by

KAM-CHAN LO

A thesis
Submitted to
the Graduate School of
The Chinese University of Hong Kong
(Division of Mathematics)
In partial fulfillment
of the Requirement for the Degree of
Master of Philosophy (M.Phil.)

$$
\begin{aligned}
& \text { +hesis } \\
& \text { QA } \\
& 564 \\
& L 67
\end{aligned}
$$

818451

The Chinese University of Hong Kong
 Graduate School

The undersigned certify that we have read the thesis，entitled ＂Theory of Singularities in Algebraic Geometry＂submitted to the Graduate School by K．C．Lo（ 盧錦爆）in partial fulfillment of the requirements for the degree of Master of Philosophy in Mathematics．We recommend that it ． be accepted．

ACKNOWLEDGEMENT

I would like to thank Dr. Tzee-Char Kuo for his supervision. Thanks are also due to Miss Kicinski for her excellent typing.

A TRANSVERSALITY THEOREM FOR ALGEBRAIC VARIETIES

§1. Introduction and Results.

It is well-known that one of the most fundamental theorems in the theory of Singularities is Thom's Transversality Theorem, established some 20 years ago. These are now enough evidence showing that some analogue of Thom's theorem for algebraic varieties would have interesting applications to algebraic geometry (e.g. see [2], Cor. 2).

In this paper, we shall establish such an analogue for complex projective varieties which are complete intersections.

Let $f_{1}, \ldots, f_{s} \in \mathbb{C}_{H}\left[z_{0}, \ldots, z_{n}\right]$ (the ring of homogeneous polynomials in $n+1$ variable over \mathbb{C}, where \mathbb{C} is the field of complex numbers) and let $V\left(f_{1}, \ldots, f_{s}\right)$ denote the variety $\mathrm{f}_{1}\left(\mathrm{z}_{0}, \ldots, \mathrm{z}_{\mathrm{n}}\right)=0, \ldots, \mathrm{f}_{\mathrm{s}}\left(z_{0}, \ldots, z_{\mathrm{n}}\right)=0$ in the complex projective n -space $\mathbb{C} \mathbb{P}^{\mathrm{n}}$. Call $\mathrm{V}=\mathrm{V}\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{s}}\right)$ a complete intersection if at every $z \in V\left(f_{1}, \ldots, f_{s}\right), \mathrm{df}_{1}(z), \ldots, \mathrm{df}_{\mathrm{S}}(z)$ are linearly independent. In this case, V is a manifold and the vector space generated by $\mathrm{df}_{1}(z), \ldots, \mathrm{df}_{\mathrm{S}}(z)$ is the normal space of V at z, denoted by $N_{z}(V)$.

$$
\text { Let } T_{a}=\left[\begin{array}{cccc}
a_{00} & \cdots & \cdot & a_{o n} \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & & \cdot & \cdot \\
a_{n o} & \cdots & \cdot & \cdot \\
a_{n n}
\end{array}\right] \text { be an }(n+1) \times(n+1) \text { matrix }
$$

over \mathbb{C}. We can identify T_{a} with the point $a \equiv\left(a_{00}, \ldots, a_{n n}\right)$ in $\mathbb{C}^{(n+1)^{2}}$. Recall that if $\operatorname{det} T_{a} \neq 0$, then T_{a} defines a projective change of coordinates in $\mathbb{C} \mathbb{P}^{\mathrm{n}}$ by

$$
z_{i}^{\prime}=\sum_{j=0}^{n} a_{i j} z_{j}, \quad 0 \leqslant i \leqslant n
$$

and that for $\lambda \neq 0$ in \mathbb{C}, T_{a} and $T_{\lambda_{a}}$ define the same coordinate transformation.

Thus letting［a］denote the point in $\mathbb{C P} \mathbb{P}^{(n+1)^{2}-1}$ represented by $a, T_{\text {［a］}}$ is a well－defined coordinate transformation of $\mathbb{C} \mathbb{P}^{n}$ ．Note that for two representatives a_{1}, a_{2} of $[a], \operatorname{det} T_{a_{1}} \neq 0$ if and only if det $T_{a_{2}} \neq 0$ ．

Let $f_{1}, \ldots, f_{s}, g_{1}, \ldots, g_{t}$ be in $\mathbb{E}_{H}\left[z_{0}, \ldots, z_{n}\right]$ ，defining complete intersections $V_{1}=V\left(f_{1}, \ldots, f_{s}\right)$ and $V_{2}=V\left(g_{1}, \ldots, g_{t}\right)$ ．We say that V_{1} intersects V_{2} transversally at a point $z \in V_{1} \cap V_{2}$（we use the notation：V_{1} 雨 V_{2} at z ）if $N_{z}\left(V_{1}\right) \cap N_{z}\left(V_{2}\right)=\{0\}$ ，and that V_{1} intersects V_{2} transversally（ V_{1} 而 V_{2} ）if V_{1} 百 V_{2} at all $z \in V_{1} \cap V_{2}$ ．We write V_{1} 而 V_{2} if they are not transversal at at least one point．

