clock mesh struc-

ture, because of its inherent redundancy, is more tolerant to process variation

CHAPTER 1. INTRODUCTION

Figure 1.3: H-

and is able to provide lower skew variability compared with traditional clock

tree. However, clock mesh has the disadvantage of causing much more power

dissipation because of the longer wire length. This type of clock distribu-

tion network is used on several microprocessor chips, achieving very low skew

5]. A sliding window based scheme is used to analyze a clock mesh [7 .

A combinatorial algorithm to optimize a clock mesh is proposed in [6]. A

comprehensive and automated framework for planning, synthesizing and op-

timization of clock mesh networks is proposed in

network achieving low skew is presented in [25

A mixed tree-mesh clock

Cross Link

Compared to the mesh structure, clock network constructed by inserting cross

links consumes much less power. An example of clock tree with cross links is

illustrated in Fig.1.5. Instead of using a dense mesh, only a number of cross

links are inserted into a clock tree. This structure combines the advantages

of clock tree and clock mesh. A framework to construct such a non-tree

5

CHAPTER 1. INTRODUCTION

Figure 1.4: Clock Mesh

network with some analysis on the effect of link insertion on skew variability

is first proposed in [1]. A statistical based non-tree clock network construction

technique is presented in [9]. Later, the cross link idea is extended to handle

buffered clock tree in [10] [11]. Wire sizing is performed to improve skew

variability in a non-tree topology in [12]. Recently, a link insertion scheme

that inserts cross links at higher level internal nodes in a clock tree, instead

of sink nodes as in many previous works, is proposed in [4]. A cross link

insertion scheme using linear program to select node pairs for link insertion

is proposed in [28 .

1.2 Our Contributions

Although there are a number of research works on non-tree clock network

construction with cross links, some important questions are still unanswered.

Most existing works on link insertion attempt to reduce skew variability while

using shortest wire length. However, these approaches did not consider delay

and skew when inserting links, which limits the effectiveness of link insertion.

6

CHAPTER 1. INTRODUCTION

Figure 1.5: Cross Link

The tradeoff between the length of a cross link and its ability to reduce clock

skew is not analytically studied. In this thesis, efforts are made towards

solving these problems. Our contributions can be summarized as follows.

• We use the idea of load redistribution and tree decomposition [4] to

obtain the delay and skew information in a non-tree clock network. We

study where cross links should be inserted into a clock network.

• We formulate the cross link insertion problem as a sequence of linear

programs, with an objective to find a pair of nodes to insert a cross

link such that the skew variability can be reduced the most while the

wire length increase due to the link insertion is constrained. We con-

siders tradeoff between cross link length and skew reduction effect. By

applying this technique recursively, we can add a user-defined number

of cross links and the clock skew will be reduced progressively.

• Simulation results show that our method can lead to significant skew

reduction under variations.

7

CHAPTER 1. INTRODUCTION 8

1.3 Organization of the Thesis

The thesis is organized as follows. We first review the literature in clock net-

work construction in Chapter 2, in which we focus on the most recent research

dealing with skew variability. In Chapter 3, techniques for computing signal

delay and clock skew in non-tree clock networks will be studied. Our method

to construct a non-tree clock network with cross links will be presented. We

formulate the node pair selection problem as a sequence of linear program.

The result is used to select the node pairs for cross link insertion where skew

can be reduced most effectively. In Chapter 4, we discuss cross link insertion

in buffered clock network. Finally, a summary of our work will be included

in Chapter 5.

口 End of chapter.

Chapter 2

Literature Review

In this charpter, we will review the literature in clock network construction.

Firstly, some important papers on zero skew clock routing while minimizing

the total wire length will be presented. Then we will discuss several papers

on the synthesis and optimization of clock mesh network. Finally, we will

reivew some recent papers on clock network construction with cross links.

2.1 Exact Zero Skew

In the paper [16], an exact zero skew clock routing algorithm is presented

based on the Elmore delay model rather that just wire length balancing. Zero

skewed subtrees are interconnected to a new zero skew tree recursively based

on the delay computation. The recursive bottom up approach is applied to

construct a complete zero skew tree.

Firstly, a linear time delay computation method is studied. A clock tree is

modeled as a RC tree. Each branch is associated with a resistance value and

each node is associated with a capacitive value. The capacitance of a node

can be computed from its own node capacitance and the capacitances of its

9

CHAPTER 2. LITERATURE REVIEW 10

successors. The delay time can be computed from the delay of its predecessor,

the node capacitance and the branch resistance.

Based on the delay model and the delay computation method, a recursive

bottom up zero skew algorithm is presented. By tuning the tapping point,

any two zero skew subtrees can be merged to form a new zero skew tree.

Repeating this process until reaching the root will generate a complete tree.

In some cases, wire elongation is needed to balance two subtrees. More details

of the algorithm are discussed blow.

Consider the case in whch we want to merge the roots of two subtrees. In

order to have zero skew merging, the following equality should hold:

ri (ci/2 + Ci) + ti = r2(c2/2 +) + h

where ti refers to delay from node i to the sinks, ri and ci (r2 and C2) are

resistance and capacitance of wire 1 (wire 2). If we assume that the total wire

length connecting the two nodes is l, and the length of wire 1 is xl. Hence,

the length of wire 2 is (1 ——x)l. Let a and P be the resistance and capacitance

per unit length of wire respectively. Then r = al, ri = axl, r2 = a(1 ——x)l,

c = Pl, ci = Pxl, C2 = P(1 ——x)l. After solving the above equation, we have

(t2 ——ti) + al(C2 + pl/2)
x =

al(Pl + Ci + C2)

If 0 < x < 1, the tapping point is on the line segment interconnecting the

roots of the two subtrees. In case if x < 0 or x > 1, extra wire is needed to

achieve delay balance. For example, if x < 0, the tapping point has to be on

the root of subtree 1. Assume that the length of the elongated wire is "’ the

resistance of this wire is al, and its capacitance is P". To balance delay, it

requires

ti = t2 + al\C2 + pil/2)

CHAPTER 2. LITERATURE REVIEW 11

or I' is given by

+ 2al3(ti - t^) - aC^)
=

Similarly, we can determine V if x > 1.

The algorithm is tested on five different sized benchmarks. It is observed

from the results that the exact zero skew algorithm perferms better than the

wire length balancing algorithm with zero skew and smaller phase delay.

2.2 D M E Algorithm

In the papers [17] [18] [19], an algorithm called Deferred-Merge Embedding

(DME) is proposed. The algorithm constructs a zero skew clock network

while reducing the total wire length. It contains a bottom up merging phase

and a top down embedding phase. The bottom up merging phase computes

the possible loci of the internal nodes of a tree. Then a top down embedding

phase determines the exact location of each tree node.

A Manhattan arc is a line segment with slope +1 or -1. The collection of

points within a fixed distance of a Manhattan arc is called a tilted rectangular

region (TRR). The boundary of a TRR is composed of Manhattan arcs. The

core is the Manhattan arc at the center of a TRR. The radius of a TRR is

the distance between its core and its boundary. In the bottom up merging

phase, a tree of merging segments is constructed given a connection topology

G. A merging segment ms(v) of node v represents the possible placements

ppl(v) of node v. The merging segment of node v depends on its children a

and b. If v is a sink Si, then ms(v) = Si. If v is an internal node, ms(v) is

obtained by intersecting two TRRs, trr^ with core ms(a) and radius lej and

trvb with core ms(b) and radius |eb .

CHAPTER 2. LITERATURE REVIEW 12

Once the tree of segments has been constructed, the exact embeddings of

the internal nodes are chosen in a top down phase,

1. If v is the root node, select any point in ms(v)

2. If v is an internal node, choose any point in ms(v) that is within distance

Cv | from the placement of v's parent p

In summary, the Deferred-Merge Embedding (DME) algorithm was pro-

posed to embed any given connection topology to create a clock tree with

zero skew while minimizing total wire length. Experimental results show an

8% to 15% wire length reduction over previous methods in [16]. The DME

algorithm can be used with both the Elmore and linear delay model. The

algorithm is very fast, running in linear time of the number of sinks.

