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Abstract 

The configuration singularity of a robotic manipulator will result in an 

* unstable and non-rigid state which will in turn affect its accuracy and performance. 

There are several algorithms which are reasonably accurate and reliable for 

enumeration of configuration singularity for serial type robotic manipulators. 

However, only a few methods are available to identify the configuration singularity of 

parallel type robotic manipulators . 

In this thesis, we compared three existing approaches, namely the Force 

Decomposition method, the Forward Rate Kinematics based method and the 

Grassmann Geometry method, for singularity analysis of parallel manipulators. We 

found that the Forward Rate Kinematics based method is the most efficient and 

simplest in terms of computational complexity. We applied this method to find the 

general expression of the configuration singularity for two classes of manipulators: 

Novel 6 DOF platform-type parallel manipulators and 3 Degree of Freedom (DOF) 

platform-type parallel manipulators with symmetric and non-symmetric bases. 

Moreover, this method was used to identify the configuration singularity of the class 

of 6-SPS platform-type parallel manipulators. 

By examining the general expressions for the above cases, we found that the 

ratio of the radius of the base platform to the length of the sub-chain is a major factor 

affecting the existence of the configuration singularity. We suggested a method to 

determine the critical value of the ratio for platform-type parallel manipulators with 

symmetric base. This ratio provides a useful guideline for improving the design of 

the platform-type parallel manipulators. 
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Notations 

Oj Rotation Angle between the Local Coordinates and the Base 

Coordinate System 

0i2 Active Joint Parameters, Specifying the Elbow Joint Angle between 

the Two Lengths L! & L in a Novel 6 DOF Manipulator 

Bji Passive Joint Parameters, Specifying the Angle between the Length 

Li & the Base Platform in a Novel 6 DOF Manipulator 

Bj Points Lie on the Base Platform 

B'i Points Lie on the Base Platform 

Pj Points Lie on the Moving Platform 

P'i Points Lie on the Moving Platform 

Kjj Coefficient of d or (3 or 0 

dj Side of the Base Platform 

Qi Active Joint Parameters 

q'i Active Joint Parameters 

oci Passive Joint Parameters 

a'i Passive Joint Parameters 

Pi Passive Joint Parameters 

P'i Passive Joint Parameters 

Pj Moving Platform Points Vector 

Vpi Moving Platform Points Velocities Vector 

Vq Linear Velocity of the End Effector 

cOo Angular Velocity of the End Effector 

M Vector Relating to the Three Points Position on the Moving Platform 

C Vector Relating to the Three Points Velocities on the Moving Platform 

J J® 6x6 Matrix Relating Spherical Joint Forces to End-Effector Forques 

J act 6x6 Matrix Relating Actuated Joint Torques to Spherical Joint Forces. 

Tact Vector of Actuated Joint Torques 

• • a 
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/V 

fuli Unit Vectors Along the Upper Link Axis and Elbow Axis 
A 
fgi Unit Vectors Along the Upper Link Axis and Elbow Axis 

Pti Point from the Center of the Top Plate to the Spherical Joint 

Connection point on the top plate 

fuii Force Along the i th Upper Link Axis 

fgi Force Parallel to the i th Elbow Axis 

Rbi Rotation Angle between the Local Coordinate & the Base Coordinate 

System 

R Radius of the Base Platform 

T] Transformation Matrix 

R: Rotation Matrix 

Pb Translation Vector 

[N] 6 Dimensional Vector 

[K] 3x3 Matrix for a Platform type Manipulator with Three Passive Joint 

Parameters. 

[J] Jacobian Matrix of the Manipulator 
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Chapter 1 

Introduction 

In this chapter, we give a brief introduction to the parallel manipulator, 

singular configuration of the manipulator and its classification. Section two is the 

literature review. The objective of this thesis is presented at the end of this chapter. 

1.1 Motivation 

Typical serial type robots have traditionally been used as general-purpose 

positioning devices and are anthropomorphic open chain mechanisms which generally 

have the links actuated in series. The open chain manipulators usually have longer 

reach, larger workspace and more dexterous maneuverability. However, the 

cantilevered structure of the open chain mechanism is a serious disadvantage because 

of its low rigidity. In addition, each successive link and motor from the end-effector 

towards the base has to be large enough to support the weight of the preceding links 

and motors and to provide the required endpoint stiffness. This increases the mass 

and the size of the actuators and thus affects the dynamic performance of the robot, 

especially when it is used for high-speed or large-load operations. Furthermore, the 

actuator errors accumulate along the open chain mechanism and result in a large error 

at the endpoint of the robot. Therefore, serial type robot arms are not ideal for high-

speed or high-precision operations. 

On the other hand, platform-type parallel manipulator are structurally more 

rigid and capable of distributing the loads throughout the system. It is because all of 

the actuators can be fixed to the base and the moving parts are lighter than that of 

serial type. This advantage, together with the significantly improved endpoint 

stiffness due to the truss-like structure of the parallel manipulator, results in high 
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positioning accuracy and good dynamic performance. Therefore, parallel 

manipulators become ideal devices for applications that require high positional 

accuracy within a limited workspace. Recently, some effort has been directed towards 

the investigation of parallel manipulator such as the Stewart Platform [ST66] based 

closed kinematic chains. 

When the manipulator is in a singular configuration, it will not be in a stable 

and rigid state which will in turn affect the accuracy and performance. Therefore 

‘ determination of the singularity conditions for the manipulator is one of the most 

important problems in robot kinematics. For platform-type parallel manipulators, 

singularities can be classified into three categories. They are Architecture, 

Configuration and Formulation Singularities [MA91] respectively. 

The architecture singularity usually spans over the whole workspace. The 

manipulator fails to balance the load on its moving plate and causes instabilities which 

leads to a very poor motion and force-transmission performance. Figure 1.1 shows 

that even all the extensible links are being locked in a fixed length, but the 

manipulator is still fail to balance the load on its moving plate. This indicates that the 

manipulator will not be able to withstand a small force in a direction of the arrow 

illustrated in Figure 1.2. It is very difficult to implement the control or singularity-

avoidance strategies on the architecture singularity which can only be avoided by 

redesigning the mechanism of the manipulator. 
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WW 
Figure 1.1 A Manipulator in Figure 1.2 Side Force Applied to 
Architecture Singularity a Manipulator in Architecture Singularity 

The configuration singularity is different from the architecture singularity. It 

is caused by a particular configuration of a manipulator during motion. This 

singularity is discrete and only depends on individual configurations. It directly 

affects motion planning and the control of manipulator during motion. An example is 

shown in Figure 1.3. Suitable algorithms to investigate the configuration singularity 

will be discussed in this thesis. 

M 
Figure 1.3 A Manipulator in Configuration Singularity 

Formulation singularity is normally caused by the incorrect assumptions or 

failure of a kinematic model at a particular configuration of a manipulator [MA91]. 
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Basically, the architecture singularity is the problem related to the design of 

robot and the formulation singularity is due to assumption errors in solving the 

kinematic model. Both of them can be avoided by carefully designing the robot. 

Unlike the above two singularities, it is not that straightforward in dealing with the 

configuration singularity. This type of singularity can only be detected through a 

detail study of a robot in motion. Therefore, the determination of the configuration 

singularity is important for the design of robotic manipulators, and is the main motive 

for this research work. 
> 

This thesis is divided into 5 chapters. In Chapter 1, the background and the 

objective of this thesis are given. In Chapter 2, we will discuss and compare three 

different approaches for identifying the configuration singularity in parallel 

manipulator and select the most appropriate one to be used in the following chapters. 

In Chapter 3, we identify and formulate the general expression of the configuration 

singularity for three classes of platform-type parallel manipulators. We also find a 

ratio which is a major factor affecting the existence of the configuration singularity. 

In Chapter 4, we further analyze the effect of the ratio to the existence of the 

configuration singularity and suggest a method to determine the critical value of the 

ratio. This ratio provides a useful guideline for designing improved platform-type 

parallel manipulators. The conclusions and the recommendation for future work are 

given in the last chapter, Chapter 5. 

1.2 Literature Review 

In serial manipulators, the inverse kinematics is a central problem in robot 

control which has received a lot of attentions [AA79, DC80, 1X88, PR86, RR73, 

RR89]. The first systematic study on the inverse kinematics problem was done by 

:PI68]. The work on the general solution of the problem for 6R manipulator includes 
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peso, RR73]. Tsai and Morgan [TM85] used a higher dimensional approach to the 

inverse kinematics problem. They also concluded that 16 is an upper bound on the 

number of the solutions. Raghavan and Roth [RR86] was the first to use the 

formulation introduced in [DC80] to prove that the problem of inverse kinematics has 

a maximum of 16 solutions. Lee and Liang [LL88] gave the exact solution in lower 

dimension by reducing the problem to a 16 degree polynomial. Raghavan and Roth 

RR89] used elimination method to derive a 16 degree polynomial. Manseur and 

Doty [MD89] presented an example consisting of a manipulator and a pose (position 

and orientation) of the end-effector and it was found that the inverse kinematics 

problem has 16 real solutions and thereby, he established the fact that 16 is a tight 

bound on the number of solutions. Wanpler and Morgan et al. [TM85, WM91: 

presented that only continuation methods were able to solve the problem of different 

cases. According to Wanpler and Morgan [WM91], lower dimensional methods like 

the one in Raghavan and Roth [RR89] were impractical due to numerical problems. 

However, Manocha and Canny [MC92] presented an algorithm based on the results in 

Raghavan and Roth [RR89] for real time inverse kinematics solution for a general 6R 

manipulator. Fast algorithms of computing eigenvalues and eigenvectors of a matrix 

are available in [AU90, GU89]. 

These methods can be summarized as three different approaches in the inverse 

kinematics of serial manipulators. First, the algebraic formulations given in [DC80, 

LL88, PR86, RR89, RR90] can be used along with algorithms for finding roots of 

high degree polynomial. However, this approach is quite slow in practice (due to 

symbolic expansion) and suffers from numerical problems in the context of floating 

point arithmetic. This is mainly due to the fact that the problem of computing roots of 

high degree polynomials can be numerically ill-conditioned [WI59]. Moreover, the 

formulations in [LL88 RR89, RR90] are for generic manipulators and cannot be 

applied to manipulators with special geometries. 
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The second approach is based on homotopy method and used to solve a system 

of polynomial equations [TM85, WM91]. The third approach is based on linear 

algebra formulation of the problem [MC92]. In particular, the algebraic formulation 

given in Raghavan and Roth [RR89], is used along with matrix computation. As 

opposed to deriving a high degree polynomial, the problem of inverse kinematics is 

reduced to computing the eigendecomposition of a numeric matrix. It has been 

applied to general 6R manipulator in Manocha and Canny [MC92] and involves 

symbolic preprocessing, numeric substitution and matrix computations. 

As for platform-type parallel manipulators, progress has been reported in the 

literature on kinematics, dynamics as well as control strategies [BE88, FI86, HU78 

HU83, ME90, SU89, WN89, YL87]. Hunt [HU78] suggested that the manipulation 

capability of parallel mechanism be utilized in robots and he [HU83] later listed a 

number of possible structures of parallel mechanisms suitable for robotic applications. 

Yang and Lee [YL87] discussed the feasibility of applying such a mechanical device 

in order to obtain close form solution in robotics. 

The forward kinematics of platform-type parallel manipulator is to find the 

pose of the moving platform by given a set of link lengths. The first platform-type 

parallel manipulator was designed as an aircraft similator and is usually called the “ 

Stewart Platform “ [ST66] ( Two bodies connected by 6 links with a variable length. 

In fact it was first proposed by Gough as stated in Stewart's paper ). Fichter [FI86 

performed a detailed theoretical and experimental investigation of a Stewart Platform 

type manipulator. Stewart Platform with triangular moving platform has been studied 

and it is found out that the problem has at most 16 solutions [ME89], as its forward 

kinematics can be reduced to a sixteen th order polynomial [CD88]. If the articulation 

points have different location, there will be at most 40 solutions when either the base 

or the moving platform is planar [LA92] and this is also true for most parallel 

manipulators [LA93 RV92]. 
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On the other hand, determination of singularity condition for serial 

manipulators has long been a topic for researchers in robotics, and a large number of 

publications related to this problem can be found in the literature [AL88 FS90, 

HU83, G081, PA81, PS83, SD82, WH88]. Moreover, the kinematic and static 

performances of manipulators had been shown to be directly affected by the numerical 

conditioning of the corresponding Jacobian matrices [PS83]. Yoshikawa [Y085: 

proposed the concept of manipulability that can be applied to both redundant and non-

redundant manipulators. Klein and Blaho [KB87] proposed the minimum singular 

value of Jacobian as a measure of distance to a singular configuration of the 

, manipulator. Wenger et al. [BM84, WE84] proposed the adoption of closed-loop 

inverse kinematic schemes based on the use of the Jacobian transpose instead of the 

Jacobian inverse. The Jacobian transpose approach has been developed by Chiacchio 

and Sicilian [CS88] to improve the performance close to singular configuration. 

Wampler [WA86] used damped least-squares methods to obtain a modified Jacobian 

that is nonsingular in the whole workspace, and an approximate inverse kinematic 

solution was found. Whitney [WH72] proposed to use nonsingular blocks of the 

Jacobian matrix to calculate an approximate solution at singular configurations. 

Burdick [BU91] investigated the singularities of 3R regional manipulators. 

Pai and Leu [PL89] introduced the notion of generic manipulator singularities. 

Application of damped least-squares solutions [LH74] to robot control, which can be 

easily formulated by using Singular Value Decomposition (SVD), has been proposed 

as one of the most efficient ways of robot motion synthesis near singularities [NH86]. 

Maciejevski and Klein [MK89] presented that the numerical complexity was reduced 

by about 5-6 times by applying his proposed method. Klein and Blaho [KB92: 

presented that the numerical complexity was reduced by about 10 times by deriving 

symbolic expressions through SVD with the result of two 3x3 Jacobian submatrices of 

6 DOF robot of the PUMA configuration with no shoulder offset. The problem of 

position error created by the damped least-squares solution had been considered in 

7 



NH86]. Pai and Leu [PL91] presented that the generalized coordinates of the robot 

were discretized just like that in a finite-element method and a unique solution was 

gained on the basis of a 2nd order Taylor-series expansion of the co-ordinate 

differences near singularities. He also considered the complex expansion of the joint 

co-ordinates of the robot near the boundaries of the work-space of the arm. 

For platform-type parallel manipulators, Ma and Angeles [MA91] classified 

singularities into three categories, namely, the Architecture, Configuration and 

Formulation singularities. They also discussed the details of architecture singularity 

of a 6 DOF parallel manipulator. Gorla [G081], by applying the above method, 

derived singularity conditions for manipulators with relatively simple geometries. 

Merlet [ME89] proposed a new method based on Grassmann Line Geometry. It can be 

performed on a special parallel manipulator. Special configurations fall into two 

categories : uncertainty configurations and stationary configurations [LD85:. 

Sugimoto and Duffy [SD82] presented a detailed analysis of singularities (uncertainty 

configurations) of all single-loop mechanisms using the reciprocal screw concept. 

Hunt [HU83], applying the principle of reciprocity of screws, pointed out that a 

parallel manipulator gains, rather than loses, one or more degree of freedom in 

singular configurations. Waldron [WH88] further analyzed such properties of 

dualities between serial and parallel manipulators. Ahmad and Luo [AL88] analyzed 

the singularity states of manipulators using the inverse kinematic relationships. 

Fichter [FI86] determined a few singular configurations for a 6 DOF parallel 

manipulator through experiments. Litvin and Tan [LT89], based on certain 

parameters of motion, proposed a general approach for the determination of 

singularities in motion and displacement functions of manipulators and linkages. 

The most straightforward method for singularity determination is to equate the 

6x6 determinant of the Jacobian matrix to zero [PA81]. The analysis was done by 

expressing the Jacobian in end-effector space using vector quantities [WH72]. 
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Previous algorithms for analyzing singular configurations were usually derived from 

Jacobian which was based on the joint space relationship (i.e., describing singularity 

conditions in terms of joint angles) [LC86 SD88]. Lipkin and Pohl [LPS 8] presented 

a method for enumerating all singular configurations for a given manipulator by using 

vector quantities to express the Jacobian in end-effector space. Cleary and Uebel 

[CU94] proposed a force decomposition approach to compute the Jacobian matrix for 

a Novel 6 DOF parallel manipulator. By using a Cartesian vector approach, a great 

deal of insight into the singularity problem was gained, and therefore it was possible 

to further identify degeneracies of the primary singular configurations. Additionally, 

the concepts of active and passive joints were elaborated by Hunt [HU85], and a 

theorem regarding the relationship between invariant screw systems and passive joints 

was similarly expanded. Fenton and Shi [FS92a] presented a method for identifying 

singular configuration causing instabilities in a platform-type parallel manipulator. 

This method was based on the forward instantaneous kinematic formulation and the 

principle of reciprocity of screws. 

It should be noted that broad knowledge of kinematic and singularity condition 

is important in manipulator design, analysis, trajectory planning, and control. 

Furthermore, when determining the kinematics and singularity condition for serial 

type manipulators in robotics, there exist several algorithms which are reasonably 

accurate and reliable. On the contrary, only a few algorithms available for dealing 

with the problem of kinematics as well as singularity condition of parallel type robotic 

manipulators. Therefore, a general and robust method to enumerate the configuration 

singularities of platform-type parallel manipulator is required and the development of 

such an algorithm becomes the primary objective of this research. 
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1.3 Objective 

The objectives of my study are as follows: 

1) To compare existing methods for singularity analysis of parallel manipulators 

and to find out the effective method based on certain criteria 

2) To apply this method to identify the configuration singularity and formulate its 

general expression for a number of cases which are of significance in application but 

have not been studied before 

3) To analyze the above results and find out the major factors causing the 

configuration singularity. 

4) To analyze the relationship between the factors and the existence of the 

configuration singularity and to establish a guideline for avoiding configuration 

singularity in the design stage. 
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Chapter 2 

Comparison of Different Approaches 

As stated in Chapter 1, the problem of identifying the configuration singularity 

of 6 DOF platform-type parallel manipulator with prismatic joints had been studied in 

depth by various researchers [FS92a, MA91, ME89, MM92]. However, the same 

problem in the platform-type parallel manipulator with elbow joints has not been 

explored. In view of the potential applications of this type of manipulator [CU94] and 

the importance of the singularity problem, we concentrate on selecting a suitable 

method to identify the problem on the 6 DOF platform-type parallel manipulator with 

elbow joints. 

In this chapter, we first describe three methods for singularity analysis, 

namely: (1) the Force Decomposition method, (2) the Forward Rate Kinematics Based 

method, and (3) the Grassmann Geometry method. These three methods tackle the 

problem from different basis. The first method is derived from the Dynamics of a 

robot; the second from Kinematics; and the last from Geometry. We use the sample 

manipulator (Novel 6 DOF platform-type parallel manipulator) as the basis for the 

comparison of these three methods according to two selected criteria : Computational 

Complexity and Scope of Application. 

2.1 Sample Manipulator 

In the following subsections, we will use a Novel 6 DOF platform-type 

parallel manipulator (Figure 2.1) to explain the three methods for identifying the 

configuration singularity. The sample manipulator consists of a base plate, a top plate 

and three connection legs. Each leg has a lower and an upper link which are 

connected by an elbow joint. 
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Figure 2.1 Typical Structure of Novel 6 DOF Manipulator 

2.1.1 Force Decomposition Method 

In general, for a parallel manipulator, the inverse kinematics usually has a 

closed form solution. To ensure a closed form solution for our sample case, inverse 

kinematics has been used, as shown Equation 2.1. 

Fee = J^act 

where F̂ g is a 6-vector matrix of end-effector forques (forces and torques) 

Fee - [ fx, fy, ^ y ^z . 

Jp is a 6x6 matrix with non-linear expressions as its elements, 

and Tact is a 6-vector matrix of actuated joint torques 

TACT T PITCH 1 , ROLLL PITCH2 ‘ ROLL2 ‘ ''' PITCH3 , ROLL3 

The Jacobian, J j , relates the joint torques to the end-effector forques. Since it 

consists of non-linear expressions, the computation is complex and the roots are hard 

to find. According to Cleary, K. et al. [CU94], a Jacobian can be formulated and 

calculated using Force decomposition approach. Since an elbow joint is a passive 

joint, the spherical joint connected to it can support neither moments nor a force 

perpendicular to the elbow axis and the upper link axis. Due to this, the forque of the 
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end-effector acting on spherical joints can be mapped into two force components with 

one collinear to the upper link axis and the other parallel to the elbow axis (Figure 

2.2). Therefore the Jacobian, Jp, can be decomposed into two simpler linear 

Jacobians, J J® and Ĵ ĵ (Equation 2.2). 

Fee - J^TJi^act (2.2) 

J J®, is a 6x6 matrix relating spherical joint forces to the end-effector forques, while 

J which is also a 6x6 matrix, relates the actuated joint torques to the spherical joint 

forces. 

iSiii iiift̂ iiiiiiiiii ^ ̂  iSi ss • 

Figure 2.2 Force and Torque Components 

The spherical joint forces are mapped to the end-effector forques as follows: 

(2.3) 

where 

Fgj is a 6-vector matrix of spherical joint forces 

Fsj = [ full' fel ful2 fe2, W êS F 
Jg®, is a 6x6 matrî c relating spherical joint forces to the end-effector forques 

A A A 
jee _ full fel ful2 ûl3 

SJ LPTLXFULL PTL^FEL P T 2 X L PT2XFE2 PT3 >< FUL3 

13 



Similarly, the actuated joint torques are mapped to the spherical joint forces 

by: 

= Ji^act (2.4) 

In the derivation of the Jacobian, ” the legs are assumed to be independent 

and they can be treated separately. As shown in Figure 2.2, the actuated joint on each 

leg consists of pitch and roll axes. The pitch axis is tangential to the base circle, and 

the roll axis is collinear with the lower link axis. As a result, the roll joint torque and 

the pitch joint torque can be further derived to produce Equations (2.5) and (2.6) 

respectively. 

TroUi = Sine3i (2.5) 

Vchi = L, Cose,, Sine,. fuH - Sin02i(Li + L2Cos03i) f,- (2.6) 

for i=l to 3 

where Lj is the length of the lower link and L2 is the length of the upper link 

Let us rewrite Equation (2.5) and (2.6) in a matrix form: 

Tpitchi"! = rLiCos02iSin03, -SinG^iCLi+L2Cose3i)irf,„1 
- u J — L 0 L,Sin03, J L f J 

or simply as: 

T = [JACT] F . . 
ACTI [ SJ J J SJI 

• i T 

The combined matrix, formed by [ J f j (for i =1 to 3), is a 6x6 block diagonal 

matrix where each J f is a 2x2 matrix with one zero element. 
SJ Jj 
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[ J i l l 0 0 
Fsj = 0 [Ji]2 0 t 

. 0 0 [Jl]3_ 

The configuration singularity can be identified when the determinant of 

Jacobian is equal to zero. That is, if either the determinant of J®® or J is equal to 

zero, the determinant of non-linear Jacobian is also zero. As a result, the singularity is 

identified. The determinant of Jacobian J®̂,̂  is zero only when 621 takes the value of 

90° or 63} takes the value of 0° or 180°. But both cases are very unlikely. Therefore, 

the zero value usually comes from the determinant of Jacobian J J®. 

2.1.2 Forward Rate Kinematics Based Method 

The forward instantaneous kinematics of a platform-type parallel manipulator 

is defined as: “ given the velocity vector of the active joints in joint space and the 

geometric configuration of the manipulator, determine the corresponding generalized 

velocity of the end effector in task space “ [FS92a]. This approach uses the velocities 

of three non-collinear points which attached to the end-effector to define the velocity 

of the end-effector. 

Referring to the sample manipulator described in the last section, the three 

non-collinear points are Pj (for i=l to 3) (Figure 2.3). Each leg has a lower link and a 

upper link, with link lengths Li and L2 respectively. is the active joint parameter 

while Gil the passive joint parameter. R^ is the radius of the base platform. Rbi is 

the rotation angle between the local coordinates and the base coordinate system. 
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Figure 2.3 Geometry of the Novel 6 DOF Parallel Manipulator 

According to the definition, with all the active joint velocities and geometrical 

configuration given, the coordinates of the three non-collinear points Pi (for i=l to 3) 

with respect to the base reference frame can be represented by point vectors: 

Pj = Bj + Wj Li + w; L2 

where B̂  is a constant vector fixed to the base platform and Wj and w'j are the 

unit vectors representing the orientation of Lj and L . 

Pj can be rewritten in details as: 

RbCosRbi + Lj cosGjjCosR î + L2 cosGizCOsRbi 
Pi = R ŝinRbi + Lj cosGjiSinRbj + Lj 0080̂ 2cosR ĵ (2.8) 

_ Lj sinGjj + L2 sin0i2 _ 

By taking the derivative of Equation (2.8), the velocities of the three non-collinear 

points in the matrix form are: 
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-LjGjj sinGjj cosRbi —1^2^12 s i n c o s R ^ j 
Vpi = - L̂ Gji sinGji sinR^ - L ^; sin9i2 sinR^j (2.9) 

_ LjGji cosGji + LjGi cos6i2 _ 

The linear velocity of the end-effector, V , is given by the mean of these velocities: 

V = I X 
J i= i 

The three point velocities, Vpj, can also be expressed in terms of the linear velocity, 

VQ, and the angular velocity, co, of the end-effector: 

Vpi = [R:] [co] A. + Vo (2.10) 

where R: is a 3x3 rotation matrix and Aj is a constant vector 

The linear velocity V and the angular velocity (o of the end-effector are in 

terms of the three unknown passive joints rate As stated in the principle of 

reciprocity of screw, ”for a given set of joint velocities, if the velocities of the end 

effector, which under normal circumstances can be specified using the forward 

kinematics, cannot be defined singularity occurs. “ [FS92a]. This implies that the 

manipulator has a configuration singularity which occurs wherever are undefined. 

The passive joint rate can be solved using the Kinematic Constraint of a 3-D Rigid 

Body Motion [FS92a]. By utilizing the kinematic constraints, three constrained 

equations can be found: 

Vpi.(Pi-Pj) = Vpj.(Pi-Pj) (2.11) 

( for i&j=l to3,i7^:j) 

Substitute Equations (2.8) and (2.9) into Equation (2.11), it can be written into a 

matrix form as follows : . 
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'K„ Ki2 0 I T e J N / 
0 K22 K23 . 021 = N2 (2.12) 

-K31 0 K33J [03J U s -

or [K] . [e] = [N] 

where Kjj and N^ are functions of joint parameters, and Kjj is the 

coefficient of 

If Equation (2.12) is solved, the computation of Vp̂ , Vq and co will be 

straightforward. However, if the determinant of [K] is zero, [0] , Vpi, Vo and co will 

be undefined. This means that the configuration of the platform-type parallel 

manipulator is singular. On the other hand, the only requirement for applying this 

method is that the three selected points are not collinear. 

2.1.3 Grassmann Geometry Method 

This method is derived from the principle of Grassmann line geometry 

[ME89]. The set of lines are defined through six linearly independent vector and is 

therefore of rank 6. When the independent vector spanned by the lines associated to 

the robot links has a rank less than 6, a singular configuration exists. An important 

feature of the independent vectors of this geometry is that they can be described by 

simple geometric rules. Therefore, to find the singular configurations of parallel 

manipulators is equivalent to identifying the configurations in which the robot 

matches these rules. 

Grassmann defined a set of rules for ranking the linear independent vectors 

according to their geometric characterization [ME89]. The linear independent vector 

is basically divided into 6 classes as follows: 
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Rank 0 - An empty set. 

Rank 1 - A point which is a line in the 3D space. 

Rank 2 - Pair of skew lines or lines which lie on a plane and pass through 

some point on that plane. 

Rank 3 - Planes : 

(a) a regulus; 

(b) the union of two flat pencils having a line in common, but lying 

on distinct planes and with distinct centers; 

(c) all lines through a point; 

(d) all lines on a plane. 

