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Abstract 

Tropical geometry is the study of tropical semiring. Enumerative geometry deals 

with the counting of geometric objects that satisfy some given incidence conditions. 

Enumerative plane tropical geometry is then a combination of them, which is a tool 

for a better understanding of real algebraic geometry. 

In this report, we will give an introduction of tropical geometry, mainly emphasis 

on the study of plane tropical curves. We will give some examples and deduce some 

properties of plane tropical curves. The main theorem of this report is Mikhalkin's 

Correspondence Theorem. We will give a review on it. 
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摘要 

熱帶幾何是研究熱帶中環的一門科目。枚舉幾何是計算適合特定條件的 
幾何物件數量的科目。枚舉平面熱帶幾何則是兩者的結合，是一種了解實 
代數幾何的工具。 

在這報告中，我們會介紹熱帶幾何，並主要强調平面熱帶曲線。我們 
會列舉一些例子並推導它的特性。此報告的主要定理是Mikhalkin's對應定 
理，我們會考察它。 
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Chapter 0 

Introduction 

Tropical geometry is a new subject in the field of algebraic geometry. The term 

"tropical" does not reflect any things special in this subject, but it is an honor 

to a mathematician and computer scientist from Brazil, Imre Simon, who resides 

in Sao Paolo. Originally, this subject is only applied to discrete mathematics and 

optimization. Only in the recent years that G. Mikhalkin proved the Mikhalkin's 

Correspondence Theorem and B. Sturmfels related those objects with polyhedral 

cell complexes then people realized the power of this subject. 

The main idea of tropical geometry is to study algebraic varieties by piecewise 

linear objects, which can be studied with the help of combinatorics. It is hope 

that every construction in algebraic geometry has a correspondence combinatorial 

counterpart in tropical geometry. Thanks to the piecewise linear structure, difficult 

algebraic problems may be easier to handle in tropical setting. 

This subject is best developed in plane tropical case. One way to study tropical 

geometry is via the amoebas of algebraic varieties. The idea proposed by Kontsevich 

and elaborated by Mikhalkin is to consider the Log image of a complex curve C in 

an open subset of (C*)^. Precisely, they apply the map 

Log : (C*)2 — . ^ (log|2;|,log|u;|) 

to the complex curve C in the affine plane. The image is a closed and connected 

two-dimensional subset of and it looks like an object with certain tentacles in 

some unbounded directions. When we shrink the tentacles to a certain limit, we get 
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Chapter 0. Introduction 2 

a graph referred as a plane tropical curve. Such a deformation also has an analogy in 

tropical semiring, or sometimes called the max-plus algebra, as the ring addition is 

the usual maximum and the ring multiplication is the usual addition. Algebraically, 

plane tropical curves are of the form Val(C A (i^*)2)’ where K is the field of Puiseux 

series and the map Val is given by 

Val: i T — R U { - 0 0 } : Ydqtq ^ -mm{qeQ\ag^ 0}. 
q€Q 

Alternatively, plane tropical curves are the corner locus of some piecewise linear 

functions. The study of polyhedral cell complexes gives the dual of Newton subdivi-

sions and plane tropical curves, and hence plane tropical curves can also be viewed 

as weighted graphs with balancing conditions. 

The enumerative part of this subject concerns the counting of geometric objects 

satisfying some incidence conditions. The so-called Mikhalkin's Correspondence 

Theorem relates the number of complex algebraic curves of genus g and degree A 

with that of plane tropical curves, where A is a given Newton polygon. It can be 

seen that these numbers satisfy some recursive relations and coincide with Gromov-

Witten invariants of P^ when the Newton polygons are the standard lattice polygons 

with vertices at (0,0), (0’ d) and [d, 0). These numbers can be computed purely com-

binatorially using certain lattice paths in the relevant Newton polygons. Mikhalkin 

has also generalized the formula for the enumerative invariants of arbitrary genus in 

toric surfaces. 

This report aims at the "translation" of well-known facts of algebraic geometry 

to tropical geometry, with emphasis on plane tropical curves. In chapter 1，we 

will give the motivation and definitions of plane tropical curves. We will then give 

the duality between Newton subdivisions and plane tropical curves. This will show 

us how plane tropical curves should look like. In chapter 2, we will state two well-

known results of enumerative plane tropical geometry, the degree-genus formula and 

Bezout's Theorem. They are basic properties of plane tropical curves. In chapter 3, 

we will study the properties of non-Archimedean amoebas. Rullgard used Ronkin 

functions to study spines of amoebas, where Ronkin functions are defined to be 

� � = 7 ^ 丨 1 i � g | / W l f i A 字 . 
(27n尸 JLog-i(x) 么2 



Chapter 0. Introduction 3 

Here Nf is a strictly convex function over A(Z/), where Z is an algebraic variety 

defined by f. Spine of Amoeba A(Zf) is then the corner locus of Nf\ It can 

be shown that NT = max{Re^a{f) + (q；,̂ ;)}. We will discuss some examples of 

Re We end this chapter by introducing the Patchworking method discovered 

by Viro, which are of uses to prove the main theorem in the next chapter. The 

main idea is that the degeneration of arithmetic operators in will give the ring 

of quantized version of R+. This motivates why tropical semiring is defined like 

that. The Viro's Patchworking Theorem then states that we can use the "data" 

of EVAfc = VAfc n (IT广 to recover RVt = A (R*)" as t ^ oo. The last chapter 

is the statement and the sketch proof of the Mikhalkin's Correspondence Theorem. 

As mentioned before, plane tropical curves are dual to the Newton subdivisions of 

the relevant Newton polygons and Mikhalkin has given a way to count those curves 

using certain lattice paths in the Newton polygons. To prove the theorem, we need 

two lemmas. Instead of counting curves in 

IR2 directly, we lift the complex curve C 

to (C*)2 and define complex tropical curves. To sum up, enumerative plane tropical 

geometry is a new way to tackle problems in algebraic geometry. I believe that this 

report will be a good reference for researchers and graduate students interested in 

entering the field of tropical geometry. 



Chapter 1 

Definitions of Plane Tropical 
Curves 

In this chapter, we give the motivation and definitions of plane tropical curves. 

Algebraic description of plane tropical curves makes us know how they should look 

like, while combinatorial description is the analogy of it and is useful to deduce more 

properties. Although tropical curves in can be defined in [15], only plane tropical 

curves are well-studied and we will emphasis on them. For details of plane tropical 

curves, refer to [6], [8], [17], [18] and [20 . 

1.1 Motivation 

The idea of developing tropical geometry is via the so-called amoebas of algebraic 

varieties. Recall that the zero locus of a polynomial in two variables is called a 

complex plane algebraic curve C. It is a singular surface in the 4-space C^ defined 

by an equation f{zi,Z2) = 0. When C restricted to the open subset of (C*)^ is 

mapped to under the logarithm map, it becomes a two-dimensional image called 

amoeba. It has dimension two because a complex curve has real dimension two. 

Formally, we have the following definition. 

Definition 1.1.1 (Gelfand-Kapranov-Zelevinski [7]). The amoeba of a com-

plex curve C is the subset A = Log(C 门 ( C * ) 2 ) o/M^ where 

Log : (C*)2 — 

(2̂ 1,̂ 2) (log|2i|,log|2;2|). 

4 



1.1. Motivation 5 

Example 1.1.1. Ci = {z = {zi, Z2) G C^ | + Z2 = 1}. The shaded region below 

shows the amoeba of Ci. 

"-3 - 2 - 1 0 1 2 3 

The amoeba of Ci has three tentacles in three different directions. It can be 

explained as follow: Ci contains exactly one point which the first coordinate is zero, 

namely (0,1). When the neighborhood of this point is mapped by the Log map, 

it is in the neighborhood of ( - 0 0 , 0 ) and becomes the tentacle of the amoeba in 

the (—1,0)-direction. Similarly, the neighborhood of (1,0) becomes the tentacle of 

the amoeba in the (0，— l)-direction. Finally, any points of the form (z^ 1 — z) are 
z 

mapped to the ( 1， l ) - d i r e c t i o n as |2；| —> 0 0 since lim = 1. 
|z 卜 00 1 — Z 

Example 1.1.2. C2 = {z = {zx,z2) G C^ | + e~'^Z2 = 1} and C3 = a generic 

conic, i.e. a curve given by a general polynomial of degree two in two variables. 

Their amoebas are as shown below: 

: I 
- 2 - 1 0 1 2 3 "~3 - 2 - 1 0 1 2 3 

The change of coefficients in C2 gives a amoeba similar to that of Ci. It is an 

additive shift of the amoeba of Ci by shifting the origin to the point (1,2). The 

amoeba of a generic conic has two tentacles in the same three directions as before, 
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namely, the (—1,0), (0，—1) and (1，l)-direction. It is because the curve meets each 

coordinate axe in two points. It can be generalized that the amoeba determined by 

a general polynomial of degree d has d tentacles in each of the same three directions. 

To get something interesting, we shrink the amoebas to their "skeletons" by 

considering the following map: 

Log, ： {C*f 4 

(zi，勿）H 

The limits of amoebas are then the subsets F C where 

r = lim At = lim Log,(Ct n (C*)^) 

t—*oo t—*oo 

for some suitable algebraic curves Ct, and the limit is taken the Hausdorff limit. 

The limits of amoebas are then one-dimensional objects as the shrinking process 

makes them become zero width. They can be viewed as graphs in M̂  with some 

bounded and semi-infinite edges. The limits of Ci, C2 and C3 are the following (the 

arrows denote semi-infinite edges): 

- / / 
-« 乙 Xi I" " 1 工 1 ‘ ——“Xi 

I / l ~ 
Ci I C2 I C3 

I I 

In order to get the right limits, we have to replace the original curves with some 

suitable algebraic curves Q . For instance, the limit of amoeba determined by Ci is 

still Ci. However, if we choose Ct in the second example as the the same curve C2, 

it will not only shrink the amoeba to zero width, but also translate its vertex to the 

origin. It will make the limit of amoeba determined by Ci and C2 have the same 

graph. To avoid getting the same graph in this way, we consider a family of curves 

Ct = {z = (21,22) e C2 I t-'^zi + t-'^Z2 = 1} for large t e R. This family will pass 

through (t，0) and for all t, and thus LogJCtA (C*)2) will have horizontal and 

vertical tentacles at xi = 1 and X2 = 2 respectively. Hence not only the width but 

also the position of the graph is kept. 
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Note that Log^ differs from Log by rescaling the two coordinate axes log t times. 

The images can also be viewed by looking at amoebas from very far away. The 

above examples suggest that plane tropical curves should be piecewise linear objects 

in some sense of the images of complex curves, which are the images under the Log 

map and a degeneration process. We hope that plane tropical curves still carry some 

properties that the original complex curves have and also are easier to handle due 

to its linearity. 

The idea that plane tropical curves can be viewed as limit of amoebas serve as a 

motivation why plane tropical curves are interesting and how they look like roughly. 

However, it is difficult to make the notion of limit precisely. To make things easier, 

we will use a different approach and give the algebraic and combinatorial descriptions 

of plane tropical curves in the remaining sections. We will see in Chapter 3 that the 

objects defined by our new definitions are actually very similar to limits of amoebas. 

1.2 As Varieties over the Field of Puiseux Series 

In this section, we give the algebraic description of plane tropical curves. Instead of 

looking at the limits of amoebas, we can hide this process by looking at a complete 

algebraically closed non-Archimedean field K. The field K is equipped with a norm 

called non-Archimedean norm to make it complete. Our principal example of such 

a field is the field of Puiseux series. We replace the field C by another algebraically 

closed field K and hope that plane tropical curves can be defined over K. The 

importance about the choice of K is that we have a valuation map from K to R 

which is similar to the map Log in Definition 1.1.1. 

