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Abstract 

This thesis consists of two parts. In part I, we propose, based on a new approach 

presented by Cai in 1991, two new crossover operators called LDPX (Local Dynamic 

Programming Crossover) and SPIR (single parent improved reproduction) for ge-

netic algorithms for solving traveling salesman problem (TSP). We also develop a 

general-purpose TSP Solver called GASL which uses SPIR and LDPX as the core 

of genetic operators. Experimental results show that GASL can obtain optimal or 

near-optimal solutions for all TSPs we have tested. Comparison with other genetic 

algorithms with different crossover operators, such as partially mapped crossover 

(PMX) and edge recombination crossover (ER) has also been done. Part II of this 

thesis will focus on applying the TSP Solver to a practical problem - Flowshop 

Scheduling with Travel Time Between Machines (FSTTBM). The formulation of 

this problem will be described and the algorithm for the transforming of FSTTBM 

into TSP will be proposed. Then, GASL is applied to find a solution. A lot of 

randomly generated FSTTBMs have been solved by our proposed method and the 

results of the experiments show that the new method is very effective as compared 

with other well-known methods. 
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Chapter 1 

Introduction 

1.1 Traveling Salesman Problem 

The formulation of the Traveling salesman problem (TSP) is simple, which can be 

stated as [44]: ^'Assume that a salesman wants to visit N cities. Given the cost 

c{i,j) of traveling from city i to city j，i^j = 1, 2 , n , how could he visit every city 

exactly once and then come back to the starting city with minimum total cost of the 

tour?,’. This is a classic combinatorial optimization problem, a formal description 

of which originated as early as in 1832 in a book printed in Germany entitled ,The 

Traveling Salesman, how he should be and what he should do to get Commissions 

and to be Successful in his Business. By a veteran Traveling Salesman，. [63]. 

It has been found, however, that many practical problems may fit into this 

simple model. For example, consider the problem of computer network wiring, 

which connects all computers in a ring topology by cables or optical fibers [15] [59]. 

If there are N computers and we are given the costs for cabling between any two 

computers, a problem will be how to build up the network so that the total cost is 

minimum. Obviously, this problem can be formulated as an iV-city TSP. Another 

example of application of TSP is the process of manufacturing a circuit board [46]. 

In this process, many holes have to be drilled using drilling machines. After the 

coordinates and the sizes of all the holes to be drilled are known, the machine will 
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automatically drill them one by one following a pre-specified sequence. The problem 

is: what is the optimal sequence of the holes if one wants to minimize the total time 

spent on the drilling process? There are many other applications of TSP, including 

X-ray crystallography [5] , VLSI fabrication [40], etc., see [44] and [37 . 

Thus, determining solutions to many practical problems reduces to finding solu-

tions to their corresponding TSP models. Nevertheless, it has been known that TSP 

is very hard to solve in nature. In fact, TSP has been classified as one of the most 

notoriously intractable combinatorial optimization problems. In theory, it has been 

proven that TSP is a problem which is NP-Hard in the strong sense [19] [38]. A 

simple observation may help explain the difficulty of this problem. Given an A/̂ -city 

TSP, it is easy to see that there will be possible tours. If it takes 1 X 10"^ 

second to evaluate the cost of a tour, we shall need 36 seconds to find the optimal 

tour for a 10-city TSP and we shall need 151 days for a 15-city problem. If N grows 

up to 30, we shall need 2.8 X years to search all combinations. It means that 

it is practically impossible to get the global optimum tour. Considering its inherent 

difficulty, researchers have been striving to devise effective approaches for solving 

TSP. 

Traditionally, there are two classes of approaches proposed for solving TSP. The 

first class consists of methods based on mathematical programming, such as dy-

namic programming [29], branch-and-bound method [47] [42], and integer program-

‘ ming [49]. The other class consists of those so-called heuristic methods. Generally 

speaking, mathematical methods can guarantee the optimality of the solution ob-

tained, but they often require excessive computational requirements. In fact, most 

of these methods are so computational cumbersome that they actually cannot be 

applied to solve any practical problem of moderate size. Heuristic methods include 

nearest neighbour [58], nearest insertion [58], farthest insertion [58], convex hull 

method [18], greedy algorithms [43], and Lin-Kernighan's 2-opt or 3-opt methods 

45] [61] [50] [37]. They are efficient, but they usually offer no guarantee to find any 

solution of reasonably good quality. Analysis has shown that the quality of solutions 
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obtained by these methods are frequently worse than that of the optimal solution 

by a percentage varying from 2% to 36%. Besides, the performance of these meth-

ods are usually problem dependent [44]. For instance, farthest insertion has been 

shown to be good in approximating the solution of a 100-city TSP problem from 

Krolak/Felts/Nelson [41] but much worse in solving other Krolak/Felts/Nelson's 

problems [41]. 

Because of those limitations exhibited in the traditional approaches, a third 

class of solution methods have emerged in recent years, which are the so-called 

inter-disciplinary approaches. These include simulated annealing (SA) [39], genetic 

algorithms (GA) [25], and taboo search [20]. These new methods have shown great 

promise in solving some very complicated combinatorial problems including some 

large-scale traveling salesman problems, although they are still under investigation 

and development because of the various open issues that need to be resolved. For 

a comprehensive review, see ([44] [25] [36]). A primary objective of this thesis is to 

resolve one of the critical problems in using GA for TSP. For this reason, we will 

now review this methodology in some details. 

1.2 Genetic Algorithms 

John Holland invented Genetic algorithms (GA) in 1975 when he published his book 

Adaptation in Natural and Artificial Systems [31]. GA have since become a topic 

of active research, see [25]. In general, GA are a class of searching methods based 

on the analogy to the natural evolution process. In searching for the optimum, a 

genetic algorithm always maintains a population of individuals. Each individual 

represents a potential solution and is associated with a value to represent its fitness. 

Then, the population undergoes an evolution process. During this process, fitter 

individuals will be selected into a parent pool for reproducing the next generation. 

The selection is biased towards those individuals that have higher fitness values. 

Offsprings (new solutions) will be generated by performing certain genetic opera-

tions, such as crossover and mutation, over the individuals drawn from the parent 
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pool. Then, a new generation will be produced. This evolution process continues 

until the population consists of individuals which are optimum or near optimum. 

Classically, an individual is represented by a binary string, e.g. x i= (01011001) 

and X2= (01110101), which are often termed chromosomes. When a crossover op-

eration is to be carried out over a pair of parents, a cutting point will be selected 

randomly, and the chromosomes of the parents will be both split at that point and 

then the segments of those chromosomes will be exchanged to give the offspring. 

For example, suppose parents are xi and X2 as described above. If the cutting point 

is 3, then the offsprings will be yi=01010101 and y2=01111001. Mutation alters 

directly one or more elements of a chromosome. For example, a mutation occurring 

at the element 6 of the parent xi=10111001 will generate yi=10111101. 

In general, a canonical genetic algorithm has the following steps: 

1. Initialize Population 

Randomly generate an initial population POPULATION (0), and set k=0. The 

population consists of a number of individuals. Each individual is associated 

with a fitness value. The number of individuals is the population size PSIZE. 

2. Generate the parent pool for reproduction 

Selecting individual i from POPULATION (k) into the parent pool with prob-

ability: 

� j: ! ， m , 

where f{j) is the fitness value of individual j. 

3. Crossover 

Randomly select two individuals xi, X2 from the parent pool. Generate a 

random cutting point. Exchange the splitted chromosomes of the two par-

ents. After crossing, the offspring yi and y2 generated will be put into the 

POPULATION (k+1). However, not all individuals in POPULATION (k+1) 
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come from crossover operation. In fact, some of them are randomly selected 

from POPULATION (k) so that population sizes will be maintained constantly 

throughout the evolution. The ratio of the number of individuals generated 

by crossover to PSIZE is known as the crossover probability. 

4. Mutation 

Randomly choose an individual from POPULATION (k+1) and alter randomly 

an element of the chromosome of the individual with probability, Pmut-

5. If the standard deviation of POPULATION(k+l) is less than certain prespec-

ified small amount, the algorithm stops; otherwise set k=k+l , and go to step 

2. 

1.3 Solving TSP using Genetic Algorithms 

GA have been successfully applied in solving complicated problems where no effec-

tive methods are available to solve the problems exactly in a reasonable time span. 

Examples include optimization of gas pipeline [22], Blind knapsack problem [24], 

etc., see [25] [6]. Inspired by these successful applications, there have been a lot of 

efforts expended to applying GA for solving TSP. However, these attempts have all 

encountered a major difficulty, namely, the production of illegal offspring generated 

from the traditional crossover operation. This is illustrated as follows: 

For a traveling salesman problem, an easy and natural representation of the 

chromosome of a route (an individual) is the sequence of cities in this route. For 

example, x i= (3,1,2,5,4) and X2= (2,5,3,4,1) give the sequences of cities in two 

solutions, which can be used as the chromosomes of the two solutions. Then, if a 

traditional crossover operation applies with a cutting point equal to 2, namely: 

= (3,112,5,4) 

X2 - (2,513,4,1) 
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Then the offspring generated will be: 

yi = (3,1,3,4,1) 

y2 = (2,5,2,5,4) 

It can be seen that offspring yi misses cities 2 and 5 and repeats cities 1 and 3 

while the other one 1/2 misses cities 1 and 3 and repeats cities 2 and 5. Both of them 

are illegal (infeasible) tours. 