Rank 4 - Linear congruences : 

(a) a linear spread generated by four skew lines; 

(b) all the lines concurrent with two skew lines; 

(c) a one-parameter family of flat pencils, having one line in 

common and forming an independent; 

(d) all the lines on a plane or they pass through one point on that 

plane. 

Rank 5 - Linear complexes : 

(a) non-singular : generated by five independent skew lines; 

(b) singular : all the lines meeting one given line. 

Among the above rules, we have found that the rule 5b can be applied in the 

sample manipulator as all the links axes of the platform-type parallel manipulator are 

meeting in a line (B3B5). So, according to the rules, the configuration shown in 

Figure 2.4 should be singular. 

19 



Figure 2.4 Singular Configuration of Novel 6 DOF Identified by 
Grassmann Geometry Method 

From the mechanical analysis, the torque around the axis (B3B5) exerted by 

the segments on the moving platform is always equal to zero. If we apply an external 

force on the moving platform such that the resulting torque around the axis (B3B5) is 

not equal to zero, the moving platform cannot be in an equilibrium state. The 

configuration is not rigid [HU78]. It means that the platform-type parallel 

manipulator will be unstable at the singular configuration. 

2.2 Comparison Criteria 

We use the sample manipulator (i.e. Novel 6 DOF platform-type parallel 

manipulator) to compare the above three methods based on the following two criteria: 

Computational Complexity and Robustness. 

2.2.1 Computational Complexity 

Regarding a mathematical model, most researchers used the computational 

complexity as a direct measure of its efficiency [CH74 MK89, NH86, KB92, FS94]. 

In general, computational complexity is estimated in terms of the number of 
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equations, the number of unknown variables involved in it as well as the dimension of 

the matrices. The higher the computation complexity of a method is, the lower its 

efficiency. 

The Force Decomposition method, reduces computational complexity by 

breaking the complicated non-linear Jacobian, Jp, down into two linear Jacobians, J : 

and Rather than solving the non-linear Jacobian, Jp, directly, it solves a number 

of linear equations (Equations 2.3 2.5 and 2.6) instead. However, although the non-

linear Jacobian is reduced, a set of six equations with six variables are required in the 

formulation of the 6x6 linear Jacobian J J®. Each element of J J® is a multiplication of 

several matrices. This is still a time consuming process as formulation of the Jacobian 

J®® involves 738 multiplications, 474 additions and 24 subtractions. 

On the other hand, the Forward Rate Kinematics Base method generally 

involves a set of six linear equations with six passive joint variables. In some 

particular cases, only three variables (either three passive joint rates or three 

intermediate variables) are required and the solution can be obtained by solving a set 

of three linear equations [FS92b]. For instance, the sample manipulator, which is an 

elbow joint structure, involves only three linear equations with three passive joint 

variables. Thus, it is only required to solve the determinant of a 3x3 matrix with three 

zero elements. Furthermore, the formulation of matrix K which only involves 156 

multiplications, 6 additions and 36 subtractions. 

The Grassmann Geometry method is a rule based method for testing the 

singularity of a configuration. Although this method is simple implement, it is very 

difficult to find a singular configuration that satisfies the rules [ME89]. In fact, for a 

complicated structure, it is really difficult to identify a configuration which matches 

with rules like 3b, 4c and 4d. 
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2.2.2 Scope of Application 

Currently, most of the methods are designed on an ad hoc basis (i.e. it is 

designed for solving a particular solution). Little consideration has been made on 

generalizing them [BU91 CU94, S090]. This is certainly wasteful. A general 

method is one which is applicable to a wide range of problems. Such a method 

should always be given first hand consideration. 

In this Section the three methods will be compared by scope of application. 

Referring to the background study, the Forward Rate Kinematics Based method had 

been proved to be able to identify the Configuration Singularity of 6 DOF Stewart 

Platform [FS92a, FS92b, FS94]. It had been mentioned that the Grassmann Geometry 

method is not suitable for a complex manipulator whose geometry is difficult to 

analysis [ME89]. The result of comparison based on the sample manipulator is given 

in the following paragraphs. 

The Force Decomposition method is limited application scope of the 

handcontrollers [CU94]. Another limitation is that it may not solve the singularity 

problem of a heavy duty robot with many legs. For instance, if the number of legs is 

increased to 4, the dimension of J®f increases to 6x8. The Jacobian then becomes a 
SJ 

rectangular matrix and its determinant is almost impossible to find. This is because 

two force components at the spherical joint of each additional leg introduce two more 

columns to the Jacobian J J®. This gives rise to a non-square matrix. In short, the 

Force Decomposition method is only applicable to a simple and light work load 

structured manipulator. 

The Forward Rate Kinematics Based method only uses the velocities of three 

non-collinear points which attached to the end-effector. Unlike the Force 

Decomposition Method, even if the number of legs is increased, the dimension of 
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matrix K (in Equation 2.12) will remain unchanged. Hence, this method can be 

generalized to cater for any elbow joint structured platform-type parallel manipulator 

(including 6 DOF Stewart platform [FS92a]). 

The Grassmann Geometry method can only be applied to special parallel 

manipulators such as the example shown in Figure 2.4. For general parallel 

manipulators it is difficult to find singular configurations that satisfy geometric rules 

Rank 0 to Rank 5 mentioned before. 

2.3 Summary 

Overall, the performance of the three methods in terms of the computational 

complexity and the Scope of Application is summarized in table 2.1. 

Criteria / Methods Force Forward Rate Grassmann 
Decomposition Kinematics Based Geometry 

Computational Solving a 6x6 Solving a 3x3 No numerical 
Complexity . matrix K that form as it is a rule-

Jacobian J • that , , . . 
SJ involves based approach. 

involves 155 multiplications, 
738 multiplications, ^ additions and 36 
474 additions and 24 subtractions, 
subtractions 

Scope of Can be used in Can be used to For special parallel 
Application parallel manipulator analysis both few manipulator and is 

with few legs only but legs and other not suitable for a 
not for other parallel complex 
manipulator e.g. 6 manipulator e.g. 6 manipulator whose 
DOF Stewart DOF Stewart geometry is 
platform. platform difficult to analysis. 

Table 2.1 Comparison of Three Methods 
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Among the three existing methods for identification of configuration 

singularity, the Forward Rate Kinematics Based method is most efficient. It is the 

best because of two reasons: (1) its computational complexity is the lowest, and (2) it 

can be applied to more general cases. Furthermore, it is noted that this method not 

only can tell whether the configuration is singular but also provide some useful hints 

for one to minimize or even eliminate the problem in the design of manipulator. This 

aspect will be further discussed in Chapter 3. Therefore, in this study, we used the 

Forward Rate Kinematics Based method to investigate the problem of configuration 

singularity in three types of platform-type parallel manipulator : namely, 3 DOF with 

symmetric and non-symmetric base, Novel 6 DOF, and class of 6 SPS. 
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Chapter 3 

Enumeration of Configuration Singularity 

In this chapter, we will firstly deduce the general expression of the 

configuration singularity of two classes of platform-type parallel manipulator, 

namely: Novel 6 DOF and 3 DOF with symmetric and non-symmetric base which 

have not been studied by other researchers. Numerical examples will be used to 

verify the general expressions derived in each case and we will also illustrate the 

physical meaning of each configuration singularity found. Secondly, the Forward 

Rate Kinematics Based method will be applied to the class of 6 SPS parallel 

manipulators to identify the configuration singularity. We will show that a 

relationship, between the radius of the base platform and the length of the upper and 

lower links, exists in each case. Such relationship is a major factor to consider for 

eliminating the configuration singularity in design stage. Further analysis to the 

relationship will be given in the next chapter. 

3.1 Novel 6 DOF 

The analysis of configuration singularity of 6 DOF platform-type parallel 

manipulator by using elbow joints has not been studied yet. Therefore, we would like 

to place some research effort on this class of manipulators. The Novel 6 DOF 

platform-type parallel manipulator is a good and typical example in this class. It 

consists of a base plate, a top plate (the moving platform) and three connection legs. 

Each leg has a lower and upper link which are connected by an elbow joint (Figure 

3.1). We will deduce and simplify the general expression, which is expressed in 

terms of the passive and active joint variables, of the configuration singularity in the 

Novel 6 DOF platform-type parallel manipulator. A numerical examples will be used 

to verify the correctness of the general expression. 
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Figure 3.1 Geometry of the Novel 6 DOF Platform-type Parallel Manipulator 

Referring to Figure 3.1, each leg has a lower link and a upper link, with 

lengths Li and L respectively. 0i2 is the active joint parameter while 0ii the passive 

joint parameter of leg i. R^ is the radius of the base platform. Rbi is the rotation 

angle between the local coordinates of leg i and the base coordinate system. Pj (for 

i=l to 3) (They are equivalent to Pj, Pj and Pj, respectively. This convention is used 

throughout this chapter.) is the connection point of the leg i and the moving platform. 

These three points are non-collinear . 

Step 1: According to the definition of the Forward Rate Kinematics Based method, by 

giving the value of all the active joint velocities and geometrical configuration, the 

coordinates of the three non-collinear points P̂  (for i=l to 3) with respect to the base 

reference frame can be represented by point vectors as follows: 

. = B. + Wi Li + w L2 (3.1) 

where Bj = OBj is a constant vector fixed to the base platform 

-RbCosRb, 
Bi = Rb SinRbi (3.2) 

_ 0 _ 
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and Wj and w'j are the unit vectors representing the orientation of L! and L . 

p . 

CosGii CosRbi Cos0i2 CosR^i 
Wj = CosGji SinR^i and w = Cos0i2 CosRbi (3.3) 

L Sine., L Sine., _ 

Step 2: Substitute the Equation (3.2) and (3.3) into Equation (3.1), Pj can be rewritten 

as: 

RbCosRbi + Li cos cosRbi + L? cos0i2CosRbi 
Pi = RbSinRbi + Li cosGnSinRbi + L2 cos0i2CosRi,i (3.4) 

_ Li sinQii + L2 sin0i2 _ 

Step 3: The velocity of Pj is the derivative of Equation (3.4) with respect to time, its 

matrix form is: 

— 
• • 

- L sinQii cosRbi — LsQi: sin9j2 cosR^i 
Vpi = - LjGji sinGji sinR^i - LjOj? sin0i2 sinR^i (3.5) 

_ Li cosBji + L20i2 cos0i2 _ 

Step 4: The linear velocity of the end-effector, VQ, is the mean of velocity P :̂ 

V = I I X (3.6) 
j i=i 

Step 5: The velocity of the three points, Vpi can also be expressed in terms of the 

linear velocity, V and the angular velocity, co, of the end-effector: 

Vpi = [RI] [co] Ai + Vo (3.7) 

where [R:] is a 3x3 rotation matrix and k is a constant vector 

Step 6: The linear velocity VQ and the angular velocity o of the end-effector are 

expressed in terms of three unknown passive joints rate Gĵ . This implies that the 

singularity of the manipulator occurs whenever Gji is undefined. The passive joints 
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rate can be solved using the Kinematic Constraint of a 3-D Rigid Body Motion 

:FS92a]. By utilizing the kinematic constraints, three constrained equations can be 

found: 

Vpi - (PrP j ) = Vpj-(Pi-Pj) (3.8) 

( for i&j=l to 3, i 

Step 7: In this case, Rb = R, Rbi 0, Rb2 = 2nl3 and Rb3 = 471/3, by substituting these 

values and Equation (3.4) & (3.5) into Equation (3.8), the three constrained equations 

are expressed as follows : 

- U L, 1T 
1.5R + L,Cos(0i 1) + L2Cos(0,2 ) + y Cos(02,) + y Cos(e22) 

S Vs V3 
- — R - ^ L,Cos(0,,) - — L,Cos(e,,) 

LiSin(e„) + L2Sin(0,2)- LsSinCe ? 
_ 

- L A i S i n ( e , 0 - ) - y ê ŜinCG î) - ^ ) 

Vs • V3 . 
— ) + — L ^ e ^ ^ s i n c e ^ ^ ) = o 

LA,Cos(0ii) + L20i2COS(0i2)- Lie2iCOS(02i)- L2022Cos(022) 
_ 

(3.9) 

cos(e2i)+ C s(e22)+ C s(e3i)+ C s(e32) 

S V3 s 
LiCos(e2i) + yL2Cos(e22) + LiCos(e3i) + L2Cos(e32) 

L,Sin(e2i) + L2Sin(022) - LiSin(03i) LaSinCe ) 

/o 
— ) + — L 2 2 S i n ( e 2 2 ) — — M 3 i S i n ( e 3 i ) - — L : S i n ( e 3 2 ) = 0 

L i 0 2 , C O S ( 0 2 I ) + L 2 e 2 2 C o s ( 0 2 2 ) - L ^ i C o s C G s i ) _ L 2 6 3 2 0 ) 3 ( 0 3 2 ) 

(3.10) 
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L L 1T 
-1.5R - LiCos(0„) - L2Cos(ei2) - f Cos(03i) — - f Cos(Q,2) 

jL ^ 
Pj p^ Py 

- Y R - j L,008(03,) - - y L,COS(03,) 
—LiSin(e„) - L2Sin(0i2) + + LaSinCG : 

— 

p . 

LAiSin(e„) + L 2 _ 12) + ‘Sin(e3i) + 2S_32) 

LAiSin(e3i) + LA2Sin(e32) = 0 
-LAiCos(eii) - L20I2Cos(0i2) + LI63ICos(G3I) + L2e32Cos(032) 

(3.11) 

Step 8: The Equation (3.9) (3.10) and (3.11) can be rewritten into a matrix form as: 

Ki2 0 I T e J N -
0 K22 K23 . 621 = N2 (3.12) 

_K3i 0 K33J [03J [N3_ 

or [K]. [0] = [N] 

where Kj and Ni are functions of joint parameters, and Kji is the coefficient of 

Oil 

Ki 1 =l/2(-3 Li R Sin(en) - 2 Lj L2 Cos(0i2) Sin(0i 1) - Ll^ Cos(e2i) Sin(en) 

-Li L2 Cos(e22) Sin(en) + 2Li L2 Cos(Gn) Sin(ei2) - 2 Ll^ Cos(en) 

Sin(e2i) -2 Li L2 Cos(0n) Sin(e22)) 

Ki2 = l/2(- 2 L12 Cos(e2i) Sin(0n) - 2 Lj L2 Cos(e2i) Sin(0i2) - 3 Lj R Sin 

(021) - L12 Cos(en) Sin(02i) - Li L2 Cos(ei2) Sin(e2i) - 2 L] L2 Cos 

(022) Sin(02i) + 2 Li L2 Cos(eii) Sin(ei2)) 

K22 =l/2(-3 Li R Sin(e2i) - 2 Lj L2 €05(022) Sin(e2i) - Ll^ Cos(e3i) Sin(e2i) 

-Li L2 Cos(032) Sin(02i) + 2 Lj L2 €08(821) Sin(022) - 2 Ll^ Cos(e2i 

)Sin(03i)-2L1L2 Cos(02i) Sin(032)) 
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K23 =1/2(-2 L12 Cos(e3i) Sin(e2i) - 2 Lj L2 Cos(03i) Sin(022) - 3 Li R Sin( 

631) - U 2 Cos(e2i) Sin(e3i) - Li L Cos(e22) Sin(e3i) - 2 Li L2 Cos( 

632) Sin(e3i) + 2 Li L2 Cos(e3i) Sin(e32)) 

K31 =l/2(-3 Li R Sin(en) - 2 Li L2 Cos(ei2) Sin(eii) - Ll^ Cos(03i) Sin(en) 

-Li L2 005(632) Sin(0ii) + 2 Li L2 Cos(en) Sin(0i2) - 2 Ll^ Cos(0ii 

)Sin(03i)-2L1L2 Cos(en) Sin(032)) 

K33 =l/2(-2 L12 Cos(e3i) Sin(en) - 2 Li L2 €05(031) Sin(0i2) - 3 Lj R Sin( 

631) - L12 Cos(eii) Sin(e3i) - Lj L2 Cos(0i2) Sin(03i) - 2 L] L2 Cos( 

632) Sin(03i) + 2L1L2 Cos(03i) Sin(e32)) 

Step 9: The singularity of the manipulator occurs when [0] is undefined, i.e.: 

Det [K] = Ki 1 K22 K33 + K31 Ki2 K23 = 0 (3.13) 

Step 10: Simplify the Equation (3.13) as: 

(K11K22K33+K31K12K23) 

=f( l 2) * f(2,3) *f(3 l) + f(2,l) * f(3,2) * f(l,3) (3.14) 

where i , j = 1,3 and 

f(ei2,eib Rbi, Rbj, Oji 0j2) = M L2 sin (812 - en ) - Li r sin(eii) 
+ (Cos( Rbi - Rbj) Sin(0ii) (Li R + Li^ Cos(0ji) + Li L2 Cos(0j2)) 
- L i Cos(0ii) (Li Sin(eji) + L2 Sin(ej2)) 

Therefore, Equation (3.14) is the general expression of the configuration 

singularities existed in the Novel 6 DOF platform-type parallel manipulator. 
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3.1.1 Result Analysis 

Now, we are going to use the following sample data set to verify whether the 

above general expression (Equation 3.14) is formulated correctly. 

Step 11: Let the passive joint parameters 0ii= 02i = ti /2, the active joint parameters 

012= 022 = /2, and 632 = 3̂1 + 180°, then the singularity condition can be reduced to: 

((3Li(Li +L2)2R(3R-LiCose3i +L2CosG32).(-2LiCose3i -21^2031 
3R5iiiG3i—2L2CosG32SinG3i+2L2CosG3;SinG32)/2) = 0 ‘ 

Step 12: Since L! and L are greater than zero, Equation (3.15) can be further split 

into Equations.(3.16) and (3.17): 

(3R- L,Cos03, + L2COS032) = 0 (3.16) 

-2LiCOS03I -2L2COS031 -3RSine3i -2L2Cose32Sine3, +2L2Cos03iSine32 =0 (3.17) 

Step 13: Equation (3.16) shows the relationship between the sum of the lengths of 

upper and lower links and the base radius. Since 632 = 631 + 180°, then Cos032 is 

equal to -C0SQ31 and Equation (3.16) can be simplified as: 

R / (L i+L2)= Cos03I/3 

The maximum value of CosGgi is 1 so: 

R / ( L i + L 2 ) < 1 / 3 

It means that the configuration singularity can be avoided when designing the 

manipulator if the following condition (Equation 3.18) is satisfied. 

R / ( L I + L 2 ) > 1 / 3 (3.18) 

Step 14: Equation (3.18) only indicates the relationship between the base radius and 

the length of links in order to eliminate the configuration singularity. It does not give 

the value of the unknown passive joint parameter for configuration singularity. So, 
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this parameter will be solved from Equation (3.17) which shows the kinematic 

configurations of the manipulator. It is simplified as: 

tan e 3 i = ( L i + L 2 ) / 1 . 5 R b (3.19) 

Step 15: The configuration singularity identified by Equation (3.19) is shown in 

Figure 3.2. The kth elbow joint axis is collinear with the line between points P^ and 

Pa. Pa is the middle point between points Pj and Pj for a symmetric manipulator. This 

means that the end-effector of the manipulator gains one more degree of freedom and 

loses its stability when a force acts perpendicular to the kth elbow joint (ball joint). 

This configuration singularity is the same as the one found by using the Grassmann 

Geometry method described in Chapter two (Figure 2.4). 

Figure 3.2 Configuration Singularity of Novel 6-DOF Parallel Manipulator 

Identified by Equation. (3.19) 

As a result, the derived general expression (Equation 3.14) is able to identify 

the configuration singularity for the Novel 6 DOF platform-type parallel manipulator 

with elbow joints. K efficiently and accurately determines the configuration 

singularity of the manipulator. On the other hand, it also indicates a way (Equation 
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2.18) to avoid the configuration singularity in the design stage. This will save the 

time and effort to compensate the problem of configuration singularity. 

3.2 A 3 DOF with Symmetric Base 

In this section, the Forward Rate Kinematics Based method will be applied 

to a 3 DOF platform-type parallel manipulator with prismatic joints and symmetric 

base. The Forward Rate Kinematics Based method had been proved to work on any 

3 DOF platform-type parallel manipulator with symmetric base (e.g. Equilateral 

Triangle Base) [FS92a]. Therefore, we would like to put the effort to rearrange the 

formulations in a general symbolic way. Since the steps of formulation and 

verification of the general expression is similar to the last case, we will avoid those 

burdensome words as far as possible and emphasize on the result. 

,Moving _ 
/ Pfalform 

I K If 
(Jb 4 - L J 
J T l l ^ - q 

Aie, ‘ z i l 

Figure 3.3 Geometry of the 3 DOF Platform-type Parallel Manipulator 
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The 3 DOF platform-type parallel manipulator (Figure 3.3) with prismatic 

joint consists of three kinematic sub-chains, each having an actuated sliding joint, 

noted as qi, 02 and q^. The three passive joint variables used in this analysis are a^ 

a j and a^ respectively. R is the radius of the base platform and Rj is the radius to 

leg i. The values of R̂  are R! = R = R 3 = R. Oj is the rotation angle between 

the local coordinates of leg i and the base coordinate system, O^ = 0, O2 = 27i/3, 

O3 = 471/3. 

Step 1: The coordinates of the three non-collinear points Pi (for i=l to 3) with respect 

to the base reference frame can be represented by point vectors: 

Pi = B. + w. qi (3.21) 

where Bj is a constant vector fixed to the base platform and Wj is the unit 

vectors representing the orientation of q . 

Step 2: Pi in detail expression: 

~R. Cos[Oj] +qi Cos[ai] Cos[Oi]" 
Pi = Ri Sin[Oi] Cos[aJ Sin[(DJ (3.22) 

qiSin[aj] 

Step 3: The velocity of Pj 

q. Cos[(x ]Cos[OJ - qj d- Sin[aJ Cos[cDJ 
Vpi = q, Cos[aJ Sin[OJ - q̂  dj Sin[aJ Sin[OJ (3.23) 

_ Sin[aJ - Qi d Cos[aJ _ 

Step 4 to Step 9 is similar to those in case Novel 6 DOF, they are omitted here. 

Step 10: The general expression of 3 DOF with symmetric Base is: 

( k l l k22 k33 + k3i ki2 k23 ) 

=f(l,2) * f(2,3) * f(3,l) + g(l,2) * g(2,3) * g(3 l) (3.24) 

where i j = 1 3 and 
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f( Ri, oq Oi, qj Oj Oj ) 

= - R i Sin oq - qj Cos oq Sin oj + (Rj + qj Cos oj) Sin 04 Cos(Oi -Oj) 

g( Rj, Oj, Oj, qi, 0 4 Oi ) 

= - R j Sin Oj - qi Cos ocj Sin 04 + (Ri + qi Cos 04) Sin a j Cos(Oi -Oj) 

3.2.1 Result Analysis 

Step 11- Step 15: Let the passive joint parameter oq = 90° and ot a^ as unknown 

variables. Let's assume a2 = 0C3, then the length of q i is equal to the length of 

q3. We will obtain the following equations: 

Det [k] = (1.5 R Sin[a3] + q̂  CosCoc ] ) ( R q Sin[a3] Cos[(X3] + 3 R" SinCa ]) 
0 

(1.5 RSin[a3] + q̂  Cosfa ] ) = 0 
q, (3.25) 

Or 

(R q3 Sin|a3] Cos[a3] + 3 R^ Sin[a3]) 0 

R 1 (3.26) — 
qs _ 3 

The configuration singularity found is shown in Figure 3.4. 
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Figure 3.4 Configuration Singularity of 3 DOF Parallel Manipulator 

with Symmetric Base Identified by Equation.(3.25) 

The solution of this example, which is solved from the general expression 

(Equation 3.24) is the same as the example mentioned by Shi et al. [FS92a]. The 

only difference is that this example consists of two unknown passive joint 

parameters while Shi's example involved only one. That means the general 

expression is able to give correct solutions for whatever example data. This can 

prove that the general expression is accurate enough to identify the configuration 

singularity of 3 DOF platform-type parallel manipulator with symmetric base (e.g. 

Equilateral Triangle Base). Similar to the last case, the general expression returns a 

ratio R/q3 which gives an idea to avoid configuration singularity. 

3.3 A 3 DOF with Non-Symmetric Base 

A 3 DOF platform-type parallel manipulator with non-symmetric base (e.g. 

right-angled triangle base) is a variety of the one with symmetric base. The only 

difference is the shape of the base platform. Actually, the formulation of the 

coordinates and velocities of the non-collinear points, velocity of the end-effector, 
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the constrained equations and the general expression are almost the same as the 3 

DOF parallel manipulator with symmetric base, except the parameters will take 

different values. Therefore, all the symbols and meaning of the passive and active 

joint parameters will remain the same in this case. The new values of Rj are: R^ == 

R2 R and R3 = V0.4R. 1 = 0 27i/3, O3 = 4n/3. The passive joint 

parameter 0x3 = 90° and oq a2 as unknown variables. Let's assume oq = 

then the length of qi is equal to the length of q2. Moreover, in order to compare 

the result with the last case, we will use the same example for testing. 

The determinant of matrix K and the general expression is the same as the 

Equation (3.24). 

3.3.1 Result Analysis 

By substituting all known values into the general expression equation (3.24), 

we have : 

(q2 Cosa 2+2.26492 R H q R Sinot2 Cosoc! + 

1.31623 R2 (Sinoc2)2) = 0 (3.27) 

Then : 

(q3 R Sina2 Cosa 2+1.31623 R^ (Sinoc ^ 0 

(q3 C0SOC2+ 1.31623 RSinoc2)= 0 

tana2 ^ ^ (3.28) 
Or 

(q2 Cosa 2 +2.26492 R)= 0 

— > 0.44 (3.29) 
q2 

The resulting configuration singularity is shown in Figure 3.5: 
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Figure 3.5 Configuration Singularity of 3 DOF Parallel Manipulator with Non-

Symmetric Base Identified by Equation.(3.28) 

Here is another example with one unknown variable 0x3. The new values of 

Ri are: R! = R = R and R3 = Vo.4R. O^ = 0, O2 = 27i/3, O3 = 4n/3. The 

passive joint parameter a 1 = a2 = 90° . We have : 

= ( q , Cos[a3] + q! Cos[a3] + 2.2649 R Sin[a3] ) (1.97434 + 0.75 q RCosla ]) 
= 0 

(3.30) 

Then : 

(qi + Cos[a3] + q2Cos[(X3] + 2.2649 R Sinla ] ) = 0 

Tan[a3] = (^ + (3.31) 3 2.2649 R 

Or 
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(1.97434 R2 + 0.75q3RCos[a3] = 0 
(3.32) 

— > 0.38 
q3 

The resulting configuration singularity is shown in Figure 3.6: 

U 
J Base 

Figure 3.6 Configuration Singularity of 3 DOF Parallel Manipulator with Non-
Symmetric Base Identified by Equation.(3.31) 

From Figure 3.6, the prismatic joint axis is collinear with the point P ,̂ which 

could be any point on the moving platform. Comparing Figure 3.6 with Figure 3.5 

we can see that for the second example, only one prismatic joint axis is collinear with 

point Pa. While for the first example, two prismatic joint axes are collinear with the 

point Pi. Therefore, if any prismatic joint axis is collinear with any point which is 

attached on the moving platform, then configuration singularity occurs. As a result, 

we can summarize that the Forward Rate Kinematics Based method is able to 

identify the configuration singularity of a 3 DOF platform-type parallel manipulator 

with symmetric or non-symmetric base. 

Furthermore, the ratio of R to qj is found again and its value are 0.44 

(Equation 3.29) and 0.38 (Equation 3.32) which are different from 1/3 in the last two 
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cases. That means that the ratio exists for all parallel manipulators and it is not a 

constant. We will prove this idea by more case studies in the later sections. 

3.4 A New Model of 6 SPS defined by Kong et al. 

From the last three sections, we have found that in the process of identifying 

the configuration singularity, there always exists a ratio R/q which specified a 

necessary condition for configuration singularity to occur. The condition is: there 

may be a configuration singularity if the value of ratio R/q falls into a certain range. 

Then, by carefully controlling the value of this ratio, we may eliminate the 

configuration singularity. In the following sections, we would like to identify the 

configuration singularity in a new model of 6 SPS platform-type parallel manipulator, 

which is defined by Kong, X.W. and Yang, T.L. [KY94], and is shown in Figure 3.7. 