Definition 1.2.1. Let K be any field. A map \- \ : K ^ M>o satisfying 

• |ci| = 0 if and only if a = 0, 

• \ab\ = \a\ and 

• \a-\- b\ < max{|a| ’ |6|} for all a,b E K 

is called a non-Archimedean norm. 
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Note that the norm can be extended to the algebraic closure of K in [3]. 

Definition 1.2.2. A valuation is a map Val: K ^ M U { - o o } satisfying 

• Val (a) = —oo if and only if a = 0， 

• Val(a6) = Val(a) + Val(6) and 

• Val(a + b)< max{Val(a),Val(6)} for all a,beK. 

Non-Archimedean norms are in bijection with valuations by Val(a) = log\a . 

That is, K is algebraically closed and there is a map Val: K — E U { - o o } such that 

eVai defines a norm on K. In addition, K has to be complete with respect to the norm 

eVai. Hence K becomes a complete algebraically closed non-Archimedean 

field. We are now ready to give an example of the field K and define plane tropical 

curves in an algebraic way. 

Definition 1.2.3. The field of Puiseux series is the field of formal power series 

in a variable t with complex coefficients, i.e. a = ^aqf^, such that the set {g G Q| 

cig ^ 0} is bounded below and has a finite set of denominators. 

The main example of a field K is the completion of the field of Puiseux series. To 

construct K, we consider the algebraic closure C ( � ) o f the field of Laurent series 

C ( � ) . A n element of this is of the form 

a{t) = ait们 + a2iP + ... ’ 

where Oj G C and < 仍 < . . . a re rational numbers with bounded below denom-

inators. This can let us define the valuation of a by Val(a) = —min{g G Q | â  

0} = - q i . Now define K to be the completion of C((t)) with respect to the norm 

gVai The valuation extends to this completion by Val (a) = log |a|. 

By replacing the underlaying field by we can define algebraic curves in the 

affine plane over the field K. The limiting process is then hidden by the valuation 

map 

Val: (K*f -> IR2 

{ZUZ2) (Val(zi),Val(22)). 

We can now give the first definition of plane tropical curves precisely. 
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Definition 1.2.4. A plane tropical curve associated to C is the closure of 

the image Val(C A ( K * ) ” c M?, where C C K^ is a algebraic curve and K is the 

completion of the field of Puiseux series. 

Note that this definition is purely algebraic and does not involve any limits. 

As K is an algebraically closed field of characteristic zero, the theory of algebraic 

geometry of plane curves over K is similar to that of algebraic curves over C. Note 

that we replace the limit by the closure of the image of Val(Cn The closure 

is taken because V a l ( C 门 i s by definition in Q^ only. Let us look at an example 

to see if this definition match our motivation. 

Example 1.2.1. Consider an algebraic curve C over K given by C = {z = {zi,z2) G 

I tzi + fz2 = 1}. If (Zi’ 22) e C n then Val(C n has the following 

three possible cases: 

• If Val(2;i) < 1 then Val(Z2) 二 2 since Z2 = — has a lower leading 

term. It corresponds to the semi-infinite horizontal edge starting at (1,2). 

• If Val(z2) < 2 then Val(2;i) = 1 since zi = — tz^ has a lower leading t term. 

It corresponds to the semi-infinite vertical edge starting at (1,2). 

• If Val(2:i) > 1 and Val(2:2) > 2 then tzi + t̂ z2 = 1 shows that the lower leading 

term of tzi and t'̂ Z2 are equal, thus Val(2;i) + 1 = Val(2;2)- Hence we recover 

the limit of amoeba in Example 1.1.2. 

Example 1.2.2. Consider another algebraic curve given by C = = (2:1, ^2) G K^ | 

t^zi + = 1} where (p, q) G then the plane tropical curve associated to C 

has the same shape of the limit of amoeba in Example 1.1.2 but shifting the vertex 

(1,2) to (p,q). 

In the next section, we will give another definition of plane tropical curves. We 

will see that plane tropical curves of the form Val(C A (K*) ” are actually one-

dimensional polyhedral cell complexes. We will consider the ground field {K, •) 

and see what the map valuation does to the field structure. 
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1.3 As Varieties over the Tropical Semiring 

We would like to describe plane tropical curves algebraically similar to zero sets of 

polynomials. The previous section gives an idea what happen to the operations "+" 

and “ • “ in the ground field (K, +, •). We begin with the following observation. 

Let C C K"^ he the curve given by 

c = {{ZUZ2) G I f{z,,z2) = X； aijz{4 = 0}. 

Note that 

Ysi\{aijz\zi) = Val(aij) +iVal � + j.Val(Z2) 

=Val(aij) + ixi + jx2 

by denoting Val(2i) = Xi eR. Since ^ aijz\ẑ 2 = 0’ if 

for some {iojo) G N^ then there must exist another {i'oj'o) G N^ such that 

Thus the lowest valuation of all summands must be attained at least twice, i.e. 

max {ixi + jx2 + Val(aij)} must be attained at least twice. This observation makes 

us to define the tropical semiring and see what does the ground field looks like. 

Definition 1.3.1. The tropical semiring (MU {—oo}, ©, O) is the semiring with 

underlying set R U {—oo} and operations tropical addition and tropical multi-

plication defined as follow: 

Xi®X2 = max {0:1,0:2} and xi Q X2 = xi X2. 

Note that the tropical addition is idempotent, i.e. x®x = x, and the - 0 0 element 

is a neutral element in addition. Since there is no additive inverse for addition, this 

is only a semiring. The tropical multiplication is just the usual addition. 

With the arithmetic operators defined, we can define tropical polynomials. 
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Definition 1.3.2. A tropical polynomial in two variables is a finite sum of 

the form 

F = a i O © y^ci e . . . © a„ O a;狄作 © 产,where â  G Q and K, q G Z. 

Note that F is actually given by the map 

F : R^ R : {x,y) max {ai + bix + ciy,. • . ， + + 

It is a piecewise linear convex function. Please refer to [24] for Tropical Mathematics 

and [11] for Tropical Arithmetic. 

We then relate the definition of plane tropical curves in the previous section with 

the tropical semiring. Since the tropical semiring does not have an inverse operation 

for addition, it would not make sense to look at zero sets of tropical polynomials. 

What we will actually consider are the comer loci of tropical polynomials. We first 

get a polynomial in the ground field. 

Definition 1.3.3. Let f = G K[zi,z2], where K[zi, Z2\ is a Laurent 
ieN 

polynomial of two variables over a complete algebraically closed non-Archimedean 

field K. We define the tropicalization of f to be the tropical polynomial 

F = tropif) = 0Val(ai(t)) O oc战'O 产 
i€N 

=max {Val(ai(t)) + hx + ciy,... ’ Val(a„ ⑴ ） + bnX + Cny}. 

Example 1.3.1. Let f = tzi-^ t'^z^ — 1 as in Example 1.2.1, the tropicalization of 

/ is F = - 1 O x © - 2 O 2/ © 0. Note that the addition of 0 is important since 0 is 

not a neutral element for tropical addition. 

When K is taken to be the field of Puiseux series, by our observation, trop(/) 

corresponds to the set of which the maximum of f is attained at least twice. This 

motivates the following definition. 

Definition 1.3.4. A plane tropical curve is a subset o/M^ that is the corner locus 

of a tropical polynomial F with rational coefficients, i.e. the set of points (a;, y) G M̂  

such that the maximum F{x,y) is attained at least twice. The plane tropical 

curve associated to F is given by the tropicalization of /. 



1.3. As Varieties over the Tropical Semiring 12 

Equivalently, a plane tropical curve associated to F is given by the set of points 

where the piecewise linear map F is not linear, or not differentiable. 

We will see what the tropical line associated to F{x, y) = a0a;©60y©c and the 

tropical quadratic associated to F{x,y) = aOx^06Oa;O2/©cO?/^©rfOa:©eOy0/ 

look like by the following examples. 

Example 1.3.2. Let F = - 1 O rc 0 - 2 © y 0 0 = max { x - l , y - 2,0}. There are 

three cases where the maximum is attained at least twice: 

Either a : - l = ? / - 2 > 0 , a ; - l = 0 > ? / - 2 o r y - 2 = 0 > a ; - l . 

This give the lines {y = x -h l,y > 2}, {a; = 1,2/ < 2} and {y = 2,x < 1}. All lines 

are semi-infinite and starting at (1,2). The tropical line associated to F is as shown 

below: 

广 y {y = x + l,y>2} 

{y = 2,x^} r | ( l ’ 2 ) 
I 

'i {x = l,y<2} 

Note that the graph is the same as Example 1.1.2 and 1.2.1. The point (1,2) is 

which the maximum of the function F is attained triple, i.e. a: — l = y — 2 = 0. The 

following graph shows how the corner locus of this function gives back the plane 

tropical curve. Note that the nonlinear parts give the semi-infinite edges in each of 

the three directions. 
max { x - l , y - 2,0} / ^ 

暴 
7 Z 工 2 

^ — — ^ ^ 

•"工 1 

For a generic plane tropical line associated to F{x,y) = a 0 a : © 6 0 y © c , it has 

the same graph as above but centered at (c — a, c — 6). 
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Example 1.3.3. Let F{x, = We 

have Cf = 15 possibilities and there is only nine possible cases as shown below: 

• 2x-\-l = x + y-\-2>2y-hl,x-\-2,y + 2,l-{x = y + l,y>0}-

• 2a; + 1 = a; + 2 2 a; + y + 2’ + 2’ y + 2，1 - {a; = 1，y S 0}; 

• X + y 2 = 2y + 1 > 2x + l,x 2,y 2,1 - {y = X l,x > 

• X y + 2 = X 2 > 2x l,2y 2,1 - {y = 0,0 < X < ly, 

• a; + 2/ + 2 = y + 2 > 2a; + 1,27/ + 1, X + 2,1 - {rc = 0,1 < y < 0}; 

• 2y + 1 = 1 > 2a;+ l ,x + ?/ + 2,a; + 2,y + 2 - {y = 1,0； < 0}; 

• a: + 2 = y + 2 > 2a; + 1, re + y + 2 , + 1,1 - {a; = y, - 1 < a; < 0}; 

• a; + 2 = 1 > 2a; + + y + 2,2?/ + l , y + 2 - {a; = < - 1 } and 

• y-\-2 = l>2x-\-l,x-\-y-^2,2y+l,x-\-2-{y=-l,x< - 1 } . 

Hence the plane tropical curve associated to F look like the following with vertices 

at (0,0), (0,1), (1,0) and ( - 1 , - 1 ) : 

>—t X\ 
^ / I 

I 

I 
I 

I .. 

Remark 1.3.1. As a graph in a tropical quadratic may have the same graph 

as a tropical line. For instance, Fi = 1.75 Oa ;©5O2 /0O and F2 = 0 O 0 4.5 O 

X O y © 6.5 O © 5.5 O a： © 8.5 O y © 10 have the same graph. 

In the general situation, B. Sturmfels has showed in [20] that tropical quadratic 

can be classified into 5 general cases algebracially. Note that in [20], the tropical 

semiring is not defined as the same of our. The tropical addition is taken the 

minimum instead of the maximum, which is more widely used in Computer Science. 
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Since minimum is actually in bijection with maximum, the graph is simply reflected 

along the line x 4- y = 0, thus the combinational types of plane tropical curves are 

not changed. Up to symmetry, it can be classified into five general cases. 

