
I A New Genetic Algorithm for Traveling Salesman
Problem and Its Application

}

\ by

Mr. Lee, Ka-Wai
supervised by

Dr. X. Cai

Submitted to the Department of Systems Engineering and Engineering
Management

in partial fulfillment of the requirements for the degree of

Master of Philosophy

at the

THE CHINESE UNIVERSITY OF HONG KONG

June 1995

/

；
 r

2
 ns
 A
o
^

^
 ̂

 ̂
 I
 ⑩

Abstract

This thesis consists of two parts. In part I, we propose, based on a new approach

presented by Cai in 1991, two new crossover operators called LDPX (Local Dynamic

Programming Crossover) and SPIR (single parent improved reproduction) for ge-

netic algorithms for solving traveling salesman problem (TSP). We also develop a

general-purpose TSP Solver called GASL which uses SPIR and LDPX as the core

of genetic operators. Experimental results show that GASL can obtain optimal or

near-optimal solutions for all TSPs we have tested. Comparison with other genetic

algorithms with different crossover operators, such as partially mapped crossover

(PMX) and edge recombination crossover (ER) has also been done. Part II of this

thesis will focus on applying the TSP Solver to a practical problem - Flowshop

Scheduling with Travel Time Between Machines (FSTTBM). The formulation of

this problem will be described and the algorithm for the transforming of FSTTBM

into TSP will be proposed. Then, GASL is applied to find a solution. A lot of

randomly generated FSTTBMs have been solved by our proposed method and the

results of the experiments show that the new method is very effective as compared

with other well-known methods.

2

Acknowledgement

I would like to express my deepest gratitude and appreciation to my supervisor Dr.

X. Cai, who gave me invaluable advices, comments, suggestions and a lot of great

ideas, especially on the construction of the genetic crossover operator.

I also wish to thank all the staff of the Department, who have given me their

valuable support during my research.

3

Contents

1 Introduction 6

1.1 Traveling Salesman Problem 6

1.2 Genetic Algorithms 8

1.3 Solving TSP using Genetic Algorithms 10

1.4 Outline of Work 12

Part I Algorithm Development 14

2 A Local DP Crossover Operator — LDPX 15

2.1 Review of DP for Solving TSP 15

2.2 On the Original LDPX 18

2.2.1 Gene Representation 18

2.2.2 The Original Crossover Procedure 19

2.3 Analysis 21

2.3.1 Ring TSP 21

2.3.2 Computational Results of Solving Ring TSP and Other TSP

using LDPX . . 22

2.4 Augmentation of the Gene Set Representation 24

2.5 Enhancement of Crossover Procedure 25

2.6 Computational Comparison of the new proposed LDPX with the orig-

inal LDPX 26

4

2.7 SPIR - An Operator for Single Parent Improved Reproduction . . . 26

3 A New TSP Solver 29

4 Performance Analysis of the TSP Solver 33

4.1 Computational results 34

4.2 Comparison between SPIR/LDPX, PMX and ER 35

4.3 Convergence Test of SPIR/LDPX 37

Part II Application 43

5 Flowshop Scheduling Problem 44

5.1 Brief Review of the Flowshop Scheduling Problem 44

5.2 Flowshop Scheduling with travel times between machines 45

6 A New Approach to Solve FSTTBM 47

7 Computational Results of the New Algorithm for CPFSTTBM 53

7.1 Comparison with Global Optimum 54

7.2 The Algorithm of SPIRIT 55

7.3 Comparison with SPIRIT 57

8 Conclusion 59

Bibliography 61

A Random CPFSTTBM problem Generation Algorithm 68

5

Chapter 1

Introduction

1.1 Traveling Salesman Problem

The formulation of the Traveling salesman problem (TSP) is simple, which can be

stated as [44]: ^'Assume that a salesman wants to visit N cities. Given the cost

c{i,j) of traveling from city i to city j，i^j = 1, 2 , n , how could he visit every city

exactly once and then come back to the starting city with minimum total cost of the

tour?,’. This is a classic combinatorial optimization problem, a formal description

of which originated as early as in 1832 in a book printed in Germany entitled ,The

Traveling Salesman, how he should be and what he should do to get Commissions

and to be Successful in his Business. By a veteran Traveling Salesman，. [63].

It has been found, however, that many practical problems may fit into this

simple model. For example, consider the problem of computer network wiring,

which connects all computers in a ring topology by cables or optical fibers [15] [59].

If there are N computers and we are given the costs for cabling between any two

computers, a problem will be how to build up the network so that the total cost is

minimum. Obviously, this problem can be formulated as an iV-city TSP. Another

example of application of TSP is the process of manufacturing a circuit board [46].

In this process, many holes have to be drilled using drilling machines. After the

coordinates and the sizes of all the holes to be drilled are known, the machine will

6

automatically drill them one by one following a pre-specified sequence. The problem

is: what is the optimal sequence of the holes if one wants to minimize the total time

spent on the drilling process? There are many other applications of TSP, including

X-ray crystallography [5] , VLSI fabrication [40], etc., see [44] and [37 .

Thus, determining solutions to many practical problems reduces to finding solu-

tions to their corresponding TSP models. Nevertheless, it has been known that TSP

is very hard to solve in nature. In fact, TSP has been classified as one of the most

notoriously intractable combinatorial optimization problems. In theory, it has been

proven that TSP is a problem which is NP-Hard in the strong sense [19] [38]. A

simple observation may help explain the difficulty of this problem. Given an A/̂ -city

TSP, it is easy to see that there will be possible tours. If it takes 1 X 10"^

second to evaluate the cost of a tour, we shall need 36 seconds to find the optimal

tour for a 10-city TSP and we shall need 151 days for a 15-city problem. If N grows

up to 30, we shall need 2.8 X years to search all combinations. It means that

it is practically impossible to get the global optimum tour. Considering its inherent

difficulty, researchers have been striving to devise effective approaches for solving

TSP.

Traditionally, there are two classes of approaches proposed for solving TSP. The

first class consists of methods based on mathematical programming, such as dy-

namic programming [29], branch-and-bound method [47] [42], and integer program-

‘ ming [49]. The other class consists of those so-called heuristic methods. Generally

speaking, mathematical methods can guarantee the optimality of the solution ob-

tained, but they often require excessive computational requirements. In fact, most

of these methods are so computational cumbersome that they actually cannot be

applied to solve any practical problem of moderate size. Heuristic methods include

nearest neighbour [58], nearest insertion [58], farthest insertion [58], convex hull

method [18], greedy algorithms [43], and Lin-Kernighan's 2-opt or 3-opt methods

45] [61] [50] [37]. They are efficient, but they usually offer no guarantee to find any

solution of reasonably good quality. Analysis has shown that the quality of solutions

7

obtained by these methods are frequently worse than that of the optimal solution

by a percentage varying from 2% to 36%. Besides, the performance of these meth-

ods are usually problem dependent [44]. For instance, farthest insertion has been

shown to be good in approximating the solution of a 100-city TSP problem from

Krolak/Felts/Nelson [41] but much worse in solving other Krolak/Felts/Nelson's

problems [41].

Because of those limitations exhibited in the traditional approaches, a third

class of solution methods have emerged in recent years, which are the so-called

inter-disciplinary approaches. These include simulated annealing (SA) [39], genetic

algorithms (GA) [25], and taboo search [20]. These new methods have shown great

promise in solving some very complicated combinatorial problems including some

large-scale traveling salesman problems, although they are still under investigation

and development because of the various open issues that need to be resolved. For

a comprehensive review, see ([44] [25] [36]). A primary objective of this thesis is to

resolve one of the critical problems in using GA for TSP. For this reason, we will

now review this methodology in some details.

1.2 Genetic Algorithms

John Holland invented Genetic algorithms (GA) in 1975 when he published his book

Adaptation in Natural and Artificial Systems [31]. GA have since become a topic

of active research, see [25]. In general, GA are a class of searching methods based

on the analogy to the natural evolution process. In searching for the optimum, a

genetic algorithm always maintains a population of individuals. Each individual

represents a potential solution and is associated with a value to represent its fitness.

Then, the population undergoes an evolution process. During this process, fitter

individuals will be selected into a parent pool for reproducing the next generation.

The selection is biased towards those individuals that have higher fitness values.

Offsprings (new solutions) will be generated by performing certain genetic opera-

tions, such as crossover and mutation, over the individuals drawn from the parent

8

pool. Then, a new generation will be produced. This evolution process continues

until the population consists of individuals which are optimum or near optimum.

Classically, an individual is represented by a binary string, e.g. x i= (01011001)

and X2= (01110101), which are often termed chromosomes. When a crossover op-

eration is to be carried out over a pair of parents, a cutting point will be selected

randomly, and the chromosomes of the parents will be both split at that point and

then the segments of those chromosomes will be exchanged to give the offspring.

For example, suppose parents are xi and X2 as described above. If the cutting point

is 3, then the offsprings will be yi=01010101 and y2=01111001. Mutation alters

directly one or more elements of a chromosome. For example, a mutation occurring

at the element 6 of the parent xi=10111001 will generate yi=10111101.

In general, a canonical genetic algorithm has the following steps:

1. Initialize Population

Randomly generate an initial population POPULATION (0), and set k=0. The

population consists of a number of individuals. Each individual is associated

with a fitness value. The number of individuals is the population size PSIZE.

2. Generate the parent pool for reproduction

Selecting individual i from POPULATION (k) into the parent pool with prob-

ability:

� j: ! ， m ,

where f{j) is the fitness value of individual j.

3. Crossover

Randomly select two individuals xi, X2 from the parent pool. Generate a

random cutting point. Exchange the splitted chromosomes of the two par-

ents. After crossing, the offspring yi and y2 generated will be put into the

POPULATION (k+1). However, not all individuals in POPULATION (k+1)

9

come from crossover operation. In fact, some of them are randomly selected

from POPULATION (k) so that population sizes will be maintained constantly

throughout the evolution. The ratio of the number of individuals generated

by crossover to PSIZE is known as the crossover probability.

4. Mutation

Randomly choose an individual from POPULATION (k+1) and alter randomly

an element of the chromosome of the individual with probability, Pmut-

5. If the standard deviation of POPULATION(k+l) is less than certain prespec-

ified small amount, the algorithm stops; otherwise set k=k+l , and go to step

2.

1.3 Solving TSP using Genetic Algorithms

GA have been successfully applied in solving complicated problems where no effec-

tive methods are available to solve the problems exactly in a reasonable time span.

