
A Middleware Framework for Secure Mobile Grid Services

WONG, Sze Wing

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

©The Chinese University of Hong Kong

October 2007

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or whole of the materials in the thesis in a proposed

publication must seek copyright release from the Dean of the Graduate School.

13 j i |

Thesis/Assessment Committee

Professor LEE Moon Chuen (Chair)

Professor NG Kam Wing (Thesis Supervisor)

Professor WONG Man Hon (Committee Member)

Professor HUANG Linpeng (External Examiner)

Abstract

A Grid is a set of resources distributed over wide-area networks that can support

large-scale distributed applications. Regarding to current grid technologies, service

providers can only provide stationary services which have no mobility during

execution. To complement the deficiency of static Grid Services, the concept of

Mobile Grid Services is proposed. Mobile Grid Services, the extension of the

original static Grid services, are characterized by the ability of moving from nodes to

nodes during execution. W e can coordinate both services and resources by this kind

of service mobility and maximize the resource usages of grids. This research aims to

develop a middleware framework that supports Mobile Grid Services in a secure

manner. By combining an existing mobile agent system (JADE) and a generic grid

system toolkit (Globus), the Mobile Grid Service framework is constructed. The

Mobile Grid Services are realized as Globus grid services with JADE mobile agent

support. To support service development in the Mobile Grid Services middleware

framework, an application programming interface called M G S API is implemented.

The API consisting of the AgentManager class, Task Agent template, configurable

Monitor Agent and Resource Information Service is used to provide both an easy and

flexible environment for Mobile Grid Services development. General security

mechanisms including authentication, authorization, agent permission, message

i

ii

integrity and confidentiality are provided in the framework. To protect service agents

from malicious hosts, an agent protection mechanism employing execution tracing is

particularly added. In this thesis, the details of the Mobile Grid Service framework as

well as the M G S API with the security support will be presented. Some experiments

are conducted to examine the performance of the Mobile Grid Services.

Experimental results show that Mobile Grid Services can relieve the overloading

problem with reasonable overall overheads.

論文摘要

網格是一群分佈在廣域網絡的資源，它可以支援大規模分佈式應用程序。就當

前網格技術而論，服務供應商只能提供在執行中沒有流動性的固定式服務。「流

動式網格服務」的槪念爲補充靜態網格服務的不足而被提議出來。「流動網格服

務」是原來的靜態網格服務之弓丨伸，它的特點是能夠在執行中在節點之間移動。

我們可以使用這種服務協調網格的服務和資源，達至最大限度的資源使用。這

項硏究的目的是建立一個能夠以安全方式支援「流動式網格服務」的中介軟體

架構。「流動式網格服務架構」的構建是通過結合一個現有的行動代理程式系統

(JADE)和一個通用的網格系統工具庫(Globus)。「流動式網格服務」實現爲一種

加上行動代理程式支援的Globus網格服務。一個名爲MGS API的應用程式編

寫介面爲支援「流動式網格服務架構」上的服務開發而被編寫出來°這個應用

程式編寫介面包括「代理程式總管」、「任務代理程式模板」、「可更改配置的監

控代理程式」及「資源信息服務」，爲「流動式網格服務」的開發提供了一個方

便和靈活的環境。此架構提供一般的安全機制包括認證、授權、代理許可、信

息完整性和保密規定。爲保障服務內的代理程式免受惡意主機攻擊’ 一個採用

執行追蹤的代理程式保護機制特別加添到此架構之中。「流動式網格服務架構」

以及擁有安全性支援的MGS API介面的細節將在這份論文中介紹。透過一些爲

評估「流動式網格服務」的性能而進行的實驗，實驗結果表示「流動式網格服

務」可以減輕超載問題，而整體費用是可以接受的。

iii

Acknowledgements

I would like to thank m y research supervisor, Professor N G Kam-Wing, who has

provided numerous valuable guidelines and suggestions to me throughout my master

of philosophy programme. The work described in this paper was partially supported

by a grant from the Research Grants Council of the Hong Kong Special

Administrative Region (Project no. CUHK4220/04E).

