
Measurement and Application of

Many-to-one Data Flows

HO, PoYee

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Information Engineering

© The Chinese University of Hong Kong

August 2007

The Chinese University of Hong Kong holds the copyright of this thesis. Any person(s)

intending to use a part or whole of the materials in the thesis in a proposed publication

must seek copyright release from the Dean of the Graduate School.

p r ^
0 1 SEP M JiJ

W T ~ / M / J
SYSTENI/-̂

ACKNOWLEDGEMENTS

First, I would like to express my deepest gratitude to my supervisor Prof. Jack Y.

B. Lee, who whole-heartedly provided guidance and invaluable advice throughout

the whole duration of my research.

Next, I would like to thank Prof. Wing C. Lau, who has contributed lots of

valuable ideas and comments to my research.

I would also like to thank my dear colleagues, including Johnny, Gary, Brio and

Rudolf. They provided me with earnest help and friendship during the past two years.

i

ABSTRACT

With the rapid deployment of multimedia contents in the Internet, the need to

understand the characteristics of bandwidth availability in the Internet in general, and

the capability to estimate and predict bandwidth availability in particular, is becoming

increasingly important. Nevertheless, without any sort of resource reservation or

explicit traffic regulation, the bandwidth availability of a one-to-one data flow across

the Internet is still subject to a multitude of factors and thus is largely unpredictable.

This study goes beyond one-to-one data flows to investigate the characteristics of

many-to-one data flows, where multiple senders transmit data simultaneously to the

same receiver, e.g., multi-source video streaming and peer-to-peer systems. In sharp

contrast to one-to-one data flows, the measurement results reveal that having multiple

senders not only achieves higher aggregate bandwidth, but the resultant aggregate data

flows will also exhibit significantly more predictable properties even if the individual

flows do not exhibit any consistent behavior. This newfound predictability thus could

open up a new way to provide probabilistic quality-of-service guarantees for running

bandwidth-sensitive applications over the best-effort Internet. This thesis presents the

new findings obtained from extensive measurements conducted in the Internet and in

PlanetLab, develops a mathematical framework to explain the observations from the

measurement results, establishes the invariant properties of general many-to-one data

flows, and proposes a novel predictive buffering algorithm to exploit the properties of

many-to-one data flows in video streaming applications.

ii

摘要

隨著多媒體內容在互聯網上迅速發展，了解頻寬可得性（b a n d w i d t h

availability)的特性的需要，特別是其可估計和預測的能力，變得越來越重要。

然而，在沒有任何資源保留或明確流量管制的情況下，互聯網上一對一數據流

(one-to-one data flow)的頻寬可得性還是取決於很多因素，因而是難以預測的°

本項硏究超出一對一數據流的範圍，硏究多對一數據流（many-to-one data flow)

的特性，即多個發送者同時傳達數據給同一接收者，例如多源視訊串流和點對

點系統。相對於一對一數據流，實驗測量結果顯示使用多個發送者不僅能取得

更高的總頻寬（aggregatebandwidth)，而且能令多對一數據流擁有更高的可預測

性。這新發現的可預測性爲提供或然性質素保證給互聯網上頻寬敏感的應用開

啓了一個全新的方向。本論文匯報從在互聯網及PlanetLab上大規模測量所獲得

的新發現，建立一個數學框架來說明從測量結果得來的觀察，確立多對一數據

流不變的特質並提出一個利用視訊串流中多對一數據流特質的預測緩衝演算法

0

iii

CONTENTS

Acknowledgements i
Abstract ii

I S S iii
Chapter 1 INTRODUCTION 1
Chapter 2 BACKGROUND AND RELATED WORK 4

2.1 Link/Path Capacity 4
2.2 Unutilized Bandwidth 5
2.3 Achievable Bandwidth 5

Chapter 3 MEASUREMENT METHODOLOGY 7
3 • 1 PlanetLab Measurement 8
3.2 FTP Measurement 10

Chapter 4 ANALYSIS OF MEASUREMENT DATA 12
4.1 Per-Flow Achievable Bandwidth 13
4.2 Inter-Flow Correlation 14
4.3 Intra-Flow Temporal Correlation 16
4.4 Intra-Flow Bandwidth Variation 18
4.5 Predictability of Bandwidth Properties 22
4.6 Long-term Flow Properties 26

Chapter 5 A MATHEMATICAL FRAMEWORK 28
5.1 Bandwidth Variations 28
5.2 Bandwidth Predictability 31
5.3 Sensitivity Analysis 34

Chapter 6 PREDICTIVE BUFFERING ALGORITHM 41
6.1 Related Work 43
6.2 System Model 44
6.3 Prediction Algorithm for Constant Bit-Rate Videos 45
6.4 Prediction Algorithm for Variable Bit-Rate Videos 46
6.5 Parameter Estimation 47

Chapter 7 PERFORMANCE EVALUATION 49
7.1 Trace-Driven Simulation Setup 49
7.2 Performance over CBR Videos 50

7.2.1 Video Playback Performance 51

iv

7.2.2 Buffering Time 57
7.3 Performance over VBR Videos 61

7.3.1 Video Playback Performance 62
7.3.2 Buffering Time 66

Chapter 8 FUTURE WORK 69

8.1 Playback Rate Adaptation 70
8.2 Sender Selection Algorithm 71
8.3 Dynamic Flow Allocation 72
8.4 Predictive Flow Allocation 73
8.5 Challenge in P2P Applications 74

Chapter 9 CONCLUSION 76
BIBLIOGRAPHY , ,

V

Chapter 1

INTRODUCTION

With the rapid deployment of multimedia contents in the Internet, the need to

understand the characteristics of bandwidth availability in the Internet in general, and

the capability to estimate and predict bandwidth availability in particular, is becoming

increasingly important. Previous studies which investigated the bandwidth availability

of Internet flows are primarily focused on one-to-one data flows [1-7] and on

aggregate flows passing through a common network link [8-12]. This one-to-one

model, with a single source sending data to a single receiver, is a good representation

of the client-server model used widely in many Internet applications.

Not surprisingly, without any sort of resource reservation or explicit traffic

regulation, the bandwidth availability of a one-to-one data flow across the Internet is

subject to a multitude of factors such as competing traffic, server load, and protocol

dynamics, and thus is very difficult, if not impossible, to predict. This is a direct

consequence of the Internet's best-effort nature and its lack of end-of-end

quality-of-service control.

On the other hand, in recent years a new class of Internet applications is becoming

extremely successful - distributed and peer-to-peer applications. These applications

rely on replicating data across multiple hosts in the Internet, and then serve data to

clients in a distributed, concurrent manner. A data transfer session in this class of

1

applications is inherently many-to-one, with multiple sources concurrently

transmitting different parts of the requested data to a receiver. This emerging

many-to-one data flow model presents many new challenges but at the same time also

opens up a new opportunity to solving some of the long-standing challenges to

deploying bandwidth-sensitive applications over the Internet.

This study reports results obtained from a large-scale measurement study of

many-to-one data flows in the Internet, develops a mathematical framework to explain

the observations and establishes the invariant properties of general many-to-one data

flows. In sharp contrast to one-to-one data flows, the measurement results reveal that

having multiple senders not only achieves higher aggregate bandwidth, but also results

in many-to-one data flows with significantly more predictable properties even if the

individual flows do not exhibit any consistent behavior. This newfound predictability

thus could open up a new way to provide probabilistic quality-of-service guarantees

for running bandwidth-sensitive applications over the best-effort Internet.

To exploit the properties of many-to-one data flows, this thesis presents a novel

predictive buffering algorithm for streaming video from multiple sources across the

Internet to a receiver. Unlike existing Internet video streaming systems where

playback continuity is subject to the varying Internet bandwidth availability, the

proposed predictive buffering algorithm can determine at runtime the buffering time

required to ensure continuous playback for the entire duration of the video. Extensive

trace-driven simulations showed that with sufficient number of senders the predictive

buffering algorithm can achieve very high successful playback ratio while

maintaining a buffering delay that is surprisingly close to the lower bound.

The rest of the thesis is organized as follows: Chapter 2 reviews some previous

work in bandwidth measurements and multi-source video streaming; Chapter 3

2

summarizes the measurement methodology and the experimental setups employed in

this study; Chapter 4 analyzes the measurement data; Chapter 5 develops a

mathematical framework that explains some of the empirical observations as well as

establishes some invariant properties of general many-to-one data flows; Chapter 6

presents the predictive buffering algorithm; Chapter 7 evaluates the performance of

the predictive buffering algorithm using trace-driven simulations; Chapter 8 discusses

some possible future works; Chapter 9 summarizes the study.

3

Chapter 4

BACKGROUND AND RELATED WORK

Many Internet bandwidth measurements have been reported in the literature, with

different methodologies and software tools for measuring or estimating the bandwidth

of network links and network paths. While all these previous works are related to

bandwidth measurement, they are in many cases measuring different types of network

bandwidth. We provide below precise definitions for three types of network bandwidth

and review the relevant previous works.

2.1 Link/Path Capacity

The capacity of a link is the maximum data rate a flow can utilize when there is no

other traffic flow sharing the same link. Note that this may or may not be the same as

the link's physical bandwidth, depending on whether the network router implements

any rate-limiting control over the data flows. Well-known tools for estimating the

per-hop link capacity include pathchar [1]，clink [2], and pchar [3:.

If a data flow traverses N links from the sender to the receiver and Q is the capacity

of link i, then C=min {C；, C2,... CN) is the end-to-end path capacity of the data flow.

Tools for estimating the path capacity include bprobe [4] and pathrate [5]. Knowledge

of link and path capacities is useful to traffic engineering and network planning.

4

2.2 Unutilized Bandwidth

A second type of network bandwidth is the unutilized capacity of a link [6]. Let Ui(t)

be the utilization of link i, in normalized unit from 0 to 1, at time t. Then the average

link utilization in the interval [t, t + T), denoted by Ui(t’ t + T), can be computed from

1 rt+r
u.{t,t + T) = - U.{t)dt (1)

T

Given Q as the capacity of link i, then the unutilized bandwidth of link i during the

interval [t，t + T), denoted by Ui{t,什T)，can be computed from

UXt,t + T) = C.[\-uXt,t + T)] (2)

Similarly, the unutilized bandwidth of a network path is equal to the minimum

unutilized bandwidth of the N links of the network path:

U(t,t + T) = min,=i J {",(,，, + r)} (3)

Well-known tools for estimating the end-to-end unutilized bandwidth include

pathload [6] and IGI [7]. Knowledge of unused bandwidth is also very useful to traffic

engineering, e.g., guiding the routing or rerouting of traffic from congested network

links to underutilized links.

2.3 Achievable Bandwidth
The third type of network bandwidth is the end-to-end throughput achievable by a

transport flow in passing through a network path [13]. Of particular importance is the

throughput achieves by the TCP transport protocol as it is the building blocks of most

Internet applications. For this reason our measurement experiments are designed

specifically to study the achievable bandwidth using the TCP transport protocol.

5

In contrast to unutilized bandwidth, a TCP flow will be able to obtain a fair share of

bandwidth even if the network path is already fully utilized, assuming that the

competing flows also share bandwidth fairly (e.g., TCP and TCP-friendly flows). Let

d{t,广 + T) be the amount of data transferred in the interval [t, ^ + r) by a TCP flow. Then

the achievable bandwidth for the interval is given by

r(t,t + T) = - d (t , t + T) (4)
T

In a many-to-one data flow there will be multiple TCP flows originating from

multiple sources to the same receiver. The aggregate achievable bandwidth of this

many-to-one data flow is equal to the sum of the achievable bandwidth of all the

individual flows. Let there be N senders, with di(t, t + r) denoting the amount of data

received in the interval [t, ^ + r) by the receiver from source i. Then the aggregate

achievable bandwidth for the interval is given by

1 N
+ = + (5)

Note that in this definition we do not assume the individual flows to be

independent. Some or even all of the flows could share a common network bottleneck

and thus may exhibit correlated bandwidth variations. This inter-flow correlation issue

will be studied in detail in Section 4.2.

On the other hand, the above definition also incorporates both network-limited and

source-limited achievable bandwidth. The former represents the common notion of

available bandwidth as constrained by the network's link capacities and utilizations

while the latter represents the case where the source host is the bottleneck, i.e., the

maximum data rate is limited by how fast the source host can send out data and the

network path in this case does not limit the data throughput at all. This subtle

distinction can be measured and is reported in Section 4.4.

