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Abstract of thesis entitled: 
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for the degree of Master of Philosophy 

at The Chinese University of Hong Kong in July 2007 

RFID systems are widely used in many diverse applications at 

present due to their foreseeable high business value. With the 

development of integrated circuit, low-power semi-conductor, 

the RFID technology is approaching a critical price for large-

scale commercial logistic usages. Scientists envision that RFID 

technology is a main driving force for ubiquitous computing, 

which links the physical world with the virtual world. 

Tag-collision problem, which is caused by the tags' simulta-

neous responses to a reader, is one of the most important issues 

for RFID tag identification. This is critical for reading a large 

volume of tags at the same time without physical contact and 

orientation requirements. 

In this thesis we present an analysis of tag-collision resolution 

problem based on EPCglobal model. The tag-collision resolu-

tion protocol is a variation of the framed A L O H A protocol. A 

parameter Q, which controls the frame size, is assigned at the 

beginning at every inventory round. In the first part, we con-

struct a mathematical model, apply Dynamic Programming to 
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look for an optimal solution for the case of known tag set size 

in the perspective of the whole identification process. The pa-

rameter Q will be adjusted to fit the tag set size during the 

identification process. In the second part, we apply the result 

to a more general case, where the tag set size is unknown. W e 

make two modifications to the EPCglobal system and propose 

two estimation functions for estimating the number of remaining 

tags. From the simulation results, our protocol not only has the 

shorter identification time compared to the anti-collision proto-

col in previous literatures, but also guarantees 100% assurance 

level. 
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摘要 

射頻識別（RFID)因爲具有重大商業價值，目前正在被廣泛地應用到各個領 

域。隨著集成電路（IC)，低功耗半導體（low-powered semi-conductor)技術的 

發展，射頻識別技術的價格和性能慢慢達到大規模商業應用和物流運輸的 

層面。科學家預測射頻識別將是連接現實世界（physical world)與虛擬世界 

(virtual world)的普适計算（ubiquitous computing)的主要推動力量。 

在射頻識別的技術困難中，標簽衝突解決方案（tag-collision resolution) 

是其中一個重要課題。標簽衝突由多個標簽（tag)同時向閲讀器（reader)發 

送信息引起，並會導致信息丟失（data loss)。解決這個問題是發揮射頻識別 

不需要接觸和沒有發送指向限制（orientation requirements)而能同時讀取多 

個標簽的能力的關鍵所在。 

本論文在EPCglobal標準下，對系統模型進行標簽衝突解決方案的分 

析。此標簽衝突解決方案屬於幀時隙ALOHA (framed ALOHA)協議。在每 

輪識別（inventory round)前，閲讀器會把決定幀寬(frame size)的參數Q發送 

給標簽。我們通過建立数學模型、應用動態規劃（Dynamic Programming)的 

方法，為已知標簽败量（known tag set size)找到整個識別過程（identification 

process)的最優化（optimal)參數Q，使幀寬能夠適應剩餘未識別標簽數量的 

變化。我們再把結論推廣到未知標簽数量的一般情況，對EPCglobal的模型 

進行改進，提出兩個估計剩餘標簽数量的估計函数（estimation function)。我 

們對己知和未知標簽數量的情況進行模擬仿真。最優化參数標簽衝突解決 

方案跟靜態幀時隙ALOHA (static framed ALOHA)協議比較，不但有較短的 

平均標簽讀取時間，而且可以確定所有標簽都被讀取。 
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Chapter 1 

Introduction 

Radio Frequency IDentification (RFID) has been around 

for decades. It is used for hundreds, if not thousands, of ap-

plication such as providing transportation payment; preventing 

theft of merchandise, collecting tolls without stopping, gaining 

entrance to buildings, automating parking, controlling access 

of vehicles to gated communities, campuses and airports, and 

tracking library books. The most common use of this tech-

nology is in form of smart card, such as the popular Octopus 

Card. The classical usages of RFID are quite stand-alone that 

require point-to-point communications between reader and tags. 

However, with the recent development in the low-power semi-

conductor and microelectronics technologies, it is feasible to de-

ploy RFID tags with lower prices and increased capacities in 

large-scale systems. One of the deployments is supply chain 

management and article tracking. Large-scale deployment of 

RFID technology is extremely beneficial to the global retail and 

supply chain management systems, not only the pre-sail stages 

but also the post-sale stages. A tag can store much item infor-
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CHAPTER 1. INTRODUCTION 2 

mation such as manufacturer, ingredients, expiry date and so 

on. If the tag memory permits, additional information could 

also be stored such as the environmental condition (tempera-

ture, moisture, radiation), and the route from manufacturer to 

customer during the supply chain. At present, there are also 

many post-sale RFID applications, like expiry alert, medication 

compliance, and home navigation for the elderly and cognitively 

impaired. RFID tags act as a portable dynamic product infor-

mation database which realizes real-time product tracking. 

RFID is one of many tools that perform automatic collec-

tion of data. Similar tools are Bar Codes and credit cards with 

magnetic stripes on them. However, RFID differs from them 

in that it is capable of identifying in a distance without line-of-

sight transmission at higher speed. In this way, large amount 

of tags can be read by the same reader at the same time. Peo-

ple can control inventory more easily, and reduce shrinkage and 

misdirected shipments. Accenture research has shown that the 

use of an RFID-based system across a retail supply chain can 

yield 99 percent inventory accuracy and eliminate 95 percent 

of the labor involved in the cycle count [1]. In the near fu-

ture, people can shop in supermarket in this way: every item is 

tagged with RFID, people collect what they want, push a cart 

full of RFID-tagged items through an RFID-read gate, the sys-

tem checkouts all times and automatically deducts the money 

from their RFID-enabled credit cards. The whole process takes 

only a few seconds and they don't have to wait in a long queue. 

RFID promises to be an unobtrusive, practical, cheap, yet 

flexible technology for identification of individual instances. Its 
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reliability of identifying multiple objects is especially important 

if many objects are present at the same time. Consequently, 

anti-collision technique is one of the most interesting topis for re-

searchers. In this thesis, we propose an optimized anti-collision 

technique on the basis of EPCglobal Class-1 Generation-2 U H F 

RFID Protocol [2], then we extend this result to a more general 

case in the following chapter. 

This thesis is organized as follows. In Chapter 2, we overview 

the RFID technology and examine the wide range of its applica-

tions. In Chapter 3, we review the existing RFID anti-collision 

techniques and discuss about their limitations and shortcomings. 

Chapter 4 introduces the optimized anti-collision technique for 

EPCglobal protocol with detailed system model, mathematical 

model, derivation analysis. The performance evaluation is given 

at the end of this chapter. Chapter 5 extends the result of Chap-

ter 4 to a more general case by making a little modification to the 

system. The tag set size estimation methods and performance 

evaluation are presented. In Chapter 6, conclusions are drawn, 

some challenges for RFID systems, future research directions, 

and potential applications are discussed. 

• End of chapter. 



Chapter 2 

Technology Overview 

RFID technology is one form of Automatic Identification and 

Data Capture (AIDC), which refers to the methods of iden-

tifying objects, collecting data, and sending data directly to 

computer systems (i.e. without human involvement). Besides 

RFID, other major AIDC technologies include Bar Codes, Op-

tical Character Recognition (OCR), magnetic stripes, and in-

frared identification systems. The basic operating principle of 

RFID technology is to link reader and tags via electromagnetic 

waves for information collection. 

RFID offers many advantages, but only recently has the con-

vergence of lower cost and increased capabilities made it pos-

sible for large-scale commercial deployment. Retail giant like 

Wal-Mart in the U.S., Marks k Spenser in the U.K., Metro 

in Germany, and Mitsukoshi in Japan have implemented their 

RFID supply chain and retail systems. It is envisioned by sci-

entists that pervasive computing and ubiquitous sensing will be 

popular in the future world, in which RFID technology is one 

of the forerunners. This technology can help bridge the growing 
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CHAPTER 2. TECHNOLOGY OVERVIEW 5 

gap between the digital networked world and the physical world. 

In this chapter, we will go through the RFID history, overview 

the system components, summarize frequency regulations, intro-

duce the standardization organizations and their standards. The 

system architecture is also covered. In the end, we compare the 

pervasively used Bar Codes with RFID, and specify the usages 

of RFID systems in real-world applications. 

2.1 History 

RFID is a recent term given to a family of sensing technologies 

that has existed for around fifty years. As early as World War 

II’ in order to distinguish aircrafts from those of the enemies, 

the British military installed transponders, which are capable 

of giving appropriate responses, interrogating signals in their 

and their allies' aircrafts. This is the first commonly accepted 

use of RFID related technology in history [3]. The system did 

not allow determination of exact identification, which was called 

"identify friend or foe (IFF)". In 1948, the paper exploring RFID 

"Communication by Means of Reflected Power" [4] by Harry 

Stockman was published. 

After the World War II, RFID has undergone significant de-

velopment in the following 20 years. Commercial activities be-

gan in the 1960s. Sensormatic and Checkpoint were founded in 

the late 1960s. These companies, together with Knogo, devel-

oped electronic article surveillance (EAS) equipment to counter 

the theft of merchandise. The system used a simple type of tag 

called 1-b, which could be made inexpensively. But only the 
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presence or absence could be detected by the system. In the 

1970s, developers, inventors, companies, academic institutions, 

and government laboratories were actively working on RFID, 

such as Los Alamos Scientific Laboratory, Northwestern Uni-

versity, and the Microwave Institute Foundation in Sweden. In 

1975, Las Alamos published a paper on the first practical, com-

pletely passive tags with operational range of tens of meters. 

Throughout 1970s, intended RFID applications were for animal 

tracking, vehicle tracking, and factory automation with the key 

advancements of the low-voltage, low-power C M O S logic cir-

cuits. 