Because the problem as shown above always exists in the traditional crossover 

operator, a number of special-purpose crossover operators have been invented for 

TSP. They are Partially mapped crossover operator [23], Order crossover operator 

12]，Cyclic crossover operator [52], Edge recombination crossover operator [65]. 

A famous crossover operator is partially mapped crossover, proposed by Gold-

berg and Lingle in 1985 [23]. In this crossover operator, a subsequence of a tour is 

selected by choosing two random cutting points. For instance, consider the following 

two parents â i and X2 with two random cut points at positions 3 and 7: 

a；! = (1,2,3 I 4,5,6,7 I 8,9) 

= (4，5,2 11,8,7,6 I 9,3) 

The first step of PMX is to build up a swapping list from the elements between 

the cutting points. For the above parents, the swapping list will be (1 f-)- 4, 8 f-)-

5,7 f-)- 6,6 7). Then, we change the elements of the two parents based on this 

swapping list. 

For instance, the first city of Xi will change from 1 to 4 while the second city 

of xi is 2 remains unchanged because city 2 does not appear in the swapping list. 

Finally, two offspring yi and 約 are generated as follows: 
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yi = (4,2,3 11,8,7,6 I 5,9) 

2/2 = (1，8,2 I 4,5,6,7 I 9,3) 

The above example shows that offsprings generated will inherit segments of chro-

mosome between two cutting points from parents. 

Although PMX [23] guarantees to generate legal offspring, our computational 

experiment on PMX shows that the results were not so satisfactory. In our ex-

periment, a genetic algorithm with PMX, called GA(PMX), is used to solve four 

standard TSPs "Eilon50", ”Eilon75，，，"EilonlOO" [17], "oli30" [52]. The 'Time' is 

the computing time of GA(PMX) on a DEC Alpha workstation model AXP3800 -

200MHz. 

Source N Optimal GA(PMX) % above Opt Time (sec) 

Oliver 30 420 536 27.6% 41 

Eilon 50 425 643 51.3% 184 

Eilon 75 538 1109 106.1% 562 

Eilon 100 629 1846 193.5% 262 

From the result shown above one can see that GA(PMX) is in fact still far from 

satisfaction. Similar conclusion may apply to other operators. 

The main difficulty in crossover operations as stated above as well as the unsat-

isfactory performance of the existing operators constitute our motivation to explore 

new crossover operation schemes. This will be the main work of this thesis. 

lA Outline of Work 

My work in this thesis is primarily based on a new approach proposed by Cai in 

1991 [8], with a new idea for doing crossover operation for TSP. The idea is to invent 

a kind of local dynamic programming (DP) procedure to explore the gene sets of 
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the parents so as to find the best offspring that the parents can deliver. This idea 

will be elaborated in details in Chapter 2 below. 

My main work in this thesis can be grouped into two parts. In part I, my work is 

to analyze the approach of Cai, propose an enhanced scheme based on the analysis, 

develop a general-purpose TSP solver based on the enhanced scheme, and evaluate 

the performance of the Solver by computational experiments. I will show that the 

enhanced scheme can get around an unsolved problem that exists in Cai's original 

approach. I will report on the computational results that I have obtained in a se-

ries of computational experiments in evaluating the performance of our TSP solver 

based on the standard testing problems. As a result of our work, a new crossover 

operator, called LDPX (Local Dynamic Programming Crossover), has been devel-

oped. Moreover, a new genetic operator, which generates offspring based on the gene 

information of a single parent, called SPIR (single parent improved reproduction), 

has also been proposed. A new genetic algorithm based on SPIR and LDPX have 

been constructed. Experimental results have shown that the performance of our 

TSP solver is surprisingly good, which can obtain optimal or near-optimal solutions 

for all problems we have tested. Its performance is much better than those GA with 

other operators like Edge Recombination operator [65]. 

Part II of this thesis will focus on applying the TSP solver for a practical problem 

-Flowshop Scheduling with Travel Times Between Machines (FSTTBM). I will 

first describe the formulation of this problem, and show that this problem can be 

transformed into a TSP model. Algorithms for performing the transformation will 

be proposed. Then, we apply our TSP Solver to solve this problem. A series of 

computational experiments have also been carried out, the results of which show that 

our proposed method is very effective as compared with other heuristic methods. 
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Part I 

Algorithm Development 
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Chapter 2 

A Local DP Crossover 

Operator — LDPX 

2.1 Review of DP for Solving TSP 

In this chapter, a crossover operator based on DP will be developed. Let us review 

this idea of using DP to solve TSP first. 

Dynamic programming (DP) is a multi-stage decision approach, which was in-

vented by Bellman [4]. The basic idea of DP [4] [16] [33] is to formulate the problem 

as a multi-stage decision problem and then determine the optimal decisions stage 

by stage. There are, in general, a number of states at each stage. Each state is 

associated with an optimal value which is evaluated based on the so-called principle 

of optimality. 

DP has been applied to solve TSP, for example, [29]. The traditional approach in 

doing this is to separate an N-city TSP problem into an N-stage decision problem. 

First, we arbitrarily choose any one city as the last city visited for the decision 

problem. Without loss of generality, let us choose city N. At stage k, a state g is 

defined as a subset of k cities which are selected from cities {1,2,...，TV — 1}. For 

example, g 二 (2,3,6) and g = (2,3,6,7) are states in stage 3 and stage 4 respectively. 

For each state g, an objective function g) is defined as the optimal cost of the 
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tour starting from city i £ g, visiting all other cities in g once and only once and at 

last, visiting city N. In summary, we have the following set of states for each stage: 

Stage 1: {1} {2} {3} . . . {A^ - 1} 

Stage 2: {1,2} {1,3} {1,4} . . . { i V - 2 , 7 V - l } 

Stage 3: {1,2,3} {1,2,4} {1,2,5} . . . {AT - 3, iV — 2，AT - 1} 

Stage N-1: {l，...，iV — 1} 

At stage N -1, the decision problem is to find the optimal cost starting from 

every city via all other cities and ending at city N. At the last stage, stage N, 

the decision problem is to find the optimal cost starting from city N via all cities 

and ending at city N. The following is a recursive relationship for calculating the 

optimal cost, 5*. 

Given N cities, and let c{ij) be the cost of traveling from city i to city j, we 

have: 

5*(i , { i }) = c{i,N) , where i = l，2，...,7V-l 

= min {c{i,u)S%u,g - {i})} , where ieg 
ueg-{t} 

S* = min {c(iV, u) + {1, 2 , N - 1})} 
ue{i,...,N} 

Since there are (斤厂丄)different subsets at stage k, the total number of states 

throughout the searching will be ( � ”，w h e r e A; = 1, 2, ..”N - 1. It means that 

the total number of states to be evaluated using DP is 0(2^"^). It shows that the 

complexity of using DP to solve TSP will exponentially increase with respect to N, 

the number of cities. 

The algorithm is as follows: 
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INPUT: Distance matrix of a TSP 

DECLARATION: 
: The optimal cost for subset g. 

S* : The overall optimal cost. 
BestPath{i,g) : The optimal solution of 
BestTour : The overall optimal tour. 

BEGIN 
FOR i = 1,2, ...,7V — 1 DO 

BEGIN 

BestPath{i, {i}) = (i, N) 
END 

END FOR 

FOR EACH g C {1 ,2 , . . . , Â  - 1} with \g\ = j do 
FOR EACH i e g 

BEGIN 
S"%g�= u) + S*{u,g- {i})} 
Let u* be the city that achieves this minimum. 
BestPath{i, g) 二 { i } concatenates BestPath[u"", g — { i } ) 

END 
END FOR 

END FOR 
END FOR 
5* = mini<u<N-i{<N, u) + { l , 2 , . . . , i V - 1})} 
Let u* be the city that achieves this minimum. 
BestTour = BestPath{u*, {1,2,N - 1}) 
OUTPUT BestTour 

END 

The algorithm above, builds up the values of S*{i,g) from \g\ = \g\ = 2,... 

until the {1, 2 , . . . , AT - 1}) are obtained for i = 1,2, . . . , AT - 1. Finally, it 

searches for the optimal tour connecting the last city and the first city. 
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2.2 On the Original LDPX 

Cai's original LDPX [8] consists of two basic parts, one is a scheme of defining the 

gene sets, while the other is a local DP to explore the gene sets to search for the 

best offspring. 

2.2.1 Gene Representation 

Cai argues that the basic genetic information donated by parents is the sub-tours of 

those parents. Therefore, a crossover operator must extract the best genes contained 

in these sub-tours to its offspring. 