6

Chapter 7

MEASUREMENT METHODOLOGY

Two measurement setups are employed in this study. The first one uses a

custom-developed measurement system deployed in PlanetLab hosts around the world

[14]. The second one makes use of another custom-developed measurement system

to transfer large data files (Fedora Linux distribution images) from FTP mirror servers

around the world. Both measurement setups are conducted continuously and

automatically by a management software, which has begun operation since November

2005. The measurement datasets are collected and automatically posted to the

measurement data archive [15:.

Common to both measurement setups, a measurement session consists of up to 10

sources sending data simultaneously to the same receiver using TCP as the transport.

Thus the measurements measure the achievable bandwidth (c.f. Section 2.3) in

many-to-one data flows. Both the sender and the receiver software are implemented

using the standard sockets [16] application programming interface (API), capturing

the source, the time, and the amount of data received into a trace file. The use of the

sockets API has two advantages. First, it enables the measurement software to run in

the PlanetLab environment as applications are normally not allowed to access the

network interface of PlanetLab host directly. Second, the throughput measured via the

sockets API incorporates not only the effect of sending host and the network, but also

7

the buffering mechanism inside the operating system. This provides a more accurate

representation of the achievable bandwidth as observed by real-world network

applications.

In the following we describe detail operations of the two measurements setups and

discuss their limitations.

3.1 PlanetLab Measurement
PlanetLab is a global research network with over seven hundred hosts located at

over three hundred sites around the world, all connected through the Internet.

PlanetLab hosts run a variant of the Linux operating system with virtual server

capability. We installed our measurement system in 284 of the PlanetLab hosts. Each

measurement node operates as either a sender or a receiver. As a sender it will send

data to the receiver as fast as the transport allows; and as a receiver it will receive data

from the transport as fast as it can (subject to data availability). A management server

running in our local host continuously monitors and controls the operation of all the

measurement nodes.

Each measurement run proceeds in four phases, namely setup phase,

pre-measurement phase, measurement phase, and data collection phase. During the

setup phase the management server first randomly selects a node from the pool of idle

nodes, i.e., nodes which are not running measurements, and designates it to act as the

receiver in the new measurement run. Next, the server sends the list of idle nodes to the

designated receiver to begin the pre-measurement phase.

In this second phase the receiver randomly picks a node from the idle list to perform

a pre-measurement test, which measures the average end-to-end achievable bandwidth

from the selected sender to the receiver over a configurable test interval (currently 20

8

seconds). If the sender's average throughput is less than a configurable per-sender

threshold (currently set at 1.6Mbps) then the sender will be included in the new

measurement run. The process repeats until either (a) the desired number of senders is

obtained; (b) the total achievable bandwidth of all senders exceeds a configurable

per-receiver threshold (currently set at 8 Mbps), in which case the last sender added

will be dropped; or (c) the idle sender list is exhausted.

The pre-measurement phase is introduced to overcome two problems. First, some

PlanetLab hosts have very high-bandwidth network connections and thus could cause

serious congestion at the receiver host, especially if more than one such

high-bandwidth hosts send data to the receiver simultaneously. As each PlanetLab host

is shared by many users using virtual servers, the induced congestion could cause

significant performance degradation to other users sharing the same host. The

per-receiver bandwidth threshold is designed to prevent this problem. Second, if a

high-bandwidth sender is selected early in the process then only a few (or none at all)

senders could be added to form the many-to-one data flow in order to comply with the

per-receiver bandwidth threshold. Therefore the per-sender bandwidth threshold is

introduced to filter out very high bandwidth senders to allow more senders to be

included in the measurement run. In addition it also reduces the likelihood that the

sender will hit the rate limit set by the local administrator of the PlanetLab host.

After the list of senders is determined the system then begins the measurement

phase by triggering all senders to continuously send data to the receiver. Each

measurement run lasts for 2 hours (constrained by the daily per-host data transfer limit

in PlanetLab), after which the system enters the data collection phase where the trace

data stored in the receiver are transferred back to the management server for

processing and archival.

9

Conducting measurements using PlanetLab hosts has three distinctive advantages:

scale — hundreds of hosts available, control - allows the use of user-written

measurement applications, and reach - spans a wide geographical area covering over

three hundred sites around the world (see Table 1). There are nevertheless some

limitations as well. First, as most PlanetLab hosts are run by universities, research

laboratories, and large corporations, their network connectivity characteristics

naturally reflect this bias and thus may not be a good representation of residential user

hosts where bandwidth is likely to be more limited, especially in the uplink connection

(e.g., DSL [17] subscribers). Second, PlanetLab hosts are shared using virtual servers

and thus experiments running in other virtual servers sharing the same host could

interfere or even interact with the measurement runs and vice versa. The measured

achievable bandwidth thus could be modulated by other experiments concurrently

running at the sending hosts and the receiving host. However in many network

applications one would also expect them to coexist with other applications competing

for bandwidth and other host resources.

3.2 FTP Measurement
The second measurement setup makes use of 54 public FTP servers mirroring the

Fedora Linux distribution CD image. This particular set of mirror servers is chosen for

the large file available for download (FC4 Disc 1 of size 635 MB) and for their

relatively wide availability and geographical distribution (see Table 1). Unlike

PlanetLab hosts these FTP servers are production hosts serving real data to real users

and thus provide another perspective to the bandwidth available in a real system

setting.

10

Obviously in this case we could not implement our own sender software and have

to rely on the FTP server software to act as the sender in the measurements. We

developed a custom FTP client software running in a dedicated Linux hosts at our

research laboratory to act as the receiver in the measurements. In each measurement

run, it randomly draws N to 10) FTP servers from the pool of 54 Fedora mirror sites

and then initiate downloads from all N servers simultaneously. As FTP runs over TCP

the measured throughput will reflect the achievable bandwidth between the FTP

servers and the receiver. Again each measurement run lasts for 2 hours with N varies

from 1 to 10 in subsequent runs. In addition to collecting bandwidth trace data, we also

ran the tcpdump tool [18] at the receiver host to capture detailed packet traces for more

in-depth analysis. Note that the system does not implement bandwidth filtering as in

the PlanetLab setup because the receiver host is a dedicated machine with sufficient

resources to handle the incoming traffics.

This FTP-based measurement setup differs quite substantially from the PlanetLab

setup. First, the sender, i.e., FTP server, in this case is a concurrent server serving many

users simultaneously with the same service as opposed to running completely different

experiments in the same PlanetLab host. This environment thus more accurately

reflects the characteristics of many-to-one data flows where the senders are Internet

servers.

Second, while senders in the PlanetLab setup always send data as fast as the

transport allows, our measurement results suggest that some FTP servers implement

per-connection rate limiting. In case the available network bandwidth is higher than

the server's rate limit the achievable bandwidth will then be limited by the source

rather than by the network. We will return to this issue in Section 4.4.

11

Chapter 12

ANALYSIS OF MEASUREMENT DATA

This chapter analyzes the characteristics of data flows in the two measurement

setups. The analysis is based on measurement data collected from December 2005 to

December 2006, which consists of 879 and 628 measurement runs in the PlanetLab

and FTP setups respectively. The total number of distinct hosts involved is 284

(PlanetLab) and 54 (FTP) respectively, with geographical distributions as listed in

Table 1.

Table 1 The geographical distribution of sender nodes
Region PlanetLab FTP
Africa 0 6

America 152 19
Asia/Pacific 61 2

Europe 71 27

Table 2 Properties of per-flow achievable bandwidths
Bandwidth PlanetLab FTP

Min 2.65 Kbps 0.21 Kbps
Max 4,099.63 Kbps 12,576.38 Kbps

Median 671.75 Kbps 1,738.83 Kbps
Mean 570.66 Kbps 1,496.65 Kbps

12

4.1 Per-Flow Achievable Bandwidth

The following analysis is performed using one-second average throughput as the

measurement sample. Specifically, let Xi 二 {xij \j = 1 , 2 , . . . , n} be the measurement

data sequence of sender i, where Xij is the average achievable bandwidth between the

j-V^ and/h second after the measurement started. Then the mean, and the variance,

a / , of the achievable bandwidth of sender i can be computed from

1 “
(6)

n j=\

(7)

Table 2 summarizes the minimum, maximum, median, and mean per-flow

achievable bandwidth in the two measurement datasets. The achievable bandwidth in

both cases vary across a very wide range, e.g., from a minimum of 0.21 Kbps up to a

maximum of over 12 Mbps for the FTP dataset. The PlanetLab dataset has a lower

maximum achievable bandwidth because high-bandwidth senders are excluded during

the pre-measurement phase as described in Section 3.1. Note also that although the

per-flow bandwidth threshold was set to 1.6 Mbps, some flows nonetheless end up

with achievable bandwidth much higher than that (e.g., over 4 Mbps). This shows that

some data flows exhibit substantial variations in their achievable bandwidth during the

2-hour measurement period.

Fig. 1 compares the histogram of per-flow achievable bandwidth for the two

datasets. The distribution for the PlanetLab dataset has a peak around 200 Kbps,

follows by a broad distribution, and finally drops rapidly beyond 1.6 Mbps (due to

pre-measurement filtering). By contrast the FTP dataset exhibits a sharp peak at

around 1.5Mbps which is significantly higher than the rest of the spectrum.

13

0.2 -1

0 . 1 8 - M

0.16 - PlanetLab 丨丨 FTP

！ y
1 0.1 _ \

2 0.08 — \ i i ,

0.06 _ \ AyV，.八
0 . 0 4 - • • v y ^ ^ A .‘
0.02 - : ？,“、._.•、,， \ •,

0 500 1000 1500 2000 2500 3000 3500 400C

Per-flow achievable bandwidth (Kbps)

Fig. 1. Comparison of the histogram of per-flow achievable bandwidth of
PlanetLab and FTP flows.

4.2 Inter-Flow Correlation
In a many-to-one data flow all the senders transmit data to the same receiver. Thus

their network paths naturally converge to the same destination and hence could share

some network links along the way. If two senders share the same network bottleneck

then their flow-level properties will become correlated [19]. To investigate this

phenomenon we compute the correlation coefficient, denoted by p, of different pairs of

sender nodes in both datasets. Let X,- and 不 be the bandwidth sequences of two senders

i and j in the same many-to-one data flow. The correlation coefficient of these two

senders is given by

P(Z,.,A.) = c o v (A , I � (8)

14

Equation (8) measures the degree of correlation between the achievable bandwidth

of two senders in the same many-to-one data flow. The correlation coefficient can

range from -1 to 1，with values closer to either -1 or 1 representing stronger

correlations which indicate that they may share a common network bottleneck.

Fig. 2 plots the distribution of the correlation coefficients for the two datasets.

Using the threshold of 0.28 according to the study by Wang et al, [20] we observe that

a large proportion of the sender pairs acquire a value below it, e.g., 85% and 90% for

the PlanetLab and FTP datasets respectively. The rest of the sender pairs are likely to

share a common network bottleneck, thus leading to correlated variations in their

achievable bandwidths. We will return to this issue in Section 5.

100 n
FTP • • • ‘ ；：^

90 _ \ •

80 - \ / 广

冬 70— / A
二 60 - ； / PlanetLab

： /
I 5 0 - ：

I 40 - i
^ 30 - 丨

20 - I
10 - /
0 I I I I I I I I r ^ i ~I 1 1 1 1 1 1 1 1 1 r

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Inter-flow correlation coefficient

Fig. 2. The cumulative distribution of the inter-flow correlation coefficient of
PlanetLab nodes and FTP servers.

15

4.3 Intra-Flow Temporal Correlation

To further study the correlation of achievable bandwidth across different times

within the same data flow, we compute the normalized temporal correlation of a data

flow i with a temporal distance of k measurement samples as follows:

• (9)
�

where cov(-) computes the covariance of two sequences, Xi is the sequence of

measurement samples for achievable bandwidth, and Xt is the corresponding

measurement sequence with a temporal distance of k samples, i.e., Xt 二 {x/j | i = Q+k,

1+介..，n+k}. The value can range from 0 to 1 where 0 implies the two sequences are

uncorrelated and 1 implies that they are completely correlated. By varying the

temporal distance k we can evaluate the temporal correlation over different time

scales.

Fig. 3 plots the distribution of the normalized temporal correlation of PlanetLab

data flows foxk=\, 10, 50, and 100 respectively. Note that each measurement sample is

a one-second average so the temporal distance is also equivalent to unit of seconds.