It is clear that if $V\left(f_{1}, \ldots, f_{s}\right)$ is a complete intersection， then $T_{a}^{-1}\left(V\left(f_{1}, \ldots, f_{s}\right)\right)=V\left(f_{1} \circ T_{a}, \ldots, f_{s} \circ T_{a}\right)$ is also a complete intersection provided that $\operatorname{det} \mathrm{T}_{\mathrm{a}} \neq 0$ ．

THEOREM．Let $\mathrm{V}_{1} \equiv \mathrm{~V}\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{s}}\right)$ and $\mathrm{V}_{2} \equiv \mathrm{~V}\left(\mathrm{~g}_{1}, \ldots, \mathrm{~g}_{\mathrm{t}}\right)$ be two complete intersections，then the set $\left\{[a] \in \mathbb{C P} \mathbb{P}^{(n+1)^{2}-1} \mid\right.$ det $T a \neq 0, T_{a}^{-1}\left(V_{1}\right)$ 两 $\left.V_{2}\right\}$ is an open subset of a proper subvariety of $\mathbb{C} \mathbb{P}^{(n+1)^{2}-1}$ ．

$$
\text { For two matrices } T_{a} \text { and } T_{b} \text {, define }\left\|T_{a}-T_{b}\right\| \equiv \sup _{0 \leqslant i, j \leqslant n}\left|a_{i j}-b_{i j}\right|
$$

Let $I=\left(\delta_{i j}\right)$ denote the identity matrix where $\delta_{i j}=\left\{\begin{array}{ll}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{array}, i, j=0, \ldots, n\right.$ ．

COROLLARY 1．For any two complete intersections $V_{1}=V\left(f_{1}, \ldots, f_{s}\right)$ and $\mathrm{V}_{2}=\mathrm{V}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{t}}\right)$ in $\mathbb{\mathbb { P }} \mathbb{P}^{\mathrm{n}}$ ，there is a projective change of coordinates T_{a} such that $\mathrm{T}_{\mathrm{a}}{ }^{-1}\left(\mathrm{~V}_{1}\right)$ 而 V_{2} ．Morevoer，given $\varepsilon>0, \mathrm{~T}_{\mathrm{a}}$ can be chosen such that $\left\|T_{a}-I\right\|<\varepsilon$（that is，a suitable arbitrarily small＂perturbation＂ applied to V_{1} will make the image of V_{1} intersecting V_{2} transversally）．

COROLLARY 2．If $V_{1} \pi V_{2}$ ，then there exists $\varepsilon>0$ such that for all T_{a} with $\left\|T_{a}-I\right\|<\varepsilon$ ，we have $\operatorname{det} T_{a} \neq 0$ and $T_{a}^{-1}\left(V_{1}\right)$ 历 V_{2} ．（Geometrically，if V_{1} and V_{2} intersect transversally，then after applying any sufficiently small
"perturbation" to V_{1}, the image of V_{1} still intersects V_{2} transversely.)

§2. Proof of Theorem

First we show that $\left\{[a] \in \mathbb{C} \mathbb{P}^{(n+1)^{2}-1} \mid \operatorname{det} T_{a} \neq 0\right.$,
$T_{[a]}^{-1}\left(V_{1}\right)$ 而 $\left.V_{2}\right\}$ is an open subset of a subvariety of $\mathbb{C P}{ }^{(n+1)^{2}-1}$.

LEMMA (2.1). Let $f_{1}(z, w), \ldots, f_{r}(z, w)$ be in $\mathbb{C}_{H}\left[z_{0}, \ldots, z_{n}, w_{0}, \ldots, w_{m}\right]$. Moreover, suppose they are also homogeneous in the w's. Then the set $B=\left\{w \mid a z \neq 0, f_{i}(z, w)=0,1 \leqslant i \leqslant r\right\}$ is a projective variety in $\mathbb{C} \mathbb{P}^{m}$.

That is, the projection of $V\left(f_{1}, \ldots, f_{r}\right)$ to the w-space is also a variety. Note that for varieties over \mathbb{R}, there is no such a theorem. Consider, for example, $x^{2}+y^{2}=1$ in \mathbb{R}^{2}; its projection to the x-axis is the interval $[-1,1]$, which is not a variety.

Proof. Let

$$
f_{s}=|j|_{=e_{s}} c_{s j}\left(w_{0}, \ldots, w_{m}\right) z_{0}^{j_{0}}, \ldots, z_{n}^{j_{n}}
$$

where $j=\left(j_{0}, \ldots, j_{n}\right),|j|=j_{0}+\ldots+j_{n}, e_{s}$ is a constant, $\operatorname{deg}\left(f_{s}\right)=d_{s}$, $\operatorname{deg}\left(C_{s j}\right)=d_{s}-e_{s}$.