Since the general expression of the model is very complicated, we will not discuss in 

detail here. We will show that this ratio (R/q) not only exists in the last three cases 

but also in the new model and its varieties. By generalizing this idea, the ratio can be 

used as a guideline for designing the manipulators. 

_ 

Figure 3.7 A New Model of 6 SPS Defined by Kong et al. 
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Figure 3.8 The Geometry of a New Model of 6 SPS 
Defined by Kong et al. 

Figure 3.8 is the geometry of the new 6 SPS parallel manipulator. It consists 

of six kinematic sub-chains, each having an actuated sliding joint, between the base 

platform (Figure 3.9) and the top plate. Every two of them, qj and q/ (for i=l 3), will 

join at one vertex point, Pj, on the triangular top plate. The three intermediate 

variables are Gi. R is the radius of the base platform and Rj is the length from the 

base center to the point B[. Yj is the rotation angle between the ith local coordinates 

and the base coordinate frame (the local coordinate frame is its Xj axis which is 

aligned with B^B!). is the rotation angle between the ith local coordinates and the 

base coordinate system. 

'iY-AXIS 

B 

/ 

O.MR I - - ™ 1 
Figure 3.9 The Geometry of the Base Platform of 

a New Model Defined by Kong et al. 
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Step l:By applying the Forward Rate Kinematics Based method, the coordinates of 

the three non-collinear points Pi represented by point vectors with respect to the base 

reference frame are: 

Pi = B, + Wi q, (3.33) 

where Bj is a constant vector fixed to the base platform and Wj is the unit 

vectors representing the orientation of q” 

Step 2: Rewrite P in details: 

-Ri Cos[OJ - q, W,, COS[YJ - q̂  I S in [YJ Cos[0J 
Pi = R, Sin[OJ - qj W^ S in [YJ - q̂  Ŵ^ COS[YJ COS [0J (3.34) 

. qi Sin[ej _ 

where 

r / \2 7/2 
Wii = Cos(|)i = ^ ' and Ŵ^ = Sin = 1 - ^ ‘ 

Step 3: The velocity of the point is the derivative of Equation.(3.34) with respect to 

time, 

"-CosyJ(q,W, + q,W,)-Siny,(q,W^jCosG, +q iCose, 
Vpi = -SinYi(qiW,i +qiWji)-CosYi(qjW2iCosG. + q i W 2 i C o s 0 . ( 3 . 3 5 ) 

L (ii W2iSinGi + qjW2iSinei + q̂  W? ACose^ _ 

where 

Wii = ^ -

Step 4 - Step 6 is similar to those in the case of Novel 6 DOF. 

42 



Step 7: In order to find the configuration singularity, let's make the following 

selections: 

Rl = R2 = R and R3 = 0.75R. 

1 = 871/9, 2 = 7 1 / 2 , 7 3 = 7 1 / 2 

Oi = Stc / 18 0 2 = 771 / 6 O3 = 65TC / 36 

bi (BiBi’ = 0.684R, b2 (B2B2 = 0.741R, bg (B3B3’ = 0.741R. 

01 = 0 2 = 71 /2 

coefficient of 0j = K^, where i,j=l,3 

The matrix form of Equation (3.36) is: 

Kii Ki2 0 I T e l Ni— 
0 K22 K23 • 02 = N^ (3.36) 

-K31 0 K33J [ q J [N3_ 

where 

Kii = 2.5254 RSin[(|) J Sin[ej - 0.4698 b^ SinLf] Sin[0J - 0.5 q^ Sin[(y Sin[(|)J Cos[0J 

Ki2 = 1.3784 r V 4 - (b^ / q^) - 0.1710 q, - (b^ / q]) S in[ f ] Cos[0J 

K22 1.7442 R - (hi / ql) - 0.25 b] - (h] / q^) 

K23 = 0.0762 R - (b; / q^) + 0.25 b^ - (b] / q^) 

K31 = (1.4755 R+ 0.1710 b3)Sin[(t) J Sin[0J - 0.5 q - (b^ / q^) Cos[0J 

K33 = 0.9182 R - (b] / q!) - 0.4698 q! 4 - (b; / q^) S in[ f ] Cos[ej 

Step 8: The singularity condition is: 

Det [K] = Ki 1 K22 K33 + K31 Ki2 K23 = 0 (3.37) 

Step 9: Expressing the Equation(3.34) into: 

(2.75686 R S'ml^^] _ 0.34202 q! Sin[(|)J Sinfcy Cos[ej ) x 
( - q 3 Sin[(t)J Sin[(|)3] Cos[0J + 1.602 R Sin[(|)J Sin[0J ) = 0 

Or 
(1.93637 R Sin[(|)3] - 0.939693 q̂  Sin[(|)J Cos[0J ) x 
( - q 2 Sin[(|)J Sin[(|)2] Cos[0J + 2.17772 R Sin[(|)J Sin[0J ) = 0 
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Since R^t 0, these condition can be rewritten as 

2.75686 RSin[ct)2] - 0.34202 q̂  Sin[(|) J S'mlî ^] Cos[ej = 0 
2.75686 R = 0.34202 q̂  Cos[0i] 

When Sin[(t) J and Cos[0i ] = 1 their maximum value, 

R / q i > 0.124 (3.38) 

-q3 Sin[(|) J Sin[(|)3] Cos[ej + 1.602 R Siii[(|)J Sin[ej = 0 

(3.39) 
L 1] 1.602 R 

Alternatively, the condition can be written as : 

1.93637 RSin[(t)3] - 0.939693 q̂  Sin[(|)J Cos[0J = 0 
1.93637 R = 0.939693 q! Cos[0J 

when Sin[(t)i] and Cos[0J = 1 

R / q i > 0.5117 (3.40) 

-q^ Sin[(|)J Sin[(|)2] Cos[0J + 2.17772 R Sin[(|) J Sin[0J = 0 

q. Sin[(|). .. 
Tanrai = — — — — (3.41) 

L ij 2.17772 R 

The configuration singularity identified by equation (3.39) is shown in Figure 

3.10. Therefore, the Forward Rate Kinematics Based method is able to identify the 

configuration singularity for the model defined by Kong et al. and the ratio of the base 

radius to the length of the kinematic sub-chains can also be determined. 
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Figure 3.10 Configuration Singularity of the New Model Platform-type Parallel 

Manipulator Defined by Kong et al. Identified by Equations (3.39) 

3.5 A New Class of 6-SPS Platform-Type Parallel Manipulator 

Based on the ideal of the new model defined by Kong et al., we would like 

to modify the shape of the base platform of the model in order to observe whether 

the Forward Rate Kinematics Based method is able to identify the configuration 

singularity and the ratio R/q for each variety. The base platform of the model will 

be replaced by a hexagonal, pentagonal, tetragonal and triangular base respectively. 

Since the label and the meaning of the parameters and the first six steps in the 

process are the same for all varieties, we will start from step 7 assuming the value 

of the parameters. 
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3.5.1 The Hexagonal Base 

^̂  

Figure 3.11 The Geometry of the Class of 6 SPS Platform-type 
Parallel Manipulator with Hexagonal Base 
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Figure 3.12 The Geometry of the Hexagonal Base Platform 
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Figure 3.11 and Figure 3.12 are the geometry of a new class of 6 SPS parallel 

manipulator with hexagonal base platform. 

Let: di (B1B2’) d2 (B2B3') and d3 (B3B1’ are not equal to zero 

Rl = R2 = R3 = R. 

Yl = 71/2, Y2 = 771/6, 3 = 1171/6 

Ol = 0, O2 = 271 / 3 CD3 4 / 3 

bi (BiBi') = b2 (B2B2’) = b3 (B3B3’) = 1.414R 

01 =02 = 71/2 

coefficient of 9j = K^j, where i,j=1,3 

The constraint equations in matrix form: 

•Kii Ki2 0 1 6i1 Ni — 
0 K22 K23 • 62 N2 

_K3I 0 K33J [63] LN3_ 

where 

b2V3-Sin(t)i q'2V3-Sin(|)i Wll^^Sii^i BR-^Sinf 
Kii= 4 _ + ~ + 2 + 2V2 

biV3.Sin(t)2 qfV3-8111(1)2 ql^S-Sin^^ ^ RVL5 VSincI)̂  SRVSinc]): 
Ki2 = 4 + 2 + 2V2 

qfV3-Sin(|), R^^S'm^^ 3R^Sin(|), 
22= 4 4b + ~ + 2 + 2V2 

.qgCosGg^Sin(|)2 .Sin 3 
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I b2Sine3 -8111(1)3 q'^^SinGsV^^^^ q^^k^^^fJ^S^^ 
K23 = q2Cos03VSin(|)2. Sm^, — + ^ ^ 

R-SinGgVliVSin^ 3R»Sine3VSin(|)3 
— 2 + 

-b3̂ 3.Sin(t)i q ŷS-Sinf RVT̂ ^̂ Si—i BRySinf 
K3i= 4 + ~ ~ ~ 2 + 2V2 

qgCos^ -7Sin(|)i -8111(1)3 
- 2 

biSin03 -8111(1)3 qf 811103 V s ^ s i i ^ 
= + ^ ^ + ^ 

R» 811103 VTS-78111(1)3 3R-811103 VSin(|)3 
+ 2 + ^72 

The singularity condition for the manipulator is: 

Det [K] = Ki i K22 K33 + K31 Ki2 K23 = 0 (3.40) 

(q^ Cos(t)2) - (3V2 + V6)R)-

4b2q2Sin(|)2. Cose + . b .q2Cos(t)2Sine3 + (3V2 • b? • R + . bsIOSine] = 0 

Since R?^ 0, this condition can be rewritten as 

q^ Sin(|), 

T = 1.673R- 30.618 (^ 

where Cos = 35.355 / qi 

Configurations singularity identified by Equation.(3.41) is shown in Figure 

3.13 in which the k and k' th prismatic joint axis is coplanar with the point P^ which is 

located at the moving platform. The end-effector of the manipulator gains one more 

degree of freedom and loses its stability when a force is perpendicularly applied to the 

kth joint (ball joint). 
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The second part of the singularity condition shows the relationship between 

the radius and the length of the sub-chain. 

(q2(2V3 Cos(t)2) - (3V2 + V6)R) = 0 

where Cos (|)2 1 

R / q i >0.517 (3.42) 

Figure 3.13 Configuration Singularity of Class 6 SPS Parallel Manipulator with 
Hexagonal Base Platform Identified by Equation (3.41) 
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3.5.2 The Pentagonal Base 
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Figure 3.14 The Geometry of the Pentagonal Base Platform 

Let: di (B1B2') 0, d2 (B2B3') and d3 (B3B1') are not equal to zero 

Rl =R2 = R, R3 = 1.412R. 

Yl = 71/2, 2 = 0, 3=71/4 

<Dl =7T /4, 0 2 = 371 / 4, O3 = 371 / 2 

bi (BiBi') = b2 (B2B2,) = 1.414R, bs (B3B3 ) = 2R 

01 =02 = 71/2 

coefficient of 0j = Kjj, where i,j=l,3 

The constraint equations in matrix form is: 

"K„ Ki2 0 ] [ 6 j Ni — 
0 K22 K23 • 02 = N2 

.K31 0 K J L J 1_N3_ 

where 
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Kii = 1.464RSin[c|)J 

Ki2 = 1.464 RSin[(t)2] 

K22 = 2.8266 RSin[(|)2] - 0.7071 q Sinl^^] - / q ' ) Cos[03] 

K23 = 1.9636 RSin[(t)3] Sin[e3] - q^ - / q ' ) Cos[03] 

K31 = 2 R + 0.7071 Sin[(|)J - q, - / q ' ) Cos[03] 

K33 = 1.9638 R ^ l - (R2 / q2) - q! Sin[(t)J - / q!) CoslG]] 

The singularity condition for the manipulator is: 

(1.414 R Sin[(|) J - 0.7071 q Sin[(t)J Cos[03] ) x 

( - q2 Sin[(y Sin[(|)3] Cos[e3] + 1.96364 R Sin[(t)3] Sin[0J ) = 0 

Since R 0 this configuration singularity and the relationship between R and q are: 

1.414RSin[(|)J - 0.7071 q Sin[(|)J CosfB ] = 0 
1.414 R = 0.7071 q3 Cos[03] 

WhenSin[(|)3]andCos[G3] = 1 

Tan[03] = ^ ^ ^ ^ (3.43) 3 1.96364 R ^ ) 

R / q 3 > 0.5 (3.44) 

The result is similar to the one with hexagonal base, and the configuration 

singularity is shown in Fig 3.15. 
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Figure 3.15 Configuration Singularity of Class 6 SPS Parallel Manipulator with 
Pentagonal Base Platform Identified by Equation (3.43) 

3.5.3 The Tetragonal Base 
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Figure 3.16 The Geometry of the Tetragonal Base Platform 
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Let di (B1B2’) = d2 (B2B3') = 0 d3 (B3B1’) • 0 

R4 = R2 = R3 = R. 

Yl = 71/2, 2 = 0 3 = 0 

Ol = 71 / 4, 0 2 = 371 / 4, O3 = 571 / 4 

bi (BiBi') = b2 (B2B2') = b3 (B3B3’) = 1.414R 

ei = 62 = 71/2 

coefficient of 0j = Kj where i,j=1,3 

The constraint equations in matrix form: 

—Kii Ki2 0 1 6i1 N,-
0 K22 K23 = ^ 2 

_K3i 0 K J L 6 3 LN3. 

where 
Kii = 1.4638 RSin[(t) J 
Ki2 = 1.4636 RSin[(t)2] 
K22 = 2.2204 RSin[(|)2] 
K23 = 0.7071 RSm[(|)3] Sin[03]- q^ Sin[(t)2] Sin[(y Cos[03] 
K31 = 2.1708 RSin[(t)J- q Sin[(t)J Cos[03] 
K33 = 2.1708 R Sin[(t)3] Sin[03]- q! Sin[(|)J Cos[03] 

The singularity condition for the manipulator is: 

(2.17082 R Sin[(|)J - q Sin[(|)J Cos[e3] ) x 
( - q2 Sin[(|)2] Sin[(t)3] Cos[e3] + 0.7071 R Sin[(t)3] SinCe ] ) = 0 

Or 
( - q , Sin[(t)i] Sin[(t)3] Cos[e3] + 2.17082 R Sin[(|)3] Sin[03] ) = 0 

Since R t ^ 0, this condition can be rewritten as 

2.17082 RSin[(|)J - q, Sin[(t)J Cos[03] = 0 

2.17082 R = q3 Cos[03] 

The configuration singularity and relationship between R and q are : 

when Sin[(|)3] and Cos[03] = 1: 
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R / q i > 0.4607 

-q2 Sin[(t)2] Sin[(t)3] Cosie;] + 0.7071 R Sin[(|)3] Sin[03] = 0 

T _ ] = ^ i M M (3.45) 
3 0.7071 R 

Alternatively : 

-qi Sin[(|)J Sin[(t)3] Cos[03] + 2.17082 R Sin[(|)3] Sin[03] = 0 

T - 3 ] = S (3.46) 

The configuration singularity, which is identified by Equation (3.45), is shown 

in Figure 3.17. 

Figure 3.17 Configuration Singularity of Class 6 SPS Parallel Manipulator 
with Tetragonal Base Platform Identified by Equation (3.45) 
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3.5.4 The Triangular Base 

3 . 7 5 R 

Figure 3.18 The Geometry of the Triangular Base Platform 

Let: di (B1B2,) = d2 (B2B3,) = d3 (B3B1’) = 0 

Rl = R, R2 = R3 = 2.068R. 

1 =71/2, 2 = 0, 3 = 7 1 / 4 

Oi = 71 / 4, 0)2 = 871/9, 03 = 2971/18 

bi (BiBi') = b2 (B2B2') = 2.65R, b^ (B3B3’ = 3.748R 

01 =02 = 71/2 

coefficient of 0j = K^, where i,j=l,3 

The constraint equations in matrix form is: 

_Kii K i 2 0 1 6 I 1 N i : 
0 K22 K23 • 02 = N2 

.K31 0 K33J [ q J LN3_ 

where 

Kii = 1.3273 RSin[(|) J 
Ki2 = 1.3273 RSin[(t)2] 
K22 = 1.3273 R Sin[(|)2]- 0.7071 q; Sin[(|)2] Sin[(t)3] Cos[03] 
K23 = 0.9369 RSin[(|)3] Sin[03]- q^ SinLc Ĵ Cos[e3] 
K31 = 1.3250 RSin[(|)i]- 0.7071 q3Sin[(|)i]Sin[(|)3]Cos[e3] 

ri 



K33 = 0.9379 RSin[(|)3]Sin[G3] - q̂  Sin[(|) J Cos[03] 

The singularity condition for the manipulator is: 

(1.32495 R Sin[(|)J - 0.7071 q Sin[(|)J Cos[03] ) x 
(-q^ Sin[(|)2] Sin[(t)3] Cos[03] + 0.936916 R Sin[03]) = 0 

Or 

(1.32732 R Sin[(t)2] - 0.7071 q, Sin[(|)2] Cos[03] ) x 
( - q i Sin[(|)J Sin[(t)3] Cos[Q,] + 0.937903 R Sin[(|)3] Sin[03]) = 0 

Since R 0, the configuration singularity and relationship between R and q are: 

1.32495 RSin[(t) J - 0.7071 q, Sin[(t)i] CosCe ] = 0 
1.32495 R = 0.7071 q Cosfe;] 

When Sin[(|)3] and Cos[03] = 1 

3] 0.936916 R (3.47) 

R / q i > 0.5337 

Alternatives: 

1.32762 RSin[(t)2] - 0.7071 q3 SinLc^J C0SP3] = 0 
1.32732 R = 0.7071 q] Cos[03] 

When Sin[(|)3] and Cos[e^] = 1 

T m 1 Qi Sin[cM .. . o n 
T — 3 ] = 0.937903 R (3.48) 

R / q i > 0.5327 

The configuration singularity is identified by equation (3.47) and is shown in 

Figure 3.19. 
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Figure 3.19 Configuration Singularity of Class 6 SPS Parallel Manipulator with 
Triangular Base Platform Identified by Equation. (3.47) 

It shows that even the shape of the base platform is different from each other, 

we can still use the same formulation of position and velocities matrices to find out 

the general expression to identify the configuration singularity and calculate the value 

of the ratio R/q . It should be pointed out that all different shapes of the base platform 

mentioned previously belong to the same class of 6-SPS platform-type parallel 

manipulator. The formulation of the general expression for that class 6-SPS are based 

on the two matrices : the position matrix and velocities matrix Vpi. Their general 

forms are shown as follows : ( where i = 1,3) 

-Ri C o s [ O J - q ^ W,, C o s [ y J - q ^ W ^ ^ S i n [ Y j C o s [ 0 J 

P i = R i S i n [ c D J - q i S i n [ Y j - q ^ I C o s [ y J C o s [ 0 J 

. qi W,, Sin[0J -

where 

ri 



L V 2biqi ) _ 

CosYi(4iWii +qiWii)-SinYi((iiW2iCosei +qiW2iCosei -qiW2i6Sinei) 
Vpi = -SinY,(q,W,. +q,WJ-CosY.(qiW2iCos0i -q-W^iGSine.) 

L qiW îSinGi + q W îSinê  + _ 

where 

Wii= ^ and 

q i ( q ? + b f - q f ) - 2 q , ( q A - q ; q ) 
I 2q . [4bfqf- (qf+bf-qf )^r 

In other words, it is demonstrated that the general expression for identifying 

configuration singularity in this class of 6-SPS platform-type parallel manipulator can 

be formed by using the Forward Rate Kinematics based Method. 
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3.6 Summary 

By grouping the results from section 3.1 to section 3.5, we observed that the 

Forward Rate Kinematics Based method is able to identify the configuration 

singularity for different cases. It can also be used to deduce a simple general 

expression of configuration singularity for certain cases. Moreover, the method helps 

us to show that there exists a ratio, a major factor affecting configuration singularity 

for platform-type parallel manipulator. From the reduced singularity condition (e.g. 

Equation 3.15), one can see that configuration singularity may exist if the value of the 

ratio is smaller than a certain bounded constant. That means, if the value of the ratio 

does not fall below the critical value, by carefully determine the length of links and 

the base radius in the design stage, then the configuration singularity would be 

eliminated. Therefore this ratio can be used as a guideline for designing the improved 

platform-type parallel manipulators. 

ri 



Chapter 4 

Numerical Analysis 

In chapter three, it is shown that the Forward Rate Kinematics Based method 

is able to identify configuration singularity of platform-type parallel manipulators. In 

addition, the method also returns the ratio R/q which is very useful in the control of 

configuration singularity. In this chapter, we will further analyze the relationship 

between the parameters involved in identifying the configuration singularity by using 

the class of 6 SPS parallel manipulator with hexagonal base platform. We will also 

suggest a method to determine the critical value of the ratio R/q for certain cases 

discussed in the last chapter. 

4.1 Parameter Analysis 

The 6 SPS parallel manipulator with hexagonal base platform, which had been 

mentioned in Section 3.5.1 (Figure 3.8 and 3.9) has the following parameters: 

- d i , d2 and dg are not equal to zero, 

- 1 = 0, 0)2 = 271 / 3 3 = 471 / 3, 

-Yl= 71/2,72 = 771/6,73 = 1171/6, 

-R l = R2 = R3 = R 

- b i = b 2 = b3 = 1.414R, 

-01, 02 and G3 are three intermediate variables required to be solved for the 

configuration singularity. We will assign arbitrary values to one or two of 

them in order to simply the process. The possible range of Gj is 0° - 180°. 

By using the Forward Rate Kinematics Based method, we can determine the 

singularity condition: 

Det [K] = Kii K22 K33 + K31 K i 2 K23 = 0 

ri 



4.1.1 One Unknown Variable (Assign numerical values to 6 i and 02) 

Substituting the parameters in the assumptions and let the value of 0i = 02 = 

/ 2 the following reduced expressions of singularity conditions can be obtained : 

= 2 V 3 C o # J 
q^ (3V2 + V6) . 

(3V2 + V6) R - 2V3 q3 Cos[(y 
Co ] 2 q3 Sin[ 3] ( ) 

_ 4 Sin[(|)J 
] = ( 3 V 2 + V6) (R/q,) - 2V3 Cos[f ] ( 

Equation (4.1) shows the relationship between the ratio R/qj and the angle . 

The curve in Figure 4-1 illustrates the conditions in which the configuration 

singularity may occurs. Since both R and q) are greater than zero, the valley portion 

of the curve does not actually exists. The maximum value of the ratio is 0.518. This 

means that there is no configuration singularity if the ratio is greater than 0.518. This 

maximum value is called the critical value of ratio R/q. 

(R/q2] 
o2=0-2PI 

• • • • 1 V a i / 5 ” v y 

Figure 4-1 
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Equation (4.2) is plotted in Figure (4-2a) - (4-2c) with different values of q. It 

can be observed that the opportunity of the configuration singularity is increased as 

the value of q increased when the radius is fixed. By varying the values of both R and 

q Figure 4-3 (Equation 4.3), shows that the curve of the singularity is inversely 

proportional to the value of the ratio R/q. The number of configuration singularity 

tends to zero as the value of ratio R/q increased. 

o3=0-2Pi;q3=1-100; radius=50 o3=0-2P i ;q3=1-200; radius=50 

Figure 4-2a Figure 4-2b 

o 1 = 0 - 2 P i ; ( R / q 1 ) = 0 - l 0 

o 3 = : 0 - 2 P i ; q 3 = 1 - 1 0 0 ; r a d i u s = 5 0 

6 

Figure 4-2c Figure 4-3 

ri 



4.1.2 Two Unknown Variables (Assign numerical value to 0 i ) 

Let 01 = 71 / 2 and keep 02 and 63 as unknown variables, the reduced 

expressions of singularity conditions are: 

_ (Sin[(|)JSin[e,-e3] - SinP ] CoslcM + % 
^ = (3V2 - V6) SinPs] (4.4) 
where Y3 = 3 Sin[(|)2] Sin^^+63] 

_ 4 Sin[(|)J 
T — 2 ] = 2V3Cos[W + (3V2- V6)(R/q , ) ( ) 

4 S _ 2 ] S i n [ e 2 ] 
L 2(V3 CosWJ - SinWJ CosPJ ) + Ŷ  (4.6) 

where Y4 = (3V2 - V6) (R/q^) 

The equations (4.4), (4.5) and (4.6) are displayed in Figures (4-4a) - (4-4c) 4-

5) and (4-6a) - (4-6f). The ratio is bounded by a maximum value (1.934), and there is 

no singularity outside this range. The curves of configuration singularity for 02 and 

03 is approaching to zero again as the ratio increased. These properties are very 

similar to those in sub-section 4.1.1 which involved only one unknown variable. 

t 2 = 0 . 0 0 1 - 2 P i ; o 2 = 0 . 0 0 1 - 2 P i 

Figure 4-4a Figure 4-4b 

ri 



o1=Q-2Pi ; (R/q1) = 0-10 

Figure 4-4c Figure 4-5 

o 2 = 0 -2P I ; t2=0 -2P i ; (R /q2 ) = 0.4 o2=0 -2P i ; t 2 = 0 -2P i ; (R /q2 ) = 2 

Figure 4-6a Figure 4-6b 

(R/ 'q2)=0-3;t2 = 0 - 2 P i ; o 2 = Pi /12 (R /q2)=0-3 ; t2 = 0 -2P i ;o2 = 5P 1/1 2 

Figure4-6c Figure 4-6d 

ri 



(R/q2)r0-3;o2=0-2Pi;t2=5Pi/12 (R/q2)=0-3;o2=0-2Pi;t2=Pi/12 

3 3 

Figure 4-6e Figure 4-6f 

From all these figures, we observe that the ratio R/q is an important factor to 

the behavior of configuration singularity. The existence of configuration singularity 

can be identified by the value of ratio R/q. And theoretically, configuration 

singularity can be avoided as the ratio is greater than a critical value. 

Before switching to the computation of the ratio, let's have a look on the 

solutions obtained by assigning five different sets of values to and 02 (Table 4.1, 

Figure 4.7 - Figure 4.16). The length of link, q and the intermediate variable, 63, 

change in the same step as and 02 and the pace of q̂  is greater than that of 63. 

ri 



Value of 01 ~ The Reduced Singular Conditions Equation 
and 02 ^ 

(3V2 + V6)R 4.7 

02 = 71/2 q3 - 2(V3Cos[(i)3] + Sin[(t)3] Cos[e3]) 

T r … 4 Sin[f] 4.8 
L (3^2 + V6) (R/q,) - 2V3Cos[(|)J 

01 = 71/2 
_ = 3R(V2 + V6) 4 9 

02 = 71/3 q3 = 6 Cos[(t)3] + 2 V3 Sin[(|)3] CosP ] + X̂  . 

where X̂  = 4 Sin[(|)3] Sin^ ] 

4 Sin[(|)J 
Tan[ ] (3V2 + V6) (R/q,) - i S CosLf] 4.10 

= — ^ 4.11 

02 = 71/4 q3 = V6COS[(|)3] + V2Sin[(|)3](Cos[03] + 2 Sin[03]) 

T r … 4 Sin[f] 4.12 
I 3 (3^2 + V6) (R/q - 2 S Cos[(|)J 

01=71/2 
— = 2V3R 

02 = 71/12 qs = (3V2-V6) Cos[(t)3] - Y2 + X2 . 

where X^ = +V^) Sin[(|)3] SinP ] 
and Y2 = C0SP3] 

1 = 4 Sin[ 1] 4.14 
L ( 3 ^ + (R/q^) - 2V3 Cos[(^J 

01 = 571/12 
= 2(3 + 2V3)R 

02 = 571 / 12 q3 - (3V2+V6) Cos[^3] + (V2+V6) Sin[^3]Z, - Z 

where Z = V^) Sinl^ ] SinP ] 
and Zj = Cos [63] 

— 2 (V2 + V6) Sin[(|)J 
Tan[e3] = 2(3V2 + V6)(R/q,) -4V3Cos[f ] + ‘ 1 6 

where Ẑ  = 2 (V2 - V6) Sin[(t)J 

Table 4.1 The Reduced Singular Conditions of Five Sample Cases. 

ri 



o3=Q-2Pi thata(3 )=0-2PI ; rad lus=50 

Figure 4-7 Figure 4-8 

o3 = 0 -2P i ; the ta (3 )=0 -2P i ; rad ius=50 

Figure 4-9 Figure 4-10 

o 3 = 0 - 2 P i ; th» ta (3 )=0-2Pi ; rad lus=50 

Figure 4-11 Figure 4-12 

ri 



o3=0-2Pi; theta(3)=0-2Pi; radius=50 

Figure 4-13 Figure4-14 

o3=0-2Pi;theta(3)=0-2Pi; radius=50 

' : 

Figure 4-15 Figure 4-16 

ri 



4.2 Critical Value of Ratio R/q 

Table 4.2 shows the value of ratio R/q determined by using one or two 

unknown variables. The expressions of the ratio by using one unknown variable is 

usually significantly simpler than using two variables (Equation 4.1 and 4.4). Since 

the critical value of the ratio is the maximum value of these expressions, a 

complicated expression may result in a different number from a simple expression. 