(i) F defines a tropical line of multiplicity 2. This happens if and only if 

26 > a + c and 2d> c + e and 2 / > a + e. 

This is the degeneration of a tropical quadratic. 

(ii) F defines a tropical quadratic with two double semi-infinite edges. There 

are three possibilities (depending on which expression is chosen as the strict 

inequality). It happens if and only if 

26 > a + c and 2d> c-h e and 2 / < a + e. 

(iii) F defines a tropical quadratic with one double semi-infinite edges. There are 

three possibilities (depending on which two expressions are chosen as the strict 

inequalities). It happens if and only if 

2b < a + c and 2d < c-\- e and 2/ > a + e. 

(iv) F defines a tropical quadratic with one vertex not on any semi-infinite edges. 

It happens if and only if 

b-hd < c+ f and 6 + / < a + d and d + f < a + e. 

If one of these inequalities becomes equality, F defines a union of two tropical 

lines. 

(v) F defines a tropical quadratic with each vertex on some semi-finite edges. It 

happens if and only if 

26 < a + c and 2d < c + e and 2 / < a + e 

and (6 + < i > c + / o r 6 + / > a + dor( i + / > a + e). 
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Note that in Example 1.3.2，which is a tropical line, it has 3 semi-infinite edges 

in each direction. The primitive integral vectors around the vertex sums up to 0, 

Le. a H - � K H S } 
In Example 1.3.3, which is a general tropical quadratic, it has six semi-infinite edges 

in each direction and each direction has exactly two edges. Also the primitive integral 

vectors around each vertices sum up to 0. We will see in the next section that there 

is actually a general property of plane tropical curves when they are thought as 

graphs with balancing conditions hold. Below shows the primitive integral vectors 

of the plane tropical curves around the vertex (0,0) in Example 1.3.2 and 1.3.3 

respectively. 

to 
> 一 

(-�1) / © 

“ 

We now give two definitions of plane tropical curves, one with the image of 

complex curves over the completion of the field of Puiseux series. This is motivated 

by the definition of amoebas and it helps us to understand why plane tropical curves 

also carry some similar properties of plane algebraic curves. The second is the corner 

loci of tropical polynomials, which is more computable and easier to give examples. 

Actually, these two definitions are the same, which is the following Kapranov's 

Theorem. For a proof, see [3], [20] or [25 . 

Theorem 1.3.1 (Kapranov's Theorem). If C C K"^ is a curve given by the 

equation { / = 0} and F is the tropical polynomial F = trop(/), then the plane 

tropical curve associated to C and associated to F coincides. 
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1.4 A Combinatorial Description of Plane Tropi-

cal Curves 

We have defined plane tropical curves as images of algebraic curves, and we have 

an equivalent definition by means of tropical semiring. However, these definitions 

are purely algebraic and do not give much information about plane tropical curves 

combinatorially except they are piecewise linear with rational slopes. In the last 

section, we expect plane tropical curves should have more properties. We will give 

a combinatorial description of tropical curves so that we can deal with them more 

easily. 

We start by the following observation. We have seen in the last section that a 

plane tropical curve F can be viewed as a graph in R^ with edges of rational slopes. 

Let V be a vertex of F and we shift F such that V is the origin. Then T is locally 

around V the corner locus of the form 

g{xi,x2) = 03：严” o^r^^ 
zGN 

=r^ 賢 { a 5 ” : c i + a^^x-i} 

for some a � = g N ^ . 

Let A be the convex hull of these a � ’ s . Notice that if any point a � is not a 

vertex of A, then it is irrelevant to the plane tropical curve. For instance, in the 

following figure, a(5) can be neglected. 
I X2 

丨 匕 " " “ f - H - -
a � a � 

The reason is that 

{xi,x2) eT i,j such that a(/)a;i + c4')rc2 = a(/)a:i + <4力 

= g { x i , x 2 ) 

> a î̂ xi + <4知)0：2，V/c = 1,2,..., 
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and (*) only holds for adjacent a � and a � . 

There is another condition around the vertex V. If (a(i)，•..，a�)are the vertices 

of A in clockwise direction, then �=(a� )—af)，a(/+i) -c4”） is an outward normal 

vector of the edge joining a � and a(糾).It follows that 

t=l i=l 

where we denote c^T^i) = V/c = 1,2，.... Now write t ; ⑴ = t / ; ⑷ • w⑷’ where 

It/无）G Z>o such that the two components of are coprime. We called w(无）the 

weight of the corresponding edge of F and 权⑷ the primitive integral vector in 

the direction of t ; � . N o w , 

亡 2 / ； � . u � = ; f > W = 0 
i=l i=l 

is called the balancing condition. 

Let r C be given by the corner locus of 

g(xi,X2) = max {c4”a;i + c4')工2 + 刺 } ， 
ie{l’".’n} 

where g is of degree d = max {c^” + df)} . Then 
ie{l,-,n} 

a⑷二 ( a f ) ’ 4 ” ) e A d n z 2 ’ 

where Ad = G > 0 ,^ + 77 < d}. Consider a ⑷ + a⑴， if there exists 

(xi’a;2) e r such tha t 

a(/)a:i + + 6 � = + + b �=g(xi,x2) 

then we connect a⑷，a� G Ad A 芯2 by an edge. This gives us a subdivision of 

Ad, called the Newton subdivision of A^. Thus each edge of the plane tropical 

curve is dual to an edge in the Newton subdivision. Formally, we have the following 

definitions. 

Definition 1.4.1. Let f = 

，2；2] be a polynomial (where K denotes 

any field, not necessarily the completion of the field of Puiseux series). Then the 

convex hull of the set {(6i,Ci) G Z^ | Oj 0} is called the Newton polygon of f. 
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Definition 1.4.2. Let f = Ylaiz\'z2 E K[zi, Z2] be a polynomial. Let D cM? xR 

be the convex hull of the set {{bi, Ci, ai) | ai — 0}. Project the edges which can be 

seen from above to the first factor M?. The image will be a convex subdivision of the 

Newton polygon, called the Newton subdivision of f. 

Suppose F is the tropicalization of /， t h e n we called the Newton polygon and 

Newton subdivision of F be the corresponding Newton polygon and Newton subdi-

vision of / respectively. 

Prom the above observation, we have the duality between plane tropical curves 

and their Newton polygons. We state the follow theorem, a proof can be found in 

[17]. 

Theorem 1.4.1. The plane tropical curve T associated to the tropical polynomial 

F is dual to the Newton subdivision of f，where F is the tropicalization of f，in 

the sense that every vertex V of T corresponds to a 2-dimensional polytope of the 

subdivision and every edge ofT is orthogonal to a 1-dimensional polytope. 

Furthermore, if a vertex V is adjacent to an edge E, then the 1-dimensional polytope 

dual to E is in the boundary of the 2-dimensional dual of V. 

Example 1.4.1. Let F{x, y) = lQx'^®2Qx(Dy®lQy'^®2Qx®2Qy®las 

in Example 1.3.3. The Newton polygon and Newton subdivision of F are as shown 

below: 2 
y 

1 2x x^ 

The Newton polygon of F is given by A3 = 

vertices (0’ 1) and (1,0) is connected by an edge because the condition 

is possible. Similarly we connect (1,0) with (1’ 1) and (0’ 1) with (1，1). 

Remark 1.4.1. Note that the duality between plane tropical curves and their New-

ton subdivision is not a 1 to 1 correspondence. In fact, many plane tropical curves 
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can have the same Newton subdivision. The Newton subdivisions only fix the di-

rections in which the edges of the plane tropical curves point, but not the lengths 

of the dual edges. The following picture shows two plane tropical curves which have 

the same Newton subdivision but different shapes. 

Remark 1.4.2. Note that there also have several polynomials which define the 

same plane tropical curve. The idea of finding the Newton subdivision only gives a 

way of determining the plane tropical curves. The vertex which have valence 3 is 

where the maximum is attained triple. In general, the vertex which have valence n 

is where the maximum is attained n + 1 times. 

Remark 1.4.3. Note that not every Newton subdivision gives rise to a plane tropical 

curve. It is obvious by our construction that we need subdivisions of a Newton 

polygon into convex polygons in order to have a plane tropical curve associated to 

it. However, we may happen that there is no plane tropical curves associated to it 

even this condition is satisfied. Consider the following figure, which shows part of 

the Newton subdivision of a plane tropical curve: 

國 

The right hand side shows part of the plane tropical curve dual to the edges Ei, E2, 

E' and E" . It can be shown that E2 is longer than Ei as the edges of the plane 

tropical curves is orthogonal to the corresponding edges of the Newton subdivision. 

By the same argument used around each edge in the little square, each edge around 

the central vertex must be longer than the previous one. This is a contradiction. 
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Definition 1.4.3. A Newton subdivision of a Newton polygon is called a regular 

Newton subdivision if it is dual to a plane tropical curve. 

We end this chapter by listing the combinatorial types of A^ for d = 1 and 2. 

When d = 1，there is only the trivial subdivision of Ai. This gives only one type of 

plane tropical curve. 

A i 

When d = 2, the following shows all non-degenerate plane tropical curves. 

Here non-degenerate means that the subdivision is maximal, i.e. each subdivision 

polygon is of area ^ 
Zi 

fe^ ^ ^ ^ 
^ Y / / ^ 

u 务 I t 

The following shows a degenerate plane tropical curve, note that it is a 

union of two tropical lines. 

k ^ 

In general, an algorithm to find all such subdivisions has been studied in geo-

metric combinatorics, see [9]. 



Chapter 2 

Properties of Plane Tropical 
Curves 

In this chapter, we give the tropical versions of classical results in algebraic ge-

ometry, the degree-genus formula and Bezout's theorem. As we want to find the 

relation between tropical geometry and algebraic geometry, there must be some ver-

sions of known results in algebraic geometry can be transfer to tropical geometry. 

For instance, Izhakian found an analogue to the duality of curves [10], Vigeland 

established a group law on tropical elliptical curves [27] and Tab era dealt with a 

tropical Pappus' Theorem [26]. For more details of this chapter, see [6] and [20 . 

2.1 The Degree-genus Formula 

Throughout this chapter, we assume the plane tropical curves are dual to the Newton 

subdivisions of Ad for some d eN. 

Definition 2.1.1. A plane tropical curve is of degree d if it is dual to the Newton 

subdivisions of A^. 

If C C P^ is a smooth complex algebraic curve of degree d, then it is well known 

that it has genus g = ^{d - l)((i - 2). This formula is called the degree-genus 

formula and counts the number of "holes" in the real surface C. If C is not smooth, 

the genus would not greater than the above number. We would like to ask the same 

question in tropical geometry. 

Consider a plane tropical curve T C M?, then it is natural to define its genus to 

be the number of loops in F if we think of it as a connected graph in R^. 
21 
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Definition 2.1.2. The genus of a plane tropical curve T C M? is defined to be 

g{T) = dimiifi(r,R), i.e. its first Betti number. 

Denote 

Fo = set of vertices of F, 

Fi = set of bounded edges of F 

and for each V G Pq, we define its valence to be 

val(y) = no of edges attached to V. 

Since F has 3d unbounded and bounded edges. It follows that 

3c/ + 2|ri| = valOO. 
vero 

By Euler's formula, 
|ro|-|ri| + ^(r) + i = 2, 

we have 

^(r) = i + |ri|-|ro|. 