Examples include optimization of gas pipeline [22], Blind knapsack problem [24],

etc., see [25] [6]. Inspired by these successful applications, there have been a lot of

efforts expended to applying GA for solving TSP. However, these attempts have all

encountered a major difficulty, namely, the production of illegal offspring generated

from the traditional crossover operation. This is illustrated as follows:

For a traveling salesman problem, an easy and natural representation of the

chromosome of a route (an individual) is the sequence of cities in this route. For

example, x i= (3,1,2,5,4) and X2= (2,5,3,4,1) give the sequences of cities in two

solutions, which can be used as the chromosomes of the two solutions. Then, if a

traditional crossover operation applies with a cutting point equal to 2, namely:

= (3,112,5,4)

X2 - (2,513,4,1)

10

Then the offspring generated will be:

yi = (3,1,3,4,1)

y2 = (2,5,2,5,4)

It can be seen that offspring yi misses cities 2 and 5 and repeats cities 1 and 3

while the other one 1/2 misses cities 1 and 3 and repeats cities 2 and 5. Both of them

are illegal (infeasible) tours.

Because the problem as shown above always exists in the traditional crossover

operator, a number of special-purpose crossover operators have been invented for

TSP. They are Partially mapped crossover operator [23], Order crossover operator

12]，Cyclic crossover operator [52], Edge recombination crossover operator [65].

A famous crossover operator is partially mapped crossover, proposed by Gold-

berg and Lingle in 1985 [23]. In this crossover operator, a subsequence of a tour is

selected by choosing two random cutting points. For instance, consider the following

two parents â i and X2 with two random cut points at positions 3 and 7:

a；! = (1,2,3 I 4,5,6,7 I 8,9)

= (4，5,2 11,8,7,6 I 9,3)

The first step of PMX is to build up a swapping list from the elements between

the cutting points. For the above parents, the swapping list will be (1 f-)- 4, 8 f-)-

5,7 f-)- 6,6 7). Then, we change the elements of the two parents based on this

swapping list.

For instance, the first city of Xi will change from 1 to 4 while the second city

of xi is 2 remains unchanged because city 2 does not appear in the swapping list.

Finally, two offspring yi and 約 are generated as follows:

11

yi = (4,2,3 11,8,7,6 I 5,9)

2/2 = (1，8,2 I 4,5,6,7 I 9,3)

The above example shows that offsprings generated will inherit segments of chro-

mosome between two cutting points from parents.

Although PMX [23] guarantees to generate legal offspring, our computational

experiment on PMX shows that the results were not so satisfactory. In our ex-

periment, a genetic algorithm with PMX, called GA(PMX), is used to solve four

standard TSPs "Eilon50", ”Eilon75，，，"EilonlOO" [17], "oli30" [52]. The 'Time' is

the computing time of GA(PMX) on a DEC Alpha workstation model AXP3800 -

200MHz.

Source N Optimal GA(PMX) % above Opt Time (sec)

Oliver 30 420 536 27.6% 41

Eilon 50 425 643 51.3% 184

Eilon 75 538 1109 106.1% 562

Eilon 100 629 1846 193.5% 262

From the result shown above one can see that GA(PMX) is in fact still far from

satisfaction. Similar conclusion may apply to other operators.

The main difficulty in crossover operations as stated above as well as the unsat-

isfactory performance of the existing operators constitute our motivation to explore

new crossover operation schemes. This will be the main work of this thesis.

lA Outline of Work

My work in this thesis is primarily based on a new approach proposed by Cai in

1991 [8], with a new idea for doing crossover operation for TSP. The idea is to invent

a kind of local dynamic programming (DP) procedure to explore the gene sets of

12

the parents so as to find the best offspring that the parents can deliver. This idea

will be elaborated in details in Chapter 2 below.

My main work in this thesis can be grouped into two parts. In part I, my work is

to analyze the approach of Cai, propose an enhanced scheme based on the analysis,

develop a general-purpose TSP solver based on the enhanced scheme, and evaluate

the performance of the Solver by computational experiments. I will show that the

enhanced scheme can get around an unsolved problem that exists in Cai's original

approach. I will report on the computational results that I have obtained in a se-

ries of computational experiments in evaluating the performance of our TSP solver

based on the standard testing problems. As a result of our work, a new crossover

operator, called LDPX (Local Dynamic Programming Crossover), has been devel-

oped. Moreover, a new genetic operator, which generates offspring based on the gene

information of a single parent, called SPIR (single parent improved reproduction),

has also been proposed. A new genetic algorithm based on SPIR and LDPX have

been constructed. Experimental results have shown that the performance of our

TSP solver is surprisingly good, which can obtain optimal or near-optimal solutions

for all problems we have tested. Its performance is much better than those GA with

other operators like Edge Recombination operator [65].

Part II of this thesis will focus on applying the TSP solver for a practical problem

-Flowshop Scheduling with Travel Times Between Machines (FSTTBM). I will

first describe the formulation of this problem, and show that this problem can be

transformed into a TSP model. Algorithms for performing the transformation will

be proposed. Then, we apply our TSP Solver to solve this problem. A series of

computational experiments have also been carried out, the results of which show that

our proposed method is very effective as compared with other heuristic methods.

13

Part I

Algorithm Development

14

Chapter 2

A Local DP Crossover

Operator — LDPX

2.1 Review of DP for Solving TSP

In this chapter, a crossover operator based on DP will be developed. Let us review

this idea of using DP to solve TSP first.

Dynamic programming (DP) is a multi-stage decision approach, which was in-

vented by Bellman [4]. The basic idea of DP [4] [16] [33] is to formulate the problem

as a multi-stage decision problem and then determine the optimal decisions stage

by stage. There are, in general, a number of states at each stage. Each state is

associated with an optimal value which is evaluated based on the so-called principle

of optimality.

DP has been applied to solve TSP, for example, [29]. The traditional approach in

doing this is to separate an N-city TSP problem into an N-stage decision problem.

First, we arbitrarily choose any one city as the last city visited for the decision

problem. Without loss of generality, let us choose city N. At stage k, a state g is

defined as a subset of k cities which are selected from cities {1,2,...，TV — 1}. For

example, g 二 (2,3,6) and g = (2,3,6,7) are states in stage 3 and stage 4 respectively.

For each state g, an objective function g) is defined as the optimal cost of the

15

tour starting from city i £ g, visiting all other cities in g once and only once and at

last, visiting city N. In summary, we have the following set of states for each stage:

Stage 1: {1} {2} {3} . . . {A^ - 1}

Stage 2: {1,2} {1,3} {1,4} . . . { i V - 2 , 7 V - l }

Stage 3: {1,2,3} {1,2,4} {1,2,5} . . . {AT - 3, iV — 2，AT - 1}

Stage N-1: {l，...，iV — 1}

At stage N -1, the decision problem is to find the optimal cost starting from

every city via all other cities and ending at city N. At the last stage, stage N,

the decision problem is to find the optimal cost starting from city N via all cities

and ending at city N. The following is a recursive relationship for calculating the

optimal cost, 5*.

Given N cities, and let c{ij) be the cost of traveling from city i to city j, we

have:

5*(i , { i }) = c{i,N) , where i = l，2，...,7V-l

= min {c{i,u)S%u,g - {i})} , where ieg
ueg-{t}

S* = min {c(iV, u) + {1, 2 , N - 1})}
ue{i,...,N}

Since there are (斤厂丄)different subsets at stage k, the total number of states

throughout the searching will be (� ”，w h e r e A; = 1, 2, ..”N - 1. It means that

the total number of states to be evaluated using DP is 0(2^"^). It shows that the

complexity of using DP to solve TSP will exponentially increase with respect to N,

the number of cities.

The algorithm is as follows:

16

INPUT: Distance matrix of a TSP

DECLARATION:
: The optimal cost for subset g.

S* : The overall optimal cost.
BestPath{i,g) : The optimal solution of
BestTour : The overall optimal tour.

BEGIN
FOR i = 1,2, ...,7V — 1 DO

BEGIN

BestPath{i, {i}) = (i, N)
END

END FOR

FOR EACH g C {1 ,2 , . . . , Â - 1} with \g\ = j do
FOR EACH i e g

BEGIN
S"%g�= u) + S*{u,g- {i})}
Let u* be the city that achieves this minimum.
BestPath{i, g) 二 { i } concatenates BestPath[u"", g — { i })

END
END FOR

END FOR
END FOR
5* = mini<u<N-i{<N, u) + { l , 2 , . . . , i V - 1})}
Let u* be the city that achieves this minimum.
BestTour = BestPath{u*, {1,2,N - 1})
OUTPUT BestTour

END

The algorithm above, builds up the values of S*{i,g) from \g\ = \g\ = 2,...

until the {1, 2 , . . . , AT - 1}) are obtained for i = 1,2, . . . , AT - 1. Finally, it

searches for the optimal tour connecting the last city and the first city.

17

2.2 On the Original LDPX

Cai's original LDPX [8] consists of two basic parts, one is a scheme of defining the

gene sets, while the other is a local DP to explore the gene sets to search for the

best offspring.

2.2.1 Gene Representation

Cai argues that the basic genetic information donated by parents is the sub-tours of

those parents. Therefore, a crossover operator must extract the best genes contained

in these sub-tours to its offspring.

For example, if a parent x= (1,2,3,4,5) is considered, the genetic information

describing this individual will be (1,2), (2,3), (1,2,3,4,5). Each parent has its

own sets of genes. By considering those sub-tours, we can form a set from each

parent, which is termed gene set. In general, we define a gene set G of parent

— • • as:

f . . �
(il.k) (�2 ,�3) (^3,^4). . . (� n - l , q

(̂ 1,̂ 2,̂ 3) … in-2,in-l,in) … �
(2.1)

For example, if xi= (3,1,2,5,4) and X2=(2,5，3,4,l) are considered, the corre-

sponding gene sets will be defined as follows:

‘ (3 ,1) (1,2) (2,5) (5 , 4) �

^ (3,1,2) (1,2,5) (2,5,4) ^

(3,1,2,5) (1,2,5,4)

�(3,1,2,5,4) ‘

and

18

’ (2,5) (5,3) (3,4) (4 , 1) �

^ (2,5,3) (5,3,4) (3,4,1) ^

(2,5,3,4) (5,3,4,1)

‘ (2,5,3,4,1) .

If offspring is generated from these gene sets during crossover, it will inherit the

characteristic of its parents. That is the basic idea of the original LDPX.

2.2.2 The Original Crossover Procedure

In general, two parents will have two families of gene sets. The fundamental idea of

Cai's original crossover procedure is to mix up these two families of gene sets into G,

and then use a dynamic programming procedure to explore these sets so as to find

the best offspring. Specifically, the gene sets are first classified into different groups

in such a way that group 1 contains gene sets with 1 city, group 2 contains gene sets

with 2 cities, ... and the last group contains gene sets with all cities. Then, a DP

procedure is used to generate the best offspring from these gene sets. The procedure

will find out the optimal cost of the objective function S*{i,g) for each gene g e G

where S*{i,g) is the optimal cost traveling from city i € g via all other cities in g

once and only once. At stage k the DP procedure limits its search to the gene sets

with k cities only.