By elimination theory ([4], Vol. II, p. 8), f_{I}, \ldots, f_{r} possess
a resultant system of integral polynomials b_{v} in $C_{s j}\left(w_{0}, \ldots, w_{m}\right)$ such that the vanishing of all resultants is necessary and sufficient in order that the equations $f_{1}=0, \ldots, f_{r}=0$ has a nonzero solution $\left(z_{0}, \ldots, z_{n}\right)$. Moreover, the b_{v} are homogeneous in $C_{s j}\left(w_{0}, \ldots, w_{m}\right)$ for each s.

Let $b_{v}=\sum_{t=1}^{k} d_{t} \prod_{s=1}^{r} \prod_{|j|=e_{s}}^{c_{s j}(w)} \ell^{t}$, where k_{v} is a
constant depending on v. Then

$$
|j|_{=e_{s}} \ell_{s j}^{t}=q_{s}
$$

for all t, where q_{s} is a constant depending on s.
Therefore each term of b_{v} is of degree

$$
\sum_{s=1}^{r}\left(d_{s}-e_{s}\right)\left(\sum_{|j|=e_{s}} \ell_{s j}^{t}\right)=\sum_{s=1}^{r}\left(d_{s}-e_{s}\right) q_{s}
$$

in w_{0}, \ldots, w_{m}; note that this last number is a constant, hence b_{v} is homogeneous in $\mathrm{w}_{0}, \ldots, \mathrm{w}_{\mathrm{m}}$.

Now $w \in B$ if and only if $b_{v}(w)=0$ for all v; therefore B is the projective variety $\mathrm{V}\left(\mathrm{b}_{\nu}\right)$ in $\mathbb{C} \mathbb{P}^{\mathrm{m}}$.

Assume det $\mathrm{T}_{\mathrm{a}} \neq 0$. Observe that $\mathrm{T}_{\mathrm{a}}^{-1}\left(\mathrm{~V}_{1}\right)$ 而 v_{2} if and only if there exists $z \neq 0$ such that $(z, a) \equiv\left(z_{0}, \ldots, z_{n}, a_{00}, \ldots, a_{n n}\right)$ satisfies

$$
\begin{array}{ll}
\mathrm{F}_{\ell} \equiv \mathrm{f}_{\ell}{ }^{\circ} \mathrm{T}_{\mathrm{a}}=\mathrm{f}_{\ell}\left(\sum_{\lambda=0}^{n} \mathrm{a}_{\lambda \lambda} z_{\lambda}, \ldots, \sum_{\lambda=0}^{n} \mathrm{a}_{\mathrm{n} \lambda} z_{\lambda}\right)=0, \quad 1 \leqslant \ell \leqslant s, \\
\mathrm{~g}_{\mathrm{k}}=\mathrm{g}_{\mathrm{k}}\left(\mathrm{z}_{0}, \ldots, \mathrm{z}_{\mathrm{n}}\right)=0, & 1 \leqslant \mathrm{k} \leqslant \mathrm{t}, \tag{2.3}
\end{array}
$$

and $\left[\begin{array}{cccc}\frac{\partial F_{1}}{\partial z_{0}} & \cdots & \frac{\partial F_{1}}{\partial z_{n}} \\ \vdots & & \vdots \\ \frac{\partial F_{s}}{\partial z_{0}} & \cdots & \cdots & \frac{\partial F_{s}}{\partial z_{n}} \\ \frac{\partial g_{1}}{\partial z_{0}} & \cdots & \cdots & \frac{\partial g_{1}}{\partial z_{n}} \\ \vdots & & \vdots \\ \frac{\partial g_{t}}{\partial z_{0}} & \cdots & \frac{\partial g_{t}}{\partial z_{n}}\end{array}\right] \quad$ has rank $\quad \cdots+t$.

Since（2．2），（2．3），（2．4）are polynomials homogeneous both in（ z, a ）and in z ，the set

$$
\left.A_{1}=\left\{\left.[a] \in \mathbb{C} \mathbb{P}^{(n+1)^{2}-1}\right|_{\mathbb{Z} z \neq 0},(z, a) \text { satisfies }(2.2),(2.3), 2.4\right)\right\}
$$

is a projective variety in $\mathbb{C P}(n+1)^{2-1}$ ，by lemma（2．1）．

$$
\text { Now, since } A_{2}=\left\{[a] \mid \text { det } T_{a}=0\right\} \text { is a projective variety }
$$ in $\mathbb{C} \mathbb{P}^{(n+1)^{2}-1}$ ，we have the following，

LEMMA（2．5）．The set $A=\left\{[a] \in \mathbb{C} \mathbb{P}^{(n+1)^{2}-1} \mid\right.$ det $T_{a} \neq 0, T_{a}^{-1}\left(V_{1}\right)$ 丙 $\left.V_{2}\right\}$ is an open subset of the projective variety A_{1} defined above．In fact $A=A_{1}-A_{2}$.