2.3 Combinatorial Algorithms for Fast Clock

Mesh Optimization

A mesh offers high tolerance to process variation at the cost of high power

consumption. The authors of [6] offers designers a tradeoff between power and

clock skew reduction. A set-cover formulation is used to obtain the minimum

buffer resource to drive a mesh under slew constraints. After obtaining a

buffered mesh, based on the survivable network theory, only those critical

edges are retained to reduce the power consumption of the clock mesh.

The mesh reduction method is as follows. Let m x n denotes the di-

mension of the clock mesh M. I denotes the set of nodes in the mesh.

S = {si, S2 . . . Sn} denotes the set of sinks in M. Each sink Si is connected to

a node i G I . dj denotes the minimum distance between node i and node j in

CHAPTER 2. LITERATURE REVIEW 13

the mesh. When some edges are removed from the mesh, the results should

satisfy:

Each sink Si is connected to at least k nodes and for each such node j

1 . d i j — Lmax.

2. There are at least l paths between node i and node j.

3. There is at least a buffer on such node j.

Parameters k, Lmax and l are user defined. The algorithm will maximize the

number of edges removed. The variables k and l control the tradeoff between

tolerance to variation and power dissipation. If both k and l are large, the

number of edges removed will be small, which means more redundancy and

power dissipation.

The mesh reduction problem is transformed into a Steiner Network prob-

lem [29] [30] by

1. Representing the mesh by a graph G = (V, E).

2. Setting the connectivity requirement function r(u, v) = 0 for all (u, v) G

V.

3. Finding k closest mesh buffer locations Ti for each sink Si.

4. Setting r(p, j) = l, V p G all Si and Ti, V j.

A greedy heuristic is used to solve the Steiner Network problem. The

algorithm first initializes the cost of all edges to unity. Then edge disjoint

paths between clock sinks and the closest k mesh buffers will be indentified.

In summary, the mesh reduction problem is formulated based on the sur-

vivable network theory. Then the mesh reduction problem is transformed

CHAPTER 2. LITERATURE REVIEW 14

into Steiner Network and solved by a greedy heuristic. The technique allows

the designers to tradeoff between skew tolerance and power dissipation. The

algorithm is fast and experimental results show that there are 29% reduction

in wire length and 28% reduction in power.

2.4 MeshWorks: An Efficient Framework for

Planning, Synthesis and Optimization of

Clock Mesh Networks

In the paper [8], a comprehensive framework called MeshWorks is presented

for planning, synthesis and optimization of clock mesh. They address the

problem of obtaining an initial clock mesh. A simple method considering

wire length and skew is used to choose a mesh size. An algorithm based on

the network sensitivity theory is applied to select the mesh edges that can be

removed to reduce the size of the clock mesh.

The mesh planning and synthesizing algorithm considers the relationships

between the total wire length, clock skew and mesh size. For example, suppose

a mesh is denoted by m * n and the sinks S = {si, S2 . . . Sn} are connected

to mesh nodes with stubs. The wire length of the mesh is a linear function

of the mesh size as illustrated in Fig.2.1. As m or n increases, the mesh will

become more dense. Since each sink is associated with a stub, a denser mesh

will result in smaller total stub length and the mesh wire length is larger than

the stub wire length. However, for a sparse mesh, the mesh wire length will

be less than the stub wire length. An appropriate mesh size can be found to

minimize the total wire length, as in Fig.2.1.

Let deli denote the delay of sink Si and q) denote the width of a mesh

segment between node p and node q. The effect of removing a mesh segment

CHAPTER 2. LITERATURE REVIEW 15

140000
-•-MESH_ONLY

o 120000 ^•"STUB-TOTAL

1 looma. -*-MESH4STUB

30000 •

CT aWULIU •
Jj
1

1 -。
a _
J 5 10 15 20 25 30

Mesh Size (# rows/columns)

Figure 2.1: Determine mesh size [8

between node p and node q is defined by

ddelj
Cost{p, q)

— ” ddelk， (、
Max ——r - ^―——rj * w(p, q)

j,kesinks dw(p, q) dw(p, q)

The algorithms try to remove the mesh edges with the lowest cost function

to obtain a optimized mesh structure.

Details of the mesh optimization approach is as follows:

1. Cluster sinks close to each other.

2. Sinks in a cluster will be merged into a single sink with equal total

capacitance. Therefore, an approximate mesh with fewer nodes can be

obtained.

3. Obtain delay sensitivities of merged sinks with respect to the mesh

edges. Based on the delay sensitivities, obtain the cost(p, q) for each

mesh edge e(p, q). The cost function is the maximum clock skew change

in the mesh when a certain edge is removed.

Experimental results indicate that their algorithms can achieve 26% re-

duction in buffer area, 19% reduction in wirelength and 18% reduction in

CHAPTER 2. LITERATURE REVIEW 16

Figure 2.2: Inserting cross link

power dissipation compared to a recent work [6]. A compressive framework

for both mesh planning and optimization is proposed in this work.

2.5 Reducing Clock Skew variability via Cross

Links

Rajaram et al. [1] propose a non-tree clock structure by inserting cross links

into a tree. This non-tree structure consumes much less power compared to

the traditional mesh structure. Some analysis of the effect of cross link is

presented in their work. They also propose two schemes to generate a non-

tree structure with cross links from a tree. These two schemes do not utilize

delay information to insert cross links.

The impact of cross link is analyzed by a technique by Chan and Karplus

3]. Assume that a cross link is inserted between node u and w as illustrated

in Fig.2.2. The delay at a node i in the clock tree after link insertion is given

CHAPTER 2. LITERATURE REVIEW 17

by

. / — . t u 一
 t w

t i — t i o^ I I
 ri

Ri + ru + rw

where ti, tu and tw are the delays before link insertion, Ri is the link resistance,

ri, ru and rw is the delay at node i, u and w respectively when CU — 1, Cw —

一 1 and other node capacitances are set to zero.

We assume that the skew between link endpoints node u and node w is

qu,w, the skew after link insertion is given by

‘ — Ri
q u , w —

 Ri + ru 一 rw q u , w

It is claimed that a link resistor will reduce the skew variability of two

zero skew link endpoints. However, the skew between two arbitrary nodes

after link insertion is not very clear. Skew variability may be reduced or

increased. On the other hand, the analysis and observations are only based

on the first link added into the tree. Analysis of more links in the tree will

be very difficult.

Based on the analysis, after obtaining a clock tree, their algorithm inden-

tifies node pairs for link insertion. They propose two schemes for selecting

node pairs for link insertion. The first one is a rule based selection scheme.

This scheme is simply choosing all sink pairs satisfying three simple rules

from the analysis. For example, the depth 7 of the nearest common ances-

tor of a selected sink node pair needs to be no greater than a bound jmax.

Another scheme is a minimum weight matching based selection scheme. For

different depths, a user defined number of links will be selected. For instance,

k — (2,1,1) indicates that there are two links for each subtree at depth 7 — 1,

and there is one link for each subtree at depth 7 — 2 and 7 — 3. The sub-

problem to select a node pair between two subtrees is modeled in a bipartite

graph problem for selecting node pairs and can be solved by the minimum

weight matching algorithm.

CHAPTER 2. LITERATURE REVIEW 18

The algorithm is summarized as follows

1. Obtain an initial clock tree.

2. Select node pairs for link insertion.

3. Add link capacitance and tune tapping points.

4. Insert link resistance.

The experiments are performed on both mesh and cross link networks. A

dense mesh usually performs better than cross link structure at the cost of

significant wire increase. The minimum weight matching-based link method

always outperforms the naive rule-based method on both skew and wire length

minimization.

To summarize, a cross link structure is proposed in this paper to handle the

skew variation problem. Some analysis of the effect of cross link is presented.

Based on the analysis, two schemes which did not consider delay are proposed

to construct clock network with cross links.