When k = 1, all S*{i,g) with = 1 will be evaluated as 0. Therefore we have,

{1}) 二 0, 5*(2, {2}) = 0’ . . . ， { n }) = 0. When k 二 2, {ii, i?}) will

be evaluated as c(h,�2) + S*{i2, {^2}) where c(ii, 2̂) is the cost from city ii to city

<2. In general, a recursive relationship of the objective function g) is defined

as follows:

19

。“.、 . c (⑷ + 师2,分
S (t^g) = mm . ^

However, g - { i } does not always exist in the gene set G because it is only a

subset of the whole combination. For a set not in G, we call it infeasible or illegal and

its objective function will be set to be oo. For example, for the Xi and X2 as given

above, stage 2 of the DP procedure will consider the gene sets - { (3,1), (1,2), (2,5),

(5,4), (5,3),(3,4), (4,1) }，... and stage 5 will consider the gene sets { (3,1,2,5,4),

(2,5,3,4,1) }. All other genes not in the gene sets are regarded as infeasible or illegal

'8]. The following is an example to illustrate the idea in which g = (2, 5, 3,4) is the

gene set considered and 5(3, (2,5,3,4)) is defined as the cost of visiting the cities

in the set (2,5,3,4) once and only once, subject to the condition that the starting

city is city 3:

‘ c (3 ,2) + 5 (2 , (2 , 5 ,4))�

5(3,(2,5,3,4)) - m i n | c(3,5) + 5(5, (2, 5,4)) ^

c(3,4) + 5(4,(2,5,4))

5(5, (2,5,4)) has been set to be oo because (2,4) is not an legal gene sets.

In summary, we can derive a recursive relationship as follows:

Let g = (ii, 2̂, . . . ， i t) be a gene set of cardinality t, and let S*{i, g) be the minimal

cost of the tour which visits the t cities in g by starting from i G g subject to the

condition that the remaining elements g - { i } consist of a legal gene set as given by

the parents. Then, we have:

… . � . 外 ， 如 作 2 , 分 - W) S (t^g) = mm • ^

g) = oo g — { i } is infeasible.

20

Using this recursive relationship, the solution procedure first moves from t =

1, 2, ••，until n when it finds the minimal overall cost, then moves from t = n, n-1,

until 1 to find the optimal tour, namely, the best offspring that is given by the

parents.

2.3 Analysis

The crossover procedure as described above is an innovative idea. Computational

experiments have shown that this approach greatly outperformed Lin's 2-opt with

multiple starts, see [8]. However, [8] only drafts the fundamental idea. A number

of important issues remain to be resolved to make the approach an applicable one.

One of these is that the original LDPX neglects the cost between the last city

and the first city. This phenomenon was actually revealed when I compared the

performance of the LDPX in solving a special case TSP - "Ring TSP" and other

TSPs. Experimental results showed that it works fine for "Ring TSP", but it does

not give satisfactory results for general TSP. This will be illustrated below.

The second major issue is on the algorithmic aspect of the original LDPX. It

requires much working space to memorize each element at each stage in the dynamic

programming procedure. Besides, much time is spent on searching whether a set is

a legal gene set. In the following we will describe a genetic operator to solve these

problems. This operator will generate an offspring based on the gene sets provided

by a single parent.

2.3.1 Ring TSP

Ring TSP is a special TSP whose cities are located on the perimeter of a circle

evenly. The cost from one city to other city is defined as the distance between those

cities. An example with 16 cities is depicted below.

21

16

i j :
9 ^ 7

8
In general, the distance between two cities i and j is given below:

j j — ^ J
c(i, j) = 2rsin(- —) , where 1 < i < j < n

TL

where n is the number of cities, and r is the radius of the circle. In our experiment,

r is chosen to be 1,000. Without loss of generality, we define the cost between a pair

of cities i and j as c(i, j) .

For any TSP with n > 3 , the solution is a ring - (1, 2, • • •, n) and the minimal

cost of an optimal tour is 2nr sin(^) which will close to 6,283, the perimeter, when

n is very large.

2.3.2 Computational Results of Solving Ring TSP and Other TSP

using L D P X

We obtained the following results in solving Ring TSP using a genetic algorithm

with LDPX, where PSize is the size of the population in the genetic algorithm.

From Table 2.1 we can see that the LDPX has a very good performance in solving

the TSP. Let us now apply it to solve other TSPs. The problem instances we used in

our experiments came from a TSP Library [57]. The TSP Library (TSPLIB) collects

22

LDPX % above
_ _ n Opt. Obj. Time (s) PSize optimal
_ 20 6,257 6,257 ~ T

6,279~ 6,279 7
100 6,282 “ 50 20 0 . 0 ^
200 6,283 6,283 579 20 0.0%

Table 2.1: Performance of LDPX for "Ring TSP"

some TSPs which have been well investigated by many researchers. In our exper-

iments here, four problems, namely, OliverSO [52], Eilon50, Eilon75, and EilonlOO

17], from this library were solved by the crossover - LDPX. The experiments were

carried out on a DEC Alpha workstation AXP3800 with one 200MHz CPU. The

results are summarized in Table 2.2.

GA(LDPX) Percentage
Problem Source Size Optimal Obj. Time (s) PSize of error

O l i ^ W 420" 424 12 W O.QW
Christofides/Eilon 425 438 W 50 — 3.06%
Christofides/Eilon 75 538 “ 567 61^ 100 — 5.39%
Christofides/Eilon 100 629 650 1,018 100 3.34%

Table 2.2: Performance of LDPX for TSP in TSPLIB

From Table 2.2 we can see that, although LDPX worked well in solving "Ring

TSP" (the exact optimum solutions were obtained in every test), its performance

was not so satisfactory in solving those TSPs from the TSP library.

The main reason is that the original LDPX neglects considering the cost between

the last city and the first city. This makes the solution procedure focus on searching

for a path rather than a cycle as required by TSP. This problem is not critical in

the ring TSP since an optimal path in the ring TSP is always (1,2，...，n) while the

optimal cycle is also (1, 2,…，rz). However, for a general TSP, the solution obtained

will carry certain error, as shown in Table 2.2. This indicates that the original

LDPX as described in 2.2 should be modified to account for the cost between the

23

last city and the first city of a TSP. To do this, in the following sub-sections we

will first augment the gene set representation in Section 2.2.1 so as to account for

information on the connection between the last city and the first city provided by

the parents, and then introduce modification to the original LDPX to make use of

the information.

2.4 Augmentation of the Gene Set Representation

Considering the gene sets of a parent xi = (1,2,3,4,5):

‘ (1 , 2) (2,3) (3,4) (4,5) ’

^ (1,2,3) (2,3,4) (3,4,5) ^

(1,2,3,4) (2,3,4,5)

‘ (1,2,3,4,5) >

Clearly, the gene information on the connection of the last city 5 and the first

city 1 is not contained in these sets. In order to account for this information, we

may augment the gene sets as follows:

’ (1,2) (2,3) (3,4) (4,5) (5,1) �

^ (1,2,3) (2,3,4) (3,4,5) (4,5,1) (5,1,2) ^

^ (1,2,3,4) (2,3,4,5) (3,4,5,1) (4,5,1,2) (5,1,2,3)

‘ (1,2,3,4,5) (2,3,4,5,1) (3,4,5,1,2) (4,5,1,2,3) (5,1,2,3,4),

In general, we have a new definition of gene sets for the parent ..,‘)：

f >

{ilM) (̂ 2,̂ 3) fe�4)… [in.k)

{iiMih) [WzM)…

< . > (丄 々

、 . .，。） . • • [iniHi- . . ,

24

2.5 Enhancement of Crossover Procedure

There are a number of possible options to modify the original LDPX so that it can

account for the connection between the last city and the first city. We suggest to

use the following one:

First, select randomly a reference city i—. Then, define S*{i,g) as the minimal

cost of visiting g = 仏 , “ ， s u b j e c t to the condition that the tour starts from

i e g , visits all other cities in — { i } once and only once, and ends at city iend. A

recursive relationship for calculating 5* is given below:

X
(\

c(i,n) { i })

= mm . ,it i ^ tend

c{i,it) + S{it,g-{i})
< >

g) = oo ,if i = iend OT g- {i} is an

infeasible gene set. (Note the

feasibility is based on the

augmentation of the gene sets

as defined in section 2.4)

The minimal overall cost will be:

S* 二 pin {c{iend, i) Gn) } ,
iEGn

where Gn denotes the gene set with cardinality equal to n.

Without ambiguity, from now on we will call the approach above LDPX. Ac-

cording to the principle of optimality of dynamic programming [16] [4], the offspring

generated by this LDPX approach will be the best one that can be delivered from

the parents subject to the condition that all the subsets g are the gene sets defined

by the parents.

25

2.6 Computational Comparison of the new proposed

LDPX with the original LDPX

We have incorporated, respectively, the new LDPX proposed above and the origi-

nal LDPX into a genetic algorithm. The following computational results show the

performance of the genetic algorithm with the new LDPX and the genetic algo-

rithm with the original LDPX, which were obtained by solving two problems from

Christofides and Eilon [17] with numbers of cities equal to 50 and 75 respectively.

The population size was chosen to be 100.

Original The New LDPX

Problem Source n Opt. Obj. Time Obj. Time (s)

Christofides/Eilon 50 425 438 98 s 425 96 s

Christofides/Eilon 75 538 567 610 s 538 569 s

From the results we can see that the GA with the new LDPX obtained the

exact optimal solutions in both of the problem instances (which are given in [17]).

Compared with the new GA, the GA with the original LDPX which, however, failed

to find the optimal solutions, needed almost the same computing time.

2.7 SPIR — An Operator for Single Parent Improved

Reproduction

The LDPX described above uses the gene sets provided by a couple of parents.

From our computational experiments we found that most of the time required by

the genetic algorithm with this crossover operator was spent on validating whether

a sub tour was a legal gene set, particularly at the early stage of the evolution of the

genetic algorithm. In fact, at the early stage of the evolution when individuals in the

population have not been very fit, it is still unnecessary to cross over the genes of a

couple of parents. In other words, at this stage, even a single individual has much

room for improvement and it is unnecessary to spend time to consider the crossover

26

of the genes of two parents. This is our motivation to propose the operator SPIR,

which generates an offspring based on the genes provided by a single parent.

SPIR is similar to LDPX, except that it only explores the gene sets defined by

a single parent. In the case of single parent, by letting ^ G {2,3, • • n} denote the

cardinality of a gene set and s denote the starting position, we can define g(t,s)

as the gene set that contains t elements starting from the position s. For example,

assuming that xi = (7,1,6,2,4,5,3) is the single parent under consideration, we

have

^(2,1) = (7,1)

^(3,6) = (5,3,7)

5^(4,6) = (5,3,7,1)

etc.