iv

Contents

Abstract i

論文摘要 m

Acknowledgements iv

1 Introduction 1

1.1 Contributions of this thesis 3

1.2 Thesis structure 4

2 Background 6

2.1 Web Services 6

2.2 Grid Computing 8

2.2.1 Open Grid Services Architecture (OGSA) 9

2.2.2 Grid Services 9

2.3 Globus Toolkit 10

2.3.1 Components of Globus Toolkit 4 11

2.3.2 Grid Security Infrastructure (GSI) 13

2.4 Mobile Agent 13

2.4.1 Foundation for Intelligent Physical Agents (FIPA) 14

2.5 Java Agent Development Framework (JADE) 15

2.5.1 JADE-S . 17

V

vi

3 Research Issues in Mobile Grid Services 18

3.1 Mobile Grid Services 18

3.2 Service Migration 20

3.2.1 Using Mobile Agent with Weak Mobility 20

3.2.2 Using Mobile Agent with Strong Mobility 21

3.2.3 Using Snapshots 22

3.2.4 Summary 23

3.3 Service Sharing and Discovery 24

3.3.1 Centralized Model 24

3.3.2 Division into clusters 25

3.3.3 Using Web Services Protocols 26

3.3.4 Summary 27

3.4 Security 28

3.4.1 Resource control and accounting 28

3.4.2 Using delegation document 30

3.4.3 Summary 31

4 Mobile Grid Service Framework 32

4.1 Proposed Framework Overview 32

4.1.1 Service Migration 33

4.1.2 Service Sharing and Discovery 34

4.1.3 Security 34

4.2 Overall architecture 35

4.3 Components of Mobile Grid Services 36

vii

4.3.1 Agent Manager 37

4.3.2 Task Agent 38

4.3.3 Monitor Agent 39

4.4 Resource Information Service 40

4.5 Scenario of Mobile Grid Service Execution 41

5 MGSAPI 43

5.1 API design 43

5.2 API Implementation 45

5.2.1 Overview 45

5.2.2 Agent Manager Class 46

5.2.3 Task Agent Templates 52

5.2.4 Configurable Monitor Agent 57

5.2.5 Resource Information Service 61

5.2.6 Example Application 66

6 Security Support for Mobile Grid Services 68

6.1 Overview 68

6.2 Authentication and Authorization 70

6.3 Message Integrity and Confidentiality 72

6.4 Permissions on Agents 74

6.5 Security facilities in M G S API 76

6.5.1 Major modifications for M G S components 77

6.5.2 M G S Security Libraries 79

6.5.3 M G S Security Configuration 81

viii

7 Agent Protection for Mobile Grid Services 83

7.1 Overview 83

7.2 Major modifications 86

7.2.1 Exempting checking for executions on home host 86

7.2.2 N e w definition of stage 87

7.2.3 Extra operations in Task Agent and Agent Manager 88

7.2.4 Handling of attack 88

7.3 Implementation details 91

7.3.1 Agent Manager 91

7.3.2 Task Agent 97

7.3.3 Monitor Agent 101

7.3.4 Checker 102

7.4 Discussions 108

7.4.1 Against modification of code and data 108

7.4.2 Against masquerade 108

7.4.3 Against fake information in trace 109

7.4.4 Against escape from re-execution 109

7.4.5 Against collaboration of different hosts 109

7.4.6 Detection of malicious host 110

7.4.7 Weaknesses 110

8 Performance Evaluation 111

8.1 Experimental Setup Ill

8.2 M G S Performance 117

ix

8.2.1 Experiment details 112

8.2.2 Experiment results 113

8.2.3 Discussions 116

8.3 M G S Overheads 117

8.3.1 Experiment details 117

8.3.2 Experiment results 119

8.3.3 Discussions 123

8.4 Agent Protection Overheads 124

8.4.1 Experiment details 124

8.4.2 Experiment results 125

8.4.3 Discussions 128

9 Conclusion and Future Works 130

Appendix A Administrator Guide for MGS API 132

A.l Installation of M G S API 132

A.1.1 Installation of pre-requisites 132

A. 1.2 Installation of M G S API library 135

A.2 Setup of M G S platform 135

A.2.1 Setup of JADE platform 135

A.2.2 Setup of Globus containers 136

Appendix B Developer Guide for MGS API 137

B.l Steps of developing a Mobile Grid Service 137

B.1.1 Design Mobile Grid Service 137

B.l.2 Define W S D L 138

X

B.1.3 Implement the service 138

B. 1.4 Configure deployment in W S D D 138

B.1.5 Compile and deploy the service 139

B.2 Mobile Grid Service Implementation 140

B.2.1 Implement Task Agent 140

B.2.2 Implement Monitor Agent (optional) 143

B.2.3 Implement Agent Manager 144

B.3 Convert tool 146

B.4 Service configuration 147

B.4.1 TaskSetting object 147

B.4.2 MonitorSetting object 147

B.4.3 M G S Configuration file 148

B.4.4 Configuration for Resource Information Service 149

B.4.5 Globus-side security configuration of the service 151

B.5 M G S Configuration Helper 151

B.5.1 “Main Container" Panel 152

B.5.2 "Container" Panel 154

B.5.3 "Service" Panel 156

B.6 Interface details 158

B.6.1 Package mgs.manager 158

B.6.2 Package mgs.monitor 165

B.6.3 Package mgs.task 167

B.6.4 Package mgs.ftsFramework 174

xi

Bibliography 176

Publications

List of Figures

2-1 The architecture of Web Services 6

2-2 GT4 Components 11

4-1 Overall architecture of Mobile Grid Service Framework 36

4-2 Execution of a Mobile Grid Service 41

5-1 Architecture of the M G S API 45

5-2 Structure of Agent Manager 48

5-3 Structure of Resource Information Service 61

5-4 Resource data (XML file) received by Resource Information Service . 63

5-5 An example Mobile Grid Service developed using the M G S API . . . 67

6-1 Authentication and authorization in M G S 70

6-2 Message exchange in M G S 73

6-3 Agent permission in Mobile Grid Services 74

7-1 The overview of the "Execution Tracing with Randomly-Selected

Hosts" mechanism 84

xii

LIST OF FIGURES xiii

7-2 Example stage partition in a Task Agent's execution 87

7-3 Agent Manager in protection mode 92

7-4 The core pseudocodes for the ProtectedTaskBehaviour class 100

7-5 The core pseudocodes for the CheckingBehaviour class 106

8-1 The changing of the execution time against the number of available

hosts 113

8-2 Execution times of Service X in form of standard Grid Service (standard

GS) and Mobile Grid Service (MGS) 120

8-3 The migration costs under different running modes and message

forms 121

8-4 Message overheads for different message forms and running

modes 122

8-5 The execution time of Service Y in protection mode under different

settings 127

B-1 An example Mobile Grid Service (Agent Manager component) 145

B-2 Sample M G S configuration file 148

B-3 Sample configuration file for the Resource Information Service 149

B-4 Graphical User Interface of M G S Configuration Helper (Main

Container Panel) 152

B-5 Graphical User Interface of M G S Configuration Helper (Container

Panel) . . , . 154

LIST OF FIGURES xiv

B-6 Graphical User Interface of M G S Configuration Helper (Service

Panel) 156

List of Tables

5-1 E X A M P L E V A L U E OF T H E T H R E E " M A X I M U M " VARIABLES

IN R E S O U R C E INFORMATION SERVICE 64

8-1 A V E R A G E E X E C U T I O N TIMES (IN SECONDS) OF THE

SORTING SERVICE U N D E R DIFFERENT SETTINGS 113

8-2 T H E E X E C U T I O N TIMES (IN MILLISECONDS) OF Service X

U N D E R DIFFERENT SETTINGS 119

8-3 E X E C U T I O N TIMES (IN MILLISECONDS) OF Service Y U N D E R

DIFFERENT SETTINGS 126

B-1 INSTANCE VARIABLES OF MonitorSetting CLASS 167

B-2 INSTANCE VARIABLES OF TaskSetting CLASS 173

X V

Chapter 1

Introduction

Grid computing has been drawing a lot of attentions from both academia and

industry in recent years. A Grid [1] is a set of resources distributed over wide-area

networks that can support large-scale distributed applications. The Grid problem [1

is defined as the coordinated resource sharing and problem solving in dynamic,

multi-institutional, virtual organizations. Grid computing enables users and systems

to dynamically share resources, balance the loading on resources, and perform

possible parallel processing.

Regarding to current grid technologies, the services provided by Grid Services

providers are usually stationary. They are fixed on the Grid node machines providing

the services and have no mobility. This means that the services cannot be moved to

other nodes even if these other nodes have lots of idle resources. The idle resources

will be wasted and the Grid resources cannot be utilized effectively. This static type

of services also results in many drawbacks such as continuous connection and

overload problem when a large amount of service requests are present at the same

time.

Although the resource usage in a Grid may be increased by employing common

1

CHAPTER 1. INTRODUCTION 2

load balancing mechanism to migrate Grid Services to idle hosts, the arrangement of

service executing locations can be made only before services start. If a static service

is forced to execute in another host, it will need to restart completely where the

partially finished computation is wasted. Without service mobility, Grid Services

with long execution times still cannot use the resources effectively in a dynamic

Grid environment.

If the grid services can become mobile such that they can be moved to more

appropriate nodes during their executions, grids can maximize their resource usages

by coordinating both services and resources. Once Grid Services gain runtime

mobility, load balancing is no longer limited to apply in the beginning stage of

services. It can be carried out all the time according to the current Grid status. The

service migration due to the load balancing is done without a full restart and thus the

idle Grid resources can be used more efficiently. The ability of migration can also

improve the practicability and flexibility of Grid Services.

By improving the original static Grid Service with the ability of migration,

Mobile Grid Services can be realized such that the deficiency of static services is

overcome. Our research aim is to develop a middleware framework to support

Mobile Grid Services in a secure manner.

CHAPTER 1. INTRODUCTION 3

1.1 Contributions of this thesis

The main contribution of this thesis is proposing a middleware framework which

supports a new type of Grid Services, called Mobile Grid Services in a secure

manner. Mobile Grid Services is realized as the extension of the original static Grid

Services by deploying mobile agent technology for providing mobility. The essential

advantage is the ability of performing runtime service migration according to the

dynamics of the Grid environment. To support the Mobile Grid Services, a Mobile

Grid Service Framework is developed by combining an existing mobile agent

system (JADE) and a generic grid system toolkit (Globus). Moreover, an application

programming interface called M G S API is developed to ease the service

development. The API provides the essential components in the Mobile Grid Service

Framework and facilities to assist service developers performing programming and

configuration works for the services. Furthermore, general security mechanisms

such as authentication, authorization, message integrity and confidentiality are

deployed into the framework to provide security support for the services. Hence,

Mobile Grid Services can execute in a secure manner and be used for developing

applications concerned with security issues. Finally, the framework gains the support

of agent protection by integrating a security mechanism, called "Execution Tracing

with Randomly-Selected Hosts" which protects an agent from attack by malicious

hosts. Under the agent protection, any modification of code or data on a service

agent is detected by the execution tracing.

CHAPTER 1. INTRODUCTION 4

1.2 Thesis structure

The following list outlines the structure of this thesis:

Chapter 2 Background The second chapter reviews some technologies used for

developing the framework supporting Mobile Grid Services in this research.

Chapter 3 Research Issues in Mobile Grid Services The third chapter proposes

the Mobile Grid Services which improve on the original static Grid services by

adding the mobile ability of moving from nodes to nodes during execution. Besides,

three main research issues including service migration, service sharing and

discovery, and security in Mobile Grid Services are discussed.

Chapter 4 Mobile Grid Service Framework The fourth chapter proposes a

middleware framework that supports Mobile Grid Services. This chapter includes

the architecture, the components and the service execution's scenario of the

framework.

Chapter 5 MGS API The fifth chapter introduces an application programming

interface called M G S API. The API aims to provide both an easy and flexible

environment for service development in the Mobile Grid Service framework.

CHAPTER 1. INTRODUCTION 5

Chapter 6 Security Support for Mobile Grid Services The sixth chapter

presents the details of security measures (authentication, authorization, agent

permission, message integrity and confidentiality) in the framework. The security

facilities provided in the M G S API are also illustrated.

Chapter 7 Agent protection for Mobile Grid Service The seventh chapter

introduces the agent protection in the Mobile Grid Service Framework. The

implementation details of the mechanism as well as its strength and weakness are

discussed.

Chapter 8 Performance Evaluation The eighth chapter presents the performance

evaluation of the Mobile Grid Services. Some experiments are conducted for this

purpose. Their results, analysis and the overheads estimation are discussed.

Chapter 9 Conclusion and Future Works The last chapter concludes the thesis

and presents the future works.

Appendix A Administrator Guide for MGS API This appendix shows a full

installation of the MGS API and the setup of the MGS platform.

Appendix B Developer Guide for MGS API This appendix presents the method

of implementing and configuring a Mobile Grid Service, the useful tools provided and the

interface of the MGS API.

Chapter 2

Background

In this chapter, the major technologies related to this research are reviewed. They

are Web Services, Grid computing, Globus toolkit, mobile agent and Java Agent

Development Framework (JADE).

2.1 Web Services

^ • { t l ' rS 知 • Discovery, agg regaticn, choreog ra p̂ iy. etc.

\ � r ^ V/eb Services Description Larguage

The most popular mvocaton prclocol is SOAP�
— b _ e e � _ — � � 「 P �� s.

圓 - w ^ m I -
Figure 2-1: The architecture of Web Services

Web Services is an emerging distributed computing paradigm focusing on simple,

Internet-based standards (e.g., Extensible Markup Language: X M L [3]) to address

6

CHAPTER 2. BA CKGROUND 7

heterogeneous distributed computing. W e b services standards are being defined

within the W3C. W e b services define a technique for describing software

components to be accessed, methods for accessing these components, and discovery

methods that enable the identification of relevant service providers. They are both

platform-independent and language-independent.

A Web Service consists of the following four components (Figure 2-1):

Service Process The process of the Web Service, it usually involves more than one

service. For example, the discovery process will gather resource information from

different Web services

Service Description The Web Services are self-descriptive, meaning that once we

have located a Web service, we can ask it to 'describe itself and tell us what

operations it supports and how to invoke it. This is handled by the Web Services

Description Language (WSDL) [4], which is used to achieve self-describing,

discoverable services and interoperable protocols, with extensions to support

multiple coordinated interfaces and change management

Service invocation Invoking a Web Service involves passing messages between the

client and the server. Simple Object Access Protocol (SOAP) [5] specifies how we

should format requests to the server, and how the server should format its responses.