For example, if a parent x= (1,2,3,4,5) is considered, the genetic information 

describing this individual will be (1,2), (2,3), (1,2,3,4,5). Each parent has its 

own sets of genes. By considering those sub-tours, we can form a set from each 

parent, which is termed gene set. In general, we define a gene set G of parent 

— • • as: 

f . . � 
(il.k) (�2 ,�3) (^3,^4). . . ( � n - l , q 

(̂ 1,̂ 2,̂ 3) … in-2,in-l,in) … � 
(2.1) 

For example, if xi= (3,1,2,5,4) and X2=(2,5，3,4,l) are considered, the corre-

sponding gene sets will be defined as follows: 

‘ (3 ,1 ) (1,2) (2,5) ( 5 , 4 ) � 

^ (3,1,2) (1,2,5) (2,5,4) ^ 

(3,1,2,5) (1,2,5,4) 

�(3,1,2,5,4) ‘ 

and 
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’ (2,5) (5,3) (3,4) ( 4 , 1 ) � 

^ (2,5,3) (5,3,4) (3,4,1) ^ 

(2,5,3,4) (5,3,4,1) 

‘ (2,5,3,4,1) . 

If offspring is generated from these gene sets during crossover, it will inherit the 

characteristic of its parents. That is the basic idea of the original LDPX. 

2.2.2 The Original Crossover Procedure 

In general, two parents will have two families of gene sets. The fundamental idea of 

Cai's original crossover procedure is to mix up these two families of gene sets into G, 

and then use a dynamic programming procedure to explore these sets so as to find 

the best offspring. Specifically, the gene sets are first classified into different groups 

in such a way that group 1 contains gene sets with 1 city, group 2 contains gene sets 

with 2 cities, ... and the last group contains gene sets with all cities. Then, a DP 

procedure is used to generate the best offspring from these gene sets. The procedure 

will find out the optimal cost of the objective function S*{i,g) for each gene g e G 

where S*{i,g) is the optimal cost traveling from city i € g via all other cities in g 

once and only once. At stage k the DP procedure limits its search to the gene sets 

with k cities only. 

When k = 1, all S*{i,g) with = 1 will be evaluated as 0. Therefore we have, 

{1}) 二 0, 5*(2, {2}) = 0’ . . . ， { n } ) = 0. When k 二 2, {ii, i?}) will 

be evaluated as c(h,�2 ) + S*{i2, {^2}) where c(ii, 2̂) is the cost from city ii to city 

<2. In general, a recursive relationship of the objective function g) is defined 

as follows: 
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。“.、 . c ( ⑷ + 师2,分 
S (t^g) = mm . ^ 

However, g - { i } does not always exist in the gene set G because it is only a 

subset of the whole combination. For a set not in G, we call it infeasible or illegal and 

its objective function will be set to be oo. For example, for the Xi and X2 as given 

above, stage 2 of the DP procedure will consider the gene sets - { (3,1), (1,2), (2,5), 

(5,4), (5,3),(3,4), (4,1) }，... and stage 5 will consider the gene sets { (3,1,2,5,4), 

(2,5,3,4,1) }. All other genes not in the gene sets are regarded as infeasible or illegal 

'8]. The following is an example to illustrate the idea in which g = (2, 5, 3,4) is the 

gene set considered and 5(3, (2,5,3,4)) is defined as the cost of visiting the cities 

in the set (2,5,3,4) once and only once, subject to the condition that the starting 

city is city 3: 

‘ c (3 ,2 ) + 5 (2 , ( 2 , 5 ,4 ) )� 

5(3,(2,5,3,4)) - m i n | c(3,5) + 5(5, (2, 5,4)) ^ 

c(3,4) + 5(4,(2,5,4)) 

5(5, (2,5,4)) has been set to be oo because (2,4) is not an legal gene sets. 

In summary, we can derive a recursive relationship as follows: 

Let g = (ii, 2̂, . . . ， i t ) be a gene set of cardinality t, and let S*{i, g) be the minimal 

cost of the tour which visits the t cities in g by starting from i G g subject to the 

condition that the remaining elements g - { i } consist of a legal gene set as given by 

the parents. Then, we have: 

… . � . 外 ， 如 作 2 , 分 - W ) S (t^g) = mm • ^ 

g) = oo g — { i } is infeasible. 
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Using this recursive relationship, the solution procedure first moves from t = 

1, 2, ••，until n when it finds the minimal overall cost, then moves from t = n, n-1, 

until 1 to find the optimal tour, namely, the best offspring that is given by the 

parents. 

2.3 Analysis 

The crossover procedure as described above is an innovative idea. Computational 

experiments have shown that this approach greatly outperformed Lin's 2-opt with 

multiple starts, see [8]. However, [8] only drafts the fundamental idea. A number 

of important issues remain to be resolved to make the approach an applicable one. 

One of these is that the original LDPX neglects the cost between the last city 

and the first city. This phenomenon was actually revealed when I compared the 

performance of the LDPX in solving a special case TSP - "Ring TSP" and other 

TSPs. Experimental results showed that it works fine for "Ring TSP", but it does 

not give satisfactory results for general TSP. This will be illustrated below. 

The second major issue is on the algorithmic aspect of the original LDPX. It 

requires much working space to memorize each element at each stage in the dynamic 

programming procedure. Besides, much time is spent on searching whether a set is 

a legal gene set. In the following we will describe a genetic operator to solve these 

problems. This operator will generate an offspring based on the gene sets provided 

by a single parent. 

2.3.1 Ring TSP 

Ring TSP is a special TSP whose cities are located on the perimeter of a circle 

evenly. The cost from one city to other city is defined as the distance between those 

cities. An example with 16 cities is depicted below. 

21 



16 

i j : 
9 ^ 7 

8 
In general, the distance between two cities i and j is given below: 

j j — ^ J 
c(i, j ) = 2rsin(- —) , where 1 < i < j < n 

TL 

where n is the number of cities, and r is the radius of the circle. In our experiment, 

r is chosen to be 1,000. Without loss of generality, we define the cost between a pair 

of cities i and j as c(i, j ) . 

For any TSP with n > 3 , the solution is a ring - (1, 2, • • •, n) and the minimal 

cost of an optimal tour is 2nr sin(^) which will close to 6,283, the perimeter, when 

n is very large. 

2.3.2 Computational Results of Solving Ring TSP and Other TSP 

using L D P X 

We obtained the following results in solving Ring TSP using a genetic algorithm 

with LDPX, where PSize is the size of the population in the genetic algorithm. 

From Table 2.1 we can see that the LDPX has a very good performance in solving 

the TSP. Let us now apply it to solve other TSPs. The problem instances we used in 

our experiments came from a TSP Library [57]. The TSP Library (TSPLIB) collects 
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LDPX % above 
_ _ n Opt. Obj. Time (s) PSize optimal 
_ 20 6,257 6,257 ~ T 

6,279~ 6,279 7 
100 6,282 “ 50 20 0 . 0 ^ 
200 6,283 6,283 579 20 0.0% 

Table 2.1: Performance of LDPX for "Ring TSP" 

some TSPs which have been well investigated by many researchers. In our exper-

iments here, four problems, namely, OliverSO [52], Eilon50, Eilon75, and EilonlOO 

17], from this library were solved by the crossover - LDPX. The experiments were 

carried out on a DEC Alpha workstation AXP3800 with one 200MHz CPU. The 

results are summarized in Table 2.2. 

GA(LDPX) Percentage 
Problem Source Size Optimal Obj. Time (s) PSize of error 

O l i ^ W 420" 424 12 W O.QW 
Christofides/Eilon 425 438 W 50 — 3.06% 
Christofides/Eilon 75 538 “ 567 61^ 100 — 5.39% 
Christofides/Eilon 100 629 650 1,018 100 3.34% 

Table 2.2: Performance of LDPX for TSP in TSPLIB 

From Table 2.2 we can see that, although LDPX worked well in solving "Ring 

TSP" (the exact optimum solutions were obtained in every test), its performance 

was not so satisfactory in solving those TSPs from the TSP library. 

The main reason is that the original LDPX neglects considering the cost between 

the last city and the first city. This makes the solution procedure focus on searching 

for a path rather than a cycle as required by TSP. This problem is not critical in 

the ring TSP since an optimal path in the ring TSP is always (1,2，...，n) while the 

optimal cycle is also (1, 2,…，rz). However, for a general TSP, the solution obtained 

will carry certain error, as shown in Table 2.2. This indicates that the original 

LDPX as described in 2.2 should be modified to account for the cost between the 
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last city and the first city of a TSP. To do this, in the following sub-sections we 

will first augment the gene set representation in Section 2.2.1 so as to account for 

information on the connection between the last city and the first city provided by 

the parents, and then introduce modification to the original LDPX to make use of 

the information. 