Substitute it back to the original equation, we get 

" ( r ) = i + ^ E v a i O O - ^ “ | r o | 
Kero 

=kd -l){d-2)- - I — � - 2 ) ) • 
V ‘ 

� 

Recall that each G To corresponds to a convex polygon Ay c A^ with val(y) 

vertices. It follows that 
v a l ( V ) - 2 

Area(Ay) = V Area(ri) > - (val(y) — 2). 
Li 

i = l 

Finally, we get 

X； Area(A；.) > ^ i(val(y) - 2), 
v êro V€ro 

vero 
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Hence (*) is greater or equal to 0，therefore 

g{r)<\{d-l){d-2). 

The equality holds if and only if all polygons in the Newton subdivision have minimal 

areas for its number of vertices. This is the degree-genus formula for plane tropical 

curves, see [6 . 

Definition 2.1.3. A plane tropical curve is smooth if its Newton subdivision is 

maximal, i.e. it consists of (f triangles of area - each. 

Remark 2.1.1, Equivalently, a a plane tropical curve F is smooth if each vertex 

of r has valence 3, all weights of the edges are 1 and the primitive integral vectors 

along the edges adjacent to any vertices generate the lattice 1?. 

Remark 2.1.2. A smooth plane tropical curve has genus - l)(d — 2). 

Example 2.1.1. The following shows a smooth plane tropical curve dual to a New-

ton subdivision of A3 and of genus 1. 

Example 2.1.2. The following shows a plane tropical curve F which is not smooth 

but still of genus 1. , 

； ^ V 

Note that the the parallelogram in the Newton subdivision gives rise to a point P 

which two lines intersect. We can also think of F as the plane image of a graph of 
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genus 0 that has a "crossing" at P. This corresponds to a normal crossing singularity 

in the classical case, i.e. to a complex curve C with a point P E C where two smooth 

branches meet transversely. 

2.2 Bezout's Theorem 

In classical geometry, Bezout theorem states that if Ci and C2 are two distinct 

smooth algebraic curves of degree di and 0̂2 respectively, then Ci intersects C2 in 

did2 points, counted with the local intersection multiplicities of Ci and C2, 

We have seen in the previous section that there may be an analogous statement 

in tropical geometry. However, we cannot apply it directly here, as the intersections 

of two distinct smooth plane tropical curves may not be always finite. It may happen 

that they share some common line segments as their intersections. Let us consider 

a simpler case first. 

Consider Fi and�2 are two plane tropical curves of degree di and d) that intersect 

transversally, i.e. they are dual to some Newton subdivisions of A^̂  and A^a, 

intersect in finitely many points and each is not a vertex of either or [2. 

Note that roUFi is also a plane tropical curve and of degree + The vertices 

of Pi U 厂2 are of two types: 

(1) the original vertices of or or 

(2) the intersections of Pi and�2 . 

In the first case, the Newton sub-polygons of Fi a n d � 2 can be found in the 

Newton subdivision of /Sdi+d2- In the second case, the intersections are always 

given by two straight lines which intersect. The intersections correspond to the 

parallelograms in the Newton subdivision of l\di+d2- To count correctly the number 

of intersections, we need the definition of multiplicity of a intersection point. 

Definition 2.2.1. For each vertex p € 门 [ 2 , its multiplicity is defined to be the 

area of the parallelogram corresponds to p. 
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Proposition 2.2.1 (Bezout Theorem [6]). When two plane tropical curves Fi 

and r2 intersect transversally, the number of intersection points, counted with mul-

tiplicity, is equal to did2. 

Proof. 

n � 2 (counted with multiplicity) 

= ^ Area of parallelogram corresponds to vertex p G Adi+d2 
perinr2 

=Area(Adi+d2) - Area(AdJ - Ai’ea(Z\d2) 

= + d2)2 — — = did2. 

• 
Example 2.2.1. The degree of both Fi and�2 are 2 and they give ur2 of degree 

4. Note that all the eight triangles in the Newton subdivision of Fi U � 2 come from 

that of Fi and r?. The multiplicity of P2 is 2, and the multiplicity of Pi and P3 are 

1，so the total intersection number is 4. 

k k I 
Ti T2 FiUTa 

We now deal with the general case when two plane tropical curves which may 

not intersect transversally. In classical geometry, when C and C' are two algebraic 

curves in P^ then C • C' — C - C" where C' is linear equivalent to C". We observe 

that there is a similar situation in tropical geometry. 
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Example 2.2.2. When one of the intersection point is a vertex of either curves, we 

may perturb one of the curve and consider the intersection number accordingly. 

Example 2.2.3. An even more extreme case occurs when the plane tropical curve 

intersects itself. 

T T T 

In general, for any two tropical curves Fi, [2’ take any perturbation T\ and r| 

so that they intersect transversally, then r\ A intersect in finitely many points. 

Theorem 2.2.2 ([20]). The limit of the point configuration F̂  nr^ is independent 

of the choice of the perturbation. It is a well-defined subset ofdid2 points in Fi nr2. 

Hence we can define the intersection Ff nrg as e 0. We called lim H fi T% the 

stable intersection of A � 2 . We now restate the Bezout Theorem. 

Theorem 2.2.3 (Tropical Bezout's Theorem [20]). Any two plane tropical 

curves of degree d\ and d] intersect stably in a well defined set of did] points, count-

ing multiplicities. 

Example 2.2.4. We would like to compare the definition of tropical multiplicity 

with that of the classical case. Consider the following local graph of two tropical 

curves with local equations Fi = {(:ci，a;2) G | = 0} and [2 = {{X2,X2) G | 
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X2 = nx\} for some n G N>o. 

lyr. 

The intersection point is shifted to the origin for convenience. The corresponding 

complex curves which map to them are Ci = {{zi,Z2) £ C^ \ Z2 = 1} and C2 = 

{{zi,z2) e C2 I Z2 = z^} respectively. Observe that the intersection of Ci and C2 

consists of n points, which corresponds to the choice of n-th root unity of zi. This 

coincides with our definition as the the origin is dual to a parallelogram of base 1 

and height n. 

Example 2.2.5. The following shows the stable intersection of a tropical line and 

a tropical quadratic. The thick line is the line segment where they intersect. We 

can use either the middle or the rightmost figure to find out that the intersection 

number is 2. 



Chapter 3 

Non-Archimedean Amoebas and 
Patchworking Method 

In this chapter, we study amoebas more deeply. As the spines of amoebas (refer 

to Definition 3.1.2) are not always equal to the associated plane tropical curves, 

we want to know when they will equal. In the first part, we use Ronkin functions 

to study spines of amoebas. In the second part, we introduce the Patchworking 

method. The dequantization of arithmetic operators in E+ brings up the associated 

operations in tropical semiring. This technique is helpful to prove the main theorem 

in the next chapter. 

3.1 Computing Amoebas 

Let Z be an algebraic varieties in (C*)^, and 

f = in 厂 1], z = (zuZ2)J C !}. 
ael 

We denote the amoeba of Zj by A(Zf) = Log(Zf) C where Zf is the zeros of 

f . It is remarked in [7] that A{Zf) is closed with non-empty complements and its 

Lebesgue area is well defined. Also, 

Theorem 3.1.1 ([7]). Any connected component ofR'^\A{Zf) is open and convex. 

In [19], [22] and [23], Passare and Rullgard use Ronkin functions to study spines 

of amoebas. Recall that a function / in a domain Q C C^ is called pluriharmonic if its 

restriction to any complex line is subharmonic. Since / is a holomorphic function, 

28 
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log I/I : {C*y\V —> E is a pluriharmonic function, where V̂  is a hypersurface of 

(C*)2. Furthermore, if we set logO = -oo , then we have a pluriharmonic function 

log|/|:(C*)2 — R u { _ o o } , 

which is strictly pluriharmonic over V. 

Definition 3.1.1. Let Nf R be the push forward of log |/| under the loga-

rithm map Log : (C*)2 — i.e. 

称 工 2 ) 二 y ^ f log 1 / ⑷ 丨 ’ 字 . 

This function is called the Ronkin function of f. 

Theorem 3.1.2 (Ronkin-Passare-Rullgard [19],[21]). The function TV, : R2 

M is convex. Moreover, it is strictly convex over A{Zf) and linear over each compo-

nent ofM^\A{Zf). 

Nf is affine on each component of by the following two propositions: 

Proposition 3.1.3. The derivative of Nj with respect to Xj is the real part of 

( � _ 1 df Zj dzi ,�dz2 
巧工—(27r?;)2 Jlos-Ux) dzj f{z) Zi Z2 . 

Proof. Write the coordinates in polar coordinates z^ = Then for fixed Xk, 

dzk = izkdOk- We have 
'27r p27r 

{2'KifNf{x) = log|/(eM+而，访 浙 1 Ac/02. 
Jo Jo 

Differentiating with respect to rcj, we get 
r2iT n2n / f \ 

(27n : )2p � = Re A dÔ  
dxj Jo Jo 、彻J. i W 

• 
For X in a connected component ！F of this is a constant and was 

defined in [4] to be the order of the component T. The next proposition was 

proved, based on Residue formula, refer to [23]. 
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Proposition 3.1.4. Let x be a point in a connected component T of 'R^\A{Zf), 

then Vj is an integer. 

Proof. Consider for fixed 0k, k f j�the integral 

2m dzj f{z) 3 

By the residue formula this is an integer and it counts the number of zeros of the 

function Zj i—/(zi,22) minus the number of poles in the disk of the boundaries 

Zj\ = ê K Since it depends continuously on 6k, it is independent of them. The 

integral is equal to Vj because 

/ 1 df 1 \ 
{27ri)vj{x) = — —-j^dzi]de2. 

Jo ^27rz OZj l[z) J 

• 
Note that the fact that vj is constant over any connected component of the com-

plement implies that the partial derivatives of Nf in each such connected component 

are constant, thus Nf is affine there. 

Remark 3.1.1. Note that just the existence of a convex function Nf, which is 

strictly convex over A{Zf) and linear over each components of R^\A(Zf) implies 

that each component of is convex. 

The following two propositions relate amoebas and their Newton polygons. 

Proposition 3.1.5 ([4]). v = (t;i(a;),... a lattice point of the Newton 

polygon A of f , i.e. the convex hull of the element u of I for which a� + 0. 

Proof. The vector is in A if and only if for any vector u G Z^\{0}, 

{u,v) < max {u,Lj). 

Indeed, t; is in A if and only if for any line I passing through 0, its orthogonal 

projection on I belongs to the projection of A on I. By density we can assume that 

I has a rational slope. The vector u appearing here represents the slope of I, and 

the scalar product can be seen as the projection on I. 
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Claim: {u, v) is the number of zeroes minus the order of the poles at the origin of 

the one-variable Laurent polynomial u /((ca;)") inside the unit circle {|a;| = 1}， 

where c is any point of Log一i (re) and x being the point where v is computed. But 

this polynomial has top degree which equal to max {u,lj). Hence we are done. 
weA 

It remains to prove the claim. The numbers of zeroes minus the number of the 

poles of the function lj t-> f{{cLj)^) in the disk is given by the formula 

By a change of variable formula u h-> (oj广，the image of the circle {|a;| = 1} is 

then a loop in Log_i(a:)，homologous to the sum ui7i + 7x272, where 71 is the circle 

t !-»• (cie2冗*’C2)’ t e [0,1) (respectively for 7 2 ) . Hence 

dfiicur) = E^J d\og f{w) 
如 JH=i V J � 

= f I f T^d勺=27ri(u,v). 

• 
Proposition 3.1.6 ([4]). The map 

ind : R\A{Z f ) — A n Z 2 

X H (t;i(rc)’...，t;n⑷） 

sends two different connected components to two different points. 