However, the values in column two and three do not show any relationship. That 

means we cannot use this pair-value to determine an upper bound of the ratio as well 

as its critical value for the platform-type parallel manipulators. 

Class of different Value of ratio R/q Value of ratio R/q 

platform type with one unknown with two unknown 

parallel Manipulator intermediate variable intermediate variables 

Class of 6 SPS with 0 518 1.934 
Hexagonal Base 

Class of 6 SPS with 0.500 0.500 
Pentagonal Base 

New Model defined 0 512 0 587 
by Kong et al. ^ 

Class of 6 SPS with 0 461 0.461 
Tetragonal Base 

Class of 6 SPS with q 0.534 
Triangular Base 

Novel 6 DOF 
3 DOF with 0.333 0.333 
Symmetric Base 

3 DOF with 0.380 0.440 
Non-Symmetric Base J ^ 

Table 4.2 Ratio R/q for Different Class of Platform-type Parallel Manipulators 

ri 



Table 4.3 lists the values obtained by using the same model and data set as 

Section 4.1 

Value of 01 The Expression of R/q Max. value 

and e , of R/q 

= 2V3Cos[(l)J 
02 = 71/2 [ (3V2 + V6) 0.518 

e i = " — 2 V3Cos[(^J + Sin[(|)J 0518 
02 = 71/3 q2 — (3V2 + V6) . 

= — 2 V3Cos[(|)J + V^Sin[(|)2] 
02 = 71/4 [ — ( 3 ^ + V6) 0.518 

_ 4 73Cos[(|)J + (V2+V6) Sin[(|)J 
e) = 7t/12 " ^ 2 (3V2 + S ) 0.518 

ei = 57c/12 ^ _ (2Cos[(|)J) (3V2 + V6) + 12 Sin[(|)J 
e , = 571 /12 I U = - (12 + 8V3) 0.518 

Table 4.3 Critical Values of Ratio R/q for the Class of 6 SPS Parallel Manipulator 
with Hexagonal Base Platform 

We observed from Table 4.3 that the critical value of the manipulator remains 

the same (0.518) for every pairs of and 82. Since the values of 0i and 02 are chosen 

randomly in their feasible range, i.e. 0° < 0i < 180 this number (0.518) can be 

considered as a general critical value of ratio R/q for this manipulator. 

This method is only suitable for those manipulators with symmetric base 

platform (Table 4.4). For manipulators with non-symmetric base platform (e.g. the 

model defined by Kong et al. in Section 3.4), the maximum values of the ratio varies 

as the values of 0i and G change. Although the application of the method for 

determining the critical value for a manipulator is somewhat limited, (only to those 

ri 



manipulators with symmetric base platform), it provides a useful means for the design 

of platform-type parallel manipulators, and the avoidance of configuration singularity. 

Class of different Value of ratio R/q Value of ratio R/q Critical 

platform type for = t i / 2 for another arbitrary Value 

parallel Manipulator | 62 — 71/2 value pair 

Class of 6 SPS with o . 5 1 8 0.518 0.518 
Hexagonal Base 

Class of 6 SPS with 0.500 0.500 0.500 
Pentagonal Base ( 

New Model defined 0 5120 1.105 __ 
by Kong et al. S : )) 

Class of 6 SPS with 0.461 0.461 0.461 
Tetragonal Base : 

Class of 6 SPS with 0.534 0.534 0.534 
Triangular Base 

Novel 6 DOF 0.333 , 0.33^ 0.333 
(0j = 71 / 2) 
(— = "3) 

3 DOF with 0.333 0.333 0.333 
Symmetric Base = 

3 DOF with 0.380 : -
Non-Symmetric Base / 3) 

Table 4.4 Critical Value of Different Class of Platform-type Parallel Manipulators 

ri 



4.3 Summary 

In this chapter, we have illustrated and analyzed the effect of ratio R/q to the 

existence of the configuration singularity and the way to eliminate it. The ratio can be 

used as a useful guideline to avoid the configuration singularity in manipulator 

design. We also suggest a method to determine the critical value of the ratio for the 

platform-type parallel manipulator with symmetric base platform. 

ri 



Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

In this thesis, the Forward Rate Kinematics based method is applied to three 

cases : 3 DOF with Symmetric and Non-Symmetric Base, Novel 6 DOF and Class of 

6-SPS, to enumerate the configuration singularity of platform-type parallel 

manipulators. 

The basic architecture of the Forward Rate Kinematics Based method is a 

combination of the velocities of three non-collinear points on the moving platform 

(end-effector) and the principle of reciprocity of screws. Compared with the Force 

Decomposition method and the Grassmann Geometry method, this method was 

chosen for our work because it has the least computational complexity and is most 

general. The Force Decomposition method involves complicated computation and is 

only applicable to a simple structured manipulator with a fixed number of kinematic 

sub-chains. The Grassmann Geometry method is a rule-based method and is 

unsuitable for analyzing complex manipulators, whose geometry is often impossible 

to accurately describe by rules. On the other hand, the implementation of the Forward 

Rate Kinematics Based method is straightforward since it requires only a few passive 

joint variables. In addition, it can cater for a wide range of platform-type parallel 

manipulators. 

The Forward Rate Kinematics Based method can be used to identify the 

configuration singularity for both of the new model defined by Kong et al. and the 

Class of 6 SPS parallel manipulators with different geometric bases (i.e. hexagonal, 

pentagonal, tetragonal and triangular bases). The formulations of the coordinates and 

ri 



the velocities of the three non-collinear points are the same, independent of the shapes 

of the base platform. Moreover, it can be used to derive a simple general expression 

of configuration singularity for the Novel 6 DOF and 3 DOF platform-type parallel 

manipulators with a symmetric or non-symmetric base. The general expressions are 

very useful for further analysis of manipulator parameters (e.g. base radius R, length 

link q). The work reported in this thesis is, in fact, first of its kind. To our knowledge, 

no one has ever applied the Forward Rate Kinematics Based method to the above 

manipulators which involved both elbow joint and prismatic joint structures. 

Furthermore, based on the enumeration analysis an useful guideline for improving the 

design of platform-type parallel manipulator is proposed. It is much easier and 

advantageous for the design engineer to know the configuration singularity early in 

the design stage. The rule of this guideline is handy and simple. 

The result of the analysis revealed that a ratio R/q, of the base radius to the 

length link is a vital factor affecting the existence of the configuration singularity. For 

this reason, the relationship between the base radius R and the length link q was 

subjected to further investigation. It is found that theoretically, the configuration 

singularity can be eliminated when the ratio R/q is greater than a critical value. This 

value is different from case to case. We have suggested a simple method to evaluate 

the critical value for platform-type parallel manipulators with symmetric base by 

using one (out of three) unknown variable. The critical values for those types of 

manipulators are determined (see Table 4.4). These values can be used as an useful 

guideline for improving the design of platform-type parallel manipulators. 

ri 



5.2 Future Works 

Our work is by no means complete. To further improve the design of 

platform-type parallel manipulator, one could consider the following : 

• The method, suggested in Chapter 4 for determining the critical value of ratio R/q, 

cannot be applied to the platform-type parallel manipulators with non-symmetric 

base. Therefore, some effort can be put on the design of a generic method 

applicable to all platform-type parallel manipulators. 

• Another factor to avoid configuration singularity is the physical constraint which 

has not been studied in this thesis. Some future work can be done in the analysis 

of the relationship among the physical constraints, the workspace and the 

configuration singularity. This relationship will help us develop a simple way to 

avoid and to eliminate the configuration singularity without affecting the 

workspace of the manipulator. 

ri 
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r 
I ‘ 

‘”**** (1) This i s an Output Data and Equation File **** 
* I *•** for a General Form Equation of Novel 6 DOF **** 

I **** Para l le l Manipulator. **** 
f • 
f 
J { { ( l l * 1 2 * C o s [ o i l ] * S i n [ o l ] + 1 1 ^ 2 * C o s [ o i l ] * S i n [ o i l ] -

‘ l l * r * C o s [ r b l ] ^ 2 * S i n [ o i l ] - l l * l 2 * C o s [ o l ] * C o s [ r b l ] A 2 * S i n [ o i l ] -

: 1 1 ^ 2 * C o s [ o i l ] * C o s [ r b l ] ^ 2 * S i n [ o i l ] + 

‘ l l * r * C o s [ r b l ] * C o s [ r b 2 ] * S i n [ o i l ] + 

1 1 ^ 2 * C o s [ o l 2 ] * C o s [ r b l ] * C o s [ r b 2 ] * S i n [ o i l ] + 

l l * 1 2 * C o s [ o 2 ] * C o s [ r b l ] * C o s [ r b 2 ] * S i n [ o i l ] - 1 1 ^ 2 * C o s [ o i l ] * S i n [ o l 2 ] -

l l * 1 2 * C o s [ o i l ] * S i n [ o 2 ] - l l * r * S i n [ o i l ] * S i n [ r b l ] -

l l * 1 2 * C o s [ o l ] * S i n [ o i l ] * S i n [ r b l ] -

L l i ^ 2 * C o s [ o i l ] * S i n [ o i l ] * S i n [ r b l ] + 

J l l * r * S i n [ o i l ] * S i n [ r b l ] * S i n [ r b 2 ] + 

1 1 ^ 2 * C o s [ o l 2 ] * S i n [ o i l ] * S i n [ r b l ] * S i n [ r b 2 ] + 

l l * 1 2 * C o s [ o 2 ] * S i n [ o i l ] * S i n [ r b l ] * S i n [ r b 2 ] ) * 

( 1 1 ^ 2 * C o s [ o l 2 ] * S i n [ o l 2 ] - l l * r * C o s [ r b 2 ] ^ 2 * S i n [ o l 2 ] -

1 1 ^ 2 * C o s [ o l 2 ] * C o s [ r b 2 ] ^ 2 * S i n [ o l 2 ] -

l l * 1 2 * C o s [ o 2 ] * C o s [ r b 2 ] 2 * 3 11 [ o l 2 ] + 

l l * r * C o s [ r b 2 ] * C o s [ r b 3 ] * S i n [ o l 2 ] + 

1 2 * C o s [ o l 3 ] * C o s [ r b 2 ] * C o s [ r b 3 ] * S i n [ o l 2 ] + 

l l * 1 2 * C o s [ o 3 ] * C o s [ r b 2 ] * C o s [ r b 3 ] * S i n [ o l 2 ] - l l " 2 * C o s [ o l 2 ] * S i n [ o l 3 ] + 

l l * 1 2 * C o s [ o l 2 ] * S i n [ o 2 ] - l l * 1 2 * C o s [ o l 2 ] * S i n [ o 3 ] -

l l * r * S i n [ o l 2 ] * S i n [ r b 2 ] - 1 1 2 * ( 0 3 [ o l 2 ] * S i n [ o l 2 ] * S i n [ r b 2 ] 2 -

l l * 1 2 * C o s [ o 2 ] * S i n [ o l 2 ] * S i n [ r b 2 ] + 

l l * r * S i n [ o l 2 ] * S i n [ r b 2 ] * S i n [ r b 3 ] + 

1 i A 2 * C o s [ o l 3 ] * S : L n [ o l 2 ] * S i n [ r b 2 ] * S i n [ r b 3 ] + 

“ l l * 1 2 * C o s [ o 3 ] * S i n [ o l 2 ] * S i n [ r b 2 ] * S i n [ r b 3 ] ) * 

( - ( l l * 1 2 * C o s [ o l 3 ] * S i n [ o l ] ) - 1 1 ^ 2 * C o s [ o l 3 ] * S i n [ o l l ] + 

1 1 ^ 2 * C o s [ o l 3 ] * S i n [ o l 3 ] + l l * r * C o s [ r b l ] * C o s [ r b 3 ] * S i n [ o l 3 ] + 

I ’ l l * 1 2 * C o s [ o l ] * C o s [ r b l ] * C o s [ r b 3 ] * S i n [ o l 3 ] + 

l l " 2 * C o s [ o i l ] * C o s [ r b l ] * C o s [ r b 3 ] * S i n [ o l 3 ] - l l * r * C o s [ r b 3 ] " 2 * S i n [ o l 3 ] -

‘ 1 1 ^ 2 * C o s [ o l 3 ] * C o s [ r b 3 ] ^ 2 * S i n [ o l 3 ] -

l l * 1 2 * C o s [ o 3 ] * C o s [ r b 3 ] " 2 * S i n [ o l 3 ] + l l * 1 2 * C o s [ o l 3 ] * S i n [ o 3 ] + 

l l * r * S i n [ o l 3 ] * S i n [ r b l ] * S i n [ r b 3 ] + 
l l * 1 2 * C o s [ o l ] * S i n [ o l 3 ] * S i n [ r b l ] * S i n [ r b 3 ] + 

l l " 2 * C o s [ 6 l l ] * S i n [ o l 3 ] * S i n [ r b l ] * S i n [ r b 3 ] - l l * r * S i n [ o l 3 ] * S i n [ r b 3 ] -

l l " 2 * C o s [ o l 3 ] * S i n [ o l 3 ] * S i n [ r b 3 ] - l l * 1 2 * C o s [ o 3 ] * S i n [ o l 3 ] * S i n [ r b 3 ] \ 

J + { - ( l l * 1 2 * C o s [ o l 2 ] * S i n [ o l ] ) 1 1 " 2 * ( 0 3 [ o l 2 ] * S i n [ o i l ] + 

l l " 2 * C o s [ o l 2 ] * S i n [ o l 2 ] + l l * r * C o s [ r b l ] * C o s [ r b 2 ] * S i n [ o l 2 ] + 

l l * 1 2 * C o s [ o l ] * C o s [ r b l ] * C o s [ r b 2 ] * S i n [ o l 2 ] + 

’ l l " 2 * C o s [ o i l ] * C o s [ r b l ] * C o s [ r b 2 ] * S i n [ o l 2 ] - l l * r * C o s [ r b 2 ] " 2 * S i n [ o l 2 ] -
l l " 2 * C o s [ o l 2 ] * C o s [ r b 2 ] ^ 2 * S i n [ o l 2 ] -

ll*12*Cos[o2]*Cos[rb2 2*Sin[ol2] + ll*12*Cos[ol2]*Sin[o2] + 
l l * r * S i n [ o l 2 ] * S i n [ r b l ] * S i n [ r b 2 ] + 

l l * 1 2 * C o s [ o l ] * S i n [ o l 2 ] * S i n [ r b l ] * S i n [ r b 2 ] + ^ 

l l " 2 * C o s [ o i l ] * S i n [ o l 2 ] * S i n [ r b l ] * S i n [ r b 2 ] - l l * r * S i n [ o l 2 ] * S i n [ r b 2 ] 2 _ 

l l - 2 * C o s [ o l 2 ] * S i n [ o l 2 ] * S i n [ r b 2 ] - l l * 1 2 * C o s [ o 2 ] * S i n [ o l 2 ] * S i n [ r b 2 ] ^ 2 ) * 

( l l * 1 2 * C o s [ o l l ] * S i n [ o l ] + l l " 2 * C o s [ o l l ] * S i n [ o l l ] -

l l * r * C o s [ r b l ] " 2 * S i n [ o l l ] - l l * 1 2 * C o s [ o l ] * C o s [ r b l 2 * S i n [ o i l ] -

l l " 2 * C o s [ o i l ] * C o s [ r b l ] - 2 * S i n [ o i l ] + l l * r * C o s [ r b l ] * C o s [ r b 3 ] * S i n [ o i l ] + 
1 i A 2 * C o s [ o l 3 ] * C o s [ r b l ] * C o s [ r b 3 ] * S i n [ o l l ] + 

l l * 1 2 * C o s [ o 3 ] * C o s [ r b l ] * C o s [ r b 3 ] * S i n [ o i l ] - l l " 2 * C o s [ o i l ] * S i n [ o l 3 ] -

l l * 1 2 * C o s [ o l l ] * S i n [ o 3 ] - l l * r * S i n [ o i l ] * S i n [ r b l ] " 2 -

l l * 1 2 * C o s [ o l ] * S i n [ o i l ] * S i n [ r b l ] -

& l l " 2 * C o s [ o i l ] * S i n [ o i l ] * S i n [ r b l ] + l l * r * S i n [ o i l ] * S i n [ r b l ] * S i n [ r b 3 ] + 

U l i " 2 * C o s [ o l 3 ] * S i n [ o i l ] * S i n [ r b l ] * S i n [ r b 3 ] + 

« l l * 1 2 * C o s [ o 3 ] * S i n [ o i l ] * S i n [ r b l ] * S i n [ r b 3 ] ) * 

( - { l l " 2 * C o s [ o l 3 ] * S i n [ o l 2 ] ) + l l " 2 * C o s [ o l 3 ] * S i n [ o l 3 ] + 

) l l * r * C o s [ r b 2 ] * C o s [ r b 3 ] * S i n [ o l 3 ] + 

1 1 ^ 2 * C o s [ o l 2 ] * C o s [ r b 2 ] * C o s [ r b 3 ] * S i n [ o l 3 ] + 

_ l l * 1 2 * C o s [ o 2 ] * C o s [ r b 2 ] * C o s [ r b 3 ] * S i n [ o l 3 ] - l l * r * C o s [ r b 3 ] ^ 2 * S i n [ o l 3 ] -

f j 1 1 ^ 2 * C o s [ o l 3 ] * C o s [ r b 3 ] ^ 2 * S i n [ o l 3 ] -
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w 
t **** (2) This is an Input Data and Equation File **** 
**** for a Novel 6 DOF Parallel Manipulator. **** 

‘ o i l = ol2 = Pi / 2 
i 
F 
: o l = o2 = Pi / 2 
r 

rbl = 0 

I rb2 = 2 Pi / 3 
P 
i" rb3 = 4 Pi / 3 
I-
f 
I pi = {{r Cos[rbl] + 11 Cos [oil] Cos [rbl] + 12 Cos[ol] Cos[rbl]}, 
f {r Sin[rbl] + 11 Cos [oil] Sin[rbl] + 12 Cos [ol] Sin[rbl]}, 
I {11 Sin [oil] + 12 SinEol] }} 
f p2 = {{r Cos [rb2] + 11 Cos [ol2] Cos [rb2] + 12 Cos [o2] Cos [rb2] }, 
I {r Sin[rb2] + 11 Cos [ol2] Sin[rb2] + 12 Cos [o2] Sin[rb2]}, 

{11 Sin[ol2] + 12 Sin[o2] }} 
f 
c p3 = {{r Cos [rb3] + 11 Cos [ol3] Cos [rb3] + 12 Cos [o3] Cos [rb3] }, 
’ {r Sin[rb3] + 11 Cos [ol3] Sin[rb3] + 12 Cos [o3] Sin[rb3]}, 

{11 Sin[ol3] + 12 Sin[o3]}} 

vpl = {{- 11 d[ol l ] Sin [oil] Cos [rbl] - 12 d[ol] Sin[ol] Cos [rbl] }, 
{- 11 d[ol l ] Sin [oil] Sin [rbl] - 12 d[ol] Sin[ol] Sin [rbl]}, 

i , {11 d[ol l ] Cos [oil] + 12 d[ol] Cos [ol] }} 

I vp2 = {{- 11 d[ol2] Sin[ol2] Cos [rb2] - 12 d[o2] Sin[o2] Cos[rb2]}, 
f {-11 d[ol2] Sin[ol2] Sin[rb2] _ 12 d[o2] Sin[o2] Sin[rb2]}, 
: {11 d[ol2] Cos [ol2] + 12 d[o2] Cos [o2]}} 

vp3 = {{-11 d[ol3] Sin[ol3] Cos [rb3] - 12 d[o3] Sin[o3] Cos [rb3]}, 
{_ 11 d[ol3] Sin[ol3] Sin[rb3] - 12 d[o3] Sin[o3] Sin[rb3]}, 
{11 d[ol3] Cos [ol3] + 12 d[o3] Cos [o3]}} 

[ ml = (vpl - vp2) 

m2 = (pi -p2) 

e = (Transpose[m2]) . (ml) 

el = Expand[e] 

Factor[el] 

k l l = Coeff ic ien t [e l , d[ol l ] ] 

kl2 = Coeff ic ien t [e l , d[ol2]] 

m3 = (vp2 - vp3) 
If 

i m4 = (p2 -p3) 

I f = ( T r a n s p o s e [ m 4 ] ) . (m3) 

I fe e2 = Expand[f] 
i 
f Factor [e2] 
mi..... 
i k22 = Coefficient[e2, d[ol2]] 
E ^ 
P k23 = Coefficient[e2, d[ol3]] I 



r 
I 

1 m5 = ( v p 3 - v p l ) 

r m6 = ( p 3 - p i ) 

g = ( T r a n s p o s e [ m 6 ] ) . (m5) 

e 3 = E x p a n d [ g ] 

F a c t o r [ e 3 ] 

k 3 1 = C o e f f i c i e n t [ e 3 , d [ o l l ] ] 

k 3 3 = C o e f f i c i e n t [ e 3 , d [ o l 3 ] ] 

I 

gf = (( k l l k22 k33 ) + ( k31 kl2 k23)) 

E x p a n d [ g f ] 

F a c t o r [ g f ] 

y 

J 

1 

• 



F 
^ **** (3) This is an Output Data and Equation File **** 
f **** for a Novel 6 DOF Parallel Manipulator. **** 

l n [ 3 5 ] : = 

l n [ 3 5 ] : = 
2 

O u t [ 3 5 ] = { { ( 3 1 1 ( 1 1 + 1 2 ) r (3 r + 1 1 C o s [ o l 3 ] + 1 2 C o s [ o 3 ] ) 

> ( - 2 1 1 C o s [ o l 3 ] - 2 1 2 C o s [ o l 3 ] - 3 r S i n [ o l 3 ] -

> 2 1 2 C o s [ o 3 ] S i n [ o l 3 ] + 2 1 2 C o s [ o l 3 ] S i n [ o 3 ] ) ) / 2 } } 

> ( 3 r + 1 1 C o s [ o l 3 ] + 1 2 C o s [ o 3 ] ) = 0 

> 3 r + 1 1 C o s [ o l 3 ] - 1 2 C o s [ o l 3 ] = 0 

> w h e r e C o s [ o l 3 ] = - 1 

> r > = (11 - 12) / 3 

> 

> - 2 1 1 C o s [ o l 3 ] - 2 1 2 C o s [ o l 3 ] - 3 r S i n [ o l 3 ] - 2 1 2 C o s [ o 3 ] S i n [ o l 3 ] + 2 1 2 C o s [ o l 3 ] 

S i n [ o 3 ] = 0 

> (-2 11 - 2 12 - 2 12 S i n[ol3] ) Cos [ol3] = (3 r + 2 12 Cos [180+O13]) S in[ol3] 

> ( - 2 1 1 - 2 1 2 ) C o s [ o l 3 ] - ( 2 1 2 S i n [ o l 3 ] C o s [ o l 3 ] ) = (3 r S i n [ o l 3 ] ) - ( 2 1 2 C o s [ o l 3 ] 

S i n [ o l 3 ] ) 

> T a n [ o l 3 ] = ( 1 1 + 1 2 ) / 1 . 5 r 

> 



f 
I **** Input Programme of Right Angled Triangular Base **** 
I **** Platform in 3 DOF **** 

I r l = r 
i r 2 = r 

£ r 3 = S q r t [ 0 . 4 ] r 
> o l = 0 
, o 2 = 2 P i / 3 
, o 3 = 4 P i / 3 

a l = a 2 = P i / 2 

p i = { { r l C o s [ o l ] + q l C o s [ a l ] C o s [ o l ] } , 
{ r l S i n [ o l ] + q l C o s [ a l ] S i n [ o l ] } , 
{ q l S i n [ a l ] } } 

p 2 = { { r 2 C o s [ o 2 ] + q 2 C o s [ a 2 ] C o s [ o 2 ] } , 
{ r 2 S i n [ o 2 ] + q 2 C o s [ a 2 ] S i n [ o 2 ] } , 
{ q 2 S i n [ a 2 ] } } ; 

p 3 = { { r 3 C o s [ o 3 ] + q 3 C o s [ a 3 ] C o s [ o 3 ] } , 
{ r 3 S i n [ o 3 ] + q 3 C o s [ a 3 ] S i n [ o 3 ] } , 
{ q 3 S i n [ a 3 ] } } ; 

v p i = { { d q l C o s [ a l ] C o s [ o l ] - q l d [ a l ] S i n [ a l ] C o s [ o l ] } , 
{ d q l C o s [ a l ] S i n [ o l ] - q l d [ a l ] S i n [ a l ] S i n [ o l ] } , 

{ d q l S i n [ a l ] + q l d [ a l ] C o s [ a l ] } } ; 

v p 2 = { { d q 2 C o s [ a 2 ] C o s [ o 2 ] - q 2 d [ a 2 ] S i n [ a 2 ] C o s [ o 2 ] } , 
{ d q 2 C o s [ a 2 ] S i n [ o 2 ] - q 2 d [ a 2 ] S i n [ a 2 ] S i n [ o 2 ] } , 

{ d q 2 S i n [ a 2 ] + q 2 d [ a 2 ] C o s [ a 2 ] } } ; 

v p 3 = { { d q 3 C o s [ a 3 ] C o s [ o 3 ] - q 3 d [ a 3 ] S i n [ a 3 ] C o s [ o 3 ] } , 
{ d q 3 C o s [ a 3 3 S i n [ o 3 ] - q 3 d [ a 3 ] S i n [ a 3 ] S i n [ o 3 ] } , 

:: { d q 3 S i n [ a 3 ] + q 3 d [ a 3 ] C o s [ a 3 ] } } ; 

m l = ( v p i - v p 2 ) 
.. • 

• m2 = ( p i - p 2 ) 

e = ( T r a n s p o s e [ m 2 ] ) • ( m l ) ; 

e l = E x p a n d [ e ] ; 

F a c t o r [ e l ] 

I • ‘ 
kll = Coefficient[el, ql d [ a l ] ] 
k l 2 = C o e f f i c i e n t [ e l , q2 d [ a 2 ] ] 

I k l 3 = 0 

m3 = ( v p 2 - v p 3 ) 

m4 = ( p 2 - p 3 ) 
f = ( T r a n s p o s e [ m 4 ] ) • ( m 3 ) ; 

4 



f 
I e2 = E x p a n d [ f ] ; 

{ F a c t o r [ e 2 ] 

[ k 2 1 = 0 
k 2 2 = C o e f f i c i e n t [ e 2 , q 2 d [ a 2 ] ] 

k 2 3 = C o e f f i c i e n t [ e 2 , q 3 d [ a 3 ] ] 
m5 = ( v p 3 - v p l ) 

m6 = ( p 3 - p i ) 

g = ( T r a n s p o s e [ m 6 ] ) . (m5) 

e 3 = E x p a n d [ g ] 

F a c t o r [ e 3 ] 

k 3 1 = C o e f f i c i e n t [ e 3 , q l d [ a l ] ] 

k 3 2 = 0 
k 3 3 = C o e f f i c i e n t [ e 3 , q 3 d [ a 3 ] ] 

k = { { k l l , k l 2 , k l 3 } , 
{ k 2 1 , k 2 2 , k 2 3 } , 
{ k 3 1 , k 3 2 , k 3 3 } } 

: k k = F l a t t e n [ k ] 

k k l = P a r t i t i o n [ k k , 3 ] 

d k = D e t [ k k l ] y / N 

S i m p l i f y [ d k ] 

i 

ri 



r 
I**** (5) Output Results of Right Angled Triangular Base **** 
“*** Platform in 3 DOF **** 

l i t * * * r l = r 2 = r a n d r 3 = S q r t [ 0 . 4 ] r * * * * 

I 
i ̂  o u t [ 2 9 ] 
I { { - 1 . 9 7 4 3 4 1 6 4 9 0 2 5 2 5 7 * q l * r ^ 2 * C o s [ a 3 ] - 1 . 9 7 4 3 4 1 6 4 9 0 2 5 2 5 7 * q 2 * r 2 * C o s [ a 3 ] -

I ' ( 3 * q l * q 3 * r * C o s [ a 3 ] / 4 - ( 3 * q 2 * q 3 * r * C o s [ a 3 ] / 4 -
r 4 . 4 7 1 7 0 8 2 4 5 1 2 6 2 8 5 * r ^ 3 * S i n [ a 3 ] - 1 . 6 9 8 6 8 3 2 9 8 0 5 0 5 1 4 * q 3 * r ^ 2 * C o s [ a 3 ] * S i n [ a 3 ] } } 
i * 

. . o u t [ 3 0 ] 
i {{-4.471708245126285*(0.4415184401122528*ql*r 2 * C o s [ a 3 ] + 

0 . 4 4 1 5 1 8 4 4 0 1 1 2 2 5 2 8 * q 2 * r ^ 2 * C o s [ a 3 ] + 
0 . 1 6 7 7 2 1 1 3 8 9 6 6 8 4 2 3 * q l * q 3 * r * C o s [ a 3 ] + 
0 . 1 6 7 7 2 1 1 3 8 9 6 6 8 4 2 3 * q 2 * q 3 * r * C o s [ a 3 ] + 1 . * r ^ 3 * S i n [ a 3 ] + 
0 . 3 7 9 8 7 3 4 6 3 3 2 3 9 7 8 9 * q 3 * r ^ 2 * C o s [ a 3 ] * S i n [ a 3 ] ) } } 

( q l r " 2 C o s [ a 3 ] + q 2 C o s [ a 3 ] + 2 . 2 6 4 9 1 r " 3 S i n [ a ] ) 
+ ( 0 . 3 7 9 8 7 3 q l r C o s [ a 3 ] + 0 . 3 7 9 8 7 3 q 2 r C o s [ a 3 ] + 0 . 8 0 3 8 r " 2 S i n [ a 3 ] ) 

* q 3 C o s [ a 3 ] 

( q l r C o s [ a 3 ] + q 2 r C o s [ a 3 ] + 2 . 2 6 4 9 1 r " 2 S i n [ a 3 ] ) r 
+ ( q l r C o s [ a 3 ] + q 2 r C o s [ a 3 ] + 2 . 2 6 4 9 1 4 r " 2 S i n [ a 3 ] ) q 3 C o s [ a 3 ] 

( q l C o s [ a 3 ] + q 2 C o s [ a 3 ] + 2 . 2 6 4 9 1 r S i n [ a 3 ] ) { + r q 3 C o s [ a 3 ] ) = 0 

= r q 3 w h e r e c o s [ a 3 ] = - 1 

r >= q 3 

{ q l + q 2 ) C o s [ a 3 ] = - 2 . 2 6 4 9 1 r S i n [ a 3 ] 

T a n [ a 3 ] = - ( q l + q 2 ) / ( 2 . 2 6 4 9 1 r ) 

T a n [ a 3 ] = - ( ( q l + q 2 ) / 2 ) / ( 1 . 1 3 2 4 5 5 r ) 

\ 

i .: 

. 
i'' I --

a 

i.. 