In theory, we could use other service invocation languages (such as XML-RPC, or

even some ad hoc X M L language). However, SOAP is by far the most popular

choice for Web Services.

CHAPTER 2. BA CKGROUND 8

Transport All these messages must be transmitted somehow between the server and

the client. The protocol of choice for this part of the architecture is usually HTTP

(Hypertext Transfer Protocol).

2.2 Grid Computing

A Grid [1] is a set of resources distributed over wide-area networks that can support

large-scale distributed applications. Grid computing enables the virtualization of

distributed computing and data resources such as processing, network bandwidth

and storage capacity to create a single system image, granting users and applications

seamless access to vast IT capabilities. Just as an Internet user views a unified

instance of content via the Web, a grid user essentially sees a single, large virtual

computer. With grid computing, organizations can optimize computing and data

resources, pool them for large capacity workloads, share them across networks and

enable collaboration.

In [2], the problem underlying the Grid concept is defined as the coordinated

resource sharing and problem solving in dynamic, multi-institutional virtual

organizations. The sharing is not primarily file exchange but rather direct access to

computers, software, data, and other resources. This sharing is highly controlled and

defined clearly by resource providers and consumers with the details about what is

shared, who is allowed to share, and the conditions under which sharing occurs. A

set of individuals and/or institutions defined by such sharing rules form a virtual

organization (V〇).

CHAPTER 2. BA CKGROUND 9

2.2.1 Open Grid Services Architecture (OGSA)

O G S A [6] is a standard developed by the Global Grid Forum [7], and aims to define

a common, standard, and open architecture for grid-based applications. The goal of

O G S A is to standardize practically all the services one commonly finds in a grid

application (job management services, resource management services, security

services, etc.) by specifying a set of standard interfaces for these services.

O G S A defines uniform exposed service semantics (the Grid Service). Besides,

it defines standard mechanisms for creating, naming, and discovering transient grid

service instances, provides location transparency and multiple protocol bindings for

service instances, and supports integration with underlying native platform facilities.

Some sort of distributed middleware is needed to support the architecture. O G S A

has chosen Web Services as the underlying technology of the distributed middleware

in order to profit from the existing capabilities of Web Services.

2.2.2 Grid Services

For providing standard semantics for service interactions, O G S A defines Grid

Service which is a Web Service that provides a set of well-defined interfaces and

that follows specific conventions. The interfaces address discovery, dynamic service

creation, lifetime management, notification, and manageability; the conventions

address naming and upgradeability. This core set of consistent interfaces, from

which all Grid services are implemented, facilitates the construction of higher-order

services that can be treated in a uniform way across layers of abstraction.

Grid Services are characterized (typed) by the capabilities that they offer. A

Grid service implements one or more interfaces, where each interface defines a set

CHAPTER 2. BA CKGROUND 10

of operations that are invoked by exchanging a defined sequence of messages. The

complete interface of a Grid service is described in a W S D L document and

advertised through public registries.

2.3 Globus Toolkit

The Globus Toolkit [8] is an open source software toolkit, developed by the Globus

Alliance [9], which we can use to create a Grid system. It is a realization of the

O G S A [6] requirements. The toolkit includes high-level services that we can use to

build Grid applications. It is organized as a collection of loosely coupled

components. These components consist of services, programming libraries and

development tools designed for building Grid-based applications. They are packaged

as a set of components that can be used either independently or together to develop

applications. The Globus Toolkit offers a development environment for producing

new Grid services that follow the O G S A architectural principles.

The toolkit also includes a complete implementation of the Web Services

Resource Framework (WSRF) specifications [10]. W S R F specifies stateful Web

Services which is required by OGSA. It is a set of Web services specifications that

defines conventions for managing "state" in the Web services context so that

applications can reliably share changing information.

CHAPTER 2. BA CKGROUND 11

2.3.1 Components of Globus Toolkit 4

Globus Toolkit® version 4 (GT4)
C o m m u n i l y (
• Scheduler (
� F r a m e w o r k \

“ mm.-- mm, - •m^y

r 二 〉 I j "̂""" r I

L ^ S S J L :「。:？ J L : : : J
Delegarjon ^ ^ ^ M ‘ :。，, (index

^ 丨 M如药omef̂i I WS Core

Aut•��� on ^̂ r̂co J Java WS
Autoizaton ^ Allocation & WS Core CoTiponents

Manaccmem

I :拟CT̂ / ！ I c common I Non-WS
: 二 y j — Cc^oen.

/ “ ' e x t e n s i b l e Creese � /BapBĉ � 1。
M a n a g e m e m / j b C K ^ I W ' / (X l O)

Secumy ^^-C^T^^ Execution information Common ,
^̂/iaiiîêiê Management Services Runtime J

C o r e G T C o T i o o n e n t . p u : > l i C i n t e r l a c e s f r o z e n o c n v e c n t n c f c m o n w r c i o a s o s . D c s i o f f o n s u p o o r

I 1 C o n t r i o u t i o n / T e c h P r e v i e w ; p u o l i c i n t o r f a c o s m a y c h a n g c D c t w o c n ^ n c c m c n t a l r e i c a G O S

‘ * D c o r e c a t e d C o m p o n e n t n o ! s u p p o r t e d ; w i l l DC d r o p p e d ； n a f u i u ^ x i r e l e a s e

Figure 2-2: GT4 Components

The latest version of the Globus Toolkit is Globus Toolkit 4 (GT4). Fig. 2-2

illustrates the components provided by the GT4 Toolkit. The five families of the

components are:

Common Runtime It provides a set of fundamental libraries and tools which are

needed to build both W S and non-WS services. Libraries in different programming

languages including C, python and Java are supplied for the implementation of

services.

Data Management It allows us to locate, manage and transfer data on the grid.

CHAPTER 2. BA CKGROUND 12

Three primary data management tools are the GridFTP for memory-to-memory as

well as disk-to-disk data access in the grid, the Reliable File Transfer (RFT) service

for managing multiple transfers and the Replica Location Service (RLS) for

maintaining location information for replicated files.

Information Service This component is also referred to as the Monitoring and

Discovery Service (MDS) which provides a suite of Web services to monitor and

discover resources and services on Grids. It provides query and subscription

interfaces to arbitrarily detailed resource data and a trigger interface that can be

configured to take action when pre-configured trouble conditions are met.

Execution Management This component deals with the initiation, monitoring,

management, scheduling and coordination of executable programs (jobs) in a Grid.

GT4 supports the Grid Resource Allocation and Management (G R A M) interface as

a basic mechanism for these purposes.

Security GT4 provides security tools concerned with establishing the identity of

users or services (authentication), protecting communications, and determining who

is allowed to perform what actions (authorization), as well as with supporting

functions such as managing user credentials and maintaining group membership

information.

CHAPTER 2. BA CKGROUND 13

2.3.2 Grid Security Infrastructure (GSI)

The Grid Security Infrastructure (GSI) [11] is the basis of the GT4，s security layer.

The GSI protocol provides single sign-on, credential delegation, authentication

through X.509 certificates [12], communication protection, and several authorization

schemes. In brief, single sign-on allows a user to authenticate once and thus create a

proxy credential that a program can use to authenticate with any remote service on

the user's behalf. Delegation allows for the creation and communication to a remote

service of delegated proxy credentials that the remote service can use to act on the

user's behalf, perhaps with various restrictions; this capability is important for

nested operations.

2.4 Mobile Agent

The agent paradigm applies concepts from artificial intelligence and speech act

theory to the distributed object technology. The paradigm is based on the agent

abstraction. Generally, agents are software entities with the following attributes:

• autonomous

Agents have a degree of control on their own actions, they own their thread

of control and, under some circumstances, they are also able to make decisions;

• proactive

Agents do not only react in response to external events (i.e. remote method call)

but they also exhibit a goal-directed behavior and are able to take initiative;

CHAPTER 2. BA CKGROUND 14

• social

Agents are able to interact with other agents in order to accomplish their task

and achieve the complete goal of the system.

Mobile agents are autonomous software processes that can move from node to

node in a network to access services provided there and to communicate with other

mobile agents. When an agent decides to migrate to another node, the agent's code,

data and execution state are captured and transferred to the next node, where it is

instantiated after arrival.

The advantages including customization, reduced communication bandwidth

and asynchronous task execution make the mobile agent paradigm very attractive

especially in systems where network bandwidth is low or network connection cost is

high; and for applications where the remote data to be processed is vast or the task to

be performed is time-consuming.

To standardize the mobile agent system, some standards are developed. One of

them is organized by FIPA [13:.

2.4.1 Foundation for Intelligent Physical Agents (FIPA)

FIPA [13] is a standards organization that promotes agent-based technology and the

interoperability of its standards with other technologies. It aims to produce software

standards specifications for heterogeneous and interacting agents and agent based

systems.

The FIPA standard fully embraces the agent paradigm. In particular, it defines

the reference model of an agent platform and a set of services (including Life cycle

CHAPTER 2. BA CKGROUND 15

Management, White page service, Yellow page service and Message Transport

service) that should be provided. The collection of these services, and their standard

interfaces, represents the normative rules that allow a society of agents to exist,

operate, and be managed.