Proof. Take any two points x and x in and let v = ind(a;) and v = 

ind(a:'). Let u G Z^\{0} such that x = x + ru for some r > 0. The claim in 

the last proposition implies that (li,v) and {w,v) are the number of zeros inside 

{|a;| = 1} of two polynomials u 1—> f{{cu)^) and u /((c'o;广)，where Log(c) = x 
r* • 

and Log(c') = x . We choose c such that — = e'""̂ ', i.e. they have the same 

argument. Hence (cu)^ = (e^'co;)". Thus {u, v) is the number of zeros oj f((aj,) 

inside the circle {|a;| = e”}. 

If V = V', this means that u 1—/((co;)") has no zeros in {1 < < e^}. Hence 

there is no points of the amoeba on the segment [x,x]. This implies that x and x 

are in the same component. • 
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Hence, each component of order v in is uniquely determined by v. 

Indeed, it is determined by the lattice points of the Newton polygon of f . 

Example 3.1.1. In example 1.1.1’ the order of the three complement components 

are (0,0), (1,0) and (0,1). 

We are now ready to define the spine of an amoeba. Recall that in Theorem 

3.1.2，Nf is piecewise linear on R'^\A{Zf) and convex in We then define a 

convex linear function N ^ by letting 

where T runs through all connected components of R^\A{Zf), and Â / : —̂  M is 

the extension of Nf\jr to by linearity. 

Definition 3.1.2 (Passare-Rullgard [19]). The spine S of an amoeba A(Zf) 

is the comer locus of i.e. the set of points in R^ which is not linear. 

Note that S C A{Zf) and that <S is a piecewise linear polyhedral cell complex. 

The following theorem shows that S is indeed a spine of A{Zf) in the topological 

sense. 

Theorem 3.1.7 (Passare-Rullgard [19],[23]). The spine of A(Zf) is a strong 

deformational retract of A{Zf). 

Thus each component of (i.e. each maximal domain where Nf" is linear) 

contains a unique component of M?\A{Zf). 

Example 3.1.2. An amoeba and its spine given by / = - 5 + + -22 + Z1Z2. 

� ^ m ^ 

-2 0 2 4 
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Example 3.1.3. The spine of an amoeba and the associated plane tropical curve 

are not always equal. Consider an amoeba given by 

f = 3zi-\- 3ziZ2 + 2zl + zl-\-2z2 + l = Szi + 3ziz2 + 2zl + {z2 + 1)^ 

The associated plane tropical curve is given by 

F = logs o a; e logs O a: o y e log2 o 0；®̂  e y®̂  © log2 o y © 0. 

The amoeba A{Zf) and the plane tropical curve is as shown below: 

"-3 - 2 - 1 0 1 2 

Since f has only a point of contact 2 with the line {zi = 0}，it leads to only one 

tentacle of the amoeba in the (—1,0)-direction. Then the spine of amoeba has only 

one edge in the (—1,0)-direction as the spine is contained in the amoeba. 

In [19] and [23], the non-obvious relation between the coefficients of f and the 

coefficients of the "tropical polynomial" Nf" is studied. 

Theorem 3.1.8. 

Nr {x) = max{Re<M/) + {v,x)}, 

where J is the subset of I of v for which there exists a connected component ！F” of 

order v, and 

^ , 1 r , f(z) dz\ dz2 ^ 
M f ) = 7 ^ 2 log 

(27r2)2 JLog-i(x) ^ 么 1 么2 

Remark 3.1.2. If I has no more than four points, and no three of these are collinear. 

Then 

Nr {x) = max (log|a ,̂| + {v,x)). 
J V£l 

In this case，the spines and that of the associated plane tropical curves coincides. 
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Example 3.1.4. Let f = l+zl+zl-6ziz2, then I = {(0,0), (3,0), (0,3), (1,1)} and 

the associated plane tropical curves are given by F = log 6Oa;Oy0OOa;®^©OOy®^©O. 

The amoeba, Newton subdivision and the associated plane tropical curves (i.e. the 

spine) are as shown below: 

"-3 - 2 - 1 0 1 2 3 

k - f 
By the graph of the associated plane tropical curve, the vertices of the spine can 

be computed explicitly, namely Pi = ( - log6,0) , P2 = (0, - log6) and P3 = 

(log6，log6). Note that the set for which the component has order (1，1) is empty, 

so the plane tropical curve has genus 1. 

Example 3.1.5. Consider 

f { z ) = /O + /l；^̂  + . • . + f m - l Z " ^ - ' + Z饥 

= ( 2 + al)…（2； + a„^)’ 

where \ai\ < • • • < |a 饥丨.Then A{Zf) = {log |ai|’...，log |a 爪丨}’ which is a discrete 

point set. Each bounded complement component of f is of the form (log |a丄 log |ay+i|), 

1 < V < m — 1, which is of order v. The other two unbounded components 

(—00, log \ai\) and (log |am|, + 0 0 ) are of order 0 and m, respectively. 
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Suppose a complement component of A{Zf) has order v and a; is a point inside 
that component. We have 

Mf) = ^ 
kog-\x) Z 

1 , (2； + a i )... (2； + â；) dz = log 
2冗《JLog-i� 么幻 ^ 

log(2; + (VK)---(2; + a ^ ) � 
Z饥 JLog-i(x) ^ 

� V 
� 

By Jensen's formula, (*) becomes 

log {z + aj)— = — log (z + aj)de = log\aj\. 

By Cauchy's theorem, we get 
m 

^v{f) = log dj = log (a时 1 …am). 

Since for any Laurent polynomial f, we have Nf{x) > ^max {Re ^v{f) + {f,a:)} 

with equality in the closure of A{Zf). If / is a polynomial in one variable, then 

E\A{Zf) is dense in E. Hence, 

Nf{x) = max {log I a奸 1 …a饥 I + � V ’ a:�} 
0<v<m 

=max {log |ai • •. a: + log |ci2 . . . . •., m:c + log 

Example 3.1.6. Next we consider polynomials in two variables of the form f{z)= 

aZiZ2Z1Z2, where a is an arbitrary complex constant. It can be shown that 

the amoeba of / is the set of points satisfying 

|a|4 - 2 |a|' e2工 1 + e * 町 - 2 |a|' - (2 - 8 |a| + 2 

_2g4xi+2x2 + ^4x2 一 2g2a:i+4x2 + g4xi+4a;2 < Q 

We now focus on the case when a is real. Then the amoeba depends on the sign of 

a. Suppose a < 0, the above inequality can be written as 
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(ea;i+:r2 - gXi _ gX2 一 _ gXi + gX2 + 

x(eA+们 + e^ — e町 + |a|)(eA+卵 + e町 + e巧-\a\) < 0. 

Note that each factor vanishes on the boundary of one of the complement component 

of the amoeba. Suppose a > 0, we have a similar factorization 

(e工 1+X2 一 gxi _ + — e ^ + e町-\a\) 

x ( e 町 + e^ - e 巧 - + gxi + gX2 + < Q. 

Note that the fourth factor is always positive while the first factor vanishes on the 

boundaries of two complement components, namely, those of order (0,0) and (1，1) 

if a < 1 and those of order (0’ 1) and (1,0) if a > 1. The remaining two factors 

define two curves, each of which constitutes part of the boundary of two different 

complement components. The curves intersect at their common point of inflection 

(log log 

The following shows the amoeba of f when a = —5，-1, 1 and 5 together with 

their spines and their Newton subdivisions. Note that the amoebas of f when 

a = —5 and 5 are different (respectively for a 二 —1 and 1)，but their spines are 

equal, which can also be deduced from Theorem 3.1.8. 

；̂ ^ I 
- 2 0 2 4 -2 0 2 1 -2 0 2 4 -2 0 2 4 

• ^ • • # 1 • ^ 

i— 1 i • • • i 
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3.2 Patchworking Method 

In this section, we describe the Patchworking method. The motivation comes from 

the graph of real algebraic curves on a logarithm paper, see [29]. A logarithm 

paper is a graph paper which the usual Cartesian coordinates are replaced by the 

logarithm scales. It corresponds to a change of coordinates u = log a; and v = logy. 

On a logarithm paper, real algebraic curves look like smooth broken lines which can 

be obtained from the limits of those curves. The corresponding deformation can be 

viewed as a quantization, in which the broken line is a classical object and the curves 

are quantum. This generalizes to a new connection between algebraic geometry and 

the geometry of polyhedra. 

Example 3.2.1. On a logarithm paper, the real curve y = a > 0 is given by 

V = log y = log a + /c log a; = log a + ku, which is a straight line. 

Example 3.2.2. Consider y = 1 x, then v = logy = log (1 + x) = log (1 + e^). 

When the graph is viewed from very far, it looks like the broken line v = max {0, u} 

with a smooth corner around the origin. The following shows the graph of i ; = 

log(l + e ” . 

U： 
^ 0 5 

3.2.1 Maslov's Dequantization 

In [28], Viro discovered a patchworking technique for construction of real alge-

braic hypersurface. Fix a convex lattice polyhedron A G M". Choose a function 

V : A n Z " —> M. The graph of ̂； is a discrete set of points in M"' x M. The overgraph is 

a family of parallel rays. Thus the convex hull of the overgraph is a semi-finite poly-

hedron A. The facets of A which project isomorphically to define a subdivision 
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of A into smaller convex lattice polyhedra A/-. 

Let F{z) = ^ CLjzj be a generic polynomial in the class of polynomial whose 
jeA 

Newton polyhedron is A. The truncation of F to Ak is F^^ = ^ ajzK The 
jeAfc 

patchworking polynomial f is defined by formula ft{z) = ^ ^ aji"��,之 G > 
3 

1 and j e W. 

Consider the hypersurface VAfc and VT in (C*)" defined by Fa^ and F^. If F has 

real coefficients then we denote EVa^ = Va, n (IT)" and RVt = 14 n (IT)". Viro's 

patchoworking theorem [28] then state that for large value of t the hypersurface MVt 

can be obtained from MVa^ by a certain patchworking procedure. The same also 

holds for amoebas of the hypersurface Vt and EVAfc- In fact the patchworking of 

hypersurfaces can be intercepted as the real version of patchworking of amoebas, 

see [13]. It was noted by Viro in [29] that patchworking is related to the so-called 

Maslov's dequantization of positive real numbers. 

Recall that a quantization of a semiring is a family of semirings Rh, h>0 

such that RO = R and RT ^ RS as long as > 0, but Rq is not isomorphic to RT. 

The semiring Rh with > 0 is called a quantized version of Rq. 

Maslov observed that the classical semiring M+ of real positive number is quan-

tized version of some other ring in this sense. Let Rh be the ring of positive number 

of quantized version of IR+. It is equipped with the usual multiplication and with 

the addition operation defined by 

{(z^+w^Y" for > 0 
for/i 二 0. 

Note that 
lim(z 去 + w^)'' = max{2;’w;}. 
/i—>0 

Thus this is a continuous family of arithmetic operations. 

The semiring Ri coincides with the standard semiring R+. We have the following 

isomorphism between E+ and Rh. for h > 0, 

^h Rh 

Z z^ 
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It can be checked that iph{z + w) = © <Ph(u)) and (ph{zw) = (ph{z)(ph{w). 

On the other hand the semiring Rq is not isomorphic to M+ since z z = z. 

Alternatively, we may define the dequantization deformation with the help of 

the logarithm. The logarithm log ,̂ t > 1 induces a semiring structure on E from 

M+, the map logt>i : 1R+ E is defined as follow: 

z ^tw = logt (f + t叨)and z(g)tw = z + w. 