2.4 Augmentation of the Gene Set Representation 

Considering the gene sets of a parent xi = (1,2,3,4,5): 

‘ ( 1 , 2 ) (2,3) (3,4) (4,5) ’ 

^ (1,2,3) (2,3,4) (3,4,5) ^ 

(1,2,3,4) (2,3,4,5) 

‘ (1,2,3,4,5) > 

Clearly, the gene information on the connection of the last city 5 and the first 

city 1 is not contained in these sets. In order to account for this information, we 

may augment the gene sets as follows: 

’ (1,2) (2,3) (3,4) (4,5) (5,1) � 

^ (1,2,3) (2,3,4) (3,4,5) (4,5,1) (5,1,2) ^ 

^ (1,2,3,4) (2,3,4,5) (3,4,5,1) (4,5,1,2) (5,1,2,3) 

‘ (1,2,3,4,5) (2,3,4,5,1) (3,4,5,1,2) (4,5,1,2,3) (5,1,2,3,4), 

In general, we have a new definition of gene sets for the parent ..,‘)： 

f > 

{ilM) (̂ 2,̂ 3) fe�4)… [in.k) 

{iiMih) [WzM)… 

< . > ( 丄 々 

、 . .，。） . • • [iniHi- . . , 
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2.5 Enhancement of Crossover Procedure 

There are a number of possible options to modify the original LDPX so that it can 

account for the connection between the last city and the first city. We suggest to 

use the following one: 

First, select randomly a reference city i—. Then, define S*{i,g) as the minimal 

cost of visiting g = 仏 , “ ， s u b j e c t to the condition that the tour starts from 

i e g , visits all other cities in — { i } once and only once, and ends at city iend. A 

recursive relationship for calculating 5* is given below: 

X 
( \ 

c(i,n) { i } ) 

= mm . ,it i ^ tend 

c{i,it) + S{it,g-{i}) 
< > 

g) = oo ,if i = iend OT g- {i} is an 

infeasible gene set. ( Note the 

feasibility is based on the 

augmentation of the gene sets 

as defined in section 2.4 ) 

The minimal overall cost will be: 

S* 二 pin {c{iend, i) Gn) } , 
iEGn 

where Gn denotes the gene set with cardinality equal to n. 

Without ambiguity, from now on we will call the approach above LDPX. Ac-

cording to the principle of optimality of dynamic programming [16] [4], the offspring 

generated by this LDPX approach will be the best one that can be delivered from 

the parents subject to the condition that all the subsets g are the gene sets defined 

by the parents. 
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2.6 Computational Comparison of the new proposed 

LDPX with the original LDPX 

We have incorporated, respectively, the new LDPX proposed above and the origi-

nal LDPX into a genetic algorithm. The following computational results show the 

performance of the genetic algorithm with the new LDPX and the genetic algo-

rithm with the original LDPX, which were obtained by solving two problems from 

Christofides and Eilon [17] with numbers of cities equal to 50 and 75 respectively. 

The population size was chosen to be 100. 

Original The New LDPX 

Problem Source n Opt. Obj. Time Obj. Time (s) 

Christofides/Eilon 50 425 438 98 s 425 96 s 

Christofides/Eilon 75 538 567 610 s 538 569 s 

From the results we can see that the GA with the new LDPX obtained the 

exact optimal solutions in both of the problem instances (which are given in [17]). 

Compared with the new GA, the GA with the original LDPX which, however, failed 

to find the optimal solutions, needed almost the same computing time. 

2.7 SPIR — An Operator for Single Parent Improved 

Reproduction 

The LDPX described above uses the gene sets provided by a couple of parents. 

From our computational experiments we found that most of the time required by 

the genetic algorithm with this crossover operator was spent on validating whether 

a sub tour was a legal gene set, particularly at the early stage of the evolution of the 

genetic algorithm. In fact, at the early stage of the evolution when individuals in the 

population have not been very fit, it is still unnecessary to cross over the genes of a 

couple of parents. In other words, at this stage, even a single individual has much 

room for improvement and it is unnecessary to spend time to consider the crossover 
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of the genes of two parents. This is our motivation to propose the operator SPIR, 

which generates an offspring based on the genes provided by a single parent. 

SPIR is similar to LDPX, except that it only explores the gene sets defined by 

a single parent. In the case of single parent, by letting ^ G {2,3, • • n} denote the 

cardinality of a gene set and s denote the starting position, we can define g(t,s) 

as the gene set that contains t elements starting from the position s. For example, 

assuming that xi = (7,1,6,2,4,5,3) is the single parent under consideration, we 

have 

^(2,1) = (7,1) 

^(3,6) = (5,3,7) 

5^(4,6) = (5,3,7,1) 

etc. 

With this indexing scheme to represent the gene sets, the procedure to check 

whether a gene is legal or not is easy. Let the parent be (p(l),p(2), ...p(灯)), 

where p{j) is the city at position j. Then, the genes g{t, s), g{t-l, s) and g{t-l, s+1) 

given by the parent are as follows: 

Starting position = s Starting position 二 s + 1 

双 g { t - l , s + l ) = ( \ ( \ 

^ p{s) p(s+l) ... :p(s + 力 一 p { s + 1) p{s + 2) ... p{s-{-t-l) ^ 

g{i,s�二 

/ \ 
� p ( s ) p{s-\- 1 ) … p { s + t - l ) ^ 
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It can be seen from the above that g{t, s) - {p{j)} is a legal gene set if and only 

if j = s or j = s 1 - 1. Any other j will lead to an illegal gene set. That is: 

g{t, s) - {p{s + 1 ) } = Infeasible 

g{t, s) - {p{s + t - 2)} 二 Infeasible 

g{t,s)-{p{s + t - l ) } = g{t-l,s) 

In summary, the recursive relationship for the SPIR operator, where S*{j,g{t, s)) 

denotes the minimal cost of visiting the cities in the set g(t,s} by starting at the 

city p(j) and ending at a city iend (see Section 2.5) is as follows: 

At stage t= l , For 1 < i < Â  and p[i) * iend , 

二 c{p{i),iend) 

At stage t={2,...,N}, 

For j — s, 

V) = mm 
c(p(s),p(s + t-l))-h + 1)) 

� , 
For j 二 s + i — 1， 

S {J,g{t, s)) = mm 
c{p{s + i - 1 ) , + t - 2)) + + i - 2,g{t - 1, s)) < ‘ 

For s < j < s + 卜 1, <S'*(i,5f(t,s)) 二 oo 

The optimal cost will be: 
S* = min \ min {c{iend,i) + g{NJ))}\ 

i<j<N [ieg{N,j) ) 
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Chapter 2 

A New TSP Solver 

We develop, in this chapter, a new GA for solving TSP which incorporates the 

operators LDPX and SPIR. The new GA uses the strategy that SPIR is activated 

at its early stage while LDPX is used at its late stage. The motivation is that at 

the late stage of the evolution, individuals have been so fit that an improvement 

from just a single parent is hard to obtain. The overall architecture of the new TSP 

Solver is depicted below: 

Initial 
Population 

Distance TSP Solver with Solution for 
Matrix I GA(SPIR/LDPX) ] the TSP 

GA Control 
Setting 

Figure 3-1: Input and Output of TSP Solver 

Specifically, the TSP Solver takes in three sets of data: (1) an initial population 

which is randomly generated, (2) a cost matrix which stores the costs between each 
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pair of cities, and (3) a set of GA control parameters such as population size, the 

number of individuals selected to perform reproduction, terminating condition, etc. 

The main steps of the TSP Solver are illustrated below where St is a small number: 

(1) Initialize (2) Select Potential 
Population “ Parents 

(3) Crossover -
(SPIR/LDPX), 
and Mutation 

(4) Evaluate Mean 
& Variance of 
the Population 

Yes (5) Select the best 
— I s J < Jf? " individual from 

the population 

Figure 3-2: Main Steps of TSP Solver 

Thus, there are four main steps in the TSP solver: 

(1) Initially, it randomly generates a number (equal to a pre-specified population 

size PSIZE) of feasible tours to form the population of the first generation. The 

cost of each and every individual is evaluated. 

(2) At each generation, it randomly selects a number of individuals to form a 

parent pool. The selection is biased towards the individuals which are fitter (with 

lower total cost). Specifically, let F{Xi) be the cost of an individual X“ and let 

Fmax be the maximum of F(Xj), j = 1 , 2 , P S I Z E , in the population. The raw 
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fitness value of the individual JQ is defined as F'{Xi) 二 Fmax - F{Xi) + 1, and 

the scaled fitness value is defined as (here we adopt the scaling scheme of [25]) 

F�[Xi) = aF'{Xi) + 6, where the coefficients a and b are chosen in such a way 

that the mean value of the scaled fitness F^ is equal to the mean value of the raw 

fitness ' r and that maximum value of the scaled fitness is equal to 

Cmuit X F", where Cmuit is equal to 2 (suggested by [25]). An individual Xi will be 

selected to enter the parent pool with the following probability: 

尸 广 ' ( 足 ） 

广 口"、Xi). 

(3) Then, it applies the genetic operators SPIR/LDPX and mutation to produce 

the ofFpring from the parent pool so as to generate the population of the next 

generation. At the beginning, when the population is randomly distributed, SPIR 

will be activated. Then, when the variance of the population reaches a threshold 

(at that time, SPIR has been hard to make a significant improvement over a single 

parent), the algorithm will switch to LDPX which will be used until convergence. 

Specifically, define 5 as the ratio of standard deviation to the mean of the population. 