2.6 Statistical Based Link Insertion for Ro-

bust Clock Network Design

This paper presents a statistical based algorithm for clock network construc-

tion with cross links [9]. The process starts with a tree and incrementally

insert cross links. The skew variation of the final clock network is within a

certain confidence interval under variation in wire width. In their work, a

fitted Elmore delay model is applied to the delay computation of clock trees

and non-trees. They use statistical timing analysis to obtain the statistical

CHAPTER 2. LITERATURE REVIEW 19

distribution of the clock skew in the network and determine the optimal in-

sertion point. Once a cross link is inserted, the statistical skew distribution

is updated before more links are inserted.

The Elmore delay of a wire is expressed as a random variable under wire

width variation. Once a link is added, RC is updated to obtain the delay

value. The approach is similar to that in [1] as follows:

R x C x = [R x - 1 + V V X T —1] (C x - 1 + A C x)

rx 一 Vx R x - i V x

where Rx_iCx_i refers to the RC delay before link insertion. Hence the term

can be found starting from R Q C Q . One difference from [1] is that they also

add the link capacitance which is considered in the term RQ A Cx.

For each candidate pair of nodes, a link is temporarily inserted. The

statistical delay and skew after link insertion is computed to decide if the

candidate link should be inserted permanently. Once a link is inserted, delay

and skew is updated for the next link insertion. There is a limit on the link

distance. The reason is to reduce the search space to save run time. Another

reason is that a long wire length consumes more wire resource and has a large

perturbation on the original clock network. The other constraint is the height

of the nearest common ancestor of the link endpoints. The taller the subtree,

the larger the effect the link has.

The flow can be summarized as follows

1. For each sink pair considered for link insertion, find the worst skew

violation

2. Insert the link has the best worst case violation

3. Update skew

In the experiments, the skews are evaluated based on a normal distri-

bution of the wire width. Monte Carlo simulations are performed on the

CHAPTER 2. LITERATURE REVIEW 20

original clock tree and the link-inserted tree. To summarize, their approach

is only able to handle wire variation which effects clock skew. The analysis is

complicated and the runtime is very long even for a benchmark with several

hundred sinks.

2.7 Variation Tolerant Buffered Clock Net-

work Synthesis with Cross Links

The work [11] deals with the problem of constructing a link based buffered

clock network. Their approach makes use of ordinary buffer and does not

require SPICE for tuning the location of the tree nodes. A balanced buffered

clock network with cross links is constructed which is tolerant to variation.

Their approach requires a link insertion friendly clock tree (a balanced

buffered clock tree) which is more tolerant to variation. A merging scheme

to construct a balanced buffered clock tree while simultaneously trying to

minimize the total wire length is introduced. The general framework is similar

to the DME algorithm. In their approach, the slew information is propagated

in a bottom up fashion. When merging a given pair of subtrees, the subtree

capacitance and slew information will also be obtained. Subtrees are merged

when the capacitance after merging is less than the capacitance limit. Buffers

are inserted at the roots of all the subtrees when there is no node pair merging

satifying the capacitance limit. Their approach results in a balanced tree and

the numbers of buffers from the source to every sink are the same.

The key merging step is described below. They maintain two separate lists

F for flagged nodes and U for unflagged nodes. The nodes in U are considered

for link node pair selection. For a node i in U, if a suitable node pair for

merging without exceeding the effective downstream capacitance limit is not

CHAPTER 2. LITERATURE REVIEW 21

found, this node will be removed from U and added to the list F. The node

pair selection process will be repeated until the list U is finished. Buffered

will be added to the unmerged nodes in F. Delays, slews and downstream

capacitance will be updated and the nodes in F are moved back to list U.

The process will continue until a complete clock tree is obtained.

After a balanced clock tree is constructed, sink node pairs will be se-

lected for link insertion by a modified MST algorithm. The cost function is a

weighted function of delay and link length. This top level algorithm is similar

to [1]. The steps can be summarized as follows:

1. Construct a balanced buffered clock tree using the techniques discussed

above.

2. Select node pairs for link insertion using a modified MST algorithm.

3. Add extra link capacitance and construct buffered clock tree with the

same topology.

4. Insert link to obtain the final clock network.

In the experiments, their buffered clock network with links has the best

skew reduction compared with other algorithms. The percentage for extra

link length is small. Runtimes are much less that those algorithms using

SPICE to tune the locations of the tree internal nodes.

CHAPTER 2. LITERATURE REVIEW 22

Figure 2.3: Cross link between internal nodes

2.8 Cross Link Insertion for Improving Toler-

ance to Variations in Clock Network Syn-

thesis

Instead of inserting links between sinks, the authors of [4] propose a scheme

to insert links between internal nodes of a clock tree. An example is shown

in Fig.2.3. In this example, a cross link is inserted between two zero skew

internal nodes u and v below buffers rather than inserted between sink nodes.

The link insertion process is integrated into the tree construction process.

Both the clock skew variability and the total link length are reduced.

The scheme comprises of merging, buffer insertion and link insertion. The

high level framework is similar to the DME approach. Nearest neighbor

graph is constructed using root nodes of subtrees as vertices. When two

nodes are merged to form a new subtree, slew check is performed to decide

if buffers should be inserted on top of the two nodes using stem wire. The

stem wire length is found by binary search using NGSPICE. Each buffer bufi

CHAPTER 2. LITERATURE REVIEW 23

has a merging region mr^ufi associated with it. The problem of blockage

is considered by chopping off the part of a merging region lying within a

blockage.

It is claimed in [1] that a link is beneficial only when it is inserted between

two zero skew nodes. So they propose to insert a link between two zero skew

internal nodes on the stem wire. The location search process is also guided

by NGSPICE simulations. The proposed link insertion flow helps to control

link length and reduce the total clock network capacitance. Cross link helps

improving the correlation of sink delays between the two subtrees where cross

links are inserted. Links are inserted below buffers, which helps to reduce

variation effects of buffers.

Simulation results on the ISPD 2010 contest benchmark demonstrate the

effective of their approach. In the experiments, they used a 15% supply

voltage variation and a 10% wire width variation. The buffers used consists

of 10 parallel buffers driving 40 parallel buffers (10 buffers in the first layer,

40 buffers in the second layer). The proposed scheme obtains less capacitance

compared with the top three teams of the ISPD contest while satisfying the

local clock skew constraints.

口 End of chapter.

Chapter 3

Clock Network Construction

with Cross Links

3.1 Signal Delay and Clock Skew in Non-tree

Clock Network

We will first review the delay calculation technique in general RC network

13]. Using this technique, a non-tree clock network can be decomposed into a

tree with some way of load redistribution. Signal delay in the decomposed tree

is exact the same as that in the original non-tree network. Therefore, finding

delay in a non-tree network becomes simply calculating Elmore delay in a RC

tree. Secondly, we will study the effect of a cross link from the perspective of

load redistribution. We deduce and verify that the skew reduction effect of

a cross link is affected by the resistance of the link Riink. If a link resistance

is large, its skew reduction effect will be small. So a cross link with small

resistance has more potential to improve skew performance. This observation

can be used to guide our link insertion process.

24

CHAPTER 3. CLOCK NETWORK CONSTRUCTION WITH CROSS LINKS25

3.1.1 Comput ing Delay in Non-tree Network

Calculation of the delays in a non-tree network is non-trivial, because there

are loops between the nodes, which makes possible that one node is driving

and loading another node at the same time. The relationships between nodes

are not explicit in a non-tree clock network. In the past, several techniques

have been suggested to model the delay in a general RC network [3] [13] [14 .