It remains to show that A_{1} is a proper variety in $\mathbb{C} \mathbb{P}{ }^{(n+1)^{2}-1}$ ．

Remark．When $s+t>n+1$ ，（2．4）is always true．Hence $A_{1}=\left\{\left.[a] \in \mathbb{C P}^{(n+1)^{2}-1}\right|_{\mathbb{Z}} \neq 0\right.$ ，（ $\left.z, a\right)$ satisfies（2．2），（2．3）$\}$ ，which is a proper subset of $C \mathbb{P}{ }^{(n+1)^{2}-1}$（［1］Vol 2．P．157，Theorem 1）．Therefore our theorem holds for $s+t>n+1$ ．

In the following，we shall always assume $s+t \leqslant n+1$ ． Let $W=\left\{(z, a) \in \mathbb{C}^{(n+1)+(n+1)^{2}} \mid F_{\ell}(z, a)=0, g_{k}(z)=0\right.$ ，
$1 \leqslant \ell \leqslant s, 1 \leqslant k \leqslant t\}$ ．A point (z, a) in W is called a simple point if $\mathrm{dF}_{1}(\mathrm{z}, \mathrm{a}), \ldots, \mathrm{dF}_{\mathrm{s}}(\mathrm{z}, \mathrm{a}), \mathrm{dg}_{1}(\mathrm{z}, \mathrm{a}), \ldots, \mathrm{dg}_{\mathrm{t}}(\mathrm{z}, \mathrm{a})$ are linearly independent， otherwise it is called a singular point．

In the following lemma，every differential or partial
derivative is evaluated at（ z^{*}, a^{*} ）or z^{*} ．

LEMMA（2．6）．Assume $\operatorname{det} T_{a^{*}} \neq 0$ ，then each（ z^{*}, a^{*} ）in W with $z^{*} \neq 0$ is
a simple point．

Proof. Note that

$$
\begin{align*}
& d_{\ell}=\left(\frac{\partial F_{\ell}}{\partial z_{0}}, \ldots, \frac{\partial F_{\ell}}{\partial z_{n}}, \frac{\partial F_{\ell}}{\partial a_{00}}, \ldots, \frac{\partial F_{\ell}}{\partial a_{n n}}\right), 1 \leqslant \ell \leqslant s, \\
& d g_{k}=\left(\frac{\partial g_{k}}{\partial z_{0}}, \ldots, \frac{\partial g_{k}}{\partial z_{n}}, 0, \ldots, 0\right), \quad 1 \leqslant k \leqslant t . \tag{2.7}\\
& \text { First we show that }\left(\frac{\partial F_{1}}{\partial a_{00}}, \ldots, \frac{\partial F_{1}}{\partial a_{n n}}\right), \ldots,\left(\frac{\partial F_{s}}{\partial a_{00}}, \ldots, \frac{\partial F_{s}}{\partial a_{n n}}\right)
\end{align*}
$$

are linearly independent.
By the chain rule

$$
\begin{equation*}
\frac{\partial \mathrm{F}_{\ell}}{\partial \mathrm{a}_{i j}}=\frac{\partial \mathrm{f}_{\ell}}{\partial z_{i}}\left(\Sigma \mathrm{a}_{0 \lambda} *_{\lambda} *, \ldots, \Sigma \mathrm{a}_{\mathrm{n} \lambda} *_{z_{\lambda}} *\right) z_{j} * \tag{2.8}
\end{equation*}
$$

Since det $T_{a *} \neq 0$ and $z^{*} \neq 0, b^{*}=\left(\sum_{0 \lambda}{ }^{*} z_{\lambda} *, \ldots, \Sigma a_{n \lambda}{ }^{*} z_{\lambda}{ }^{*}\right)$
is nonzero. Now $\left(z^{*}, a^{*}\right) \in W$ implies $F_{\ell}\left(z^{*}, a^{*}\right)=f_{\ell}\left(\Sigma a_{0 \lambda}{ }^{*} z_{\lambda} *, \ldots, \Sigma a_{n \lambda}{ }^{*} z_{\lambda} *\right)=0$, $1 \leqslant l \leqslant s$, so $b * \in V\left(f_{1}, \ldots, f_{s}\right)$. Since $V\left(f_{1}, \ldots, f_{s}\right)$ is a complete intersection and b^{*} is a set of homogeneous coordinates of a point in $\mathbb{C} \mathbb{P}^{n}$, $\mathrm{df}_{1}\left(\mathrm{~b}^{*}\right), \ldots, \mathrm{df}_{\mathrm{s}}(\mathrm{b} *)$ are linearly independent.