Another main asset of the FIPA standard is the Agent Communication

Language (ACL). The FIPA A C L is based on the speech act theory and on the

assumptions and requirements of the agents' paradigm. FIPA standardized an

extensible library of 22 communicative acts that allow representation of different

communicative intentions (such as requesting, proposing, informing, querying,

calling for a proposal, refusing, etc.). FIPA also defined the structure of a message

that allows to represent and convey information useful to identify the sender and

receivers, the content of the message and its properties (e.g. the encodings and the

representation language), and, in particular, information useful to identify and follow

threads of conversation between agents and to represent timeouts for the

communication. Common patterns of conversations, called interaction protocols,

have been also defined by FIPA so that they provide agents with a library of patterns

to achieve common tasks.

2.5 Java Agent Development Framework (JADE)

JADE [14] is an open source software development framework aimed at developing

multi-agent systems and applications conforming to FIPA standards for intelligent

agents [13]. JADE has been fully coded in Java and includes two main products: a

CHAPTER 2. BA CKGROUND 16

FIPA-compliant agent platform and a package to develop Java agents.

JADE includes the run-time environment that provides the basic services and

that must be active on the device before agents can be executed. Each instance of the

JADE run-time is called a container. The set of all containers is called a platform

(can be distributed on several hosts) and provides a homogeneous layer that hides

from agents (and to application developers also) the complexity and the diversity of

the underlying information (hardware, operating systems, types of network, JVM).

The JADE Agent Platform complies with FIPA specifications and includes all

those mandatory components that manage the platform. The components include the

Agent Communication Channel (ACC), the Directory Facilitator (DF) and the Agent

Management System (AMS). The A C C acts as the Message Transport System for

controlling all the exchange of messages within the platform; the DF is responsible

for providing the default yellow page service in the platform; the A M S exerts

supervisory control over access to and use of the Agent Platform. It is responsible

for white-page service, life-cycle service and maintaining a directory of agent

identifiers (AID) and agent state. Each agent must register with an A M S in order to

get a valid AID.

All agent communication is performed through message passing, where FIPA

A C L is the language to represent messages. The communication architecture offers

flexible and efficient messaging, where JADE creates and manages a queue of

incoming A C L messages, private to each agent; agents can access their queue via a

combination of several modes: blocking, polling, timeout and pattern matching

based.

On the other hand, JADE includes the libraries (i.e. the Java classes) required to

CHAPTER 2. BA CKGROUND 17

develop application agents. Basically, agents are implemented as one thread per

agent, but agents often need to execute parallel tasks. Further to the multi-thread

solution, offered directly by the JAVA language, JADE supports also scheduling of

cooperative behaviours, where JADE schedules these tasks in a light and effective

way. The run-time includes also some ready to use behaviours for the most common

tasks in agent programming, such as FIPA interaction protocols, waking under a

certain condition, and structuring complex tasks as aggregations of simpler ones.

Using JADE, application developers can build mobile agents, which are able to

migrate or copy themselves across multiple network hosts. In this version of JADE,

only intra-platform mobility is supported, that is a JADE mobile agent can navigate

across different agent containers but it is confined to a single JADE platform.

The agent platform provides a Graphical User Interface (GUI) for the remote

management, monitoring and controlling of the status of agents. Upon the core of

JADE, a number of graphical tools have been implemented to supports the

debugging phase.

2.5.1 JADE-S

JADE-S is an add-on of the JADE platform that provides support for security in

multi agent systems such as Authentication and Authorization. It is based on the

Java security model and extends it for multi-agent systems. JADE-S makes the

JADE platform a controlled multi-user environment, where all the components are

owned by authenticated users, whom in turn are authorized by the platform

administrator to perform only certain privileged actions.

Chapter 3

Research Issues in Mobile Grid
Services

In this chapter, extension of standard Grid Services - Mobile Grid Services are

proposed and three main research issues in Mobile Grid Services are discussed.

They are Service Migration (how to add mobility to Grid Services), Service Sharing

and Discovery (how to publish and find services), and Security (how to protect

services and resources). Some related research focusing on these issues will be

considered.

3.1 Mobile Grid Services

Grid Services are "stateful" Web Services which conform to the O G S A [6] standard.

To improve the Grid Services, Mobile Grid Services are proposed as an extension.

Unlike the original static Grid Services, Mobile Grid Services are able to move from

nodes to nodes in the Grid because of their mobility capability. They can leave their

hosts and migrate to other Grid nodes containing more idle resources. W e can

18

CHAPTER 3. RESEARCH ISSUES IN MOBILE GRID SER VICES 19

coordinate both services and resources by this kind of service mobility and thus the

resource usages of grids can be maximized. Mobile Grid Services can be seen as a

special kind of Web Services with state and mobility.

Compared with the standard grid services, Mobile Grid Services are

characterized by the service mobility. With the help of the mobility, Grid services

can travel throughout the Grid to get information from Grid nodes, execute in those

nodes and bring the results back to their original hosts. Imagine that a service

requires a lot of resources for its execution. If the service is implemented as a

standard grid service, it will be blocked when the hosting machine runs out of

resources. However, if the service is implemented as a Mobile Grid Service, it can

move the execution to another host with plenty of resources. Moreover, the overload

problem can be relieved due to the service migration. Even if a large amount of

service requests are present at the same time, the execution load can be distributed to

other hosts and overloading on the hosting machine is avoided. It can help to

balance the load on all grid nodes.

Besides the advantages above, Mobile Grid Services can also travel throughout

the Grid intelligently according to resource needs with the help of the mobility. This

improves the flexibility of Grid Services. If a standard grid service needs to access

massive data in other nodes, continuous connections between Grid nodes are

essential. However, this is less critical for Mobile Grid Services where they can

move to the nodes storing the data and get data from the Grid nodes locally, carry

out the execution in those nodes and finally bring the results back to their original

hosts. This may also reduce the network traffic of the data transmission.

CHAPTER 3. RESEARCH ISSUES IN MOBILE GRID SER VICES 20

3.2 Service Migration

The most obvious question for Mobile Grid Services is how to add mobility to the

Grid Service. This is equivalent to how to move a running application from one grid

node to another and resume the execution in the target location. To achieve this goal,

there are many different approaches. One of them is inserting check-pointing

functions into the application code [15]. Another approach accomplishes the

objective by integrating mobile agent technology into grid computing. It uses mobile

agents to encapsulate the application for providing mobility [16, 17: •

3.2.1 Using Mobile Agent with Weak Mobility

MobiGrid [17] is a project which focuses on a framework for mobile agents support

within the InteGrade grid environment [18]. It aims to allow an efficient utilization

of computational resources for time consuming applications. In the framework,

mobile agents are used to encapsulate the user applications. Applications can leave

their currently running machines and migrate to other idle or more powerful

machines in the execution.

The migration ability of MobiGrid agents comes from its mobile agent system.

MobiGrid makes use of Aglet [19] which provides resources for mobile agent

creation, migration, cloning, security, synchronization and message exchange.

However, one drawback of the Aglet system is that only weak migration is provided.

That means only the objects states and variables are preserved, not the state of

execution stacks. In order to prevent the already computed results from missing

CHAPTER 3. RESEARCH ISSUES IN MOBILE GRID SER VICES 21

during migration, the developer of the application is responsible for saving the

present state of the application by calling the provided checkPoint() method at the

appropriate time.

This approach of encapsulating an application into a mobile agent with weak

mobility can use small slices of the available computational time of personal

workstations, migrating to another machine whenever the local user requests his

machine, always preserving the processing already done. However, as application

programmers have to take care of saving the present state of the application, the

difficulty and the time required for implementation is increased. It is unfavorable for

the development of Grid services

3.2.2 Using Mobile Agent with Strong Mobility

While You're Away (WYA) [16] is a distributed system that aggregates the

computation power of individual computer systems. W Y A introduces the notion of

"Roaming Computations" - Java-based programs that move around the network

utilizing the resources of idle workstations. By employing mobile agent technology,

"Roaming Computations" are realized. Similar to the MobiGrid project, W Y A

applications are encapsulated in mobile agents. The main difference of them is that

the mobile agent system used by W Y A is able to provide strong mobility instead of

weak mobility.

W Y A is based on the N O M A D S mobile agent system [20], which uses the

Aroma Virtual Machine (VM) [21] to provide strong mobility for Java-based agents.

Unlike weak mobility which requires that a mobile agent restarts execution after a

move, strong mobility can capture and transfer the full execution state of the agent.

CHAPTER 3. RESEARCH ISSUES IN MOBILE GRID SER VICES 22

An agent can request a move operation at anytime without wasting any resources

used in previous computations. N O M A D S also supports forced mobility, where

external events can forcibly move agents from one system to another. This makes

the migration transparent to an agent when it needs to move to another less busy

host.

The most important benefit of this approach is the complete transparency of

migration to the agents. The agents together with the applications can freely migrate

from one place to another without any loss of computed partial results. At the same

time, no extra concern about the state capture is required by the programmer. The

capturing of the agent's execution state is done automatically by the mobile agent

system. This is the reason why strong mobility is superior to weak mobility.

However, W Y A uses a modified version of J V M which is not desirable, since such

JVMs usually become obsolete compared to new versions of Java 2 (not following

Sun Microsystems' standardization).