Based on the Elmore delay model, a technique called tree decomposition

and load redistribution is proposed in [13]. Their approach can be used to

calculate the delays of the nodes in a general RC network with resistance

loops. Suppose that N is an arbitrary node in a general RC network and

N has k neighboring nodes, denoted by Mi where i = 1,... ,k. Node N is

connected to Mi through edge Ei with a resistance of value Ri. Denote the

load capacitance of N as C. The idea is to partition and distribute C into

N's k neighboring edges. Let Ci be the equivalent load distributed to edge

Ei, where Ci can be positive or negative. According to Elmore delay, if the

delay of node Mi is Ti, the delay of node N will be T = Ti + RiCi. Then

there is a set of constraints as follows:

^ Ci = C (3.1)

i = i

T = Ti + RiCi i = 1,...,k (3.2)

With the above constraints, a general RC network can be decomposed into

a tree with some way of load redistribution. Signal delay in the decomposed

tree is exact the same as delay in the original non-tree. Since the delays in

a tree can be determined efficiently, we are able to calculate the delay in the

original RC network.

Consider the effect of inserting a link between two nodes Ni and Nj with

delays Di and Dj respectively in a tree as shown in Fig.3.1. Assume that the

CHAPTER 3. CLOCK NETWORK CONSTRUCTION WITH CROSS LINKS26

Figure 3.1: Load Redistribution through a Link

load capacitances of node Ni and Nj are Ci and Cj respectively before link

insertion. After a link is inserted between node N and Nj, node Nj becomes

one of the neighboring nodes of Ni. The loading capacitance of node Ni will

be redistributed as in Fig.3.1. In this example, the load capacitance of node

Ni is redistributed. Note that we can also split Nj instead of Ni. Suppose

Ci,i is the capacitance remaining at node Ni and Ci,2 is the load redistributed

from node Ni to node Nj through the inserted link. Let Di and Dj be the

new delays at node Ni and Nj respectively, which can be calculated after this

decomposing step.

According the set of constraints (3.1) and (3.2), we have the following

equality constraints for this particular example:

Ci,i + Ci,2 = Ci

D/ = Dj ‘ + Diink

(3.3)

(3.4)

The delay difference between node Ni and node Nj becomes Diink = RiinkCi,2.

Note that if Ci,2 is positive, it indicates that node Nj is actually driving node

Ni after this link insertion step and node Nj load part of node NiS capacitance,

which is Ci,2. If Ci,2 is negative, it indicates that node Ni is driving node Nj

instead.

CHAPTER 3. CLOCK NETWORK CONSTRUCTION WITH CROSS LINKS27

3.1.2 Effect of a Cross Link on Clock Skew

The Elmore delay of node Ni in a tree T is

Ri,k Ck (3.5)

where k G all nodes in T, Ri,k is the shared path resistance between node

Ni and node Nk and Ck is the capacitance of node Nk. Consider the same

example in Fig.3.1, a link is inserted between node Ni and node Nj. For a

given tree, the resistances of edges and capacitances of the nodes are known,

so the delays at nodes Ni and Nj can be expressed by Ci and Cj as follows

with constants ki, where i = 1, 2,..., 6:

Di = kiCi + k2Cj + ks

Dj = k^Ci + hCj + ke

The skew between node Ni and Nj before link insertion is

qij = Di - Dj

(3.6)

(3.7)

(3.8)

After a link is inserted between Ni and Nj as in Fig.3.1, the delays become

Di' = ki(Ci - Ci,2) + k2(Cj + Ci,2) + ks

Dj‘ = k4(Ci - Ci,2) + k5(Cj + Ci,2) + ke

The skew becomes qj‘ = D i ' — Dj', which is given by

Qij ‘ = qij — (k 1 — k 4) C i , 2 + (k 2 — k 5) C i , 2

which equals RiinkC i,2, so we have

Ci,2

qij

ki - k2 - k4 + k5 + Rlink

After solving Ci,2, the skew after link insertion can be written as

qij ‘ = Rlink Ci,2

Rlink qij

kl 一 k2 一 k4 + k5 + Rlink

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

CHAPTER 3. CLOCK NETWORK CONSTRUCTION WITH CROSS LINKS28

The skew after link insertion is scaled by a factor ^-R+ks十R. k compared

with the skew before link insertion. As k̂ are constants, the skew

reduction effect is determined by the resistance of the cross link Riink. If the

link resistance is large, its skew reduction effect will be small. A link with

smaller resistance has a higher potential to improve the skew performance.

Although the above analysis is based on a structure that is a tree, the same

argument can be applied even after several links are inserted since a non-tree

network can be represented by a tree structure by applying the above load

redistribution method.

3.2 Link Insertion for Non-tree Clock Net-

work

Based on the techniques discussed in section 3.1.1, we are able to calculate

signal delays in a clock network. In our approach, the sink load capacitances

are modeled as variables and each node's Elmore delay is written as a function

of the sink capacitances and the redistributed load capacitance. Each sink

node delay will change according to the values of these capacitances. There-

fore, there is a worst case skew under a sink capacitance variation. The worst

case skew is defined as the maximum delay difference that might appear in

the clock network under the variation of the sink capacitance. It is used as a

metric to evaluate the clock skew performance in our work.

CHAPTER 3. CLOCK NETWORK CONSTRUCTION WITH CROSS LINKS29

Figure 3.2: Clock Network with Links

3.2.1 Motivation of Computing Delay for Link Inser-

tion

Adding links between the node pairs which are most susceptible to have the

worst case clock skew will be beneficial. Therefore, one important step is to

identify the node pairs which will have large skew under variation. A shared

path length lij is the length of the path shared between the path from the

root s to sink node Si and the path from s to Sj. It is obvious that if two

nodes share a long common path from the source in a tree topology, the delay

difference will be small. If the shared path length lij is small or even zero,

the delay difference between Si and Sj can be high. Those node pairs with

small shared path length are topologically far away. In a clock tree, adding

a link to those topologically far away node pairs will be beneficial because

they are likely to exhibit a large clock skew. For example, in Fig.3.2, adding

a link between node b and node c will generally be better than adding a link

between node b and node d, because node pair (b, d) is less likely to have a

large skew.

CHAPTER 3. CLOCK NETWORK CONSTRUCTION WITH CROSS LINKS30

When the clock network is no longer a tree structure after some cross links

are inserted, the relationship between nodes becomes unexplicit. It is difficult

to tell if a node pair is topologically far away or not. In Fig.3.2, if we consider

node pair (a, b) and node pair (d, c), node pair (a, b) are topologically closer

if no links are inserted, since the lowest common ancestor (LCA) of (a, b) is

at level 1 while the LCA of (d, c) is at the root (level 0). However, if a link

is inserted between node b and node c, it is not possible to tell which node

pair are topologically closer thus less likely to exhibit the worse skew without

calculation. Therefore, we will use the non-tree delay calculation technique

(Section 3.1.1) to obtain the Elmore delay and the worst case skew of each

sink node pair under variation. Then we can decide the node pairs which

have the highest potential to reduce clock skew after link insertion between

them.

3.2.2 Overall Flow for Cross Link Insertion

In our approach, we will insert the first link between the two subtrees of the

root in a clock tree network. We will find the node pair with the smallest

physical distance and thus the smallest link resistance. Starting from the

second link, we will formulate a sequence of linear programs to find the most

beneficial node pair for inserting a link. Fig.3.3 shows an overall flow of our

algorithm to insert links. For each sink node pair considered in link insertion,

we find the maximum under capacitance variation. A link will be added to

the node pair with the maximum possible skew. The linear program is then

updated to find the next node pair for the third link insertion. In the following

section, we will discuss in more details of the linear program.