Assume $\sum_{\ell=1}^{s} c_{\ell}\left(\frac{\partial F_{\ell}}{\partial a_{00}}, \ldots, \frac{\partial F_{\ell}}{\partial a_{n n}}\right)=0$, then by (2.8),

$$
\sum_{\ell=1}^{s} c_{\ell}\left(\frac{\partial \mathrm{F}_{\ell}}{\partial \mathrm{a}_{00}}, \ldots, \frac{\partial \mathrm{~F}_{\ell}}{\partial \mathrm{a}_{\mathrm{nn}}}\right)
$$

$=\sum_{\ell=1}^{s} C_{\ell}\left(\frac{\partial f_{\ell}}{\partial z_{0}}(\mathrm{~b} *) z_{0} *, \ldots, \frac{\partial \mathrm{f}_{\ell}}{\partial z_{0}}(\mathrm{~b} *) \mathrm{z}_{\mathrm{n}} *, \ldots, \frac{\partial \mathrm{f}_{\ell}}{\partial \mathrm{z}_{\mathrm{n}}}(\mathrm{b} *) \mathrm{z}_{0}{ }^{*}, \ldots, \frac{\partial \mathrm{f}_{\ell}}{\partial \mathrm{z}_{\mathrm{n}}}(\mathrm{b} *) \mathrm{z}_{\mathrm{n}} *\right)$
$=0$

This implies

$$
\begin{aligned}
0 & =\sum_{\ell=1}^{s} c_{\ell}\left(\frac{\partial \mathrm{f}_{\ell}}{\partial \mathrm{z}_{0}}(\mathrm{~b} *){z_{j}}^{*}, \ldots, \frac{\partial \mathrm{f}_{\ell}}{\partial \mathrm{z}_{\mathrm{n}}}\left(\mathrm{~b}^{*}\right){z_{j}}^{*}\right) \\
& =\left[\sum_{\ell=1}^{s} c_{\ell}\left(\frac{\partial \mathrm{f}_{\ell}}{\partial z_{0}}\left(\mathrm{~b}^{*}\right), \ldots, \frac{\partial \mathrm{f}_{\ell}}{\partial z_{\mathrm{n}}}\left(\mathrm{~b}^{*}\right)\right)\right] z_{j}^{*}, \quad 0 \leqslant j \leqslant \mathrm{n} .
\end{aligned}
$$

Choose j such that $z_{j} * \neq 0$, then by linear independency of $\mathrm{df}_{1}\left(\mathrm{~b}^{*}\right), \ldots, \mathrm{df}_{\mathrm{s}}\left(\mathrm{b}^{*}\right), \mathrm{C}_{1}=\ldots=\mathrm{C}_{\mathrm{s}}=0$. Hence $\left(\frac{\partial \mathrm{F}_{1}}{\partial \mathrm{a}_{00}}, \ldots, \frac{\partial \mathrm{~F}_{1}}{\partial \mathrm{a}_{\mathrm{nn}}}\right), \ldots,\left(\frac{\partial \mathrm{F}_{\mathrm{s}}}{\partial \mathrm{a}_{00}}, \ldots, \frac{\partial \mathrm{~F}_{\mathrm{s}}}{\partial \mathrm{a}_{\mathrm{nn}}}\right)$ are linearly independent. Now we complete the proof of the lemma. If
$\sum_{\ell=1}^{s} d_{\ell} \mathrm{dF}_{\ell}+\sum_{k=1}^{\mathrm{t}} \mathrm{e}_{\mathrm{k}} \mathrm{dg}_{\mathrm{k}}=0$, then by (2.7) and above, $\mathrm{d}_{1}=\ldots=\mathrm{d}_{\mathrm{s}}=0$. Since $\mathrm{dg}_{1}, \ldots, \mathrm{dg}_{\mathrm{t}}$ are linearly independent, $\mathrm{e}_{1}=\ldots=\mathrm{e}_{\mathrm{t}}=0$ also.

Let p be an analytic (resp. differential) map of M_{1} to M_{2}, where M_{1}, M_{2} are analytic (resp., differential) manifolds. A point q of M_{1} is called a critical point of p if for some coordinate charts (U, ϕ) about q and (V, ψ) about $p(q)$, the Jacobian matrix of $\psi \circ p \circ \phi^{-1}$ at $\phi(q)$ is of rank less than the dimension of M_{2}. A point $q \in M_{2}$ such that $p^{-1}(q)$ contains at least one critical point is called a critical value. Note that the above definitions are independent of the choice of (U, ϕ) and (V, ψ).