With this indexing scheme to represent the gene sets, the procedure to check

whether a gene is legal or not is easy. Let the parent be (p(l),p(2), ...p(灯)),

where p{j) is the city at position j. Then, the genes g{t, s), g{t-l, s) and g{t-l, s+1)

given by the parent are as follows:

Starting position = s Starting position 二 s + 1

双 g { t - l , s + l) = (\ (\

^ p{s) p(s+l) ... :p(s + 力 一 p { s + 1) p{s + 2) ... p{s-{-t-l) ^

g{i,s�二

/ \
� p (s) p{s-\- 1) … p { s + t - l) ^

27

It can be seen from the above that g{t, s) - {p{j)} is a legal gene set if and only

if j = s or j = s 1 - 1. Any other j will lead to an illegal gene set. That is:

g{t, s) - {p{s + 1) } = Infeasible

g{t, s) - {p{s + t - 2)} 二 Infeasible

g{t,s)-{p{s + t - l) } = g{t-l,s)

In summary, the recursive relationship for the SPIR operator, where S*{j,g{t, s))

denotes the minimal cost of visiting the cities in the set g(t,s} by starting at the

city p(j) and ending at a city iend (see Section 2.5) is as follows:

At stage t= l , For 1 < i < Â and p[i) * iend ,

二 c{p{i),iend)

At stage t={2,...,N},

For j — s,

V) = mm
c(p(s),p(s + t-l))-h + 1))

� ,
For j 二 s + i — 1，

S {J,g{t, s)) = mm
c{p{s + i - 1) , + t - 2)) + + i - 2,g{t - 1, s)) < ‘

For s < j < s + 卜 1, <S'*(i,5f(t,s)) 二 oo

The optimal cost will be:
S* = min \ min {c{iend,i) + g{NJ))}\

i<j<N [ieg{N,j))
28

Chapter 2

A New TSP Solver

We develop, in this chapter, a new GA for solving TSP which incorporates the

operators LDPX and SPIR. The new GA uses the strategy that SPIR is activated

at its early stage while LDPX is used at its late stage. The motivation is that at

the late stage of the evolution, individuals have been so fit that an improvement

from just a single parent is hard to obtain. The overall architecture of the new TSP

Solver is depicted below:

Initial
Population

Distance TSP Solver with Solution for
Matrix I GA(SPIR/LDPX)] the TSP

GA Control
Setting

Figure 3-1: Input and Output of TSP Solver

Specifically, the TSP Solver takes in three sets of data: (1) an initial population

which is randomly generated, (2) a cost matrix which stores the costs between each

29

pair of cities, and (3) a set of GA control parameters such as population size, the

number of individuals selected to perform reproduction, terminating condition, etc.

The main steps of the TSP Solver are illustrated below where St is a small number:

(1) Initialize (2) Select Potential
Population “ Parents

(3) Crossover -
(SPIR/LDPX),
and Mutation

(4) Evaluate Mean
& Variance of
the Population

Yes (5) Select the best
— I s J < Jf? " individual from

the population

Figure 3-2: Main Steps of TSP Solver

Thus, there are four main steps in the TSP solver:

(1) Initially, it randomly generates a number (equal to a pre-specified population

size PSIZE) of feasible tours to form the population of the first generation. The

cost of each and every individual is evaluated.

(2) At each generation, it randomly selects a number of individuals to form a

parent pool. The selection is biased towards the individuals which are fitter (with

lower total cost). Specifically, let F{Xi) be the cost of an individual X“ and let

Fmax be the maximum of F(Xj), j = 1 , 2 , P S I Z E , in the population. The raw

30

fitness value of the individual JQ is defined as F'{Xi) 二 Fmax - F{Xi) + 1, and

the scaled fitness value is defined as (here we adopt the scaling scheme of [25])

F�[Xi) = aF'{Xi) + 6, where the coefficients a and b are chosen in such a way

that the mean value of the scaled fitness F^ is equal to the mean value of the raw

fitness ' r and that maximum value of the scaled fitness is equal to

Cmuit X F", where Cmuit is equal to 2 (suggested by [25]). An individual Xi will be

selected to enter the parent pool with the following probability:

尸 广 ' (足 ）

广 口"、Xi).

(3) Then, it applies the genetic operators SPIR/LDPX and mutation to produce

the ofFpring from the parent pool so as to generate the population of the next

generation. At the beginning, when the population is randomly distributed, SPIR

will be activated. Then, when the variance of the population reaches a threshold

(at that time, SPIR has been hard to make a significant improvement over a single

parent), the algorithm will switch to LDPX which will be used until convergence.

Specifically, define 5 as the ratio of standard deviation to the mean of the population.

Then , if 5 < Ss, the TSP Solver switches from SPIR to LDPX, and if S < St, the

TSP Solver is terminated, where 6s and 5t are given control parameters. During each

generation, the number of offspring produced using SPIR/LDPX is equal to PSIZE.

Afterwards, mutation is applied. It selects individual from the new offspring, and

then exchanges randomly the positions of two cities. For example, if cities 2 and 5

are selected, then:
(1,2, 3,4,5)-^(1,5, 3,4,2)

In TSP Solver, each new offspring should have a probability to perform mutation

and the probability is known as mutation probability. Usually, this probability is set

to be very small such as 0.01 in our computation test in next chapter.

(4) The value of S will be evaluated at every generation. The evolution continues

until S of the current population has been smaller than 5t.

31

The above TSP Solver has been developed as a software package using C. It can

now solve any TSP problem, given the problem parameters. The software package

has been extensively tested using numerous standard testing problems of varying

size from a well-known TSP library. The computational experiments have shown

that our Solver has an excellent performance in solving various problems. The

computational results are reported in the next Chapter.

32

Chapter 2

Performance Analysis of the

TSP Solver

To evaluate the performance of our TSP Solver, a large number of TSPs of varying

size have been solved. In the following sections we shall report our results obtained

in solving those standard problems from a TSP library TSPLIB [57]. Since the best

solutions for these problems have also been provided in the Library, the evaluation

of the quality of the solutions obtained by our Solver can be based on these known

solutions. In addition to the comparison with these known results, our Solver were

also compared with other approaches. One is a GA with a crossover operator called

edge recombination (ER) [65], which was chosen because it was shown to be the most

efficient operator in solving TSPs and thus have been adopted by many researchers,

(see, for example, Genitor [64] and Tolkien [2]). Another approach that was used

to compare with our Solver uses PMX (partially mapped crossover) [23] as the

crossover operator. In our computational experiments, all the approaches, including

our Solver, were applied to solve the same problem with the same parameters under

the same conditions (such as the stopping condition). All the experiments were

carried out in a DEC workstation AXP3800 with one 200MHz CPU. The settings

of the parameters in the our GA, which have been tested and adjusted so that our

TSP Solver will obtain good results, are given in Table 4.1.

33

Problem Pop. Parent Pool Size Mutation
Name Size SPIR LDPX probability _ _ 5 丄 _

ol i^ W 16 16 1.0%- 5.0 0.02"
eil^ W 16 16 1.0%— 5.0 0.02'
eil75 ^ 16 1.0% 2.0 0.15"

eillOO ^ 16 1 � 1.0%— 2.0 Q.IO"
linl05 20 16 16 1.0% “ 5.0 4.0

kroAl^ W 16 16 1.0%— 10.0 6.0
kroCl^ W 16 1 � — l.O^r 2.0 1.8
kroDl^ 20 16 1 � l.O^r 2.0 0.7—

~ k ^ l 5 0 20 16 16 1.0% 5.0" 3.5
"1^B150 20 16 16 1.0% 5.0" 1.1
"kroA200~ 20 16 16 1.0% 5.0" 1.3
17OB2Q0 20 16 16 1.0% 3.2
~~11^318 20 16 3.0 " T o "

pr439 20 16 16 1.0% 20.0 15.0

Table 4.1: GA(SPIR/LDPX) Parameters Setting

4.1 Computational results

We now report the results in comparing the solutions obtained by our Solver with

the best known solutions. In the Table 4.2, all the problems and their corresponding

optimal solutions were extracted from TSPLIB, in which eil50, eil75 and eillOO came

from Eilon [17], oli30 from [52], kroAlOO, kroA150, kroA200, kroBlSO, kroB200,

kroClOO, kroDlOO from [41], linl05, lin318 from [45], and pr439 from [53；.

From the computational results in Table 4.2 we can see that the TSP solver

obtained, in reasonable time, optimal or near-optimal solutions for all the problems

tested. Note that the parallel structure of the GA in the TSP Solver has not been

utilized. It is expected that the computing time required by the GA can be reduced

substantially if it is implemented in parallel.

34

S n R 7 T i m e % above
Problem Name Size Optimum LDPX (min) optimum

Oliver et. al. - oliST 30 420 0.1 ~ 0.0 %
Christofides/Eilon - eil5Q 50 425 “ 425 0.7 0.0 %

— Christofides/Eilon - eil75 75 538 538 1.0_ 0.0 %
—Christofides/Eilon - eillOO 100 — 629 — 629 4.8 0.0 %
"Krolak/Felts/Nelson - kroAlQQ 100 一21,282 2 1 , 2 ^ 3.3 0.0 %
"Krolak/Felts/Nelson - kroClOQ 100 — 20,749 "^0,749 3.2 0.0 %
"Krolak/Felts/Nelson - kroDloT 100 21,294 21,294 5.0~ 0.0%
— Lin/Kernighan - linlO^ 105 14,379 14,379 5.5— 0.0%
"Krolak/Felts/Nelson - k r o A l ^ 150 26,524 26,528 9.5— 0.0 %
"Krolak/Felts/Nelson - k r o B l ^ 150 26,130 26,188 13.6~ 0.2%
~Krolak/Felts/Nelson - kroA200 200 29,368 29,503 i i " 0.5 %
"Krolak/Felts/Nelson - kroB^oT" 200 29,437 "~29,446 66— 0.0 %
— Lin/Kernighan - lin318 318 42,029 42,446 223— 1.0 %
一 Padberg/Rinaldi - pr439 439 107,217 107,868 560 0.6 %

Table 4.2: Computational results of GA(SPIR/LDPX)

4.2 Comparison between SPIR/LDPX, PMX and ER

In this section, we compare our Solver with two GAs, one with the crossover oper-

ators ER [65], and the other with the crossover operator PMX [23]. In Table 4.3,

'Time' is the execution time in minutes while 'Obj.' is the objective function values

obtained by using different crossover operators.

