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ABSTRACT 

With the rapid deployment of multimedia contents in the Internet, the need to 

understand the characteristics of bandwidth availability in the Internet in general, and 

the capability to estimate and predict bandwidth availability in particular, is becoming 

increasingly important. Nevertheless, without any sort of resource reservation or 

explicit traffic regulation, the bandwidth availability of a one-to-one data flow across 

the Internet is still subject to a multitude of factors and thus is largely unpredictable. 

This study goes beyond one-to-one data flows to investigate the characteristics of 

many-to-one data flows, where multiple senders transmit data simultaneously to the 

same receiver, e.g., multi-source video streaming and peer-to-peer systems. In sharp 

contrast to one-to-one data flows, the measurement results reveal that having multiple 

senders not only achieves higher aggregate bandwidth, but the resultant aggregate data 

flows will also exhibit significantly more predictable properties even if the individual 

flows do not exhibit any consistent behavior. This newfound predictability thus could 

open up a new way to provide probabilistic quality-of-service guarantees for running 

bandwidth-sensitive applications over the best-effort Internet. This thesis presents the 

new findings obtained from extensive measurements conducted in the Internet and in 

PlanetLab, develops a mathematical framework to explain the observations from the 

measurement results, establishes the invariant properties of general many-to-one data 

flows, and proposes a novel predictive buffering algorithm to exploit the properties of 

many-to-one data flows in video streaming applications. 
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摘要 

隨著多媒體內容在互聯網上迅速發展，了解頻寬可得性（b a n d w i d t h 

availability)的特性的需要，特別是其可估計和預測的能力，變得越來越重要。 

然而，在沒有任何資源保留或明確流量管制的情況下，互聯網上一對一數據流 

(one-to-one data flow)的頻寬可得性還是取決於很多因素，因而是難以預測的° 

本項硏究超出一對一數據流的範圍，硏究多對一數據流（many-to-one data flow) 

的特性，即多個發送者同時傳達數據給同一接收者，例如多源視訊串流和點對 

點系統。相對於一對一數據流，實驗測量結果顯示使用多個發送者不僅能取得 

更高的總頻寬（aggregatebandwidth)，而且能令多對一數據流擁有更高的可預測 

性。這新發現的可預測性爲提供或然性質素保證給互聯網上頻寬敏感的應用開 

啓了一個全新的方向。本論文匯報從在互聯網及PlanetLab上大規模測量所獲得 

的新發現，建立一個數學框架來說明從測量結果得來的觀察，確立多對一數據 

流不變的特質並提出一個利用視訊串流中多對一數據流特質的預測緩衝演算法 
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Chapter 1 

INTRODUCTION 

With the rapid deployment of multimedia contents in the Internet, the need to 

understand the characteristics of bandwidth availability in the Internet in general, and 

the capability to estimate and predict bandwidth availability in particular, is becoming 

increasingly important. Previous studies which investigated the bandwidth availability 

of Internet flows are primarily focused on one-to-one data flows [1-7] and on 

aggregate flows passing through a common network link [8-12]. This one-to-one 

model, with a single source sending data to a single receiver, is a good representation 

of the client-server model used widely in many Internet applications. 

Not surprisingly, without any sort of resource reservation or explicit traffic 

regulation, the bandwidth availability of a one-to-one data flow across the Internet is 

subject to a multitude of factors such as competing traffic, server load, and protocol 

dynamics, and thus is very difficult, if not impossible, to predict. This is a direct 

consequence of the Internet's best-effort nature and its lack of end-of-end 

quality-of-service control. 

On the other hand, in recent years a new class of Internet applications is becoming 

extremely successful - distributed and peer-to-peer applications. These applications 

rely on replicating data across multiple hosts in the Internet, and then serve data to 

clients in a distributed, concurrent manner. A data transfer session in this class of 
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applications is inherently many-to-one, with multiple sources concurrently 

transmitting different parts of the requested data to a receiver. This emerging 

many-to-one data flow model presents many new challenges but at the same time also 

opens up a new opportunity to solving some of the long-standing challenges to 

deploying bandwidth-sensitive applications over the Internet. 

This study reports results obtained from a large-scale measurement study of 

many-to-one data flows in the Internet, develops a mathematical framework to explain 

the observations and establishes the invariant properties of general many-to-one data 

flows. In sharp contrast to one-to-one data flows, the measurement results reveal that 

having multiple senders not only achieves higher aggregate bandwidth, but also results 

in many-to-one data flows with significantly more predictable properties even if the 

individual flows do not exhibit any consistent behavior. This newfound predictability 

thus could open up a new way to provide probabilistic quality-of-service guarantees 

for running bandwidth-sensitive applications over the best-effort Internet. 

To exploit the properties of many-to-one data flows, this thesis presents a novel 

predictive buffering algorithm for streaming video from multiple sources across the 

Internet to a receiver. Unlike existing Internet video streaming systems where 

playback continuity is subject to the varying Internet bandwidth availability, the 

proposed predictive buffering algorithm can determine at runtime the buffering time 

required to ensure continuous playback for the entire duration of the video. Extensive 

trace-driven simulations showed that with sufficient number of senders the predictive 

buffering algorithm can achieve very high successful playback ratio while 

maintaining a buffering delay that is surprisingly close to the lower bound. 

The rest of the thesis is organized as follows: Chapter 2 reviews some previous 

work in bandwidth measurements and multi-source video streaming; Chapter 3 
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summarizes the measurement methodology and the experimental setups employed in 

this study; Chapter 4 analyzes the measurement data; Chapter 5 develops a 

mathematical framework that explains some of the empirical observations as well as 

establishes some invariant properties of general many-to-one data flows; Chapter 6 

presents the predictive buffering algorithm; Chapter 7 evaluates the performance of 

the predictive buffering algorithm using trace-driven simulations; Chapter 8 discusses 

some possible future works; Chapter 9 summarizes the study. 
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Chapter 4 

BACKGROUND AND RELATED WORK 

Many Internet bandwidth measurements have been reported in the literature, with 

different methodologies and software tools for measuring or estimating the bandwidth 

of network links and network paths. While all these previous works are related to 

bandwidth measurement, they are in many cases measuring different types of network 

bandwidth. We provide below precise definitions for three types of network bandwidth 

and review the relevant previous works. 

2.1 Link/Path Capacity 

The capacity of a link is the maximum data rate a flow can utilize when there is no 

other traffic flow sharing the same link. Note that this may or may not be the same as 

the link's physical bandwidth, depending on whether the network router implements 

any rate-limiting control over the data flows. Well-known tools for estimating the 

per-hop link capacity include pathchar [1]，clink [2], and pchar [3:. 

If a data flow traverses N links from the sender to the receiver and Q is the capacity 

of link i, then C=min {C；, C2,... CN) is the end-to-end path capacity of the data flow. 

Tools for estimating the path capacity include bprobe [4] and pathrate [5]. Knowledge 

of link and path capacities is useful to traffic engineering and network planning. 
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2.2 Unutilized Bandwidth 

A second type of network bandwidth is the unutilized capacity of a link [6]. Let Ui(t) 

be the utilization of link i, in normalized unit from 0 to 1, at time t. Then the average 

link utilization in the interval [t, t + T), denoted by Ui(t’ t + T), can be computed from 

1 rt+r 
u.{t,t + T) = - U.{t)dt ( 1 ) 

T 

Given Q as the capacity of link i, then the unutilized bandwidth of link i during the 

interval [t，t + T), denoted by Ui{t,什T)，can be computed from 

UXt,t + T) = C.[\-uXt,t + T)] (2) 

Similarly, the unutilized bandwidth of a network path is equal to the minimum 

unutilized bandwidth of the N links of the network path: 

U(t,t + T) = min,=i J {",(,，, + r)} (3) 

Well-known tools for estimating the end-to-end unutilized bandwidth include 

pathload [6] and IGI [7]. Knowledge of unused bandwidth is also very useful to traffic 

engineering, e.g., guiding the routing or rerouting of traffic from congested network 

links to underutilized links. 

2.3 Achievable Bandwidth 
The third type of network bandwidth is the end-to-end throughput achievable by a 

transport flow in passing through a network path [13]. Of particular importance is the 

throughput achieves by the TCP transport protocol as it is the building blocks of most 

Internet applications. For this reason our measurement experiments are designed 

specifically to study the achievable bandwidth using the TCP transport protocol. 
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In contrast to unutilized bandwidth, a TCP flow will be able to obtain a fair share of 

bandwidth even if the network path is already fully utilized, assuming that the 

competing flows also share bandwidth fairly (e.g., TCP and TCP-friendly flows). Let 

d{t,广 + T) be the amount of data transferred in the interval [t, ^ + r) by a TCP flow. Then 

the achievable bandwidth for the interval is given by 

r(t,t + T) = - d ( t , t + T) ( 4 ) 
T 

In a many-to-one data flow there will be multiple TCP flows originating from 

multiple sources to the same receiver. The aggregate achievable bandwidth of this 

many-to-one data flow is equal to the sum of the achievable bandwidth of all the 

individual flows. Let there be N senders, with di(t, t + r) denoting the amount of data 

received in the interval [t, ^ + r) by the receiver from source i. Then the aggregate 

achievable bandwidth for the interval is given by 

1 N 
+ = + (5) 

Note that in this definition we do not assume the individual flows to be 

independent. Some or even all of the flows could share a common network bottleneck 

and thus may exhibit correlated bandwidth variations. This inter-flow correlation issue 

will be studied in detail in Section 4.2. 