The 1980s became the decade for full implementation of RFID 

technology. Tags were built using custom C M O S integrated cir-

cuits as well as E E P R O M for large-scale manufacture. The tag 

size was further reduced while its capacity was increased. During 

this period, United States, Italy, France, Spain, Portugal, and 

Norway had great interest in transportation access and short-

range business systems. A key to these rapid RFID applications 

was the development of the personal computer (PC), which al-

lowed convenient and economical collection and management of 

date obtained from RFID systems. 

In the 1990s, RFID system further improved, while size and 

cost kept decreasing. The deployments for various functions 

emerged. Some of these include electronic tooling, access control 

and security, airline baggage handling, inventory management 

and asset tracking, and the closed related smart-cards, in the 

United States, Australia, Hong Kong, Canada, Japan and so on 

5]. With the advent of the Internet and increased development 
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in information technology, RFID systems have been provided 

with the infrastructure necessary to achieve penetration into new 

applications. 

( a )—•— ‘ (b) 

Figure 2.1: Evolution of RFID tags compared to a penny, (a) A 12-bit 

read-only tag in 1976. (b) A 128-bit read-only tag in 1987. (c) A 1024-bit 

read-write tag in 1999 [4]. 

In the 21st century, the RFID technology explosion continues 

with decreasing price and size and increasing capability. Tags 

could now be built as thin as a sticky labels, easily attached 

to objects. One of the most potential deployments is the sup-

ply chain management and article tracking using RFID applica-

tions. The AutoID center was organized at the Massachusetts 

Institute of Technology to bring together RFID manufacturers, 

researchers, and users to develop standards, perform research, 

and share information for supply chain applications. EPCglobal 

is working on the task of standards while International Stan-

dards Organization (ISO) also has active standard activities for 

a variety of applications. It is predicted that this trend will 

continue in the future. 

2.2 RF ID Systems 

A typical RFID system includes the following components: 
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• Tag. A transponder for storing item information which is 

tagged on the object to be identified of tracked . 

• Reader. A device to power the tag, collect data from it, 

write data to it based on the system command, and com-

municate with the software system. 

• Software system. A system to process, aggregate and 

extract information from the collected data by readers for 

different applications. 

• Air interface. The communication media of wired and 

wireless network for connecting the above system compo-

nents. 

2.2.1 Tag 

A tag, also called a transponder, normally consists of an RF-

coupling element (antenna) and an integrated chip (IC). The 

antenna is for receiving and transmitting signals with reader; 

the IC is mainly for data processing, protocol control, and data 

storage. Data stored in a tag is usually the information of man-

ufacturer, product category, serial number, shipment record, ex-

piry date, and other useful information for object identification. 

In terms of the availability of on-board power supply, RFID 

tags can be classified into three types: passive tag, active 
tag, and semi-passive tag. 

A passive tag does not have on-board power source so that 
its longevity is not limited by energy. It relies the continuous 

wave (CW) power emitted by reader to process the identifica-
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tion process. The communication from passive tag to reader is 

usually backscatter (high frequency passive tags) or load mod-

ulation (low frequency passive tags) [5]. Because of power con-

straint, the communication range for passive tags is from 2.5 

cm up to 10 m. In addition, it is the smallest in size and the 

cheapest in price, costing 10 U.S. cents or even lower. Nowadays, 

the most common formats used for passive tags are self-adhesive 

label, disk- or pill-shaped tag, and smart card. Passive tags typ-

ically operate at frequencies of 128kHz, 13.QMHz, 915MHz, or 
2AbGHz, . 

An active tag has an on-board source, which mainly con-
sists of batteries. It can transmit a stronger signal for a longer 

distance. The tag's command processing and data transmission 

depends on its power supply, so that its longevity is limited 

by the stored energy. The on-board power supply makes the 

circuit more complex, which making them larger and more ex-

pensive, so active RFID systems can support more complicated 

communication protocols and perform more complex tasks, such 

as tracking over long distance and sensing. With the on-board 

power source, active RFID tags operate at higher frequencies of 

AAbMHz, 2AbGHz, or b.SGHz, depending on the application's 
read range and memory requirements. Readers can communi-

cate with active RFID tags across 20 to 100 meters. 

A semi-passive tag has an on-board power source for its 
command processing and data operation like an active tag. But 

it uses the C W power from reader for data communication like 

a passive tag. The communication range for semi-passive tags 

can be up to 30 meters. 
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Another way of categorizing RFID tags is in terms of reading 

and writing capabilities. There are three categories, read only 
tag, write once-read many tag and read-write tag. 

In a read only tag, data is burned into tag's circuit at 

factory and cannot be modified during its whole life. 

A write once-read many tag can be programmed once, 
usually not by manufacturer but by user, for application specific 

purposes. 

A read-write tag can be rewritten many times for different 
application scenarios. 

Besides the above classifications, RFID tags are diversified in 

many other aspects, in size, shape, material and their capabili-

ties. Their sizes range from as small as O.Smm^ to several cm\ 
Their performances differ when attached to different materials. 

Some perform well when attached to wooden pallets but may 

not be good for metal container or liquids. Some are specially 

made for application to metal objects. Therefore, depending on 

different applications and different operating environments, vari-

ous types of tags should be deployed together for efficient system 

operation. Figure 2.2 shows some commercial RFID tags. 

2.2.2 Reader 

A reader (also called as interrogator) is a device to stimulate 

tags, read data, and transmit it via a network to the software 

system. Also, reader can command a tag and write data in its 
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I ^ ^ ^ ^ ^ f f 

^ f # f 一 - - 丨 

Figure 2.2: Some commercial RFID tags [7]. 

memory. Thus the term reader should be reader/writer. In 

the simplest case, reader powers passive tags, transmits a sim-

ple query, and any tags within the communication range reply 

with their contents. In the more sophisticated case, the reader 

needs to send authentication information and commands coded 

in the radio waves for the tags to reply. Key components of a 

typical RFID reader includes: transmitter, receiver, micropro-

cessor, memory, battery, and the communication interface to 

backend software system. 

RFID readers are of many types. For example, readers can 

use single channel or multiple channels for communications. Mul-

tiple channels readers can identify multiple tags simultaneously. 
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Readers can be portable or stationary. Stationary readers usu-

ally mount on a wall, doorway, or rest on a table or desktop. 

Goods that pass the communication area of readers can be iden-

tified and tracked, and their information will be sent to the 

database for further applications. Portable readers are more 

flexible for reading sparsely distributed objects. They can also 

be used in environments where it's difficult to install stationary 

RFID readers. 

2.2.3 Software system 

The software system commands a reader to read/write tags, pro-

cesses and analyzes data to advance various processes. A typical 

RFID software system includes controller, middleware and 

enterprise backend. 
The controller bridges hardware and software of the system, 

interfacing between a group of readers and the computer network 

and provide infrastructure connectivity to the various sensors 

and devices of a complete RFID systems. 

The middleware is used for filtering and aggregating the 

large amount of raw data obtained by the hardware, which is 

based on open standards which can be integrated with other 

existing software systems. It includes a balanced combination 

of core infrastructure and packaged application features such as 

device management, data collection and integration, acquisition 

and structuring, filtering and routing, and so on. 

The enterprise backend uses processed data from the mid-

dleware to make meaningful business decisions. 
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2.2.4 Communication infrastructure 

The communication infrastructure includes the whole set of con-

nections between different components of the RFID system. It 

consists of wired and wireless network to ensure the connectivity, 

security and reliability of the system operation. 

2.3 Frequency Regulations and Standards 

2.3.1 RFID frequency 

RFID tags and readers operate in several distinct frequency 

ranges. 

In low-frequency systems, a typical device would operate 

between \2b-\MkHz. This frequency range is characterized by 

long wave, and not very susceptible to opaque materials. Sys-

tems in low-frequency are mostly used for animal tagging, access 

control and vehicle immobilizers. The communication range for 

low-frequency tags can be from a few centimeters to 50cm. 

High-frequency systems is within the frequency range of 

13.553-15.567M//2；. They are suitable for applications with low 

data rate and short reading distance, such as smart cards, ac-

cess control, luggage control, libraries, and apparel management. 

Radio waves of this band can penetrate water but not metal. 

Ultra-high-frequency systems operate in the frequency of 

860-930MHz. This frequency band supports longer read dis-

tance and faster data rate. Active RFID systems normally op-

erate in this band. The penetration of electromagnetic waves 

through metal and water is lower than that of the lower fre-
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quency bands. 

Microwave systems operate at 2 AG Hz. The read range 

is up to about 10 meters for passive tags and 100 meters for 

active tags. RFID systems of this band are normally used in 

production lines since they can resist strong electromagnetic in-

terference of electric motors. 

2.3.2 Standards 

As RFID systems emerge from experiments and military us-

ages to commercial applications, standards are necessary, which 

include power level, duty cycle of radio signal, frequency band, 

type of coding and modulation scheme, and communication pro-

tocol. Nowadays, RFID standards are published and managed 

worldwide by several companies, like Philips I.CODE. Some or-

ganizations are also working on the standards: 

• ANSI (American National Standards Institute) standards. 

• EPCglobal standards. 

• ISO (International Organization for Standardization) stan-

dards. 

• ETSI (European Telecommunications Standards Institute) 

standards. 

The existing and proposed RFID standards by these orga-

nizations mainly deal with the air interface protocol, data con-

tent, conformance and applications. A m o n g the above four stan-

dardization bodies, ISO and EPCglobal are the most influential. 



CHAPTER 2. TECHNOLOGY OVERVIEW 15 

ISO has created standards for system air interface in contactless 

smart cards (IS014443 series) and in vicinity cards (IS015693), 

as well as in automatic identification and item management 

(ISO 18000). EPCglobal has released standards for supply chain 

management systems. A detailed summary of ISO standards 

and EPCglobal standards can be found in [8 . 