The same distribution for FTP flows is very similar and is thus omitted. The key

observation here is the rapid decrease in the temporal correlation for temporal

distances larger than 1. For example, when k=\, i.e., the correlation of adjacent

measurement samples, a substantial proportion of flows (over 84%) exhibits

correlations above 0.2. By contrast, when we increase A: to 10 the proportion drops to

42%, and it further reduces to 20% when k is further increased to 50. This shows that

the achievable bandwidth is correlated only at very short time scales.

16

Next we consider the intra-flow temporal correlation of the aggregate achievable

bandwidth in many-to-one data flows. Using a fixed temporal distance of A: = 10

seconds and k = 100 seconds, we plot in Fig. 4 the average intra-flow temporal

correlation for many-to-one data flows of 1 to 10 senders. The results show a gradual

increase in temporal correlation along with more senders in the aggregate flow.

However for larger temporal distance (e.g., k= 100 seconds) the temporal correlation

remains insignificant.

80- 、 ： Z X
• ‘ z

^ 70 - / , , , Z

警 60 - / ,, X
芽 5 0 _丨 : / 众 Z
a /.: / Z \
I 4 0 - f / Z \
^ 30 - / / k = l

20 - \丨 ^
1 � -
0 — I 1 1 1 1 1 1 1 i 1~

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Per-flow temporal correlation

Fig. 3. The cumulative distribution of the per-flow temporal correlation for
temporal distances of 1, 10，50, and 100 seconds (PlanetLab dataset).

17

« 0.4 1

I — 众=10
0 0.3 -

1 0.25 — ^ ^ ^ ^ ^
Oh
I 0.2 -
； k = 100
0 0.15 - \ — - •

h - H —卜
1 - .

^ 0 .1 - . -
BJO
& 0.05 -

0 H 1 1 1 1 1 r 1 1 1 1

1 2 3 4 5 6 7 8 9 10

Number of Senders

Fig. 4. Comparison of aggregate-flow temporal correlation for 1 to 10 senders
(PlanetLab flows with temporal distances of 10 and 100 seconds).

4.4 Intra-Flow Bandwidth Variation
We further analyze in this section the bandwidth variations within the same data

flow. This intra-flow variation can be quantified by the coefficient-of-variation (CoV)

of a data flow's achievable bandwidth, defined as:

C o V . = ^ (10)

for flow i, which is the standard deviation normalized by the mean. Since CoV is

normalized we can compare the intra-flow variations of different data flows in Fig. 5,

which plots the distribution of CoV for data flows in the two datasets. The results show

that the FTP dataset, while spanning a wider range of achievable bandwidth across

different flows than the PlanetLab dataset, had lower variations within the same data

18

flow than the PlanetLab dataset. For example, 70% of FTP flows have CoV less than

0.2 compare to only 30% in the PlanetLab dataset.

We conjecture that the FTP dataset，s much lower intra-flow variation is due to

rate-limiting imposed by some of the FTP servers. Specifically, many FTP servers

have the option to set a limit on the maximum transmission rate for each connection as

a mean to control resource allocation. If such a rate limit is substantially lower than the

achievable bandwidth of the network path from the FTP server to the receiver, then the

achievable bandwidth will be limited by the sender's transmission rate rather than the

network bandwidth availability. In other words, variations in network bandwidth

availability will have significantly less effect on the achievable bandwidth and thus

resulting in lower intra-flow variation.

To further verify the conjecture we captured detailed packet traces at the receiver

using the tcpdump tool [18]. If the achievable bandwidth of a data flow is rate-limited

by the sender, then we would expect the TCP flow to experience little to no packet loss

as the transmission rate is not sufficiently high to induce network congestion. By

contrast, if the achievable bandwidth is congestion-limited then we would expect

higher levels of packet loss due to frequent network congestions. From the packet

traces we can extract and count the TCP retransmission events (by comparing

sequence numbers in the TCP header) to deduce the packet loss rate for this purpose.

Fig. 6 plots the distribution of packet loss rate for the FTP dataset. It is evident that the

majority of the data flows has very low packet loss rate, e.g., approximately 60% of the

data flows has packet loss rate lower than 0.05%. This strongly suggests that a sizable

proportion of the FTP servers implemented rate-limiting which in turn affect

properties of the end-to-end achievable bandwidth.

19

100 - 1
• ‘ ‘ ^

90 _ FTP ... 80 _ \ ^ ^
^ 70 - , . . . X

1 60 _ /..
B 50 - / / / \
I 40 - y / ^ PlanetLab s Z
^ 30 - / Z

0 H I I 1 1 1 1 1 1 1 r—

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Intra-flow bandwidth variation

Fig. 5. The cumulative distribution of the intra-flow bandwidth variation in
PlanetLab and FTP flows.

1 0 0 -1

90 - 一 一 ——

8 0 - ^ ‘ ‘
冬 7 0 - ,

^ 60- f
BX)
3 50 -§ a 40 -
<D

^ 30 -

2 0 -
1 0 -

0 I ~ I I I I 1 I I ~I I ~II ~ I I I ~1 1 I I I 1 “ I I I I I I I I I I I 1 1 ~ I I I I I I I I
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Packet Loss Rate (%)

Fig. 6. The cumulative distribution of the packet loss rate of FTP flows.

20

0.6 -]

I 0.5 V
a \ ^ � � � PlanetLab (individual)

^ 0.4 i V � � “ � � 1
o \ " 遍 * 卜 … * •

I 0.3 j , V ^
• V� PlanetLab (many-to-one) ^ •��::.�. ^ 1

U 0.2 i 〜〜… 戈--•-•-TÎ ZrrTrrT Ĵrrr̂ Trrrî RR^Z"™^^*——一
(D ‘ • - . � . . \

泛 .,�••---- FTP (individual)
S 0 .1 J / … … •

^ FTP (many-to-one)

0 — 1 1 1 1 1 1 1 1 “ 1 I

1 2 3 4 5 6 7 8 9 10
Number of Senders

Fig. 7. Comparison of the average CoV for 1 to 10 senders.

Next we consider the CoV for the aggregate achievable bandwidth in many-to-one

data flows. Fig. 7 compares the CoV of individual flows and many-to-one data flows

with number of senders ranging from 1 to 10 for the two datasets. The former is

computed from the weighted average of the per-flow CoV's of all individual flows,

with the weight equal to the flow's mean achievable bandwidth. This corresponds to

the case where the bandwidth resources of all senders are uniformly utilized by the

receivers (see Section 5.1). The latter is computed from the CoV of the aggregate

achievable bandwidth of all senders in the many-to-one data flow.

There are two distinctive observations from the results. First, the aggregate flows

always have lower bandwidth variations when compared to the individual weighted

average of the same number of sources (for more than one flow). Second, there is a

clear trend of decreasing CoV for larger number of senders in many-to-one data flows.

This implies that the aggregate achievable bandwidth generally exhibits less intra-flow

21

variations when the number of senders increases. By contrast the individual weighted

average CoV levels off rapidly for two or more sources. In the next section we

investigate whether these properties will result in increased predictability of aggregate

data flows' bandwidth properties.

4.5 Predictability of Bandwidth

Properties

One of the goals of bandwidth measurements is to enable the prediction of future

bandwidth availability based on past measurement results. To investigate this issue we

consider the simplest method to predict future achievable bandwidth - predicts the

future achievable bandwidth to have the same mean as in the past. Specifically, the

receiver measures the average bandwidth during the initial measurement period of T

seconds:

1 T
A (11)

and then simply predicts the future achievable bandwidth to be the same.

Obviously the prediction will not be completely accurate. To quantify the

prediction errors we compute the normalized deviation from

� = 概 一 A)2] (12)

Mi

where X) = {XQ \j = r+1, T+2 ,."，《} is the actual achievable bandwidth of data

flow i.

Similar to the well-known standard deviation in statistics, the normalized deviation

di measures how far the future achievable bandwidth deviates from the one measured

22

during the initial measurement period. A smaller value implies less deviation, meaning

that the future achievable bandwidth is more predictable.

We first consider the normalized prediction for individual data flows. Fig. 8 plots

the distribution of the normalized deviation with T= 500 seconds for the two datasets.

The results show that the mean achievable bandwidth of FTP flows is substantially

more predictable than PlanetLab flows. This agrees with the observation in Section 4.3

(c.f. Fig. 5) where FTP flows exhibit less intra-flow bandwidth variations. In fact we

found that the normalized deviation of a data flow is highly correlated with its

intra-flow bandwidth variation (measured by CoV), with a correlation index of 0.429

and 0.617 for the PlanetLab and FTP flows respectively.

Next we consider the normalized deviation for the aggregate achievable bandwidth

in many-to-one data flows. Fig. 9 plots the mean normalized deviation for individual

flows and many-to-one data flows of 1 to 10 senders. The former is computed from the

weighted average of individual flow's normalized deviation, with the weight equal to

the individual flow's mean achievable bandwidth. The latter is computed from the

aggregate achievable bandwidth of all individual flows in the many-to-one flow.

Similar to Section 4.4, we observe that with the same number of sources, predicting

the properties of many-to-one data flows are always more accurate than the case for

individual flows. Moreover, the prediction error consistently decreases with more

number of senders in the many-to-one data flow.

To illustrate the effect we compare in Fig. 10 the normalized mean achievable

bandwidth of a 1-sender data flow and a 10-sender data flow over time for the two

datasets. It is evident that the 10-sender data flow exhibit significantly less bandwidth

fluctuations over time than the 1-sender data flow. This is a very useful property

because if future bandwidth can be predicted with good accuracy then the performance

23

of bandwidth-sensitive applications could be significantly improved. We will explore

this further in Section 4.6.

100 n
FTP

90 - \
泛 70 _ /

^ 60 - X PlanetLab
BJO : / B 50 - : /
C : /

I 4 0 - / /
^ 3 0 - \

20 - \
1 0 — f

0 "T 1 1 1 1 1 1 1 1 1 1̂
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Deviation

Fig. 8. The cumulative distribution of the normalized deviation of PlanetLab and
FTP flows (r -500) .

24

0.4 -

g 0 . 3 5 - � � � � PlanetLab (individual)

I 0.3 _ \ 、 、 • 、 - 、 — - - — — 一 一 丄 一 一 — 一 一 一 一 ^ \

^ 0 . 2 5 - PlanetLab (many-to-one)

g 0.2 - ’ � � ^
S � ’ V

I 0.15 - --、一--.———x---.- —- - -
^ FTP (individual)
I 0.1 - / … … • .•……-………• -
^ F T P (m a n y - t o - o n e)

^ V T V T T V V s 9 10
Number of Senders

Fig. 9. comparison of normalized deviation for 1 to 10 senders.

1 4 n
10 Senders

1.2 - " • i Z - \ 八

'o ri ；' ': a 't^ ： V

s 3 0.8 - ： ^ / \

e ^ 1 Sender • ._
(D工
N
€ 0.4 -
e

I 0 . 2 - •

0 4 1 1 1 r- 1 I ^
50 550 1050 1550 2050 2550 3050 3550

Time (s)

Fig. 10. Comparison of normalized mean achievable bandwidth for 1-sender and
10-sender data flows.

25

4.6 Long-term Flow Properties

The previous sections focus on the properties of a given many-to-one data flow,

which last for 2 hours in the measurements. As we have accumulated measurement

data for 12 months, we could also study the properties of the same sender over a longer

time scale. This will shed light on whether long-term historical bandwidth data are

useful in the estimation of future bandwidth availability.

To analyze the long-term flow properties we first grouped all the measurement data

over the 12-month measurement period according to the identity of the sender. For

each sender, say sender i, we compute the mean of the achievable bandwidth of

measurement run j as JUQ. Next we compute for each sender the CoV of all the per-mn

means | V/}，denoted by Q/. This per-sender CoV measures the variations of the

mean achievable bandwidth of a particular sender over the 12-month period.

Fig. 11 plots the cumulative distribution of the per-sender CoV for the two datasets.

We observe that FTP senders' properties are far more consistent over the long time

scale. Two factors likely contribute to this result. First，as shown earlier in Section 4.4

some FTP servers implemented per-connection rate-limiting. As a result the

achievable throughput for flows originating from these FTP servers will be more

stationary. Second, in the PlanetLab measurements the receiver node is randomly

selected from the pool of 284 hosts in each measurement run while the same receiver

host is used throughout all the FTP measurements. As the network path will likely be

different for different receivers even from the same sender, this will result in more

variations in the sender's bandwidth properties in the PlanetLab dataset.