On the other hand, the above definition also incorporates both network-limited and 

source-limited achievable bandwidth. The former represents the common notion of 

available bandwidth as constrained by the network's link capacities and utilizations 

while the latter represents the case where the source host is the bottleneck, i.e., the 

maximum data rate is limited by how fast the source host can send out data and the 

network path in this case does not limit the data throughput at all. This subtle 

distinction can be measured and is reported in Section 4.4. 
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Chapter 7 

MEASUREMENT METHODOLOGY 

Two measurement setups are employed in this study. The first one uses a 

custom-developed measurement system deployed in PlanetLab hosts around the world 

[14]. The second one makes use of another custom-developed measurement system 

to transfer large data files (Fedora Linux distribution images) from FTP mirror servers 

around the world. Both measurement setups are conducted continuously and 

automatically by a management software, which has begun operation since November 

2005. The measurement datasets are collected and automatically posted to the 

measurement data archive [15:. 

Common to both measurement setups, a measurement session consists of up to 10 

sources sending data simultaneously to the same receiver using TCP as the transport. 

Thus the measurements measure the achievable bandwidth (c.f. Section 2.3) in 

many-to-one data flows. Both the sender and the receiver software are implemented 

using the standard sockets [16] application programming interface (API), capturing 

the source, the time, and the amount of data received into a trace file. The use of the 

sockets API has two advantages. First, it enables the measurement software to run in 

the PlanetLab environment as applications are normally not allowed to access the 

network interface of PlanetLab host directly. Second, the throughput measured via the 

sockets API incorporates not only the effect of sending host and the network, but also 
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the buffering mechanism inside the operating system. This provides a more accurate 

representation of the achievable bandwidth as observed by real-world network 

applications. 

In the following we describe detail operations of the two measurements setups and 

discuss their limitations. 

3.1 PlanetLab Measurement 
PlanetLab is a global research network with over seven hundred hosts located at 

over three hundred sites around the world, all connected through the Internet. 

PlanetLab hosts run a variant of the Linux operating system with virtual server 

capability. We installed our measurement system in 284 of the PlanetLab hosts. Each 

measurement node operates as either a sender or a receiver. As a sender it will send 

data to the receiver as fast as the transport allows; and as a receiver it will receive data 

from the transport as fast as it can (subject to data availability). A management server 

running in our local host continuously monitors and controls the operation of all the 

measurement nodes. 

Each measurement run proceeds in four phases, namely setup phase, 

pre-measurement phase, measurement phase, and data collection phase. During the 

setup phase the management server first randomly selects a node from the pool of idle 

nodes, i.e., nodes which are not running measurements, and designates it to act as the 

receiver in the new measurement run. Next, the server sends the list of idle nodes to the 

designated receiver to begin the pre-measurement phase. 

In this second phase the receiver randomly picks a node from the idle list to perform 

a pre-measurement test, which measures the average end-to-end achievable bandwidth 

from the selected sender to the receiver over a configurable test interval (currently 20 
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seconds). If the sender's average throughput is less than a configurable per-sender 

threshold (currently set at 1.6Mbps) then the sender will be included in the new 

measurement run. The process repeats until either (a) the desired number of senders is 

obtained; (b) the total achievable bandwidth of all senders exceeds a configurable 

per-receiver threshold (currently set at 8 Mbps), in which case the last sender added 

will be dropped; or (c) the idle sender list is exhausted. 

The pre-measurement phase is introduced to overcome two problems. First, some 

PlanetLab hosts have very high-bandwidth network connections and thus could cause 

serious congestion at the receiver host, especially if more than one such 

high-bandwidth hosts send data to the receiver simultaneously. As each PlanetLab host 

is shared by many users using virtual servers, the induced congestion could cause 

significant performance degradation to other users sharing the same host. The 

per-receiver bandwidth threshold is designed to prevent this problem. Second, if a 

high-bandwidth sender is selected early in the process then only a few (or none at all) 

senders could be added to form the many-to-one data flow in order to comply with the 

per-receiver bandwidth threshold. Therefore the per-sender bandwidth threshold is 

introduced to filter out very high bandwidth senders to allow more senders to be 

included in the measurement run. In addition it also reduces the likelihood that the 

sender will hit the rate limit set by the local administrator of the PlanetLab host. 

After the list of senders is determined the system then begins the measurement 

phase by triggering all senders to continuously send data to the receiver. Each 

measurement run lasts for 2 hours (constrained by the daily per-host data transfer limit 

in PlanetLab), after which the system enters the data collection phase where the trace 

data stored in the receiver are transferred back to the management server for 

processing and archival. 
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Conducting measurements using PlanetLab hosts has three distinctive advantages: 

scale — hundreds of hosts available, control - allows the use of user-written 

measurement applications, and reach - spans a wide geographical area covering over 

three hundred sites around the world (see Table 1). There are nevertheless some 

limitations as well. First, as most PlanetLab hosts are run by universities, research 

laboratories, and large corporations, their network connectivity characteristics 

naturally reflect this bias and thus may not be a good representation of residential user 

hosts where bandwidth is likely to be more limited, especially in the uplink connection 

(e.g., DSL [17] subscribers). Second, PlanetLab hosts are shared using virtual servers 

and thus experiments running in other virtual servers sharing the same host could 

interfere or even interact with the measurement runs and vice versa. The measured 

achievable bandwidth thus could be modulated by other experiments concurrently 

running at the sending hosts and the receiving host. However in many network 

applications one would also expect them to coexist with other applications competing 

for bandwidth and other host resources. 

3.2 FTP Measurement 
The second measurement setup makes use of 54 public FTP servers mirroring the 

Fedora Linux distribution CD image. This particular set of mirror servers is chosen for 

the large file available for download (FC4 Disc 1 of size 635 MB) and for their 

relatively wide availability and geographical distribution (see Table 1). Unlike 

PlanetLab hosts these FTP servers are production hosts serving real data to real users 

and thus provide another perspective to the bandwidth available in a real system 

setting. 
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Obviously in this case we could not implement our own sender software and have 

to rely on the FTP server software to act as the sender in the measurements. We 

developed a custom FTP client software running in a dedicated Linux hosts at our 

research laboratory to act as the receiver in the measurements. In each measurement 

run, it randomly draws N to 10) FTP servers from the pool of 54 Fedora mirror sites 

and then initiate downloads from all N servers simultaneously. As FTP runs over TCP 

the measured throughput will reflect the achievable bandwidth between the FTP 

servers and the receiver. Again each measurement run lasts for 2 hours with N varies 

from 1 to 10 in subsequent runs. In addition to collecting bandwidth trace data, we also 

ran the tcpdump tool [18] at the receiver host to capture detailed packet traces for more 

in-depth analysis. Note that the system does not implement bandwidth filtering as in 

the PlanetLab setup because the receiver host is a dedicated machine with sufficient 

resources to handle the incoming traffics. 

This FTP-based measurement setup differs quite substantially from the PlanetLab 

setup. First, the sender, i.e., FTP server, in this case is a concurrent server serving many 

users simultaneously with the same service as opposed to running completely different 

experiments in the same PlanetLab host. This environment thus more accurately 

reflects the characteristics of many-to-one data flows where the senders are Internet 

servers. 

Second, while senders in the PlanetLab setup always send data as fast as the 

transport allows, our measurement results suggest that some FTP servers implement 

per-connection rate limiting. In case the available network bandwidth is higher than 

the server's rate limit the achievable bandwidth will then be limited by the source 

rather than by the network. We will return to this issue in Section 4.4. 
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Chapter 12 

ANALYSIS OF MEASUREMENT DATA 

This chapter analyzes the characteristics of data flows in the two measurement 

setups. The analysis is based on measurement data collected from December 2005 to 

December 2006, which consists of 879 and 628 measurement runs in the PlanetLab 

and FTP setups respectively. The total number of distinct hosts involved is 284 

(PlanetLab) and 54 (FTP) respectively, with geographical distributions as listed in 

Table 1. 

Table 1 The geographical distribution of sender nodes 
Region PlanetLab FTP 
Africa 0 6 

America 152 19 
Asia/Pacific 61 2 

Europe 71 27 

Table 2 Properties of per-flow achievable bandwidths 
Bandwidth PlanetLab FTP 

Min 2.65 Kbps 0.21 Kbps 
Max 4,099.63 Kbps 12,576.38 Kbps 

Median 671.75 Kbps 1,738.83 Kbps 
Mean 570.66 Kbps 1,496.65 Kbps 
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4.1 Per-Flow Achievable Bandwidth 

The following analysis is performed using one-second average throughput as the 

measurement sample. Specifically, let Xi 二 {xij \j = 1 , 2 , . . . , n} be the measurement 

data sequence of sender i, where Xij is the average achievable bandwidth between the 

j-V^ and/h second after the measurement started. Then the mean, and the variance, 

a / , of the achievable bandwidth of sender i can be computed from 

1 “ 
(6) 

n j=\ 

(7) 

Table 2 summarizes the minimum, maximum, median, and mean per-flow 

achievable bandwidth in the two measurement datasets. The achievable bandwidth in 

both cases vary across a very wide range, e.g., from a minimum of 0.21 Kbps up to a 

maximum of over 12 Mbps for the FTP dataset. The PlanetLab dataset has a lower 

maximum achievable bandwidth because high-bandwidth senders are excluded during 

the pre-measurement phase as described in Section 3.1. Note also that although the 

per-flow bandwidth threshold was set to 1.6 Mbps, some flows nonetheless end up 

with achievable bandwidth much higher than that (e.g., over 4 Mbps). This shows that 

some data flows exhibit substantial variations in their achievable bandwidth during the 

2-hour measurement period. 