Let $V=V\left(h_{1}, \ldots, h_{r}\right) \subset K^{N}$, where $K=\mathbb{C}$ or \mathbb{R}, with $r \leqslant N$, $\mathrm{q} \in \mathrm{V}$. Suppose $d h_{1}(\mathrm{q}), \ldots, \mathrm{dh}_{\mathrm{r}}(\mathrm{q})$ are linearly independent at q (q is then a simple point of V), then V is a manifold near q, of dimension $N-r$. Let p be an analytic function from K^{N} to K^{m}, let p^{\prime} denote the restriction of p to V, and let $T q(V)=\left\{z \in K^{N} \mid z \cdot d h_{i}(q)=0, i=1, \ldots, r\right\}$, where "." is the standard inner product in K^{N}, then q is a critical point of p^{\prime} if and only if $d p(q)(T q V)$ is a proper subset of k^{m}.

$$
\text { Let } W^{\prime}=\left\{(z, a) \in W \mid \operatorname{det} T_{a} \neq 0, z \neq 0\right\} \text {, then } W^{\prime} \text { consists }
$$

entirely of simple points by lemma (2.6), so it is a manifold. Let P be the projection of $\mathbb{C}^{(n+1)+(n+1)^{2}}$ to $\mathbb{C}^{(n+1)^{2}}$ which maps (z, a) to a. Let $\overline{\mathrm{P}}$ denote the restriction of P to W^{\prime}. Since the differential of a projection is itself, we have $d P(z, a)=P$.

Now we prove our crucial lemma, which gives us a characterization of transversality in Differential Topology.

LEMMA (2.9). Assume det $T_{a *} \neq 0, z^{*} \neq 0$, then (z^{*}, a^{*}) is a critical point of \bar{P} if and only if (z^{*}, a^{*}) satisfies (2.2), (2.3) and (2.4).

Proof. In this proof, all differentials and partial derivatives are evaluated at $\left(z^{*}, a^{*}\right)$ or z^{*}. Also, (z, a) stands for points in $\mathbb{C}^{(n+1)+(n+1)^{2}}$.
$\Leftrightarrow \quad$ Since $d P\left(z^{*}, a^{*}\right)\left(T\left(z^{*}, a^{*}\right)^{W^{\prime}}\right)$

$$
\begin{aligned}
& =P\left(\left\{(z, a) \mid(z, a) \cdot d F_{\ell}=0,(z, a) \cdot d g_{k}=0,1 \leqslant \ell \leqslant s ; 1 \leqslant k \leqslant t\right\}\right) \\
& =\left\{a \mid d z,(z, a) \cdot d F_{\ell}=(z, a) \cdot d g_{k}=0,1 \leqslant \ell \leqslant s, 1 \leqslant k \leqslant t\right\},
\end{aligned}
$$

$\left(z^{*}, a^{*}\right)$ is a critical point of $\overline{\mathrm{P}}$ if and only if there exists a $\in \mathbb{C}^{(\mathrm{n}+1)^{2}}$ such that the system

$$
\begin{cases}z \cdot\left(\frac{\partial F_{\ell}}{\partial z_{0}}, \ldots, \frac{\partial F_{\ell}}{\partial z_{n}}\right)=-a \cdot\left(\frac{\partial F_{\ell}}{\partial a_{00}}, \ldots, \frac{\partial F_{\ell}}{\partial a_{n n}}\right), & 1 \leqslant \ell \leqslant s \tag{2.10}\\ z \cdot\left(\frac{\partial g_{k}}{\partial z_{0}}, \ldots, \frac{\partial g_{k}}{\partial z_{n}}\right)=0, & 1 \leqslant k \leqslant t\end{cases}
$$

has no solution in $\mathbb{C}^{\mathrm{n}+1}$. Now if $\left(z^{*}, a^{*}\right)$ is a critical point, then there exists a such that (2.10) and (2.11) have no common solution, therefore $\left(\frac{\partial F_{1}}{\partial z_{0}}, \ldots, \frac{\partial F_{1}}{\partial z_{n}}\right), \ldots,\left(\frac{\partial g_{t}}{\partial z_{n}}, \ldots, \frac{\partial g_{t}}{\partial z_{n}}\right)$ must be linearly dependent at $\left(z^{*}, a^{*}\right)$. Therefore, $\left(z^{*}, a^{*}\right)$ satisfies (2.4). Since ($\left.z^{*}, a^{*}\right) \in W^{\prime} \subset W,\left(z^{*}, a^{*}\right)$ also satisfies (2.2) and (2.3).
$\Leftrightarrow \quad$ Conversely, assume (z^{*}, a^{*}) satisfies (2.2), (2.3) and (2.4). since $\operatorname{det} T_{a^{*}} \neq 0, z^{*} \neq 0,\left(z^{*}, a^{*}\right) \in W^{\prime}$. As (z^{*}, a^{*}) satisfies (2.4), $\alpha_{1}=\left(\frac{\partial F_{1}}{\partial z_{0}}, \ldots, \frac{\partial F_{1}}{\partial z_{n}}\right), \ldots, \alpha_{s}=\left(\frac{\partial F_{s}}{\partial z_{0}}, \ldots, \frac{\partial F_{s}}{\partial z_{n}}\right), d g_{1}, \ldots, d g_{t}$ are linear1y dependent, so there exist d_{ℓ}, e_{k}, not all zero, such that

$$
\begin{equation*}
\sum_{\ell=1}^{\mathrm{s}} \mathrm{~d}_{\ell}^{\alpha} \ell+\sum_{k=1}^{\mathrm{t}} \mathrm{e}_{\mathrm{k}} \mathrm{dg}_{k}=0 \tag{2.12}
\end{equation*}
$$