EPCglobal has designed a set of technologies called EPC-

global Network, which cooperatively provides real-time object 

tracking and data sharing for both intra-organization and inter-

organization uses. The network architecture is made for RFID 

based supply chain management systems. The EPCglobal Net-

work includes the following components: 

• Electronic Product Code (EPC). A unique identifier for ev-

ery item with length of 64-bit or 96-bit. 

• E P C tags and readers 

• E P C middleware. It serves as managing readers to get, 

filter, and transform data into useful information for further 

applications. 

• E P C Information Services (EPCIS). It can be used to al-

locate information through E P C codes for various business 

decisions. 

• Object Naming Service (〇NS). A service mapping the E P C 

codes to recognized EPCIS in the supply chain. 

Figure 2.3 shows the architecture of EPCglobal Network. 
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Figure 2.3: The EPCglobal Network architecture. 

2.4 Technology Comparison and RF ID Ap-

plications 

Functionally, RFID tags are sometimes viewed as a very pow-

erful upgrade for the Bar Codes. It is natural, therefore, to 

imagine the world in which RFID replaces Bar Codes. How-

ever, Bar Codes systems are so well developed nowadays that 

billions of dollars have been invested in them and the other sys-

tems that depend on their output, many aspects must be taken 

into consideration on the subject of transformation from Bar 

Codes to RFID system. This section will begin with a compari-

son between RFID and Bar Codes systems, examining their own 

strengths, weaknesses, and associated costs. Then in the second 

part, we will briefly describe the wide variety of applicability of 

RFID technology. 

2.4.1 Technology Comparison 

Bar Codes and RFID have very different advantages and dis-

advantages. Although there are sound reasons to replace Bar 
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Codes with RFID tags in specific circumstances, Bar Codes is 

still superior than others in some aspects. 

Bar Codes is a significant progress compared to the manual 

processes they usually replace. The statistics shows that the 

overall accuracy of Bar Codes reading is one error per three 

million reads [9]. Bar Codes are relatively simple and cost effec-

tive in coding, materials for computer identification, tracking, 

reporting, and analysis of static information. Its advantages are 

as follows: 

• Cost. Bar Codes systems are cheaper in implementing. 

Currently, ordinary cost of RFID tags approaches five cents 

per tag while a Bar Codes tag costs less than one cent. 

For the reader, a RFID hand-held reader is worth 800 U.S. 

dollars compared to Bar Codes hand-held scanner of 400 

U.S. dollars. 

• Ubiquity and Acceptance. Bar Codes systems have 

been implemented for many years. Its ubiquity and ac-

ceptance outweigh those of RFID systems. 

• Human Readable. Bar Codes are usually human read-

able in that words and number are printed under the codes 

so that people can recognize if necessary. 

• Standards. Using Bar Codes systems is not restricted by 

any international regulations, compared with the situation 

that available frequency ranges are strictly controlled in 

most countries. 

• Privacy concern. Bar Codes raise no privacy issues. They 
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only indicate the type of the items and would not raise any 

tracking or eavesdropping problems after sales. 

• Material constrains. There is no materials limitation on 

Bar Codes. Tags can be attached to metal, liquids or any 

type of products in Bar Codes system. 

Also, RFID technology outweighs Bar Codes in the following 

aspects: 

• Data rewritable. Some of RFID tags' data content can 

be changed and added to, like a read-write tag. It is very 

convenient for supply chain management to add data, such 

as temperature, moisture, radiation, routes, and dates. 

• Non line-of-sight. Direct Line-of-sight is not required to 

read a tag, but Bar Codes scanners need to have a clear 

visible access to the labels. This advantage indicates that 

RFID system could work with less human involvement. 

• Communication range. RFID tags can be read over 

much greater distances than Bar Codes. Usually Bar Codes 

must be within half a meter of scanner in order to be read-

able. As mentioned in Section 2.2.1, the read range of pas-

sive tags can be several meters while that of active tags can 

be up to tens of meters. 

• Storage capacity. Storage capacity is another strength of 

RFID technology. The most popular Bar Codes store only 

11 characters of useful data, while the RFID tags can hold 

substantially more data. 
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• Multiple tag identification. Multiple tag identification 

is the main strength that RFID technology over Bar Codes. 

Multiple tags can be recognized by a reader in RFID, how-

ever, only one label at a time can be read in Bar Codes 

system through the same scanner. 

• Reliability. RFID tags can survive hostile environments, 

when painted over, buried in dirt, or covered by snow, and 

it is less likely to produce errors in identification. 

2.4.2 RF ID Applications 

RFID is a powerful and capable addition to the collection tech-

nology, and offers the potential of significantly increasing the 

working efficiency. Several signature applications have taken 

place in recent years, including: 

• The retail initiative for supply chain RFID, begun by Wal-

Mart. 

• The initiative for airline baggage tracking, in Hong Kong 

International Airport and the Las Vegas McCarran Airport. 

• Passports with implanted tags issues by the U.S. Depart-

ment of State. 

• The express payment program at American Express Ex-

pressPay. 

• The Boeing initiative for manufacturing optimization. 

Figure 2.4 shows some commercial RFID devices. 
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Figure 2.4: Some commercial RFID devices: a car key containing a passive 

tag (upper left), An EzPass helping collect highway tools (upper right), A 

SmarTrip card collecting fards in a public transit system (bottom) [6]. 

RFID applications fall into two principal categories. The 

first is short-range applications, which are characterized by the 

need for tag and reader to be in close proximity to one an-

other, as in access control or secure-ID applications. Short-

range RFID applications include access control, transportation 

ticketing, personnel identification, blood, tissue and organ iden-

tification, inmate identification, hazardous waste monitoring, 

fleet management, vehicle identification, pigeon racing, produc-

tion line monitoring, car body production, and passport secu-

rity. The second major usage is the medium-to-long-distance 

application set, which allows the distance between the two to 

be significantly greater, as in tollbooth and some inventory-

control applications. Long-range RFID applications include sup-
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ply chain management, mail and shipping, clothing tags, library 

and rental companies, baggage handling, and food production 

control. 

Besides the commercial deployment of RFID technology, it is 

also applied in military usages. Since 2004, the U.S. Department 

of Defense (DoD) began to implement passive-RFID system to 

support the loading or supplies into cargo containers to reduce 

manual errors and enhance the efficiency. The ninth version 

of "Suppliers' Passive RFID Information Guide “ was released 

recently, stating the system requirements for its suppliers. 

• End of chapter. 



Chapter 3 

Research Background 

RFID systems have been commercially employed to applications 

for a period such as car immobilization, and animal tracking. 

Most of these systems use active tags. Other applications typ-

ically involve identifying a single RFID tag at a time, such as 

electronic article surveillance, where recognizing only one unpaid 

item is sufficient to take appropriate measures. Recently, with 

the development of integrated circuits, RFID tags are armed 

with more powerful computation and communication capacity. 

The energy needed by tags, passive or active, drops to a few 

milliwatts or even less than a milliwatt, while the memory size 

increase to up to 8000 bit per tag. 

Price of a passive tag has dropped to the critical price point 

for item-level tagging, which is less than 10 U.S. cent per item 

10]. RFID systems are being adopted in the supply chain man-

agement systems for item tracking and inventory control in var-

ious processing stages. The most unique advantage of RFID 

over other AIDC technologies is the ability to identify multiple 

tags simultaneously without physical contact and orientation 

22 
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requirements. This feature is so useful that it can reduce the 

human labor involved. It can also help to reduce the mistakes 

induced by human. However, the word "simultaneously" does 

not imply working at the same time exactly. If without cer-

tain arrangement, the tag responses will bring severe collisions. 

Thus, anti-collision technique is needed to solve the problem. 

In this thesis, we propose tag-collision resolution protocol for 

low-cost passive RFID systems solving the tag collision. Since 

active tags are similar to passive tags except for the availability 

of on-board power source and other complicated functions, the 

proposed techniques can also be applied to active RFID systems. 

The proposed protocols should have better performance indices 

and low complexity. In this chapter we will introduce two kinds 

of anti-collision methods for RFID systems, deterministic type 

and stochastic type. 

3.1 Tag-Collision Resolution Techniques for 

RF ID systems 

While within the communication range and being requested by 

a reader, RFID tags may respond at the same time with in-

ternal energy (for active tags) or external energy (for passive 

tag). These simultaneous responses cause mutual interference, 

and thus lead to data loss. Reader cannot obtain useful informa-

tion and tags have to repeat transmission again. This problem 

in RFID system is similar to those multiple access problems 

in the classical communication systems with solutions such as 

Tree-based protocol, ALOHA-based protocol, and Carrier Sense 
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Multiple Access (CSMA) protocol families. But RFID system is 

constrained by low computational capability and small on-chip 

memory. So it must be optimized for low power operations and 

short communication time. 

Classical tag-collision resolution techniques can be classified 

into four categories: time, frequency, code, and space [5] [11 . 

System would assign resource for users to transmit back in dif-

ferent time, frequency, code, or space for collision resolution. In 

RFID systems, although frequency collision resolution schemes 

can be achieved using transponders on tags and readers, this 

would lead to high costs due to installation of accurate selection 

bandpass filters and modulator for receiving and transmission. 

Another scheme, code collision resolution would involve with 

complicated time and frequency synchronization, which is also 

a challenge for low-cost large-scale passive tag system. For the 

C S M A protocol families, low-cost tags are not able to sense the 

medium, so the more efficient CSMA-based schemes are not ap-

plicable to RFID. 

The space collision resolution scheme is applicable for RFID 

in some aspects, which reuses channel capacity in spatially sepa-

rated areas. There are two ways to implement. One is to adjust 

readers' communication range, constructing a reader array to 

provide coverage. The other is to use directional antenna on the 

reader, so that various tag can be differentiated by their angular 

position. But the second method cannot resolve the high-density 

tags situation, in which the angle between two tags is smaller 

than the beam width of directional antennas. Besides, the cost 

for space collision resolution is the relatively high, which makes 
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it restricted to a few specialized applications. 

Most RFID systems apply time collision resolution scheme. 