From the results given in Table 4.3 we can see that ER and SPIR/LPDX gave

better results than those obtained by PMX. In order to compare the performance

of ER and SPIR/LDPX, the results obtained by them are further compared with

the optimal solutions, see Table 4.4.

From Table 4.4 it can be seen that, for small size TSPs such as Oliver's 30 cities

TSP, both ER and LDPX were able to find the exact optimal solutions. However, for

complex problems of large size, ER failed to obtain good solutions. An example is

Lin's 318-city TSP. The solution obtained by ER is 59.5% above the optimum for this

problem. For almost all the problems tested (except the last one), our Solver with

35

PMX M SPIR/LDPX
Problem Name (n) Optimal Obj. Time Obj. Time Obj: Time

一 Oliver et. al. (30) ~ 420 536 0.7 ~ 420 0.2 420 ~ ^
一 Christofides/Eilon (50) 425 643 3.1 “ 430 0.9 425 0.7

Christofides/Eilon (75)— 538 1,109 9.4 544 2.3 538 0.7
一 Christofides/Eilon (100) 629 1,846 4.4 “ 659 4.5 629 4.8
l^olak/Felts/Nelson A(IOO) — 21,282 5 2 , ^ 84.9 "23,962 4.1 21,282 2.3
"Yrolak/Felts/Nelson C(IOQ) 20,749 1 3 , 4 8 5 96.6 “ 21,498 4.6 20,749 3.2
"Krolak/Felts/Nelson D(IOO) 21,294 56,545 21,714 4.5 21,294 5.0
— Lin/Kernighan (105) 14,379 45,430 29.0" 14,626 5.0 14,379 3.0
一 Lin/Kernighan (318) 42,029 233:176 529 67,024 64 42,446 223

Table 4.3: Comparison of PMX, ER and SPIR/LDPX

— r ER % above SPIR/LDPX % above
Problem Name (n) Optimal Obj. optimum Obj. optimum
Oliver et. al. 42T 420 0.0 % 420 0.0 %

— Christofides/Eilon (50) 425 “ 430 1.2 % 425 0.0 %
Christofides/Eilon (7 ^ 538 544 ~~ 1.1 % 538 0.0 %

—Christofides/Eilon (100) 629 659 4.8 % 629 0.0 %
"Krolak/Felts/Nelson A(100)~ 21,282 23,962 12.6 % 21,282 0.0 %
"Krolak/Felts/Nelson C(IOQ) 20,749 21,498 3.6 % 20,749 0.0 %
Krolak/Felts/Nelson D(l6o) 21,294 21,714 — 1.9 % 21,294 0.0 %

— Lin/Kernighan (105) 14,379 14,626 1.7 % 14,379 0.0 %
— Lin/Kernighan (318) 42,029 67:024 59.5 % 42,446 1.0 %

Table 4.4: % above optimum for ER and SPIR/LDPX

36

the SPIR/LDPX consistently delivered the exact optimal solutions. Even for the

one (Lin's 318-city) for which it failed to find the optimum, the solution it derived is

quite near the optimum. These results indicate that SPIR/LDPX outperforms ER,

particularly for large TSPs. Since ER has been shown to be a very effective crossover

operator for solving TSP, the computational results suggest that our SPIR/LDPX

are very powerful operators.

4.3 Convergence Test of SPIR/LDPX

Table 4.3 and 4.4 summarise the final results. To demonstrate the real convergence

rate of our Solver, we have recorded some data during the convergence procedure

in solving the testing problems. These results are displayed in the graphs below, in

comparison with ER. In these graphs, the x-axis represents the computing time (in

seconds) while y-axis represents the lowest cost in the population. The dotted lines

represent the optimal solutions.

Best individual in solving 'oliver30' TSP
1100 1 1 1 I

1000 k -

900 - \ \ -

800 - \ -
Cost

700 - \ -

6 0 0 - -

500 - L s p i r / L D P X -
Opt. ^ … _ • ！ . … … 1

4 0 0 ‘ ‘ 丨 ^ ^ ‘

0 2 4 6 8 1 0

Time spent in seconds

37

Best individual in solving，eil50，TSP
1600 1 1 1 1 1 1 1

1400 I -

1200 ^ -

Cost 1000 -

800 - V -

\ \ ER
600 - \ C -

SPIR/tBg^L,^
400 1 … " • • “ I I I

0 5 10 15 20 25 30 35 40
Time spent in seconds

Best individual in solving 'eil75' TSP
2400 1 1 1 r 1 1 1
2200 - -

2000 V -

1800 ^ -

1600 S -

Cost 1400 \ -

1200 \ -

1000 - ^ ^ -
800 -1 ^ ~ ^ ^ -
600 A ^ P I R Z ^ ： ^ ^ ^ ! ； ； ： ： ： ^ ^ " ： ^ ^ " . -

400 ‘ ‘ ‘ ^ ‘ ‘ ‘
0 20 40 60 80 100 120 140

Time spent in seconds

38

Best individual in solving，eillOO，TSP
3500 1 1 1 [— 1 1 1

3000 - 一

2500 4 -

Cost 2000 -\ -

1500 . \ -
\ ER

1 0 0 0 入 -

Aw. s p i r T L D ^ — …
500 丨 。 I I I

0 50 100 150 200 250 300 350 400
Time spent in seconds

Best individual in solving，kroAlOO，TSP
160000 1 1 1 I 1 1 1

140000 V -

120000 I -

100000 4\ -
Cost 1 \ ER

80000 \ _

60000 - \ \ _

40000 - \ _
n f ^^--^SPIR/LPra ^ ^

20000 [叫… … • ……̂ 丨 I ‘ ‘
0 20 40 60 80 100 120 140

Time spent in seconds

39

Best individual in solving，kroClOO，TSP
180000 1 1 1 [— 1 1

160000 - _

140000 - -

120000 \ _

CosftOOOOO _

80000 \ -

60000 \ -

40000 -\ ^ , ER -
V S P I R / L D P T " ^ ^ ^ ^ ~ •

20000 O] ^ 丨 I •[••..TTT̂ TTTT̂ P：̂ … …
0 50 100 150 200 250 300 350

Time spent in seconds

Best individual in solving，kroDlOO，TSP
160000 1 1 1 1 1

140000 - -

120000 、 -

100000 _

Cost I

80000 \ -

60000 ^ _

40000 - 1 一

20000 ^ - Q p t ^ " ™ ^ ^ ^̂ ^̂ ^̂ ^̂ 叶

0 50 100 150 200 250 300
Time spent in seconds

40

Best individual in solving 'linl05' TSP
120000 1 1 1 1 1
110000 - -

100000 j- -
90000 I -
80000 -

70000 - I —
Cost \

60000 \ —

50000 4 \ -
40000 -j -
30000 -\ ER -
20000 tTTTTTT.
1 0 0 0 0 ‘ ‘ ‘ ‘ ‘

0 50 100 150 200 250 300
Time spent in seconds

Best individual in solving 'lin318' TSP
600000 1 1 1 1 1

500000 - _

400000 r “

CosfiOOOOO 4\ 一

200000 -\ Vv _

100000 _ ~ ^ ^ “

0 I I ‘ I I I]
0 500 1000 1500 2000 2500 3000

Time spent in seconds

From all these graphs, one can see that our SPIR/LDPX is much faster than

ER. Moreover, two observations can be made: (1) SPIR/LDPX converged quickly,

41

particularly at the early stage; (2) In some cases, like oliverSO, a sudden drop in the

solution curve occurred. This effect was actually caused by the switch from SPIR

to LDPX.

To further see the influence of the GA with and without the operator LDPX,

we have carried out another set of computational experiments, in which the results

obtained by the TSP Solver with and without LDPX are compared, see Table 4.5

below.

"Problem Size Optimum SPIR/LDPX Time (min) SPIR Time (m i ^
oliSO "~3Q~ 420 420 0.1 420" ^
eil5Q 50 425 42^" ^ / T 42 厂 1.3
eil75 538 538 l.cT 539 — 1.1

eillOO " l o T 629 629 4.8 630~ 4.4
kroAlOO " l o T 21,282 21,282 3.3— 21,292 — 2.9
kroClQO lOT 20,749 20,749 s T 20,769 3.3
kroDlOO 100~ 21,294 21,294 5 l 21,309 2.0

linl05 105 14,379 14,379 5.5 14,37^ 6.7
kroA15Q 26,524 26,528 9T" 26,528 14.1

J ^ 1 5 0 150" 26,130" 26,188 13.6" 26,296 12.4
kroA200 2 0 r 29,368— 29,503 i T 29,715
kroB200 2 0 r 29,437 29,446 ^ 29,800 ^

lin318 3 i y 42,029 42,446 223" 42,516 通

一 pr439 I 439 107,217 107,868 560 108,988 149

Table 4.5: Comparison of results from GA(SPIR/LDPX) and GA(SPIR)

The results in Table 4.5 indicate that the operator LDPX did improve the solu-

tions. This shows that crossover of genes provided by more parents does generate

fitter offspring.

42

Part II

Application

43

Chapter 2

Flowshop Scheduling Problem

5.1 Brief Review of the Flowshop Scheduling Problem

Suppose that n jobs are to be processed on m machines: Mi, M),…,Mm, in order

of Ml M2 ^ ... — Mm. The processing time of job i on machine j is known to

be pj{i), i = j = l , . . . ,m. The problem of flow shop scheduling (FSP) is to

find a sequence to process the jobs on each machine so as to minimize the overall

completion time [11].

Johnson [35] formulated the initial FSP model in 1954. Since then, FSP has

been investigated by many researchers [67] [34] [56] [66] [3] [7]. The general FSP

with m > 3 has been shown to be NP-hard in the strong sense. Since there are no

efficient methods available which can find exact optimal solutions for this difficult

problem, a wide variety of algorithms, including heuristics, have been suggested

to find approximate solutions. (For a comprehensive review, see [7] [66]). In

the following we will consider a generalized version of the FSP, which has been

formulated in the recent years motivated by some problems arising in manufacturing

systems.

44

5.2 Flowshop Scheduling with travel times between

machines

A generalized model of FSP has been investigated in recent years [1] [48] [55], which

considers the situations where, for each j = 1, 2,…,m - 1, there is a transporter Tj

between machines Mj and Mj+i, which picks up a completed job from machine Mj,

travels to machine Mj+i in time tj, unloads the job and then returns to machine Mj

in time rj. Machine Mj will be blocked by a completed job unless the transporter is

available to remove the job from the machine. The problem is also to determine a

sequence tt to process the n jobs on each machines so as to minimize the makespan

Fmax which is defined as the overall completion time of all jobs.

As usual, we consider the problem under the following assumptions:

1. All jobs are available to process at time zero;

2. A job, once started, may not be interrupted;

3. Each machine can process at most one job at any time;

4. Set-up time for a job has been included in its processing time;

5. Travel times tj and rj are job independent;

6. Loading and unloading times of a transporter have been included in its travel

time tj;

7. The sequences to process the jobs on all machines are same; and

8. There is no intermediate storage space available to hold partially completed

jobs.