Then , if 5 < Ss, the TSP Solver switches from SPIR to LDPX, and if S < St, the 

TSP Solver is terminated, where 6s and 5t are given control parameters. During each 

generation, the number of offspring produced using SPIR/LDPX is equal to PSIZE. 

Afterwards, mutation is applied. It selects individual from the new offspring, and 

then exchanges randomly the positions of two cities. For example, if cities 2 and 5 

are selected, then: 
(1,2, 3,4,5)-^(1,5, 3,4,2) 

In TSP Solver, each new offspring should have a probability to perform mutation 

and the probability is known as mutation probability. Usually, this probability is set 

to be very small such as 0.01 in our computation test in next chapter. 

(4) The value of S will be evaluated at every generation. The evolution continues 

until S of the current population has been smaller than 5t. 
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The above TSP Solver has been developed as a software package using C. It can 

now solve any TSP problem, given the problem parameters. The software package 

has been extensively tested using numerous standard testing problems of varying 

size from a well-known TSP library. The computational experiments have shown 

that our Solver has an excellent performance in solving various problems. The 

computational results are reported in the next Chapter. 
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Chapter 2 

Performance Analysis of the 

TSP Solver 

To evaluate the performance of our TSP Solver, a large number of TSPs of varying 

size have been solved. In the following sections we shall report our results obtained 

in solving those standard problems from a TSP library TSPLIB [57]. Since the best 

solutions for these problems have also been provided in the Library, the evaluation 

of the quality of the solutions obtained by our Solver can be based on these known 

solutions. In addition to the comparison with these known results, our Solver were 

also compared with other approaches. One is a GA with a crossover operator called 

edge recombination (ER) [65], which was chosen because it was shown to be the most 

efficient operator in solving TSPs and thus have been adopted by many researchers, 

(see, for example, Genitor [64] and Tolkien [2]). Another approach that was used 

to compare with our Solver uses PMX (partially mapped crossover) [23] as the 

crossover operator. In our computational experiments, all the approaches, including 

our Solver, were applied to solve the same problem with the same parameters under 

the same conditions (such as the stopping condition). All the experiments were 

carried out in a DEC workstation AXP3800 with one 200MHz CPU. The settings 

of the parameters in the our GA, which have been tested and adjusted so that our 

TSP Solver will obtain good results, are given in Table 4.1. 
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Problem Pop. Parent Pool Size Mutation 
Name Size SPIR LDPX probability _ _ 5 丄 _ 

ol i^ W 16 16 1.0%- 5.0 0.02" 
eil^ W 16 16 1.0%— 5.0 0.02' 
eil75 ^ 16 1.0% 2.0 0.15" 

eillOO ^ 16 1 � 1.0%— 2.0 Q.IO" 
linl05 20 16 16 1.0% “ 5.0 4.0 

kroAl^ W 16 16 1.0%— 10.0 6.0 
kroCl^ W 16 1 � — l.O^r 2.0 1.8 
kroDl^ 20 16 1 � l.O^r 2.0 0.7— 

~ k ^ l 5 0 20 16 16 1.0% 5.0" 3.5 
"1^B150 20 16 16 1.0% 5.0" 1.1 
"kroA200~ 20 16 16 1.0% 5.0" 1.3 
17OB2Q0 20 16 16 1.0% 3.2 
~~11^318 20 16 3.0 " T o " 

pr439 20 16 16 1.0% 20.0 15.0 

Table 4.1: GA(SPIR/LDPX) Parameters Setting 

4.1 Computational results 

We now report the results in comparing the solutions obtained by our Solver with 

the best known solutions. In the Table 4.2, all the problems and their corresponding 

optimal solutions were extracted from TSPLIB, in which eil50, eil75 and eillOO came 

from Eilon [17], oli30 from [52], kroAlOO, kroA150, kroA200, kroBlSO, kroB200, 

kroClOO, kroDlOO from [41], linl05, lin318 from [45], and pr439 from [53；. 

From the computational results in Table 4.2 we can see that the TSP solver 

obtained, in reasonable time, optimal or near-optimal solutions for all the problems 

tested. Note that the parallel structure of the GA in the TSP Solver has not been 

utilized. It is expected that the computing time required by the GA can be reduced 

substantially if it is implemented in parallel. 
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S n R 7 T i m e % above 
Problem Name Size Optimum LDPX (min) optimum 

Oliver et. al. - oliST 30 420 0.1 ~ 0.0 % 
Christofides/Eilon - eil5Q 50 425 “ 425 0.7 0.0 % 

— Christofides/Eilon - eil75 75 538 538 1.0_ 0.0 % 
—Christofides/Eilon - eillOO 100 — 629 — 629 4.8 0.0 % 
"Krolak/Felts/Nelson - kroAlQQ 100 一21,282 2 1 , 2 ^ 3.3 0.0 % 
"Krolak/Felts/Nelson - kroClOQ 100 — 20,749 "^0,749 3.2 0.0 % 
"Krolak/Felts/Nelson - kroDloT 100 21,294 21,294 5.0~ 0.0% 
— Lin/Kernighan - linlO^ 105 14,379 14,379 5.5— 0.0% 
"Krolak/Felts/Nelson - k r o A l ^ 150 26,524 26,528 9.5— 0.0 % 
"Krolak/Felts/Nelson - k r o B l ^ 150 26,130 26,188 13.6~ 0.2% 
~Krolak/Felts/Nelson - kroA200 200 29,368 29,503 i i " 0.5 % 
"Krolak/Felts/Nelson - kroB^oT" 200 29,437 "~29,446 66— 0.0 % 
— Lin/Kernighan - lin318 318 42,029 42,446 223— 1.0 % 
一 Padberg/Rinaldi - pr439 439 107,217 107,868 560 0.6 % 

Table 4.2: Computational results of GA(SPIR/LDPX) 

4.2 Comparison between SPIR/LDPX, PMX and ER 

In this section, we compare our Solver with two GAs, one with the crossover oper-

ators ER [65], and the other with the crossover operator PMX [23]. In Table 4.3, 

'Time' is the execution time in minutes while 'Obj.' is the objective function values 

obtained by using different crossover operators. 

From the results given in Table 4.3 we can see that ER and SPIR/LPDX gave 

better results than those obtained by PMX. In order to compare the performance 

of ER and SPIR/LDPX, the results obtained by them are further compared with 

the optimal solutions, see Table 4.4. 

From Table 4.4 it can be seen that, for small size TSPs such as Oliver's 30 cities 

TSP, both ER and LDPX were able to find the exact optimal solutions. However, for 

complex problems of large size, ER failed to obtain good solutions. An example is 

Lin's 318-city TSP. The solution obtained by ER is 59.5% above the optimum for this 

problem. For almost all the problems tested (except the last one), our Solver with 
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PMX M SPIR/LDPX 
Problem Name (n) Optimal Obj. Time Obj. Time Obj: Time 

一 Oliver et. al. (30) ~ 420 536 0.7 ~ 420 0.2 420 ~ ^ 
一 Christofides/Eilon (50) 425 643 3.1 “ 430 0.9 425 0.7 

Christofides/Eilon (75)— 538 1,109 9.4 544 2.3 538 0.7 
一 Christofides/Eilon (100) 629 1,846 4.4 “ 659 4.5 629 4.8 
l^olak/Felts/Nelson A(IOO) — 21,282 5 2 , ^ 84.9 "23,962 4.1 21,282 2.3 
"Yrolak/Felts/Nelson C(IOQ) 20,749 1 3 , 4 8 5 96.6 “ 21,498 4.6 20,749 3.2 
"Krolak/Felts/Nelson D(IOO) 21,294 56,545 21,714 4.5 21,294 5.0 
— Lin/Kernighan (105) 14,379 45,430 29.0" 14,626 5.0 14,379 3.0 
一 Lin/Kernighan (318) 42,029 233:176 529 67,024 64 42,446 223 

Table 4.3: Comparison of PMX, ER and SPIR/LDPX 

— r ER % above SPIR/LDPX % above 
Problem Name (n) Optimal Obj. optimum Obj. optimum 
Oliver et. al. 42T 420 0.0 % 420 0.0 % 

— Christofides/Eilon (50) 425 “ 430 1.2 % 425 0.0 % 
Christofides/Eilon ( 7 ^ 538 544 ~~ 1.1 % 538 0.0 % 

—Christofides/Eilon (100) 629 659 4.8 % 629 0.0 % 
"Krolak/Felts/Nelson A(100)~ 21,282 23,962 12.6 % 21,282 0.0 % 
"Krolak/Felts/Nelson C(IOQ) 20,749 21,498 3.6 % 20,749 0.0 % 
Krolak/Felts/Nelson D(l6o) 21,294 21,714 — 1.9 % 21,294 0.0 % 

— Lin/Kernighan (105) 14,379 14,626 1.7 % 14,379 0.0 % 
— Lin/Kernighan (318) 42,029 67:024 59.5 % 42,446 1.0 % 

Table 4.4: % above optimum for ER and SPIR/LDPX 
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the SPIR/LDPX consistently delivered the exact optimal solutions. Even for the 

one (Lin's 318-city) for which it failed to find the optimum, the solution it derived is 

quite near the optimum. These results indicate that SPIR/LDPX outperforms ER, 

particularly for large TSPs. Since ER has been shown to be a very effective crossover 

operator for solving TSP, the computational results suggest that our SPIR/LDPX 

are very powerful operators. 