CHAPTER 3. CLOCK NETWORK CONSTRUCTION WITH CROSS LINKS31

Algoritlun: Add Links

Input: A clock distiibiitioii network

Output: w crosslinks

1. Insert the first link between node pair (a, b) where a and b are in

the left and right subtree of the root and are closest to each other

physically

2A— 1

3. While/r< w

4. For each sink node pair {u, v)

5. Construct an LP to find the largest人v vfilue

"^人vis an objective fimctioii described below

6. Retimi tlie node pair with the largest/^^v value for adding a link

7. k 1

8. End

Figure 3.3: Link Insertion Overview

3.2.3 Linear Program for Selecting Node Pairs

Given a non-tree clock network, we will first make use of the techniques

discussed in Section 3.1.1 to decompose a network into a tree structure and

redistribute the load capacitances. An example is illustrated in Fig.3.4. In

Fig.3.4, a link k is added between sink nodes Si and S2, with load capacitances

Ci and C2 respectively. First we add half of the link capacitance Cunk to

endpoints Si and S2 of the link. When the tree is decomposed, we pick

one of the link endpoints to decompose. In this example, we pick node Si

to be viewed as being split into two nodes as in Fig.3.4. The new node S3

is connected to S2 through the added link. The new loading capacitance

at node Si is Ci + Cunk/2 一 Ck where Ck is the capacitance distributed to

node S2. Suppose that there are m links in the clock distribution network,

similar decomposition can be done for all the links. We can use m variables

Ci, C2,..., Cm to describe the load redistribution from one endpoint of a link

CHAPTER 3. CLOCK NETWORK CONSTRUCTION WITH CROSS LINKS32

Figure 3.4: Decomposition of Clock Network with Links

to the other. Finally, we obtain a tree structure with some way of load

distribution. Node's delay in the decomposed tree is exact the same as that

in the original non-tree network.

Once the network is decomposed into trees and the load capacitances are

redistributed, according to equation (3.5), we can write the Elmore delay of

each sink node as a linear function of the sink load capacitances. Let n be

the total number of sinks and m be the number of links, the delay of a sink

node Su is a linear function of the sink load capacitances Ci, 62” . ” C^ and

the redistributed load capacitance ci, C2,..., Cm,

u , cm) (3.14)

The skew between sink node Su and Sv is

qu t'a ——tv 1 (3.15)

Then we can formulate the worst case skew between a pair of nodes under

capacitance variation. However, adding a link between the pair with the worst

skew might result in a significant increase in link length. If the length of the

link is large, the resistance of the link will be high. Firstly, this will make the

clock network have very long route and thus not practical. Secondly, a long

CHAPTER 3. CLOCK NETWORK CONSTRUCTION WITH CROSS LINKS33

wire will have lower skew reduction effect as discussed in Section 3.1.2. For

instance, in Fig.3.2, if we do not consider the resistance of the link, adding

a link between node b and node c will be better than adding a link between

node a and node b, since node a and node b share some parts of their paths

from the source and thus the delay difference will be smaller. However, if the

physical distance and thus the link resistance between node b and node c is

larger than that between node a and node b, it will be difficult to tell which

link is better. Therefore a tradeoff between the length of a link and its clock

skew reduction effect is needed. When selecting node pairs, we consider both

clock skew and link length to find the node pairs which are most beneficial

for link insertion. We thus define an objective function to strike a balance

between the worst case skew and the link resistance ru,v as follows:

fuv = ^ (3.16)

ru,v

This objective function is established empirically. From the experimental

results, we find that this objective function can achieve low clock skew effec-

tively.

We can find the maximum of fu,v subject to changes in the load capaci-

tance values and a set of linear equality constraints as described below.

The sink load capacitances have upper and lower bounds according to the

distribution of the capacitance values. For each sink node Si

li < Ci < Hi (3.17)

We also have a set of linear equality constraints to describe the delay equalities

due to the links. Let S i f k) and Sright(k) be the two endpoints of link k.

W.l.o.g, let Sieft{k) be the node being split and Sieft{k) becomes S^ieft{k) and

Smid{k) after splitting. Assume that the delays at S^ieft{k) and Sright{k) are tki

and tk2 respectively, and the delay at Smid{k) is tks. D\nk is the delay on

CHAPTER 3. CLOCK NETWORK CONSTRUCTION WITH CROSS LINKS34

the link connecting Smid{k) and Sright{k). Assume that the link resistance is

R kiink, the equality constraints due to the k仇 link is given by:

t k 1
 — t k 3

 — t k 2 + Delink (3 .18)

Delink
 — R^link ck (3 .19)

To summarize, the optimization problem to maximize the objective function

fu,v between node Su and Sv is:

Maximize:
力u——tv 1

(3.20)

Subject to:

tu — ^fv^Cl, C2，. . .
 , Cn, c1 , c2 , • • • , cm) (3.21)

tv
 — fv (C 1 ， C 2 , ... , Cn, c 1 , c2 , • • • , cm) (3 .22)

li < Ci < u i — 1 , . . . ,n (3.23)

tk1 — tk2 + Relink ck k — 1 , . . . ,m (3.24)

where Ci for i — 1,... ,n and cj for j — 1,... ,m are variables in the LP.

The absolute value in equation (3.20) is handled in the implementation. For

each pair (i,j), we do optimizations twice. In one of them, we maximize

(tu 一 tv) to obtain the positive maximum. And in the other one, we minimize

(tu 一 tv) to obtain the negative minimum. In our implementation, instead of

calling a linear solver, we will first use Gaussian elimination to solve the k

equality constraints (3.24), so the k variables ci can be expressed by linear

combinations of C1, C2 , . . . , Cn. Equation (3.21) and (3.22) become

tu
 — fu (C 1， C 2 , . . . , Cn) (3.25)

tv — fv\C1，C2，...，Cn) (3.26)

Then the maximum objective value subject to changes in the sink load ca-

pacitances can be computed directly from the upper and lower capacitance

bounds.

r

CHAPTER 3. CLOCK NETWORK CONSTRUCTION WITH CROSS LINKS35

The maximum value of fu,v (called pu,v) for a pair of node Su and Sv

can be obtained by solving the above linear program. Finally, we can find

a node pair with the largest pu,v, which is denoted as pmax. A cross link is

added between this node pair to reduce the clock skew while constraining the

wire length of the link. By applying the technique recursively, we can add a

user-defined number of cross links to construct a link based clock network.

3.2.4 Reducing the Number of Optimizations

Although the optimization problem for a pair of nodes can be solved quickly

as formulated above, we need to run it for all pairs of nodes to get the node

pair with pmax. The running time will increase quickly when the number of

nodes increases to thousands. Therefore, we devised a method to speed up

the process when the number of sinks is large. In order to reduce the running

time, instead of trying all pairs of sinks, we will choose some node pairs which

are more likely to have the pmax. Actually there are some pairs that we do not

need to consider, e.g., nodes that are topologically close to each other. This

is because these node pairs share a long mutual sub-path from the source and

the delay difference between them will not be big.

Starting from the sink node level, we will travel up to find a set of internal

nodes I such that the set S of subtrees rooted at these internal nodes cover

all the sink nodes. The detailed procedure to find the internal nodes is shown

in Fig.3.5. Compared with the total number of sinks, the number of these

internal nodes will be smaller. Since the sink nodes within a subtree in S

will likely to have similar delays, we do not consider the skews among these

internal nodes. We will pick one node from each subtree in S in order to find

the pmax in the clock network, as illustrated in Fig.3.6. In our implementation,

we consider the number of sinks in each subtree in S and limit them to be

CHAPTER 3. CLOCK NETWORK CONSTRUCTION WITH CROSS LINKS36

Algoritlmi: Find Subtrees

Input: A clock network

Output: Internal node set I that reduce the inmiber of optimizations

=0

For each sink node St

If is contained m a subtree rooted at fi node in I

Contimie

Else

r -hh

While r < lower bomid in the siiik number of a subtree

hst—If 一 li丄 一 parent of/f

r 一 iniiiiber of sinks contained in die subtree rooted fit

Eud

If r > upper bound in the suit mmiber of a subtree

It ^ last L

10

13. Add 7, to/

Figure 3.5: Find a Set of Internal Nodes

Figure 3.6: Reducing the number of nodes

CHAPTER 3. CLOCK NETWORK CONSTRUCTION WITH CROSS LINKS37

less than or equal to 16. In this way, even benchmarks with a large number

of sinks can be solved in a reasonable amount of time.

3.2.5 Experimental Results

Benchmark and Experimental Setup

Our algorithm to select node pairs for non-tree clock network construction

with cross links is implemented in C. The experiments are performed on a

3.2 GHz Intel CPU Linux machine with 4GB memory. The key difference

between our work and the existing works is that most of existing works did

not consider non-tree delay when inserting links, which inevitably limits the

effectiveness of the link insertion step.