More importantly, we want to know whether historical information such as mean

achievable bandwidth of a sender in the past could help in the selection of senders for

26

new data transfer sessions. To answer this question we can compare with the trivial

alternative - assume no historical information is known and simply randomly pick a

sender for each new data transfer session. Using this zero-knowledge approach the

CoV of the mean achievable bandwidth are 0.82 and 0.96 for the PlanetLab and FTP

datasets respectively. In comparison, if the historical CoV of all senders are known,

then we can simply select the sender with the lowest CoV, and in both datasets around

80% of the senders have CoV values lower than the zero-knowledge case. This

suggests that historical information of senders' bandwidth, even over a time scale of 12

months, could still be useful in estimating the future bandwidth availability.

100 -1 一

90 - /•••••

80 _ FT^ , y

Co 7 0 - / /
i - / / \
^ 50 - … y PlanetLab
S 4 0 - J /
<D /
^ 30 - / J

20 - / y
10 -丨 ^
0 r I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"""

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Per-sender CoV of mean achievable bandwidth

Fig. 11. The cumulative distribution of the per-sender CoV of mean achievable
bandwidth over the 12-month period.

27

Chapter 28

A MATHEMATICAL FRAMEWORK

The measurement results reported in Section 4.4 and 4.5 strongly suggest that it is

always better to transfer data using many-to-one data flows than using individual

one-to-one data flows, as many-to-one data flows exhibit less intra-flow bandwidth

variation (c.f. Fig. 7) and can be predicted more accurately (c.f. Fig. 9). Nevertheless

empirical results are not proof per se and so in this section we develop a

mathematical framework to formally establish these two invariant properties for

general many-to-one data flows. More importantly, the framework provides deeper

insights into the relations between properties of the individual flows and those of the

aggregate flows which could be used to optimize the performance of many-to-one

data flows.

5.1 Bandwidth Variations
Consider a pool of N senders, where /// > 0 and a / > 0 are the mean and variance

of the achievable bandwidth of sender i. Assuming that the bandwidth resources of

the pool of N senders are utilized in a uniform manner, then over the long run the

bandwidth contribution of sender i, denoted by Pi, will be proportional to its mean

achievable bandwidth:

28

(13)

y=i

In other words, sender with more bandwidth will contribute proportionally more

resources to serving the receivers and vice versa.

Now let 7 be the aggregate achievable bandwidth of all N senders, i.e.,

y = = i,2”"，《}

而 • 1 … （14)

i=l

with the corresponding mean and the variance defined by

M y = - t y j (1 5)
n'ji

and

二 + 少厂"》2 (1 6)

Then we can calculate the weighted average of the CoV of all N individual flows

from

CoVW =t(CoV�.Pi�
/=i

台 (17)

(仏 ）
/=1 Mi ^Y

1 N
=丄

I^Y /=1

This represents the average performance for the case where receivers connect to

just one sender at a time to transfer the requested data, i.e.，using one-to-one data

flow.

29

Similarly we can calculate the CoV of the aggregate flow for the case where the

receivers always connect to all senders to transfer the requested data, i.e., using

many-to-one data flow:

= 风 (1 8)
H'Y V
1 H/ N N

二+ (仏)
H-Y \ J=1 P=\ 9=1

With (17) and (18) we can then prove the first invariant property in Theorem 1

below.

Theorem 1 — The weighted CoV of N individual data flows as in (17) is always

larger than the CoV of the aggregate data flow formed from the same N data flows as

in (18), assuming the individual flows are not perfectly and positively correlated.

Proof:

Two flows p and q are perfectly and positively correlated if and only if their

correlation coefficient p(Xp, Xg) = 1. Therefore we need to show that (18) < (17) in

general given that p{Xp, Xq) < 1 \/p,q wherep 本 q.

From (18) we have

Hy \ P=1 q=\

^ — (19)

H'Y \ J=1 P=1 9=1

Factoring the terms inside the square root we then obtain the desired result:

30

h V (20)

1 N

l^Y /=1
•

Note that if two flows are perfectly and positively correlated it means that their

achievable bandwidth varies in perfect synchrony. In practice this is clearly

extremely improbable, if not impossible. Therefore Theorem 1 establishes that one

can always reduce the intra-flow bandwidth variation by using many-to-one data

flows instead of individual one-to-one data flows.

5.2 Bandwidth Predictability

The second invariant property is the bandwidth predictability reported in Section

4.5. First, consider the weighted average of the normalized deviation of all N

individual flows:

N D � f ^ � d i . P)
'=1 N (21)

= 丄 : 抓 厂 A) 2]

t^Y /=1

Next we compute the corresponding normalized deviation for the aggregate flow

from
M ^ = dy

= 丄 ； £ ' - A O ' l + X X E [{ X ^ fip’-〜)] (22)
/^y \ /=1 p=l q=\

V p*q

With (21) and (22) we can then prove the second invariant property in Theorem 2

below.

31

Theorem 2 - The weighted normalized deviation of N individual data flows as in

(21) is always larger than the normalized deviation of the aggregate data flow

formed from the same N data flows as in (22), assuming the individual flows are not

perfectly and positively correlated.

Proof:

^ 1 T
Recall that ju. = — ^ x^ j and X't = {xtj \j = 7+1, T+2

T 7=1 ,

Let ei be the mean estimation error of sender i, where

ei=M\-fii (23)

and V尸 be the prediction variance of sender i, where

二 ^ i C Z ' - Z i ”]
‘ 2 2 (2 4)

and

t (25)

Before proving Theorem 2，we first show that

E[{X\-ju,){X^-fl j)]<v,Vj (26)

and the equality holds only if X'i and X) are perfectly and positively correlated, i.e.,

As we know that

= > 2 - — E [{ X \ - - M j)] > 0

When the equality holds,

32

<z> 尉(JT’厂//’,.XZ’厂//’�+ (Z ’ 厂 / / ’ > , + (Z ’ 厂 + 明] = V,V/
(T p { X , Z ' � + e.ej = v.vj

Consider different values of p(X，i, X'j) and eiej,

Up(X'i,X'j)<0, then

(7\(T'jp{X\,X'j) + e.ej<e.ej

< Va’,2a’/ + e ,V+c7’ ,2e /+a , ,2 � .2 (28)

=

If eiCj < 0, then

(7 ’ , a p � X ’ , + e , � � j p{X’,

/ (29)
< ̂ (Jcr，/ + + a e / + a ’, e/

l f p (X) , X'j) ^ and etej >0, then

= l and o"'. e. = cr'. (30)

= l and 冬 = 冬

< � J

Combining (28) — (30), we obtain the desired result where

Returning to the proof for Theorem 2, from (22) we have

33

f^Y \ /=! P=l g=l
\ p叫

1 Hv ~NTi

Hy \ i=i P=l g=i
V P叫

1 N
=丄 (31)

/^Y i=\

二丄XV邵厂
/^Y i=\

and the equality holds if and only if E [{ X ' = v̂ v̂ \fp,q where p 本

q. From (26), we know that ND^ = ND^ only if flows p and q are perfectly and

positively correlated, i.e., p{X'p, X'g) = 1) \lp,q wherep 本 q.

•

Again, perfectly and positively correlated flows are extremely improbable in

practice and so in practice the achievable bandwidth of many-to-one data flows is

more predictable than individual one-to-one data flows.

5.3 Sensitivity Analysis
The previous mathematical framework not only establishes two invariant

properties of many-to-one data flows, but also provides insights into the relations

between properties of individual flows and of the resultant aggregate flow. In this

section we explore sensitivity of the aggregate flow's CoV to the individual flow's

properties.

We consider a many-to-one flow with two senders. Using (17) and (18) we can

compute the reduction in bandwidth variations when switching from using individual

one-to-one flows to using a many-to-one flow as follows:

34

CoV''-CoV' 1
m = 1 - - (32)

Co 严
where a / and a / , are the variances of bandwidth of flow 1 and flow 2 respectively,

and p is the correlation coefficient of the two flows.

Define r = 02 /oj as the ratio of the two flows' standard deviation. We can then

rewrite (32) as

Co 严 — cr,+(ro-,)

= 1 - 知 2+2pr (33)
1 + r

= f(r,p)

which is a function of r and p.

Assume the correlation coefficient between the two senders, p, is fixed and p

(i.e., not completely positively correlated), then we can determine the rate of change

off{r, p) with respect to r from

d f { r , p) — { \ - r) { \ - p) (34)

Solving for 可、广)=0 we obtain

(1 — 广) = 0 (33)

=> r = 1 •：

Since/(r, p) > 0 for all r < 1, and / r , p) < 0 for all ^ > 1, r = 1 is the maximum

point for J{r, p). Thus, the maximum reduction in bandwidth variation is achieved

when the standard deviations of the two senders' bandwidth are equal, in which case

the reduction is given by

35

,(1，p�=

= (36)
2CTI

二

V 2

Fig 12 plots the percentage of reduction against the ratio of the two senders'

standard deviation r with different values of p. It further shows that the reduction

increases when the correlation between senders decreases.

Fig. 13 is a scatter plot showing the actual percentage reductions obtained from

different combinations of senders in the PlanetLab dataset. Results for the FTP

dataset are similar and are thus omitted. The upper bound is computed from (36). The

CoV reduction generally increases with decreases in the correlation coefficient. Note

that negative correlation is desirable as the flows vary in opposite directions (i.e., one

increase and the other decrease), thus canceling out some of the variations.

Still the function f{r, p) depends on two factors: r and p. Thus the question is

which one is more significant? To answer this question, we assume, without loss of

generality, that 02 >a/, i.e., r >1. Define S” and Sp as the reduction sensitivity of r and

p respectively:

S � - f - - (1 1 内 (3 7)

S p + — — r ^ o (38)

36

40 -1

35- r ^ y - '

3 0 - / , � � � � P = 0

§ 2 5 — / � � � \ ^ y ^ p = 0.2

• 2 2 0 - ！/ \ P = 0.4
I '/ , . � P = 0.8

I 15 - / 、 、 ：

5-1:,.:-.-.—一-.-.-.-.---..-.:--..:..-广：:=:
0 "T 1 1 1 1 1 1 1— 1 I r-

0 1 2 3 4 5 6 7 8 9 10

Standard deviation ratio between two senders

Fig. 12. Reduction in bandwidth variations versus the standard deviation ratio
between two senders r.

\ 100 -

\ 90 -

\ 80 -
Upper Bound ^q _

邑 60 -

I 5 � -

- 1 - 0 . 5 0 0 . 5 1

Correlation Coefficient

Fig. 13. Actual bandwidth variation reductions for different sender pairs in the
PlanetLab dataset.

37

Now both Sr and Sp are negative meaning that the reduction increases when r or p

decreases. To compare their relative significance we can compute the ratio of Sr and

Sp from

义 少 1)(1-户) (39)
Sp 2r(l + r)

(r -1)
Define g{r) = ，then

r(l + r)

(40)

Solving for g，(r) = 0 we obtain

r ' - 2 r - l = 0
厂 (41)

Now as r > 1, r ^ 1 - V 2 so r = l + V2 is the maximum point of g(r)

s i n c e作 + V ^) < 0 . Thus,

^ < ~ • 三 1 —厂）厂 « 0.0858(1 - p) (42)

Sp 2(1 + V2)(2 + V2)
Since -1 ^ <1, we have

0 < ^ < 0 . 1 7 2 (43)
&

In other words the reduction sensitivity of p is at least 1/0.172 = 5.8 times that of

r. If p = 0，i.e., the two flows are uncorrelated, then the sensitivity ratio is lower

bounded by 11.655. Nevertheless this is still not the whole picture as the range of p is

from -1 to 1, but the range of r is from 1 to OQ

Thus to compare their effects we also need to consider the actual magnitudes of r.

Fig. 14 and 15 plot the histogram of p and r respectively in the PlanetLab dataset. It

is clear that the parameter r can indeed assume much larger values than p

38

(approximately by one order of magnitude). Similar results are also observed in the

FTP dataset. Therefore we conclude that neither factor dominates the other one, and

so one need to consider both factors to optimize the reduction in bandwidth

variations.