4.3 Convergence Test of SPIR/LDPX 

Table 4.3 and 4.4 summarise the final results. To demonstrate the real convergence 

rate of our Solver, we have recorded some data during the convergence procedure 

in solving the testing problems. These results are displayed in the graphs below, in 

comparison with ER. In these graphs, the x-axis represents the computing time (in 

seconds) while y-axis represents the lowest cost in the population. The dotted lines 

represent the optimal solutions. 

Best individual in solving 'oliver30' TSP 
1100 1 1 1 I 

1000 k -

900 - \ \ -

800 - \ -
Cost 

700 - \ -

6 0 0 - -

500 - L s p i r / L D P X -
Opt. ^ … _ • ！ . … … 1 

4 0 0 ‘ ‘ 丨 ^ ^ ‘ 

0 2 4 6 8 1 0 

Time spent in seconds 

37 



Best individual in solving，eil50，TSP 
1600 1 1 1 1 1 1 1 

1400 I -

1200 ^ -

Cost 1000 -

800 - V -

\ \ ER 
600 - \ C -

SPIR/tBg^L,^ 
400 1 … " • • “ I I I 

0 5 10 15 20 25 30 35 40 
Time spent in seconds 

Best individual in solving 'eil75' TSP 
2400 1 1 1 r 1 1 1 
2200 - -

2000 V -

1800 ^ -

1600 S -

Cost 1400 \ -

1200 \ -

1000 - ^ ^ -
800 -1 ^ ~ ^ ^ -
600 A ^ P I R Z ^ ： ^ ^ ^ ! ； ； ： ： ： ^ ^ " ： ^ ^ " . -

400 ‘ ‘ ‘ ^ ‘ ‘ ‘ 
0 20 40 60 80 100 120 140 

Time spent in seconds 
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Best individual in solving，eillOO，TSP 
3500 1 1 1 [— 1 1 1 

3000 - 一 

2500 4 -

Cost 2000 -\ -

1500 . \ -
\ ER 

1 0 0 0 入 -

Aw. s p i r T L D ^ — … 
500 丨 。 I I I 

0 50 100 150 200 250 300 350 400 
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Best individual in solving，kroAlOO，TSP 
160000 1 1 1 I 1 1 1 

140000 V -
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Best individual in solving，kroClOO，TSP 
180000 1 1 1 [— 1 1 

160000 - _ 

140000 - -
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Best individual in solving，kroDlOO，TSP 
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Best individual in solving 'linl05' TSP 
120000 1 1 1 1 1 
110000 - -

100000 j- -
90000 I -
80000 -
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60000 \ — 

50000 4 \ -
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Best individual in solving 'lin318' TSP 
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From all these graphs, one can see that our SPIR/LDPX is much faster than 

ER. Moreover, two observations can be made: (1) SPIR/LDPX converged quickly, 
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particularly at the early stage; (2) In some cases, like oliverSO, a sudden drop in the 

solution curve occurred. This effect was actually caused by the switch from SPIR 

to LDPX. 

To further see the influence of the GA with and without the operator LDPX, 

we have carried out another set of computational experiments, in which the results 

obtained by the TSP Solver with and without LDPX are compared, see Table 4.5 

below. 

"Problem Size Optimum SPIR/LDPX Time (min) SPIR Time ( m i ^ 
oliSO "~3Q~ 420 420 0.1 420" ^ 
eil5Q 50 425 42^" ^ / T 42 厂 1.3 
eil75 538 538 l.cT 539 — 1.1 

eillOO " l o T 629 629 4.8 630~ 4.4 
kroAlOO " l o T 21,282 21,282 3.3— 21,292 — 2.9 
kroClQO lOT 20,749 20,749 s T 20,769 3.3 
kroDlOO 100~ 21,294 21,294 5 l 21,309 2.0 

linl05 105 14,379 14,379 5.5 14,37^ 6.7 
kroA15Q 26,524 26,528 9T" 26,528 14.1 

J ^ 1 5 0 150" 26,130" 26,188 13.6" 26,296 12.4 
kroA200 2 0 r 29,368— 29,503 i T 29,715 
kroB200 2 0 r 29,437 29,446 ^ 29,800 ^ 

lin318 3 i y 42,029 42,446 223" 42,516 通 

一 pr439 I 439 107,217 107,868 560 108,988 149 

Table 4.5: Comparison of results from GA(SPIR/LDPX) and GA(SPIR) 

The results in Table 4.5 indicate that the operator LDPX did improve the solu-

tions. This shows that crossover of genes provided by more parents does generate 

fitter offspring. 
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Part II 

Application 
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Chapter 2 

Flowshop Scheduling Problem 

5.1 Brief Review of the Flowshop Scheduling Problem 

Suppose that n jobs are to be processed on m machines: Mi, M),…,Mm, in order 

of Ml M2 ^ ... — Mm. The processing time of job i on machine j is known to 

be pj{i), i = j = l , . . . ,m. The problem of flow shop scheduling (FSP) is to 

find a sequence to process the jobs on each machine so as to minimize the overall 

completion time [11]. 

Johnson [35] formulated the initial FSP model in 1954. Since then, FSP has 

been investigated by many researchers [67] [34] [56] [66] [3] [7]. The general FSP 

with m > 3 has been shown to be NP-hard in the strong sense. Since there are no 

efficient methods available which can find exact optimal solutions for this difficult 

problem, a wide variety of algorithms, including heuristics, have been suggested 

to find approximate solutions. (For a comprehensive review, see [7] [66] ). In 

the following we will consider a generalized version of the FSP, which has been 

formulated in the recent years motivated by some problems arising in manufacturing 

systems. 
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5.2 Flowshop Scheduling with travel times between 

machines 

A generalized model of FSP has been investigated in recent years [1] [48] [55], which 

considers the situations where, for each j = 1, 2,…,m - 1, there is a transporter Tj 

between machines Mj and Mj+i, which picks up a completed job from machine Mj, 

travels to machine Mj+i in time tj, unloads the job and then returns to machine Mj 

in time rj. Machine Mj will be blocked by a completed job unless the transporter is 

available to remove the job from the machine. The problem is also to determine a 

sequence tt to process the n jobs on each machines so as to minimize the makespan 

Fmax which is defined as the overall completion time of all jobs. 

As usual, we consider the problem under the following assumptions: 

1. All jobs are available to process at time zero; 

2. A job, once started, may not be interrupted; 

3. Each machine can process at most one job at any time; 

4. Set-up time for a job has been included in its processing time; 

5. Travel times tj and rj are job independent; 

6. Loading and unloading times of a transporter have been included in its travel 

time tj; 

7. The sequences to process the jobs on all machines are same; and 

8. There is no intermediate storage space available to hold partially completed 

jobs. 

For convenience, let us call the model described above FSTTBM. When only 

two machines are involved, FSTTBM has been shown solvable by some efficient 
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procedures [1] [48] [55]. However, the problem in general is NP-hard in the strong 

sense [60]. This is understandable since the problem without travel times between 

machines has been NP-hard in the strong sense. 
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Chapter 2 

A New Approach to Solve 

FSTTBM 

We have described the model of FSTTBM in Chapter 5. In this Chapter, we propose 

a new approach to solve FSTTBM which makes use of our TSP Solver described in 

part I. The new approach involves two steps. The first step is to transform FSTTBM 

into a TSP model while the next step is to use our TSP Solver to find a solution. 

Specifically, we will address a problem where a job, once started on machine 1，must 

be processed by all machine without any idle time. The problem is called continuous 

processing FSTTBM or CPFSTTBM [28]. In this problem, a job shall wait by the 

first machine before starting its processing until it can be continuously processed by 

all machines. 

We will propose an algorithm to transform CPFSTTBM into a TSP model where 

jobs must be processed continuously through all the machines. To illustrate, let us 

construct a Gantt chart for two jobs 人 and Jb, see figure 6-1. In this Gantt chart, 

we let Si be the earliest starting time of job J, on machine 1. Therefore, the two 

dotted lines at Sa and Sh correspond to the starting time of jobs 人 and Jf, on the 

first machine Mi respectively. 

Since all jobs are available to be processed at the beginning, Sh can be adjusted 

to the most left in the Gantt chart so as to minimize the makespan, under the 
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Job Ja Job Jh 

Ml PI � Pi(fe) 

M2 I ； P2 � I P2{b) 

I l ^ y ^ ^ ^ / ^ 
M S I I P3 ⑷ PSJB) 

•I 1 X 

: I 尤3 . . . 

•1 I \ \ 
Mm ' 1 1 Pmja) Pmjb) 

Figure 6-1: Gantt Chart for Two Consecutive Job in CPFSTTBM 

following two constraints: 

1. Each machine can process at most one job at any time. 

2. Machine Mj will be blocked by a completed job unless the transporter is avail-

able to remove the job from the machine. 