Fig. 1 compares the histogram of per-flow achievable bandwidth for the two 

datasets. The distribution for the PlanetLab dataset has a peak around 200 Kbps, 

follows by a broad distribution, and finally drops rapidly beyond 1.6 Mbps (due to 

pre-measurement filtering). By contrast the FTP dataset exhibits a sharp peak at 

around 1.5Mbps which is significantly higher than the rest of the spectrum. 
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Fig. 1. Comparison of the histogram of per-flow achievable bandwidth of 
PlanetLab and FTP flows. 

4.2 Inter-Flow Correlation 
In a many-to-one data flow all the senders transmit data to the same receiver. Thus 

their network paths naturally converge to the same destination and hence could share 

some network links along the way. If two senders share the same network bottleneck 

then their flow-level properties will become correlated [19]. To investigate this 

phenomenon we compute the correlation coefficient, denoted by p, of different pairs of 

sender nodes in both datasets. Let X,- and 不 be the bandwidth sequences of two senders 

i and j in the same many-to-one data flow. The correlation coefficient of these two 

senders is given by 

P(Z,.,A.) = c o v ( A , I � (8) 
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Equation (8) measures the degree of correlation between the achievable bandwidth 

of two senders in the same many-to-one data flow. The correlation coefficient can 

range from -1 to 1，with values closer to either -1 or 1 representing stronger 

correlations which indicate that they may share a common network bottleneck. 

Fig. 2 plots the distribution of the correlation coefficients for the two datasets. 

Using the threshold of 0.28 according to the study by Wang et al, [20] we observe that 

a large proportion of the sender pairs acquire a value below it, e.g., 85% and 90% for 

the PlanetLab and FTP datasets respectively. The rest of the sender pairs are likely to 

share a common network bottleneck, thus leading to correlated variations in their 

achievable bandwidths. We will return to this issue in Section 5. 
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90 _ \ • 

80 - \ / 广 

冬 70— / A 
二 60 - ； / PlanetLab 
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Inter-flow correlation coefficient 

Fig. 2. The cumulative distribution of the inter-flow correlation coefficient of 
PlanetLab nodes and FTP servers. 

15 



4.3 Intra-Flow Temporal Correlation 

To further study the correlation of achievable bandwidth across different times 

within the same data flow, we compute the normalized temporal correlation of a data 

flow i with a temporal distance of k measurement samples as follows: 

• (9) 
� 

where cov(-) computes the covariance of two sequences, Xi is the sequence of 

measurement samples for achievable bandwidth, and Xt is the corresponding 

measurement sequence with a temporal distance of k samples, i.e., Xt 二 {x/j | i = Q+k, 

1+介..，n+k}. The value can range from 0 to 1 where 0 implies the two sequences are 

uncorrelated and 1 implies that they are completely correlated. By varying the 

temporal distance k we can evaluate the temporal correlation over different time 

scales. 

Fig. 3 plots the distribution of the normalized temporal correlation of PlanetLab 

data flows foxk=\, 10, 50, and 100 respectively. Note that each measurement sample is 

a one-second average so the temporal distance is also equivalent to unit of seconds. 

The same distribution for FTP flows is very similar and is thus omitted. The key 

observation here is the rapid decrease in the temporal correlation for temporal 

distances larger than 1. For example, when k=\, i.e., the correlation of adjacent 

measurement samples, a substantial proportion of flows (over 84%) exhibits 

correlations above 0.2. By contrast, when we increase A: to 10 the proportion drops to 

42%, and it further reduces to 20% when k is further increased to 50. This shows that 

the achievable bandwidth is correlated only at very short time scales. 
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Next we consider the intra-flow temporal correlation of the aggregate achievable 

bandwidth in many-to-one data flows. Using a fixed temporal distance of A: = 10 

seconds and k = 100 seconds, we plot in Fig. 4 the average intra-flow temporal 

correlation for many-to-one data flows of 1 to 10 senders. The results show a gradual 

increase in temporal correlation along with more senders in the aggregate flow. 

However for larger temporal distance (e.g., k= 100 seconds) the temporal correlation 

remains insignificant. 
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Per-flow temporal correlation 

Fig. 3. The cumulative distribution of the per-flow temporal correlation for 
temporal distances of 1, 10，50, and 100 seconds (PlanetLab dataset). 
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Fig. 4. Comparison of aggregate-flow temporal correlation for 1 to 10 senders 
(PlanetLab flows with temporal distances of 10 and 100 seconds). 

4.4 Intra-Flow Bandwidth Variation 
We further analyze in this section the bandwidth variations within the same data 

flow. This intra-flow variation can be quantified by the coefficient-of-variation (CoV) 

of a data flow's achievable bandwidth, defined as: 

C o V . = ^ (10) 

for flow i, which is the standard deviation normalized by the mean. Since CoV is 

normalized we can compare the intra-flow variations of different data flows in Fig. 5, 

which plots the distribution of CoV for data flows in the two datasets. The results show 

that the FTP dataset, while spanning a wider range of achievable bandwidth across 

different flows than the PlanetLab dataset, had lower variations within the same data 
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flow than the PlanetLab dataset. For example, 70% of FTP flows have CoV less than 

0.2 compare to only 30% in the PlanetLab dataset. 

We conjecture that the FTP dataset，s much lower intra-flow variation is due to 

rate-limiting imposed by some of the FTP servers. Specifically, many FTP servers 

have the option to set a limit on the maximum transmission rate for each connection as 

a mean to control resource allocation. If such a rate limit is substantially lower than the 

achievable bandwidth of the network path from the FTP server to the receiver, then the 

achievable bandwidth will be limited by the sender's transmission rate rather than the 

network bandwidth availability. In other words, variations in network bandwidth 

availability will have significantly less effect on the achievable bandwidth and thus 

resulting in lower intra-flow variation. 

To further verify the conjecture we captured detailed packet traces at the receiver 

using the tcpdump tool [18]. If the achievable bandwidth of a data flow is rate-limited 

by the sender, then we would expect the TCP flow to experience little to no packet loss 

as the transmission rate is not sufficiently high to induce network congestion. By 

contrast, if the achievable bandwidth is congestion-limited then we would expect 

higher levels of packet loss due to frequent network congestions. From the packet 

traces we can extract and count the TCP retransmission events (by comparing 

sequence numbers in the TCP header) to deduce the packet loss rate for this purpose. 

Fig. 6 plots the distribution of packet loss rate for the FTP dataset. It is evident that the 

majority of the data flows has very low packet loss rate, e.g., approximately 60% of the 

data flows has packet loss rate lower than 0.05%. This strongly suggests that a sizable 

proportion of the FTP servers implemented rate-limiting which in turn affect 

properties of the end-to-end achievable bandwidth. 
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Fig. 6. The cumulative distribution of the packet loss rate of FTP flows. 
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Fig. 7. Comparison of the average CoV for 1 to 10 senders. 

Next we consider the CoV for the aggregate achievable bandwidth in many-to-one 

data flows. Fig. 7 compares the CoV of individual flows and many-to-one data flows 

with number of senders ranging from 1 to 10 for the two datasets. The former is 

computed from the weighted average of the per-flow CoV's of all individual flows, 

with the weight equal to the flow's mean achievable bandwidth. This corresponds to 

the case where the bandwidth resources of all senders are uniformly utilized by the 

receivers (see Section 5.1). The latter is computed from the CoV of the aggregate 

achievable bandwidth of all senders in the many-to-one data flow. 

There are two distinctive observations from the results. First, the aggregate flows 

always have lower bandwidth variations when compared to the individual weighted 

average of the same number of sources (for more than one flow). Second, there is a 

clear trend of decreasing CoV for larger number of senders in many-to-one data flows. 

This implies that the aggregate achievable bandwidth generally exhibits less intra-flow 
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variations when the number of senders increases. By contrast the individual weighted 

average CoV levels off rapidly for two or more sources. In the next section we 

investigate whether these properties will result in increased predictability of aggregate 

data flows' bandwidth properties. 

4.5 Predictability of Bandwidth 

Properties 

One of the goals of bandwidth measurements is to enable the prediction of future 

bandwidth availability based on past measurement results. To investigate this issue we 

consider the simplest method to predict future achievable bandwidth - predicts the 

future achievable bandwidth to have the same mean as in the past. Specifically, the 

receiver measures the average bandwidth during the initial measurement period of T 

seconds: 

1 T 
A (11) 

and then simply predicts the future achievable bandwidth to be the same. 

Obviously the prediction will not be completely accurate. To quantify the 

prediction errors we compute the normalized deviation from 

� = 概 一 A)2] (12) 

Mi 

where X) = {XQ \j = r+1, T+2 ,."，《} is the actual achievable bandwidth of data 

flow i. 

Similar to the well-known standard deviation in statistics, the normalized deviation 

di measures how far the future achievable bandwidth deviates from the one measured 
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during the initial measurement period. A smaller value implies less deviation, meaning 

that the future achievable bandwidth is more predictable. 

We first consider the normalized prediction for individual data flows. Fig. 8 plots 

the distribution of the normalized deviation with T= 500 seconds for the two datasets. 

The results show that the mean achievable bandwidth of FTP flows is substantially 

more predictable than PlanetLab flows. This agrees with the observation in Section 4.3 

(c.f. Fig. 5) where FTP flows exhibit less intra-flow bandwidth variations. In fact we 

found that the normalized deviation of a data flow is highly correlated with its 

intra-flow bandwidth variation (measured by CoV), with a correlation index of 0.429 

and 0.617 for the PlanetLab and FTP flows respectively. 