0 . 1 8 -1

0.16 - I

0.14 -

I 0.1-
& 0.08 -
£

0.06 - \

0.04 - \

•.02 - /
U I* •••• *!• "l" I 1 1 1 i 1 1 1 I I ‘

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Correlation Coefficient (p)

Fig. 14. The histogram of the correlation coefficient in
the PlanetLab dataset.

39

0.16 n

0.14 -

0.12 -

I 0.1-
I 議 - I
^ 0.06 - \

0.04 - \

0.02 - ^-v^
0 4 1 1 ~ I I __•_.I••…i_

1 2 3 4 5 6 7 8 9 10

Standard Deviation Ratio (r)

Fig. 15. The histogram of the standard deviation ratio in the PlanetLab dataset.

40

Chapter 41

PREDICTIVE BUFFERING ALGORITHM

The current Internet does not provide any end-to-end quality-of-service (QoS)

control and thus presents a significant challenge to bandwidth-sensitive applications

such as streaming video and TV contents over the Internet. The fluctuations in

bandwidth availability can easily lead to frequent video playback interruptions that are

extremely annoying to the end users.

To tackle this challenge researchers have developed novel adaptation mechanisms

[21-25] to dynamically adjust the video bit-rate to match the varying bandwidth

availability. However, this often requires the use of special compression algorithms

(e.g., FGS [21-22]) or real-time media transcoders [24-25] that may not be feasible or

available in some applications.

Without these advanced codecs or transcoders, today's content providers typically

prepare a few versions of the same content in different bit-rates to cater for users of

different connection bandwidth. Given the complexity and the time required to encode

multiple versions of the same video, it is not surprising that there will only be a small

number of versions of the same video content provided. Thus the selected video is

often either of too low or too high a bit-rate for the client. The former case is trivial as

streaming will likely be successful. The latter case will be far more complicated as the

client now does not have sufficient bandwidth to streaming the video in the

41

conventional manner. Some existing video players will simply download the video and

begins playback only after substantial portion of the video has been downloaded.

However, due to the inherent variations in network bandwidth availability, even this

conservative strategy may not be able to ensure continuous playback, especially for

long video contents.

In this chapter we tackle this problem by developing a novel predictive buffering

algorithm that can determine at runtime the buffering time required to ensure playback

continuity, especially for longer videos (e.g., over a few minutes) and when the video

bit-rate exceeds the available network bandwidth. The proposed predictive buffering

algorithm is designed around two principles.

First, during the initial buffering period the client can measure the mean and

variance of the available bandwidth over a given interval (e.g., 1 s). Assuming that the

past and future available bandwidth is a stationary random process of unknown

distribution, then the sum of future bandwidth availability over the next n intervals will

approach normal as «->co due to the Central Limit Theorem. Thus knowing the

distribution of the future bandwidth, the client can determine the minimum buffer time

to ensure playback continuity.

Second, the success of the approach depends on the stationarity assumption of the

future bandwidth availability, given that the available bandwidth from a sender to a

receiver is often unpredictable. However, our measurements and analysis in previous

chapters have established that if there are multiple senders transmitting data to the

client simultaneously, then the aggregate available bandwidth will become far more

stationary. Therefore, by employing sufficient number of senders, each transmitting a

portion of the data, the stationarity assumption can then be satisfied and we can invoke

the first principle to determine the minimum buffering time accordingly.

42

The proposed predictive buffering algorithm is evaluated using extensive

trace-driven simulations, with two sets of traffic traces obtained from different

networks and different time frames. The results confirm the relation between the

aggregate bandwidth stationarity and the number of senders in the aggregate data flow,

and also show that the predictive buffering algorithm can achieve buffer delays that are

remarkably close to the optimal buffer time.

We present the predictive buffering algorithm in this chapter and then evaluate its

performance using trace-driven simulations in Chapter 7.

6.1 Related Work
Streaming video from multiple sources to a receiver has previously been

investigated by a number of researchers [26-30]. Compared to single-source

streaming, multi-source streaming has several potential advantages, such as increasing

the throughput by combining the bandwidth of multiple senders [26-28]; adapting to

network bandwidth variations by shifting the workload among the multiple senders

[29-30]; and reducing bursty packet loss by splitting the data transmission among the

multiple senders [26-27".

For example, Nguyen and Zakhor [26-27] developed rate allocation and packet

partition algorithms with Forward Error Correction (FEC) to minimize the packet loss

rate and the probability of late packet arrivals. Xu et al. [28] proposed an algorithm for

media data assignment to reduce buffering delay. Kwon and Yeom [29] proposed a

dynamic rate allocation and packet partition scheme to adapt to the senders' varying

throughput. Agarwal and Rejaie [30] proposed an adaptive layered streaming

algorithm to compensate for variations in the measured available bandwidth from all

congestion controlled senders.

43

The above studies exploited the availability of multiple sources and the diversity of

multiple network paths to improve streaming performance. In another study, Reisslein

and Ross proposed a novel call admission scheme [31] that can provide statistical QoS

guarantee in streaming prerecorded variable-bit-rate (VBR) videos over ATM. In their

study the network bandwidth is known but the video bit-rate can vary due to the VBR

encoding and interactive playback controls. To guarantee QoS they proposed to

multiplex multiple video streams over the network and then model the bit-rate of the

multiplexed aggregate video flow as a stochastic process, and then apply the Central

Limit Theorem and Large Deviation theory to obtain probabilistic bounds.

In comparison, the intra-flow bandwidth aggregation model developed in this

chapter also appeals to the Central Limit Theorem (CLT) to obtain probabilistic

bounds. However, there are two fundamental differences. First, Reisslein and Ross's

work [31] solved the problem of varying video bit-rate but with constant network

bandwidth, while our work solved the problem of constant video bit-rate but with

varying network bandwidth. Second, the varying video bit-rate in Reisslein and Ross's

work, although modeled as a random process, is known a priori as they are

prerecorded. By contrast, our work does not assume a priori knowledge of the varying

available bandwidth, and thus we need to develop an estimation algorithm to measure

and estimate the parameters of the stochastic process.

6.2 System Model
To begin a new video session, a client will send requests to N senders to initiate data

transfer. We assume that the video data are delivered from each sender to the receiver

using a transport protocol with congestion control mechanisms such as TCP or

44

TCP-friendly streaming protocols (e.g., TFRC [32]) such that the bandwidth available

to the video session will vary according to the instantaneous load of the network path.

The client upon receiving the initial video data will begin the buffering period, and

then start playback once sufficient amount of video data are buffered. Specifically, let

Ci be the total amount of data received from all N senders in time interval i after the

buffering process begins; R be the video bit-rate and w be the time to start playback. To

ensure continuous playback we must ensure that the amount of data received at any

time must not be less than the amount of data consumed, i.e.,

^Cj>R(i-w\\/i>w (44)
y=i

or else buffer underflow will occur, causing playback interruptions. The challenge is to

find, at run time, the smallest buffering period w that satisfies (44).

6.3 Prediction Algorithm for

Constant Bit-Rate Videos
At each time interval, the client will check to see if sufficient data have been

received to sustain continuous video playback for the rest of the video session. Let L be

the total video length in number of time intervals and Bi be the amount of data received

up to the time interval i. Then the client can guarantee continuous playback for the

entire video session if the following constraint is satisfied:

i+k

B.+ ^ Cj>Rkyk = l2,...,L (45)
j=i+\

where the L.H.S. is the amount of data already buffered plus the amount of data to be

received in the future k time intervals, and the R.H.S. is the amount of data to be

consumed in the future k time intervals if playback is to begin from time interval i.

45

Otherwise the client will buffer for another time interval and then check (45) again,

and repeat the process until (45) is satisfied. However the precise future bandwidth

availabilities {Q |7>/+1} are obviously not known a priori and so we need to devise a

way to estimate it.

From the results in Section 4.5 we know that many-to-one data flows exhibit more

consistent properties over a long time scale. Thus we can assume that the future

available bandwidth {Q |户•+l,/+2,".} will maintain the same mean and variance as

the past available bandwidth up to the current time interval i: {Cj 17=1,2,...,/}.

If we further assume that the {C/'s} are independent (c.f. Section 4.3), then the

probability distribution of the summation term in the L.H.S. of (37) will be equal to the

convolution of the probability distributions of the k aggregate bandwidths {Cj

y=/+l，/+2,...,/+幻，denoted by Fk{'). Now as the {C/'s} are independent with the same

mean ju and variance the distribution Fk{-) will approach normal with mean kju and

variance kc^ as A:->co according to the Central Limit Theorem.

Thus the minimum buffering time needed to guarantee playback continuity with a

given probability of A can be computed from

w = mm{F ,{Rk-B .)<{ \ - ^ \ \ / k = \X• - .L] (46)

where the mean and variance of F々 (.）are estimated using the measured mean and

variance of the aggregate bandwidth {Q's} during the initial buffering period.

6.4 Prediction Algorithm for

Variable Bit-Rate Videos
In the previous section we assumed that the video is encoded using

constant-bit-rate (CBR) encoding in which their bit-rates are constant over the entire

46

duration of the video. However, the predictive buffering algorithm can be easily

extended to support the streaming of variable-bit-rate (VBR) videos.

Assume we know in advance the VBR video's bit-rate profile {Rt \ t = 1,2,...^},

where Rt is the short-term average video bit-rate in time interval t. To ensure

continuous playback, the constraint (45) is replaced by

i+k k

= 口 (4 7)
j=i+\ t=\

And the minimum buffering time then becomes

‘ k �

w = min] Fk (V R^-B.) < { \ - ^ \ \ f k = (48)
‘I TR J

The rest of the algorithm is the same as in the CBR case.

6.5 Parameter Estimation
During the initial buffering period the client measures the mean and variance of the

aggregate available bandwidth. Being measurements of a stochastic process the

measurement accuracy will depend on the number of samples used, i.e., the length of

the measurement period. This latter point leads to another subtle issue as the length of

the measurement period is simply equal to the buffering period, which can vary

significantly depending on the ratio of the video bit-rate to the mean aggregate

available bandwidth as well as the variances of the available bandwidth.

For example, if the available bandwidth is substantially lower than the video

bit-rate then the buffering period will likely be longer, thus allowing more accurate

measurement of the required parameters. On the other hand, if the available bandwidth

is comparable to the video bit-rate then the buffering period as computed from (46)

and (48) can be very short. In this case if the measured parameters are inaccurate then

47

the computation of (46) and (48) will become inaccurate as well, possibly resulting in

playback interruptions.

To guard against this problem，we employ the method of confidence interval [33] in

estimating the mean and variance during the buffering period. Specifically, when the

sample size w is more than 30，we can assume that the sample mean distribution of ju is

normally distributed. The (l - a) confidence interval of sample mean is given by

(/̂ — + 丨2 (49)
\lw vw

where cris the samples' standard deviation and z^ji is equal to 2.58 for a = 0.1 (i.e.,

99% confidence). Thus the client can use the lower limit of the confidence interval as

the sample mean.

In extreme cases with sample size w < 30，the sample mean distribution is replaced

by the Student's ^-distribution with the corresponding (l-o:) confidence interval given

by

C " -。/2，w-l — G/2，w-1 (5 0)

yjW yjw

where the value of ta/2,w-\ is given in the Mable.

Our results show that using this confidence interval method can effectively prevent

inaccurate parameter estimations without significantly increasing the estimated

buffering time.

48

Chapter 49

PERFORMANCE EVALUATION

In this chapter we evaluate the performance of the predictive buffering algorithm

using trace-driven simulations.

7.1 Trace-Driven Simulation Setup

There are two sets of trace data used in the simulations. The first set of trace data is

obtained from our measurements conducted in the PlanetLab. The second set is

generated using a well known network simulator — NS2 [34]. We first obtained traffic

trace data from the NLANR PMA archive [35], which captured the packet-level trace

data at an Internet gateway at Bell Labs in 2002. The one-day trace is then divided into

separate one-hour sub-traces. The sub-traces are used as cross traffic in the simulation

topology depicted in Fig. 16. There are up to N senders {SI, S2,…，STV) transmitting

data simultaneously to the receiver R using TCP as the transport. The senders do not

perform additional rate control and simply transmit data as fast as TCP allows. We

choose TCP for its ability to automatically adapt to the network load (i.e., the cross

traffic) to obtain a fair share of the available bandwidth for transporting video data.