I 
I “ 

I 



**** (6) Input Programme of Equilateral Triangular Base **** 
**** Platform in 3 DOF **** 

J r l = r2 = r3 =r 
/ ol = 0 

= 2 Pi / 3 
r o3 = 4 Pi / 3 
tial = a2 = Pi / 2 

r:pi = {{rl Cos [ol] + ql Cos [al] Cos [ol] }, 
{rl Sin[ol] + ql Cos [al] Sin[ol] }, 
{ql Sin[al] }} 

n p2 = {{r2 Cos [o2] + q2 Cos [a2] Cos [o2] }, 
{r2 Sin[o2] + q2 Cos [a2] Sin[o2] }, 
{q2 Sin[a2]}} 

p3 = {{r3 Cos [o3] + q3 Cos [a3] Cos [o3] }, 
{r3 Sin[o3] + q3 Cos [a3] Sin[o3]}, 
{q3 Sin[a3] }} 

vpi = {{dql Cos [al] Cos [ol] - ql d[al] Sin[al] Cos [ol]}, 
{dql Cos [al] Sin[ol] - ql d[al] Sin[al] Sin[ol] }, 
{dql Sin[al] + ql d[al] Cos [al] }} 

vp2 = {{dq2 Cos [a2] Cos [o2] - q2 d[a2] Sin[a2] Cos[o2]}, 
{dq2 Cos [a2] Sin[o2] - q2 d[a2] Sin[a2] Sin[o2]}, 
{dq2 Sin[a2] + q2 d[a2] Cos[a2] }} 

vp3 = {{dq3 Cos [a3] Cos [o3] - q3 d[a3] Sin[a3] Cos[o3]}, 
{dq3 Cos[a3] Sin[o3] - q3 d[a3] Sin[a3] Sin[o3]}, 
{dq3 Sin[a3] + q3 d[a3] Cos [a3]}} 

vO = ( vpi + vp2 + vp3 ) / 3 

z2 = vp2 [ [3]] 

x3 = vp3 [ [1]] 

i yl = vpi [[2]] 
i ( 

zO = vO [ [3]] 

- x O = vO[[l]] 
.... 
- y O = vO [ [2]] 

- ml = z2 - zO 
• el=Expand [ml] 
: k l l = Coefficient [el, ql d[al]] 

I k l 2 = Coeff ic ient [e l , q2 d[a2]] 
kl3 = Coeff ic ient [e l , q3 d[a3]] 

m2 = x3 - xO 



r 
I e 2 - E x p a n d [m2] 
I i c21 = C o e f f i c i e n t [ e 2 , q l d [ a l ] ] 
I }c22 = C o e f f i c i e n t [ e 2 , q 2 d [ a 2 ] ] 
f }c23 = C o e f f i c i e n t [ e 2 ' q 3 d [ a 3 ] ] 

i . 
im3 = y l - y o 

! e 3 - E x p a n d [ m 3 ] 

f ; k 3 1 = C o e f f i c i e n t [ e 3 , q l d [ a l ] ] 
k 3 2 = C o e f f i c i e n t [ e 3 , q 2 d [ a 2 ] ] 

| ! k 3 3 = C o e f f i c i e n t [ e 3 , q 3 d [ a 3 ] ] 

[ i k = { { k l l , k l 2 , k l 3 } , 
: { k 2 1 , k 2 2 , k 2 3 } , 

{ k 3 1 , k 3 2 , k 3 3 } } 

i\ 
k k = F l a t t e n [ k ] 

f' 

i k k l = P a r t i t i o n [ k k , 3 ] 

U d k = D e t [ k k l ] " N 

S i m p l i f y [ d k ] 
I 

.tK—S. 

M 

I 



r 
I f **** (7) Output Results of Equilateral Triangular Base **** 
: P l a t f o r m in 3 DOF **** 
i 
r i n [ 3 0 ] = 

P i 
q 2 d [ - - ] 

d q 3 C o s [ a 3 ] 2 q 3 d [ a 3 ] S i n [ a 3 ] 

- o u t [ 3 0 ] = { + } 
2 S q r t [ 3 ] 2 S q r t [ 3 ] 2 S q r t [ 3 ] 

“ l n [ 3 1 ] : = 
/ o u t [ 3 1 ] = { 0 } 

f : I n [ 3 2 ] = 
1 

I O u t [ 3 2 ] = { } 
2 S q r t [ 3 ] 

I n [ 3 3 ] = 
- S i n [ a 3 ] 

O u t [ 3 3 ] = { } 
2 S q r t [ 3 ] 

l n [ 3 4 ] : = 
I n [ 3 4 ] = 

- C o s [ a 3 ] 1 1 S i n [ a 3 ] 

O u t [ 3 4 ] = { { { 0 } , { 0 } , { } } ' { { - } , { - ( _ ) } ' { } } ' 
3 3 6 3 

1 - S i n [ a 3 ] 

> {{0}, { }, { }}} 
2 S q r t [ 3 ] 2 S q r t [ 3 ] 

I n [ 3 5 ] : = 
I n [ 3 5 ] : = 

- C o s [ a 3 ] 

O u t [ 3 5 ] = { } 
1 8 S q r t [ 3 ] 

I I n [ 3 6 ] : = 
I I n [ 3 7 ] : = 
\ I n [ 3 7 ] : = 
‘ - C o s [ a 3 ] 

O u t [ 3 7 ] = { } 
1 8 S q r t [ 3 ] 

I n [ 3 8 ] : = 
I n [ 3 8 ] : = 

- C o s [ a 3 ] 

O u t [ 3 8 ] = { } 
1 8 S q r t [ 3 ] 

I n [ 3 9 ] : = 

m 

m 



r 
f **** (8) Input Programme of Equilateral Triangular Base **** 

Platform with different parameters in 3 DOF **** 

f 
i r r l = r 2 = r 3 = r 

roi = 0 
l^ :o2 = 2 P i / 3 
“ 3 4 P i / 3 
l i a l = P i / 2 

a2 = a 3 
r q2 = q 3 

1 p i = { { r l C o s [ o l ] + q l C o s [ a l ] C o s [ o l ] } , 
{ r l S i n [ o l ] + q l C o s [ a l ] S i n [ o l ] } , 

{ q l S i n [ a l ] } } 

p2 = { { r 2 C o s [ o 2 ] + q 2 C o s [ a 2 ] C o s [ o 2 ] } , 
{ r 2 S i n [ o 2 ] + q 2 C o s [ a 2 ] S i n [ o 2 ] } , 

{ q 2 S i n [ a 2 ] } } 

p 3 = { { r 3 C o s [ o 3 ] + q 3 C o s [ a 3 ] C o s [ o 3 ] } , 
{ r 3 S i n [ o 3 ] + q 3 C o s [ a 3 ] S i n [ o 3 ] } , 

{ q 3 S i n [ a 3 ] } } 

v p l = { { d q l C o s [ a l ] C o s [ o l ] - q l d [ a l ] S i n [ a l ] C o s [ o l ] } , 
{ d q l C o s [ a l ] S i n [ o l ] - q l d [ a l ] S i n [ a l ] S i n [ o l ] } , 

{ d q l S i n [ a l ] + q l d [ a l ] C o s [ a l ] } } 

v p 2 = { { d q 2 C o s [ a 2 ] C o s [ o 2 ] - q 2 d [ a 2 ] S i n [ a 2 ] C o s [ o 2 ] } , 
{ d q 2 C o s [ a 2 ] S i n [ o 2 ] - q 2 d [ a 2 ] S i n [ a 2 ] S i n [ o 2 ] } , 

{ d q 2 S i n [ a 2 ] + q 2 d [ a 2 ] C o s [ a 2 ] } } 

I v p 3 = { { d q 3 C o s [ a 3 ] C o s [ o 3 ] - q 3 d [ a 3 ] S i n [ a 3 ] C o s [ o 3 ] } , 
{ d q 3 C o s [ a 3 ] S i r L [ o 3 ] - q 3 d [ a 3 ] S i n [ a 3 ] S i r L [ o 3 ] } , 

I { d q 3 S i n [ a 3 ] + q 3 d [ a 3 ] C o s [ a 3 ] } } 
I .... 

m l = ( v p l - v p 2 ) 

m2 = ( p i - p 2 ) 

e = ( T r a n s p o s e [ m 2 ] ) • ( m l ) ; 

e l = E x p a n d [ e ] ; 

F a c t o r [ e l ] ; 

‘ k l l = Coefficient[el, ql d[al]] 
‘ k l 2 = C o e f f i c i e n t [ e l , q 2 d [ a 2 ] ] 

k l 3 = 0 

m3 = ( v p 2 - v p 3 ) 

m4 = ( p 2 - p 3 ) 

” f = ( T r a n s p o s e [ m 4 ] ) • ( m 3 ) ; 

i 



r 
V e2 = E x p a n d [ f 3 ; 

a F a c t o r [ e 2 ] 

i k21 = 0 
k 2 2 = C o e f f i c i e n t [ e 2 , q 2 d [ a 2 ] ] 

I ]c23 = C o e f f i c i e n t [ e 2 , q 3 d [ a 3 ] ] 

m5 = ( v p 3 - v p i ) 

I m6 = ( p 3 - p i ) 

I g = ( T r a n s p o s e [ m 6 ] ) • ( m 5 ) ; 

e3 = E x p a n d [ g ] ; 

F a c t o r [ e 3 ] 

k 3 1 = C o e f f i c i e n t [ e 3 , q l d [ a l ] ] 

k 3 2 = 0 
k 3 3 = C o e f f i c i e n t [ e 3 , q 3 d [ a 3 ] ] 

k = { { k l l , k l 2 , k l 3 } , 
{ k 2 1 , k 2 2 , k 2 3 } , 
{ k 3 1 , k 3 2 , k 3 3 } } 

k k = F l a t t e n [ k ] 

k k l = P a r t i t i o n [ k k , 3 ] 

d k = D e t [ k k l ] / / N 

S i m p l i f y [ d k ] 

I - _ 



i 
**** (9) Output Results of Equilateral Triangular Base **** 
-**** Platform with different parameters in 3 DOF **** 

k * * * * R e s u l t o f 3 DOF a l = P i , r l = r 2 = r 3 = r & a 2 = a 3 & q 2 = q 3 * * * * 

2 3 2 

« o u t [ 4 2 ] = - 3 . q l q 3 r C o s [ a 3 ] S i n [ a 3 ] - 1 3 . 5 r S i n [ a 3 ] -

2 2 2 
, > 4 . 5 q 3 r C o s [ a 3 ] S i n [ a 3 ] - 4 . 5 q l r S i n [ 2 a 3 ] 

g i n [ 4 3 ] = 

[ 

L 

r 

J .. 
[ • 

I 

•f-

t r 

i — 
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**** (10) This is an Input Data and Equation File for **** 
**** Formulate the General Form Equation of 3 DOF **** 

o u t [ 1 ] > > 3 d o f o 

: p l = { { r l C o s [ o l ] + q l C o s [ a l ] C o s [ o l ] } , 
{ r l S i n L o l ] + q l C o s [ a l ] S i n [ o l ] } , 
{ q l S i n [ a l ] } } > > > 3 d o f o 

‘ O u t [ 2 ] > > > 3 d o f o 

p2 = { { r 2 C o s [ o 2 ] + q 2 C o s [ a 2 ] C o s [ o 2 ] } , 
{ r 2 S i n [ o 2 ] + q 2 C o s [ a 2 ] S i n [ o 2 ] } , 
{ q 2 S i n [ a 2 ] } } > > > 3 d o f o 

j O u t [ 3 ] > > > 3 d o f o 

p3 = { { r 3 C o s [ o 3 ] + q 3 C o s [ a 3 ] C o s [ o 3 ] } , 
{ r 3 S i n [ o 3 ] + q 3 C o s [ a 3 ] S i n [ o 3 ] } , 

{ q 3 S i n [ a 3 ] } } > > > 3 d o f o 

O u t [ 4 ] > > > 3 d o f o 

v p l = { { d q l C o s [ a l ] C o s [ o l ] - q l d [ a l ] S i n [ a l ] C o s [ o l ] } , 

( d q l C o s [ a l ] S i n [ o l ] - q l d [ a l ] S i n [ a l ] S i n [ o l ] } , 

I' { d q l S i n [ a l ] + q l d [ a l ] C o s [ a l ] } } > > > 3 d o f o 
I 

O u t [ 5 ] > > > 3 d o f o 

v p 2 = { { d q 2 C o s [ a 2 ] C o s [ o 2 ] - q 2 d [ a 2 ] S i n [ a 2 ] C o s [ o 2 ] } , 
{ d q 2 C o s [ a 2 ] S i n [ o 2 ] - q 2 d [ a 2 ] S i n [ a 2 ] S i n [ o 2 ] } , 

• { d q 2 S i n [ a 2 ] + q 2 d [ a 2 ] C o s [ a 2 ] } } > > > 3 d o f o 

O u t [ 6 ] > > > 3 d o f o 

v p 3 = { { d q 3 C o s [ a 3 ] C o s [ o 3 ] - q 3 d [ a 3 ] S i n [ a 3 ] C o s [ o 3 ] } , 
{ d q 3 C o s [ a 3 ] S i n [ o 3 ] - q 3 d [ a 3 ] S i n [ a 3 ] S i n [ o 3 ] } , 

{ d q 3 S i n [ a 3 ] + q 3 d [ a 3 ] C o s [ a 3 ] } } > > > 3 d o f o 

: O u t [ 7 ] > > > 3 d o f o 

m l = ( v p l - v p 2 ) > > > 3 d o f o 

O u t [ 8 ] > > > 3 d o f o 

Tn2 = ( p i - p 2 ) > > > 3 d o f o 

O u t [ 9 ] > > > 3 d o f o 

e = ( T r a n s p o s e [ m 2 ] ) • ( m l ) > > > 3 d o f o 

O u t [ 1 0 ] > > > 3 d o f o 

e l = E x p a n d [ e ] > > > 3 d o f o 

O u t [ 1 1 ] > > > 3 d o f o 

F a c t o r [ e l ] > > > 3 d o f o 

O u t [ 1 2 ] > > > 3 d o f o 

k l l = C o e f f i c i e n t [ e l , q l d [ a l ] ] > > > 3 d o f o 



w 

I o u t [ 1 3 ] > > > 3 d o f o 

’ k l 2 = C o e f f i c i e n t [ e l , q 2 d [ a 2 ] ] > > > 3 d o f o 

I o u t [ 1 4 ] > > > 3 d o f o 

:im3 = ( v p 2 - v p 3 ) > > > 3 d o f o 

' O u t [ 1 5 ] > > > 3 d o f o 

m4 = ( p 2 - p 3 ) > > > 3 d o f o 

O u t [ 1 6 ] > > > 3 d o f o 

I f = ( T r a n s p o s e [ m 4 ] ) • ( m 3 ) > > > 3 d o f o 

d O u t [ 1 7 ] > > > 3 d o f o 

, e 2 = E x p a n d [ f ] > > > 3 d o f o 

O u t [ 1 8 ] > > > 3 d o f o 

F a c t o r [ e 2 ] > > > 3 d o f o 

O u t [ 1 9 ] > > > 3 d o f o 

k 2 2 = C o e f f i c i e n t [ e 2 , q 2 d [ a 2 ] ] > > > 3 d o f o 

i O u t [ 2 0 ] > > > 3 d o f o 
I 
I 

I k 2 3 = C o e f f i c i e n t [ e 2 , q 3 d [ a 3 ] ] > > > 3 d o f o 

O u t [ 2 1 ] > > > 3 d o f o 

}, m5 = ( v p 3 - v p i ) > > > 3 d o f o 

O u t [ 2 2 ] > > > 3 d o f o 
\ 
I 

m6 = ( p 3 - p i ) > > > 3 d o f o 

O u t [ 2 3 ] > > > 3 d o f o 
g = ( T r a n s p o s e [ m 6 ] ) • ( m 5 ) > > > 3 d o f o 

O u t [ 2 4 ] > > > 3 d o f o 

e3 = E x p a n d [ g ] > > > 3 d o f o 

O u t [ 2 5 ] > > > 3 d o f o 

F a c t o r [ e 3 ] > > > 3 d o f o 

O u t [ 2 6 ] > > > 3 d o f o 

k 3 1 = C o e f f i c i e n t [ e 3 , q l d [ a l ] ] > > > 3 d o f o 

O u t [ 2 7 ] > > > 3 d o f o 
. 

k 3 3 = C o e f f i c i e n t [ e 3 , q 3 d [ a 3 ] ] > > > 3 d o f o 

t O u t [ 2 8 ] > > > 3 d o f o \ 

f g f = ( ( k l l k 2 2 k 3 3 ) + { k 3 1 k l 2 k 2 3 ) ) > > > 3 d o f o 

•4.. 

1 





p 

Ilk** (11) This is an Output Data and Equation File for **** 
” it*** Formulate the General Form Equation of 3 DOF **** 

- { { ( - ( r l * C o s [ o l ] ^ 2 * S i n [ a l ] ) + r 2 * C o s [ o l ] * C o s [ o 2 ] * S i n [ a l ] + 
q 2 * C o s [ a 2 ] * C o s [ o l ] * C o s [ o 2 ] * S i n [ a l ] - q 2 * C o s [ a l ] * S i n [ a 2 ] -
r l * S i n [ a l ] * S i n [ o l ] + r 2 * S i n [ a l ] * S i n [ o l ] * S i n [ o 2 ] + 
q 2 * C o s [ a 2 ] * S i n [ a l ] * S i n [ o l ] * S i n [ o 2 ] ) * 

( - ( r 2 * C o s [ o 2 2 * S i n [ a 2 ] ) + r 3 * C o s [ o 2 ] * C o s [ o 3 ] * S i n [ a 2 ] + 
q 3 * C o s [ a 3 ] * C o s [ o 2 ] * C o s [ o 3 ] * S i n [ a 2 ] - q 3 * C o s [ a 2 ] * S i n [ a 3 ] -
r 2 * S i n [ a 2 ] * S i n [ o 2 ] + r 3 * S i n [ a 2 ] * S i n [ o 2 ] * S i n [ o 3 ] + 
q 3 * C o s [ a 3 ] * S i n [ a 2 ] * S i n [ o 2 ] * S i n [ o 3 ] ) * 

( - ( q l * C o s [ a 3 ] * S i n [ a l ] ) + r l * C o s [ o l ] * C o s [ o 3 ] * S i n [ a 3 ] + 

q l * C o s [ a l ] * C o s [ o l ] * C o s [ o 3 ] * S i n [ a 3 ] - r 3 * C o s [ o 3 2 * S i n [ a 3 ] + 
r l * S i n [ a 3 ] * S i n [ o l ] * S i n [ o 3 ] + q l * C o s [ a l ] * S i n [ a 3 ] * S i n [ o l ] * S i n [ o 3 ] -
r 3 * S i n [ a 3 ] * S i n [ o 3 ] ^ 2 ) + ( - ( q l * C o s [ a 2 ] * S i n [ a l ] ) + 

r l * C o s [ o l ] * C o s [ o 2 ] * S i n [ a 2 ] + q l * C o s [ a l ] * C o s [ o l ] * C o s [ o 2 ] * S i n [ a 2 ] -
r 2 * C o s [ o 2 ] ^ 2 * S i n [ a 2 ] + r l * S i n [ a 2 ] * S i n [ o l ] * S i n [ o 2 ] + 
q l * C o s [ a l ] * S i n [ a 2 ] * S i n [ o l ] * S i n [ o 2 ] - r 2 * S i n [ a 2 ] * S i n [ o 2 ] ^ 2 ) * 

( - ( r l * C o s [ o l 2 * S i n [ a l ] ) + r 3 * C o s [ o l ] * C o s [ o 3 ] * S i n [ a l ] + 
q 3 * C o s [ a 3 ] * C o s [ o l ] * C o s [ o 3 ] * S i n [ a l ] - q 3 * C o s [ a l ] * S i n [ a 3 ] -
r l * S i n [ a l ] * S i n [ o l ] + r 3 * S i n [ a l ] * S i n [ o l ] * S i n [ o 3 ] + 
q 3 * C o s [ a 3 ] * S i n [ a l ] * S i n [ o l ] * S i n [ o 3 ] ) * 

( - ( q 2 * C o s [ a 3 ] * S i n [ a 2 ] ) + r 2 * C o s [ o 2 ] * C o s [ o 3 ] * S i n [ a 3 ] + 

q 2 * C o s [ a 2 ] * C o s [ o 2 ] * C o s [ o 3 ] * S i n [ a 3 ] - r 3 * C o s [ o 3 ] ^ 2 * S i n [ a 3 ] + 

r 2 * S i n [ a 3 ] * S i n [ o 2 ] * S i n [ o 3 ] + q 2 * C o s [ a 2 ] * S i n [ a 3 ] * S i n [ o 2 ] * S i n [ o 3 ] -

r 3 * S i n [ a 3 ] * S i n [ o 3 ] " 2 ) } } 

I 

j • 



r 
**•* (12) Input Programme of a New Model of 6-SPS **** 

r **** which is defined by Kong et. a l . **** 

rl = 8 Pi / 9; 
t rrl = 25 Pi / 18 

= Pi / 2; 
;r3 = Pi / 2 
:ol = 5 Pi / 18 

C;o2 = 7 Pi / 6 
r o3 = 65 Pi / 36; 

:bl = 0.68405s 
ii b2 = b3 = 0.74 s 
:qql = ql 
:qq2 = q2; 
I qq3 = q3 ; 

:xql = dql; 
xq2 = dq2; 
xq3 = dq3; 

t3 = t2 = Pi / 2 ; 

f l l = ( ql"2 + bl"2 - qql"2 ) / (2 bl ql); 

i f21 = Sqrt[1 - (( ql"2 + bl^2 - qql"2 ) / (2 bl ql) 2]; f 
f pi = {{s Cos[ol] - ql f l l Cos [rl] - ql f21 Sin[rl] Cos [ t l ]} , 

{s Sin[ol] - ql f l l Sin[rl] + ql f21 Cos [rl] Cos [tl]}, 
{ql f21 Sin[tl] }}; 

I fl2 = ( q2"2 + b2"2 - qq2'2 ) / (2 b2 q2); 

I f22 = Sqrt[1 - (( q2^2 + b2^2 - qq2"2 ) / (2 b2 q2) 2]; 

p2 = {{2.07 s Cos[o2] + q2 fl2 Cos[r2] + q2 f22 Sin[r2] Cos[t2] }, 
{2.07 s Sin[o2] + q2 fl2 Sin[r2] - q2 f22 Cos [r2] Cos[t2]}, 
{q2 f22 Sin[t2]}}; 

fl3 = ( q3"2 + b3"2 - qq3"2 ) / (2 b3 q3); 

‘ f23 = Sqrt[1 - (( q3"2 + b3"2 - qq3"2 ) / (2 b3 q3) )"2]; 

.p3 = {{2.07 s Cos[o3] - q3 fl3 Sin[r3] + q3 f23 Cos[r3] Cos[t3]}, 
{2.07 s Sin[o3] + q3 fl3 Cos [r3] + q3 f23 Sin[r3] Cos[t3]}, 
{q3 f23 Sin[t3]}}; 

- wll = (2 ql (ql dql - qql xql) - dql (ql"2 + bl"2 - qql"2)) / (2 bl ; 

-w21 = ((dql (ql"2 + bl"2 - qql"2) - (2 ql (ql dql - qql xql))) (ql"2 + 
‘bl"2 - qql"2)) / (2 bl ql"2 Sqrt[4 bl"2 ql"2 - (ql"2 + bl"2 -
^ qql'2 2]); 
i vpl = {{-CosLrl] (dql f l l + ql wll) - Sin[rl] (dql f21 Cos [tl] + ql w21 Cos [tl] - ql f2 
, 1 d[tl] Sin[tl] ) }, r —11 
I {-sin[rl] (dql f l l + ql wll) + Cos[rl] (dql f21 Cos[tl] + ql w21 Cos[tl]-
—;ql f21 d[tl] Sin[tl] ) }, 

{dql f21 Sin[tl] + ql w21 Sin[tl] + ql f21 d[tl] Cos [tl] }}; 

: w l 2 = (2 q2 (q2 dq2 - qq2 xq2) - dq2 {q2̂ 2 + b2"2 -qq2"2)) / (2 b2 q2"2) 
' 
‘w22 = ((dq2 (q2̂ 2 + b2̂ 2 - qq2"2) - (2 q2 (q2 dq2 - qq2 xq2))) (q2"2 + 

b2̂ 2 - qq2^2)) / (2 b2 q2̂ 2 Sqrt[4 b2"2 q2"2 - (q2"2 + b2"2 -
I k 



i 
tvp2 = {{Cos [r2] (dq2 f l2 + q2 wl2) + Sin[r2] (dq2 f22 Cos [t2] + q2 w22 Cos [t2] - q2 f22 
I d[t2] Sin[t2] ) }, 
^ {Sin[r2] (dq2 f l2 + q2 wl2) - Cos [r2] (dq2 f22 Cos [t2] + q2 w22 Cos [ t 2 ] -
I q2 f22 d[t2] Sin[t2] ) }, 
f {dq2 f22 Sin[t2] + q2 w22 Sin[t2] + q2 f22 d[t2] Cos [t2]}} 

13 = (2 q3 (q3 dq3 - qq3 xq3) - dq3 (q3"2 + b3"2 -qq3"2)) / (2 b3 q3"2) 

I ̂ 23 = ((dq3 (q3"2 + b3^2 - qq3"2) - (2 q3 (q3 dq3 - qq3 xq3))) (q3"2 + 
I b3^2 - qq3^2)) / (2 b3 q3"2 Sqrt[4 b3"2 q3"2 - (q3"2 + b3"2 -

qq3^2)"2]); 

vp3 = {{- (Sin[r3] ) (dq3 f l3 + q3 wl3) + Cos [r3] (dq3 f23 Cos [t3] + q3 w23 Cos [t3] - q3 
£23 d[t3] Sin[t3] ) }, 

{Cos [r3] (dq3 f l3 + q3 wl3) + Sin[r3] (dq3 f23 Cos [t3] + q3 w23 Cos[t3]-
I q3 f23 d[t3] Sin[t3] ) }, 

{dq3 f23 Sin[t3] + q3 w2 3 Sin[t3] + q3 f23 d[t3] Cos [t3]}}; 

ml = (vpl - vp2); 
Simplify [%] " N 

m2 = (pi -p2); 
Simplify[%]//N 

: e = (Transpose[m2]) . (ml); 

( e l = Expand[e] 

Factor[el]; 

kl l = Coeff ic ient[e l , ql d [ t l ] ] ; 
i: Simplify [%]//N 

—kl2 = Coeff ic ient[e l , q2 d[ t2] ] ; 
Simplify[%]//N 

m3 = (vp2 - vp3) 
:S impl i fy [%] " N 

^ m4 = (p2 -p3); 
-S impl i fy [%] " N 

_ f = (Transpose [m4]) . (m3); 

^ e2 = Expand[f]; 

i Factor[e2] 
w . 