This scheme can be classified into two categories: Reader- Talk-
First and Tag-Talk-First Currently, the majority of RFID 

systems work in Reader- Talk-First mode, either in determin-

istic type or stochastic type. In the following sections, we will 

overview these two types anti-collision protocols. 

3.1.1 Deterministic Collision-Resolution Technique 

Deterministic collision-resolution technique works as follows. When 

tags are within the communication range of a reader, the reader 

broadcasts a command based on tags' unique IDs. Then tags 

reply by matching the command with their IDs. This can be ef-

ficiently implemented via sequentially polling or some variations 

of binary search. Texas Instrument's Tag-It uses a variation of 

binary tree protocol [12]. SCS Corporation employs another de-

terministic anti-collision protocol [13]. Typical polling schemes 

can be time exhaustive, when there are a large number of tags 

in the interrogation zone. Additionally, the length and the dis-

tribution of IDs can affect the identification time significantly. 

W h e n the ID distribution is sparse and the length is long, the 

identification efficiency is low. 

Tree search algorithms based on recursively splitting groups 

of colliding tags into disjoint subsets are proposed and analyzed 

in [18]. Two performance indices are considered: time required 

for identification and power consumed by tags. It it concluded 

that without knowledge of number of tags, a 3-ary tree is opti-
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Figure 3.1: An example of identifying four tags using Query Tree. The left 

side is the communication between reader and tags, the right side is the 

corresponding binary query tree [16). 

mal; with knowledge of number of tags, a binary tree is optimal. 

In [16], an efficient memoryless protocol called Query-Tree pro-

tocol is proposed for low-cost RFID systems. In this protocol, 

a reader sends out certain prefix codes to tags, tags response 

by matching the prefix with their IDs. If there are more than 

two tags replying, the reader will append symbol 0 or 1 to the 

prefix and send out the command again until all the tags with 

the same prefix can be identified. The worst-case identification 

time is n{k + 2 — login) [16], where n is the number of tags 
and k is the length of ID string. Figure 3.1 shows identification 
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process of four tags with Query-Tree protocol. The table on the 

left shows communication commands between reader and tags. 

£ is the initialization query for building the Query-Tree. 0 and 

1 are for detecting the left child and right child for a node. The 

corresponding binary tree is on the right. 

Another paper [19] proposes a protocol by building a binary 

search tree according to the prefixes chosen randomly by tags 

rather than using their ID-based prefixes. The initial length 

of the prefix Query-Tree is 3-bit. If there are collisions among 

certain prefixes, collided tags will randomly append 1 bit behind, 

until all tags in the probe zone have been identified. The time 

complexity of this prefix Query-Tree protocol is much lower than 

of the Query-Tree protocol [16 . 

3.1.2 Stochastic Collision-Resolution Technique 

In stochastic collision-resolution technique, tags reply to reader's 

probe at randomly chosen slots. There are a number of varia-

tions based on the A L O H A protocol family. Many commercial 

RFID systems, such as Philips ICode [24] and B T G SuperTag 

25], have implemented the ALOHA-like collision resolution pro-

tocols. The IS015693 standard supports slotted-ALOHA. 

A m o n g the A L O H A family, framed-slotted A L O H A is usually 

preferred for RFID systems for theoretical and practical reasons. 

This protocol is an extension for slotted A L O H A , which group 

certain slotted slots into a time frame. Upon receiving command 

from the reader, tags will randomly choose a slot within the 

frame and reply in it. There are basic framed-slotted A L O H A 
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and dynamic framed-slotted A L O H A protocol depending the 

system requirement, tag capabilities, and frame size flexibility. 

In static framed-slotted A L O H A protocol, the frame size 

(number of time slots in a frame) is fixed during the identi-

fication process. Each tag randomly chooses a time slot and 

transmit. The procedure will repeat until all of tags have been 

identified. Sometimes, the procedure will stop when certain as-

surance level is reached, i.e. 99%. The implementation of this 

protocol is relatively simple and effective. But when frame size 

does not match tag set size, the identification efficiency will be 

degraded dramatically. In [21], a mathematical model is con-

structed for the passive tag framed-slotted A L O H A protocol 

under certain assurance level. The wireless channel and cap-

ture effect are also taken into consideration in this paper. 

In dynamic framed-slotted A L O H A protocol, the frame size 

can be adjusted according to the number of collisions within 

one frame. If the identification process begins with a relatively 

small frame size, the RFID systems will increase the frame size 

according to the number of collisions in order to improve the 

performance [5]. In [17], the author analyzed the framed-slotted 

A L O H A , constructed a Markov model for passive tags identifi-

cation. Optimal parameters such as frame size and number of 

inventory rounds can be derived based on the static tag set size. 

In [21], active-tag framed-slotted A L O H A protocol is discussed, 

and the identification time is shown. 

The performance of stochastic algorithms is not affected by 

the IDs，length and distribution of tags, so it has a shorter iden-

tification time compared with that of the deterministic algo-
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rithms. The stochastic algorithms can guarantee 100% reading 

probability while the deterministic type algorithms cannot. This 

comparison is based on the assumption without considering cap-

ture effect. In stochastic protocol, the "missed" tags caused by 

capture effect will wait for next frame. But in deterministic 

protocol, if a ID string is covered by another strong ID signal, 

the tag will be lost. Figure 3.2 shows an example of stochastic 

type collision-resolution technique, identifying four tags in three 

frames, with static frame size of 4. 

Tag 1 I I 

Tag 2 [ | � — 1 

Tag 3 | | I I | 

Tag 4 | | | | | | 

I Ii 11IIII11 I B W I I B M I I I I I i I 

Figure 3.2: An example of identifying four tags using framed-slotted ALOHA 

protocol with three frames, four slots in a frame. 

• End of chapter. 



Chapter 4 

Optimized Anti-Collision 

Protocol 

In this chapter, we consider an optimized anti-collision protocol 

based on EPCglobal protocol [2], whose multiple access scheme 

is of stochastic type. W e will try to optimize the parameters 

and evaluate the reading efficiency of the identification process 

by analysis and computer simulation. 

For Framed-ALOHA multiple access method analyzed in [17 

and [21], the frame size f (number of slots in a frame) is deter-
mined at the beginning of each inventory round (an inventory 

round contains initialization command followed by a frame of 

size /). O n being probed by the initialization command, each 

tag randomly chooses a time slot to reply to the reader and 

backscatters its ID. After receiving responses from all tags, the 

reader obtains a certain number of slots with a single response, 

a certain number of slots with no response, and a certain num-

ber of slots with multiple responses. Based on this information, 

frame size would be chosen and used until the identification pro-

cedure arrives at an assurance level, which can be defined as a 

30 
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probability a. For a given tag set size N, the system chooses the 

optimal frame size /* and the corresponding number of inven-

tory rounds Rnj to achieve the optimal total tag identification 

time, Ttotai = min(/* . RNJ)- In these papers, tags keep send-

ing their IDs in each inventory round without knowing their 

previous transmission is successful or not until the reader termi-

nates the identification process according to the assurance level 

a. In such a case, it is not guaranteed that all the tags can 

be identified. In order to address this problem, our optimized 

anti-collision protocol optimizes the identification time in the 

perspective of the whole identification process with 100% assur-

ance level. 

4.1 System Description 

The system model considered based on EPCglobal Radio-Frequency 

Identity Protocols Class-1 Generation-2 U H F RFID Protocol [2 

consists of a single reader and multiple tags. The Class-1 tags 

are passive, driven by power obtained from the C W transmission 

of the reader. Class-1 tags are simpler compared to Class-2, 3, 4 

tags in EPCglobal specifications. A Reader-Talk-First mode is 

adopted in the system, namely the tags listen to reader's com-

mand before they response. The tag-collision resolution tech-

nique is framed-slotted A L O H A protocol. The identification 

process between a reader and a number of tags consists of several 

inventory rounds. Each of them consists of two phases: Queries-
from-Reader and Responses-from-Tags. Tags cannot sense the 

channel before talk. Slot synchronization is provided by reader's 
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command. The communication between the reader and the tags 

is half-duplex. 

In the identification process, tags transit among four states: 

Ready, Arbitrate, Reply, and Acknowledged. Each transi-

tion is in commands of reader, which are Query, Query Rep, and 
Query Adjust. The following example illustrate the transitions 

among states and commands with one inventory round. 

W h e n energized at the beginning of each inventory round, 

tags transit to state Ready. After the frame size, which is set 

to be 2^, is sent by the reader in command Query, tags tran-
sit to state Arbitrate. Q is stored in 4 binary bits in a tag, 

hence Q varies from 0 to 15. Each tag loads an integer into its 

slot counter with uniform distribution in the range [0,2^ - 11, 

which specifies the slot in which the tag will response. W h e n 

the command Query Rep is broadcasted by a reader, a tag will 
decrement its slot counter by one. If the value in the slot counter 

reaches zero, a tag will transit to state Reply and backscatter a 

16-bit random number known as RN16. Otherwise, it will wait 

for the next command Query Rep and reply when its slot counter 
reaches zero. The reader can sense whether there is no reply, a 

single reply or a collision. Upon being informed of a single re-

ply by the reader, the tag will backscatter other information in 

its memory, transit to state Acknowledged, and remain silent 

in the rest identification process. If a collision occurs, tags will 

load 2 ^ - 1 into their slot counters again, which means they will 

not response in present inventory round and wait for the initial-

ization of the next one. All of the unsuccessfully identified tags 

will be probed and initialized at the beginning of next inventory 
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round. 

As Q ranges from [0,15], a single tag responds in an arbitrary 

slot with probability ranging from = 1 to = 0.000031. 