For convenience, let us call the model described above FSTTBM. When only

two machines are involved, FSTTBM has been shown solvable by some efficient

45

procedures [1] [48] [55]. However, the problem in general is NP-hard in the strong

sense [60]. This is understandable since the problem without travel times between

machines has been NP-hard in the strong sense.

46

Chapter 2

A New Approach to Solve

FSTTBM

We have described the model of FSTTBM in Chapter 5. In this Chapter, we propose

a new approach to solve FSTTBM which makes use of our TSP Solver described in

part I. The new approach involves two steps. The first step is to transform FSTTBM

into a TSP model while the next step is to use our TSP Solver to find a solution.

Specifically, we will address a problem where a job, once started on machine 1，must

be processed by all machine without any idle time. The problem is called continuous

processing FSTTBM or CPFSTTBM [28]. In this problem, a job shall wait by the

first machine before starting its processing until it can be continuously processed by

all machines.

We will propose an algorithm to transform CPFSTTBM into a TSP model where

jobs must be processed continuously through all the machines. To illustrate, let us

construct a Gantt chart for two jobs 人 and Jb, see figure 6-1. In this Gantt chart,

we let Si be the earliest starting time of job J, on machine 1. Therefore, the two

dotted lines at Sa and Sh correspond to the starting time of jobs 人 and Jf, on the

first machine Mi respectively.

Since all jobs are available to be processed at the beginning, Sh can be adjusted

to the most left in the Gantt chart so as to minimize the makespan, under the

47

Job Ja Job Jh

Ml PI � Pi(fe)

M2 I ； P2 � I P2{b)

I l ^ y ^ ^ ^ / ^
M S I I P3 ⑷ PSJB)

•I 1 X

: I 尤3 . . .

•1 I \ \
Mm ' 1 1 Pmja) Pmjb)

Figure 6-1: Gantt Chart for Two Consecutive Job in CPFSTTBM

following two constraints:

1. Each machine can process at most one job at any time.

2. Machine Mj will be blocked by a completed job unless the transporter is avail-

able to remove the job from the machine.

If Sh is set too early, the previous job 人 may not be completed on machine M2

while the job Jb has arrived at machine M2. Because of constraint (1), job Jb will

have to wait until job 人 has been completed on machine M2. Moreover, job Jb

has to consider the availability of the transporter 7\. These considerations apply

to all machines. In general, Sb should be set to a minimum value such that job Jb

can be continuously processed on all machines after job Ja. Accordingly, define the

minimum delay of job Jb as d{a, b) = min(56 - Sa).

With the definition of minimum delay, we can regard jobs in CPFSTTBM as

cities in TSP and the minimum delay between two jobs as the distance between two

48

cities.

For any feasible job processing sequence tt 二 (tti,兀2,. •.，̂n)，冗n will be the last

job to be processed. Therefore the completion time of the whole processing sequence

will be equal to the time delays from job TTI to job 7r„ plus the processing times and

travel times of the last job TT̂ from machine 1 to machine m. Hence, the makespan

F^ax of CPFSTTBM will be:

n—1 m—1
F m a x � = Y A冗“ TTi+i) + Y, (PsM + ts) + Pwi^n)

i=l s二1

The problem is to find the optimal processing sequence TT* to minimize the

makespan F^ax- In fact, we can add a dummy job J � t o the problem, and let the

minimum time delay of job Jo by other job Ji be the total time required for Ji to be

processed from machine Mi to machine Mm and that of job Ji by Jo be zero. Then,

the CPFSTTBM will be equivalent to an (n + l)-city TSP with the cost matrix

equal to C = {cij} where i j = 0,1,..” n. The matrix is as follows:

‘CO.- = 0 , Vi / 0 ’

^ � d (i , j) ’ V i , j / 0 , i 7 ^ j (6.1)

^ CiO = (Ps(0 + Q + Pm(^) ' Vi^O
‘ Cii 二 OO , Vi ,

Now, we outline the procedure to evaluate the minimum time delay d(i,j) of Jj

from Ji.

Evaluate d{ij) - The Minimum Time Delay

Let Ss{a) be the start time of processing job Ja on machine Ms. Then, we have the

following recursive equations:

Si{a) = Sa

49

Ss{a) = Ss-i (a) + Ps-i{a) + , where 5 = 1 , m

After simplification,

s-l
Ss{a) = Sa + + tk) , where s 二 1,..., m (6.2)

k=l

Now, we show how to compute d{ij) under the following constraints:

Constraint 1 - One machine can process only one job at any time

We assume that every machine should not process more than one job at a time.

Thus, job b should not be started processing on one machine until job a had finished

processing on that machine. Mathematically, we can represent this constraint by

the following inequality:

�� S S s W (6.3)

Noting (6.2), We have:

^a + W Ps{a) < + + tk) (6.4)
k=l k=l

This should be valid for all s. Therefore,

Sb>Sa+ m a x - Pk{b)) + Ps{a)\ (6 . 5)
1 化 U = i J

Constraint 2 - Availability of Transporter

Once a job 人 has been completed on machine Ms, a transporter Ts will pick up the

job to the next machine Ms+i and then return to M^. The total time required by

the transporter will be ts + Vs, during which the transporter is not available for the

next job Jf,. If job Jb has been completed within this period of time, it will have to

wait until the transporter Ts is available. As a result, job Jb cannot be processed

continuously.

50

Let us now determine the condition on the earliest starting time of job Jb on

machine Ms considering the availability of transporter Ts. Suppose that job 人 is

completed on machine Ms at time Ss{a) + p “ a) and then, transporter Ts will spend

ts + rs units of time to remove job 人 to machine M^+i, and return to machine Ms.

Therefore, transporter Ts will be available after time Ss{a)+Ps{a) + is + r̂ for job

J I). Thus, we have the following inequality:

Ss{a)-^Ps{a) -\-ts + r s < Ss {b)Ps {b) , where s = l , . . . ,m (6.6)

The following diagram depicts the case if the above inequality does not hold.

Start time of Job a Start time of Job b Finish time of Job b

Ms I 1 1 \/m
Finish time of Job 乂 � s

Wait for transporter!

From (6.6) and (6.2), we get the following inequality:

Sb>Sa+ m a x \i2iPk{a) - Pk{b)) + t s + r . i (6 . 7) - 1 化 m- l J

Combining the two constraint inequalities (6.5) and (6.7), we have:

maxiccrn {l2lZ\{Pk{a) _ Pfc⑷)十”“…} 1 ,“。、

Sb>Sa + max - - L J > (6.8)
maxi<,<m-i {ELi to fe⑷ 一 Pk{b)) + ts + r J

— — y
�

The minimum of {Sb - So) is equal to,

max ~ ^ ‘
maxi<s<m—1 — PiiP)) + + rs}

一 一 y
�

51

and therefore the minimum time delay of job Jh from job Ja will be,

d(a,b) = mm{Sb - Sa)

‘ m a x i • 〈 饥 \ (6.9)
=max ‘

maxi<,<^_i - Pii^)) + L +
— — y

V

According to (6.9), a procedure for transforming the CPFSTTBM to TSP is as

follows:

INPUT: n: number of jobs
m: number of machines
Pi{j): processing time of job i on machine j
tj: transportation time from machine j to machine j + l
rj: transportation time from machine j + 1 to machine j

BEGIN
DECLARE ARRAY c(n, n)
FOR i = 0 TO n

FOR j = 0 TO n
IF i^j THEN c{iJ) = oo
ELSE IF i = 0 THEN c{ij) = + h) + Pm{i)
ELSE IF j 二 0 THEN c{ij) 二 0
ELSE c{ij) = d{ij) as described in Eq. (6.9)
END IF

END FOR
END FOR

END
OUTPUT: ARRAY c

The above algorithm has been developed as a software module which can be

incorporated into our new TSP Solver. It can now solve any CPFSTTBM problem,

given the problem parameters. This software module has been extensively tested

using numerous testing problems of varying number of jobs, machines and processing

times. The computational experiments have shown that our new method has an

excellent performance in solving various CPFSTTBM problems. The computational

results are reported in the next Chapter.

52

Chapter 2

Computational Results of the

New Algorithm for

CPFSTTBM

To evaluate the performance of our new algorithm for CPFSTTBM, numerous prob-

lem instances have been solved. In the following sections we shall report our results

obtained in solving some problems which are generated randomly. The details of

the random CPFSTTBM generation procedures are described in appendix A. Since

the optimal solutions for these problems are not known, complete enumeration for

problems with small number of jobs was also carried out as comparison. For large

problems, we compared the solutions obtained by using our new algorithm with

an efficient method called SPIRIT (Sequencing Problem Involving a Resolution by

Integrated Taboo search techniques) [66]. All the experiments were carried out in a

DEC workstation AXP3800 with one 200MHz CPU with the parameters setting of

GA(SPIR/LDPX) as given in the Table 7.1.

53

Population Parent Pool Size Mutation
Problem Name Size SPIR LDPX probability Ss St

lOxlT 20 16 16 0.8% T T 0.5
1 2 ^ 20 16 16 0.8% 5.0 0.2
50x10 20 16 O . ^ T O " " ^
100 万 20 16 — 16 0.8% 5.0 0.2

200x12 20 I 16 I 16 I 0.8% 5.0 0.2

Table 7.1: GA(SPIR/LDPX) Parameter Setting for FSTTBM

7.1 Comparison with Global Optimum

Table 7.2 and Table 7.3 report the computational results obtained in using our

algorithm to solve 10 instances of lO-machine-lO-job-CPFSTTBM and 10 instances

of 12-machine-12-job-CPFSTTBM which were randomly generated. The 'Problem

No., is the random seed number used for the generation procedure. Furthermore,

the best solution of each problem was found out by complete enumeration 'Comp.

Enum.' and is reported in column 'Opt.'. In addition, the execution time, 'Time'

required to obtain the solution by using our new algorithm was recorded, which is

the total time spent by the transforming algorithm and the TSP Solver.