Note that since $\mathrm{dg}_{1}, \ldots, \mathrm{dg}_{\mathrm{t}}$ are linearly independent, some d_{ℓ} must be nonzero.

$$
\text { Since }\left(\frac{\partial F_{1}}{\partial a_{00}}, \ldots, \frac{\partial F_{1}}{\partial a_{n n}}\right), \ldots,\left(\frac{\partial F_{s}}{\partial a_{00}}, \ldots, \frac{\partial F_{s}}{\partial a_{n n}}\right) \text { are linearly }
$$

independent (see the proof of lemma (2.6)), there exists $b \in \mathbb{W}^{(n+1)^{2}}$ such that $-\mathrm{b} \cdot\left(\frac{\partial \mathrm{F}_{\ell}}{\partial \mathrm{a}_{00}}, \ldots, \frac{\partial \mathrm{~F}_{\ell}}{\partial \mathrm{a}_{\mathrm{nn}}}\right)=\mathrm{d}_{\ell}, 1 \leqslant \ell \leqslant \mathrm{~s}$.

$$
\text { Now, if for this } b,(2.10),(2.11) \text { have a solution, say } z \text {, }
$$

then $z \cdot \alpha_{\ell}=d_{\ell}$ and $z \cdot d_{k}=0$, hence (2.12) implies

$$
\begin{aligned}
0 & =\sum_{\ell=1}^{s} d_{\ell}\left(z \cdot \alpha_{\ell}\right)+\sum_{k=1}^{t} e_{k}\left(z \cdot d g_{k}\right) \\
& =\sum_{\ell=1}^{s} d_{\ell}{ }^{2} .
\end{aligned}
$$

But $\sum_{\ell=1}^{S} d_{\ell}^{2} \neq 0$, we have a contradiction. Therefore $\left(z^{*}, a^{*}\right)$ is a critical point of $\overline{\mathrm{P}}$.

> In order to apply Sard's Theorem (which is stated for real differential manifolds) to complete the proof, we need the following:

LEMMA (2.13). Let $V=V\left(h_{1}, \ldots, h_{r}\right) \subset \mathbb{C}^{N}, r \leqslant N$, and let
$z_{j}=x_{j}+i y_{j}\left(x_{j}, y_{j} \in \mathbb{R}\right), 1 \leqslant j \leqslant N$, then $z=x+i y$ where
$x=\left(x_{1}, \ldots, x_{N}\right), y=\left(y_{1}, \ldots, y_{N}\right)$. Let $(x, y)=\left(x_{1}, y_{1}, \ldots, x_{N}, y_{N}\right)$, then $h_{\ell}(\mathrm{z})=\mathrm{u}_{\ell}(\mathrm{x}, \mathrm{y})+i \mathrm{v}_{\ell}(\mathrm{x}, \mathrm{y}), 1 \leqslant \ell \leqslant r$, where $\mathrm{u}_{\ell}, \mathrm{v}_{\ell}$ are the real and imaginary parts of h_{ℓ}. It is clear that $z^{*}=x^{*}+i y^{*} \in V$ if and only if $\left(x^{*}, y^{*}\right) \in V\left(u_{1}, v_{1}, \ldots, u_{\ell}, v_{\ell}\right) \equiv V^{\prime} \subset \mathbb{R}^{2 N}$.

By applying Cauchy-Riemann conditions, we have the following:
(i) $\quad \mathrm{dh}_{1}\left(\mathrm{z}^{*}\right), \ldots, \mathrm{dh}_{r}\left(\mathrm{z}^{*}\right)$ are linearly independent if and only if $d u_{1}\left(x^{*}, y^{*}\right), d v_{1}\left(x^{*}, y^{*}\right), \ldots, d u_{r}\left(x^{*}, y^{*}\right), d v_{r}\left(x^{*}, y^{*}\right)$ are linearly independent.

$$
\begin{equation*}
T_{\left(x^{*}, y^{*}\right)} V^{\prime}=\left\{(x, y) \mid x+i y \in T_{z^{*}} V\right\} \tag{ii}
\end{equation*}
$$