Next we consider the normalized deviation for the aggregate achievable bandwidth 

in many-to-one data flows. Fig. 9 plots the mean normalized deviation for individual 

flows and many-to-one data flows of 1 to 10 senders. The former is computed from the 

weighted average of individual flow's normalized deviation, with the weight equal to 

the individual flow's mean achievable bandwidth. The latter is computed from the 

aggregate achievable bandwidth of all individual flows in the many-to-one flow. 

Similar to Section 4.4, we observe that with the same number of sources, predicting 

the properties of many-to-one data flows are always more accurate than the case for 

individual flows. Moreover, the prediction error consistently decreases with more 

number of senders in the many-to-one data flow. 

To illustrate the effect we compare in Fig. 10 the normalized mean achievable 

bandwidth of a 1-sender data flow and a 10-sender data flow over time for the two 

datasets. It is evident that the 10-sender data flow exhibit significantly less bandwidth 

fluctuations over time than the 1-sender data flow. This is a very useful property 

because if future bandwidth can be predicted with good accuracy then the performance 
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of bandwidth-sensitive applications could be significantly improved. We will explore 

this further in Section 4.6. 
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4.6 Long-term Flow Properties 

The previous sections focus on the properties of a given many-to-one data flow, 

which last for 2 hours in the measurements. As we have accumulated measurement 

data for 12 months, we could also study the properties of the same sender over a longer 

time scale. This will shed light on whether long-term historical bandwidth data are 

useful in the estimation of future bandwidth availability. 

To analyze the long-term flow properties we first grouped all the measurement data 

over the 12-month measurement period according to the identity of the sender. For 

each sender, say sender i, we compute the mean of the achievable bandwidth of 

measurement run j as JUQ. Next we compute for each sender the CoV of all the per-mn 

means | V/}，denoted by Q/. This per-sender CoV measures the variations of the 

mean achievable bandwidth of a particular sender over the 12-month period. 

Fig. 11 plots the cumulative distribution of the per-sender CoV for the two datasets. 

We observe that FTP senders' properties are far more consistent over the long time 

scale. Two factors likely contribute to this result. First，as shown earlier in Section 4.4 

some FTP servers implemented per-connection rate-limiting. As a result the 

achievable throughput for flows originating from these FTP servers will be more 

stationary. Second, in the PlanetLab measurements the receiver node is randomly 

selected from the pool of 284 hosts in each measurement run while the same receiver 

host is used throughout all the FTP measurements. As the network path will likely be 

different for different receivers even from the same sender, this will result in more 

variations in the sender's bandwidth properties in the PlanetLab dataset. 

More importantly, we want to know whether historical information such as mean 

achievable bandwidth of a sender in the past could help in the selection of senders for 
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new data transfer sessions. To answer this question we can compare with the trivial 

alternative - assume no historical information is known and simply randomly pick a 

sender for each new data transfer session. Using this zero-knowledge approach the 

CoV of the mean achievable bandwidth are 0.82 and 0.96 for the PlanetLab and FTP 

datasets respectively. In comparison, if the historical CoV of all senders are known, 

then we can simply select the sender with the lowest CoV, and in both datasets around 

80% of the senders have CoV values lower than the zero-knowledge case. This 

suggests that historical information of senders' bandwidth, even over a time scale of 12 

months, could still be useful in estimating the future bandwidth availability. 
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Fig. 11. The cumulative distribution of the per-sender CoV of mean achievable 
bandwidth over the 12-month period. 
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Chapter 28 

A MATHEMATICAL FRAMEWORK 

The measurement results reported in Section 4.4 and 4.5 strongly suggest that it is 

always better to transfer data using many-to-one data flows than using individual 

one-to-one data flows, as many-to-one data flows exhibit less intra-flow bandwidth 

variation (c.f. Fig. 7) and can be predicted more accurately (c.f. Fig. 9). Nevertheless 

empirical results are not proof per se and so in this section we develop a 

mathematical framework to formally establish these two invariant properties for 

general many-to-one data flows. More importantly, the framework provides deeper 

insights into the relations between properties of the individual flows and those of the 

aggregate flows which could be used to optimize the performance of many-to-one 

data flows. 

5.1 Bandwidth Variations 
Consider a pool of N senders, where /// > 0 and a / > 0 are the mean and variance 

of the achievable bandwidth of sender i. Assuming that the bandwidth resources of 

the pool of N senders are utilized in a uniform manner, then over the long run the 

bandwidth contribution of sender i, denoted by Pi, will be proportional to its mean 

achievable bandwidth: 
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(13) 

y=i 

In other words, sender with more bandwidth will contribute proportionally more 

resources to serving the receivers and vice versa. 

Now let 7 be the aggregate achievable bandwidth of all N senders, i.e., 

y = = i,2”"，《} 

而 • 1 … （14) 

i=l 

with the corresponding mean and the variance defined by 

M y = - t y j ( 1 5 ) 
n'ji 

and 

二 + 少厂"》2 ( 1 6 ) 

Then we can calculate the weighted average of the CoV of all N individual flows 

from 

CoVW =t(CoV�.Pi� 
/=i 

台 (17) 

( 仏 ） 
/=1 Mi ^Y 

1 N 
=丄 

I^Y /=1 

This represents the average performance for the case where receivers connect to 

just one sender at a time to transfer the requested data, i.e.，using one-to-one data 

flow. 
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Similarly we can calculate the CoV of the aggregate flow for the case where the 

receivers always connect to all senders to transfer the requested data, i.e., using 

many-to-one data flow: 

= 风 ( 1 8 ) 
H'Y V 
1 H/ N N 

二+ (仏) 
H-Y \ J=1 P=\ 9=1 

With (17) and (18) we can then prove the first invariant property in Theorem 1 

below. 

Theorem 1 — The weighted CoV of N individual data flows as in (17) is always 

larger than the CoV of the aggregate data flow formed from the same N data flows as 

in (18), assuming the individual flows are not perfectly and positively correlated. 

Proof: 

Two flows p and q are perfectly and positively correlated if and only if their 

correlation coefficient p(Xp, Xg) = 1. Therefore we need to show that (18) < (17) in 

general given that p{Xp, Xq) < 1 \/p,q wherep 本 q. 

From (18) we have 

Hy \ P=1 q=\ 

^ — (19) 

H'Y \ J=1 P=1 9=1 

Factoring the terms inside the square root we then obtain the desired result: 
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h V (20) 

1 N 

l^Y /=1 
• 

Note that if two flows are perfectly and positively correlated it means that their 

achievable bandwidth varies in perfect synchrony. In practice this is clearly 

extremely improbable, if not impossible. Therefore Theorem 1 establishes that one 

can always reduce the intra-flow bandwidth variation by using many-to-one data 

flows instead of individual one-to-one data flows. 

5.2 Bandwidth Predictability 

The second invariant property is the bandwidth predictability reported in Section 

4.5. First, consider the weighted average of the normalized deviation of all N 

individual flows: 

N D � f ^ � d i . P ) 
'=1 N (21) 

= 丄 : 抓 厂 A ) 2 ] 

t^Y /=1 

Next we compute the corresponding normalized deviation for the aggregate flow 

from 
M ^ = dy 

= 丄 ； £ ' - A O ' l + X X E [ { X ^ fip’-〜)] (22) 
/^y \ /=1 p=l q=\ 

V p*q 

With (21) and (22) we can then prove the second invariant property in Theorem 2 

below. 
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Theorem 2 - The weighted normalized deviation of N individual data flows as in 

(21) is always larger than the normalized deviation of the aggregate data flow 

formed from the same N data flows as in (22), assuming the individual flows are not 

perfectly and positively correlated. 

Proof: 

^ 1 T 
Recall that ju. = — ^ x^ j and X't = {xtj \j = 7+1, T+2 

T 7=1 , 

Let ei be the mean estimation error of sender i, where 

ei=M\-fii (23) 

and V尸 be the prediction variance of sender i, where 

二 ^ i C Z ' - Z i ” ] 
‘ 2 2 ( 2 4 ) 

and 

t (25) 

Before proving Theorem 2，we first show that 

E[{X\-ju,){X^-fl j )]<v,Vj (26) 

and the equality holds only if X'i and X) are perfectly and positively correlated, i.e., 

As we know that 

= > 2 - — E [ { X \ - - M j ) ] > 0 

When the equality holds, 
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<z> 尉(JT’厂//’,.XZ’厂//’�+ ( Z ’ 厂 / / ’ > , + ( Z ’ 厂 + 明 ] = V,V/ 
( T p { X , Z ' � + e.ej = v.vj 

Consider different values of p(X，i, X'j) and eiej, 

Up(X'i,X'j)<0, then 

(7\(T'jp{X\,X'j) + e.ej<e.ej 

< Va’,2a’/ + e ,V+c7’ ,2e /+a , ,2 � .2 (28) 

= 

If eiCj < 0, then 

( 7 ’ , a p � X ’ , + e , � � j p{X’, 

/ (29) 
< ̂ (Jcr，/ + + a e / + a ’, e/ 

l f p ( X ) , X'j) ^ and etej >0, then 

= l and o"'. e. = cr'. (30) 

= l and 冬 = 冬 

< � J 

Combining (28) — (30), we obtain the desired result where 

Returning to the proof for Theorem 2, from (22) we have 
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f^Y \ /=! P=l g=l 
\ p叫 

1 Hv ~NTi 

Hy \ i=i P=l g=i 
V P叫 

1 N 
=丄 (31) 

/^Y i=\ 

二丄XV邵厂 
/^Y i=\ 

and the equality holds if and only if E [ { X ' = v̂ v̂  \fp,q where p 本 

q. From (26), we know that ND^ = ND^ only if flows p and q are perfectly and 

positively correlated, i.e., p{X'p, X'g) = 1) \lp,q wherep 本 q. 