3.2.3 Using Snapshots

Fukuda [15] has proposed a mobile-agent-based middleware that benefits remote

computer users who wish to mutually offer their desktop computing resource to

other Internet group members while their computers are not being used. In the

framework, a mobile agent is used to represent a client user for coordinating his/her

job over a computational grid, but not to encapsulate the application.

After locating a computer to run a user job, the mobile agent uploads all files

necessary for execution from its client to the target computer. When this computer

becomes unavailable (e.g. CPU busy) during job execution, the monitoring mobile

CHAPTER 3. RESEARCH ISSUES IN MOBILE GRID SER VICES 23

agent will move the corresponding application process to another available machine.

To accomplish application migration without completely restarting, this action

requires transferring the application code as well as the running state. The

application's running state is saved in an execution snapshot which is produced by

calling a check-pointing function in the application. A language preprocessor is

needed to automatically insert check-pointing functions into the user application

source code at compilation time. A back-up snapshot is periodically stored in several

machines in the grid during job execution, so that a mobile agent can retrieve a

suspended process from the latest snapshot when necessary.

One advantage of this approach is that programmers need not pay attention to

the snapshot production. Besides, a computation can even be recovered from a

sudden machine halt. Nevertheless, since the migration may not be predicted in

advance, some of the computed results (after the latest snapshot) will still be lost.

Moreover, if migration rarely occurs, the snapshots produced periodically will be a

waste of the grid resources.

3.2.4 Summary

All three approaches provide migration ability to Grid Services (application) and

prevent the application from completely restarting after the movement. Among these

three approaches, encapsulating an application in a mobile agent with weak mobility

seems to be the best solution to Mobile Grid Services. This approach takes the

advantages of mobile agent's mobility and autonomy features. The Grid Services

can move to more appropriate nodes by their own logic and mobility. They can work

independently without the monitoring from others. Besides, no modified J V M is

CHAPTER 3. RESEARCH ISSUES IN MOBILE GRID SER VICES 24

required to be installed throughout the grid for the execution of mobile agents.

Therefore, it is suitable for supporting mobility in Mobile Grid Services.

3.3 Service Sharing and Discovery

In a Grid, various Grid services (including resources) are provided by service

provider nodes and can be utilized by Grid users. To support users searching for

their desired services, some means must be provided for publishing and discovering

services. Service Sharing and Discovery is important for Mobile Grid Services to

find appropriate nodes to migrate to and to employ other existing services. A simple

method is using a centralized coordinator to store all the information about the grid

•22]. To increase scalability, the grid may be divided into some clusters. Each cluster

contains a manager to keep the update information of all grid nodes in the cluster

[18]. Web Services protocols including W S D L [4] and U D D I [23] can also be used

for registering and discovering Mobile Grid Services [24].

3.3.1 Centralized Model

Hulaas [22] outlines a Computational Grid deployment protocol which is entirely

based on Java, leveraging the portability of this language for distributing customized

computations throughout large-scale heterogeneous networks. In this computation

model, an operator is responsible for maintaining the whole grid. All resource

donators and clients should register at the operator. The information of all the

services and resources in the grid is kept by this centralized operator and will be

CHAPTER 3. RESEARCH ISSUES IN MOBILE GRID SER VICES 25

updated occasionally.

To deploy an application to the Grid, a client should send a deployment

descriptor containing information such as resource requirements and QoS

parameters to the operator. According to the deployment descriptor details and the

grid information, the operator will choose an appropriate set of donators taking into

consideration their current load and dispatch a deployment agent to a suitable place

for coordination of the client application. The client application code and data are

then moved to the donator's location, where the computation takes place.

This centralized approach is simple to design and manage. All Grid information

is stored in a centralized control structure. Resources and services are published to

the Grid by registering at the centralized manager while clients search resources or

services by asking the manager. However, all load for the service sharing and

discovery is concentrated at the manager. This leads to a bottleneck as well as the

single point of failure problem. Moreover, such a centralized model is not scalable

when the size of the grid grows.

3.3.2 Division into clusters

The MobiGrid project [17] is based on InteGrade [18] which is an object-oriented

middleware Grid infrastructure. InteGrade grids are structured in clusters, each

consisting of groups of computers. Clusters are then arranged in a hierarchy,

allowing a single InteGrade grid to encompass potentially millions of machines. In

each cluster, there is a Cluster Manager node which is responsible for managing that

cluster and communicating with managers in other clusters. Service and Resource

information within the cluster is also maintained in the Cluster Manager.

CHAPTER 3. RESEARCH ISSUES IN MOBILE GRID SER VICES 26

The Global Resource Manager (GRM) in the Cluster Manager periodically

receives information about the node status such as CPU usage from the cluster nodes.

When a grid user submits an application for execution, the G R M selects candidate

nodes for execution, based on resource availability and application requirements.

The G R M will use its local information about the cluster state as a hint for locating

the best nodes to execute an application. If necessary, the discovery process can be

done across clusters through their corresponding Cluster Managers.

This approach tries to increase scalability by grouping grid nodes into clusters.

The Service sharing and discovery load of the whole grid is distributed to the Cluster

Managers. Nevertheless, the bottleneck and single point of failure problem still exist

in this model.

3.3.3 Using Web Services Protocols

The Open Grid Service Architecture (OGSA) [6] is a promising architecture

standard for future grid architectures and aims to combine Web Services into the

grid architecture. O G S A abstracts all resources to be Grid Services.

Web Services define a technique for describing software components to be

accessed, methods for accessing these components, and discovery methods that

enable the identification of relevant service providers. Two important components of

the Web Services protocols are the Universal Description, Discovery, and Integration

(UDDI) [23] and the Web Services Description Language (WSDL) [4]. UDDI is a

standardized method for publishing and discovering information about web services

while W S D L is an X M L document for describing Web Services.

Similar to the O G S A approach, the work of Zhang [24] uses Web services to

CHAPTER 3. RESEARCH ISSUES IN MOBILE GRID SER VICES 45

support the dynamic registering and discovery of services in heterogeneous

environments. It proposes the concept of Grid Mobile Service (GMS) that is defined

as an intelligent code service wandering in grid nodes to accomplish certain tasks

and provide certain services. Besides, the critical factors and the implementation

methods of G M S are also discussed. To adapt to the Mobile Service interface, G M S

extends the W S D L protocol by adding new elements for describing Mobile Grid

Services and follows the web services approach to publish, identify and explain

mobile services. U D D I is used to register and discover services and resources. A

user or an application can access an U D D I register in order to publish or search for a

grid service.

This approach utilizes the Web Services standards for publishing and searching

Grid Services. It gains the benefit of properly supporting heterogeneous nodes in the

Grid environment as the Web Services Protocols are designed to support

interoperability (i.e. independence of the transport protocols, programming

languages, programming models and system software). It also adapts the current

trend of the convergence of Web and Grid services promoted by O G S A

3.3.4 Summary

The first two approaches suffer from the bottleneck and the single point of failure

problem and thus cannot be considered as an appropriate solution for service sharing

and discovery of Mobile Grid Services. The third approach using Web Services

Protocols is more preferable because of its ability of supporting interoperability over

distributed heterogeneous environments. This precisely fits the Grid environment

which usually contains heterogeneous nodes interconnected together. Moreover, this

CHAPTER 3. RESEARCH ISSUES IN MOBILE GRID SER VICES 28

approach maintains the similarity of Mobile Grid Services and ordinary Grid

Services. The conversion of existing Grid Services to Mobile Grid Services is

simplified.

3.4 Security

As resources are distributed throughout the grid, any grid user is able to access them

when there is not any security policy. The problem is significant for the grid with

Mobile Grid Services which commonly exploit resources from various grid nodes.

Therefore, some measures should be taken to protect them against being abused by

malicious users or applications. Resource control and accounting [15, 16] can detect

any improper resource utilization by malicious applications. This includes placing

limits on the resources which can prevent unlimited abusing. To further improve the

security, delegation documents [25] can be used to ensure that consumers of the

resources should be trusted.

3.4.1 Resource control and accounting

In the Grid computing infrastructure of Hulaas et al. [22], the secure execution of

the mobile code (customized computation) is supported by JavaGridKemel, a

Java-based middleware developed for providing fully portable resource accounting

and resource control. JavaGridKemel transforms application classes and libraries,

including the Java Development Kit, in order to expose details concerning their

resource consumption during code execution. The bytecode of Java classes is

CHAPTER 3. RESEARCH ISSUES IN MOBILE GRID SER VICES 29

rewritten before they are loaded by the JVM. Currently, CPU, memory and network

bandwidth control are addressed.

The resource control is used to prevent malicious or erroneous code from

overusing the resources of the host where it has been deployed (e.g.,

denial-of-service attacks). Resource consumption information can be used to detect

strange behaviors of malicious applications. Moreover, it enables the charging of

clients for the consumption of their deployed applications.

In the W Y A system [16], the N O M A D S mobile agent system [20] is also

responsible for providing the dynamic resource control mechanism. Various limits

may be placed on the resources that can be consumed by user applications. These

limits include both rate limits (e.g. percentage of CPU usage, disk and network read

or write rates) and quantity limits (e.g. disk space used). These resource limits may

be dynamically adjusted at a fine level of granularity and are enforced transparently

to the application execution. This can be used to protect hosts against malicious or

buggy agents as well as to prioritize the execution of agents. Consequently,

resources will never be overused by any agent.