The Reader-to-Tag data rate is not specified, while the Tag-to-

Reader data rate ranges from 40kbps to 640A;6p5, denoted as 
Rdata- A typical tag identity consists of four data fields: RN16, 
PC (16-bit Protocol Control), EPC (Electronic Product Code) 

and CRC (16-bit Cyclic Redundancy Check). The EPC field 

can be arbitrarily long, but typically it is 64-bit or 96-bit in 

length in many commercial products. In our analysis and sim-

ulation, we assume the length of E P C field as 64-bit. The bits 

that tags backscatter to the reader are 112 bits in length. 

Figure 4.1 is an example for one tag reply. After the slot 

counter in a tag reaches zero, it backscatters RNIQ to the reader. 

If it is a single reply, it continues to backscatter other stored data 

and transit to state Acknowledged. 

门 R=>T Signaling \SmhaL Doscrintion 
_ I ^ y P Preamble {R=>T orT=>R) 
• — FS Frame-Sync 

丁 S i g n a l i n g ^ ^ 16-bit Random Number 

~ P ~ Query P RN16 FS ACK P PC | EPC | CRC-16 T i " QueryRep 

Figure 4.1: One Tag Reply [2], 

Figure 4.2 shows the system link timing. The time parame-

ters are defined as follows: time for interrogator transmission 

to tag response; T2 time required if a tag is to demodulate the 

reader signal; T3 time as interrogator waits to determine whether 

there is no reply in a slot. 
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Figure 4.2: Link Timing [2], 

Figure 4.3 shows an example of identifying eight passive tags, 

denoted by tag 1 to 8，by the EPCglobal protocol with static 

frame size f equals to 二 4. The number in each slot indicates 

the correspondent tag transmitting in that slot. In round 1, slot 

0，1，and 3 are collided with tag 1 and 5，tag 3, 2, and 7, and 

tag 5 and 8, respectively. Only tag 4 can be identified. The rest 

of seven tags retransmit in round 2, among which tag 2 and 3 

can be identified. The system repeats the communication round 

until round 4. Since there is no collision in it, the identification 

process has a total of four communication rounds to completely 

identify eight passive tags. 
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Identified 
Slot 0 1 2 3 tags 

Round 1 I 1,5 I 3’ 2,7 I 4 I I 4 

Slot 0 2 3 
Round 2 I 2 I 1,8 I 5.7 I 3 ~| I 2,3 

Slot 0 1 \ \ 2 3 
Round 3 I 1 I 7,8 I 6 I 5 | i . 5 .6 

Slot ~ 0 2 3 
Round 4 I 7 I 1 I 8 1 I 7.8 

Figure 4.3: An example of identifying eight tags by the protocol with frame 

size / = 4. 

4.2 Mathematical System Model 

In this section, we model the number of unidentified tags at 

the beginning of an inventory round as a Markov process. The 

work is based on the following assumptions: (i) The tag set size 

is known to the reader at the beginning of the identification 

process, (ii) No new tag enters into or existing one departs 

from the communication range during the identification process, 

(iii) Tags cannot sense the medium, they will assume there is a 

collision if they cannot receive the replies from the reader within 

certain period, defined as in Figure 4.2. (iv) Tags cannot 

communicate with each other so that they may choose the same 

slot to transmit, (v) The time for the reader to count down by 

one is defined as T^ait = Ti + T3 in Figure 4.2. 

In our model, slots in a frame are classified into three types. 
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If a slot contains no transmissions, it is called an empty slot or 
a zero slot. If exactly one tag transmits in a slot, we refer it as 
a singleton slot. If multiple tags transmit simultaneously, it is a 
collision slot. 

Assume the number of tags is known as N, and the frame size 

is In the identification process, we want to ensure as many 

singleton slots as possible. So it is natural to require > N. 
A modification of the EPCglobal protocol is needed. Each 

reader should be implemented a separate counter to count the 

number of singleton slots. According to assumption (i) and (ii), 

reader knows the exactly number of unidentified tags at the 

beginning of every inventory round. 

The sequence of events in an inventory round can be viewed 

as a process in which N tags randomly fill slots. Let /斗， 

r = 0，1,2，...，Â  denote the random variable that represents 

the number of slots filled with exactly r tags. For a collision 
slot, none of the tags can be identified. Hence, we only need to 

focus on ii\. Hence, the probability that there are m slots being 

filled with exactly one tag, Pr{(ii = m} for m = 1，2，…，TV - 2 

is 

P 咖 J 卯 — " ， 〜 助 厂 ) ， ( 4 . 1 ) 

G(M,n) = M-+ t {(-1)�M —_-幻 n {{n-j){M-j)]\. 
、 • jf—0 / 

(4.2) 

assuming all the slots are selected with equal probabilities. 

The justification for these equations is as follows. Suppose 
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we have a matrix Qj with N rows, each of which is for a tag, 

and f columns, each of which is for a slot in the frame with size 
/. Matrix Qj corresponds to the allocation of N tags to f slots: 
if tag i falls into slot j, Cij — 1; else Cij = 0. Totally there are 
fN such allocations. 

W e are interested in the case of m singleton slots, (m = 

0,1, • • •, N), where there are exactly m slots with exactly 1 tag 

in each of them. It can be represented by the matrices with m 
columns which satisfy HfLi Qj — 1, and f - m columns which 

satisfy EiliCu^l-

There are (工）ways of arranging these m columns. The first 

tag can be drawn from N of them, and the second tag must be 

drawn from iV — 1 of them, until the m-th is drawn from the 

remaining N - m 1 tags, as shown in (4.1). 

The G{f — m, N — m) function in (4.1) represents the arrange-
ments for the remaining f - m columns and N - m rows which 

satisfy E仏i Qj + 1. In total, there are (/ - possible 

arrangements, but we have to be careful to exclude those cases 

with at least one singleton slot. The first item of summation 

in (4.2), when k = I, minus the number of arrangements that 
there are at least one slot being filled with one tag. The tag 

and the slot are chosen among n and M options, respectively. 

So the number of the arrangements are ( M - over per-

mutation 1!. But the first item excludes the cases that there 

are two singleton slots. According to the inclusion-exclusion 

principle, we have to include the two singleton slots case, which 

\s k = 2, the second item of the summation in (4.2). But the 
three singleton slots case is included in the second item, we have 
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to exclude it again in the third item, where k = 3. Thus, by 

using inclusion-exclusion principle recursively, the function G 
determines the correct value for the number of the remaining 

arrangements satisfying E ^ i Qj 1- So the transition proba-

bility can be calculated from (4.1) and (4.2). 

Given Q = 2，iV = 4，the probabilities that there are m slots 

being filled with exactly one tag, m = 0,1,2, 3,4, are: 

Pr{fii = 0 } 二 0 . 1 5 6 2 . 

Pr{fxi = 1} = 0.1875. 

= 2} = 0 . 5 6 2 5 . 

Pr{ni = 3 } - 0. 

Pr{fii = 4} = 0.0938. 

The summation of the probabilities equals to one, which is 

E = k} = l. 
k=0 

For m = N — 1, and m = N the probabilities is shown to be 

= A^ — 1} = 0’ (4.3) 

and 

Pri^^i = N} = 1 - ( 1 - 去 ） . . . （ 1 - ¥ ) 1 斤 - ( 斤 - 1 ) 1 ’ ( 4 . 4 ) 

-/cx 

二 E h H . (4.6) 
respectively. (4.3) holds because if N — 1 tags are collision free, 
then the remaining tag cannot experience a collision. (4.6) holds 
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because there are N tags and N singleton slots, each of them 

fits one, so we choose N slots from the frame of size /. 

态 … … 為 0 

Figure 4.4: Markov Process Diagram. 

Define a random process, {x^, n = 0,1, 2, • • •} in which 

represents the number of tags remaining to be identified at the 

beginning of the n-th inventory round. The state transition is 

controlled by parameter qn. By the assumption, Xn is a Markov 

process with the transition probability 

Pij{N,Q) = = j|xn = i，•.. ’;ro =�o,gn = Q} 

= = jl̂ Tn = i，gn = Q}’ (4.7) 

which can be calculated from (4.1) and (4.6). Moreover, for 

i < j, it is impossible for the state to transit from i to j, thus 
Pij = 0. For i > j, the transition probability is given by 

= (4.8) 

That is, there are exactly i - j singleton slots in the last 
inventory round. Since N is assumed to be fixed, we denote 

Pij(N,Q) by PijiQ). 
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1 0 0 ••• 0 0 0 

1 0 0 ••• 0 0 0 

P2AQ) 0 P2,2{Q)… 0 0 0 

PN-I,O{Q) 0 PN-I,2{Q) ••• PN-I,N-2{Q) PN-I,N-I{Q) 0 

PNAQ) 0 PN,2{Q) ••• PN,N-2{Q) PN’N—I[Q) PNAQ) 

(4.9) 

The transition probability matrix given a Q parameter and 

a tag set size N is represented in (4.9) 

W e can combine state 0 and state 1. For simplicity denote 

the new state as 0. The transition matrix then assumes the 

following compact representation (4.10). 

‘ 1 0 ••• 0 0 0 

尸2，0(Q) P2,2{Q)… 0 0 0 

PN-IM) PN-IAQ) ••• PN-I,N-2{Q) PN-I,N-I{Q) 0 

PNAQ) PNAQ) ... PN,N-2{Q) PN,N-I{Q) PNAQ) 

(4.10) 

Let S = {2,3,...，A^ 0} denote the state space. The possible 

frame sizes are of the form with Q contained in the set 

Q={0，lr..’15}. 

4.3 Optimal Parameter 

For an RFID system, one of the most important performance in-

dices is the completion time for the identification process, which 
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clearly depends on the tag set size and the frame size. If the 

frame size is much larger than the tag set size, there may be un-

necessary delays within an inventory round. On the other hand, 

if the frame size is much smaller than the tag set size, let say 

Q = 4，TV = 50, most of the slots will contain collisions, causing 

a high number of inventory rounds. In order to find the optimal 

frame size, we apply the Dynamic Programming technique [15 

to our model. 