If Sh is set too early, the previous job 人 may not be completed on machine M2 

while the job Jb has arrived at machine M2. Because of constraint (1), job Jb will 

have to wait until job 人 has been completed on machine M2. Moreover, job Jb 

has to consider the availability of the transporter 7\. These considerations apply 

to all machines. In general, Sb should be set to a minimum value such that job Jb 

can be continuously processed on all machines after job Ja. Accordingly, define the 

minimum delay of job Jb as d{a, b) = min(56 - Sa). 

With the definition of minimum delay, we can regard jobs in CPFSTTBM as 

cities in TSP and the minimum delay between two jobs as the distance between two 
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cities. 

For any feasible job processing sequence tt 二 (tti,兀2,. •.，̂n)，冗n will be the last 

job to be processed. Therefore the completion time of the whole processing sequence 

will be equal to the time delays from job TTI to job 7r„ plus the processing times and 

travel times of the last job TT̂  from machine 1 to machine m. Hence, the makespan 

F^ax of CPFSTTBM will be: 

n—1 m—1 
F m a x � = Y A冗“ TTi+i) + Y, (PsM + ts) + Pwi^n) 

i=l s二1 

The problem is to find the optimal processing sequence TT* to minimize the 

makespan F^ax- In fact, we can add a dummy job J � t o the problem, and let the 

minimum time delay of job Jo by other job Ji be the total time required for Ji to be 

processed from machine Mi to machine Mm and that of job Ji by Jo be zero. Then, 

the CPFSTTBM will be equivalent to an (n + l)-city TSP with the cost matrix 

equal to C = {cij} where i j = 0,1,..” n. The matrix is as follows: 

‘CO.- = 0 , Vi / 0 ’ 

^ � d ( i , j ) ’ V i , j / 0 , i 7 ^ j (6.1) 

^ CiO = (Ps(0 + Q + Pm(^) ' Vi^O 
‘ Cii 二 OO , Vi , 

Now, we outline the procedure to evaluate the minimum time delay d(i,j) of Jj 

from Ji. 

Evaluate d{ij) - The Minimum Time Delay 

Let Ss{a) be the start time of processing job Ja on machine Ms. Then, we have the 

following recursive equations: 

Si{a) = Sa 
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Ss{a) = Ss-i (a) + Ps-i{a) + , where 5 = 1 , m 

After simplification, 

s-l 
Ss{a) = Sa + + tk) , where s 二 1,..., m (6.2) 

k=l 

Now, we show how to compute d{ij) under the following constraints: 

Constraint 1 - One machine can process only one job at any time 

We assume that every machine should not process more than one job at a time. 

Thus, job b should not be started processing on one machine until job a had finished 

processing on that machine. Mathematically, we can represent this constraint by 

the following inequality: 

�� S S s W (6.3) 

Noting (6.2), We have: 

^a + W Ps{a) < + + tk) (6.4) 
k=l k=l 

This should be valid for all s. Therefore, 

Sb>Sa+ m a x - Pk{b)) + Ps{a)\ ( 6 . 5 ) 
1 化 U = i J 

Constraint 2 - Availability of Transporter 

Once a job 人 has been completed on machine Ms, a transporter Ts will pick up the 

job to the next machine Ms+i and then return to M^. The total time required by 

the transporter will be ts + Vs, during which the transporter is not available for the 

next job Jf,. If job Jb has been completed within this period of time, it will have to 

wait until the transporter Ts is available. As a result, job Jb cannot be processed 

continuously. 
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Let us now determine the condition on the earliest starting time of job Jb on 

machine Ms considering the availability of transporter Ts. Suppose that job 人 is 

completed on machine Ms at time Ss{a) + p “ a ) and then, transporter Ts will spend 

ts + rs units of time to remove job 人 to machine M^+i, and return to machine Ms. 

Therefore, transporter Ts will be available after time Ss{a)+Ps{a) + is + r̂  for job 

J I). Thus, we have the following inequality: 

Ss{a)-^Ps{a) -\-ts + r s < Ss {b )Ps {b ) , where s = l , . . . ,m (6.6) 

The following diagram depicts the case if the above inequality does not hold. 

Start time of Job a Start time of Job b Finish time of Job b 

Ms I 1 1 \/m 
Finish time of Job 乂 � s 

Wait for transporter! 

From (6.6) and (6.2), we get the following inequality: 

Sb>Sa+ m a x \i2iPk{a) - Pk{b)) + t s + r . i ( 6 . 7 ) - 1 化 m- l J 

Combining the two constraint inequalities (6.5) and (6.7), we have: 

maxiccrn {l2lZ\{Pk{a) _ Pfc⑷)十”“…} 1 ,“。、 

Sb>Sa + max - - L J > (6.8) 
maxi<,<m-i {ELi to fe⑷ 一 Pk{b)) + ts + r J 

— — y 
� 

The minimum of {Sb - So) is equal to, 

max ~ ^ ‘ 
maxi<s<m—1 — PiiP)) + + rs} 

一 一 y 
� 

51 



and therefore the minimum time delay of job Jh from job Ja will be, 

d(a,b) = mm{Sb - Sa) 

‘ m a x i • 〈 饥 \ (6.9) 
=max ‘ 

maxi<,<^_i - Pii^)) + L + 
— — y 

V 

According to (6.9), a procedure for transforming the CPFSTTBM to TSP is as 

follows: 

INPUT: n: number of jobs 
m: number of machines 
Pi{j): processing time of job i on machine j 
tj: transportation time from machine j to machine j + l 
rj: transportation time from machine j + 1 to machine j 

BEGIN 
DECLARE ARRAY c(n, n) 
FOR i = 0 TO n 

FOR j = 0 TO n 
IF i^j THEN c{iJ) = oo 
ELSE IF i = 0 THEN c{ij) = + h) + Pm{i) 
ELSE IF j 二 0 THEN c{ij) 二 0 
ELSE c{ij) = d{ij) as described in Eq. (6.9) 
END IF 

END FOR 
END FOR 

END 
OUTPUT: ARRAY c 

The above algorithm has been developed as a software module which can be 

incorporated into our new TSP Solver. It can now solve any CPFSTTBM problem, 

given the problem parameters. This software module has been extensively tested 

using numerous testing problems of varying number of jobs, machines and processing 

times. The computational experiments have shown that our new method has an 

excellent performance in solving various CPFSTTBM problems. The computational 

results are reported in the next Chapter. 
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Chapter 2 

Computational Results of the 

New Algorithm for 

CPFSTTBM 

To evaluate the performance of our new algorithm for CPFSTTBM, numerous prob-

lem instances have been solved. In the following sections we shall report our results 

obtained in solving some problems which are generated randomly. The details of 

the random CPFSTTBM generation procedures are described in appendix A. Since 

the optimal solutions for these problems are not known, complete enumeration for 

problems with small number of jobs was also carried out as comparison. For large 

problems, we compared the solutions obtained by using our new algorithm with 

an efficient method called SPIRIT (Sequencing Problem Involving a Resolution by 

Integrated Taboo search techniques) [66]. All the experiments were carried out in a 

DEC workstation AXP3800 with one 200MHz CPU with the parameters setting of 

GA(SPIR/LDPX) as given in the Table 7.1. 
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Population Parent Pool Size Mutation 
Problem Name Size SPIR LDPX probability Ss St 

lOxlT 20 16 16 0.8% T T 0.5 
1 2 ^ 20 16 16 0.8% 5.0 0.2 
50x10 20 16 O . ^ T O " " ^ 
100 万 20 16 — 16 0.8% 5.0 0.2 

200x12 20 I 16 I 16 I 0.8% 5.0 0.2 

Table 7.1: GA(SPIR/LDPX) Parameter Setting for FSTTBM 

7.1 Comparison with Global Optimum 

Table 7.2 and Table 7.3 report the computational results obtained in using our 

algorithm to solve 10 instances of lO-machine-lO-job-CPFSTTBM and 10 instances 

of 12-machine-12-job-CPFSTTBM which were randomly generated. The 'Problem 

No., is the random seed number used for the generation procedure. Furthermore, 

the best solution of each problem was found out by complete enumeration 'Comp. 

Enum.' and is reported in column 'Opt.'. In addition, the execution time, 'Time' 

required to obtain the solution by using our new algorithm was recorded, which is 

the total time spent by the transforming algorithm and the TSP Solver. 