To verify the effectiveness of our method, we will compare our link inser-

tion scheme with the algorithm proposed in [1]. We implemented the mini-

mum weight matching-based link insertion method which is the best method

in [1]. We start with the same zero skew clock tree which is obtained from

the bounded skew tree method [2]. Both the benchmarks and the bounded

skew tree code are downloaded from the GSRC bookshelf [21].

In our implementation and simulations, the per unit wire resistance is 10-4

Ohm/nm and the per unit wire capacitance is 2 x 10-4 fF/nm. Ngspice is used

to simulate our clock distribution network. Process variation is accounted in

the simulations for VDD variation and sink capacitance variation. We allow

15% variation in the VDD and the sink capacitances and all the variations

follow a normal distribution. For each clock network, 500 spice simulations

are performed to obtain the worst case skew (WCS).

CHAPTER 3. CLOCK NETWORK CONSTRUCTION WITH CROSS LINKS38

Table 3.1: Benchmark information

BM #Sinks WCS (ps) Cap (fF)

r1 267 0.364 264.1

r2 598 0.802 523.7

r3 862 1.250 678.2

r4 1903 2.504 1357.8

r5 3101 2.612 2005.5

s1423 74 0.048 21.30

s5378 179 0.061 35.10

s15850 597 0.136 89.65

Results and Discussion

All the benchmark information are shown in Table 3.1 and the experimen-

tal results of our work and the method in [1] are shown in Table 3.2. The

benchmark sizes, worst case skews (WCS), and the wire capacitances of the

clock trees are given. We list the number of links inserted, WCS results, link

capacitance results of the Link-M method and our work. The Link-M method

refers to the minimum weight matching based link insertion method in [1 .

The numbers inside the brackets are the ratios of methd in [1] and our work.

The CPU time is listed in seconds in the table.

From Table 3.2, we observe that our method always outperforms the Link-

M method in terms of clock skew reduction. Besides, for a same number of

links, Link-M method costs much more link capacitance comparing with our

algorithm. On average, we achieve 28% clock skew reduction with only 40%

link resources. The reason is that the Link-M method does not consider

non-tree delay when inserting links, which may result in ineffective cross link

insertion into the clock tree. By considering the balance between clock skew

and link resistance, we can achieve more clock skew reduction with less link

capacitance resource. The CPU time for the Link-M method is ignorable so

CHAPTER 3. CLOCK NETWORK CONSTRUCTION WITH CROSS LINKS39

it is not listed in the table. We use the technique discussed in Section 3.2.4 to

control the running time and we can see that our running time is acceptable

even for the largest benchmark.

口 End of chapter.

CHAPTER 3. CLOCK NETWORK CONSTRUCTION WITH CROSS LINKS40

Table 3.2: Worst case skew and wire cap results with 15% variations in vdd

and sink capacitances

Link-M Our Link-M Our CPU

BM #Sinks Links WCS WCS Cap Cap (s)

(ps) (ps) (fF) (fF)

4 0.314 (1 .33) 0.236 (1) 9.7 (3.24) 2.9 (1) 0.81

r1 267 16 0.162 (1.41) 0.115 (1) 16.3 (1.23) 13.2 (1) 3.21

22 0.122 (1.20) 0.102 (1) 60.0 (3.14) 19.1 (1) 4.52

4 0.772 (1.68) 0.460 (1) 6.9 (4.93) 1.4 (1) 9.23

r2 598 20 0.286 (1 .39) 0.206 (1) 21.0 (1.60) 13.1 (1) 46.47

40 0.192 (1.42) 0.135 (1) 40.7 (1.46) 27.9 (1) 94.09

6 0.470 (1 .09) 0.433 (1) 10.2 (1.96) 5.2 (1) 2.74

r3 862 24 0.305 (1 .08) 0.282 (1) 25.9 (1.07) 24.3 (1) 11.73

48 0.229 (1 .36) 0.168 (1) 101.6 (1.91) 53.2 (1) 27.21

8 1.565 (1.55) 1.008 (1) 41.6 (8.67) 4.8 (1) 9.21

r4 1903 40 0.448 (1.21) 0.370 (1) 57.3 (1.23) 46.5 (1) 64.34

68 0.336 (1.03) 0.327 (1) 125.3 (1.42) 88.3 (1) 140.3

8 1.451 (1.14) 1.276 (1) 43.2 (7.20) 6.0 (1) 36.17

r5 3101 40 0.740 (1.14) 0.648 (1) 76.2 (1.67) 45.7 (1) 229.8

72 0.589 (1 .16) 0.506 (1) 95.9 (1.08) 89.0 (1) 510.5

s1423 74
4 0.042 (1.83) 0.023 (1) 1.33 (1.17) 1.14 (1) 0.03

s1423 74
8 0.036 (2.57) 0.014 (1) 2.77 (1.07) 2.60 (1) 0.03

s5378 179
4 0.063 (1.75) 0.036 (1) 1.60 (2.86) 0.56 (1) 0.29

s5378 179
12 0.025 (1 .09) 0.023 (1) 5.94 (2.57) 2.31 (1) 0.89

s15850 597
4 0.111 (1 .34) 0.083 (1) 0.56 (1.27) 0.44 (1) 10.62

s15850 597
22 0.053 (1 .39) 0.038 (1) 3.88 (1.56) 2.48 (1) 59.82

AVG 0.396 (1 .39) 0.309 35.6 (2.49) 21.4 60.10

Chapter 4

Buffered Clock Network with

Cross Links

4.1 Link Insertion in Buffered Clock Network

The cross link insertion algorithm proposed in [1] is applied to unbuffered

clock tree. In the real world, buffer plays a key role in the design of a clock

system. Buffers are used in a clock network to reduce signal delay and to

preserve clock waveform [31]. Several works [23] [24] [32] address the problem

of buffer insertion in a clock network. Cross link insertion in a buffered clock

network to achieve target skew is more challenging in comparison with the

unbuffered case. It is claimed in [10] that the effect of cross link on skew

variability still holds for a buffered clock tree. We also want to extend our

cross link insertion to buffered clock tree. The major difference between

buffered and unbuffered clock tree for our linear program approach is the

formulation of delay. To handle a clock network with buffers, we must consider

the buffering effect when formulating the Elmore delay in equation (3.14) and

41

CHAPTER 4. BUFFERED CLOCK NETWORK WITH CROSS LINKS42

(3.18):

tu = fu (C1, C 2， . . .
 , C n ，

c 1 , c 2 ,
 . . .

 , Cm)

tk l = t k 3 = t k 2 + Delink

where Cl, 62,..., Cn are the sink capacitances and ci^c】,...,cm are m vari-

ables describing the load redistribution from one endpoint of a link to the

other. tkl and tk2 are the delays at S ' i e f t (k) and Sright(k) respectively. tk3 is

the delay at S m i d ⑷ . D e l i n k is the delay on the link connecting Smid⑷ and

Sright{k).

4.1.1 Delay Calculation in Buffered Clock Network

Tsay [16] proposes a method computing Elmore delay in a clock tree with

linear time complexity. Let Ci be the capacitance of node i and ri be the

resistance of edge i in a clock tree. Edge i is defined as the edge between

node i and its parent. Denote by IS(i) the set of all immediate successors of

node i, the subtree capacitance Ci of Ti is

Ci = Cci + [Ck

keis{i)

The subtree capacitance can be computed in a recursive bottom up fashion.

To calculate delay, assuming that node i is a predecessor of node j and N(i, j)

is a collection of nodes on the path between node i and node j, the delay time

tij between node i and node j is

tij ——〉: rn Cn

neN (i j

The delay to each node can be calculated from the delay to its parent, the

edge resistance and the subtree capacitance. To account for a buffered RC

CHAPTER 4. BUFFERED CLOCK NETWORK WITH CROSS LINKS43

tree, the subtree capacitance is modified as

Ci if node i is associated with a buffer
Ct = <

Ci + T^ke i s i i) Ck otherwise

Delay computation between a node i and its successor j is extended as

tij = / . rn Cn +
dn

neN (i,j)

where dn is the buffer internal delay. The calculation is done in the same way

with an appropriate buffer modeling and remains linear time complexity.