4.3.1 Stochastic Shortest Path 

The Markov process can be controlled by means of adjusting the 

frame size. Denote a control policy by p, which is a function for 
S to Q, determining the control parameter Q according to the 

state status i. Let p represents the set of all policies. The size 
of p is iVi6. 

To derive the optimal policy which yields the shortest com-

pletion time for the identification process, one defines in [15] an 

instant cost for each inventory round by means of the cost per 
stage function g : h 况，so that g{i, Q) is the duration of the 
inventory round given there are i unidentified tags at the begin-
ning of the round and frame size 2^. The destination state 0 is 

defined to be cost-free, that is g{0,Q) = 0 for all Q e Q. 
Q) can be computed by 

9(hQ)= E Pij{Q)9{hQJ), (4.11) 

where g{i, Q,j) is the duration of an inventory round that starts 

with state i and ends with state j given frame size for (i > j). 
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g(i, Q^j) can be represented of the form 
1 1 9/)?7c 

Q, j) = {i-j) • 1 ~ + • T職 u. (4.12) 

^data 
The first part is time for the identification of i—j tags, the second 
part is the total waiting time within one inventory round. 

Starting with a number of unidentified tags, a policy sequence 

TT = (pi,p2’. • .)，the cost function J : S ^ R is the total ex-
pected completion time satisfying 

「M-l 

JA^o) = lim E Y. 9{xk^Pk(xk)) . (4.13) 
M—oo L h o 

Call a policy sequence of the form ...) a stationary 
policy. For simplicity denote the corresponding cost function by 
Jf). 

For any cost function J, one can define a new cost function, 

TJ, by applying the Dynamic Programming mapping to it in 

the following way 

(TJ)(z) = min f； i E S. (4.14) 
ges j 二 

T can be viewed as a mapping from the space of cost function 
to itself. Note that TJ is the optimal cost function for the one-

stage problem that has per stage cost g and terminal cost J. 
Similarly, we define the mapping Tp so that TpJ is the cost 

function associated with the stationary policy p for the one-stage 
problem that has per stage cost g and terminal cost J. For any 

state i G we can represent it as 

E PiM綱), (4.15) 
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The cost functions J, TJ and TJp can be presented by N-

dimensional vectors. With a slight abuse of notation, we use 

these symbols to denote the corresponding vectors. 

For a stationary policy p , we denote the transition probabil-
ity matrix by Pp 

‘Poo(p(0)) Po2(p(0))…P,N{Pm -
P20(P(2)) P22園••• P2N園 

尸p — (4.丄 t)) 
‘ • • • . • • • • • • • • 

PNO{P{N)) PN2{P(N)) ... PNN{P{N))) 
匕 -J 

and the cost vector by gp 

9fj= . . (4.17) 

(4.15) can then be written in a vector notation 

TpJ = gp + PpJ. (4.18) 

From [15], the cost function Jp associated with the stationary 

policy p is the unique solution of equation 

Jp = TpJp = gp + PpJp, (4.19) 

(4.19) can be viewed as a system of N linear equations with 

N unknowns. The equation can also be written as 

[I-Pp)Jp = gp. (4.20) 

Jp = {i- PpY'gp- (4.21) 
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4.3.2 Optimal Parameter 

In this section, we obtain the optimal Q parameter for a given 

tag set size using policy iteration as defined in [15]. Policy it-

eration is an algorithm that starts from a given policy p^, and 

generates a sequence of policies, p^, ... , each of which 

improves the cost over the preceding one. The policy iteration 

algorithm [15] has the following steps: 

Step 1: (Initialization) Assign a as a given initial policy. 

Step 2: (Policy Evaluation) Given a policy p^, compute 

the corresponding cost function Jpk from the linear system of 

equations 

Jp̂  = (/-PpO"'v- (4.22) 

Step 3: (Policy Improvement) Obtain a new policy 

satisfying 

= \g(hQ)+ E Pij{Q)Jp^{j)]. (4.23) 

If Tpk+iJpk = Jpk, stop the iteration; else return to Step 2 

and repeat the process. 

It is proved in [15] that an improved policy is generated at 

every iteration, it follows that the algorithm will yield an optimal 

stationary policy in a finite number of iterations. Moreover, this 

stationary policy satisfies the equation. 

Tpk+\Jpk = Jpk, (4.24) 
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4.4 Performance Evaluation 

In this section, we will firstly investigate the initial policy of 

optimized anti-collision protocol in the perspective of the tra-

ditional A L O H A research result and obtain the optimal policy. 

In the second part, we will compare the performance of our op-

timized anti-collision protocol with the static framed A L O H A 

one. 

4.4.1 Initial and Optimal Policy 

As discussed in Section 4.2, there are N tags in the communica-

tion range, no tag enters or leaves this range in the process. The 

frame size should be no smaller than the tag set size, which is 

> N. O n the other hand, from the Abramson's result [20] of 

slotted A L O H A protocol, the relationship between offered load 

L and throughput S is as follows: 

S = L • e�-L�, (4.25) 

Table 4.1: Policy Iteration for tag set size within 50. 

Q value p^ p2 p3 

1 0 - 2 0 - 2 0 - 2 0 - 2 

2 3 - 4 3 - 5 3 - 5 3 - 5 

3 5 - 8 6 — 10 6 - 11 6 - 11 

4 9 - 16 11 - 21 12 — 22 12 - 23 

5 17 - 32 22 - 42 23 - 47 24 - 47 

6 33 - 50 43 - 50 48 - 50 48 - 50 
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Figure 4.5: Throughput curve of slotted ALOHA protocol. 

It implies that the maximum throughput S* can be obtained 
when offered load L equals to 1, so we may set the frame size as 
close to the tag size as possible. For a heuristic approach, one 

can guess the initial stationary policy accordingly. Frame size 

of is assigned for tag set with size from to - 1. For 

example, Q = 4 is assigned to tag set with size of 8 to 15. 

In simulations with a tag set size of 50, the optimal stationary 

policy is found after three iterations. The policies of Q assign-

ment of each iteration are summarized in Table 4.1. 

First of all, we compare the performances between the initial 

policy and the optimal policy. The Q value assignments of both 

policies are shown in Figure 4.6. 
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Figure 4.6: Optimal Q value assignment of initial and optimal policies, for 

known tag set size under 50. 

Figure 4.7 illustrates the expected identification time for ini-

tial policy and optimal policy in slots. The maximum gain of 

optimal policy to the initial policy is 5.10%. As the initial pol-

icy is obtained by the slotted A L O H A throughput curve, it is 

already optimized by intuition. If one chooses a random policy 

as the initial one, it can also converge to the optimal policy with 

a higher gain. 

From the view point of slotted A L O H A throughput, the of-

fered load concentrates on the intervals of 1, making the system 

achieve the highest throughput according to (4.25) and Figure 

4.5. From another aspect of Dynamic Programming, the opti-
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Figure 4.7: Identification time of initial and optimal policies in slots, for 

known tag set size under 50. 

mal policy balances between the high identification efficiency of 

present inventory round and undesirable long expected identifi-

cation time in the future. 

Table 4.2 shows the optimal policy for Q up to 10. 

4.4.2 Performance Comparison 

In this section, we compare the performance of optimized colli-

sion resolution protocol with that of framed A L O H A scheme in 

21]. Let us firstly review the derivation of the expected iden-

tification time in static framed A L O H A scheme. For the pas-

sive tags analyzed in [21], it is assumed that all tags will reply 
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Table 4.2: Q value assignment for different tag set size. 

Q value Tag Set Size Interval 

1 0 - 2 

2 3 - 5 

3 6 - 1 1 

4 12-23 

5 24 - 47 

6 48 - 95 

7 96 - 191 

8 192 - 383 

9 384- 511 . 

10 512 - 1535 

to reader's probe in every subsequent inventory round, so the 

reader is not able to identify all tags with complete certainty 

when the tag set size is unknown before identification. There-

fore, the identification termination condition is dependent on 

the assurance level a, which is used to indicate that the proba-

bility of missing tags after identification is less than 1 — a. Given 

the frame size /, tag set size N, the probability of a successful 

transmission is 

(N\FL\“ L\{N-I) , 、 

仍=U(7)( 7) . (4.26) 

And given assurance level a, the probability of missing a tag 

after R rounds is given by 

(1 — = 1 - 以 . (4.27) 

Therefore, for a fixed passive tag set N, static frame size /, 
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the number of inventory rounds R/̂ jv to achieve assurance level 

a should be at least 

log(l - a) 
R ' n ^ m T T ^ - (4.28) 

The tag identification completion time is the product of ex-

pected number of rounds and frame size. Thus the minimum 

tag identification time is 

Tmvnj,^ = mm{f • RJ^N). (4.29) 

2 0 0 0 r - | 1 I I 1 
* 50 tags - optimized protocol 

1800 - + 25 tags - optimized protocol _ 
O 50 tags - static framed ALOHA 

1600 • X 25 tags - static framed ALOHA “ jo ‘― 
r 1400 - • 
① 

E 
^ 1200 - -

0 
8 1000 - -1 \ 
I 800 - \ -

I 600 - 50 tags 
^ ~ e 

山 4 0 0 - \ 

& 25 tags _____ 
200 - ^ ^ " -* 

+ 
qI 1 1 1 
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Frame Size 

Figure 4.8: Identification time comparison between optimized protocol and 

static framed ALOHA with tag set size of 25 and 50. 

Now we can compare the tag identification completion time 

between optimized anti-collision scheme and the static framed 
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A L O H A . The assurance level is set to a = 0.99 for static framed 

A L O H A . Figure 4.8 shows how the total expected identifica-

tion time changes with different frame size. W e do simulations 

for two cases, tag set size of 25 and 50. For the static framed 

A L O H A , the minimum identification time for tag set size of 25 

and 50 is 233 slots and 742 slots, while the corresponding frame 

size is 36 and 72, respectively. W e also point out two points 

in Figure 4.8，which are results of our optimized anti-collision 

protocol. The expected identification time for 25 tags is 66 slots 

with frame size 32, while a tag set size of 50 can be identified 

within 126 slots with frame size 64. The tag identification com-

pletion time of our protocol is around 20% of that of the static 

A L O H A protocol. 