Problem Comp. Enum. TSP solver % of
No. Opt. Time Obj. Time Error

r 837 ~~32.7s 837 0.3 s O.OO"^
2 7 9 6 32.7 s 796 0.3 s 0.00 %"
3 813 32.7 s— 813 0.2T" 0.00 %
r 833 833 0.3 s ~oM%~
5~~814 32.7 s 814 " o J T " 0.00 %"
� 8 0 9 32.7 s 809 0.3 s "XOO %
7 829 32.7 s 829 ~0.3 s 0.00 ^
8 817 32.7 s 817 0.3 s 0.00 ^
� 8 0 0 —32.7 s 800 0.3 s ~o7qO %

10 845 32.7 s I 845 0.2 s 0.00 %

Table 7.2: Results on lO-machine-lO-job CPFSTTBM

54

Problem Comp. Enum. TSP solver % of
No. Opt. Time Obj. Time Error

1 "TosT 488QT" 1034 o T T 0.00%-
2 " T o ^ 4880 s 1036 0.00%""
3 T037" 488QT" 1037 0.00%—
4 1011 4880 s" 1011 0 . 3 ^ 0.00%
r 1003 1 8 8 0 s 1003 0.4 s "O^OQ^
6 1 0 1 2 4880 s 1012 0.4 s 0.00 ^
r 1017 " I M T s " 1017 0.4 s " T O O ^
8 1 0 6 2 4880丁 1062 0.3 s 0.00
^ 1007 ""^SSOT" 1007 0.3 s " o M W

10 1069 4880 s 1069 | 0.3 s 0.00 %_

Table 7.3: Results on 12-machine-12-job CPFSTTBM

It can be seen from Table 7.2 and Table 7.3, that the new algorithm can find

the global optimum of all the CPFSTTBM instances we have tested.

7.2 The Algorithm of SPIRIT

For CPFSTTBM of large size, it has been impossible to find the optimal solution

by complete enumeration, so we compare our method with an efficient method for

flowshop scheduling problem called SPIRIT [66]. In Widmer's paper [66], SPIRIT

has been compared with other heuristic methods including: Slope order index by

Palmer [54], Gupta's algorithm [27], CDS [10], rapid access with close order search

RACS [14] and, NEH [51], and shown to be able to find solutions of higher quality.

For a detailed discussion, see [66].

SPIRIT consists of two main steps. The first step is to find an initial solution

using insertion method and then, the second step is to refine the solution by a taboo

search technique [20].

The insertion method used for CPFSTTBM is sketched below: (It is similar to

the one used for FSP but the cost function incorporates the constraints of CPFST-

TBM described in Chapter 6.)

55

INPUT: n: number of jobs
m: number of machines
Pj (i): processing time of job i on machine j
tj: transportation time from machine j to machine j +1
rj： transportation time from machine j + 1 to machine j

DECLARE OPT=(): optimal sequence of jobs.
DECLARE UNSEQ=(1,2, unsequenced jobs.

Step 1: Find two jobs Ja and Jb such that the makespan of the two jobs is minimum.
OPT 二 [a, 6), UNSEQ=UNSEQ -a - b

Step 2: WHILE |UNSEQ| > 0 DO
Choose a job Ji from UNSEQ randomly.
Insert into OPT such that the makespan of OPT is minimum.
UNSEQ=UNSEQ -i

END WHILE

OUTPUT: OPT

SPIRIT uses the taboo search algorithm for FSP [21] to refine the solution

obtained by the insertion method. The algorithm used in our experiment is as

follows.

INPUT: n: number of jobs
m: number of machines
Pj (z): processing time of job i on machine j
tj： transportation time from machine j to machine j + 1
rj： transportation time from machine j + 1 to machine j
nbmax: max. number of iterations between 2 improvements
T: taboo list storing ((a, i), (6,i))

(It remembers the optimal move which swapping Job a
at position i with Job b at position j)

TSize: size of the taboo list T

BEGIN
Find an initial feasible sequence s using Insertion Method
nbmax 二 72
TSize 二 7

56

nbiter=0 (Iteration counter)
BI=0 (The iteration in which the best makespan has been found)
BS=7r (The best sequence)
BV=Fmax(7r) (The makespan value of BS)

WHILE nbiter-BRnbmax DO
nbiter=nbiter+l
Find the best neighbour TT* of TT which is not taboo by swapping
two cities.
TT 二 TT*
Store the move into the taboo list T
IF |r| > TSize THEN

Remove the oldest move from the taboo list T
END IF
IF FmaxW <BV THEN

BVsFmax �

BI=nbiter
BS=7r

END IF
END WHILE

OUTPUT BS, BV
END

7.3 Comparison with SPIRIT

We report in Table 7.4 the computational results of using SPIRIT and GA(SPIR/LDPX).

The number of jobs varies from 50 up to 200. The 'Random seed' is the random seed

number for CPFSTTBM generation using the procedure in appendix A. 'Time' is

the execution time including the time spent on the TSP Solver as well as the trans-

forming procedure. The parameters setting of the TSP Solver has been described

before in Table 7.1.

Table 7.4 shows that for CPFSTTBM of large size, our method can also get

satisfactory results within reasonable execution time. Compared with SPIRIT, our

algorithm obtained better solutions. Note that SPIRIT has been shown to outper-

form other heuristic methods for FSP.

57

No. of Jobs, % better
No. of Machines, SPIRIT GA(SPIR/LDPX) than

Random seed Obj. Time (s) Obj. Time (s) SPIRIT
50.20.1 " ^ 1 4 1.9 3,429 9.1 2.4 %
50.20.2 3,608 2.0 3,455 11.2 4.2 %
50.20.3 " T 6 1 2 1.8 3,476 15.1 3.8 %

28.2 5,982 68.6 2.9 %
100.20.2 28.5 6,026 155.8 2.9 %
100.20.3 28.5 6,155 97.2 1.3 %
200.20.1 11,245 470 11,010 702 2.1 %
200.20.2 11,322 475 | 11,279 648 0.4 %

Table 7.4: Computational Results of TSP Solver and SPIRIT

58

Chapter 2

Conclusion

We have successfully improved the original LDPX by enhancing the gene sets and

the crossover procedure. We have also proposed a new genetic operator, Single

Parent Improved Reproduction (SPIR), which is suitable at the early stage of the

evolution when individuals in the population have not been very fit.

By employing SPIR and LDPX in the genetic algorithm, we have developed

a general-purpose TSP Solver software package called GASL. The solver has been

tested by solving TSPs of varying size. For TSPs of small size, the solver can ob-

tain the exact optimal solutions whereas for TSPs of large size such as the problem

pr439, it can obtain near-optimal solutions. We have also compared GASL with

other genetic algorithms which use partial mapped crossover (PMX) and edge re-

combination crossover (ER). The results show that GASL is consistently better than

GA(PMX) as well as GA(ER), although ER is known to be a powerful crossover

operator.

In part II, we have examined the problem of flowshop scheduling with travel

time between machines, a more realistic model of flowshop scheduling problem. We

have described the formulation of the model and have proposed an algorithm to

transform CPFSTTBM into a TSP model. A software module has been developed

and incorporated into the TSP Solver. Computational results have been obtained in

solving problems with up to 200 jobs, which show that our new method can obtain

59

the exact optimal solutions or near optimal solution. In addition, computational

experiments have been carried out to compare our method with SPIRIT [66], an

effective heuristic method for FSP, shows that our method obtained better results.

60

Bibliography

1] A. Agnetis, C. Arbib and K. E. Stecke, Optimal two machine scheduling in a

flexible flow system, Proceedings of 2nd International Conference on Computer

Integrated Manufacturing, Rensselaer Polytechnic Institute, 1990.

2] Anthony Y.C. Tang TOLKIEN: Toolkit for genetics-based applications, M. Phil.

Dissertation, Computer Science Department, The Chinese University of Hong

Kong, 1994.

3] K.R. Baker, Introduction to Sequencing and Scheduling, Wiley, New York, 1974.

"4] Bellman, Richard and Stuart Dreyfus, Applied Dynamic Programming, Prince-

ton University Press, Princeton, N.J., 1962.

5] R.G. Bland and D.F. Shallcross, Large Traveling Salesman Problems Arising

From Experiments in X-Ray Crystallography: A Preliminary Report in Com-

putation, Operations Research Letters, Vol.8, pp. 125-128, 1989.

6] L. Booker, Improving Search in Genetic Algorithms, in Lawrence Davis (Ed.),

Genetic Algorithms and Simulated Annealing. Morgan Kaufmann, pp.61-73,

1987.

.7] D. Booth and S. Turner, Comparison of heuristics for flow shop sequencing,

OMEGA, International Journal of Management Science 15/1, 1987.

8] X. Cai, The Crossover Operator for Genetic Algorithms, - a working paper,

1991.

61

:9] X. Cai and K.W. Lee, A genetic algorithm for flowshop scheduling with travel

times between machines, The Second European Congress on Intelligent Tech-

niques and Soft Computing, Aachen, Germany, October, 1994.

10] H.G. Campbell, R.A. Dudek and M.L. Smith, A heuristic algorithm for the n-

job, m-machine sequencing problem, Management Science, Vol. 16, B630-B637,

1970.

11] R.W. Conway, W.L. Maxwell and L.W. Miller, Theory of Scheduling, Addison-

Wesley, Reading, MA, 1967.

12] L. Davis Applying Adaptive Algorithms to Epistatic Domains, Proceedings of

the International Joint Conference on Artificial Intelligence, pp. 162-164, 1985.

.13] L. Davis Job shop scheduling with genetic algorithms, Proceedings of an Interna-

tional Conference on Genetic Algorithms and Their Applications, pp. 136-140，

1985.

14] D.G. Dannenbring, An evaluation of flow shop sequencing heuristics, Manage-

ment Science, Vol.23, pp.1174-1182, 1977.

"15] R.C. Dixon, Lore of the Token Ring, in IEEE Network Magazine, vol. 1, pp.

11-18, Jan. 1987.

16] Dreyfus, E. Stuart and M.L. Averill, The Art and Theory of Dynamic Program-

ming, Academic Press, New York, 1977.

17] S. Eilon, C. Watson-Gandy and N. Christofides, Distribution Management:

Mathematical Modeling and Practical Analysis, Operational Research Quarterly

Vol.20, P.309, 1969.

18] S. Eilon, C. Watson-Gandy and N. Christofides, Distribution Management,

Griffin, London, 1971.

19] M. Garey and D. Johnson, Computers and Intractability, W.H. Freeman, San

Francisco, 1979.

62

20] F. Glover, C. McMillan and B. Novick, Interactive decision software and com-

puter graphics for architectural and space planning^ Annals of Operations Re-

search 5, 1985.

•21] F. Glover, Futher path for integer programming and links to artificial intelli-

gence, Computers and Operations Research Vol.13, No.5, 1986.

.22] D.E. Goldberg, Computer-aided gas pipeline operation using genetic algorithms

and rule learning, (Doctoral dissertation, University of Michigan). Dissertation

Abstracts International, 44(10), 3174B. (University Microfilms No. 8402282),

1983.

"23] D. E. Goldberg, R. Lingle, Alleles, Loci, and the TSP, in Proceedings of the

First International Conference on Genetic Algorithms, Lawrence Erlbaum As-

sociates, Hillsdale, NJ, pp. 154-159, 1985.