Similarly we have z Qoo w = max {z,w}. Let be the resulting semiring. The 

following proposition shows that Rh and î J�^ are indeed isomorphic. 

Proposition 3.2.1. The map log : Rh —> , where t = e^, is an isomorphism. 

3.2.2 Patchworking Method 

As we seen in the previous section, the patchworking polynomial can be viewed 

as a deformation of the polynomial . We define a similar deformation with the 

help of Maslov's dequantization. Instead of deforming the coefficients, we keep the 

coefficients but deform the arithmetic operations. 

Choose any coefficients ajj G A. Let (jh ： — t > e, be a polynomial 

whose coefficients are a, i.e. 

t 

Let Logf : ( C T — R be defined as before. 

Proposition 3.2.2 (Viro [29]). The function ft = (logj-^ oLoĝ  : (E+)" M+ 

is a polynomial with respect to the standard arithmetic operations in 股 +， n a m e l y we 

have 

3 

This is a special case of the patchworking polynomial. The coefficients otj define 

the function v : A fl Z^ M. 

Suppose Vk C be an algebraic variety, its non-Archimedean amoeba is 

Ak = Val(Vic) C M?. Denote At = Logf(Vi). We have a uniform convergence if the 
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addition operation in 卯 to the addition operation in Observe that 

max {x, y} <x®ty = logt(力工 + t^) 

< max + logf 2. 

It can be generalized to the following lemma. 

Lemma 3.2.3. m8^{aj + jx} < (f)t{x) < + jx] + logN, where N is the 

number of lattice points in A . 

Recall that the Hausdorff metric of two sets A and B are defined to be 

dHausdorffi- ,̂ B) = Hiax {sup inf d{a, 6), sup inf d{a, 6)}. 
a£A b&B 

Theorem 3.2.4 (Mikhalkin [16], Rullgard [23]). The subset At C R^ tends in the 

Hausdroff metric to Ak when t oo, i.e. for any compact K' C M ,̂ 

l i m dHausdorff(A f l /i：'’ A j ^ A = 0 . 
t—*oo 

Proof. By lemma, At converges to a subset in Ak- Actually, by rewriting ajt"�z�二 

where Cj = v{j)-\-\og^ |aj|, the monomial induces a linear function cj -\-jx and 

the inequality Ck -i- kx < max{cj + jx} + loĝ  N, and cuts out a uniformly bounded 
j神 

neighborhood of Ak- It is because 

by the triangle inequality in Rt. It follows that 

v{k) kx < m8ix{v{j) + jx} + loĝ  N, where N = number of monomials in ft — 1. 

Thus lim At C Ak as Ak is the corner locus of Nf[x) = m ^ {v{j) jx}. 

Conversely, each complement component is given by 

maxlcfc + jx} + logf N < Ck-\- kx. 
j神 

This will contain in corresponding to the index k, so different complements 

of the set are in different components of • 



Chapter 4 

Mikhalkin's Correspondence 
Theorem 

In this chapter, we give the main theorem of this report. This theorem gives the 

invariant numbers which count the number of plane tropical curves through a number 

of points. It is an analogy to the algebraic case. In the first part, we give the main 

statement and count these numbers via lattice paths. In the second part, we sketch 

a proof of the main theorem, following [17], which is divided into two lemmas. 

4.1 Parameterized Plane Tropical Curves 

Following [17], we define parameterized plane tropical curves in the abstract way. 

Definition 4.1.1. Let f be a weighted finite graph and T = f\V, where V is the 

set of all 1-valent vertices. A proper map /i : F —> is called a parameterized 

plane tropical curve if it satisfied the following two conditions: 

• For every edge E CT, the restriction h\E is either an embedding or a constant 

map. The image h{E) is contained in a line I C such that the slope of I is 

rational. 

• For every vertex V G F, the balancing condition holds. 

Definition 4.1.2. Two parameterized plane tropical curves /i : F —> R^ and Ji : 

r' —> Q/pe equivalent if there exists a homeomorphism $ : F —> F' which respect 

the weights of the edges and such that h = h' o 电. 

41 
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Equivalent plane parameterized tropical curves are not distinguished. The image 

h{T) C M? is called the imparameterized plane tropical curve or just the plane 

tropical curve. 

Remark 4.1.1. The notion of plane tropical curve coincides with the notion of 

(p, g)-webs introduced by Aharony, Hanany and Kol in [1 • 

Definition 4.1.3. A plane tropical curve /i : F —> zs called reducible if T is 

disconnected , and is called reducible if it can be presented as a union of two distinct 

plane tropical curves. 

Definition 4.1.4. The genus of a parameterized plane tropical curve F —>• is 

dim i/i(r)—dim Ho{T)-\-l. In particular, for irreducible parameterized plane tropical 

curves the genus is the first Betti number ofT. The genus of a plane tropical curve 

r is the minimum genus among all parameterizations ofT. 

Remark 4.1.2. Note that the genus can be negative in Definition 4.1.4. 

Remark 4.1.3. If F is an embedded 3-valent graph, then the parameterization is 

unique. However, in general, there might be several parameterizations of different 

genus and taking the minimum value is essential. 

To begin the next section, we need a larger class of plane tropical curves whose 

behavior is as simple as that of smooth curves. 

Definition 4.1.5. A parameterized plane tropical curve h :T -^R^ is called simple 

if it satisfies all of the following conditions. 

• The graph is 3-valent. 

• The map h is an immersion. 

• For any y G M ,̂ the inverse image consists of at most two points. 

• If a,b e T, a ^ b, are such that h{a) = h{b), then either a nor b can be a 

vertex of T. 

Definition 4.1.6. A plane tropical curve is called simple if it admits a simple 

parameterization. 
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The next proposition tells us that simple plane tropical curves can be easily 

identified. 

Proposition 4.1.1. A plane tropical curve is simple if and only if it is the variety 

of a tropical polynomial F such that the Newton subdivision of F is a subdivision 

into triangles and parallelograms. 

The next definition concerns the tropical general positions of points in E?, we 

will use it in the next section. 

Definition 4.1.7. Points Pi,..., Pn G are said to be in tropical general po-

sition if for any parameterized plane tropical curve h :T ^MP' of genus g and with 

X ends such that k > g x - I and pi,. • •，p„ G h{T), the following conditions hold. 

• The curve /i : F —^ is simple. 

• Inverse images ..., h~^{pn) are disjoint from the vertices ofV. 

• k = g X — 1. 

Example 4.1.1. Two distinct points pi,p2 G are in tropical general position if 

and only if the slope of the line in E^ passing through pi and p2 is irrational. 

4.2 Statement of the Main Theorem 

We set up an enumerative problem in (C*)^ first. Fix a number g e Z>o and a 

convex polygon A C M^ Let s = n !}�. Let Q = {仍’ •. .,qs+g-i} C (C*)2 

be a configuration of s g — 1 points in general position. 

Definition 4.2.1. Suppose a complex algebraic curve C C (C*)̂  is defined by a 

polynomial f : (C*)^ — C with complex coefficients. The degree of C is defined 

to be the Newton polygon of f. 

Definition 4.2.2. The mmi&er iV如(仏 A) is defined to be the number of irreducible 

complex algebraic curves of genus g and degree A passing through Q. Similarly we 

define the number N{g, A) be the number of complex algebraic curves of genus g and 

degree A passing through Q. 
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Proposition 4.2.1. For a generic choice of Q, the numbers iV如(仏 A) and N{g, A) 

are finite and do not depend on Q. 

This proposition is well-known, see [2]. 

To set up a similar problem in tropical case. Let us define the degree of a plane 

tropical curve. 

Definition 4.2.3. Let A be the Newton polygon of f defining a plane tropical curve 

r as in Theorem 1.4-1. Then A is called the degree of C. 

Remark 4.2.1. Let I = #(IntA n Z^). Then the number s counts the number of 

unbounded edges of the curve if edges are counted with multiplicities. If A = A^, 

the number I is the genus of a smooth plane tropical curve of degree d. 

To set up an enumerative problem in E ,̂ we fix the degree A C R^ with s = 

#(3AnZ2) ’ and the genus g G Z>o. Consider a configuration V = {pi , . . . C 

M? oi s-hg — I points in R^ in tropical general position. We would like to count the 

number of plane tropical curves passing through V with certain multiplicities. 

For a plane tropical curve P passing through generic points, it is a 3-valence 

graph. We define the multiplicity of a 3-valent vertex as follow: 

Definition 4.2.4. For each vertex V G r，its multiplicity is defined to be 

m{V) = W1W2 |det (wi，W2)| ’ 

where wi,w2,w3 are weights of the edges adjacent to V and are the prim-

itive integral vectors in the directions of the edges. 

Remark 4.2.2. The above definition is well-defined because of the balancing con-3 

dition ^ ^ WiUi = 0. We have 
i=l 

W1W2 |det (wi’ti2)| = wi |det {ui,W2U2)\ 

—wi |det {ui^wiui + U/3W3) 

二 |det (wijiis) 

=W2W3 |det (1^2,̂ 3)1. 

Note that it also coincides with Definition 2.2.1. 
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Definition 4.2.5. The multiplicity of a plane tropical curve F； m(T) is 

defined to be the product of the multiplicities of all the 3-valent vertices ofT, i.e. 

m(r) = n m ( n 
ver'o 

where Pq is the set of all 3-valence vertices. 

Example 4.2.1. Let F be a plane tropical curve with vertices Vi = (1,1) and 

V2 = (2,2) with the directions of unbounded edges as follow: 

(0,1) t 
Z(2，l) 

( -1 ,0) 

予 1 
/ ( - I , - 2 ) 

Note that the bounded edge has weight 2，so 771(̂ 1) = m(V2) 二 2 and m{T) = 4. 

Definition 4.2.6. We define the number A) to be the number of irreducible 

plane tropical curves of degree A and genus g passing through V, counted with multi-

plicities. Similarly we define the number Ntropig, A) be the number of plane tropical 

curves of degree A and genus g passing through V, counted with multiplicities. 

Proposition 4.2.2. The numbers N二(g,A) and Ntropig： A) are finite and do not 

depend on the choice ofV. 

Example 4.2.2. Note that NTROP{0,AI) = 1 since there is only one combinational 

type of plane tropical curves dual to Ai. Different choices of two generic points have 

the following cases. 

Y Y Y 
We can now state the main theorem. 

Theorem 4.2.3 (Mikhalkin's Correspondence Theorem). For any generic 

choice V, we have = NiZpig, A) and N[g,A) 二 Ntrop(g,补 Further-

more, there exists a configuration Q C (C*)^ of s g — I points in tropical general 
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position such that for every tropical curve T of genus g and degree A passing through 

V, we have m (r ) distinct complex curves of genus g and degree A passing through 

Q. These curves are distinct for distinct T and are irreducible ifV is irreducible. 

Remark 4.2.3. In [12], N{g, Ad) is known as the Gromov-Witten invariant of CP .̂ 

When ff = 0, a recursive relation was given by Kontsevich's formula [5], which came 

from the associativity of the quantum cohomology. 

di+d2=d \ z \ / 
di,d2>0 

Example 4.2.3. By Kontsevich's formula, N3 = 12. There are 12 plane tropical 

curves passing through 8 generic points. An example is as shown below. Note that 

one of the curves have multiplicity 4 since the bold edge has multiplicity 2. 