Next we compare the identification time of two protocols with 

tag set size under 50 in Figure 4.9. For the optimized anti-

collision protocol, the identification time is calculated according 

to Table 4.2, using (4.21). For the static framed A L O H A pro-

tocol, we choose the optimal frame size f* that minimizes the 

overall expected identification time for different tag set size with 

assurance level a = 0.99. W e can see that the slope of our opti-

mized collision resolution scheme is 2.57 while that of the static 

framed A L O H A protocol is around 5.99. This optimized anti-

collision protocol has significant performance improvement over 

the static framed A L O H A protocol. 

From Figure 4.5, one should note that if there is such a greedy 

policy that frame size can be adjusted with step 1, which equals 

to the number of unidentified tags, the system can achieve the 

highest throughput, thus the shortest identification time. Com-
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Figure 4.9: Identification time of static framed ALOHA and optimized 

scheme with known tag set size. 

pared with the EPCglobal system model in which the frame size 

is set as power of 2，the greedy policy can achieve the truly 

optimal. However, the greedy policy needs a lot more bits to 

determine the frame size in reader and tags, while our model 

only needs 4 bits. The increased system complexity with more 

on-board memory, operating power and processing time should 

be taken into consideration. 
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4.5 Summary 

In this chapter, we propose a simple modification on the base 

of EPCglobal protocol [2], called optimized anti-collision proto-

col for multiple tag identification in passive RFID systems. W e 

construct a Markov model, study the relationship between frame 

size and the probability of successful identification. By applying 

Dynamic Programming, optimal policy is shown in Table 4.2 for 

corresponding frame size f to tag set size N. With the five as-

sumptions in 4.2, reader is aware of the unidentified tag set size, 

so it keeps updating the frame size f by adjusting Q value at 

the beginning of every inventory round. This strategy can re-

duce the redundancy of unnecessary waiting time incurred by a 

large frame size, or the high probability of collisions incurred by 

a small frame size. Through theoretical analysis and simulation 

studies, we show that our optimized anti-collision protocol out-

performs the static framed A L O H A protocol in terms of overall 

identification time and reading reliability for the case of known 

tag set size. Lastly, our protocol is not affected by tags' ID 

length and distribution. 

• End of chapter. 



Chapter 5 

Unknown Tag Set 

Anti-Collision Protocol 

In the last chapter, we assume that the initial tag set size is 

known before the identification process. W e construct the math-

ematical model and analyze the transition probabilities within 

one inventory round, apply Dynamic Programming, and solve 

the optimal policy to achieve higher identification efficiency. In 

this chapter, a more general case is considered, in which the 

initial tag set size is unknown. W e propose this protocol based 

on the result of Chapter 4. T w o modifications are needed: a 

counter installed at the reader to estimate the number of uniden-

tified tags, denoted by and the Q Table (Table 4.2). T w o 

estimation functions for the remaining tag set size are also dis-

cussed. At the last part of this chapter, simulation results and 

comparisons are shown to outperform static framed A L O H A 

protocol. 

54 
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5.1 Protocol Description 

The unknown tag set anti-collision protocol is designed under 

following assumptions: (i) The tag set size is unknown to the 

reader at the beginning of the identification process, (ii) N e w 

tags may enter into and existing ones may depart from the com-

munication range, (iii) Tags cannot sense the medium, they 

will assume there is a collision if they cannot receive the replies 

from the reader within certain period, defined as T2 in Figure 

4.2. (iv) Tags cannot communicate with each other so that they 

may choose the same slot to transmit. 

5.1.1 System Model 

The system model consists a single reader and multiple tags. 

In order to fit for unknown tag set size, two modifications are 

needed for the reader. Firstly, the Q-N Table (Table 4.2) should 

be stored in reader's memory. In addition, a counter which 

counts the number of collision slots in an inventory round should 

also be added. 

The identification process between a reader and a number of 

tags consists of several inventory rounds. In the initial round, 

a random frame size /，which is set to be [Q is an integer 

in [0，15])’ is sent by the reader. Like the process described in 

previous chapter, each tag picks a slot and replies in it with 

uniform distribution. Meanwhile, the reader distinguishes each 

slot as a singleton, an empty, or a collision one. It adds one 

to its counter when every collision slot is detected. Therefore, 

at the end of the initial round, denote the number of singleton 
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slots Ns, of empty slots Ng, and of collision slots N。The reader 

estimates the number of remaining tags according to Nc with 

estimation function denoted as N丨=W{Nc). 
The reader initializes new inventory round by assigning op-

timal frame size f to the unidentified tags. Tags being read in 
previous inventory rounds will be mute, and the reader keeps 

repeating identification until all tags within the communication 

range have been identified. 

Table 5.1 shows an example of identifying 50 tags, whose 

number is unknown to the reader. The identification begins 

with an initial inventory round. The frame size is randomly 

picked as = 32. Thus, at the end of this round, there are 8 

collision slots. The next inventory frame size is chosen according 

to estimated tag number. This identification keeps repeating 

until there is no collisions left. 

Table 5.1: Example for identifying tags with unknown tag set size. 

Round NC Estimated Tag No. Real Tag No. Q Value 

1 50 5 

2 8 16 20 4 

3 3 6 7 3 

4 0 0 0 

Figure 5.1 is the flow chart of identifying tags with unknown 

tag set size. 
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Figure 5.1: Flow chart for identifying tags with unknown size. 

5.1.2 Tag Estimation 

In previous section, we denote the estimation function as W . 

The frame size of the next inventory round is updated on the 

base of this estimation. A fast and reliable estimation method 

has been analyzed and a scalable algorithm with low variation 

is also proposed in [27]. But it introduces high overhead cost 
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and requires much more modifications to the system. As we are 

focusing on the low-cost, passive RFID systems, we discuss two 

simpler tag estimations in this section. 

Lower Bound Est imat ion 

The first one comes from the lower bound for the unidentified 

tags. After an inventory round, the slots can be categorized 

into three kinds: empty slots, singleton slots, and collision slots, 

which are Ne, Ng, and N。, respectively. Thus, the number of 

remaining tags, N', at the end of an inventory round should be 

N'>2x Na. (5.1) 

2 X Nc'is the lower bound for the unidentified tags, because 
a collision can be two or three or even more tags filling in the 

same slot. 

Figure 5.2 shows the simulation result of identification time 

for tags whose initial number ranges from 5 to 50. Each result 

point represents the average value of 1000 trials. The frame 

size of the initial inventory round is randomly chosen by reader 

among 2, 4, 8, 16，and 32. 

Backlog Est imat ion 

Another way to estimate the unidentified tags is called backlog 

estimation [30]. Instead of using the lower bound for the uniden-

tified tags, we want to find out the ratio denoted as Rc, which 

indicates the expected number of tags per collision slot. 

For tag number N and frame size /，the probability that r 
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Figure 5.2: Identification time using lower bound estimation: analytical and 

simulation result for waiting time of tag set within 50. 

tags choose slot i is binomial distributed. 

咖 ,尸 ( r ) b ) ( l _ 7 ) . (5.2) 
For slot i in a frame, the probability that this slot is a collision 

one is given by 

Pc = l-p{0)f,N-p{l)f,N (5.3) 

fN\ ( (N\ f 
二 n r - 7 - 1 7 1 - 7 • (5.4) 

The expected number of tags in a collision slot is 

, N /Ar\ n v / 1 \ (N-r) 

iV J i 1 - i . (5.5) 
r=2 \r J \fj V f J 
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From (4.25) and Figure 4.5, slotted A L O H A reaches the high-

est throughput when the offered load is L = 1. And from Table 
4.2 we can see the frame size is assigned as close to tag set size 

as possible so as to offered load 1, so / ~ N. (5.2) can be 

represented 

/N\ ( 1 V ( 1、(w-7,) 

叫 j y ( i i ) • ( 5 . 6 ) 

As iV — oo, (5.6) approximates a Poisson distribution with 

rate 1， 
(,e-ir e-i , \ 

PPoisson[r) = = (5.7) 
(5.5) and (5.4) are 

OO g —1 

NcE‘,t = E ^ - r (5.8) 

r = 2 厂！ 

OO p —1 
= r — 

r = 2 ( r - l ) ! 
OO 1 

h {r)\ 
= l - e " \ (5.9) 

and 

Pc = 1 - PPoi腫(0) - PPoi霞⑴ (5.10) 

= 1 - 2 e - i , 

respectively. 

The expected number of tags per collision is 

凡=tt (5.11) 

= 

— 1 — 2e-i 

=2.3922. (5.12) 
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Such that, the estimation function for backlog estimation is 

N' = W{Nc) = [2.3922 x iV̂ l (5.13) 
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Figure 5.3: Identification time using backlog estimation: analytical and sim-

ulation result for waiting time of tag set within 50. 

Figure 5.3 shows the simulation result of tags whose initial 

number ranges from 5 to 50. Each result point represents the 

average value of 1000 trials. The frame size of the initial inven-

tory round is randomly chosen by reader among 2，4, 8, 16’ and 

32. 
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5.2 Performance Evaluation 

N o w we compare the performance of the adaptive unknown tag 

set identification process with static framed A L O H A protocol. 

The mean, maximum, and minimum identification time of two 

estimation functions are compared in this section. 

18001 I I I I 
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Figure 5.4: Mean identification time with lower bound, and backlog estima-

tion methods, with tag set size under 500. 