"24] D.E. Goldberg and R.E. Smith, Blind inferential search with genetic algorithms.

Paper presented at the ORSA/TIMS Joint National Meeting, Miami, FL, 1986.

25] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning, Addison Wesley, Reading, MA, 1989.

26] J. Grefenstette, R. Gopal, B. Rosmaita, D. van Gucht, Genetic algorithms for

the traveling salesman problem, Proceedings of the First International Confer-

ence on Genetic Algorithms, Lawrence Erlbaum Associates, Hillsdale, NJ, pp.

160-165, 1985.

27] J. N. D. Gupta, A search algorithm for the generalised flow-shop scheduling

problem, Computer and Operations Research, Vol.2, pp. 83-90, 1975.

"28] J. N. D. Gupta, Flowshop Schedules with Sequence Dependent Setup Times,

Jornal of the Operations Research, Vol.29, No.3，pp.206-219, September 1986.

29] M. Held and R.M. Karp, A Dynamic Programming Approach to Sequencing

Problems, J. SIAM Vol.10, pp.196-210, 1962.

63

30] M. Herdy, Application of the Evolution Strategy to Discrete Optimization Prob-

lems, Proceedings of the First International Conference on Parallel Problem

Solving from Nature (PPSN), Dortmund, Germany, pp. 188-192, 1990.

；31] J.H. Holland, Adaptation in natural and artificial systems. Ann Arbor: The

University of Michigan Press, 1975.

32] A. Homaifar and S. Guan, A New Approach on the Traveling Salesman Problem

by Genetic Algorithm, Technical Report, North Carolina A & T State Univer-

sity, 1991.

33] Howard, A. Ronald, Dynamic Programming, Management Science, Vol.12,

pp.317-345, 1966.

.34] E. Ignall and L. Schrage, Application of the Branch and Bound Technique to

Some Flow Shop Scheduling Problems, Operations Research Vol.13, 3, May

1965.

.35] S.M. Johnson Optimal Two- and Three-stage Production Schedules with Set Up

times included, Nov. Res. Log. Quart., Vol.1, 1954.

.36] M.E. Johnson, Simulated annealing (SA) & optimization : modern algorithms

with VLSI, optimal design, & missile defence applications, American journal

of mathematical and management sciences, vol. 8, nos. 3-4, American Sciences

Press, Syracuse, N.Y., 1988.

37] D.S. Johnson, Local Optimization and the Traveling Salesman Problem, in M.S.

Paterson (Editor), Proceedings of the 17th Colloquium on Automata, Lan-

guages, and Programming, Springer-Verlag, Lecture Notes inComputer Science,

Vol. 443, pp. 446-461, 1990.

"38] Karp, Reducibility among combinatorial problems, Miller and Thatcher eds.,

Complexity of computer computations, Plenum Press, NY, p.85, 1972.

64

:39] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by Simulated An-

nealing^ Science, 220, pp.671-680, 1983.

'40] B. Korte, Applications of Combinatorial Optimization, talk at the 13th Inter-

national Mathematical Programming Symposium, Tokyo, 1988.

"41] P. Krolak, W. Felts, and G. Marble, A Man-Machine Approach toward Solving

the Traveling-Salesman Problem, CACM Vol.14, pp.327-334, 1971.

•42] E. L. Lawler and D.E. Wood, Branch-and-Bound Methods: A Survey, Opera-

tions Research, Vol.14, pp.699-719, 1966.

43] E. L. Lawler, Combinatorial optimization: Networks and matroids. New York:

Holt, Rinehart and Winston, 1976.

"44] E. L. Lawler, et al.，The Traveling Salesman Problem, Wiley-Interscience Pub-

lication, 1985.

"45] S. Lin and B. W. Kernighan, An Effective Heuristic Algorithm for the Traveling

Salesman Problem, Operations Research, pp. 498-516, 1973.

46] J.D. Litke, An Improved Solution to the Traveling Salesman Problem with Thou-

sands of Nodes, Communications of the ACM, VoL27, No.l2, pp.1227-1236,

1984.

"47] J.D.C. Little, et al., An Algorithm for the Traveling Salesman Problem, Opns.

Res. Vol.ll, pp.972-989, 1963.

"48] P. L. Maggu, G. Das and R. Kumar, On equivalent job-for-job block in 2xn

sequencing problem with transportation times, Journal of Operational Research

Society Japan, Vol. 24, pp. 136-146, 1981.

49] P. Miliotis, Integer Programming Approaches to the Traveling Salesman Prob-

lem, Math. Progr. Vol.10, pp. 367-378, 1976.

65

50] H. Mtihlenbein, M. Gorges-Schleuter, O. Kramer, Evolution Algorithms in

Combinatorial Optimization, Parallel Computing, Vol.7, pp. 65-85, 1988.

51] M. Nawaz, E.E. Enscore and I. Ham, A heuristic algorithm for the m-machine,

n-job flow shop sequencing problem, OMEGA, International Journal of Man-

agement Science, Vol.11, No.l, 1983.

52] I. M. Oliver, D. J. Smith, and J. R. C. Holland A Study of Permutation

Crossover Operators on the Traveling Salesman Problem, in Proceedings of the

Second International Conference on Genetic Algorithms, Lawrence Erlbaum

Associates, Hillsdale, NJ, pp. 224-230, 1987

53] M. Padberg and G. Rinaldi, Optimization of a 532-City Symmetric Travelling

Salesman Problem, Technical Report lASI-CNR, Italy, 1986.

54] D. S. Palmer, Sequencing jobs throudh a multi-stage process in the minimum

total time - a quick method of obtaining a near optimum, Operational Research

Quarterly, Vol.16, pp.101-107, 1965.

55] S. S. Panwalkar, Scheduling of a two machine flowshop with travel time between

machines, Journal of Operational Research Society, Vol. 42, pp. 609-613, 1991.

56] S. Reddi and C. Ramamoorthy, On the Flow Shop Sequencing Problem with No

Wait in Process, Operational Research Quarterly Vol.23, 3 Sept. 1972.

57] G. Reinelt, TSPLIB - A Traveling Salesman Problem Library, ORSA Journal

on Computing, Vol.3, No.4, pp.376-384, 1991.

58] D. Rosenkrantz, R. Stearns and P. Lewis, Approximate Algorithms for the Trav-

eling Salesperson Problem, Proceedings of the 15th Annual IEEE Symposium

of Switching and Automata Theory, pp.33-42, 1974.

59] F.E. Ross, FDDI - A Tutorial, in IEEE Commun. Magazine, col 24, pp. 10-15,

May 1986.

66

60] H. I. Stern and G. Vitner, Scheduling parts in a combined production transporta-

tion work cell. Journal of Operational Research Society, Vol. 41, pp. 625-632,

1990.

61] N丄丄 Ulder, E.H.L. Aarts, H.J. Bandelt, P.J.M. van Laarhoven, E. Pesch

Genetic Local Search Algorithms for the Traveling Salesman Problem, in Pro-

ceedings of the First International Conference on Parallel Problem Solving from

Nature (PPSN), Dortmund, Germany, pp. 109-116, 1990.

.62] J.M. Van Deman, K.R. Baker, Minimizing Mean Flowtime in the Flow Shop

with No Intermediate Queues, AIIE Transactions, Vol.6, pp.28-34, 1974.

.63] B. F. Voigt, Der Handlungseisende, wie er sein soil und was er zu thun hat, um

Auftrdge zu erhalten und eines gliicklichen Erfolgs in seinen Geschdften gewiss

zu sein, Von einem alten Commis-Voyageur, Ilmenau. (Republished (1981) Ver-

lag Berd Schramm, Kiel.)

64] D. Whitley, and J. Kauth GENITOR: a different genetic algorithm, Proceeding

of the Rocky Mountain Conference on Artificial Intelligence, Denver, CO, pp.

118-130, 1988.

65] D. Whitley, T. Starkweather and D'Ann Fuquay, Scheduling Problems and

Traveling Salesmen: The Genetic Edge Recombination Operator, in Proceed-

ings of the Third International Conference on Genetic Algorithms, Morgan

Kaufmann Publishers, Inc., pp. 133-140, 1989.

66] M. Widmer and A. Hertz, A new heuristic method for flow shop sequencing

problem, European Journal of Operational Research, Vol. 41, pp. 186-193, 1989.

"67] D. A. Wismer, Solution of the Flowshop Scheduling Problem with No Interme-

diate Queues, Operations Research, Vol. 20, pp. 689-697, 1972.

67

Appendix A

Random CPFSTTBM problem

Generation Algorithm

CPFSTTBM problems were generated with the following three conditions:

10 < tj < 20 , where j = 1 , m - l

5 < rj < 10 , where j = 1 , m - l

10 < pj{i) < 50，where i = 1, .•” n;j 二 1, ...,m

where tj is the time required for the transporter Tj to move a job from machine j

to machine j + 1 and rj is the time required for the transporter Tj to come from

machine j + 1 back to machine j. Each job Ji, has its own processing time on

different machine j which is denoted by pj (i).

The random number generator randQ is defined as follows:

68

XQ 二 Random Seed No
Xn+i = (97 * Xn + 37) mod 65536

Figure A-1: Random Number Generation Algorithm

Using the random generator, an m-machine-n-job FSTTBM is generated in three

steps:

Step 1: FOR i^lTO m-1
ti 二 10 + rand{) mod 11

END FOR

Step 2: FOR i = 1 TO m - 1
n — 5 + rand{) mod 6

END FOR

Step 3: FOR i = 1 TO n
F O R j 二 1 TO m

Pj [i) = 10 + rand{) mod 41
END FOR

END FOR

Figure A-2: Algorithm for FSTTBM Generation

For example, a 5-machine-lO-job FSTTBM generated using seed number 1 is as

follows:

69

tj 12 10 19 19

fj 7 6 7 6

pij 50 34 14 23 11

P2j 34 42 50 49 31

psj 33 24 18 48 28

P4j 45 41 21 45 36

p^j 36 32 43 15 26

pej 22 45 41 47 32

10 14 22 16 20

ps〕 39 28 20 11 29

PQj 29 44 47 48 43

pioj 4 2 2 3 3 2 2 9 1 9

Table A.l: Example of 5-machine-lO-job FSTTBM

70

E
C

, ：

.

. :
.

\
邏

—

：

.
 ,

.

,

.
一

•

賓
.
：

.
.
…

、

.•

^

^

p
^

—
:

,
.

..
..

.

_

〉
-

？

.
 .
 .

.

•

•

.

』
1

_

：

.

..

1

Z今

.
 •

.
.
：
,

.

.
.
.

、
.

丨

]

.

.、
、

尹
二
i

,

,

.

..

.
、

「
 、̂
：

CUHK L i b r a r i e s

•0D733T5M