These security mechanisms focus on preventing grid resources from being

abused by the user applications. Resource accounting allows the system to measure

and keep track of the resources consumed by an application on a host. Resource

abuse can be detected by analyzing these data. Resource control can protect resource

providers and prevent unlimited abuse of their resources. However, applying

resource control and accounting as the only security measures for Mobile Grid

Services are clearly insufficient. These mechanisms focus only on the utilization of

resources. The trust of the application is not considered. Execution of malicious

CHAPTER 3. RESEARCH ISSUES IN MOBILE GRID SER VICES 30

applications using apparently normal amount of resources will not be prohibited or

detected.

3.4.2 Using delegation document

An instance-oriented security mechanism [25] is proposed to deal with security

threats in building a general-purpose mobile agent middleware in a Grid

environment. The proposed solution imports security instance, which is an

encapsulation of one set of authorizations and their validity specifications with

respect to the agent's specific code segments, or even the states and requests. Users

and applications can define several kinds of security instances and their possible

operations, according to the application's own logics. The instances should be signed

by its creator. In the instance-oriented security framework, an agent representing the

client carries a delegation document containing instance details and goes to the

target host for application execution. By checking the signature and the details of the

instance, resource providers can ensure that their resources are used by applications

from trusted parties in an acceptable manner.

Once a delegation document migration is carried out between hosts, one or

more handover operations must be performed. The maximum number of times of

performing the handover operation is specified in the instances. When the instance

reaches the max handover times, it will be regarded as invalid. This mechanism is

used to handle the case that suddenly malicious hosts (originally trusted) abuse the

delegation document and prevent unlimited diffusion of the potential damage.

By using the delegation document, resource providers can follow their own

logics to allow only those applications fulfilling their requirements to execute. The

CHAPTER 3. RESEARCH ISSUES IN MOBILE GRID SER VICES 31

utilization of resources can be kept under control and the code executed can also be

assured to be trusted. Drawbacks of this method include the extra computation

required for handling the delegation documents, network bandwidth required for the

transfer of the delegation documents, and the extra effort for the developers.

3.4.3 Summary

Both approaches are able to protect Grid resources against misuse by malicious

applications or Grid Services. Resource abuse can be detected or prevented. The

resource control and accounting approach, which has no extra overheads as those of

using delegation document, is better for a L A N environment where all hosts and

users are supposed to be trusted. However, for the Grid environment which is a

loose coupling scenario for large numbers of Virtual Organizations (VO) over the

Internet, malicious users are more likely to be present and this approach seems to be

insufficient as a result of its lack of trust checking. Therefore, the approach of using

delegation document is preferable for Mobile Grid Services.

Chapter 4

Mobile Grid Service Framework

This chapter proposes a middleware framework that supports Mobile Grid Services

in a secure manner. The framework is constructed by combining an existing mobile

agent system (JADE) [14] and a generic grid system toolkit (Globus) [8]. The

Mobile Grid Services are realized as Globus grid services with JADE mobile agent

support. In this chapter, the details of the proposed framework including the

architecture, the components and the service execution's scenario are presented.

4.1 Proposed Framework Overview

The main concern of this research is providing a middleware framework for Secure

Mobile Grid Services. The framework is constructed by joining the Java Agent

Development Framework (JADE) [14] and the Globus Toolkit [8:.

In our framework, a JADE mobile agent (supporting weak mobility) is used to

encapsulate the actual working unit of the application task. JADE containers are

setup throughout the grid to provide platforms for mobile agents to move on. The

32

CHAPTER 4. MOBILE GRID SER VICE FRAMEWORK 33

communication between these JADE agents is accomplished by exchanging

messages in the format of the Agent Communication Language (ACL) defined by

the FIPA specification [13:.

For each application, a Globus grid service will create the corresponding

mobile agents and act as a relay between users and the mobile agents. In this way,

Mobile Grid Services are realized as a type of grid services which distribute the

actual working tasks to mobile agents. The advantage of this design is that the

existence of the relay part makes the Mobile Grid Services conform to the Globus

grid services architecture. At the same time, the mobile agent part is able to exploit

useful resources in other grid nodes.

The three main concerns (Service Migration, Service Sharing and Discovery,

and Security) are handled in the framework as follows:

4.1.1 Service Migration

Similar to the approach using mobile agents with weak mobility [17], a JADE

mobile agent (supporting weak mobility) is used to encapsulate the actual working

unit of the application task in this framework. JADE containers are setup throughout

the grid to provide platforms for mobile agents to move on. For each application, a

Globus grid service will act as a relay between users and the mobile agents. This

service is also responsible to create the corresponding mobile agent. In this way,

Mobile Grid Services are realized as this type of grid services which distribute the

actual working tasks to mobile agents. Service mobility is achieved by those mobile

agents.

The advantage of this design is that the existence of the relay part makes the

CHAPTER 4. MOBILE GRID SER VICE FRAMEWORK 34

Mobile Grid Services conform to the Globus grid service architecture. At the same

time, the mobile agent part is able to exploit useful resources in other grid nodes.

Comparing with the snapshot approach [15], this approach does not waste

computation on producing snapshots periodically and it takes advantage of the

agent's autonomy feature. By using mobile agents with weak mobility, our

proposed framework does not require any modified Java Virtual Machine (JVM).

4.1.2 Service Sharing and Discovery

In this framework, the Service Sharing and Discovery mechanism is based on the

Globus Monitoring and Discovery services. It follows the approach using Web

Service Protocols [24]. Mobile Grid Services are described in the Web Services

Description Language (WSDL) [4] and then can be published/searched via a

dynamic registry called Index Service [26] (similar to the U D D I [23]).

Since the mobile agent part of the service may migrate to any grid nodes, the

relay part should have the means to know the location of its corresponding agent for

communication. The Agent Management System residing on a JADE main container

is responsible for this and maintains a directory of agent identifiers.

This approach avoids the centralized registry problem and supports

interoperability over a distributed heterogeneous Grid environment.

4.1.3 Security

The authentication and authorization of this framework utilizes X.509 certificates

[12]. It is used to guarantee the identities of users, services or resources and provide

certain identities some permissions of accessing certain services or resources. This is

CHAPTER 4. MOBILE GRID SER VICE FRAMEWORK 35

realized by merging the corresponding JADE and Globus security mechanisms.

Besides authentication and authorization, the messages exchanging between service

providers and clients as well as those between mobile agents can be protected by

signature and encryption. In this sense, the message integrity and confidentiality are

preserved.

Similar to the approach using delegation documents [25], the resources are

protected by ensuring the users and applications are trusted. Since delegation

documents are not used, resource providers are less flexible on deciding the

application execution permission in this framework. However, it is compensated by

the reduction of extra computation and developer's effort on the delegation

documents.

4.2 Overall architecture

Fig. 4-1 shows the overall architecture of this framework. A grid is composed of a

group of machines (grid nodes) sharing their resources. This can be achieved by

using Globus Toolkit 4 (GT4) [8]. In each grid node, a globus container should be

set up to provide a hosting environment for any grid services.

The mobile grid services middleware is an add-on to the Globus grid

architecture. To support the service migration which is missing in GT4, our

middleware should be installed on top of the Globus container.

CHAPTER 4. MOBILE GRID SER VICE FRAMEWORK 36

Mobile Grid Services Mobile Grid Services
Middleware Middleware

c Q ^ JADE Globus JADE Globus
container container container container

C ^ l ^ ~ G r i d s u p p a i n ^ ^
Mobile Grid Servicesx^^^"^^

Mobile Grid Services
Middleware

^ ^ ^ ^ ^ ^ JADE Main Globus
cont3in6r cont3in6r

Figure 4-1: Overall architecture of Mobile Grid Service Framework

Since our mobility solution deploys mobile agent technology, the JADE mobile

agent system [14] is used to provide agent management and migration facilities to

the grid services. For each grid node supporting Mobile Grid Service (providing

resources for services to migrate on them), a JADE container should be launched on

it. They act as the run-time environment for the execution of JADE agents.

One of these JADE containers is called the main container which has extra

agent coordination work. All JADE containers must connect to the JADE main

container to form a single JADE platform. Service migration can then be

accomplished by JADE agents in the Mobile Grid Services as they move throughout

the grid by their intra-platform mobility.

4.3 Components of Mobile Grid Services

For any Grid Service, the service interface, the service deployment descriptor and

CHAPTER 4. MOBILE GRID SER VICE FRAMEWORK 37

the service implementation are essential elements that define all the details of the

service. In Globus Toolkit 4 (GT4), the service interface and the service deployment

descriptor are described in the Web Services Description Language (WSDL) [4] and

the Web Service Deployment Descriptor (WSDD) respectively. Service

implementation is a Java class or a group of classes expressing the service task

logic.

Since Mobile Grid Services are realized as Globus grid services with JADE

mobile agent support, W S D L and W S D D definitions (describing the service

interface and the service deployment descriptor) of Mobile Grid Services are just

similar to those normal Globus grid services (without mobility). However, the

situation is different in the service implementation. Instead of implementing the

service by Java classes directly, Mobile Grid Services implementation involves both

Java classes and JADE mobile agents. The agents are implemented by extending the

Agent class JADE libraries such that they inherit the abilities of migration, message

transmission, etc. The three main components in the implementation part of Mobile

Grid Services are Agent Manager, Task Agent and Monitor Agent.