Firstly, we investigate the mean identification time of two 

estimation functions in Figure 5.4, by varying the initial tag 

set size from 5 to 500，which is unknown to reader. Reader 

randomly picks an integer Q from 1 to 8 in the initial inventory 

round, and estimate the number of the unidentified tags. It is 

shown in the figure that the backlog estimation perform a lower 
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identification time than the lower bound estimation. 
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Figure 5.5: Max, min, and mean identification time using lower bound esti-

mation, with tag set size under 500. 
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Figure 5.6: Max, min, and mean identification time using backlog estimation, 

with tag set size under 500. 

In Figure 5.5 and 5.6，on the left are curves for maximum, 

minimum, and mean identification time with lower bound es-

timation, on the right are curves for backlog estimation. It is 

shown that the backlog estimation has more steady performance 
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compared to the lower bound estimation. The rationale behind 

the different performances is the following. Lower bound estima-

tion always underestimates the number of unidentified tags, its 

performance will suffer a larger fluctuation at the range where 

Q value changes from one value to another. Backlog estimation 

calculates the ratio of expected number of tags per collision slot, 

it is a relatively unbiased estimation. So the performance for the 

backlog estimation is more steady. 
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Figure 5.7: Average number of inventory rounds for unknown tag set size 

identification with two estimation methods. 

Figure 5.7 shows the average number of inventory rounds 

for identification process using two estimation functions with 

tag set size from 5 to 500. The results average 1000 trials. Q 
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value for the initial inventory round is chosen randomly in [1,8 . 

There is fluctuation in some tag set size ranges for the curve of 

lower bound estimation. These tag set size ranges are around 

90, 180, and 340. There are two reasons for this fluctuation. 

One is that the unidentified tag set size is underestimated with 

lower bound estimation, the other is that the Q value is going 

to increase and the throughput is relatively low in these ranges. 

Such that the collision probability would increase, incurring a 

higher number of inventory rounds. For the same initial tag 

set size, the average inventory round with backlog estimation is 

smaller than that with the lower bound estimation. It should be 

noted that the overall identification time of backlog estimation 

is also smaller than the lower bound estimation in Figure 5.4. 

Figure 5.8 shows the identification time for six different cases 

of tag set size under 100: static framed A L O H A , unknown tag 

set size with lower bound estimation, unknown tag set size with 

backlog estimation, estimated tag set size [27] with lower bound 

estimation, estimated tag set size [27] with backlog estimation, 

and known tag set size with optimal parameter. The identifica-

tion time for the unknown tag set size is higher than that of the 

optimal parameter case and the estimated tag set case. There 

are two reasons: one is the randomly chosen frame size in the ini-

tial inventory round, another is that the estimation method, no 

matter using the lower bound or the backlog estimation, only 

gives the expected number of unidentified tags. For the esti-

mated tag set size cases, the identification time is shorter than 

the unknown tag set cases. This is because the initial tag set 

size is estimated using method in [27] before every identification 
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process, such that the randomness of the initial round is elimi-

nated, and the identification time is shorter. However, it should 

be noted that there is some extra overhead for the tag set es-

timation [27] which is not included in Figure 5.8. The number 

of slots overhead are different given different confidence interval 

and tag set size [27]. Finally, it should be noted that the identi-

fication time for unknown tag set size converges to the optimal 

one when tag set size grows. 
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Figure 5.8: Identification t ime for six different cases of tag set size under 100. 
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5.3 Summary 

In this chapter, we apply the result of Chapter 4 to unknown 

tag set size identification process. W e make two modifications to 

reader: storing a Q table for updating frame size, and installing 

a counter for counting the number of collision slots in an inven-

tory round. W e discuss two methods for estimating unidentified 

tag set: lower bound estimation and backlog estimation. At the 

beginning of every inventory round, reader updates the frame 

size according to the estimated unidentified tag set size. The 

identification process stops until no collision slot is detected. 

In the section of Performance Evaluation, we show the perfor-

mances of two estimation functions by 1000 trails simulation, in 

terms of average, worst-case and best-case identification time. 

W e also compare the identification efficiency with results in pre-

vious chapter and [21 . 

• End of chapter. 



Chapter 6 

Conclusion and Future Work 

6.1 Conclusion 

The recent rapid evolving RFID industry is due to its foreseeable 

high business value in many applications, especially the global 

retail and supply chain management systems. With the recent 

development of the integrated circuit, low-power semiconductor, 

and Micro-Electro-Mechanical Systems ( M E M S ) technologies, 

extremely small and low-cost electronic tags with computation, 

communication and memory capacities are available for com-

mercial applications. These small tags are envisioned to attach 

to items on earth for seamless, ubiquitous communications. By 

integrating with the Internet, real-time inventory control, prod-

uct tracking, anti-counterfeit, and many other applications can 

be realized at different stages of the global supply chain and re-

tail logistics by RFID systems. Besides, ubiquitous sensing and 

identification can also be achieved with augmenting RFID tags 

with sensors [7] [36] [38]. Thus, we can imagine that someday we 

can search for physical object or real time data in the world by 

68 
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RFID technology, as fast and efficient as we search for electronic 

documents on the web nowadays. 

One of the unique and compelling advantages of RFID over 

other object identification technologies, such as Bar Codes, is 

the ability to read many tags at the same time without physical 

contact and orientation requirements. These advantages largely 

reduce the amount of labor-intensive scanning and improve the 

accuracy in inventory control and product tracking. This ability 

must be on the base of a well-designed protocol which specifies 

the requirement of physical layer, anti-collision method, memory 

and computational capabilities, and privacy protection.- Since 

the passive RFID systems are the major driving force for the 

global RFID implementations in the near future, recent research 

mainly focus on anti-collision protocols and privacy protection 

for low-cost, passive tags which have low computational capa-

bilities, small memories and low power consumption. 

In this thesis, we propose an optimized collision resolution 

protocol based on EPCglobal [2] for known tag set size, we con-

struct a Markov model and obtain the transition probability that 

certain number of tags identified in an inventory round. In order 

to reduce the number or collisions and increase the identification 

efficiency,we apply the Dynamic Programming to find out the 

optimal frame size corresponding to tag set size. Then we apply 

this result for the unknown tag set size case. These protocols 

are time-domain methods which use the stochastic anti-collision 

method. The optimization of them is done on the base of whole 

identification process, which achieve lower complexity to realize 

a higher identification efficiency and reliability than those of the 
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existing stochastic solutions. 

6.2 Future Work 

In RFID systems, the main performance specifications include 

communication range, operation frequency, identification speed, 

read-write speed, data integrity, reading reliability, and com-

patibility [23]. In this thesis, the main focus is the development 

of reliable and efficient tag-collision resolution techniques for 

passive RFID system tag identification, and prove that we can 

achieve a faster and more reliable identification when compared 

with the static frame A L O H A protocol. 

A m o n g all performance specifications of RFID systems, the 

improvement in tag-collision resolution protocols can significantly 

increase the identification speed and reading reliability. A fact 

that must be aware is that tag-collision resolution protocol is one 

of the elements that influence the identification speed and read-

ing reliability. Data rate is another important factor for iden-

tification speed, which is governed by the operating frequency, 

carrier power, communication range according to different RFID 

standards. For the reading reliability, the propagation of elec-

tromagnetic waves of different frequencies through metal, liquid 

or other radio absorbing material is another challenging issue. 

There are many areas deserving future work. One of the most 

interesting research topics is the reliability issues related to chan-

nel model and capture effect. By considering the channel model, 

we can enhance the robustness of the protocol performance when 

tags are in movement during the identification process and with-
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out power control among them. In [21], Rayleigh and Rician 

channel model for passive RFID systems have been considered 

in the design of the dynamic frame size adaptation algorithm. 

But the performance of tags in movement, i.e. tags passing 

through conveyer belts in factory or being carried in a chart in 

supermarket, has been neglected in the previous research. An-

other hot topic is capture effect. Capture effect happens when 

there is no power control among tags under interrogation. Signal 

from tags located close to the reader would probably mask sig-

nal from other tags located far from the reader, thus even there 

happens a collision, the reader would still decode the strong sig-

nal and treat it as a singleton slot. This should be a problem 

for our proposed anti-collision protocol, as the coding scheme 

for tags' backscatter is either F M O baseband or Miller modula-

tion [2]. Some of the capture effects may happen without being 

noticed by the reader. In [29], [32] and [33], capture effect is 

discussed in detail. 

Other attractive research interests are privacy protection and 

tag number estimation method. There are lots of ways to pro-

tect users' privacy. The easiest way is to "kill" the tag after pur-

chase permanently, which would hinder their its use and recycle. 

Many other kinds of privacy protection schemes and cryptogra-

phy methods appear in literature. Tag estimation method is 

another interesting topic that generated from privacy concern. 

People want to know the number of tags but don't want to 

keep the information private. Thus fast and reliable estimation 

method becomes important. [27] proposed a scalable algorithm 

to approximate the closest number of tags with certain range on 
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the number of singleton slots and multiple slots. Another paper 

28] enables such anonymous estimation of the cardinality of a 

dynamic set of RFID tags. 

In a more general perspective, the ubiquitous computing is 

discussed more and more in literature. This vision is first de-

scribed by Mark Weiser in his famous article "The Computer for 

the 21st Century" [39]. He proposed there would be tabs, pads 
and boards that connect peoples' ideas and thinking by Internet 
to achieve ubiquitous computing. RFID systems have been re-

garded as one of the components to contribute to the realization 

of this vision. Mark Weiser also stated that the most profound 

technologies are those that disappear into human's world, those 

that weave themselves into the fabric of everyday life until they 

are indistinguishable from it. Many scientist have put their ef-

forts into this area. In [35], the author briefly discussed the 

usage and applications of RFID in this vision. In [38], active 

RFID tags are networked as Smart Active Label (SAL) to sat-

isfy a diverse range of applications. Additionally, the vision of 

RFID systems integrating sensor network is discussed in [36 . 

The progress of plain RFID tags are presented in [37]，including 

the aspects of materials, processes and devices. RFID technol-

ogy is expected to be well-suited to linking the physical and 

virtual world. 

• End of chapter. 
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