Other transport protocols such as TFRC can also be used as long as they have built-in

congestion control algorithm. The predictive buffering algorithm operates

independently from the actual transport protocol used.

49

Q ； Q
9Mbps Cross 9Mbps

1ms I Traffic J ims

® —
^ 10Mbps ^ 5Mbps \

1ms 10ms \ 10Mbps

® V ^

o ®
： 100Mbps ^

I Q RO / ims

Y ^ R C / R / O -

Fig. 16. Simulation topology.

7.2 Performance over CBR Videos
In this section we evaluate the performance of the proposed predictive buffering

algorithm over CBR videos. The video length is set to 1800 seconds and the video

bit-rate varies from 1 to 1.3 times the mean aggregate available bandwidth (i.e., Rlji =

1, 1.1, 1.2 and 1.3). Thus other the case of RJfi = 1 all other cases suffer from

insufficient bandwidth and so rely on the predictive buffering algorithm to determine

the minimum buffer time needed to ensure continuous video playback. In case the

client runs into buffer underflow due to data not arriving in time for playback, it will

suspend playback and then rerun the predictive buffering algorithm to buffer sufficient

video data before resuming playback. An alternative approach (not used in this study)

would be to continue playback despite the missing data and then attempt to conceal the

visual degradation through error concealment techniques. In this latter approach

50

playback performance will then be measured by the visual quality (e.g., PSNR)

instead.

7.2.1 Video Playback Performance

Fig. 17 plots the successful playback ratio using the PlanetLab traces with video

bit-rate ratios equal to 1.1 (i.e. Rl/i = 1.1). Successful playback ratio is the proportion

of simulation runs with no playback interruption (i.e. buffer underflow) during the

entire video playback session. To provide a finer scale for performance evaluation we

also plot in Fig. 18 the average pause count — the average number of

buffer-underflow-induced playback interruptions per streaming session, and in Fig.

19 the average underflow time — the average total duration of playback suspension

per streaming session.

There are four curves in Fig. 17—19: the Sample Mean curve is plotted with the

mean aggregate achievable bandwidth of the initial buffering period as input to

compute the minimum buffering time using (46); the 90%, 95% and 99% CI Mean

curves are plotted with the lower limit of the 90%, 95% and 99% confident interval

(c.f. (49) and (50)) as input to (46).

The first observation is that the performance when using the sample mean is

significantly worse than the case when the lower limit of confidence interval is used.

This is because in this simulation the video bit-rate is only 1.1 times the mean available

bandwidth and so the resultant buffering time is relatively short, thereby leading to

inaccurate measurement of the bandwidth parameters. In our other simulations with

higher video bit-rate ratios the difference will become substantially smaller as the

buffering period lengthens.

51

Second, the performance of using 90%, 95% and 99% CI mean are similar while

using 99% CI mean is always the best. But note that there is a tradeoff of buffering

time. Using a higher percentage of the confidence interval, the buffering time will be

longer. We will come back to the discussion of the average buffering time in Section

7.2.2.

Using the 99% CI mean we investigate further the performance of the predictive

buffering algorithm at video bit-rate ratios ranging from 1 to 1.3 using the PlanetLab

traces (Fig. 20—22) and the NLANR PMA traces (Fig. 23-25). The results show that

increasing the number of senders generally results in better performance, i.e., higher

successful playback ratios, fewer playback pauses, and shorter underflow time for all 4

cases of video bit-rate ratios in both traces. This is a direct result of the improved

consistency of the aggregate available bandwidth properties when there are many

senders. In fact the algorithm achieves a successful playback ratio higher than 90%

when there are 6 or more senders.

52

100 n 99% CI Mean 95% CI

o 80- r ：； ; ^ ^ - - r 一 • - 一 -

3 70 - 90% CI Mean . 一 . - - x - • 一 ; ^
^ _ ^一 . - - - -• \

老 6 0 - K Sample Mean
cd
玄 5 0 -

E 40 -
1—H

^ 3 0 -
1/3
(D
8 20 -

^ 10 -

0 H 1 1 1 1 1 1 1 1 I I
1 2 3 4 5 6 7 8 9 10

Number of Senders

Fig. 17. Comparison of successful playback ratio when using Sample Mean, 90%,
95% and 99% CI Mean (PlanetLab traces, R//i = 1.1).

0.7 -1

0.6 - >^.�

I 0.5 - \
0 • �

1 0.4 - • \ � . � S a m p l e Mean
字 、 � . : : • • • - • ••.. 9 0 o / o C I M e a i r � • � . � I

2 - ： ： 〜、
I 0.2 - ：：. � � - ’ � �
< 95% CI Mean • • \

0 1 - / ^ \ �
‘ 99% CI Mean ^
0 1 1 1 1 1 1 1 1 —I

1 2 3 4 5 6 7 8 9 10

Number of Senders

Fig. 18. Comparison of average pause count when using Sample Mean, 90%, 95%
and 99% CI Mean (PlanetLab traces, R/ju = 1.1).

53

80 n

互 7 0 _ \

I 60 - \
H \
^ 50 -
口 \

I 40 - 90% a ^ e a n

^ 30 - .. ^ ���� Sample Mean
I 20 - • � . � � . � . � . i
^ 95% CI M e a n ^ o - i � � � .
< 10 - ����

n , , , , , , 7""“""“ ,
U n I 1 I I I I I I 1 I

1 2 3 4 5 6 7 8 9 10

Number of Senders

Fig. 19. Comparison of average underflow time when using Sample Mean, 90%,
95% and 99% CI Mean (PlanetLab traces, R/jU = 1.1).

100 n ^ \ 忽 - 一 ’ •
• • , • M — —

^ 9 0 - 气

^ 80 - ？ ： 二 一 - - - 一 X 一 \ R / ^ - 1 . 2

'1 70 - \ R / � l . l

1 6 0 - R / ” i . 3

5 0 -
E 40 -

^ 30 —
C/3 CD

8 20 -

^ 10 -
0 H 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10
Number of Senders

Fig. 20. Successful playback ratio for PlanetLab traces.

54

0.35 -1

0.3 - � � �

§ 0.25 - / � � • �
0 ‘ "n \

U R/iLi = i . r \ \

払 0.15 - I -•-�-, \ \ /
浮 R / ^ - 1 . 2 - • . . � � • � • �

I 0.1 - : . � � � ‘ � � . �

0.05 - J 1 - ：

0 "1 1 1 1 1 1 1 I I ^ ^ I
1 2 3 4 5 6 7 8 9 10

Number of Senders

Fig. 21. Average pause count for PlanetLab traces.

40 n

、一 \ \

1 3 0 -

1 2 0 - X /
^ 15 - X X

2 10 - 丨 、>•‘

I R4i = l . . RÂ 了 1.1

0 I , I I ^ ^ ^ ^ ^ ^ ^ ^ ^： ^ ^ ^ ^ ^ ^： ^、 ,
U i 1 1 1 1 1 1 1 1 * n “ 1

1 2 3 4 5 6 7 8 9 10
Number of Senders

Fig. 22. Average underflow time for PlanetLab traces.

55

100 -1 R / [i = l

0 80- R/�1.3
句 70 _ 厂 \

川 1.1
《 60 -cd
玄 5 0 -

E 40 -
1—H

^ 30-
C/3 (D
8 20 -

^ 10 -

0 H 1 1 1 1 1— 1 1 r- 1 I
1 2 3 4 5 6 7 8 9 10

Number of Senders

Fig. 23. Successful playback ratio for NLANR PMA traces.

0.5 -1
0.45 - I

\
\

妇 0.4 - \ R/|li=1.1
i 0.35 - • /
U 失-----\\ 各

落 0.3 - \\•广：^、

1 0.25 —卜
I 0 . 2 - R / ^ - 1 - 2 X n . Ry, = 1.3 I 0.15 -

0.05
0 -1 1 1 1 1 1 1 1 1 I

1 2 3 4 5 6 7 8 9 10
Number of Senders

Fig. 24. Average pause count for NLANR PMA traces.

56

1 2 0 -1

S 100 - R / i i = 1.1
(D \ y

5 8 � - %

1 6 0 - R 4 i = 1 . 2

6 4 0 - I � � \

^ 20 -

0 H I 1 1 1 1 1 1 - • - - 丨 一 ^ ^ “ I

1 2 3 4 5 6 7 8 9 10
Number of Senders

Fig. 25. Average underflow time for NLANR PMA traces.

7.2.2 Buffering Time
Next, we study how far the computed buffering time deviate from the lower

bound, which is the minimum buffering time required for continuous video playback

assuming all the future bandwidth availabilities are known a priori. This bound is not

realizable in practice but provides a useful benchmark to evaluate the absolute

performance of the predictive buffering algorithm.

First, we look into the effect on the average buffering time when using sample

mean and the lower limit of the confidence interval. Fig. 26 plots the comparison of

the ratio of the computed buffering time to the lower bound value when using the

PlanetLab traces with RIILI = 1.1. In the ideal case, the buffering time will be the same

as the lower bound and the ratio will be equal to 1. If the ratio is larger than 1, then

more than enough data will be buffered and video playback continuity is guaranteed.

57

On the other hand, if the ratio is less than 1，then the buffered data will not be

sufficient to support continuous playback for the entire video. There are two sets of

data in Fig. 26. One is calculated from all simulation runs with 7 or more senders.

Another is obtained from only the successful simulation runs, again with 7 or more

senders.

In the former set of results, the ratio when using sample mean is much smaller

than those when using the lower limit of the confidence interval. It is expected since

in the latter cases a smaller mean value is taken to compensate for inaccuracies in

parameter estimation when computing the required buffering time.

However, the results from averaging the ratio of all runs do not reflect the whole

picture. Fig. 27 plots the buffering time when using the sample mean and 99% CI

mean together with the lower bound. It can be observed that the computed values

when using the sample mean are smaller than the lower bound in some runs. Note

that if the computed buffering time is less than the lower bound, then it is in fact

undesirable as there will be playback interruptions.

Thus, to exclude these unsuccessful cases we plot the average ratio of successful

runs in Fig. 26. The results show that when using the sample mean the ratio is still

smaller than those using the lower limit of the confidence interval. But the

differences are much smaller. All of the ratios are approximately equal to 1.8. This

shows that by using the confidence interval mean we can achieve substantially better

successful playback ratio (c.f. Fig. 17) and yet with insignificant increase in the

buffering time.

Second, we study the relationship between the buffering time ratio and video

bit-rate ratio. Fig. 28 plots the ratio of the buffering time to the lower bound ratio

(successful runs only) with RIfi = 1, 1.1, 1.2 and 1.3 for the PlanetLab and the

58

NLANR PMA traces. There are two observations. First, the buffering time ratio

drops when the video bit-rate ratio {RIjj) increases. It is because higher video bit-rate

ratio requires longer buffering time to compensate for the insufficient bandwidth.

This leads to a longer parameter estimation period and thus higher accuracy in

parameter estimation. The computed buffering time is thus closer to the lower bound.

Second, the ratio for the NLANR PMA traces is higher than that for the PlanetLab

traces except for Rlfi = 1. This is because the NLANR PMA traces generally exhibit

significantly more and larger variations in the available bandwidth. Thus to

compensate for the larger bandwidth variations the predictive buffering algorithm

will extend the buffering time to ensure continuous playback. When Rl/x = 1, the ratio

for the PlanetLab traces is higher because of the very small lower bound value (e.g.,

less than 5 seconds) in some runs. With the use of the lower limit of the confidence

interval, the predictive buffering algorithm easily underestimate (or overestimate) the

future bandwidth availability due to the short estimation period. The runs with

underestimation lead to a very high ratio.

59

目 Sample Mean [3 90% CI 皿 95% CI S 99% CI

i _
All Cases Successful Cases Only

Fig. 26. Comparison of the ratio of the buffering time to the lower bound when using
Sample Mean, 90%, 95% and 99% CI Mean (PlanetLab traces, Rlfi = 1.1).

Lower Bound -<>-- 99% CI Mean Sample Mean

300 -1
p

ocn p--'® ？---o / J-
2 5 0 - / , � I. \

^ / .. V, ；; \ / \\ p
^ ° / ... ！: \ \ / • \
o 200 一 \ ！: A 'b \'\ ；

• t •
• . *
* . «

i *
0 H—I—I—I—I—I—I—I—I—I—I I I I I I 1 1 I I I

1 3 5 7 9 11 13 15 17 19

Run

Fig. 27. Buffering time of 20 different simulation runs (PlanetLab traces, R/ju = 1.1).