(iii) Let f be an analytic map of \mathbb{C}^{N} to \mathbb{C}^{m}, and let f^{\prime} be the map from $\mathbb{R}^{2 N}$ to $\mathbb{R}^{2 m}$ defined by

$$
f^{\prime}(x, y)=(\operatorname{Re}[f(x+i y)], \operatorname{Im}[f(x+i y)])
$$

Clearly, f^{\prime} is a differential function and

$$
\mathrm{df}^{\prime}\left(\mathrm{x}^{*}, \mathrm{y} *\right)(\mathrm{x}, \mathrm{y})=\left(\operatorname{Re}\left[\mathrm{df}\left(z^{*}\right)(\mathrm{x}+\mathrm{iy})\right], \operatorname{Im}\left[\overline{\mathrm{df}}\left(z^{*}\right)(\mathrm{x}+\mathrm{iy})\right]\right)
$$

By (ii) and (iii), $\mathrm{df}^{\prime}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right)\left(\mathrm{T}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right) \mathrm{V}^{\prime}\right)$ is a proper subset of $\mathbb{R}^{2 N}$ if and only if $\operatorname{df}\left(\mathrm{z}^{*}\right)\left(\mathrm{T}_{z^{*}} \mathrm{~V}\right)$ is a proper subset of $\mathbb{C}^{\mathbb{N}}$.

Now, if z^{*} is a simple point, so is (x^{*}, y^{*}) (by (i)); z^{*} is a critical point of $\left.f\right|_{V}$ implies that $\left(x^{*}, y^{*}\right)$ is a critical point of $f^{\prime} \mid V^{\prime}$ (by (iii)). The converse of the above statement is also true.

Proof of Theorem. By lemma (2.5) and (2.9), [a] $\in A$ if and only if $\operatorname{det} \mathrm{T}_{\mathrm{a}} \neq 0$ and there exists $\mathrm{z} \neq 0$ such that (z, a) is a critical point of \bar{P}. Now in lemma (2.13), let $V=W, f=P,\left.f\right|_{U \prime}=\bar{P}$ and $V^{\prime \prime}=\left\{(x, y, u, v) \mid(x+i y, \mu+i v) \in W^{\prime}\right\}$. Clearly, $V^{\prime \prime} \subset V^{\prime}$. Now $(z, a) \equiv(x+i y, \mu+i v)$ is a critical point of $\overline{\mathrm{P}}$ if and only if ($x . y, \mu, v$) is a critical point of $f^{\prime} \mid V^{\prime \prime}$

For a subset D of $\mathbb{C} \mathbb{P}^{(n+1)^{2}-1}$, let $[D]=\left\{z_{1} \in \mathbb{C}^{(n+1)^{2}} \mid z_{1}=\lambda z\right.$, $\lambda \in \mathbb{C}, \quad z \in D\}$, then clearIy $\left[\mathbb{C} \mathbb{P}^{(n+1)^{2}-1}-D\right] \supset \mathbb{C}^{(n+1)^{2}}-[D]$.

By Sard's Theorem ([3], p. 47), the set $C=\{(\mu, v) \mid(\mu, v)$ is a critical value of $\left.\left.f^{\prime}\right|_{V^{\prime \prime}}\right\}$ does not contain any open subset of $\mathbb{R}^{2(n+1)^{2}}$. Therefore [A] contains no open subset of $\mathbb{C}^{(n+1)^{2}}$. If $A^{\prime}=\mathbb{C} \mathbb{P}^{(n+1)^{2}-1}$, $\left[A^{\prime}\right]=\mathbb{C}^{(\mathrm{n}+1)^{2}}$, then since $\left[\mathrm{A}^{\prime \prime}\right]$ is a proper closed subset of $\mathbb{C}^{(\mathrm{n}+1)^{2}}$, $[A]=\left[A^{\prime}-A^{\prime \prime}\right]=\left[G \mathbb{P}(n+1)^{2}-1-A^{\prime \prime}\right] \supset \mathbb{C}^{(n+1)^{2}}-\left[A^{\prime \prime}\right]$, which is a nonempty open subset of $\mathbb{C}^{(n+1)^{2}}$. This is a contradiction. Therefore $A^{\prime} \varsubsetneqq \mathbb{C} \mathbb{P}^{(\mathrm{n}+1)^{2}-1}$. Now the theorem follows immediately from lemma (2.5).

Proof of Corollaries. Corollary 1 is obvious. Corollary 2 is also obvious by noting that $A^{\prime \prime}$ is a proper subvariety of $\$ \mathbb{P}^{(n+1)^{2}-1}$.

REFERENCES

[1] HODGE, W.V.D. and PEDOE, D., Methods of Aígebraic Geometry, Cambridge (1968).
[2] KUO, T.C., On C°-Sufficiency of Jets of Potential Functions, Topology, Vo1. 8, pp 167-171 (1969).
[3] STERNBERG, S., Lectures on Differential Geometry, Prentice-Hall (1964).