Problem Comp. Enum. TSP solver % of 
No. Opt. Time Obj. Time Error 

r 837 ~~32.7s 837 0.3 s O.OO"^ 
2 7 9 6 32.7 s 796 0.3 s 0.00 %" 
3 813 32.7 s— 813 0.2T" 0.00 % 
r 833 833 0.3 s ~oM%~ 
5~~814 32.7 s 814 " o J T " 0.00 %" 
� 8 0 9 32.7 s 809 0.3 s "XOO % 
7 829 32.7 s 829 ~0.3 s 0.00 ^ 
8 817 32.7 s 817 0.3 s 0.00 ^ 
� 8 0 0 —32.7 s 800 0.3 s ~o7qO % 

10 845 32.7 s I 845 0.2 s 0.00 % 

Table 7.2: Results on lO-machine-lO-job CPFSTTBM 
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Problem Comp. Enum. TSP solver % of 
No. Opt. Time Obj. Time Error 

1 "TosT 488QT" 1034 o T T 0.00%-
2 " T o ^ 4880 s 1036 0.00%"" 
3 T037" 488QT" 1037 0.00%— 
4 1011 4880 s" 1011 0 . 3 ^ 0.00% 
r 1003 1 8 8 0 s 1003 0.4 s "O^OQ^ 
6 1 0 1 2 4880 s 1012 0.4 s 0.00 ^ 
r 1017 " I M T s " 1017 0.4 s " T O O ^ 
8 1 0 6 2 4880丁 1062 0.3 s 0.00 
^ 1007 ""^SSOT" 1007 0.3 s " o M W 

10 1069 4880 s 1069 | 0.3 s 0.00 %_ 

Table 7.3: Results on 12-machine-12-job CPFSTTBM 

It can be seen from Table 7.2 and Table 7.3, that the new algorithm can find 

the global optimum of all the CPFSTTBM instances we have tested. 

7.2 The Algorithm of SPIRIT 

For CPFSTTBM of large size, it has been impossible to find the optimal solution 

by complete enumeration, so we compare our method with an efficient method for 

flowshop scheduling problem called SPIRIT [66]. In Widmer's paper [66], SPIRIT 

has been compared with other heuristic methods including: Slope order index by 

Palmer [54], Gupta's algorithm [27], CDS [10], rapid access with close order search 

RACS [14] and, NEH [51], and shown to be able to find solutions of higher quality. 

For a detailed discussion, see [66]. 

SPIRIT consists of two main steps. The first step is to find an initial solution 

using insertion method and then, the second step is to refine the solution by a taboo 

search technique [20]. 

The insertion method used for CPFSTTBM is sketched below: (It is similar to 

the one used for FSP but the cost function incorporates the constraints of CPFST-

TBM described in Chapter 6.) 
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INPUT: n: number of jobs 
m: number of machines 
Pj (i): processing time of job i on machine j 
tj: transportation time from machine j to machine j +1 
rj： transportation time from machine j + 1 to machine j 

DECLARE OPT=(): optimal sequence of jobs. 
DECLARE UNSEQ=(1,2, unsequenced jobs. 

Step 1: Find two jobs Ja and Jb such that the makespan of the two jobs is minimum. 
OPT 二 [a, 6), UNSEQ=UNSEQ -a - b 

Step 2: WHILE |UNSEQ| > 0 DO 
Choose a job Ji from UNSEQ randomly. 
Insert into OPT such that the makespan of OPT is minimum. 
UNSEQ=UNSEQ -i 

END WHILE 

OUTPUT: OPT 

SPIRIT uses the taboo search algorithm for FSP [21] to refine the solution 

obtained by the insertion method. The algorithm used in our experiment is as 

follows. 

INPUT: n: number of jobs 
m: number of machines 
Pj (z): processing time of job i on machine j 
tj： transportation time from machine j to machine j + 1 
rj： transportation time from machine j + 1 to machine j 
nbmax: max. number of iterations between 2 improvements 
T: taboo list storing ((a, i), (6,i)) 

(It remembers the optimal move which swapping Job a 
at position i with Job b at position j) 

TSize: size of the taboo list T 

BEGIN 
Find an initial feasible sequence s using Insertion Method 
nbmax 二 72 
TSize 二 7 
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nbiter=0 (Iteration counter) 
BI=0 (The iteration in which the best makespan has been found) 
BS=7r (The best sequence) 
BV=Fmax(7r) (The makespan value of BS) 

WHILE nbiter-BRnbmax DO 
nbiter=nbiter+l 
Find the best neighbour TT* of TT which is not taboo by swapping 
two cities. 
TT 二 TT* 
Store the move into the taboo list T 
IF |r| > TSize THEN 

Remove the oldest move from the taboo list T 
END IF 
IF FmaxW <BV THEN 

BVsFmax � 

BI=nbiter 
BS=7r 

END IF 
END WHILE 

OUTPUT BS, BV 
END 

7.3 Comparison with SPIRIT 

We report in Table 7.4 the computational results of using SPIRIT and GA(SPIR/LDPX). 

The number of jobs varies from 50 up to 200. The 'Random seed' is the random seed 

number for CPFSTTBM generation using the procedure in appendix A. 'Time' is 

the execution time including the time spent on the TSP Solver as well as the trans-

forming procedure. The parameters setting of the TSP Solver has been described 

before in Table 7.1. 

Table 7.4 shows that for CPFSTTBM of large size, our method can also get 

satisfactory results within reasonable execution time. Compared with SPIRIT, our 

algorithm obtained better solutions. Note that SPIRIT has been shown to outper-

form other heuristic methods for FSP. 
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No. of Jobs, % better 
No. of Machines, SPIRIT GA(SPIR/LDPX) than 

Random seed Obj. Time (s) Obj. Time (s) SPIRIT 
50.20.1 " ^ 1 4 1.9 3,429 9.1 2.4 % 
50.20.2 3,608 2.0 3,455 11.2 4.2 % 
50.20.3 " T 6 1 2 1.8 3,476 15.1 3.8 % 

28.2 5,982 68.6 2.9 % 
100.20.2 28.5 6,026 155.8 2.9 % 
100.20.3 28.5 6,155 97.2 1.3 % 
200.20.1 11,245 470 11,010 702 2.1 % 
200.20.2 11,322 475 | 11,279 648 0.4 % 

Table 7.4: Computational Results of TSP Solver and SPIRIT 
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Chapter 2 

Conclusion 

We have successfully improved the original LDPX by enhancing the gene sets and 

the crossover procedure. We have also proposed a new genetic operator, Single 

Parent Improved Reproduction (SPIR), which is suitable at the early stage of the 

evolution when individuals in the population have not been very fit. 

By employing SPIR and LDPX in the genetic algorithm, we have developed 

a general-purpose TSP Solver software package called GASL. The solver has been 

tested by solving TSPs of varying size. For TSPs of small size, the solver can ob-

tain the exact optimal solutions whereas for TSPs of large size such as the problem 

pr439, it can obtain near-optimal solutions. We have also compared GASL with 

other genetic algorithms which use partial mapped crossover (PMX) and edge re-

combination crossover (ER). The results show that GASL is consistently better than 

GA(PMX) as well as GA(ER), although ER is known to be a powerful crossover 

operator. 

In part II, we have examined the problem of flowshop scheduling with travel 

time between machines, a more realistic model of flowshop scheduling problem. We 

have described the formulation of the model and have proposed an algorithm to 

transform CPFSTTBM into a TSP model. A software module has been developed 

and incorporated into the TSP Solver. Computational results have been obtained in 

solving problems with up to 200 jobs, which show that our new method can obtain 
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the exact optimal solutions or near optimal solution. In addition, computational 

experiments have been carried out to compare our method with SPIRIT [66], an 

effective heuristic method for FSP, shows that our method obtained better results. 
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Appendix A 

Random CPFSTTBM problem 

Generation Algorithm 

CPFSTTBM problems were generated with the following three conditions: 

10 < tj < 20 , where j = 1 , m - l 

5 < rj < 10 , where j = 1 , m - l 

10 < pj{i) < 50，where i = 1, .•” n;j 二 1, ...,m 

where tj is the time required for the transporter Tj to move a job from machine j 

to machine j + 1 and rj is the time required for the transporter Tj to come from 

machine j + 1 back to machine j. Each job Ji, has its own processing time on 

different machine j which is denoted by pj (i). 

The random number generator randQ is defined as follows: 
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XQ 二 Random Seed No 
Xn+i = (97 * Xn + 37) mod 65536 

Figure A-1: Random Number Generation Algorithm 

Using the random generator, an m-machine-n-job FSTTBM is generated in three 

steps: 

Step 1: FOR i^lTO m-1 
ti 二 10 + rand{) mod 11 

END FOR 

Step 2: FOR i = 1 TO m - 1 
n — 5 + rand{) mod 6 

END FOR 

Step 3: FOR i = 1 TO n 
F O R j 二 1 TO m 

Pj [i) = 10 + rand{) mod 41 
END FOR 

END FOR 

Figure A-2: Algorithm for FSTTBM Generation 

For example, a 5-machine-lO-job FSTTBM generated using seed number 1 is as 

follows: 

69 



tj 12 10 19 19 

fj 7 6 7 6 

pij 50 34 14 23 11 

P2j 34 42 50 49 31 

psj 33 24 18 48 28 

P4j 45 41 21 45 36 

p^j 36 32 43 15 26 

pej 22 45 41 47 32 

10 14 22 16 20 

ps〕 39 28 20 11 29 

PQj 29 44 47 48 43 

pioj 4 2 2 3 3 2 2 9 1 9 

Table A.l: Example of 5-machine-lO-job FSTTBM 
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