60

• PlanetLab S NLANR PMA

6 —

ij 11 il ii _
1 1.1 1.2 1.3

R/lx

Fig. 28. The ratio of the buffering time to the lower bound for PlanetLab and
NLANR PMA traces (successful runs only).

7.3 Performance over VBR Videos
To evaluate the performance of the predictive buffering algorithm streaming VBR

videos, we perform trace-driven simulations using the PlanetLab traces using VBR

video bit-rate profile from a movie DVD — Godzilla. As the total length of the movie

is 8325 seconds which is longer than the PlanetLab traces (maximum of two hours),

we split the entire movie into three parts, each lasting 2775 seconds to conduct the

simulation. Moreover, to make the results comparable across different simulation

runs, we scale the video bit-rate profile such that they all have the same average

video bit-rate, which are set to 1.1 and 1.3 times the mean aggregate bandwidth

available (i.e., Rl/j. = 1.1 or 1.3，where R =

61

7.3.1 Video Playback Performance

Fig. 29 and 32 plot the successful playback ratio with Rlja = 1.1 and 1.3

respectively using the 99% CI mean. The average pause count and the average

underflow time are shown in Fig. 30 and 31 with R/ii = 1.1 and Fig. 33 and 34 with

Rlji = 1.3. Similar to the performance over CBR video, the successful playback ratio

increases, average pause count reduces and average underflow time shortens when

there are more senders.

When Rlfi = 1.1 the performance of Part 1 and Part 2 is slightly better than that of

CBR and Part 3, while the differences are negligible when Rlii = 1.3. This is due to

the length of the buffering time (c.f. Fig. 37). The explanation of the differences in

the buffering time will be discussed in Section 7.3.2. As the buffering time of Part 1

and Part 2 is longer, the accuracy in parameters estimation is higher and hence the

performance is better. The effect is negligible when RIfi = 1.3 because the buffering

time to compensate for the bandwidth insufficient is already long enough.

62

1] Par t i Part 2
0.9- \•丄-：:：^；；；^；；^^^^^^"^

cd ^ � •• • - r - \
n 7 — \

^ 0.7 — CBR Part 3
^ 0.6 -

1 ^ 0 . 5 -

S 0 . 4 -
CO
8 0 . 3 -
o
二 0 2 -

0.1 -
0 1 1 r r 1 1 1 I I 1

1 2 3 4 5 6 7 8 9 10

Number of Senders

Fig. 29. Successful playback ratio {RIyi = 1.1).

0.45 -1

0.4 - . CBR

3 0 .3 - Part 3

\ 0.2 - / V � ‘ > � .

I 0.15 - Part 2 • � � � � � � 、 、 、 、 、 ： ^ ^

< 0 . 1 - / . � • • • • • � � � � > ^
Parti � � � • ^

0 1 1 1 1 1 1 1 1 I
1 2 3 4 5 6 7 8 9 10

Number of Senders

Fig. 30. Average pause count {Rlfi = 1.1).

63

90 n

g 70 - \

P 6 0 - ^ CBR

召 50 - � - � . ^ ^ Part 3

塵 4 � - � � � � ^

S 20 - / � • - . : � • � � � - � . � \
^ Part i / • • • - - . : : � • � � � - �

1 0 - Fait 2 .
A , , , 令〜̂：：：：̂
U I I 1 1 1 1 1 1 1 1 *—I

1 2 3 4 5 6 7 8 9 10

Number of Senders

Fig. 31. Average underflow time {Rl/j. = 1.1).

1] Part 2
0.9 - Part i \ 一

I 0.7 -

畏 0.6 - Part 3

S 0 .4 -
C/2
00 ^ ^

8 0.3 -o
二 0 2 -

0.1 -
0 H 1 I I I I I I I I 1

1 2 3 4 5 6 7 8 9 10

Number of Senders

Fig. 32. Successful playback ratio {R!̂ = 1.3).

64

0.4 -1

0.35 -
X- -̂：、 ^ ^

CBR
I 0.3 - I

i 0.25 -

, 0 . 2 - PARTI PARTS

『0.15— / 、 ％ ^ 1

^ 0 . 1 - Part 2

0.05 -

0 H I I I I I I I I I~ 1
1 2 3 4 5 6 7 8 9 10

Number of Senders

Fig. 33. Average pause count (R/ju = 1.3).

1 2 0 -1

\ Part 3
® 100 — A /

S A
P 80 - \
I . \ CBR

1 60 - • : : : : : � Y

I 4 0 - / \ � � \

Part 2 ���

0 1 1 1 1 i 1 i r T" “ I

1 2 3 4 5 6 7 8 9 10

Number of Senders

Fig. 34. Average underflow time {Rlfi = 1.3).

65

13.1 Buffering Time

We first evaluate the absolute average buffering time. For CBR videos, the

buffering time is affected by the mean video bit-rate ratio and the bandwidth

variations. For VBR videos, there is one more factor - the variation of video bit-rate

during the entire video. For example, consider a VBR video stream where the first

half of the video has twice the video bit-rate of the second half of the video.

Compared to a CBR video of the same mean video bit-rate, it is easy to see that the

amount of buffering required for the VBR video will be larger due to the higher

bit-rate during the first half of the video.

Fig. 35 illustrates this observation by plotting the normalized video playback

curves, i.e., the cumulative amount of video data consumed by the client, of three

VBR video streams from the actual video bit-rate profile, together the CBR

counterpart. We can see that Part 1 and Part 2 consume more while Part 3 consumes

less video data at the beginning of the video compare to the CBR counterpart. In

contrast, the scenario is reversed near the end of the playback as shown in Fig. 36,

which plots the last 100 seconds of the playback curves in Fig. 35.

With no bit-rate variations at all we expect buffering time of the CBR video to be

the shortest. Fig. 37 shows the average buffering time with Rljn = 1.1 and 1.3. We

observe that the average buffering time of the CBR video is indeed the shortest,

while Part 2 requires the longest buffering time.

Fig. 38 plots the ratio of the buffering time to the lower bound (successful runs

only) with RIfi = 1.1 and 1.3. The ratios are around 1.5 {R/ji = 1.1) and 1.2 {Rl/i =

1.3) for all the four videos. There is no significant difference between CBR and VBR

videos.

66

N ^ o

二 0.8 - .义

§ 0.7 - 义

f 0.6 - Part 2 么 , ,
I 0.5 - \
義 0.4 - Part i

I 0.3 - CBR

g 0.2 _ Z ： ^ " " P a r t s

0 I 1 1 1 1 1 1 1 1 I r
1 501 1001 1501 2001 2501

Time (s)

Fig. 35. Normalized video playback curve (the entire video).

1 -1

！ 0.99 P a r t s 。 已 尺

g 0.98 - j"：：!^^^^：^

^ 一.：：：：：：：^、
1 0.97 - 厂 ： ： ： ： ^ ^ ^ 、 Part 2
I Part 1
o - z

0.96 -

3 0.95 -
o
H

0.94 i 1 1 1 1 1 1 1 1 1 ‘

2676 2696 2716 2736 2756

Time (s)

Fig. 36. Normalized video playback curve (last 100s).

67

• CBR [a Part 1 EI] Part 2 ^ Part 3

1000 n

i j n i J l
1.1 1.3

R/^i

Fig. 37. Average buffering time,

g CBR O Part 1 圓 Part 2 ^ Part 3
1.8 n

2 1 6 - „ „

l i l l M
1.1 1.3

R/|LI

Fig. 38. The ratio of the buffering time to the lower bound (successful runs only).

68

Chapter 69

FUTURE WORK

The predictive buffering algorithm presented in Chapter 6 and 7 shows how we

can apply the many-to-one data transfer model to provide probabilistic performance

guarantees. It is merely one of the simplest applications. There are still a number of

works can be done to extend the usage and improve the performance of the proposed

algorithm.

First, the predictive buffering algorithm assumes the video length and video

bit-rate profile (for VBR video) is known in advance. Without this information it will

be impossible to estimate the future bandwidth assumption. This could be case if the

streaming content is encoded live in real-time. On the other hand, for very long video

such as video conference proceedings, the bandwidth estimated at the beginning of

the video session may eventually deviate after a long period of time (e.g., tens of

hours) and thus may eventually cause playback interruptions. To tackle these

problems it is necessary to adopt post-playback adaptation in addition to

pre-playback prediction. In Section 8.1 we discuss one possible approach through the

use of playback rate adaptation and content adaptation.

Second, so far we only employed a simple random sender selection algorithm in

Chapter 7. When there are more than enough senders to choose from, we can expect

different selections of the set of senders will likely affect the final streaming

69

performance. For example, if the resultant sender set exhibits less bandwidth

variation then the performance should be better (c.f. Section 8.2). Furthermore, if

multiple users receive data through a proxy server then the proxy server can also

monitor the flow properties continuously and when needed, further optimize

performance by reallocating the senders dynamically (c.f. Section 8.3 — 8.4).

Finally, we discuss in Section 8.5 the challenges to applying our results in

peer-to-peer (P2P) applications.

8.1 Playback Rate Adaptation
In the predictive buffering algorithm, once playback starts the algorithm

completes and so any future bandwidth availability information will not be used

unless there are playback interruptions. In order to support real-time encoded live

video feeds that have unpredictable bit-rate variations and to adapt to very long time

scale bandwidth fluctuations, playback rate adaptation [36-37] and content

adaptation algorithms [21-22] can be integrated with the predictive buffering

algorithm.

Specifically, after playback has begun, the client will continue to measure the

statistical properties of the aggregate data flow. At periodic time intervals the client

will re-predict the future bandwidth availability and check if the constraints in (45) or

(47) are still satisfied. If not then it will slow down the video playback rate, e.g., by

decreasing the video frame rate and using time-scale modification [38] to elongate

the audio, to compensate for the bandwidth reductions. The playback rate will be

returned to normal once the playback constraints are satisfied again.

On the other hand, if the video is encoded using scalable codec such as multiple

description coding (MDC) [39-40] or if online transcoding [25] is available, the

70

client can feedback the bandwidth information to the streaming servers which can

then adaptively fine-tune the video bit-rate to transmit to the client.

8.2 Sender Selection Algorithm

In our measurements and simulations, the senders are picked up randomly from

the pool of available senders. In practice the system/client could keep historical

information of senders' bandwidth properties and exploit that in selecting senders for

a new video session. As reported in Section 4.6, properties of a substantial portion of

the senders exhibit high-degree of correlations over very long time scales (e.g.,

months). Together with the findings in Section 5.3, which showed that we can

minimize bandwidth variation of the resultant many-to-one data flow by carefully

matching the correlations between two senders (p) and the ratio of two senders'

standard deviations (r), it is possible to design an optimization algorithm to select the

subset of senders that will result in minimal or at least lower bandwidth variations.

One approach is to focus on one of the two factors in the sender-selection process.

Specifically, a sender is first randomly selected from a pool of senders. Next we find

another sender whose value of p (correlation between itself and the selected sender)

is smallest or r (the ratio to the selected sender) is closest to 1, and then combine the

two senders as one, i.e., treat their combined aggregate flow as a single flow. We

repeat this process by adding more and more senders to the many-to-one flow until

sufficient number of senders is selected. Thus this is a simple greedy algorithm that

optimizes one of the two sender selection criteria (i.e., either p or r). To further refine

this algorithm we can modify it to select M candidate senders according to one

criterion (say p), and then from these M candidates select one to be combined

71

according to the other criterion (say r). Similarly this process is to be repeated until

sufficient number of senders is selected.

In addition to the greedy algorithm approach it is also possible to approach the

problem as a general optimization problem, where a subset of senders is to be

selected to optimize given performance objectives (e.g., buffering time) subject to

system constraints. Clearly this is not a trivial optimization problem due to the

non-linearity in the formulations and thus warrants further research to study the

existence of, and the algorithm to obtain optimal or near-optimal solutions.

8.3 Dynamic Flow Allocation
So far we have assumed that the client interacts with the senders directly (Fig.

39a). In some network environments such as a corporation, an ISP, or a university

campus, it may not be the complete picture. In particular, to reduce Internet

bandwidth usage, such network environments often employ one or more proxy

servers to intercept and forward client requests to the servers, and then caching and

forwarding the data received from the servers to the clients (Fig. 39b).