• 

Again, perfectly and positively correlated flows are extremely improbable in 

practice and so in practice the achievable bandwidth of many-to-one data flows is 

more predictable than individual one-to-one data flows. 

5.3 Sensitivity Analysis 
The previous mathematical framework not only establishes two invariant 

properties of many-to-one data flows, but also provides insights into the relations 

between properties of individual flows and of the resultant aggregate flow. In this 

section we explore sensitivity of the aggregate flow's CoV to the individual flow's 

properties. 

We consider a many-to-one flow with two senders. Using (17) and (18) we can 

compute the reduction in bandwidth variations when switching from using individual 

one-to-one flows to using a many-to-one flow as follows: 
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CoV''-CoV' 1 
m = 1 - - (32) 

Co 严 
where a / and a / , are the variances of bandwidth of flow 1 and flow 2 respectively, 

and p is the correlation coefficient of the two flows. 

Define r = 02 /oj as the ratio of the two flows' standard deviation. We can then 

rewrite (32) as 

Co 严 — cr,+(ro-,) 

= 1 - 知 2+2pr (33) 
1 + r 

= f(r,p) 

which is a function of r and p. 

Assume the correlation coefficient between the two senders, p, is fixed and p 

(i.e., not completely positively correlated), then we can determine the rate of change 

off{r, p) with respect to r from 

d f { r , p ) — { \ - r ) { \ - p ) (34) 

Solving for 可、广)=0 we obtain 

(1 — 广 ) = 0 (33) 

=> r = 1 •： 

Since/(r, p) > 0 for all r < 1, and / r , p) < 0 for all ^ > 1, r = 1 is the maximum 

point for J{r, p). Thus, the maximum reduction in bandwidth variation is achieved 

when the standard deviations of the two senders' bandwidth are equal, in which case 

the reduction is given by 
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,(1，p�= 

= (36) 
2CTI 

二 

V 2 

Fig 12 plots the percentage of reduction against the ratio of the two senders' 

standard deviation r with different values of p. It further shows that the reduction 

increases when the correlation between senders decreases. 

Fig. 13 is a scatter plot showing the actual percentage reductions obtained from 

different combinations of senders in the PlanetLab dataset. Results for the FTP 

dataset are similar and are thus omitted. The upper bound is computed from (36). The 

CoV reduction generally increases with decreases in the correlation coefficient. Note 

that negative correlation is desirable as the flows vary in opposite directions (i.e., one 

increase and the other decrease), thus canceling out some of the variations. 

Still the function f{r, p) depends on two factors: r and p. Thus the question is 

which one is more significant? To answer this question, we assume, without loss of 

generality, that 02 >a/, i.e., r >1. Define S” and Sp as the reduction sensitivity of r and 

p respectively: 

S � - f - - ( 1 1 内 ( 3 7 ) 

S p + — — r ^ o (38) 
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PlanetLab dataset. 
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Now both Sr and Sp are negative meaning that the reduction increases when r or p 

decreases. To compare their relative significance we can compute the ratio of Sr and 

Sp from 

义 少 1)(1-户) (39) 
Sp 2r(l + r) 

( r -1 ) 
Define g{r) = ，then 

r(l + r) 

(40) 

Solving for g，(r) = 0 we obtain 

r ' - 2 r - l = 0 
厂 (41) 

Now as r > 1, r ^ 1 - V 2 so r = l + V2 is the maximum point of g(r) 

s i n c e作 + V ^ ) < 0 . Thus, 

^ < ~ • 三 1 —厂）厂 « 0.0858(1 - p) (42) 

Sp 2(1 + V2)(2 + V2) 
Since -1 ^ <1, we have 

0 < ^ < 0 . 1 7 2 (43) 
& 

In other words the reduction sensitivity of p is at least 1/0.172 = 5.8 times that of 

r. If p = 0，i.e., the two flows are uncorrelated, then the sensitivity ratio is lower 

bounded by 11.655. Nevertheless this is still not the whole picture as the range of p is 

from -1 to 1, but the range of r is from 1 to OQ 

Thus to compare their effects we also need to consider the actual magnitudes of r. 

Fig. 14 and 15 plot the histogram of p and r respectively in the PlanetLab dataset. It 

is clear that the parameter r can indeed assume much larger values than p 
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(approximately by one order of magnitude). Similar results are also observed in the 

FTP dataset. Therefore we conclude that neither factor dominates the other one, and 

so one need to consider both factors to optimize the reduction in bandwidth 

variations. 
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Fig. 14. The histogram of the correlation coefficient in 
the PlanetLab dataset. 

39 



0.16 n 

0.14 -

0.12 -

I 0.1-
I 議 - I 
^ 0.06 - \ 

0.04 - \ 

0.02 - ^-v^ 
0 4 1 1 ~ I I __•_.I••…i_ 

1 2 3 4 5 6 7 8 9 10 

Standard Deviation Ratio (r) 

Fig. 15. The histogram of the standard deviation ratio in the PlanetLab dataset. 

40 



Chapter 41 

PREDICTIVE BUFFERING ALGORITHM 

The current Internet does not provide any end-to-end quality-of-service (QoS) 

control and thus presents a significant challenge to bandwidth-sensitive applications 

such as streaming video and TV contents over the Internet. The fluctuations in 

bandwidth availability can easily lead to frequent video playback interruptions that are 

extremely annoying to the end users. 

To tackle this challenge researchers have developed novel adaptation mechanisms 

[21-25] to dynamically adjust the video bit-rate to match the varying bandwidth 

availability. However, this often requires the use of special compression algorithms 

(e.g., FGS [21-22]) or real-time media transcoders [24-25] that may not be feasible or 

available in some applications. 

Without these advanced codecs or transcoders, today's content providers typically 

prepare a few versions of the same content in different bit-rates to cater for users of 

different connection bandwidth. Given the complexity and the time required to encode 

multiple versions of the same video, it is not surprising that there will only be a small 

number of versions of the same video content provided. Thus the selected video is 

often either of too low or too high a bit-rate for the client. The former case is trivial as 

streaming will likely be successful. The latter case will be far more complicated as the 

client now does not have sufficient bandwidth to streaming the video in the 
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conventional manner. Some existing video players will simply download the video and 

begins playback only after substantial portion of the video has been downloaded. 

However, due to the inherent variations in network bandwidth availability, even this 

conservative strategy may not be able to ensure continuous playback, especially for 

long video contents. 

In this chapter we tackle this problem by developing a novel predictive buffering 

algorithm that can determine at runtime the buffering time required to ensure playback 

continuity, especially for longer videos (e.g., over a few minutes) and when the video 

bit-rate exceeds the available network bandwidth. The proposed predictive buffering 

algorithm is designed around two principles. 

First, during the initial buffering period the client can measure the mean and 

variance of the available bandwidth over a given interval (e.g., 1 s). Assuming that the 

past and future available bandwidth is a stationary random process of unknown 

distribution, then the sum of future bandwidth availability over the next n intervals will 

approach normal as «->co due to the Central Limit Theorem. Thus knowing the 

distribution of the future bandwidth, the client can determine the minimum buffer time 

to ensure playback continuity. 

Second, the success of the approach depends on the stationarity assumption of the 

future bandwidth availability, given that the available bandwidth from a sender to a 

receiver is often unpredictable. However, our measurements and analysis in previous 

chapters have established that if there are multiple senders transmitting data to the 

client simultaneously, then the aggregate available bandwidth will become far more 

stationary. Therefore, by employing sufficient number of senders, each transmitting a 

portion of the data, the stationarity assumption can then be satisfied and we can invoke 

the first principle to determine the minimum buffering time accordingly. 
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The proposed predictive buffering algorithm is evaluated using extensive 

trace-driven simulations, with two sets of traffic traces obtained from different 

networks and different time frames. The results confirm the relation between the 

aggregate bandwidth stationarity and the number of senders in the aggregate data flow, 

and also show that the predictive buffering algorithm can achieve buffer delays that are 

remarkably close to the optimal buffer time. 

We present the predictive buffering algorithm in this chapter and then evaluate its 

performance using trace-driven simulations in Chapter 7. 

6.1 Related Work 
Streaming video from multiple sources to a receiver has previously been 

investigated by a number of researchers [26-30]. Compared to single-source 

streaming, multi-source streaming has several potential advantages, such as increasing 

the throughput by combining the bandwidth of multiple senders [26-28]; adapting to 

network bandwidth variations by shifting the workload among the multiple senders 

[29-30]; and reducing bursty packet loss by splitting the data transmission among the 

multiple senders [26-27". 

For example, Nguyen and Zakhor [26-27] developed rate allocation and packet 

partition algorithms with Forward Error Correction (FEC) to minimize the packet loss 

rate and the probability of late packet arrivals. Xu et al. [28] proposed an algorithm for 

media data assignment to reduce buffering delay. Kwon and Yeom [29] proposed a 

dynamic rate allocation and packet partition scheme to adapt to the senders' varying 

throughput. Agarwal and Rejaie [30] proposed an adaptive layered streaming 

algorithm to compensate for variations in the measured available bandwidth from all 

congestion controlled senders. 
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The above studies exploited the availability of multiple sources and the diversity of 

multiple network paths to improve streaming performance. In another study, Reisslein 

and Ross proposed a novel call admission scheme [31] that can provide statistical QoS 

guarantee in streaming prerecorded variable-bit-rate (VBR) videos over ATM. In their 

study the network bandwidth is known but the video bit-rate can vary due to the VBR 

encoding and interactive playback controls. To guarantee QoS they proposed to 

multiplex multiple video streams over the network and then model the bit-rate of the 

multiplexed aggregate video flow as a stochastic process, and then apply the Central 

Limit Theorem and Large Deviation theory to obtain probabilistic bounds. 