4.3.1 Agent Manager

For each Mobile Grid Service, there is one and only one Agent Manager. It is

responsible for managing the agents used for its own service. Besides, it acts as a

relay between the client and the agents in the service. Agent Manager is not a JADE

mobile agent and thus it lacks of mobility. It is stationary and resides on the initial

node. This feature avoids the redeployment of the service and keeps the original

Globus architecture.

CHAPTER 4. MOBILE GRID SER VICE FRAMEWORK 38

The main duties of Agent Manager are to:

• Create Task Agent and Monitor Agent (if necessary)

• Receive client requests through Grid Service calling

參 Redirect client requests to the Task Agent through A C L messages

參 Redirect results from the Task Agent to client

• Store execution results of tasks for inquiry from clients

• Keep track of the Task Agent and Monitor Agent locations as well as their

execution situation

拳 Send special command messages to the Task Agent and Monitor Agent such as

forcing agent migration and termination.

4.3.2 Task Agent

It is a JADE mobile agent which is responsible for the actual service task of the

Mobile Grid Service. It possesses the ability of migration such that it can move to

other hosts for execution. If automatic migration is needed, each Task Agent will

have one Monitor Agent working with it. Task Agent is created by Agent Manager in

the service and each service may have multiple Task Agents for different tasks.

The main duties of Task Agent are to:

• Carry out the actual tasks of the application services

參 Perform suitable actions after receiving A C L command messages from Agent

Manager and Monitor Agent

• Send intermediate and final results of the task to Agent Manager

• Send A C L message to stop the execution of the corresponding Monitor Agent

(if any) after the task finishes

CHAPTER 4. MOBILE GRID SER VICE FRAMEWORK 39

4.3.3 Monitor Agent

It is a JADE mobile agent which is responsible for monitoring the resource

information of the grid nodes and make migration decisions. It is used to help the

corresponding Task Agent to do monitoring and migration decision work. This

design allows the Task Agent to concentrate on its actual service task while the

Monitor Agent handles resource information. No Monitor Agent will be created if

the service providers do not want their Task Agents to carry out any automatic

runtime migration. Service provider can adjust the migration decision policy in the

Monitor Agent to fulfill his requirement.

The main duties of a Monitor Agent are to:

• Receive grid nodes resource information from the Resource Information

Service

• Store the resource information of different nodes

• Use its own logic to analyze the resource information

參 Make the migration decision including "move or not" and "where to move"

• Send an A C L message to the corresponding Task Agent and order it to move to

suitable situations

• Go and work along with the corresponding Task Agent (i.e. Monitor Agent

always follows the migration of the corresponding Task Agent)

CHAPTER 4. MOBILE GRID SER VICE FRAMEWORK 40

4.4 Resource Information Service

One of the main advantages of Mobile Grid Services is the automatic run-time

service migration when the home host is running out of resources. Therefore,

resource information (configuration and current usage) of grid nodes is essential in

our framework for supporting the automatic migration. In our framework, the

information is provided by the Resource Information Service.

The raw resource data of the node machines including processor and memory

information, CPU and memory usage and host data are collected from the Ganglia

cluster monitoring system [27] via the Globus Index Service [26] regularly. Besides

resource information, this service also gets all the Monitor Agents' details from the

Directory Facilitator (DF) residing on the JADE main container. The agent

information is used to find out suitable audiences (i.e. all Monitor Agents in the grid)

for the resource information.

The collected resource information will not be redirected to Monitor Agents

directly. The irrelevant information will be filtered out first. In order to reduce the

message size used for resource data transmission, the resource information will be

further processed to calculate some metric values for each node before delivery.

After the calculation, the processed results will be sent to all Monitor Agents

through A C L messages. The Monitor Agents for different Mobile Grid Services can

then use the received resource information to make their migration decisions.

CHAPTER 4. MOBILE GRID SER VICE FRAMEWORK 41

4.5 Scenario of Mobile Grid Service Execution

一 一 - 4 、 、 、

C \
User \ ��

f i Q ^ G ^
\ 1 Task Monitor . ^ ^ f X
7 Agent X Agent Y ^ ^ V J

\ Agent Manager i / \ Z "Monitor Task
^ of Service A \ / Agent Y Agent X

Mobile Grid Services \ / Mobile Grid Services
Middleware \ / Middleware

H ^ "n 3 / i-i ^
JADE Globus \ 5 JADE Globus

container container \ / container container

屬 I 1/ 邀
Resource Information

N o ^ A X Service 巳 .
^^^^^G^suppor t i ng Mobile Grid Services^^^^^

Figure 4-2: Execution of a Mobile Grid Service

Fig. 4-2 shows the steps involved when a Mobile Grid Service executes in the

framework. Assume that a Mobile Grid Service "Service A" is setup on Node A. Its

Agent Manager listens to any user's requests. The steps are as follows:

1. User requests an operation in "Service A" (e.g. a complex computation).

2. Agent Manager of "Service A" receives the request and creates appropriate

Task Agent and Monitor Agent (called X and Y respectively) on Node A.

3. Task Agent X starts its service task while Monitor Agent Y starts to receive any

resource information from the Resource Information Service.

4. Resources in Node A are running out due to some reasons. Monitor Agent Y

gets the information and decides to migrate to Node B which has plenty of idle

resources. Then, it moves to Node B with Task Agent X.

CHAPTER 4. MOBILE GRID SER VICE FRAMEWORK 42

5. Both agents arrive at Node B. Task Agent X resumes its work while Monitor

Agent Y continues to receive information from the Resource Information

Service.

6. Task Agent X completes the service task. Agent Manager gets the result of the

operation and the two agents terminate.

7. The result of the operation is redirected to User from Agent Manager. In fact,

User can ask for the execution situation of the service from the Agent Manager

throughout the task execution.

Chapter 5

MGS API

This chapter presents an application programming interface called M G S which

supports service development in the Mobile Grid Service middleware framework.

The API consisting of the AgentManager Class, Task Agent templates and

configurable Monitor Agent is used to provide both an easy and flexible

environment for Mobile Grid Services development. The security support of the

framework in the M G S API will be presented in Chapter 6 but not in this chapter.

5.1 API design

In this section, the main issues considered in the design of the M G S API will be

presented. In the Mobile Grid Service Framework illustrated in Chapter 4, each

Mobile Grid Service is composed of the Agent Manager, Task Agent and Monitor

Agent components. Obviously, the service implementation is more complex than

those of standard Grid Services. The problem becomes more significant as mobile

agent technology is employed. The deployment of Mobile Grid Services will be

43

CHAPTER 5. MGS API 44

discouraged if developers need to fully implement all these components.

In order to relieve this drawback, the M G S API is built with the aim of

supporting easy Mobile Grid Services development. It is achieved by providing a

collection of methods for Mobile Grid Services development. Complex operations

for agent management and communication are hidden from service developers by

wrapping them into some simple methods.

On the other hand, the API should be flexible enough for developers to

implement their services without too many constraints. Though different services

may have different requirements on their design, developers should be able to use

the API to implement them. Therefore, maintaining high flexibility is another

important issue for the API design. Many parts of the API are specifically designed

for overcoming this issue. For example, the decision logic of the Monitor Agent can

be configured with different parameters in order to utilize suitable migration

strategies. Developers can even make use of self-defined logic by modifying the

Monitor Agent in simple steps.

5.2 API Implementation

5.2.1 Overview

Fig. 5-1 shows the architecture of the M G S API. The API is written in the Java

programming language [28]. It is built on libraries of the Java Agent Development

Framework (JADE) [14] for the implementation of mobile agent management and

communication. At the same time, it will use some of the facilities in the Globus

Toolkit 4 [8].

CHAPTER 5. MGS API 45

MGS API �

‘ Service Components �

I AgentManager class 1
Resource 1 1

Information | Task Agent Templates 1
Service 1 !

I Configurable Monitor Agent '
� J L /

Globus Toolkit 4 JADE

Java

Figure 5-1: Architecture of the M G S API

This API provides a collection of libraries for supporting the development of

Mobile Grid Services. As mentioned in the previous chapter, Mobile Grid Services

are realized as special grid services which distribute the actual working tasks to

mobile agents. The main components of each Mobile Grid Service including Agent

Manager, Monitor Agent and Task Agent can be easily implemented with the help of

the M G S API.

Generally speaking, the API can be divided into four parts: AgentManager

Class, configurable Monitor Agent, Task Agent Templates and Resource Information

Service. AgentManager Class takes the role of the Agent Manager component and

provides methods for developers to manage the created agents. Configurable

Monitor Agent is the default implementation of the Monitor Agent component and

provides configurable options to meet various requirements. For the Task Agent

component, developers must implement their own versions according to their

requirements. Task Agent Templates are provided in the API to help developers to do

CHAPTER 5. MGS API 45

this job in a simpler way. Resource Information Service is implemented for

providing resource information in order to support automatic runtime service

migration. Detailed descriptions of the four components are given in the followings.