Now as all traffic passes through the proxy, the proxy server can measure the

statistical bandwidth properties of all the servers across all the many-to-one flows.

This equipped the proxy server with far more extensive information of the servers'

bandwidth properties, both current and historical. This information can then be used

to guide the selection of senders as described in Section 8.2, or take one step further

- t o select and even dynamically reallocate the right combination of senders on

behalf of the clients.

For example, consider two clients where each of them is served by two streaming

servers, say Server 1 and 2 for Client 1, and Server 3 and 4 for Client 2. Assume the

72

Client 2. Obviously this requires that the contents ^

servers 一 not uncommon in large content providers

networks，and that the servers support selective delivery i

types of servers, including HTTP servers and some met

further investigations are needed to study the gains and tradeo

Client 1 I I Client 2 I I Client 3 I / / Client 1 / / Client 2 /

7\ T TT
\ \ \ / / / Proxy Server mil M

streaming Streaming Streaming / / / Streaming / / Streaming / /
Server 1 Server 2 …丨 Server/V 丨 / / Serve" / / Sen/er2 / … [

(a) I (b)

Fig. 39. Media data delivery from the streaming servers to the clients (a) \

proxy and (b) with proxy.

sessions which turn out to have received more than sufficient bandwidth, e.g., large

amount of data have been accumulated at the receiver. When admitting new

streaming session the proxy server can then take-away some of the senders from

these existing wealthy sessions subject to the constraint that the target quality of

service of these wealthy sessions are not compromised, and reallocate them to the

new streaming session to reduce the buffering time, or reallocate them to other

existing poor sessions which are suffering or predicted to suffer from insufficient

bandwidth.

This predictive flow allocation approach is particularly suitable for VBR video

streaming as some VBR videos have higher than average bit-rate at the beginning,

which requires more senders to achieve an acceptable startup delay. Once the peak

bandwidth demands are over, these VBR video streaming sessions will have more

than sufficient senders, which could then be reallocated to other streaming sessions

to improve overall system performance.

8.5 Challenge in P2P Applications
Our work studies the characteristics of aggregate data flow from multiple senders.

Consider a P2P application, the peers exchange data with each others and most of the

time peers receive data from multiple peers simultaneously. Thus, our results seem to

be naturally applicable to this type of applications. However, there are still many

challenges when applying the many-to-one data flow model in P2P applications.

Specifically, in a P2P system peers are highly dynamic and unlike dedicated

server, peers may join and leave the system at any time. Thus the data flow model will

not only need to handle bandwidth fluctuations, but also changes of the sources

74

themselves. On the other hand, P2P systems tend to have a large number of peers

available and thus a many-to-one data flow can be constructed from a larger number

of sources to reduce the impact of peer departure. Together with a dynamic source

discovery scheme it is thus possible to replace departed peers with other available

peers to maintain the data flow's performance. More research is warranted to

investigate these challenges further and to develop practical solutions for the future

P2P systems.

75

Chapter 76

CONCLUSION

In this work, we studied the characteristics of achievable bandwidth in many-to-one

data flows through extensive measurements conducted in the PlanetLab and in the

Internet. Our results confirmed that the achievable bandwidth of individual one-to-one

data flows can vary over a very wide range and is very difficult to predict accurately

based on past measurements. By contrast, the aggregate achievable bandwidth of a

many-to-one data flow exhibit significantly more consistent properties over a time

scale of hours. Moreover, increasing the number of senders in a many-to-one data flow

guarantees that the bandwidth variations will reduce and the future bandwidth will be

more predictable. These two findings are of particular importance to

bandwidth-sensitive applications.

By applying the many-to-one data transfer model, we developed a novel

predictive buffering algorithm for multi-source video streaming. The proposed

algorithm incorporates the impact of variations in the network available bandwidth

and uses that knowledge to inform the buffering operation. The trace-driven

simulation results show that the predictive buffering algorithm can achieve very high

successful playback ratio while keeping the buffering time short.

76

BIBLIOGRAPHY

[1] V. Jocobson. "Pathchar: A Tool to Infer Characteristics of Internet Paths,"

ftp://ftp.ee.lbl.gov/pathchar/, Apr. 1997.

:2] A. Downey, “Using Pathchar to Estimate Internet Link Characteristics," in Proc.

ofACMSIGCOMM, Sep, 1999.

[3] B. A. Mah, “pchar: a Tool for Measuring Internet Path Characteristics,"

http://www.kitchenlab.org/www/bmah/Software/pchar/’ Feb. 2005.

:4] R. L. Carter and M. E. Crovella, "Measuring Bottleneck Link Speed in

Packet-Switched Networks," Performance Evaluation, vol.27-28, Oct 1996,

pp.297-318.

[5] C. Dovrolis, P. Ramanathan, and D. Moore, "What do Packet Dispersion

Techniques Measure?" Proc. oflEEEINFOCOM, Apr. 2001, pp.905-914.

[6] M. Jain and C. Dovrolis, "End-to-End Available Bandwidth: Measurement

Methodology, Dynamics, and Relation with TCP Throughput," IEEE/ACM Trans,

on Networking, vol.11, no. 4, Aug. 2003, pp.537-549.

7] N. Hu and P. Steenkiste, “Evaluation and Characterization of Available

Bandwidth Probing Techniques," IEEE Journal on Selected Areas in

Communications, vol.21, no.6, Aug. 2003, pp.879-894.

[8] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson,“On the Self-similar

Nature of Ethernet Traffic," IEEE/ACM Trans. Networking, vol. 2, no. 1,

February 1994, pp.1—15.

77

http://www.kitchenlab.org/www/bmah/Software/pchar/%e2%80%99

[9] V. Paxson and S. Floyd, "Wide-area Traffic: The Failure of Poisson Modeling,"

Proc. ACMSIGCOMM'94, London, England, UK, 1994，pp.257—268.

[10] R. Morris and D. Lin, "Variance of Aggregated Web Traffic," Proc. IEEE

INFOCOM'2000, Tel Aviv, Israel, 2000, pp.360—366.

11] J. Kilpi and I. Norros, 'Testing the Gaussian Approximation of Aggregate

Traffic," Proc. of Internet Measurement Workshop (IMW), Nov. 2002.

12] M. F. T. Karagiannis, M. Molle and A. Broido, “A Nonstationary Poisson View of

Internet Traffic,，，Proc. of IEEE INFOCOM, Mar. 2004，vol.3, pp.1558-1569.

13] S. C. Hui and J. Y. B. Lee, "Modeling of Aggregate Available Bandwidth in

Many-to-One Data Transfer," Proc. of the Fourth International Conference on

Intelligent Multimedia Computing and Networking, July 21-26, 2005, Utah,

USA.

14] B. Chun, D. Culler, T. Roscoe，A. Bavier, L. Peterson, M. Wawrzoniak, and M.

Bowman, "PlanetLab: An Overlay Testbed for Broad-Coverage Services," Comp

Comm. Review, vol. 33(3), pp. 3-12, July 2003.

[15] Many-to-One Measurement Data Archive available at

http://manv2one.mclab.info.

16] IEEE Std. 1002.1-2001, Standard for Information Technology - Portable

Operating System Interface (POSIX). Open Group Technical Standard: Base

Specifications，Issue 6, December 2001. ISO/IEC 9945:2002.

[17] J. Bourne, D. Burstein, DSL: A Wiley Tech Brief, John Wiley and Sons, 2002.

18] tcpdump Homepage : http://www.tcpdump.org/.

[19] D. Arifler, G. de Veciana, and B. L. Evans, "Inferring path sharing based on flow

level TCP measurements," Proc. IEEE Int. Conf. on Communications, Paris,

France, June 2004.

78

http://manv2one.mclab.info
http://www.tcpdump.org/

20] L. Wang, J. N. Griffioen, K. L. Calvert and S. Shi, “Passive inference of path

correlation," Proc. of the 14 th international workshop on Network and operating

systems support for digital audio and video (2004), pp. 36-41.

[21] P. de Cuetos and K.W. Ross, "Adaptive Rate Control for Streaming Stored

Fine-Grained Scalable Video," Proc. NOSSDAV, May 2002，pp.3-12.

[22] P. de Cuetos, P. Guillotel, K.W. Ross and D. Thoreau, "Implementation of

Adaptive Streaming Of Stored MPEG-4 FGS Video Over TCP," Proc. ICME

2002, pp.405-408.

[23] S. Jacobs and A. Eleftheriadis, "Streaming Video using Dynamic Rate Shaping

and TCP Congestion Control,” Journal of Visual Comm and Image

Representation, Vol. 9, No. 3，1998, pp.211-222.

[24] L. S. Lam, Jack Y. B. Lee, S. C. Liew, and W. Wang, “A Transparent Rate

Adaptation Algorithm for Streaming Video over the Internet," Proc. 18th

International Conference on Advanced Information Networking and

Applications, Fukuoka, Japan, March 29-31，2004.

[25] A. Vetro, C. Christopoulos, H. F. Sun, "Video Transcoding Architectures and

Techniques: An Overview," IEEE Signal Process Magazine, vol.20(2), March

2003，pp. 18—29.

[26] Nguyen and A. Zakhor, "Distributed Video Streaming over the Internet," SPIE

Conference on Multimedia Computing and Networking, San Jose, California,

January 2002

27] Nguyen and A. Zakhor, "Distributed Video Streaming with forward error

correction," Packet Video Workshop, PA, USA, April 2002

28] D.Y. Xu，M. Hefeeda, S. Hambrusch and B. Bhargava, “On Peer-to-Peer Media

Streaming," Proc. Int'l Conf on Distributed Computing Systems 2002, Vienna,

79

Austria, pp.363-371，July 2002.

'29] J. B. Kwon and H. Y. Yeom, "Distributed Multimedia Streaming over

Peer-to-Peer Network," Proc. 9th Int'l Conf on Parallel and Distributed

Computing, KlagenfUrt, Austria, August 2003.

[30] V. Agarwal and R. Rejaie, "Adaptive Multi-source Streaming in Heterogeneous

Peer-to-Peer Networks," SPIE Conf on Multimedia Computing and Networking,

San jose，California, January 2005.

31] M. Reisslein and K.W. Ross, “Call Admission for Prerecorded Sources with

Packet Loss," IEEE Journal Selected Areas in Communications, vol. 15,

pp. 1167-1180, August 1997.

[32] M. Handley, S. Floyd, J. Padhye, and J. Widmer, “TCP friendly rate control

(TFRC): Protocol specification," RFC 3448，January 2003.

[33] L. Lapin, Modem Engineering Statistics, Duxbury Press, 1997.

[34] NS2 official homepage at http://www.isi.edu/nsnam/ns/.

[35] NLANR PMA data set: http://pma.nlanr.net/Traces/long/bell 1 .html.

[36] S. C. Hui and Jack Y. B. Lee, “Playback-Adaptive Multi-Source Video

Streaming," Proc. of the 4th Int'l Conf on Intelligent Multimedia Computing and

Networking, July 21-26, 2005, Utah, USA.

37] M. Kalman, E. Steinbach, and B. Girod, "Adaptive Media Playout for Low-Delay

Video Streaming Over Error-Prone Channels," IEEE Trans on Circuits and

Systems for Video Technology, vol. 14(6), June 2004, pp.841-851.

[38] Y. J. Liang, N. Farber and B. Girod, "Adaptive Playout Scheduling Using

Time-Scale Modification in Packet Voice Communications," IEEE International

Conference on Acoustics, Speech, and Signal Processing 2001，Salt Lake City,

Utah, vol. 3，pp.1445-1448, May 2001.

80

http://www.isi.edu/nsnam/ns/
http://pma.nlanr.net/Traces/long/bell

[39] A. R. Reibman, H. Jafarkhani, Y. Wang, M. T. Orchard, and R. Puri R, “Multiple

Description Coding for Video Using Motion Compensated Prediction," Proc.

International Conference on Image Processing, Oct 1999，Kobe, Japan, vol.3,

pp.83741.

40] E. Setton, Y. Liang, B. Girod, “Adaptive Multiple Description Video Streaming

over Multiple Channels with Active Probing," Proc. International Conference on

Multimedia and Expo, Baltimore, Maryland, July 2003, vol.1, pp.509-12.

81

i
i t
i
I

I
i' •

r

I f,

fc^�

t -

i

I •
(. • - •

y -

CUHK Libraries

_ _ _

0 0 4 4 3 9 9 8 7