In comparison, the intra-flow bandwidth aggregation model developed in this 

chapter also appeals to the Central Limit Theorem (CLT) to obtain probabilistic 

bounds. However, there are two fundamental differences. First, Reisslein and Ross's 

work [31] solved the problem of varying video bit-rate but with constant network 

bandwidth, while our work solved the problem of constant video bit-rate but with 

varying network bandwidth. Second, the varying video bit-rate in Reisslein and Ross's 

work, although modeled as a random process, is known a priori as they are 

prerecorded. By contrast, our work does not assume a priori knowledge of the varying 

available bandwidth, and thus we need to develop an estimation algorithm to measure 

and estimate the parameters of the stochastic process. 

6.2 System Model 
To begin a new video session, a client will send requests to N senders to initiate data 

transfer. We assume that the video data are delivered from each sender to the receiver 

using a transport protocol with congestion control mechanisms such as TCP or 
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TCP-friendly streaming protocols (e.g., TFRC [32]) such that the bandwidth available 

to the video session will vary according to the instantaneous load of the network path. 

The client upon receiving the initial video data will begin the buffering period, and 

then start playback once sufficient amount of video data are buffered. Specifically, let 

Ci be the total amount of data received from all N senders in time interval i after the 

buffering process begins; R be the video bit-rate and w be the time to start playback. To 

ensure continuous playback we must ensure that the amount of data received at any 

time must not be less than the amount of data consumed, i.e., 

^Cj>R(i-w\\/i>w (44) 
y=i 

or else buffer underflow will occur, causing playback interruptions. The challenge is to 

find, at run time, the smallest buffering period w that satisfies (44). 

6.3 Prediction Algorithm for 

Constant Bit-Rate Videos 
At each time interval, the client will check to see if sufficient data have been 

received to sustain continuous video playback for the rest of the video session. Let L be 

the total video length in number of time intervals and Bi be the amount of data received 

up to the time interval i. Then the client can guarantee continuous playback for the 

entire video session if the following constraint is satisfied: 

i+k 

B.+ ^ Cj>Rkyk = l2,...,L (45) 
j=i+\ 

where the L.H.S. is the amount of data already buffered plus the amount of data to be 

received in the future k time intervals, and the R.H.S. is the amount of data to be 

consumed in the future k time intervals if playback is to begin from time interval i. 
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Otherwise the client will buffer for another time interval and then check (45) again, 

and repeat the process until (45) is satisfied. However the precise future bandwidth 

availabilities {Q |7>/+1} are obviously not known a priori and so we need to devise a 

way to estimate it. 

From the results in Section 4.5 we know that many-to-one data flows exhibit more 

consistent properties over a long time scale. Thus we can assume that the future 

available bandwidth {Q |户•+l,/+2,".} will maintain the same mean and variance as 

the past available bandwidth up to the current time interval i: {Cj 17=1,2,...,/}. 

If we further assume that the {C/'s} are independent (c.f. Section 4.3), then the 

probability distribution of the summation term in the L.H.S. of (37) will be equal to the 

convolution of the probability distributions of the k aggregate bandwidths {Cj 

y=/+l，/+2,...,/+幻，denoted by Fk{'). Now as the {C/'s} are independent with the same 

mean ju and variance the distribution Fk{-) will approach normal with mean kju and 

variance kc^ as A:->co according to the Central Limit Theorem. 

Thus the minimum buffering time needed to guarantee playback continuity with a 

given probability of A can be computed from 

w = mm{F ,{Rk-B . )<{ \ - ^ \ \ / k = \X• - .L ] (46) 

where the mean and variance of F々 (.）are estimated using the measured mean and 

variance of the aggregate bandwidth {Q's} during the initial buffering period. 

6.4 Prediction Algorithm for 

Variable Bit-Rate Videos 
In the previous section we assumed that the video is encoded using 

constant-bit-rate (CBR) encoding in which their bit-rates are constant over the entire 
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duration of the video. However, the predictive buffering algorithm can be easily 

extended to support the streaming of variable-bit-rate (VBR) videos. 

Assume we know in advance the VBR video's bit-rate profile {Rt \ t = 1,2,...^}, 

where Rt is the short-term average video bit-rate in time interval t. To ensure 

continuous playback, the constraint (45) is replaced by 

i+k k 

= 口 ( 4 7 ) 
j=i+\ t=\ 

And the minimum buffering time then becomes 

‘ k � 

w = min ] Fk ( V R^-B.) < { \ - ^ \ \ f k = (48) 
‘I TR J 

The rest of the algorithm is the same as in the CBR case. 

6.5 Parameter Estimation 
During the initial buffering period the client measures the mean and variance of the 

aggregate available bandwidth. Being measurements of a stochastic process the 

measurement accuracy will depend on the number of samples used, i.e., the length of 

the measurement period. This latter point leads to another subtle issue as the length of 

the measurement period is simply equal to the buffering period, which can vary 

significantly depending on the ratio of the video bit-rate to the mean aggregate 

available bandwidth as well as the variances of the available bandwidth. 

For example, if the available bandwidth is substantially lower than the video 

bit-rate then the buffering period will likely be longer, thus allowing more accurate 

measurement of the required parameters. On the other hand, if the available bandwidth 

is comparable to the video bit-rate then the buffering period as computed from (46) 

and (48) can be very short. In this case if the measured parameters are inaccurate then 
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the computation of (46) and (48) will become inaccurate as well, possibly resulting in 

playback interruptions. 

To guard against this problem，we employ the method of confidence interval [33] in 

estimating the mean and variance during the buffering period. Specifically, when the 

sample size w is more than 30，we can assume that the sample mean distribution of ju is 

normally distributed. The ( l - a ) confidence interval of sample mean is given by 

(/̂  — + 丨2 (49) 
\lw vw 

where cris the samples' standard deviation and z^ji is equal to 2.58 for a = 0.1 (i.e., 

99% confidence). Thus the client can use the lower limit of the confidence interval as 

the sample mean. 

In extreme cases with sample size w < 30，the sample mean distribution is replaced 

by the Student's ^-distribution with the corresponding (l-o:) confidence interval given 

by 

C " -。/2，w-l — G/2，w-1 ( 5 0 ) 

yjW yjw 

where the value of ta/2,w-\ is given in the Mable. 

Our results show that using this confidence interval method can effectively prevent 

inaccurate parameter estimations without significantly increasing the estimated 

buffering time. 
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Chapter 49 

PERFORMANCE EVALUATION 

In this chapter we evaluate the performance of the predictive buffering algorithm 

using trace-driven simulations. 

7.1 Trace-Driven Simulation Setup 

There are two sets of trace data used in the simulations. The first set of trace data is 

obtained from our measurements conducted in the PlanetLab. The second set is 

generated using a well known network simulator — NS2 [34]. We first obtained traffic 

trace data from the NLANR PMA archive [35], which captured the packet-level trace 

data at an Internet gateway at Bell Labs in 2002. The one-day trace is then divided into 

separate one-hour sub-traces. The sub-traces are used as cross traffic in the simulation 

topology depicted in Fig. 16. There are up to N senders {SI, S2,…，STV) transmitting 

data simultaneously to the receiver R using TCP as the transport. The senders do not 

perform additional rate control and simply transmit data as fast as TCP allows. We 

choose TCP for its ability to automatically adapt to the network load (i.e., the cross 

traffic) to obtain a fair share of the available bandwidth for transporting video data. 

Other transport protocols such as TFRC can also be used as long as they have built-in 

congestion control algorithm. The predictive buffering algorithm operates 

independently from the actual transport protocol used. 
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Fig. 16. Simulation topology. 

7.2 Performance over CBR Videos 
In this section we evaluate the performance of the proposed predictive buffering 

algorithm over CBR videos. The video length is set to 1800 seconds and the video 

bit-rate varies from 1 to 1.3 times the mean aggregate available bandwidth (i.e., Rlji = 

1, 1.1, 1.2 and 1.3). Thus other the case of RJfi = 1 all other cases suffer from 

insufficient bandwidth and so rely on the predictive buffering algorithm to determine 

the minimum buffer time needed to ensure continuous video playback. In case the 

client runs into buffer underflow due to data not arriving in time for playback, it will 

suspend playback and then rerun the predictive buffering algorithm to buffer sufficient 

video data before resuming playback. An alternative approach (not used in this study) 

would be to continue playback despite the missing data and then attempt to conceal the 

visual degradation through error concealment techniques. In this latter approach 
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playback performance will then be measured by the visual quality (e.g., PSNR) 

instead. 

7.2.1 Video Playback Performance 

Fig. 17 plots the successful playback ratio using the PlanetLab traces with video 

bit-rate ratios equal to 1.1 (i.e. Rl/i = 1.1). Successful playback ratio is the proportion 

of simulation runs with no playback interruption (i.e. buffer underflow) during the 

entire video playback session. To provide a finer scale for performance evaluation we 

also plot in Fig. 18 the average pause count — the average number of 

buffer-underflow-induced playback interruptions per streaming session, and in Fig. 