^ ^ ^ 

I V / W/ 
T T T T T T T ' 

4.3 Lattice Paths 

In this section, we introduce a method to count the number Ntrop{9, A) in the 

previous section via lattice paths. Lattice paths are paths in the Newton polygons 

which can be found by a certain recursive relation. Refer to [14] for a short review. 
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Definition 4.3.1. A path 7 : [0，n] —>• E^ is called a lattice path if 7|(j-ij], j = 

1, . . . is an affine linear map and G 1} for any j = 0 , . . . ,n . 

Definition 4.3.2. Let X : R^ R be a fixed linear map which the kernel of X has 

irrational slope. A lattice path 7 is called X-increasing if Xoy is strictly increasing. 

Example 4.3.1. Suppose X = x — ey, e > 0 is & small irrational number. Let p and 

q be the points where A2 attains its minimum and maximum respectively. Then 

6+ : [0,2] — 8^2 and : [0,4] dA2 divide ^Aa into 2 入 - i n c r e a s i n g paths. The 

image of of the path (5+ is drawn as a line while that of the path 5- is drawn as a 

dotted line. 

i - - ^ Q 

We are going to define the multiplicity of a A-increasing path. 

Definition 4.3.3 (Multiplicity of a A-increasing lattice path). Let 7 : [0，n] 

A be a X-increasing path. Suppose 7 ( 0 ) = p and 7 ( 7 1 ) = q, where X is a fixed linear 

map which the kernel of A has irrational slope, and p and q are points where 入 attains 

its minimum and maximum in A respectively. Define fJi+ij) and recursively 

as follow: 

� 士 ( 知 ） = 1 . 

(2) If J ^ <5士，let k+ be the smallest number such that 7 takes a left turn (resp. 

k- for right turn). If no such k± exists, / / 士 = 0. 

(3) Define and as follow: 

7 l O - ) = I 偏 〜 、 

, � , . � 7(j)， j7^ 於士’ 
and 7 土 ⑴ = 

I 7(fc± - 1) + + 1) - i = 
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八 FN 
八 I , . . 

� (\ • 4 ' > 

Let T be the triangle with vertices 7 ( / c 士 - i )， 7 ( / c 士 ) and 7 ( f c 土 + i ) . 

Set M士(oO = 2 X Area(T) x + "土(tI)-

If J± do not map to A , Ai士(7^) = 0. 

(4) Finally, we define the path multiplicity of a X-increasing path 7 to be 

" (7 ) =M+(7)M-(7)-

Remark 4.3.1. /^i is well-defined since 7二 and 7+ bounded less area with re-

spectively for 7L and 7 二 with 5-. 

Example 4.3.2. Let 7 : [0,8] — A3 be a 入 - i n c r e a s i n g lattice path as follow. We 

would like to compute the path multiplicity of 7 . 

( 0 , 3 - t ) if 0 < t < 2, 

( t - l , t - l ) if 2 < t < 3, 

( 1 , 5 - t ) if 3 < t < 5, 
• r o 1 = 

(2’7 —t) if 6 < t < 7, 
7 

( t - 5 , 0 ) if 7 < t < 8. 
V 

occurs at (0，1). We have 7+ and 7+ as shown below. Since 7 + does not map to 

A3’ /i+(7+) = 0. Hence /i+(7) = /i+(7+) = M+((7+)+) = 1. 

N H N 
； ： ^ / K ： 
• • • • ̂  I • • • 0 • • • • * 0 * • • * • • • • • 9 * • • • • 

7+ 7+ (7+)+ 
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Similarly, occurs at ( 1 , 2 ) . We have 7二 and 7二 as shown below. By a similar 

calculation, ^ - ( 7 ) = /x-(7'_) + 一 ( 7 二 ） = 2 . 

• • 

o o Ha 
/ � 

7 - 7 -
Finally, fxiy) = = 2. 
Example 4.3.3. The following shows all A-increasing paths in 8 steps in A3 with 

X = X - ey and their path multiplicities. This shows that Npath(fi, A3) == 12. 
• • • • f 

. • . • • 

• . . • • 

A . '' A A - A - 小 . . • 
• • • • — ^ i r • • • • — — . • • • — • • — • •• • • • — • — • 

fi = 2 /x = 3 11 = 4： 11 = 1 = 2 

Definition 4.3.4. Let s = n !?�. Npathig, d) is defined to be the number of 

\-increasing lattice paths 7 : [0, s + - 1] —> A with 7 ( 0 ) = p and 7(s -{- g - I) = q, 

counted with path multiplicity. 

Proposition 4.3.1. Npath{g, A) is independent of the choice of X. 

Example 4.3.4. Let 入 = y — (1 + e:c) with a small e � 0 . The following shows all 

A-increasing lattice paths and their path multiplicities with 8 steps in A3. This also 

shows that iVpat"(仏么3) = 12. 

T. T- t. t. T. 

: : . . . . k I " - - I / - - - I / - - - , 

/X = 3 = 2 p = 4 /i = 1 M = 2 

The follow theorem is an efficient way to compute NTROJ>�g, A) and respectively 
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Theorem 4.3.2. The number Ntropig, A) is equal to Npath(g, A), counted with path 

multiplicity. Furthermore, there exists a configuration V C B? of s + g - 1 points 

in general position such that for each X-increasing lattice path corresponds to some 

plane tropical curves of genus g and degree A passing through V of total multiplicity 

fj'i'y). These curves are distinct for distinct paths. 

The above theorem can be intercepted as follow. Let A C M̂  be a convex 

polygon with integer vertices. Suppose 

L=[f= [ aj.z^w'^ C {C*f] 
j,fc€AnZ2 

as before. Then L is a vector space with linear structure. Let the Newton polygon of 

/ be the convex hull of { ( j , /c) € A n Z � | ajk + 0}. Let PL be the complex projective 

space of dimension # ( A A Z^) — 1. 

Recall a smooth generic curve in L is of genus I = #(IntAnZ2). Let C G PL and 
n 

C = Ci U C2 U . . . U Cn, where Cj are irreducible. Define g{C) = ^g{Cj) + 1 一 n, 
3=1 

note that g{C) may be negative. 

Note that curves of genus I - 5 with Newton polygon A form a subvariety X);， 

it is called a Severi variety. Let ^ ^ be the projective closure of Yll- Define iV(A，5) 

to be the degree of (m — 5)-dimensional subvariety Ŷ ^ in L, where degree is the 

intersection number with projective space of codimension m — 6. 

We have the following interception. Let 21’...，ZmS ^ (C*)2，then N{A, is the 

number of algebraic curves of Newton polygon A and genus I - 5 passing through 

, • . . , Zfjx—5-

Another way to look at it is the following. Consider the compactification of 

(C*)2，then A induces a compact toric surface CTA. Recall that P^ can be given by 

{|2i|2 + \Z2\̂  + |23|3 = 1} identified by the C/(l)-action ( 2 1 , 2 2 , 2 : 3 ) � H 

we write (a;,y, z) = ’ \z2\^，l^sP). The toric base is given by 2； = 1-x-y. Then 

iV(A, 6) is the number of holomorphic curves C C CTa such that 2；1’ •. •，Zm-s ^ 0， 

with homology class [C] Poincare dual to ci{H), where H is the holomorphic linear 

bundle over CTa-

Now, we can restate Theorem 4.3.2 as follow. 
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Theorem 4.3.3. N{A, 6) is the number of X-increasing lattice paths 7 : [0 ,m—— 

A connecting p and q. 

Remark 4.3.2. Let A 二 Ad, then CTa 二 P2. We have 

爪 二 雜 门 约 _ 1 = ( … ) ( " + 2 ) - i = j l ± j j ， 
2 2 

and 3d-\-g - 1 = 3d+ 丄 ) - 6- l = m-5. 
V 2 Y 

4.4 Complex Tropical Curves 

To prove Mikhalkin's Correspondence Theorem, instead of considering the plane 

tropical curves themselves, we lift the curves from to (C*)^ and consider complex 

tropical curves. 

Recall the shrinking of amoebas is the map (z,w) h (log^ |z|’logt We now 

shrink the curves in (C*)^ and apply the Log map, this induces a new complex 

structure on (C*)^. 

Definition 4.4.1. Let t > I be real number. Define 

Ht ： (C*)2 — (C*)2 

[z.w) ( W 由 | ^ ， M 击 1 ^ ) . 

A Jt-holomorphic curve Vt is the image Vt = Ht{V) of a holomorphic curve V. 

A Jt-holomorphic curve Vt is called irreducible if its preimage V is irreducible, and 

reducible else. 

We can also define Joo-holomorphic curve algebraically over a non-Archimedean 

field. Let K be the field of Puiseux series. The multiplicative homomorphism 

val : K* -^R can be complexified to u : K* C* ^R x S^ hy setting 

Applying this map coordinatewise, we get the map 

M/ : {K*f — X (51)2 ^ � 



4.4. Complex Tropical Curves 52 

Applying the map val coordinatewise, we get the map Val : — Val = 

Log o W. The image of an algebraic curve Vk under W turns out to be a Jqo-

holomorphic curve. 

Observe that 

Logo Ht�z,w) = Logd^l^ 

= ， = (logf |2;|,logi M ) . 

工 y 
So Ht corresponds to a logt-contraction {x^y) H ( J - ^ , J - ^ ) under Log. 

Let Vk be a sequence of Jf .̂-holomorphic curves, where tk ^ oo as k ^ oo. 

Assume the sequence converges in the Hausdorff metric to VOQ. Then Voo is called a 

complex tropical curve. There are other equivalent definitions, refer to [17 . 
Definition 4.4.2. Let Voo C (C*) .̂ The following conditions are equivalent 

• Voo = ^{Vk), where Vk C (K*)^ is an algebraic curve. 

• Voo the limit when k — oo in the Hausdorff metric of a sequence of Jt^-

holomorphic curves Vt^ with lim t^ = oo. 
fc—>oo 

Proposition 4.4.1. Let = W(Vk), where Vk C (K*)^ is an algebraic curve 

with the Newton polygon A . Then Log(Voo) C M̂  is a graph. Furthermore, it is 

possible to equip the edges of Log(Voo) with natural weight so that the result is a 

plane tropical curve of degree A in M .̂ 

This proposition follows from Kapranov's Theorem [3 . 

Definition 4.4.3. We say that a complex tropical curve Voo with a choice of natural 

weights for the edges of T = Log(Voo) has degree A if these weights turn T to he a 

plane tropical curve of degree A . 

Definition 4.4.4. A complex tropical curve VQQ C (C*)^ is said to have genus g 

if Voo is the limit (in the sense of the Hausdorff metric in (C*)2�of a sequence of 

Jt^-holomorphic curves in (C*)^ with t̂  oo of genus g and cannot be presented as 

a limit of a sequence of Jt�holomorphic curves of smaller genus. 

We start by having an elementary enumerative problem in (C*)^. 
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Proposition 4.4.2. Let qi, q) be two points in tropical general •position such that 

Pi = Log(仏)• Let A be a lattice polygon. Then there is exactly a plane tropical curve 

dual to A and passing through pi and p2. Let the two edges that passing through pi 

and p2 are of weight wi and W2 respectively. Then there are ^ 乂 Area(A) distinct 
'W1W2 

rational complex tropical curve that passing through qi and q). 

Example 4.4.1. The area of the Newton polygon A is 3. The weights of the two 

edges passing through pi = Log(qi) are 2 and 1 respectively. So the proposition 

claims that there are 3 rational complex tropical curve passing through qi that 

project to this plane tropical curve under Log. 

/J v^ 
A 

To state the next proposition, we define the edge multiplicity of a complex trop-

ical curve. 