• k22 = Coefficient[e2, q2 d[t2]] 
1 Simplify [%] " N 

f k23 = Coefficient[e2, q3 d[ t3]] ; 
=Simplify[%]//N 

1 m5 = (vp3 - vpl); 

1 1 Simplify [%] " N 
m6 = (p3 -pi) 

_ — 



r 
S g - (Transpose[m6]) . (m5) 

e3 = Expand [g]; 

Factor [e3]; 

:k31 = Coefficient [e3, ql d[tl]]; 
[Simplify [%]//N 

f;k33 = Coefficient [e3, q3 d[t3]] 
I Simplify[%]//N 

|;gf = ( ( k l l k22 k33 ) + ( k31 kl2 k23))//N 

I Simplify[%]//N 

i 

m 

4 

I j 

f 
— 

i 
-
_ 

m 
m i 

I 

M 

1 



I 
I * * * * ( 1 3 ) O u t p u t R e s u l t s o f a N e w M o d e l o f 6 SPS * * * * 

t * * * * w h i c h i s d e f i n e d b y K o n g e t . a l . * * * * 

- i n [ 6 9 ] = 

: i n [ 6 9 ] = 

J 2 
0 . 1 3 6 9 s 

L o u t [ 6 9 ] = { { 0 . 5 2 2 3 0 3 s S q r t [ 1 . ] 
2 

q3 
t 
r 

2 
0 . 1 3 6 9 s • 

r, > ( 2 . 7 5 6 8 6 s S q r t [ 1 . ] -
2 

q 2 

2 2 

0 . 1 1 6 9 8 1 s 0 . 1 3 6 9 s 

. > 0 . 3 4 2 0 2 q l S q r t [ 1 . - ] S q r t [ 1 . - ] C o s [ t l ] ) 
2 2 

q l q 2 

2 2 

0 . 1 1 6 9 8 1 s 0 . 1 3 6 9 s 

> ( - 1 . q 3 S q r t [ l . ] S q r t [ l . ] C o s [ t l ] + 
2 2 

q l q 3 

2 
0 . 1 1 6 9 8 1 s 

> 1 . 6 0 2 s S q r t [ 1 . - 1 S i n [ t l ] ) + 
2 

q l 

2 
0 . 1 3 6 9 s 

> 3 . 1 1 8 3 2 s S q r t [ 1 . ] 
i 2 
1 

2 
0 . 1 3 6 9 s 

> ( 1 . 8 3 6 3 7 s S q r t [ 1 . - ] _ 
2 

q3 

2 2 
0 . 1 1 6 9 8 1 s 0 . 1 3 6 9 s 

> 0 . 9 3 9 6 9 3 q l S q r t [ 1 . - ] S q r t [ 1 . - ] C o s [ t l ] ) 
2 2 

q l q 3 

2 2 
0 . 1 1 6 9 8 1 s 0 . 1 3 6 9 s 

: > ( - 1 . q 2 S q r t [ 1 . - ] S q r t [ 1 . - ] C o s [ t l ] + 
2 2 

q l q 2 

i 2 
J 0 . 1 1 6 9 8 1 s 
I > 2 . 1 7 7 7 2 s S q r t [ 1 . - ] S i n [ t l ] ) } } 
I 2 
4 ql 



i 
1̂ **** (14) Input Programme of a New Class of 6-SPS Platform **** 
|f **-k* Type Parallel Manipulator with a Hexagonal Base **** 

Irl = Pi / 2; 
I ' r 2 = P i / 6 ; i r 3 = P i / 3 
:ol = Pi / 4 
o2 = 11 Pi / 12 

I o3 = 1 9 P i / 1 2 ; 

I bl = b2 = b3 = 70.71 
f. • 

:qql = ql 
I qq2 = q2 
” q q 3 = q 3 

x q l = d q l ; 
; x q 2 = d q 2 ; 

x q 3 = d q 3 
s. 

t l = t 2 = P i / 2 ; 

f 1 1 = ( q l " 2 + b l " 2 - q q l " 2 ) / ( 2 b l q l ) ; 

f 2 1 = S q r t [ 1 - ( ( q l " 2 + b l ^ 2 - q q l " 2 ) / ( 2 b l q l ) 2 ] ; 

p i = { { s C o s [ o l ] - q l f l l C o s [ r l ] - q l f 2 1 S i n [ r l ] C o s [ t l ] } , 

{ s S i n [ o l ] - q l f l l S i n [ r l ] + q l f 2 1 C o s [ r l ] C o s [ t l ] } , 

{ q l f 2 1 S i n [ t l ] } } ; 

‘ f l 2 = ( q 2 " 2 + b 2 " 2 - q q 2 " 2 ) / ( 2 b 2 q 2 ) ; 

f 2 2 = S q r t [ 1 - { ( q 2 " 2 + b 2 " 2 - q q 2 ^ 2 ) / ( 2 b 2 q 2 ) 2 ] ; 

p 2 = { { 2 . 0 7 s C o s [ o 2 ] + q 2 f l 2 C o s [ r 2 ] + q 2 f 2 2 S i n [ r 2 ] C o s [ t 2 ] } , 

{ 2 . 0 7 s S i n [ o 2 ] + q 2 f l 2 S i n [ r 2 ] - q 2 f 2 2 C o s [ r 2 ] C o s [ t 2 ] } , 

1 { q 2 f 2 2 S i n [ t 2 ] } } ; 

" f l 3 = ( q 3 " 2 + b 3 " 2 - q q 3 " 2 ) / ( 2 b 3 q 3 ) ; 

^ f 2 3 = S q r t [ 1 - { ( q 3 " 2 + b 3 " 2 - q q 3 ^ 2 ) / ( 2 b 3 q 3 ) 2 ] ; 

p 3 = { { 2 . 0 7 s C o s [ o 3 ] - q 3 f l 3 S i n [ r 3 ] + q 3 f 2 3 C o s [ r 3 ] C o s [ t 3 ] } , 
m { 2 . 0 7 s S i n [ o 3 ] + q 3 f l 3 C o s [ r 3 ] + q 3 f 2 3 S i n [ r 3 ] C o s [ t 3 ] } , 

i q 3 f 2 3 S i n [ t 3 ] } } ; 
I A 

- w l l = (2 q l ( q l d q l - q q l x q l ) - d q l ( q l " 2 + b l " 2 - q q l " 2 ) ) / ( 2 b l ; 

i w21 = {(dql (ql"2 + bl"2 - qql"2) - (2 ql (ql dql - qql xql))) (ql"2 + 
b l ^ 2 - q q l ^ 2 ) ) / ( 2 b l q l " 2 S q r t [ 4 b l " 2 q l " 2 - ( q l " 2 + b l " 2 -

Z qq l"2)"2]) 
m 
I v p i = { { - C o s [ r l ] ( d q l f l l + q l w l l ) _ S i n [ r l ] ( d q l f 2 1 C o s [ t l ] + q l w 2 1 C o s [ t l ] - q l f 2 

i 1 d [ t l ] S i n [ t l ] ) } , 1 ^ r — 
I { - s i n [ r l ] ( d q l f l l + q l w l l ) + C o s [ r l ] ( d q l f 2 1 C o s [ t l ] + q l w 2 1 C o s [ t l ] -

i q l f 2 1 d [ t l ] S i n [ t l ] ) } , 

I { d q l f 2 1 S i n [ t l ] + q l w 2 1 S i n [ t l ] + q l f 2 1 d [ t l ] C o s [ t l ] } } ; 

I w l 2 = (2 q2 (q2 dq2 - qq2 xq2 ) - dq2 ( q 2 " 2 + h2^2 -qq2^2)) / (2 b2 ; 
; w 2 2 = ( ( d q 2 ( q 2 " 2 + b 2 " 2 - q q 2 " 2 ) - ( 2 q 2 ( q 2 d q 2 - q q 2 x q 2 ) ) ) ( q 2 " 2 + 

b 2 ^ 2 - q q 2 " 2 ) ) / ( 2 b 2 q 2 " 2 S q r t [ 4 b 2 " 2 q 2 ^ 2 - ( q 2 " 2 + h 2 ^ 2 -

: q q 2 ^ 2 ) ^ 2 ] ) 



{ 
f Vp2 = { { C o s [ r 2 ] ( d q 2 f l 2 + q 2 w l 2 ) + S i n [ r 2 ] ( d q 2 f 2 2 C o s [ t 2 ] + q 2 w 2 2 C o s [ t 2 ] - q 2 f 2 2 
t d [ t 2 ] S i n [ t 2 ] ) } , 
, { S i n [ r 2 ] ( d q 2 f l 2 + q 2 w l 2 ) - C o s [ r 2 ] ( d q 2 f 2 2 C o s [ t 2 ] + q 2 w 2 2 C o s [ t 2 ] -
I | q 2 f 2 2 d [ t 2 ] S i n [ t 2 ] ) } , 
I { d q 2 f 2 2 S i n [ t 2 ] + q 2 w 2 2 S i n [ t 2 ] + q 2 f 2 2 d [ t 2 ] C o s [ t 2 ] } } 

= ( 2 q 3 ( q 3 d q 3 - q q 3 x q 3 ) - d q 3 ( q 3 " 2 + b 3 " 2 - q q 3 " 2 ) ) / ( 2 b 3 q 3 " 2 ) 

I , v 2 3 ( ( d q 3 ( q 3 ^ 2 + b 3 ^ 2 - q q 3 ^ 2 ) - ( 2 q 3 ( q 3 d q 3 - q q 3 x q 3 ) ) ) ( q 3 ^ 2 + 
- q q 3 " 2 ) ) / ( 2 b 3 q 3 " 2 S q r t [ 4 b 3 " 2 q 3 " 2 - ( q 3 " 2 + b 3 " 2 -

r 
h v p 3 = { { - ( S i n [ r 3 ] ) ( d q 3 f l 3 + q 3 w l 3 ) + C o s [ r 3 ] ( d q 3 f 2 3 C o s [ t 3 ] + q 3 w 2 3 C o s [ t 3 ] - q3 

f 2 3 d [ t 3 ] S i n [ t 3 ] ) } , 
{ C o s [ r 3 ] ( d q 3 f l 3 + q 3 w l 3 ) + S i n [ r 3 ] ( d q 3 f 2 3 C o s [ t 3 ] + q 3 w 2 3 C o s [ t 3 ] -

V q3 f 2 3 d [ t 3 ] S i n [ t 3 ] ) } , 
‘ { d q 3 f 2 3 S i n [ t 3 ] + q 3 w 2 3 S i n [ t 3 ] + q 3 f 2 3 d [ t 3 ] C o s [ t 3 ] } } ; 

m l = ( v p l - v p 2 ) ; 

S i m p l i f y [ % ] / / N 

m2 = ( p i - p 2 ) ; 
S i m p l i f y [ % ] / / N 

e = ( T r a n s p o s e [ m 2 ] ) . ( m l ) 

e l = E x p a n d [ e ] 

I F a c t o r [ e l ] ; 

k l l = C o e f f i c i e n t [ e l , q l d [ t l ] ] 

S i m p l i f y [%] " N 

I k l 2 = C o e f f i c i e n t [ e l , q 2 d [ t 2 ] ] ; 

j S i m p l i f y [ % ] / / N 
I 
j • 

[ m 3 = ( v p 2 - v p 3 ) ; 

‘ S i m p l i f y [ % ] / / N 

‘_ m4 = ( p 2 - p 3 ) ; 
S i m p l i f y [%] " N 

f = ( T r a n s p o s e [ m 4 ] ) . (m3) 

e 2 = E x p a n d [ f ] ; 

5 F a c t o r [ e 2 ] ; 
m-

k 2 2 = C o e f f i c i e n t [e2, q 2 d [ t 2 ] ] 

—* S i m p l i f y [ % ] / / N 

k 2 3 = C o e f f i c i e n t [e2, q 3 d [ t 3 ] ] ; 
i S i m p l i f y [ % ] / / N 
i 
* m5 = ( v p 3 - v p l ) ; 

I S i m p l i f y [ % ] / / N 

1 m6 = ( p 3 - p i ) ; 

S i m p l i f y [ % ] / / N 

g = ( T r a n s p o s e [ m 6 ] ) . (m5) 



r 
e3 Expand[g]; 

)Factor[e3]; 

,k31 = Coefficient [e3, ql d[tl]] 
r s i m p l i f y [%] / / N 

I k 3 3 = C o e f f i c i e n t [ e 3 , q 3 d [ t 3 ] ] 

S i m p l i f y [%] " N 

| ; g f = ( ( k l l k 2 2 k 3 3 ) + ( k 3 1 k l 2 k 2 3 ) ) / / N ; 

t S i m p l i f y [ % ] / / N 

I 

•m 
I 



r 
k **** (15) Output Results of a New Class of 6-SPS Platfrom **** 
k **** Type Parallel Manipulator with a Hexagonal Base **** 

, i n [ 6 7 ] = 
1 2 4 9 . 9 8 1 2 4 9 . 9 8 

‘ R e s u l t = { { ( 3 0 . 6 1 8 3 S q r t [ 1 . ] + 1 . 2 0 4 8 9 S q r t [ 1 . ] s ) 
‘ 2 2 

‘ q 2 q 2 

J 1 2 4 9 . 9 8 1 2 4 9 . 9 8 

F, > ( 3 0 . 6 1 8 3 S q r t [ 1 . - ] + 0 . 1 7 1 3 5 1 S q r t [ 1 . ] s -
r 2 2 

ql ql 

1 2 4 9 . 9 8 1 2 4 9 . 9 8 

> 0 . 5 S q r t [ 1 . ] S q r t [ 1 . - ] q 3 C o s [ t 3 ] ) 
2 2 

ql q3 

1 2 4 9 . 9 8 1 2 4 9 . 9 8 

- > ( - 1 . S q r t [ 1 . ] q 2 S q r t [ 1 . ] C o s [ t 3 ] + 
2 2 

q 2 q 3 

1 2 4 9 . 9 8 

> 3 0 . 6 1 8 3 S q r t [ 1 . - ] S i n [ t 3 ] + 
2 

q 3 

1 2 4 9 . 9 8 

> 0 . 9 2 7 9 5 6 S q r t [ 1 . - ] s S i n [ t 3 ] ) + 
2 

q3 
1 2 4 9 . 9 8 1 2 4 9 . 9 8 

> ( - 3 0 . 6 1 8 3 S q r t [ 1 . - ] + 2 . 7 0 6 5 7 S q r t [ 1 . - ] s ) 
2 2 

ql ql 

I 1 2 4 9 . 9 8 1 2 4 9 . 9 8 

> ( - 3 0 . 6 1 8 3 S q r t [ 1 . - ] + 3 . 4 6 3 1 8 S q r t [ 1 . - ] s -
2 2 

q 2 q 2 

1 2 4 9 . 9 8 1 2 4 9 . 9 8 

: > 0 . 5 S q r t [ 1 . ] S q r t [ 1 . - ] q 3 C o s [ t 3 ] ) 
2 2 

q 2 q 3 
i-

1 2 4 9 . 9 8 1 2 4 9 . 9 8 
: : > ( - 1 . S q r t [ l . ] q l S q r t [ 1 . ] C o s [ t 3 ] -

2 2 
„ ql q3 

1 2 4 9 . 9 8 

> 3 0 . 6 1 8 3 S q r t [ 1 . ] S i n [ t 3 ] + 
2 

I 
1 2 4 9 . 9 8 

i > 2 . 4 2 9 6 4 S q r t [ 1 . ] s S i n [ t 3 ] ) } } 

\ 2 
. 

'. I 



r 
k **** (15) Output Results of a New Class of 6-SPS Platfrom **** 
k **** Type Parallel Manipulator with a Hexagonal Base **** 

.irl = Pi / 2; 
rIr2 = 0 
M r3 = Pi / 4; 
^Iol = Pi / 4; 
kI o2 = 3 Pi / 4; 
f , o3 = 3 Pi / 2; 
m 
f 

I bl = b2 = 1.414 s 

I b3 = 2 s 
r ' 

} qql = ql 
>]qq2 = q2 ; 
1 qq3 = q3; 

I xql = dql; 
>,xq2 = dq2; 

xq3 = dq3 ; 

tl = t2 = Pi / 2 

fll = ( ql"2 + bl"2 - q q l ) / (2 bl ql); 

f21 = SqrtCl - (( ql"2 + bl"2 - qql"2 ) / (2 bl ql) 2]; 

pi = {{s Cos [ol] - ql fll Cos[rl] - ql f21 Sin[rl] Cos [tl]}, 
{s Sin[ol] - ql fll Sin[rl] + ql f21 Cos[rl] Cos [tl]}, 
{ql f21 Sin[tl]}}; 

fl2 = ( q2"2 + b2"2 - qq2"2 ) / (2 b2 q2); 

f22 = Sqrt[l - (( q2"2 + h2^2 - qq2^2 ) / (2 b2 q2) 2]; 

p2 = {{2.07 s Cos[o2] + q2 fl2 Cos[r2] + q2 f22 Sin[r2] Cos[t2]}, 
{2.07 s Sin[o2] + q2 fl2 Sin[r2] - q2 f22 Cos [r2] Cos [t2] }, 
{q2 f22 Sin[t2]}}; 

fl3 = ( q3"2 + b3"2 - qq3"2 ) / (2 b3 q3); 

f23 = Sqrt[l - (( q3"2 + b3"2 - qq3"2 ) / (2 b3 q3) ) ; 

p3 = {{2.07 s Cos [o3] - q3 fl3 Sin[r3] + q3 f23 Cos [r3] Cos [t3]}, 
{2.07 s Sin[o3] + q3 fl3 Cos [r3] + q3 f23 Sin[r3] Cos [t3] }, 
{q3 f23 Sin[t3]}}; 

k wll = (2 ql (ql dql - qql xql) - dql (ql"2 + bl"2 - qql"2)) / (2 bl ql"2); 

I w21 = ((dql (ql"2 + bl"2 - qql"2) - (2 ql (ql dql - qql xql))) (ql"2 + 
1 bl"2 - qql"2)) / (2 bl ql"2 Sqrt[4 bl"2 ql"2 - (ql"2 + bl"2 -
I q q l " 2 ) " 2 ] ) ; 

I vpl = {{-CosErl] (dql fll + ql wll) - Sin[rl] (dql f21 Cos[tl] + ql w21 Cos[tl] - ql f2 
1 1 d[tl] Sin[tl] ) }, … r … 

{-Sin[rl] (dql fll + ql wll) + Cos[rl] (dql f21 Cos [tl] + ql w21 Cos[tlj -

i q l f21 d[tl] Sin[tl] ) }' 
{dql f21 Sin[tl] + ql w21 Sin[tl] + ql f21 d[tl] Cos[tl])}; wl2 = (2 q2 (q2 dq2 - qq2 xq2) - dq2 (q2-2 + b2"2 -qq2"2)) / (2 b2 q2 2); w22 = ((dq2 (q2"2 + b2^2 - qq2^2) - (2 q2 (q2 dq2 - qq2 xq2))) (q2"2 + b2^2 - qq2^2)) / (2 b2 q2"2 Sqrt[4 b2^2 q2"2 - (q2^2 + b2"2 -



iqq2"2)"2] ) 

I , v p 2 = { { C o s [ r 2 ] ( d q 2 f l 2 + q 2 w l 2 ) + S i n [ r 2 ] ( d q 2 f 2 2 C o s [ t 2 ] + q 2 w 2 2 C o s [ t 2 ] - q 2 f 2 2 

Ii, d [ t 2 ] S i n [ t 2 ] ) } , 
[ { S i n [ r 2 ] ( d q 2 f l 2 + q 2 w l 2 ) - C o s [ r 2 ] ( d q 2 f 2 2 C o s [ t 2 ] + q 2 w 2 2 C o s [ t 2 ] -

I q 2 f 2 2 d [ t 2 ] S i n [ t 2 ] ) } , 
{ d q 2 f 2 2 S i n [ t 2 ] + q 2 w 2 2 S i n [ t 2 ] + q 2 f 2 2 d [ t 2 ] C o s [ t 2 ] } } 

I w l 3 = ( 2 q 3 ( q 3 d q 3 - q q 3 x q 3 ) - d q 3 ( q 3 " 2 + b 3 " 2 - q q 3 " 2 ) ) / ( 2 b 3 q 3 " 2 ) 

= ( ( d q 3 ( q 3 ^ 2 + b 3 ^ 2 - q q 3 ^ 2 ) - ( 2 q 3 ( q 3 d q 3 - q q 3 x q 3 ) ) ) ( q 3 " 2 + 

h b 3 " 2 - q q 3 " 2 ) ) / ( 2 b 3 q 3 " 2 S q r t [ 4 b 3 " 2 q 3 " 2 - q 3 " 2 + b 3 " 2 -

h qq3^2)"2]); 

[ = { { - ( S i n [ r 3 ] ) ( d q 3 f l 3 + q 3 w l 3 ) + C o s [ r 3 ] ( d q 3 f 2 3 C o s [ t 3 ] + q 3 w2 3 C o s [ t 3 ] - q 3 

f 2 3 d [ t 3 ] S i n [ t 3 ] ) } , 
{ C o s [ r 3 ] ( d q 3 f l 3 + q 3 w l 3 ) + S i n [ r 3 ] ( d q 3 f 2 3 C o s [ t 3 ] + q 3 w 2 3 C o s [ t 3 ] -

i q 3 f 2 3 d [ t 3 ] S i n [ t 3 ] ) } ' 
{ d q 3 f 2 3 S i n [ t 3 ] + q 3 w 2 3 S i n [ t 3 ] + q 3 f 2 3 d [ t 3 ] C o s [ t 3 ] } } ; 

\ m l = ( v p l - v p 2 ) ; 

t S i m p l i f y [ % ] / / N 

m2 = ( p i - p 2 ) ; 
\ Simplify [%] " N 

e = ( T r a n s p o s e [ m 2 ] ) . ( m l ) ; 

e l = E x p a n d [ e ] 

F a c t o r [ e l ] ; 

kll = Coefficient[el, ql d[tl]]; 
S i m p l i f y [ % ] / / N 

k l 2 = C o e f f i c i e n t [ e l , q 2 d [ t 2 ] ] ; 

S i m p l i f y [ % ] / / N 

: m3 = ( v p 2 - v p 3 ) ; 
S i m p l i f y [%] " N 

m4 = ( p 2 - p 3 ) ; 
I S i m p l i f y [%]//N 

f = ( T r a n s p o s e [ m 4 ] ) • ( m 3 ) ; 

e 2 = E x p a n d [ f ] ; 

F a c t o r [ e 2 ] ; 

k 2 2 = C o e f f i c i e n t [ e 2 , q 2 d [ t 2 ] ] ; 

S i m p l i f y [%] " N 

k 2 3 = C o e f f i c i e n t [ e 2 , q 3 d [ t 3 ] ] ; 

S i m p l i f y [ % ] / / N 
V t 
* m 5 = ( v p 3 - v p l ) ; 

I S i m p l i f y [%] " N m6 = ( p 3 - p i ) — 



f 
I g = (Transpose[m6]) • (m5) 
I 
he3 = Expand [g]; I 
J iFactor [e3]; 
I 
|ilc3i = Coefficient [e3' ql d[tl]]; 
I Simplify[%]//N 

|lk33 = Coeff icient[e3 ' q3 d [ t3 ] ] ; 
I'! Simplify [%]//N 

I,gf = (( k l l k22 k33 ) + ( k31 kl2 k23))//N 
1. 
1 . 