19 the average underflow time — the average total duration of playback suspension 

per streaming session. 

There are four curves in Fig. 17—19: the Sample Mean curve is plotted with the 

mean aggregate achievable bandwidth of the initial buffering period as input to 

compute the minimum buffering time using (46); the 90%, 95% and 99% CI Mean 

curves are plotted with the lower limit of the 90%, 95% and 99% confident interval 

(c.f. (49) and (50)) as input to (46). 

The first observation is that the performance when using the sample mean is 

significantly worse than the case when the lower limit of confidence interval is used. 

This is because in this simulation the video bit-rate is only 1.1 times the mean available 

bandwidth and so the resultant buffering time is relatively short, thereby leading to 

inaccurate measurement of the bandwidth parameters. In our other simulations with 

higher video bit-rate ratios the difference will become substantially smaller as the 

buffering period lengthens. 
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Second, the performance of using 90%, 95% and 99% CI mean are similar while 

using 99% CI mean is always the best. But note that there is a tradeoff of buffering 

time. Using a higher percentage of the confidence interval, the buffering time will be 

longer. We will come back to the discussion of the average buffering time in Section 

7.2.2. 

Using the 99% CI mean we investigate further the performance of the predictive 

buffering algorithm at video bit-rate ratios ranging from 1 to 1.3 using the PlanetLab 

traces (Fig. 20—22) and the NLANR PMA traces (Fig. 23-25). The results show that 

increasing the number of senders generally results in better performance, i.e., higher 

successful playback ratios, fewer playback pauses, and shorter underflow time for all 4 

cases of video bit-rate ratios in both traces. This is a direct result of the improved 

consistency of the aggregate available bandwidth properties when there are many 

senders. In fact the algorithm achieves a successful playback ratio higher than 90% 

when there are 6 or more senders. 

52 



100 n 99% CI Mean 95% CI 

o 80- r ：； ; ^ ^ - - r 一 • - 一 -

3 70 - 90% CI Mean . 一 . - - x - • 一 ; ^ 
^ _ ^一 . - - - -• \ 

老 6 0 - K Sample Mean 
cd 
玄 5 0 -

E 40 -
1—H 

^ 3 0 -
1/3 
(D 
8 20 -

^ 10 -

0 H 1 1 1 1 1 1 1 1 I I 
1 2 3 4 5 6 7 8 9 10 

Number of Senders 

Fig. 17. Comparison of successful playback ratio when using Sample Mean, 90%, 
95% and 99% CI Mean (PlanetLab traces, R//i = 1.1). 
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Fig. 18. Comparison of average pause count when using Sample Mean, 90%, 95% 
and 99% CI Mean (PlanetLab traces, R/ju = 1.1). 
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Fig. 19. Comparison of average underflow time when using Sample Mean, 90%, 
95% and 99% CI Mean (PlanetLab traces, R/jU = 1.1). 
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Fig. 20. Successful playback ratio for PlanetLab traces. 
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Fig. 21. Average pause count for PlanetLab traces. 
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Fig. 22. Average underflow time for PlanetLab traces. 
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Fig. 23. Successful playback ratio for NLANR PMA traces. 
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Fig. 24. Average pause count for NLANR PMA traces. 
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Fig. 25. Average underflow time for NLANR PMA traces. 

7.2.2 Buffering Time 
Next, we study how far the computed buffering time deviate from the lower 

bound, which is the minimum buffering time required for continuous video playback 

assuming all the future bandwidth availabilities are known a priori. This bound is not 

realizable in practice but provides a useful benchmark to evaluate the absolute 

performance of the predictive buffering algorithm. 

First, we look into the effect on the average buffering time when using sample 

mean and the lower limit of the confidence interval. Fig. 26 plots the comparison of 

the ratio of the computed buffering time to the lower bound value when using the 

PlanetLab traces with RIILI = 1.1. In the ideal case, the buffering time will be the same 

as the lower bound and the ratio will be equal to 1. If the ratio is larger than 1, then 

more than enough data will be buffered and video playback continuity is guaranteed. 
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On the other hand, if the ratio is less than 1，then the buffered data will not be 

sufficient to support continuous playback for the entire video. There are two sets of 

data in Fig. 26. One is calculated from all simulation runs with 7 or more senders. 

Another is obtained from only the successful simulation runs, again with 7 or more 

senders. 

In the former set of results, the ratio when using sample mean is much smaller 

than those when using the lower limit of the confidence interval. It is expected since 

in the latter cases a smaller mean value is taken to compensate for inaccuracies in 

parameter estimation when computing the required buffering time. 

However, the results from averaging the ratio of all runs do not reflect the whole 

picture. Fig. 27 plots the buffering time when using the sample mean and 99% CI 

mean together with the lower bound. It can be observed that the computed values 

when using the sample mean are smaller than the lower bound in some runs. Note 

that if the computed buffering time is less than the lower bound, then it is in fact 

undesirable as there will be playback interruptions. 

Thus, to exclude these unsuccessful cases we plot the average ratio of successful 

runs in Fig. 26. The results show that when using the sample mean the ratio is still 

smaller than those using the lower limit of the confidence interval. But the 

differences are much smaller. All of the ratios are approximately equal to 1.8. This 

shows that by using the confidence interval mean we can achieve substantially better 

successful playback ratio (c.f. Fig. 17) and yet with insignificant increase in the 

buffering time. 

Second, we study the relationship between the buffering time ratio and video 

bit-rate ratio. Fig. 28 plots the ratio of the buffering time to the lower bound ratio 

(successful runs only) with RIfi = 1, 1.1, 1.2 and 1.3 for the PlanetLab and the 
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NLANR PMA traces. There are two observations. First, the buffering time ratio 

drops when the video bit-rate ratio {RIjj) increases. It is because higher video bit-rate 

ratio requires longer buffering time to compensate for the insufficient bandwidth. 

This leads to a longer parameter estimation period and thus higher accuracy in 

parameter estimation. The computed buffering time is thus closer to the lower bound. 

Second, the ratio for the NLANR PMA traces is higher than that for the PlanetLab 

traces except for Rlfi = 1. This is because the NLANR PMA traces generally exhibit 

significantly more and larger variations in the available bandwidth. Thus to 

compensate for the larger bandwidth variations the predictive buffering algorithm 

will extend the buffering time to ensure continuous playback. When Rl/x = 1, the ratio 

for the PlanetLab traces is higher because of the very small lower bound value (e.g., 

less than 5 seconds) in some runs. With the use of the lower limit of the confidence 

interval, the predictive buffering algorithm easily underestimate (or overestimate) the 

future bandwidth availability due to the short estimation period. The runs with 

underestimation lead to a very high ratio. 
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Fig. 26. Comparison of the ratio of the buffering time to the lower bound when using 
Sample Mean, 90%, 95% and 99% CI Mean (PlanetLab traces, Rlfi = 1.1). 
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Fig. 27. Buffering time of 20 different simulation runs (PlanetLab traces, R/ju = 1.1). 
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Fig. 28. The ratio of the buffering time to the lower bound for PlanetLab and 
NLANR PMA traces (successful runs only). 

7.3 Performance over VBR Videos 
To evaluate the performance of the predictive buffering algorithm streaming VBR 

videos, we perform trace-driven simulations using the PlanetLab traces using VBR 

video bit-rate profile from a movie DVD — Godzilla. As the total length of the movie 

is 8325 seconds which is longer than the PlanetLab traces (maximum of two hours), 

we split the entire movie into three parts, each lasting 2775 seconds to conduct the 

simulation. Moreover, to make the results comparable across different simulation 

runs, we scale the video bit-rate profile such that they all have the same average 

video bit-rate, which are set to 1.1 and 1.3 times the mean aggregate bandwidth 

available (i.e., Rl/j. = 1.1 or 1.3，where R = 
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7.3.1 Video Playback Performance 

Fig. 29 and 32 plot the successful playback ratio with Rlja = 1.1 and 1.3 

respectively using the 99% CI mean. The average pause count and the average 

underflow time are shown in Fig. 30 and 31 with R/ii = 1.1 and Fig. 33 and 34 with 

Rlji = 1.3. Similar to the performance over CBR video, the successful playback ratio 

increases, average pause count reduces and average underflow time shortens when 

there are more senders. 

When Rlfi = 1.1 the performance of Part 1 and Part 2 is slightly better than that of 

CBR and Part 3, while the differences are negligible when Rlii = 1.3. This is due to 

the length of the buffering time (c.f. Fig. 37). The explanation of the differences in 

the buffering time will be discussed in Section 7.3.2. As the buffering time of Part 1 

and Part 2 is longer, the accuracy in parameters estimation is higher and hence the 

performance is better. The effect is negligible when RIfi = 1.3 because the buffering 

time to compensate for the bandwidth insufficient is already long enough. 
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Fig. 29. Successful playback ratio {RIyi = 1.1). 
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Fig. 30. Average pause count {Rlfi = 1.1). 
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Fig. 31. Average underflow time {Rl/j. = 1.1). 
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Fig. 32. Successful playback ratio {R!̂  = 1.3). 
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Fig. 34. Average underflow time {Rlfi = 1.3). 
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13.1 Buffering Time 

We first evaluate the absolute average buffering time. For CBR videos, the 

buffering time is affected by the mean video bit-rate ratio and the bandwidth 

variations. For VBR videos, there is one more factor - the variation of video bit-rate 

during the entire video. For example, consider a VBR video stream where the first 

half of the video has twice the video bit-rate of the second half of the video. 