4.1.2 Linear Program Formulation for Buffered Clock

Network

Linear program for inserting cross links into a buffered clock network is similar

to that discussed in Section 3.2.3:

t'U ——t o I
Maximize: fu,v

ru,v

Subject to:

tu = / U (C 1 ， C 2 ” . . , Cn C1 , c2 , ... , cm)

tv = fv (C 1 , C 2 , ... , Cn C 1 , c 2 , . . .) cm)

li < Ci < Ui i = 1, ... ,n

tk1 = tk2 + R kiink ck k =\,...,m

where the objective function is a balance between the worst case skew and the

link resistance r^^v. li < Ci < Ui describe upper and lower bounds of the sink

load capacitances. tk1 = tk2 + Rkiink ck is a set of linear equality constraints

to describe the delay equalities due to the links.

CHAPTER 4. BUFFERED CLOCK NETWORK WITH CROSS LINKS44

When we formulate the delays tu, t^, tki and tk2 in the linear program, we

need to consider the buffering effect. The buffer model used in our work fol-

lows the ISPD contest benchmark [15], which has three parameters: an input

load capacitance, an output parasitic capacitance and an output resistance.

As discussed in Section 3.2, for each sink node pair considered for link in-

sertion, we find the maximum possible skew under capacitance variation. A

link will be inserted to the node pair with the maximum possible skew. The

linear program is then updated to find the next node pair for link insertion.

This process will continue until a user defined number of links are added into

the clock network.

4.2 Experimental Results and Comparison

We compare our work with a recent approach in [4] which inserts cross links

into the internal nodes of a tree while constructing the clock network. The ex-

periments are performed on the ISPD 2010 contest benchmark. The per unit

wire resistance is 10-4 Ohm/nm and the per unit wire capacitance is 2 x 10-4

fF/nm. Process variation is accounted in the simulations with 15% variation

in the VDD and 15% variation in sink capacitances. All the variations follow

a normal distribution. For comparison with [4], we use the Local Clock Skew

(LCS) as a metric to measure the skew variability instead of using the Worst

Case Skew (WCS). Local clock skew is the clock skew between any two sinks

within a certain distance from each other, which is defined in the ISPD 2010

High Performance Clock Network Synthesis Contest [15]. For each clock net-

work, 500 ngspice simulations are performed to obtain the worst Local Clock

Skew (LCS).

Table 4.1 lists the results that compares our work with the method in [4].

We list the benchmark size, the LCS results, the capacitance usage and the

CHAPTER 4. BUFFERED CLOCK NETWORK WITH CROSS LINKS45

Table 4.1: Comparison of our method with the work in

Bench

-mark
#Sinks Method LCS (ps)

Ratio of

Link Cap
CPU (s)

01 1107
[4]

Our work

7.88

10.67

1.007

1

1092

52.4

02 2249
[4]

Our work

8.32

8.17

1.223

1

4314

424

03 1200
[4]

Our work

6.34

5.89

1.073

1

383

10.6

04 1845
[4]

Our work

7.42

7.33

1.001

1

934

33.8

05 1016
[4]

Our work

5.90

5.87

1.199

1

278

5.36

06 981
[4]

Our work

6.78

8.98

1.003

1

285

6.69

07 1915
[4]

Our work

6.77

6.05

1.228

1

818

49.8

08 1134
[4]

Our work

6.42

8.59

1.225

1

327

8.34

running time. Note that the CPU time of our work in the table is for the link

insertion phase only, while the tree construction time is not included.

We obtain the clock network results from the authors of [4]. Firstly, the

links added between the internal nodes using their algorithm are removed.

Then our method is applied to generate cross links into the clock network.

In general, our work uses less link resources to achieve similar LCS results.

Please note that the two results are not directly comparable, because in [4],

the links are inserted while the trees are being constructed, so their tree

construction performs in such a way to favor their link insertion step. In

our case, we take their trees and insert the links in a post processing way,

so the results are hard to be compared. However, we still want to display

the comparisons to show that our method can also handle clock trees with

CHAPTER 4. BUFFERED CLOCK NETWORK WITH CROSS LINKS46

buffers and can perform actually quite well comparing with [4] in which the

link insertion and the tree construction are performed simultaneously.

4.3 Possible Extensions

4.3.1 Link Insertion at Internal Nodes

The algorithm in [4] inserts cross links between the internal nodes of a clock

tree instead of sink nodes. Their link insertion is integrated into the clock

tree construction process. In addition to reducing the skew variability, their

approach also try to minimize the total cross link length. Our method pro-

posed in Section 4.1 inserts cross links between sink node pairs in a buffered

clock network. We have explored whether our method can be extended to

insert cross links between internal nodes of a tree as well.

The linear program formulated in Section 3.2 computes the maximum

possible skew for each sink node pair. Then a link will be inserted to the

node pair with the largest such value. Linear program is then updated for

the next link insertion. This process continues until a user defined number of

links are inserted into the clock network.

However, our method cannot be easily extended to internal cross link in-

sertion. This is because the load redistribution effect of an inserted cross link

can not be easily seen from the delay of the sink nodes when the link is in-

serted between two internal nodes. Consider the example in Fig.4.1, when we

select a sink node pair (SU, SW) after solving the linear program, a correspond-

ing internal cross link is added between two zero skew nodes u and w on the

buffered wire segments below the Nearest Common Ancestor node. Inserting

between two zero skew nodes helps to aviod effecting the nominal skew of the

clock network. When we formulate the linear program under sink capacitance

CHAPTER 4. BUFFERED CLOCK NETWORK WITH CROSS LINKS47

Figure 4.1: Cross Link Between Internal Nodes in a Clock Network

variation, the Elmore delay of internal nodes above the buffer does not change

as it depends on the buffer rather than the sink capacitances. Therefore, the

skew variation on sink nodes cannot be addressed by the internal cross link

and there is no load redistribution effect through the link.

We can model other variations such as wire width variation and buffer

delay variation to make internal link insertion possible. For example, if we

model wire width variation in our problem formulation, the node delay will

become a function of both sink capacitance variation and wire width variation.

The node delay above the buffers after internal link insertion will change

accroding to the variations. The internal cross link can be used to redistribute

load and therefore reduce skew variability.

4.3.2 Modeling Clock Buffer Delay Variation

In our problem formulation, we model sink capacitance as source of varia-

tion. On the other hand, clock buffer delay variation is very critical to clock

skew variability. We can also model clock buffer delay variation in our linear

program. As discussed in section 4.1.1, the delay between a node i and its

CHAPTER 4. BUFFERED CLOCK NETWORK WITH CROSS LINKS48

successor j in a buffered clock network is

tij — 〉 : rn Cn + dn

neN (i j

where rn is the edge resistance, Cn is the subtree capacitance and dn is the

buffer internal delay. If we model buffer internal delay dn as randam variation,

assuming that there are l buffer internal delays, we can still write the delay

as a linear function of the variations as follows

tu — f u (C 1 , 0 2 , . . .) Cni c1 , c2 , . . . , Cmi d1, d2, . . . , di)

Thus, our problem formulation can be extended to handle the clock buffer

delay variation as well.

口 End of chapter.

Chapter 5

Conclusion

Reducing clock skew caused by variation is now one of the most important

problems in clock network synthesis. Link based clock network is considered

to be a promising way to handle the skew variation problem. In this thesis,

we explore where links should be inserted into a clock network to achieve the

most effective skew reduction. Our contributions are summariez as follows:

Delay Calculation in Non-tree Clock Network

In our approach, a non-tree clock network is decomposed into a tree with

some way of load redistribution. We are able to formulate the signal delay

and clock skew in the network. Based on this delay information, our new

method selects node pairs analytically for cross link insertion. Compared with

existing works on this cross link problem, this analytical delay calculation in

node pair selection results in more effective link insertion.