Simplify[%]//N 
I 
i 
f 

i, 

I 

J r. t f “ 

f 
V 

1 I « i . I 



t it*** (17) Output Results of a New Class of 6-SPS Platform **** 
r **** Type Parallel Manipulator with a Pentagonal Base **** 

a ; i n [ 6 8 ] = 
2 

0 . 4 9 9 8 4 9 s 

t : O u t [ 6 8 ] = { { 1 . 4 6 3 6 s S q r t [ 1 . ] 
2 

q 2 

i; 2 
i 0 . 4 9 9 8 4 9 s 

I > ( 1 . 4 1 4 2 1 s S q r t [ 1 - ] _ 
2 

I q l 
L:. i 

I 2 2 
I 0 . 4 9 9 8 4 9 s 1 . s 

> 0 . 7 0 7 1 0 7 q 3 S q r t [ 1 - 1 S q r t [ 1 ] C o s [ t 3 ] ) 
2 2 

q l q 3 

2 2 
0 . 4 9 9 8 4 9 s 1 . s 

> ( - 1 . q 2 S q r t [ 1 ] S q r t [ 1 ] C o s [ t 3 ] + 
2 2 

q 2 q 3 

2 
1 . s 

> 1 . 9 6 3 6 4 s S q r t [ 1 - ] S i n [ t 3 ] ) + 
2 

q 3 

2 
0 . 4 9 9 8 4 9 S 

> 1 . 4 6 3 8 2 s S q r t [ 1 ] 
2 

ql 

2 
: 0 . 4 9 9 8 4 9 S 

> ( 2 . 8 2 6 6 s S q r t [ 1 - ] _ 
2 

q 2 

2 2 

0 . 4 9 9 8 4 9 s 1 . s 

> 0 . 7 0 7 1 0 7 q 3 S q r t [ 1 - ] S q r t [ 1 ] C o s [ t 3 ] ) 
2 2 

q 2 q 3 

2 2 
0 . 4 9 9 8 4 9 s 1 . s 

> ( - 1 . q l S q r t [ 1 ] S q r t [ 1 ] C o s [ t 3 ] + 
2 2 

q l q 3 

2 
1 . s 

> 1 . 9 6 3 7 9 s S q r t [ 1 ] S i n [ t 3 ] ) } } 
2 

q 3 

I 

I 



t it*** (18) Output Results of a New Class of 6-SPS Platform **** 
r **** Type Parallel Manipulator with a Pentagonal Base **** 

v i r l = P i / 2 ; 

r2 = 0; 
i r 3 = 0 
I : o l = P i / 4 ; 
I o2 = 3 P i / 4 ; 
[ Io3 = 5 P i / 4 ; 

: b l = b 2 = 1 . 4 1 4 s 

b 3 = 1 . 4 1 4 S 

L q q l = ql ; 
ii q q 2 = q 2 ; 
h q q 3 = q 3 ; 

fA x q l = d q l ; 
F x q 2 = d q 2 ; 

x q 3 = d q 3 ; 

? t l = P i / 2 ; 

I t 2 = P i / 2 ; 

: : f l l = ( q l " 2 + b l " 2 - q q l ) / ( 2 b l q l ) ; 

f 2 1 = S q r t [ 1 - ( ( q l " 2 + b l " 2 - q q l " 2 ) / ( 2 b l q l ) ) 2 ] ; 

p i = { { s C o s [ o l ] - q l f l l C o s [ r l ] - q l f 2 1 S i n [ r l ] C o s [ t l ] } , 

{ s S i n [ o l ] - q l f l l S i n [ r l ] + q l f 2 1 C o s [ r l ] C o s [ t l ] } , 

{ q l f 2 1 S i n [ t l ] } } ; 

f l2 = ( q2"2 + b2^2 - qq2"2 ) / (2 b2 q2); 

f 2 2 = S q r t [ l - ( ( q 2 " 2 + b 2 " 2 - q q 2 ^ 2 ) / ( 2 b 2 q 2 ) 2 ] ; 

p 2 = { { 2 . 0 7 s C o s [ o 2 ] + q 2 f l 2 C o s [ r 2 ] + q 2 f 2 2 S i n [ r 2 ] C o s [ t 2 ] } , 

{ 2 . 0 7 s S i n [ o 2 ] + q 2 f l 2 S i n [ r 2 ] - q 2 f 2 2 C o s [ r 2 ] C o s [ t 2 ] } , 

{ q 2 f 2 2 S i n [ t 2 ] } } ; 

f l 3 = ( q 3 " 2 + b 3 " 2 - q q 3 " 2 ) / ( 2 b 3 q 3 ) ; 

£ 2 3 = S q r t [ 1 - ( ( q 3 " 2 + b 3 " 2 - q q 3 " 2 ) / ( 2 b 3 q 3 ) 2 ] ; 
i , 

p 3 = { { 2 . 0 7 s C o s [ o 3 ] - q 3 f l 3 S i n [ r 3 ] + q 3 f 2 3 C o s [ r 3 ] C o s [ t 3 ] } , 

{ 2 . 0 7 s S i n [ o 3 ] + q 3 f l 3 C o s [ r 3 ] + q 3 f 2 3 S i n [ r 3 ] C o s [ t 3 ] } , 

{ q 3 f 2 3 S i n [ t 3 ] } } ; 

w l l = ( 2 q l ( q l d q l - q q l x q l ) - d q l ( q l " 2 + b l " 2 - q q l " 2 ) ) / ( 2 b l q l ^ 2 ) ; 

w 2 1 = ( ( d q l ( q l " 2 + b l " 2 - q q l " 2 ) - ( 2 q l ( q l d q l - q q l x q l ) ) ) (ql^2 + 

b l " 2 - q q l " 2 ) ) / ( 2 b l q l " 2 S q r t [ 4 b l " 2 q l " 2 - ( q l " 2 + b l " 2 -

q q l " 2 ) " 2 ] ) ; 

v p l = { { - C o s [ r l ] ( d q l f l l + q l w l l ) - S i n [ r l ] ( d q l f 2 1 C o s [ t l ] + q l w 2 1 C o s [ t l ] - q l f 2 

1 d [ t l ] S i n [ t l ] ) } , ^ .+--11 
{ - S i n [ r l ] ( d q l f l l + q l w l l ) + C o s [ r l ] ( d q l f 2 1 C o s [ t l ] + q l w 2 1 C o s L t l J -

q l f 2 1 d [ t l ] S i n [ t l ] ) } , 
{ d q l f 2 1 S i n [ t l ] + q l w 2 1 S i n [ t l ] + q l f 2 1 d [ t l ] C o s [ t l ] } } ; 

wl2 = (2 q2 (q2 dq2 - qq2 xq2) - dq2 (q2^2 + b2"2 -qq2^2)} / (2 b2 q2^2) 

w 2 2 = ( ( d q 2 ( q 2 " 2 + b 2 ^ 2 - q q 2 " 2 ) - ( 2 q 2 ( q 2 d q 2 - q q 2 x q 2 ) ) ) ( q 2 " 2 + 
b 2 " 2 - q q 2 " 2 ) ) / ( 2 b 2 q 2 ' 2 S q r t [ 4 b 2 " 2 q 2 ' 2 - ( q 2 " 2 + b 2 " 2 -

I q q 2 ^ 2 ) ^ 2 ] ) 



r 
I 
I , v p 2 = { { C o s [ r 2 ] ( d q 2 f l 2 + q 2 w l 2 ) + S i n [ r 2 ] ( d q 2 f 2 2 C o s [ t 2 ] + q 2 w 2 2 C o s [ t 2 ] - q 2 f 2 2 

d [ t 2 ] S i n [ t 2 ] ) } , 

{ S i n [ r 2 ] ( d q 2 f l 2 + q 2 w l 2 ) - C o s [ r 2 ] ( d q 2 f 2 2 C o s [ t 2 ] + q 2 w 2 2 C o s [ t 2 ] -
f 2 2 d [ t 2 ] S i n [ t 2 ] ) } ' 

: { d q 2 f 2 2 S i n [ t 2 ] + q 2 w 2 2 S i n [ t 2 ] + q 2 f 2 2 d [ t 2 ] C o s [ t 2 ] } } 

I ,W13 = (2 q3 (q3 dq3 - qq3 xq3) - dq3 (q3"2 + b3"2 -qq3"2)) / (2 b3 q3"2) 

| , ^ 2 3 = ( ( d q 3 ( q 3 ^ 2 + b 3 " 2 - q q 3 " 2 ) - ( 2 q 3 ( q 3 d q 3 - q q 3 x q 3 ) ) ) ( q 3 " 2 + 

b 3 " 2 - q q 3 " 2 ) ) / ( 2 b 3 q 3 " 2 S q r t [ 4 b 3 " 2 q 3 " 2 - ( q 3 " 2 + b 3 " 2 -

h qq3"2)"2]); 
3 { { - ( S i n [ r 3 ] ) ( d q 3 f l 3 + q 3 w l 3 ) + C o s [ r 3 ] ( d q 3 f 2 3 C o s [ t 3 ] + q 3 w 2 3 C o s [ t 3 ] - q 3 

f 2 3 d [ t 3 ] S i n [ t 3 ] ) } , 
{ C o s [ r 3 ] ( d q 3 f l 3 + q 3 w l 3 ) + S i n [ r 3 ] ( d q 3 f 2 3 C o s [ t 3 ] + q 3 w 2 3 C o s [ t 3 ] -

I q3 f 2 3 d [ t 3 ] S i n [ t 3 ] ) } , 
i { d q 3 f 2 3 S i n [ t 3 ] + q 3 w 2 3 S i n [ t 3 ] + q 3 f 2 3 d [ t 3 ] C o s [ t 3 ] } } ; 

h m l = ( v p l - v p 2 ) 

E S i m p l i f y [ % ] / / N 

V m2 = ( p i - p 2 ) ; 
: S i m p l i f y [ % ] / / N 

e = ( T r a n s p o s e [ m 2 ] ) . ( m l ) ; 

e l = E x p a n d [ e ] ; 

Factor[el]; 

k l l = C o e f f i c i e n t [ e l , q l d [ t l ] ] ; 

S i m p l i f y [%] " N 

k l 2 = C o e f f i c i e n t [ e l , q 2 d [ t 2 ] ] ; 

, S i m p l i f y [ % ] / / N 
r 
I m3 = ( v p 2 - v p 3 ) ; 

S i m p l i f y [%] " N 

m4 = ( p 2 - p 3 ) ; 
S i m p l i f y [ % ] / / N 

f = ( T r a n s p o s e [ m 4 ] ) . ( m 3 ) ; 

e 2 = E x p a n d [ f ] ; 

F a c t o r [ e 2 ] ; 

k 2 2 = C o e f f i c i e n t [ e 2 , q 2 d [ t 2 ] ] ; 

S i m p l i f y [ % ] / / N 

k 2 3 = C o e f f i c i e n t [ e 2 , q 3 d [ t 3 ] ] ; 

S i m p l i f y [ % ] / / N 

I m5 = ( v p 3 - v p l ) ; 

I Simplify[%]//N 

m6 = ( p 3 - p i ) ; 
S i m p l i f y [ % ] / / N 

g = ( T r a n s p o s e [ m 6 ] ) . ( m 5 ) ; 



F 

ie3 = Expand[g]; 

I Factor [e3]; 

hk31 = Coefficient [e3, ql d[tl]] 
fI Simplify [ % ] / / N 

M k 3 3 = C o e f f i c i e n t [ e 3 , q 3 d [ t 3 ] ] ; 

: S i m p l i f y [ % ] / / N 

, g f = ( ( k l l k 2 2 k 3 3 ) + ( k 3 1 k l 2 k 2 3 ) ) / / N ; 

S i m p l i f y [%] " N 

i 



r 

f **** (19) Output Results of a New Class of 6-SPS Platform **** 
,1**** Type Parallel Manipulator with a Tetragonal Base **** 

ir l l n [ 6 9 ] : = 

t: 2 
0 . 4 9 9 8 4 9 s 

^ O u t [ 6 9 ] = { { 1 . 4 6 3 6 s S q r t [ 1 . ] 
2 

q 2 

2 
, 0 . 4 9 9 8 4 9 s 

1 > ( 2 . 1 7 0 8 2 s S q r t [ 1 . ] 
r 2 
i ql 1 
I 2 2 
I 0 . 4 9 9 8 4 9 s 0 . 4 9 9 8 4 9 s 

I > 1 . q 3 S q r t [ l . 1 S q r t [ l . ] C o s [ t 3 ] ) 
2 2 

\ ql 

2 2 
0 . 4 9 9 8 4 9 s 0 . 4 9 9 8 4 9 s 

N > ( - 1 . q 2 S q r t [ l . ] S q r t [ l . ] C o s [ t 3 ] + 
2 2 

q 2 q 3 

h 2 
0 . 4 9 9 8 4 9 s 

> 0 . 7 0 7 s S q r t [ 1 . - ] S i n [ t 3 ] ) + 
2 

q3 

2 2 
2 0 . 4 9 9 8 4 9 s 0 . 4 9 9 8 4 9 s 

> 3 . 2 5 0 2 9 s S q r t [ 1 . - ] S q r t [ 1 . ] 
2 2 

q l q 2 

2 2 
0 . 4 9 9 8 4 9 s 0 . 4 9 9 8 4 9 s 

‘ > ( - 1 . q l S q r t [ l . ] S q r t [ l . ] C o s [ t 3 ] + 

I 2 2 
q l q 3 

2 
0 . 4 9 9 8 4 9 s 

> 2 . 1 7 0 8 2 s S q r t [ 1 . - ] S i n [ t 3 ] ) } } 
2 

q3 

I -
% 
% 

I 
b.. 



r 
I I **** (20) Input Programme of a New Class of 6-SPS Platform **** 
’ I**** Type Parallel Manipulator with a Triangular Base **** 

… 1 = Pi / 2 
I r2 = 0 ; 
I r3 = Pi / 4 
I I ol = Pi / 4; 

o2 = 8 Pi / 9; 
I o3 = 2 9 Pi / 18; 

k bl = b2 = 2.65 s 
k b3 = 3.75 s 
I qql = ql 
I qq2 = q2; 
i qq2 = q2; 

N xql = dql; 
f xq2 = dq2; 
b xq3 = dq3 ; 

r tl = Pi / 2; 
f t2 = Pi / 2; 

f l l = ( ql"2 + bl^2 - qql"2 ) / (2 bl q l ) ; 

I f21 = Sqr t [ l - (( ql"2 + bl"2 - qql"2 ) / (2 bl ql) 2]; 
I 
I pi = {{s Cos[ol] - ql f l l Cos [rl] - ql f21 Sin[rl] Cos [ t l ]} , 
' {s Sin[ol] - ql f l l Sin[r l] + ql f21 Cos [rl] Cos [t l] }, 

{ql f21 Sin[ t l ]}}; 

f l2 = ( q2"2 + b2"2 - qq2^2 ) / (2 b2 q2); 

f22 = Sqr t [ l - (( q2"2 + b2"2 - qq2"2 ) / (2 b2 q2) 2]; 

p2 = {{2.07 s Cos [o2] + q2 f l2 Cos [r2] + q2 f22 Sin[r2] Cos [t2] }, 
{2.07 s Sin[o2] + q2 f l2 Sin[r2] - q2 f22 Cos [r2] Cos [t2] }, 
{q2 f22 Sin[t2]}}; 

f l 3 = ( q3"2 + b3"2 - qq3"2 ) / (2 b3 q3) 
i ‘ 

I f23 = Sqrt [ l - (( q3"2 + b3"2 - qq3"2 ) / (2 b3 q3) )"2]; ) 
i… 

p3 = {{2.07 s Cos[o3] - q3 f l 3 Sin[r3] + q3 f23 Cos [r3] Cos[t3]}, 
{2.07 s Sin[o3] + q3 f l 3 Cos [r3] + q3 f23 Sin[r3] Cos[t3]}, 
{q3 f23 Sin[t3]}}; 

wll = (2 ql (ql dql - qql xql) - dql (ql"2 + bl"2 - qql"2)) / (2 bl ql"2); 

w21 = ((dql (ql"2 + bl"2 - qql"2) - (2 ql (ql dql - qql xql))) (ql"2 + 
bl"2 - qql"2)) / (2 bl ql"2 Sqrt[4 bl"2 ql"2 - {ql"2 + bl"2 -
qql"2)"2]); 

v p l = { { - C o s [ r l ] ( d q l f l l + q l w l l ) - S i n [ r l ] ( d q l f 2 1 C o s [ t l ] + q l w 2 1 C o s [ t l ] - q l f 2 

1 d[ t l ] Sin[ t l ] ) }, … r — i 1 _ 
{-Sin[r l ] (dql f l l + ql wll) + Cos[rl] (dql f21 Cos[tl] + ql w21 CosLtlJ -

ql f21 d [ t l ] Sin[ t l ] ) }, 
. {dql f21 Sin[ t l ] + ql w21 Sin[ t l ] + ql f21 d [ t l ] Cos[tl] }}; 

I wl2 = (2 q2 (q2 dq2 - qq2 xq2) - dq2 (q2"2 + b2"2 -qq2"2)) / (2 b2 q2^2) 

w22 = {{dq2 (q2^2 + b2^2 - qq2"2) - (2 q2 (q2 dq2 - qq2 xq2))) (q2"2 + 
b2^2 - qq2"2)) / (2 b2 q2^2 Sqrt[4 b2"2 q2"2 - (q2"2 + b2"2 -
qq2^2)^2]) 



m-

v p 2 = { { C o s [ r 2 ] ( d q 2 f l 2 + q 2 w l 2 ) + S i n [ r 2 ] ( d q 2 f 2 2 C o s [ t 2 ] + q 2 w 2 2 C o s [ t 2 ] - q 2 f 2 2 

f d [ t 2 ] S i n [ t 2 ] ) } , 

i { S i n [ r 2 ] ( d q 2 f l 2 + q 2 w l 2 ) - C o s [ r 2 ] ( d q 2 f 2 2 C o s [ t 2 ] + q 2 w 2 2 C o s [ t 2 ] -

I q 2 f 2 2 d [ t 2 ] S i n [ t 2 ] ) } , 
r { d q 2 f 2 2 S i n [ t 2 ] + q 2 w 2 2 S i n [ t 2 ] + q 2 f 2 2 d [ t 2 ] C o s [ t 2 ] } } 

I . I W 1 3 = ( 2 q 3 ( q 3 d q 3 - q q 3 x q 3 ) - d q 3 ( q 3 " 2 + b 3 " 2 - q q 3 " 2 ) ) / ( 2 b 3 q 3 " 2 ) 
i 

w23 = ( ( d q 3 ( q 3 ^ 2 + b 3 " 2 - q q 3 ^ 2 ) - ( 2 q 3 ( q 3 d q 3 - q q 3 x q 3 ) ) ) ( q 3 " 2 + 
b 3 ^ 2 - q q 3 " 2 ) ) / ( 2 b 3 q 3 ^ 2 S q r t [ 4 b 3 " 2 q 3 " 2 - ( q 3 " 2 + b 3 " 2 -

G qq3"2)"2]); _ 
I v p 3 = { { - ( S i n [ r 3 ] ) ( d q 3 f l 3 + q 3 w l 3 ) + C o s [ r 3 ] ( d q 3 f 2 3 C o s [ t 3 ] + q 3 w 2 3 C o s [ t 3 ] - q 3 

c f 2 3 d [ t 3 ] S i n [ t 3 ] ) } , 
( C o s [ r 3 ] ( d q 3 f l 3 + q 3 w l 3 ) + S i n [ r 3 ] ( d q 3 f 2 3 C o s [ t 3 ] + q 3 w 2 3 C o s [ t 3 ] -

: q 3 f 2 3 d [ t 3 ] S i n [ t 3 ] ) } , 

I { d q 3 f 2 3 S i n [ t 3 ] + q 3 w 2 3 S i n [ t 3 ] + q 3 f 2 3 d [ t 3 ] C o s [ t 3 ] } } ; 

fc 

* ml = (vpl - vp2); 
I Simplify[%]//N 

r m2 = ( p i - p 2 ) ; 

1 Simplify[%]//N _ . 

e = ( T r a n s p o s e [ m 2 ] ) . ( m l ) ; 

— e l = E x p a n d [ e ] ; 

I 
2 F a c t o r [ e l ] ; 
la, 

..kll = Coefficient [el, ql d[tl]]; 
S i m p l i f y [ % ] / / N 

- k l 2 = C o e f f i c i e n t [ e l , q 2 d [ t 2 ] ] ; 

S i m p l i f y [%] " N 

m3 = ( v p 2 - v p 3 ) ; 

S i m p l i f y [ % ] / / N 

" m 4 = ( p 2 - p 3 ) ; 
S i m p l i f y [ % ] / / N 

f = ( T r a n s p o s e [ m 4 ] ) . (m3) 

, e 2 = E x p a n d [ f ] 
P . 

F a c t o r [ e 2 ] 

k 2 2 = C o e f f i c i e n t [ e 2 , q 2 d [ t 2 ] ] ; 

I Simplify[%]//N 

^ k 2 3 = C o e f f i c i e n t [ e 2 , q 3 d [ t 3 ] ] ; 

[ S i m p l i f y [ % ] / / N 

I m 5 = ( v p 3 - v p l ) ; 
S i m p l i f y [ % ] / / N 

m6 = ( p 3 - p i ) ; 
' s i m p l i f y [%] / / N 

— " 



r 

i 
I e3 = Expand[g] 

i i F a c t o r [ e 3 ] ; 

I ,k31 = Coefficient[e3, ql d[tl]] 
h S i m p l i f y [ % ] / / N 

r | k 3 3 = C o e f f i c i e n t [ e 3 ' q 3 d [ t 3 ] ] 
I I Simplify[%]//N 
I-

I,gf = ((kll k22 k33 ) + ( k31 kl2 k23))//N; 

\ Simplify[%]//N 
L . i. 
I I 

ji., 
• 
[• 
f 
f 

j 

1.1 f • 

i. 

!• . i 

, 

f 



(21) Output Results of a New Class of 6-SPS Platform **** 
**** Type Parallel Manipulator with a Triangular Base **** 

l n [ 6 9 ] = 
2 

1 . 7 5 5 6 3 s 

o u t [ 6 9 ] = { { 1 . 3 2 5 8 7 s S q r t [ 1 . ] 
2 

q 2 

2 
1 . 7 5 5 6 3 s 

> ( 1 . 3 2 4 9 5 s S q r t [ 1 . ] -
2 

ql 

2 2 
1.75563 S 3.51562 s 

> 0 . 7 0 7 1 0 7 q 3 S q r t [ 1 . - ] S q r t [ 1 . - ] C o s [ t 3 ] ) 
2 2 

q l q 3 

2 2 
1.75563 s 3 . 5 1 5 6 2 s 

> ( - 1 . q 2 S q r t [ l . 1 S q r t [ l . - ] C o s [ t 3 ] + 
2 2 

q 2 q 3 

2 
3 . 5 1 5 6 2 s 

> 0 . 9 3 6 9 1 6 s S q r t [ 1 . - ] S i n [ t 3 ] ) + 
2 

q 3 

2 
1 . 7 5 5 6 3 s 

> 1 . 3 2 7 2 7 s S q r t [ 1 . ] 
2 

ql 

2 
1 . 7 5 5 6 3 s 

> ( 1 . 3 2 7 3 2 s S q r t [ 1 . ] -
2 

q 2 

2 2 
1.75563 S 3 . 5 1 5 6 2 s 

> 0 . 7 0 7 1 0 7 q 3 S q r t [ 1 . - ] S q r t [ 1 . - ] C o s [ t 3 ] ) 
2 2 

q 2 q 3 

2 2 
1 . 7 5 5 6 3 s 3 . 5 1 5 6 2 s 

> ( - 1 . q l S q r t [ 1 . - ] S q r t [ 1 . - ] C o s [ t 3 ] + 
2 2 

q l q 3 

2 
3.51562 s 

> 0 . 9 3 7 9 0 3 s S q r t [ 1 . - ] S i n [ t 3 ] ) } } 
2 

q 3 



r 
5* I * * * * ( 2 2 ) I n p u t P r o g r a m m e i n C h a p t e r 4 f o r C a s e 1 t o 5 * * * * 

^ I T h e t a 1 and 2 can be c h a n g e d from 0 t o 1 8 0 D e g r e e * * * * 
I 
t 

11rl = Pi / 2 
I r 2 = P i / 6 ; 
I r 3 = P i / 3 ; 

o l = P i / 4 
, o 2 = 1 1 P i / 1 2 ; 
c o3 = 1 9 P i / 1 2 ; 

: t l = P i / 2 
r t 2 = P i / 2 

I f l l = ( q l " 2 + b l " 2 - q q l " 2 ) / ( 2 b l q l ) ; 

I f 2 1 = S q r t [ l - ( ( q l " 2 + b l " 2 - q q l " 2 ) / ( 2 b l q l ) 2 ] ; [ 

^ p i = { { s C o s [ o l ] - q l f l l C o s [ r l ] - q l f 2 1 S i n [ r l ] C o s [ t l ] } , 

{ s S i n [ o l ] - q l f l l S i n [ r l ] + q l f 2 1 C o s [ r l ] C o s [ t l ] } , 

{ q l f 2 1 S i n [ t l ] } } ; 

f l 2 = ( q 2 " 2 + b 2 " 2 - q q 2 ^ 2 ) / ( 2 b 2 q 2 ) ; 

£ 2 2 = S q r t [ 1 - ( ( q 2 " 2 + b 2 " 2 - q q 2 " 2 ) / ( 2 b 2 q 2 ) ) " 2 ] ; 

p 2 = { { s C o s [ o 2 ] + q 2 f l 2 C o s [ r 2 ] + q 2 f 2 2 S i n [ r 2 ] C o s [ t 2 ] } , 

{ s S i n [ o 2 ] + q 2 f l 2 S i n [ r 2 ] - q 2 f 2 2 C o s [ r 2 ] C o s [ t 2 ] } , 

{ q 2 f 2 2 S i n [ t 2 ] } } ; 

f l 3 = ( q 3 " 2 + b 3 " 2 - q q 3 " 2 ) / ( 2 b 3 q 3 ) ; 

f 2 3 = S q r t [ 1 - ( ( q 3 " 2 + b 3 " 2 - q q 3 " 2 ) / ( 2 b 3 q 3 ) 2 ] ; 

p 3 = { { s C o s [ o 3 ] - q 3 f l 3 S i n [ r 3 ] + q 3 f 2 3 C o s [ r 3 ] C o s [ t 3 ] } , 

{ s S i n [ o 3 ] + q 3 f l 3 C o s [ r 3 ] + q 3 f 2 3 S i n [ r 3 ] C o s [ t 3 ] } , 

{ q 3 f 2 3 S i n [ t 3 ] } } ; 

: w l l = (2 q l ( q l d q l - q q l x q l ) - d q l ( q l " 2 + b l " 2 - q q ” 2 ) ) / ( 2 b l q l ^ 2 ) ; 

I w 2 1 = ( ( d q l ( q l " 2 + b l " 2 - q q l - (2 q l ( q l d q l - q q l x q l ) ) ) ( q l ^ 2 + 
: b l " 2 - q q l " 2 ) ) / ( 2 b l q l " 2 S q r t [ 4 b l " 2 q l " 2 - ( q l " 2 + b l " 2 -

— q q l " 2 ) ) ; 

v p l = { { - C o s [ r l ] ( d q l f l l + q l w l l ) - S i n [ r l ] ( d q l f 2 1 C o s [ t l ] + q l w 2 1 C o s [ t l ] - q l f 2 

1 d [ t l ] S i n [ t l ] ) } , … 1 
{ - S i n [ r l ] ( d q l f l l + q l w l l ) + C o s [ r l ] ( d q l f 2 1 C o s [ t l ] + q l w 2 1 C o s [ t l ] -

q l f 2 1 d [ t l ] S i n [ t l ] ) } , 
f { d q l f 2 1 S i n [ t l ] + q l w 2 1 S i n [ t l ] + q l f 2 1 d [ t l ] C o s [ t l ] } } ; 

wl2 = (2 q2 (q2 dq2 - qq2 xq2) - dq2 (q2"2 + b2 "2 -qq2^2} ) / (2 b2 q2^2); 

/ w 2 2 = ( ( d q 2 ( q 2 " 2 + h 2 ^ 2 - q q 2 " 2 ) - ( 2 q 2 ( q 2 d q 2 - q q 2 x q 2 ) ) ) ( q 2 ^ 2 + 

I b 2 " 2 - q q 2 " 2 ) ) / ( 2 b 2 q 2 " 2 S q r t [ 4 b 2 " 2 q 2 " 2 - ( q 2 ' 2 + b 2 " 2 -

i q q 2 " 2 ) " 2 ] ) ; 

Iv p 2 = { { C o s [ r 2 ] ( d q 2 f l 2 + q 2 w l 2 ) + S i n [ r 2 ] ( d q 2 f 2 2 C o s [ t 2 ] + q 2 w 2 2 C o s [ t 2 ] - q 2 f 2 2 

d [ t 2 ] S i n [ t 2 ] ) } , ^ r^-o i 
{ S i n [ r 2 ] ( d q 2 f l 2 + q 2 w l 2 ) - C o s [ r 2 ] ( d q 2 f 2 2 C o s [ t 2 ] + q 2 w 2 2 C o s [ t 2 J -

q 2 f 2 2 d [ t 2 ] S i n [ t 2 ] ) } , 
{ d q 2 f 2 2 S i n [ t 2 ] + q 2 w 2 2 S i n [ t 2 ] + q 2 f 2 2 d [ t 2 ] C o s [ t 2 ] } } ; 

w l 3 = ( 2 q 3 ( q 3 d q 3 - q q 3 x q 3 ) - d q 3 ( q 3 " 2 + b 3 " 2 - q q 3 " 2 ) ) / ( 2 b 3 q 3 ^ 2 ) 



£,w23 = { (dq3 (q3^2 + b3^2 - qq3^2) - (2 q3 (q3 dq3 - qq3 xq3) ) ) (q3^2 + 
i - qq3^2)) / (2 b3 q3^2 Sqrt[4 b3^2 q3^2 - (q3"2 + b3^2 -