Compared to a CBR video of the same mean video bit-rate, it is easy to see that the 

amount of buffering required for the VBR video will be larger due to the higher 

bit-rate during the first half of the video. 

Fig. 35 illustrates this observation by plotting the normalized video playback 

curves, i.e., the cumulative amount of video data consumed by the client, of three 

VBR video streams from the actual video bit-rate profile, together the CBR 

counterpart. We can see that Part 1 and Part 2 consume more while Part 3 consumes 

less video data at the beginning of the video compare to the CBR counterpart. In 

contrast, the scenario is reversed near the end of the playback as shown in Fig. 36, 

which plots the last 100 seconds of the playback curves in Fig. 35. 

With no bit-rate variations at all we expect buffering time of the CBR video to be 

the shortest. Fig. 37 shows the average buffering time with Rljn = 1.1 and 1.3. We 

observe that the average buffering time of the CBR video is indeed the shortest, 

while Part 2 requires the longest buffering time. 

Fig. 38 plots the ratio of the buffering time to the lower bound (successful runs 

only) with RIfi = 1.1 and 1.3. The ratios are around 1.5 {R/ji = 1.1) and 1.2 {Rl/i = 

1.3) for all the four videos. There is no significant difference between CBR and VBR 

videos. 
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Chapter 69 

FUTURE WORK 

The predictive buffering algorithm presented in Chapter 6 and 7 shows how we 

can apply the many-to-one data transfer model to provide probabilistic performance 

guarantees. It is merely one of the simplest applications. There are still a number of 

works can be done to extend the usage and improve the performance of the proposed 

algorithm. 

First, the predictive buffering algorithm assumes the video length and video 

bit-rate profile (for VBR video) is known in advance. Without this information it will 

be impossible to estimate the future bandwidth assumption. This could be case if the 

streaming content is encoded live in real-time. On the other hand, for very long video 

such as video conference proceedings, the bandwidth estimated at the beginning of 

the video session may eventually deviate after a long period of time (e.g., tens of 

hours) and thus may eventually cause playback interruptions. To tackle these 

problems it is necessary to adopt post-playback adaptation in addition to 

pre-playback prediction. In Section 8.1 we discuss one possible approach through the 

use of playback rate adaptation and content adaptation. 

Second, so far we only employed a simple random sender selection algorithm in 

Chapter 7. When there are more than enough senders to choose from, we can expect 

different selections of the set of senders will likely affect the final streaming 
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performance. For example, if the resultant sender set exhibits less bandwidth 

variation then the performance should be better (c.f. Section 8.2). Furthermore, if 

multiple users receive data through a proxy server then the proxy server can also 

monitor the flow properties continuously and when needed, further optimize 

performance by reallocating the senders dynamically (c.f. Section 8.3 — 8.4). 

Finally, we discuss in Section 8.5 the challenges to applying our results in 

peer-to-peer (P2P) applications. 

8.1 Playback Rate Adaptation 
In the predictive buffering algorithm, once playback starts the algorithm 

completes and so any future bandwidth availability information will not be used 

unless there are playback interruptions. In order to support real-time encoded live 

video feeds that have unpredictable bit-rate variations and to adapt to very long time 

scale bandwidth fluctuations, playback rate adaptation [36-37] and content 

adaptation algorithms [21-22] can be integrated with the predictive buffering 

algorithm. 

Specifically, after playback has begun, the client will continue to measure the 

statistical properties of the aggregate data flow. At periodic time intervals the client 

will re-predict the future bandwidth availability and check if the constraints in (45) or 

(47) are still satisfied. If not then it will slow down the video playback rate, e.g., by 

decreasing the video frame rate and using time-scale modification [38] to elongate 

the audio, to compensate for the bandwidth reductions. The playback rate will be 

returned to normal once the playback constraints are satisfied again. 

On the other hand, if the video is encoded using scalable codec such as multiple 

description coding (MDC) [39-40] or if online transcoding [25] is available, the 
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client can feedback the bandwidth information to the streaming servers which can 

then adaptively fine-tune the video bit-rate to transmit to the client. 

8.2 Sender Selection Algorithm 

In our measurements and simulations, the senders are picked up randomly from 

the pool of available senders. In practice the system/client could keep historical 

information of senders' bandwidth properties and exploit that in selecting senders for 

a new video session. As reported in Section 4.6, properties of a substantial portion of 

the senders exhibit high-degree of correlations over very long time scales (e.g., 

months). Together with the findings in Section 5.3, which showed that we can 

minimize bandwidth variation of the resultant many-to-one data flow by carefully 

matching the correlations between two senders (p) and the ratio of two senders' 

standard deviations (r), it is possible to design an optimization algorithm to select the 

subset of senders that will result in minimal or at least lower bandwidth variations. 

One approach is to focus on one of the two factors in the sender-selection process. 

Specifically, a sender is first randomly selected from a pool of senders. Next we find 

another sender whose value of p (correlation between itself and the selected sender) 

is smallest or r (the ratio to the selected sender) is closest to 1, and then combine the 

two senders as one, i.e., treat their combined aggregate flow as a single flow. We 

repeat this process by adding more and more senders to the many-to-one flow until 

sufficient number of senders is selected. Thus this is a simple greedy algorithm that 

optimizes one of the two sender selection criteria (i.e., either p or r). To further refine 

this algorithm we can modify it to select M candidate senders according to one 

criterion (say p), and then from these M candidates select one to be combined 
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according to the other criterion (say r). Similarly this process is to be repeated until 

sufficient number of senders is selected. 

In addition to the greedy algorithm approach it is also possible to approach the 

problem as a general optimization problem, where a subset of senders is to be 

selected to optimize given performance objectives (e.g., buffering time) subject to 

system constraints. Clearly this is not a trivial optimization problem due to the 

non-linearity in the formulations and thus warrants further research to study the 

existence of, and the algorithm to obtain optimal or near-optimal solutions. 

8.3 Dynamic Flow Allocation 
So far we have assumed that the client interacts with the senders directly (Fig. 

39a). In some network environments such as a corporation, an ISP, or a university 

campus, it may not be the complete picture. In particular, to reduce Internet 

bandwidth usage, such network environments often employ one or more proxy 

servers to intercept and forward client requests to the servers, and then caching and 

forwarding the data received from the servers to the clients (Fig. 39b). 

Now as all traffic passes through the proxy, the proxy server can measure the 

statistical bandwidth properties of all the servers across all the many-to-one flows. 

This equipped the proxy server with far more extensive information of the servers' 

bandwidth properties, both current and historical. This information can then be used 

to guide the selection of senders as described in Section 8.2, or take one step further 

- t o select and even dynamically reallocate the right combination of senders on 

behalf of the clients. 

For example, consider two clients where each of them is served by two streaming 

servers, say Server 1 and 2 for Client 1, and Server 3 and 4 for Client 2. Assume the 
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sessions which turn out to have received more than sufficient bandwidth, e.g., large 

amount of data have been accumulated at the receiver. When admitting new 

streaming session the proxy server can then take-away some of the senders from 

these existing wealthy sessions subject to the constraint that the target quality of 

service of these wealthy sessions are not compromised, and reallocate them to the 

new streaming session to reduce the buffering time, or reallocate them to other 

existing poor sessions which are suffering or predicted to suffer from insufficient 

bandwidth. 

This predictive flow allocation approach is particularly suitable for VBR video 

streaming as some VBR videos have higher than average bit-rate at the beginning, 

which requires more senders to achieve an acceptable startup delay. Once the peak 

bandwidth demands are over, these VBR video streaming sessions will have more 

than sufficient senders, which could then be reallocated to other streaming sessions 

to improve overall system performance. 

8.5 Challenge in P2P Applications 
Our work studies the characteristics of aggregate data flow from multiple senders. 

Consider a P2P application, the peers exchange data with each others and most of the 

time peers receive data from multiple peers simultaneously. Thus, our results seem to 

be naturally applicable to this type of applications. However, there are still many 

challenges when applying the many-to-one data flow model in P2P applications. 

Specifically, in a P2P system peers are highly dynamic and unlike dedicated 

server, peers may join and leave the system at any time. Thus the data flow model will 

not only need to handle bandwidth fluctuations, but also changes of the sources 
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themselves. On the other hand, P2P systems tend to have a large number of peers 

available and thus a many-to-one data flow can be constructed from a larger number 

of sources to reduce the impact of peer departure. Together with a dynamic source 

discovery scheme it is thus possible to replace departed peers with other available 

peers to maintain the data flow's performance. More research is warranted to 

investigate these challenges further and to develop practical solutions for the future 

P2P systems. 
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Chapter 76 

CONCLUSION 

In this work, we studied the characteristics of achievable bandwidth in many-to-one 

data flows through extensive measurements conducted in the PlanetLab and in the 

Internet. Our results confirmed that the achievable bandwidth of individual one-to-one 

data flows can vary over a very wide range and is very difficult to predict accurately 

based on past measurements. By contrast, the aggregate achievable bandwidth of a 

many-to-one data flow exhibit significantly more consistent properties over a time 

scale of hours. Moreover, increasing the number of senders in a many-to-one data flow 

guarantees that the bandwidth variations will reduce and the future bandwidth will be 

more predictable. These two findings are of particular importance to 

bandwidth-sensitive applications. 

By applying the many-to-one data transfer model, we developed a novel 

predictive buffering algorithm for multi-source video streaming. The proposed 

algorithm incorporates the impact of variations in the network available bandwidth 

and uses that knowledge to inform the buffering operation. The trace-driven 

simulation results show that the predictive buffering algorithm can achieve very high 

successful playback ratio while keeping the buffering time short. 
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