Definition 4.4.5. We define the edge multiplicity fiedgeiJ^^V) of a plane tropical 

curve T D V = Log(Q) to be the product of the weights of all the edges of the 

parameterizing plane tropical curve F C that are disjoint from V times the product 

of the squares of the weights of all the edges ofT that are not disjoint from V. 

Example 4.4.2. Let V = {^1,^2,^3}- The edge multiplicity of the following plane 

tropical curve is 4. 

Proposition 4.4.3. Let T be one of the plane tropical curves passing through V. 

Then there are complex tropical curves in (C*)^ of genus g and degree 

A such that they project to T and pass via Q. 
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4.5 Sketch Proof of the Main Theorem 

We will give a sketch proof in this section. We first have the following proposition. 

Proposition 4.5.1. For almost all t > 1, there are N(g, A) Jt-holomorphic curves 

of genus g and degree A through a fixed configuration Q. 

The following two lemmas are important to complete the proof. 

Lemma 4.5.2 (Lemma 1). For any e > 0, there exists a T > 1 such that if 

t > T and V is a Jt-holomorphic curve of genus g, degree A and passing through 

Q, then its amoeba Log(\^) is contained in the e-neighborhood N双j) ofTj for some 

j = 1,…，m. 

Lemma 4.5.3 (Lemma 2). For a sufficiently small c > 0 and a sufficiently large 

t > 0, the multiplicity m{rj) of each Tj is equal to the number of the Jt-holomorphic 

curves V of genus g and degree A passing through Q and such that Log(V) is 

contained in NeiTj). Furthermore, if Tj is irreducible, then any Jt-holomorphic 

curve V of genus g and degree A passing through Q with Log(V )̂ c NJJPj) is 

irreducible while if Fj is reducible, then any such Vt is reducible. 

We are going to give a sketch proof of Lemma 4.5.2 and Lemma 4.5.3. Using 

these two lemmas, we now give a proof of the main theorem. 

Proof of the Mikhalkin's Correspondence Theorem. By Proposition 4.5.1, 

there are N{g, A) Jf-holomorphic curves of genus g and degree A passing through 

Q. By Lemma 4.5.2’ the amoebas of all such Jrholomorphic curves lie in an e-

neighborhood of one of the plane tropical curves passing through P. By Lemma 

4.5.3, there are m(rj) Jf-holomorphic curves lie in the e-neighborhood of Fj for each 

Fj. Hence the number N(g, A) is equal to Ntropig, counted with the multiplic-

ity m(r). Now the last statement of the main theorem follows as any irreducible 

Jf-holomorphic curve project to an irreducible plane tropical curve. • 
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4.5.1 Proof of Lemma 1 

To prove Lemma 4.5.2, recall that if a holomorphic curve V C (C*)^ is given by 

the polynomial /(^i,2^2) = ^ then its tropicalization is given by the 

tropical polynomial 

F�r°P(a;i，rc2) = max [ j x i + kx2 + log |a么知|}. 

The amoeba Log(K) gets thinner with larger t by the following proposition. 

Proposition 4.5.4. The amoeba Log(y) is contained in the 5-neighborhood ofV— 

(with respect to the Euclidean metric in M^j, where 6 = log ( # ( A A I?) — 1). 

Proof. Suppose (yi，y2) is a point not in the (^-neighborhood of \/计。p. Then there 

exists k') such that 

h i + 於'2/2 + l o g I > jyi + ky2 + l o g | a 么 + 6 f o r a n y ( j , k) ( / ， k ' ) . 

Let {zuZ2) eV C (C*)2 such that Log(2;i’2:2) = (yi’y2). Since ^ aj’k44 = 0 

and by triangle's inequality, we have 

( 俯 ( " ' ） 

Apply the map log to both sides, then 

j'yi + k'y2 + log |ay，&' I = log aj^yzj 4 

< log [ 
( 俯 ( " ' ） 

< log ( ( # ( A n a } � - 1) X m ^ ) 

=6+ max {jyi + ky2 + log la -̂fcl}. 
( 雜 ( / ’ f c ) 

This is a contradiction. • 

Corollary 4.5.5. The amoeba Log(14) of a Jt-holomorphic curve Vt = Ht{V) is 

contained in the 6-neighborhood of some plane tropical curves，where 
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Proposition 4.5.6. There is a subsequence 14�, o; G N, such that the sets Ak^ C 

converge in the Hausdorff metric in to some tropical curves Fj. 

Idea of Proof of Lemma 4.5.2. Let Vk^ be a sequence of curves of genus g and 

degree A passing through Q such that 14 is a Jt^-holomorphic curve, where tk — oo 

as k oo. Let Ak be the amoeba Log(V)fc) and Sk be the spine of amoeba LogVk-

It can be shown that the corresponding sequence of spines Sk̂  is a union of 

subsequences, each of which consists either of finitely many terms, or converges 

to one of the plane tropical curves l y By Corollary 4.5.5, the spines Sk and the 

amoebas Ak converge. Also the limiting amoeba is in the (^-neighborhood of another 

plane tropical curve, which is the tropicalization of 14. In particular, this means 

that its thickness cannot be bigger than 25. The number 5 depends on tk and 

S = logt“#(A nZ2) - 1) for Jf^-holomorphic curves. As tk oo when /c —>• oo, the 

thickness of the amoebas Ak gets smaller for larger k. In particular, A^ is contained 

in a small neighborhood of Tj. 

Note that a spine Sk which is contained in the sequence that converges to Tj 

can have more edges than Fj, but these edges vanish in the limit. All other edges of 

Sk tend to a parallel edge of l y It can be shown that, based on Proposition 4.5.6， 

there is a small value 5{tk) depending on tk such that all edges of the spine Sk are 

in a ^(^fc)-neighborhood of the corresponding edge of Since the thickness of the 

amoeba Â . is smaller than S = bg^知(#(A n ! ? � - 1), we can conclude that Ak is 

contained in a 6{tk) + 2(5-neighborhood of 1). • 

4.5.2 Proof of Lemma 2 

Idea of Proof of Lemma 4.5.3. By Proposition 4.4.3, it remains to show that 

there are fiedgei^, V�J<-holomorphic curves of genus g and degree A passing through 

Q in the neighborhood of each complex tropical curve which map to C under Log. 

The main idea is to prove this statement separately for each polygon in the 

Newton subdivision of A dual to r, and then "glue" the Jrholomorphic curve 

corresponding to each polygon using the Patchworking method. 

We can think of F given by the tropical polynomial F = max {aj + hjX + Cjp}. 

Now let Voo be one of the complex tropical curves which maps to T under Log. 
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Consider 

and assume Vt is a Jrholomorphic curve in the neighborhood of Ko. Then Vt = V̂  

can be presented as = = 0}) with the set of the coefficients ( has to 

satisfy a condition given by aj. 

The aim is then to count those Jf-holomorphic curves in the neighborhood 

of Voo which are of genus g, degree A and pass via Q. 口 

Cover M? with open sets U{A') corresponding to the polygons A' in the Newton 

subdivisions in the following way: 

• If A' is a 2-polygon, then it is dual to a point p^' G F. We choose U{A') be 

a small open disc centered at p^'. 

• If A' is an edge, then it is dual to an edge e^/ C F connecting PauPAs ^ F, 

where Ai , A2 are two 2-polygons adjacent to e^'. We choose U{A') to be a 

small regular open neighborhood of e ^ / \ ( [ / ( A i ) U C/ (A2) ) . 

• Now r is a deformational retract of U = U[A'), there is a bijection 

between the components of and the vertices of the Newton subdivision 

of r. We choose U{A') to be a small open neighborhood of the components of 

corresponding to A' if A' is in the vertices of the Newton subdivision 

of r. 

Proposition 4.5.7. Suppose that C eV, Q C and t is large. The curve is 

a curve of genus g if and only if all the following conditions hold. 

• If a' is a parallelogram, with vertices ko, ki, /c2, k^ G 1}, /C3 —於2 = ki — ko, then 

Vf n Log�i(C/(A')) is a union of two (not necessarily connected) curves, one 

in a small neighborhood of a complete tropical curve with the Newton polygon 

ko, ki] and one in a small neighborhood of a complex tropical curve with the 

Newton polygon [/c2, k^ . 

• If a ' is an edge, then Vt A Log� i (t / (A' ) ) is homeomorphic to an immersed 

annulus (and, therefore, connected). 
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• If a ' is a triangle, then Vt n Log� i(/7(A')) has genus 0. 

This proposition takes care about the conditions of curves of genus g, and the 

next proposition is to prove the last statement of Lemma 4.5.3. 

Corollary 4.5.8. If a curve T = Tj is irreducible, then any Jt-holomorphic curve 

V of genus g and degree A with large t passing through Q with Log(y) C N^iXj) is 

irreducible while if Tj is reducible, then any such curve V is reducible. 

We state the following three lemmas. 

If r C is a plane tropical curve passing through V, then we can mark the k 

edges of the Newton subdivision of F dual to ... ,pk. Let H c A be the union of 

the marked k edges. 

Lemma 4.5.9. Let [k',k"] be the edge ofE and let q G (C*)^ be any point. For any 

choice of bj € C, j G [/c', there exists a unique choice of h^n such that q is 

a point of 

Lemma 4.5.10. Let A' C be a parallelogram with vertices ko, ki, h^, k^ G 1}, 

ki - ko = ks - k2. For any choice bj e C*, j G [ko, /ci] U [ko, 2̂]； there exists a unique 

choice of coefficients {bj}, j G (A' n Z2)\([/co,/ci] U [A;o，Â 2]), such that the curve 

[z e in' I ^ bjẑ  = 0} 
jeA'nZ2 

is a union of two curves with Newton polygons [/co, 1̂] and [/cq, /C2], respectively. 

Lemma 4.5.11. Let A' C M̂  6e a triangle with vertices ko, ki, k] G . For any 

choice bko, bk” ^ C^； there exists 2 x Area{A') distinct choice of coefficients {6^} 

such that 

= (c*)21 [ bjz' = 0} 
jGA'nZ2 

is a rational curve if degree A' with three ends at infinity. 

Now, Lemma 4.5.9, 4.5.10 and 4.5.11 count the number of suitable ( for each 

polygon a ' of the Newton subdivision in A, i.e. it satisfies the conditions of Propo-

sition 4.5.7 and pass through Q. In other words, these three lemmas count the 
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number of suitable coefficients ( for each polygon separately, and the glued curve 

Vt̂  is a suitable curve. 

It can be shown that there exists an order on the polygons A' such that we 

choose the suitable� for each A' separately. To show how many choices are there 

to choose the new coefficients such that they are compatible to the old coefficients. 

We have the following proposition, the above three lemmas are needed to prove it. 

Proposition 4.5.12. Suppose that t is large and ( E V is chosen compatible with 
k 

A'i ,..., There exists //'(A^) choices of (' e V with the following proper-
U=1 

ties. 

• The parameter is compatible with A'l，...，A'^^—i. 

• We have=Q if j G G � u > k. 
• Vt^ C i V ( V o o ) . 

Hence when the Newton subdivision does not have multiple edges, i.e. no edges 

of weight greater than 1, we have proven that there is fĴ edgeî ^V) Jrholomorphic 

curves of genus g�degree A and pass through Q in the neighborhood of each complex 

tropical curve which map to r. 

When there is multiple edges, we need to show that the choices of coefficients ( of 

A' is compatible with the definition of edge multiplicities. It should also guarantee 

the complex tropical curve is of genus g and with the right number. This proved 

Lemma 4.5.3. 
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