I , v p 3 = { { - ( S i n [ r 3 ] ) ( d q 3 f l 3 + q 3 w l 3 ) + C o s [ r 3 ] ( d q 3 f 2 3 C o s [ t 3 ] + q 3 w 2 3 C o s [ t 3 ] - q3 

f 2 3 d [ t 3 ] S i n [ t 3 ] ) } ' 
I { C o s [ r 3 ] ( d q 3 f l 3 + q 3 w l 3 ) + S i n [ r 3 ] ( d q 3 f 2 3 C o s [ t 3 ] + q 3 w 2 3 C o s [ t 3 ] -

q 3 f 2 3 d [ t 3 ] S i n [ t 3 ] ) } , 
{ d q 3 f 2 3 S i n [ t 3 ] + q 3 w 2 3 S i n [ t 3 ] + q 3 f 2 3 d [ t 3 ] C o s [ t 3 ] } } 

i 

t m l = ( v p l - v p 2 ) ; 

M m2 = ( p i - p 2 ) ; 

E e = ( T r a n s p o s e [ m 2 ] ) • ( m l ) ; 

SJ. e l = E x p a n d [ e ] 
s 
k 

F a c t o r [ e l ] ; 
j 

I k l l = C o e f f i c i e n t [ e l , q l d [ t l ] ] 
I".. I 
‘ . 
r' 

\ l k l 2 = C o e f f i c i e n t [ e l , q 2 d [ t 2 ] ] 

t I 

r m3 ( v p 2 - v p 3 ) 

m4 = ( p 2 - p 3 ) ; 

'> f = ( T r a n s p o s e [ m 4 ] ) . ( m 3 ) ; 

e 2 = E x p a n d [ f ] ; 

1 F a c t o r [ e 2 ] 

k 2 2 = C o e f f i c i e n t [ e 2 , q 2 d [ t 2 ] ] 

k 2 3 = C o e f f i c i e n t [ e 2 , q 3 d [ t 3 ] ] ; 

m5 = ( v p 3 - v p l ) ; 

m6 = ( p 3 - p i ) ; 

I g = ( T r a n s p o s e [ m 6 ] ) . ( m 5 ) ; 

e 3 = E x p a n d [ g ] ; 

F a c t o r [ e 3 ] ; 
f. 
I k 3 1 = C o e f f i c i e n t [ e 3 , q l d [ t l ] ] 
V 

ts. 
: k 3 3 = C o e f f i c i e n t [ e 3 , q 3 d [ t 3 ] ] ; 

I 
‘ g f = ( ( k l l k 2 2 k 3 3 ) + ( k 3 1 k l 2 k 2 3 ) ) / / N ; 

I ' S i m p l i f y [%] 

. — ~ 



r 
i **** (23) Output Results of Case 1 in Chapter 4 **** 
—I**** (General Form Solutions) **** 
…I**** Theta 1 is 90 Degree and theta 2 is 90 Degree **** 

4 2 2 4 2 2 2 2 4 

- b l + 2 b l q q l - q q l + 2 b l q l + 2 q q l q l - q l 

Ij I Out [48]= {{ (Sqrt [ ] 
2 2 

I b l ql 

4 2 2 4 2 2 2 2 4 

I - b 2 + 2 b 2 q q 2 - q q 2 + 2 b 2 q 2 + 2 q q 2 q 2 - q 2 

> S q r t [ ] 

’ 2 2 
[ b 2 q 2 
I' 

4 2 2 4 2 2 2 2 4 

[ - b 3 + 2 b 3 q q 3 - q q 3 + 2 b 3 q 3 + 2 q q 3 q 3 - q 3 
‘ > S q r t 
i 2 2 
1 b3 q3 

2 2 2 
j > (Sqrt[3] b2 - Sqrt[3] qq2 + Sqrt[3] q2 - 3 Sqrt[2] b2 s -
I .1 

2 2 2 
j. > Sqrt [6] b2 s) (- (Sqrt [3] b3 ) + Sqrt [3] qq3 - Sqrt [3] q3 + 
M 
li > 3 Sqrt [2] b3 s + Sqrt [6] b3 s -

> b 3 q 3 S q r t [ 
i 4 2 2 4 2 2 2 2 4 

- b 3 + 2 b 3 q q 3 - q q 3 + 2 b 3 q 3 + 2 q q 3 q 3 - q 3 
> ] 

2 2 
b 3 q 3 

> C o s [ t 3 ] ) ( 2 b l q l S q r t [ 

4 2 2 4 2 2 2 2 4 

-bl + 2 bl qql - qql + 2 bl ql + 2 qql ql - ql ̂  

2 2 
b l q l 

2 2 
> C o s [ t 3 ] + S q r t [ 3 ] b l S i n [ t 3 ] - S q r t [ 3 ] q q l S i n [ t 3 ] + 

2 
> S q r t [ 3 ] q l S i n [ t 3 ] - 3 S q r t [ 2 ] b l s S i n [ t 3 ] -

> S q r t [ 6 ] b l s S i n [ t 3 ] ) ) / ( 5 1 2 b l b 2 b 3 ) + 

4 2 2 4 2 2 2 2 4 

J -bl + 2 bl qql - qql + 2 bl ql + 2 qql ql - ql 
I > (Sqrt ] 
I 2 2 
I b l q l r f 

4 2 2 4 2 2 2 2 4 

: - b 2 + 2 b 2 q q 2 - q q 2 + 2 b 2 q 2 + 2 q q 2 q 2 - q 2 

I > Sqrt ] 
I — 



2 2 
b2 q2 

4 2 2 4 2 2 2 2 4 

- b 3 + 2 b 3 q q 3 - q q 3 + 2 b 3 q 3 + 2 q q 3 q 3 - q 3 

S q r t [ ] 
2 2 

b 3 q 3 

2 2 2 
( S q r t [ 3 ] b l - S q r t [ 3 ] q q l + S q r t [ 3 ] q l + 3 S q r t [ 2 ] b l s -

2 2 2 

S q r t [ 6 ] b l s ) ( - ( S q r t [ 3 ] b 3 ) + S q r t [ 3 ] q q 3 - S q r t [ 3 ] q 3 -

3 S q r t [ 2 ] b 3 s + S q r t [ 6 ] b 3 s + 

b 3 q 3 S q r t [ 

4 2 2 4 2 2 2 2 4 

- b 3 + 2 b 3 q q 3 - q q 3 + 2 b 3 q 3 + 2 q q 3 q 3 - q 3 

2 2 
b 3 q 3 

C o s [ t 3 ] ) ( 2 b 2 q 2 S q r t [ 

4 2 2 4 2 2 2 2 4 

- b 2 + 2 b 2 q q 2 - q q 2 + 2 b 2 q 2 + 2 q q 2 q 2 - q 2 

2 2 
b 2 q 2 

2 2 
C o s [ t 3 ] - S q r t [ 3 ] b 2 S i n [ t 3 ] + S q r t [ 3 ] q q 2 S i n [ t 3 ] -

2 

S q r t [ 3 ] q 2 S i n [ t 3 ] - 3 S q r t [ 2 ] b 2 s S i n [ t 3 ] + 

S q r t [ 6 ] b 2 s S i n [ t 3 ] ) ) / ( 5 1 2 b l b 2 b 3 ) } } 



r 
1 *•** (24) Output Results of Case 2 in Chapter 4 **** 

>I**** (General Form Solutions) **** 
i- i **** Theta 1 is 90 Degree and theta 2 is 60 Degree **** 

4 2 2 4 2 2 2 2 4 

- b l + 2 b l q q l - q q l + 2 b l q l + 2 q q l q l - q l 

i; I O u t [ 4 9 ] = { { ( S q r t [ ] 
2 2 

' b l q l 

4 2 2 4 2 2 2 2 4 

- b 2 + 2 b 2 q q 2 - q q 2 + 2 b 2 q 2 + 2 q q 2 q 2 - q 2 

, > S q r t [ ] 
2 2 

b 2 q 2 
i 

1 
‘ 4 2 2 4 2 2 2 2 4 

‘ - b 3 + 2 b 3 q q 3 - q q 3 + 2 b 3 q 3 + 2 q q 3 q 3 - q 3 

- > S q r t [ ] 
: 2 2 
i b 3 q 3 

2 2 2 
> ( 2 S q r t [ 3 ] b 2 - 2 S q r t [ 3 ] q q 2 + 2 S q r t [ 3 ] q 2 + 

> b 2 q 2 S q r t [ 

4 2 2 4 2 2 2 2 4 

_ b 2 + 2 b 2 q q 2 - q q 2 + 2 b 2 q 2 + 2 q q 2 q 2 - q 2 
> ] 

2 2 
b 2 q 2 

> 6 S q r t [ 2 ] b 2 s - 2 S q r t [ 6 ] b 2 s ) 

2 2 2 
> ( - 3 b 3 + 3 q q 3 - 3 q 3 + 3 S q r t [ 2 ] b 3 s + 3 S q r t [ 6 ] b 3 s -

> S q r t [ 3 ] b 3 q 3 S q r t [ 

4 2 2 4 2 2 2 2 4 

- b 3 + 2 b 3 q q 3 - q q 3 + 2 b 3 q 3 + 2 q q 3 q 3 - q 3 ^ 

> 2 2 

I b 3 q 3 

> C o s [ t 3 ] - 2 b 3 q 3 S q r t [ 

4 2 2 4 2 2 2 2 4 

- b 3 + 2 b 3 q q 3 - q q 3 + 2 b 3 q 3 + 2 q q 3 q 3 - q 3 

> 
2 2 

‘ b 3 q 3 
f 
V > S i n [ t 3 ] ) ( 2 b l q l S q r t [ 
f 

4 2 2 4 2 2 2 2 4 

I - b l + 2 b l q q l - q q l + 2 b l q l + 2 q q l q l - q l 
> ] 

if. 

‘ 2 2 
b l q l 

f 2 2 
i. 



Cos [t3] + Sqrt[3] bl Sin[t3] - Sqrt[3] qql Sin[t3] + 

2 
S q r t [ 3 ] q l S i n [ t 3 ] - 3 S q r t [ 2 ] b l s S i n [ t 3 ] -

S q r t [ 6 ] b l s S i n [ t 3 ] ) ) / ( 2 0 4 8 b l b 2 b 3 ) -

4 2 2 4 2 2 2 2 4 

- b l + 2 b l q q l - q q l + 2 b l q l + 2 q q l q l - q l 

( S q r t [ ] 
2 2 

b l q l 

4 2 2 4 2 2 2 2 4 

- b 2 + 2 b 2 q q 2 - q q 2 + 2 b 2 q 2 + 2 q q 2 q 2 - q 2 

S q r t [ ] 
2 2 

b 2 q 2 

4 2 2 4 2 2 2 2 4 

- b 3 + 2 b 3 q q 3 - q q 3 + 2 b 3 q 3 + 2 q q 3 q 3 - q 3 

S q r t ] 
2 2 

b 3 q 3 

2 2 2 
( 3 b l - 3 q q l + 3 q l -

2 b l q l S q r t [ 

4 2 2 4 2 2 2 2 4 

- b l + 2 b l q q l - q q l + 2 b l q l + 2 q q l q l - q l ] 

2 2 
b l q l 

3 S q r t [ 2 ] b l s + 3 S q r t [ 6 ] b l s ) 

2 2 2 
( S q r t [ 3 ] b 3 - S q r t [ 3 ] q q 3 + S q r t [ 3 ] q 3 + 3 S q r t [ 2 ] b 3 s -

S q r t [ 6 ] b 3 s - b 3 q 3 

4 2 2 4 2 2 2 2 4 

- b 3 + 2 b 3 q q 3 - q q 3 + 2 b 3 q 3 + 2 q q 3 q 3 - q 3 

S q r t [ ] 
2 2 

b 3 q 3 

C o s [ t 3 ] ) ( 2 S q r t [ 3 ] b 2 q 2 

4 2 2 4 2 2 2 2 4 

- b 2 + 2 b 2 q q 2 - q q 2 + 2 b 2 q 2 + 2 q q 2 q 2 - q 2 

S q r t ] 
2 2 

b 2 q 2 

2 2 

, C o s [ t 3 ] - 2 S q r t [ 3 ] b 2 S i n [ t 3 ] + 2 S q r t [ 3 ] q q 2 S i n [ t 3 ] -

2 

. 2 S q r t [ 3 ] q 2 S i n [ t 3 ] + 

> b 2 q 2 S q r t [ 



4 2 2 4 2 2 2 2 4 
- b 2 + 2 b 2 q q 2 - q q 2 + 2 b 2 q 2 + 2 q q 2 q 2 - q 2 

] 

2 2 
b 2 q 2 

S i n [ t 3 ] - 6 S q r t [ 2 ] b 2 s S i n [ t 3 ] + 2 S q r t [ 6 ] b 2 s S i n [ t 3 ] ) ) / 

( 2 0 4 8 b l b 2 b 3 ) } } 



I **** (25) Output Results of Case 3 in Chapter 4 **** 
I **** (General Form Solutions) **** 

I 4 2 2 4 2 2 2 2 4 

I - b l + 2 b l q q l - q q l + 2 b l q l + 2 q q l q l - q l 

I o u t [ 4 9 ] = { { ( S q r t [ ] 
I 2 2 

b l q l 

4 2 2 4 2 2 2 2 4 

- b 2 + 2 b 2 q q 2 - q q 2 + 2 b 2 q 2 + 2 q q 2 q 2 - q 2 

> S q r t [ ] 
2 2 

r b 2 q 2 I 
I 4 2 2 4 2 2 2 2 4 

- b 3 + 2 b 3 q q 3 - q q 3 + 2 b 3 q 3 + 2 q q 3 q 3 - q 3 

> S q r t [ ] 
2 2 

b 3 q 3 

2 2 2 
> ( 2 S q r t [ 3 ] b 2 - 2 S q r t [ 3 ] q q 2 + 2 S q r t [ 3 ] q 2 + 

> S q r t [ 2 ] b 2 q 2 S q r t [ 

4 2 2 4 2 2 2 2 4 

. - b 2 + 2 b 2 q q 2 - q q 2 + 2 b 2 q 2 + 2 q q 2 q 2 - q 2 
> ] 

2 2 
b 2 q 2 

> 6 S q r t [ 2 ] b 2 s - 2 S q r t [ 6 ] b 2 s ) 

2 2 2 
> ( - ( S q r t [ 6 ] b 3 ) + S q r t [ 6 ] q q 3 - S q r t [ 6 ] q 3 + 6 b 3 s + 

> 2 S q r t [ 3 ] b 3 s - S q r t [ 2 ] b 3 q 3 

4 2 2 4 2 2 2 2 4 

:: - b 3 + 2 b 3 q q 3 - q q 3 + 2 b 3 q 3 + 2 q q 3 q 3 - q 3 

> S q r t ] 
2 2 

b 3 q 3 

> C o s [ t 3 ] - 2 S q r t [ 2 ] b 3 q 3 

4 2 2 4 2 2 2 2 4 

‘ - b 3 + 2 b 3 q q 3 - q q 3 + 2 b 3 q 3 + 2 q q 3 q 3 - q 3 

> S q r t ] 
2 2 

b 3 q 3 

: > S i n [ t 3 ] ) ( 2 b l q l S q r t [ 
V 

I 
J 4 2 2 4 2 2 2 2 4 

f - b l + 2 b l q q l - q q l + 2 b l q l + 2 q q l q l - q l 
> ] 

I 2 2 
\ b l q l 

I 



Cos [t3] + Sqrt [3] bl Sin[t3] - Sqrt [3] qql Sin[t3] + 

2 
S q r t [ 3 ] q l S i n [ t 3 ] - 3 S q r t [ 2 ] b l s S i n [ t 3 ] -

S q r t [ 6 ] b l s S i n [ t 3 ] ) ) / ( 2 0 4 8 b l b 2 b 3 ) -

4 2 2 4 2 2 2 2 4 

- b l + 2 b l q q l - q q l + 2 b l q l + 2 q q l q l - q l 

( S q r t [ ] 
2 2 

b l q l 

4 2 2 4 2 2 2 2 4 

- b 2 + 2 b 2 q q 2 - q q 2 + 2 b 2 q 2 + 2 q q 2 q 2 - q 2 

S q r t [ ] 
2 2 

b 2 q 2 

4 2 2 4 2 2 2 2 4 

- b 3 + 2 b 3 q q 3 - q q 3 + 2 b 3 q 3 + 2 q q 3 q 3 - q 3 

S q r t 
2 2 

b 3 q 3 ‘ 

2 2 2 
( S q r t [ 6 ] b l - S q r t [ 6 ] q q l + S q r t [ 6 ] q l -

2 S q r t [ 2 ] b l q l S q r t [ 

4 2 2 4 2 2 2 2 4 

- b l + 2 b l q q l - q q l + 2 b l q l + 2 q q l q l - q l ] + 

2 2 
b l q l 

6 b l s - 2 S q r t [ 3 ] b l s ) 

2 2 2 
( S q r t [ 3 ] b 3 - S q r t [ 3 ] q q 3 + S q r t [ 3 ] q 3 + 3 S q r t [ 2 ] b 3 s -

S q r t [ 6 ] b 3 s - b 3 q 3 

4 2 2 4 2 2 2 2 4 

- b 3 + 2 b 3 q q 3 - q q 3 + 2 b 3 q 3 + 2 q q 3 q 3 - q 3 
S q r t [ ] 

2 2 
b 3 q 3 

C o s [ t 3 ] ) ( 2 S q r t [ 2 ] b 2 q 2 

4 2 2 4 2 2 2 2 4 

- b 2 + 2 b 2 q q 2 - q q 2 + 2 b 2 q 2 + 2 q q 2 q 2 - q 2 

_ S q r t ] 
2 2 

b 2 q 2 

2 2 
> C o s [ t 3 ] - 2 S q r t [ 3 ] b 2 S i n [ t 3 ] + 2 S q r t [ 3 ] q q 2 S i n [ t 3 ] -

2 
> 2 S q r t [ 3 ] q 2 S i n [ t 3 ] + 

> S q r t [ 2 ] b 2 q 2 S q r t [ 



4 2 2 4 2 2 2 2 4 
- b 2 + 2 b 2 q q 2 - q q 2 + 2 b 2 q 2 + 2 q q 2 q 2 - q 2 

] 

2 2 
b 2 q 2 

S i n [ t 3 ] - 6 S q r t [ 2 ] b 2 s S i n [ t 3 ] + 2 S q r t [ 6 ] b 2 s S i n [ t 3 ] ) ) / 

( 2 0 4 8 b l b 2 b 3 ) } } 



r 
t (26) Output Results of Case 4 in Chapter 4 **** 
t **** (General Form Solutions) **** 
r **** Theta 1 is 90 Degree and theta 2 is 15 Degree **** 

I 4 2 2 4 2 2 2 2 4 

j - b l + 2 b l q q l - q q l + 2 b l q l + 2 q q l q l - q l 

t O u t [ 4 9 ] = { { ( S q r t [ ] 
J 2 2 

b l q l 

4 2 2 4 2 2 2 2 4 

- b 2 + 2 b 2 q q 2 - q q 2 + 2 b 2 q 2 + 2 q q 2 q 2 - q 2 

I > S q r t [ ] 
2 2 

1 b 2 q 2 
..:.I 

4 2 2 4 2 2 2 2 4 

- b 3 + 2 b 3 q q 3 - q q 3 + 2 b 3 q 3 + 2 q q 3 q 3 - q 3 

> S q r t 
2 2 

b 3 q 3 

2 2 2 
> ( 4 S q r t [ 3 ] b 2 - 4 S q r t [ 3 ] q q 2 + 4 S q r t [ 3 ] q 2 + 

t • 
I , 

> S q r t [ 2 ] b 2 q 2 S q r t [ 

4 2 2 4 2 2 2 2 4 
- b 2 + 2 b 2 q q 2 - q q 2 + 2 b 2 q 2 + 2 q q 2 q 2 - q 2 

] + 
> 

I 2 2 
b 2 q 2 

> S q r t [ 6 ] b 2 q 2 S q r t [ 

‘ 4 2 2 4 2 2 2 2 4 

- b 2 + 2 b 2 q q 2 - q q 2 + 2 b 2 q 2 + 2 q q 2 q 2 - q 2 

> ] 
2 2 

\ b 2 q 2 
I 

> 1 2 S q r t [ 2 ] b 2 s - 4 S q r t [ 6 ] b 2 s ) 

2 2 2 2 
> ( - 3 S q r t [ 2 ] b 3 + S q r t [ 6 ] b 3 + 3 S q r t [ 2 ] q q 3 - S q r t [ 6 ] q q 3 

2 2 
I > 3 S q r t [ 2 ] q 3 + S q r t [ 6 ] q 3 + 4 S q r t [ 3 ] b 3 s + 

I 
r > S q r t [ 2 ] b 3 q 3 S q r t [ 
I 

4 2 2 4 2 2 2 2 4 

- b 3 + 2 b 3 q q 3 - q q 3 + 2 b 3 q 3 + 2 q q 3 q 3 - q 3 
{ > ] 

2 2 

b 3 q 3 

‘ > C o s [ t 3 ] - S q r t [ 6 ] b 3 q 3 

4 2 2 4 2 2 2 2 4 

- b 3 + 2 b 3 q q 3 - q q 3 + 2 b 3 q 3 + 2 q q 3 q 3 - q 3 

> S q r t ] 
2 2 



b3 q3 

Cos[t3] - 2 Sqrt [2] b3 q3 

4 2 2 4 2 2 2 2 4 

- b 3 + 2 b 3 q q 3 - q q 3 + 2 b 3 q 3 + 2 q q 3 q 3 - q 3 

S q r t [ ] 
2 2 

b 3 q 3 

S i n [ t 3 ] - 2 S q r t [ 6 ] b 3 q 3 

4 2 2 4 2 2 2 2 4 

- b 3 + 2 b 3 q q 3 - q q 3 + 2 b 3 q 3 + 2 q q 3 q 3 - q 3 

S q r t [ 
2 2 

b 3 q 3 

S i n [ t 3 ] ) ( 2 b l q l S q r t [ 

4 2 2 4 2 2 2 2 4 

- b l + 2 b l q q l - q q l + 2 b l q l + 2 q q l q l - q l 

2 2 
b l q l 

2 2 
C o s [ t 3 ] + S q r t [ 3 ] b l S i n [ t 3 ] - S q r t [ 3 ] q q l S i n [ t 3 ] + 

2 

S q r t [ 3 ] q l S i n [ t 3 ] - 3 S q r t [ 2 ] b l s S i n [ t 3 ] -

S q r t [ 6 ] b l s S i n [ t 3 ] ) ) / ( 8 1 9 2 b l b 2 b 3 ) + 

4 2 2 4 2 2 2 2 4 

- b l + 2 b l q q l - q q l + 2 b l q l + 2 q q l q l - q l 

( S q r t ] 
2 2 

b l q l 

4 2 2 4 2 2 2 2 4 

- b 2 + 2 b 2 q q 2 - q q 2 + 2 b 2 q 2 + 2 q q 2 q 2 - q 2 

S q r t ] 
2 2 

b 2 q 2 

4 2 2 4 2 2 2 2 4 

- b 3 + 2 b 3 q q 3 - q q 3 + 2 b 3 q 3 + 2 q q 3 q 3 - q 3 

• S q r t 
2 2 

b 3 q 3 

2 2 2 2 
> ( - 3 S q r t [ 2 ] b l + S q r t [ 6 ] b l + 3 S q r t [ 2 ] q q l - S q r t [ 6 ] q q l -

2 2 
> 3 S q r t [ 2 ] q l + S q r t [ 6 ] q l + 

> 2 S q r t [ 2 ] b l q l S q r t [ 

4 2 2 4 2 2 2 2 4 

- b l + 2 b l q q l - q q l + 2 b l q l + 2 q q l q l - q l 
> ] + 

2 2 



bl ql 

2 Sqrt[6] bl ql Sqrt[ 

4 2 2 4 2 2 2 2 4 

- b l + 2 b l q q l - q q l + 2 b l q l + 2 q q l q l - q l ] + 

2 2 
b l q l 

1 2 b l s - 8 S q r t [ 3 ] b l s ) 

2 2 2 
( S q r t [ 3 ] b 3 - S q r t [ 3 ] q q 3 + S q r t [ 3 ] q 3 + 3 S q r t [ 2 ] b 3 s -

S q r t [ 6 ] b 3 s - b 3 q 3 

4 2 2 4 2 2 2 2 4 

- b 3 + 2 b 3 q q 3 - q q 3 + 2 b 3 q 3 + 2 q q 3 q 3 - q 3 

S q r t ] 
2 2 

b 3 q 3 

C o s [ t 3 ] ) ( - 2 S q r t [ 2 ] b 2 q 2 

4 2 2 4 2 2 2 2 4 

- b 2 + 2 b 2 q q 2 - q q 2 + 2 b 2 q 2 + 2 q q 2 q 2 - q 2 

S q r t 
2 2 

b 2 q 2 

C o s [ t 3 ] + 2 S q r t [ 6 ] b 2 q 2 

4 2 2 4 2 2 2 2 4 

_ b 2 + 2 b 2 q q 2 - q q 2 + 2 b 2 q 2 + 2 q q 2 q 2 - q 2 

S q r t 
2 2 

b 2 q 2 

2 2 
C o s [ t 3 ] - 4 S q r t [ 3 ] b 2 S i n [ t 3 ] + 4 S q r t [ 3 ] q q 2 S i n [ t 3 ] -

2 

4 S q r t [ 3 ] q 2 S i n [ t 3 ] + 

S q r t [ 2 ] b 2 q 2 S q r t [ 

4 2 2 4 2 2 2 2 4 

- b 2 + 2 b 2 q q 2 - q q 2 + 2 b 2 q 2 + 2 q q 2 q 2 - q 2 ] 

2 2 
b 2 q 2 

S i n [ t 3 ] + S q r t [ 6 ] b 2 q 2 

4 2 2 4 2 2 2 2 4 

- b 2 + 2 b 2 q q 2 - q q 2 + 2 b 2 q 2 + 2 q q 2 q 2 - q 2 
S q r t ] 

2 2 
b 2 q 2 

. s i n [ t 3 ] - 1 2 S q r t [ 2 ] b 2 s S i n [ t 3 ] + 4 S q r t [ 6 ] b 2 s S i n [ t 3 ] ) ) / 

, ( 8 1 9 2 b l b 2 b 3 ) } } 



pf 

* * * * ( 2 7 ) O u t p u t R e s u l t s o f C a s e 5 i n C h a p t e r 4 * * * * 

* * • * ( G e n e r a l F o r m S o l u t i o n s ) * * * * 
i * * * * T h e t a 1 i s 7 5 D e g r e e a n d t h e t a 2 i s 7 5 D e g r e e * * * * 

4 2 2 4 2 2 2 2 4 
- b l + 2 b l q q l - q q l + 2 b l q l + 2 q q l q l - q l 

r( O u t [ 4 8 ] = { { ( S q r t [ ] 
2 2 

b l q l 

j 4 2 2 4 2 2 2 2 4 

i - b 2 + 2 b 2 q q 2 - q q 2 + 2 b 2 q 2 + 2 q q 2 q 2 - q 2 

c > S q r t 
2 2 

S i b 2 q 2 
I • 

4 2 2 4 2 2 2 2 4 
- b 3 + 2 b 3 q q 3 - q q 3 + 2 b 3 q 3 + 2 q q 3 q 3 - q 3 

> S q r t 
2 2 

b 3 q 3 

2 2 2 2 
: > (3 S q r t [ 2 ] b 2 + S q r t [ 6 ] b 2 - 3 S q r t [ 2 ] q q 2 - S q r t [ 6 ] q q 2 + 

2 2 
j > 3 S q r t [ 2 ] q 2 + S q r t [ 6 ] q 2 + 

I > 6 b 2 q 2 S q r t [ 

4 2 2 4 2 2 2 2 4 

- b 2 + 2 b 2 q q 2 - q q 2 + 2 b 2 q 2 + 2 q q 2 q 2 - q 2 
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(28) Components Drawing of the Mechanical Model (Stewart Platform) 
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