Solving Problem with an Efficient Linear Program

We formulate the problem as a linear program, with an objective function

considering tradeoff between clock skew reduction and link length. For each

49

CHAPTER 5. CONCLUSION 50

sink node pair considered, we formulate a LP to find the maximum possible

skew value under capacitance variation. A link will be added to the node pair

with the largest such value. The linear program is incrementally updated and

solved until a user defined number of links are inserted into the clock network.

Effectiveness of Our Approach

We devise a way to reduce the number of optimizations and use a Gaussian

elimination based method to speed up solving the linear program. Therefore,

even the largest benchmark can be solved in just a few miniutes. Experiments

on the two sets of benchmarks verified the effectiveness of our approach. We

achieve 28% clock skew reduction with only 40% link resources. Our method

can be applied to insert links very effectively while reducing the total wire

length.

口 End of chapter.

Bibliography

A. Rajaram, J. Hu, and R. Mahapatra. Reducing clock skew variability

via crosslinks. IEEE Trans. Computer-Aided Design of Integrated Circuits

and Systems, vol. 25, no. 6, 2006, 1176-1182.

J. Cong, A. B. Kahng, C.-K. Koh, and C.-W. A. Tsao. Bounded-skew

clock and steiner routing under Elmore delay. In Proceedings of the 1995

IEEE/ACM International conference on Computer-aided design, 1995, 66-

71.

3] P. Chan and K. Karplus. Computing signal delay in general RC networks

by tree/link partitioning. IEEE Trans. Computer-Aided Design of Inte-

grated Circuits and Systems, vol. 9, no. 8, 1990, 898-902.

T. Mittal and C.-K. Koh. Cross link insertion for improving tolerance to

variations in clock network synthesis. In Proceedings of the 2011 interna-

tional symposium on Physical design, 2011, 29-36.

P. Restle, T. McNamara, D. Webber, P. Camporese, K. Eng, K. Jenkins,

D. Allen, M. Rohn, M. Quaranta, D. Boerstler, et al.. A clock distribution

network for microprocessors. IEEE Journal of Solid-State Circuits,vol. 36,

no. 5, 2001, 792-799.

51

BIBLIOGRAPHY 52

6] G. Venkataraman, Z. Feng, J. Hu, and P. Li, Combinatorial algorithms

for fast clock mesh optimization. In Proceedings of the 2006 IEEE/ACM

international conference on Computer-aided design, 2006, 563-567.

7] H. Chen, C. Yeh, G. Wilke, S. Reddy, H. Nguyen, W. Walker and R. Mur-

gai. A sliding window scheme for accurate clock mesh analysis. In Proceed-

ings of the 2005 IEEE/ACM International conference on Computer-aided

design, 2005, 939-946.

8] A. Rajaram and D. Z. Pan. MeshWorks: An efficient framework for plan-

ning, synthesis and optimization of clock mesh networks. In Proceedings

of the 2008 Asia and South Pacific Design Automation Conference, 2008,

250-257.

9] W. -C. D. Lam, J. Jain, C. -K. Koh, V. Balakrishnan, and Yiran Chen.

Statistical based link insertion for robust clock network design. In Proceed-

ings of the 2005 IEEE/ACM International conference on Computer-aided

design, 2005, 588-891.

10] G. Venkataraman, N. Jayakumar, J. Hu, P. Li, S. Khatri, A. Rajaram,

P. McGuinness, and C. Albert. Practical techniques for minimizing skew

and its variation in buffered clock networks. In Proceedings of the 2005

IEEE/ACM International conference on Computer-aided design, 2005,

592-596.

11] Anand Rajaram and David Z. Pan. Variation tolerant buffered clock

network synthesis with cross links. In Proceedings of the 2006 international

symposium on Physical design, 2006, 157-164.

BIBLIOGRAPHY 53

12] Z. Li, Y. Zhou, and W. Shi. Wire sizing for non-tree topology. IEEE

Trans. Computer-Aided Design of Integrated Circuits and ！Systems, vol.

26, no. 5, 2007, 872-880.

13] T. M. Lin and C. A. Mead. Signal delay in general RC networks. IEEE

Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 3,

no. 4, 1984, 331-349.

14] P. K. Chan and M. D. F. Schlag. Bounds on signal delay in RC mesh

networks. IEEE Trans. Computer-Aided Design of Integrated Circuits and

Systems, vol. 8, no. 6, 1989, 581-589.

15] http://archive.sigda.org/ispd/contests/10/ispd10cns.html.

16] R. Tsay. Exact zero skew. In Proceedings of IEEE International Confer-

ence on Computer-Aided Design, 1991, 336-339.

17] K.D. Boese and A.B. Kahng. Zero skew clock routing trees with mini-

mum wire length. In Proc. IEEE int. conference ASIC, 1992, 1.1.1-1.1.5.

18] T. H. Chao, Y. C. Hsu, and J. M. Ho. Zero skew clock net routing.

ACM/IEEE Design Automation Conference, 1992, 518-523.

19] Masato Edahiro. Minimum skew and minimum path length routing in

vlsi layout design. NEC, Res Devel, 1991, 32 4:569-575.

20] P. Restle, K. Jenkins, A. Deutsch, P. Cook. Measurement and Modeling

of On-chip Transmission Line Effects in a 400MHz Microprocessor. IEEE

Journal of Solid-State Circuits, 1998, 662-665.

21] http://vlsicad.eecs.umich.edu/BK/.

22] J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits:

A Design Perspective. Prentice-Hall, 2nd Edition, 2002.

http://archive.sigda.org/ispd/contests/10/ispd10cns.html
http://vlsicad.eecs.umich.edu/BK/

BIBLIOGRAPHY 54

23] Y. P. Chen and D.F. Wong. An Algorithm for Zero-Skew Clock Tree

Routing with Buffer Insertion. In Proceedings of the 1996 European con-

ference on Design and Test, 1996, 230-236.

24] B. Wu and N. A. Sherwani. Effective Buffer Insertion of Clock Trees for

High-speed Vlsi Circuits. Microelectronics, 1992, 291-300.

25] Linfu Xiao, Zigang Xiao, Zaichen Qian, Yan Jiang,Tao Huang, Haitong

Tian, and Evangeline F.Y. Young. Local Clock Skew Minimization Using

Blockage-Aware Mixed Tree-Mesh Clock Network. In Proc. of the ICCAD,

2010.

26] M. A. B. Jackson, A. Sirinivasan, and E.S. Kuh. Clock Routing for High-

performance ICs. In Proceedings of 27th ACM/IEEE Design Automation

Conference, 1990, 573-579.

27] A. Kahng, J. Cong, and G. Robins. Matching based models for high per-

formance clock routing. IEEE Transactions on CAD of Integrated Circuits

and Systems, 1993, 1157-1169.

28] Fuqiang Qian, Haitong Tian, Evangeline F. Y. Young. Crosslink inser-

tion for variation-driven clock network construction. ACM Great Lakes

Symposium on VLSI 2012, 2012 321-326.

29] K. Jain. A Factor. Approximation Algorithm for the Generalized Steiner

Network Problem. In IEEE Symposium on Foundations of Computer Sci-

ence, 1998, 448-457.

30] H. Kerivin and A. R. Mahjoub. Design of Survivable Networks: A survey.

In Networks, 2005, 1-21.

BIBLIOGRAPHY 55

31] Naveed A. Sherwani. Algorithms for VLSI Physical Design Automation.

Kluwer Academic Publishers, 2nd Edition, 1995.

32] R. Chaturvedi and J. Hu. Buffered clock tree for high quality IC designs.

In Proc. IEEE International Symposium on Quality Electronic Design,

2004, 381-386.

33] J. Cong, A. B. Kahng, C.-K. Koh, and C.-W. A. Tsao. Bounded-skew

clock and Steiner routing. ACM Transactions on Design Automation of

Electronic Systems, 1998, 341-388.