5.2.2 Agent Manager Class

In a Mobile Grid Service, the Agent Manager component (non-agent part) basically

acts as a relay between users and the mobile agents (i.e. Task Agents and Monitor

Agents). This part of the Grid Service implementation can be simplified and

partially accomplished by employing the AgentManager class in the M G S API.

In the Grid Service implementation, an AgentManager object should be created

to enable the service to possess the essential functions of Agent Manager. These

functions include managing agents used in the service, preparing the execution

environment connected to the JADE main container and setting up communication

channels for those agents.

During the startup of the AgentManager object, a JADE remote container

(connecting to the JADE main container) is setup by using the JADE in-process

interface. This interface allows an external Java application to use JADE as a kind of

library. That means it allows the launching of the JADE Runtime as well as the

creation of agents within the application itself. The JADE container in the

AgentManager object provides an executing environment for all newly created

agents through the Agent Manager. Besides the container, an Agent Manager Agent

is also created during the setup of AgentManager object. This agent is used to help

the AgentManager object to send ACL messages to and receive messages from other

agents in the JADE platform. It is stationary because it always resides at the same

CHAPTER 5. MGS API 47

machine as the static Agent Manager and thus it is not necessary to move.

Internal communication mechanism To preserve the autonomy of agents, the

in-process interface of JADE is designed such that the application cannot obtain a

direct reference to the agents and cannot perform method calls on the agents. That

means the AgentManager object is unable to pass its commands or queries to the

Task Agents through direct method calls on the Agent Manager Agent. Therefore, a

special mechanism is taken to carry out the message exchange between Agent

Manager and Agent Manager Agent.

Fig. 5-2 shows the communication between AgentManager object and Agent

Manager Agent. For AgentManager object sending a message to Agent Manager

Agent, the object-to-agent channel provided by JADE is used. This channel allows

applications to pass objects to the agents they hold. In our implementation, Agent

Manager Agent will enable this object-to-agent communication channel and

continuously receive any objects from the AgentManager object. Once

AgentManager object needs to send an A C L message, it will pass the message as

well as the reference of an ArrayBlockingQueue object to its Agent Manager Agent.

The agent will then send the message to the target agent and wait for a reply. After

receiving the reply, the message is needed to flow in the opposite direction. The

Agent Manager Agent will put the reply message to the received

A rrayBlockingQueue object. The AgentManager object will be notified that the

queue is non-empty and get the reply A C L message. By this mechanism, Agent

Manager can carry out the message exchange with Agent Manager Agent

successfully and further communicate with all agents in the JADE platform.

CHAPTER 5. MGS API 48

I A g e n t M a n a g e r p l a t f o r J i T ^ ^ ^ - - ^ ^

I Ob jec t - to -agent \ C) C l \

1 AgentManagerT v / ^ ^ \ ^ ^ Q ^ /
I object n y Agent Manager ACL ^ ^ r /
I / Array Blocking . Agent message z a ‘ /
I \ Q u e u e ^ ^ ^ A g e n t s ^

I I
I

Figure 5-2: Structure of Agent Manager

ResultTable mechanism The ResultTable mechanism is used for the Task Agent to

send back the execution result to Agent Manager. Normally, Task Agent starts to

execute after receiving client request through the Agent Manager. The execution

result can be sent in the reply to the client request such that the client can get the

result from the returning of sendACLQ method. However, since the execution time of

a Task Agent may be very long, it is unreasonable if returning from the sendACLQ

method is the only way to get the result. As a result, Task Agent should have another

means to send the result back to Agent Manager anytime.

To achieve it, a ResultTable is maintained in the AgentManager object. This

table is a hash table which stores a number of MGSResult objects with task name as

their keys. Each MGSResult is composed of a task result (in form of String object)

and a flag “isFinar indicating if the result is finalized.

After executing to a certain stage, Task Agent can send the temporary result to

its corresponding Agent Manager Agent by invoking notifyResultQ method. It will

send the result through a notification (DF notification in JADE) to the Agent

Manager Agent. After receiving the notification, an MGSResult object (with the flag

“isFinal” as false) will be created and replace the previous one in the ResultTable.

CHAPTER 5. MGS API 49

When the clients want to get the current result of their tasks and invoke

getCurrentResultO method in the Agent Manager, the corresponding MGSResult

object obtained from the table will be returned.

When the Task Agent finishes the execution, it can send the final result to the

Agent Manager by invoking the notifyFinalReusltQ method. A final notification

(used for notifying the end of the task execution) will be received by the Agent

Manager Agent. It will then replace the corresponding record in the Result Table by a

new MGSResult object (with the flag “isFmaP’ set as true).

Moreover, the MGSResult object contains the “startTime” and the “endTime”

variables. The “stariTime” is recorded at the moment of creating the Task Agent. The

“endTime” is recorded when the final notification is received from the Task Agent.

Furthermore, there is an “isCheckecT flag in the MGSResult object which will be

used for the agent protection support (details in Chapter 8).

The ResultTable mechanism provides a means for the Task Agent to notify the

temporary results in different execution stages to the client. Besides, the client does

not need to keep the connection with Agent Manager through the whole execution

time. He can be offline after sending the request and then ask Agent Manager for the

execution result anytime (even after the termination of the Task Agent) afterwards.

Provided methods The AgentManager class also provides methods to help service

developers to implement agent management and interaction between users and

services in their Mobile Grid Services. The main methods provided are:

CHAPTER 5. MGS API 50

• void createAgent(String agentName, String agentClass, Object[] agentArgs)

This method is used to create a new Task Agent in the Mobile Grid

Service. Since different tasks should be implemented in different Task Agents,

this method receives an argument agentClass in order to allow developers to

specify their required Task Agent being instantiated in their services. No

Monitor Agent will be created by this method. It is designed for those services

which do not require automatic service migration initiated by the Monitor

Agent. The mobility of the Task Agent is preserved such that its execution still

can move to other hosts if the route is preset.

• void createAgentWithMonitor(String agentName, String agentClass, Object

agentArgs, String monitorClass, Object[] monitorArgs)

Unlike the create Agent method above, this method will create the

specified Task Agent as well as a Monitor Agent in the service. The argument

monitorClass allows the developer to specify the Class used to instantiate the

Monitor Agent. Another new argument MonitorArgs is used to pass arguments

to the Monitor Agent.

參 void createAgentWithMonitor(String agentName, String agentClass, Object[‘

agentArgs, MonitorSetting setting)

This method is similar to the one above but the Class used to instantiate

the Monitor Agent is fixed. It will use the default Monitor Agent provided in

the M G S API compulsorily such that developers have no need to be concerned

about the Monitor Agent class. The argument MonitorSetting is used to

configure the default Monitor Agent. Details of the default Monitor Agent are

shown in section 5.2.4.

CHAPTER 5. MGS API 51

參 ACLMessage createACLMessage(String agentName, int performative, String

content)

It is used to create an A C L message for the message exchange between the

Agent Manager and mobile agents. The arguments are used to specify the

receiver, the content and the FIPA performative of the message (e.g. REQUEST,

INFORM).

• String sendACL(ACLMessage query)

It is used to send a command or a query to mobile agents through an A C L

message from the Agent Manger. This method is important for implementing

the interactions between service callers and Task Agents. After being created by

the createA CLMessage method, the A C L message can be sent to the target

agent through this method and the reply will be returned. In the meantime, the

A C L message is passed from the AgentManager object to the Agent Manager

Agent while the reply message is forwarded in opposite direction (as shown in

Figure 5-2). The actual sending and receiving procedures are hidden in this

method. Service developers can concentrate on the design of A C L message

exchange and the handling of the reply (i.e. return of sendACLQ method).

• MGSResult getFinalResult(String taskName)

This method is used to get the final result of a Task Agent from the

ResultTable. It will call the getCurrentResult() method repeatedly until the

obtained result is finalized. The status of the result can be identified by

checking the "isFinal" flag of the returned MGSResult object. Finally, the final

result of the task will be returned.

CHAPTER 5. MGS API 52

• AgentSituation getAgentSituation(String agentName)

This method returns the current situation of a specific agent. The result is

returned as an AgentSituation object containing information about agent state,

position, etc. In fact, a special A C L message is sent to the agent to ask for the

current situation.

參 void moveAgentTo(String agentName, String containerName, String

containerAddress)

This method directly forces the agent named with the specified agentName

to move to a specific host. The command is sent to the agent platform instead

of the agent itself.

5.2.3 Task Agent Templates

The Task Agent component is the most variable part in the Mobile Grid Services. As

it is responsible for the actual service task, the implementation of the Task Agent is

heavily dependent on the task properties of the Mobile Grid Services. It is impossible

to have a single universal Task Agent which can fulfill all requirements of various

types of service tasks. Therefore, the implementation of Task Agent must rely on the

developers themselves.

In the M G S API, the basis of the Task Agent component is the TaskAgent class.

The TaskAgent class is the main body of the Task Agent. It extends the Agent class in

the JADE library to inherit the ability to accomplish essential interactions with the

agent platform (e.g. registration) and communication with other agents (through A C L

message exchange). It is also responsible for the initialization of the agent. The

TaskAgent class provides a series of methods for the basic actions of Task Agent. It

CHAPTER 5. MGS API 53

provides sendMessageQ and receiveMGSQ for sending and receiving A C L messages

in the M G S framework respectively; moveMGS() for moving the agent to a specified

host. On the other hand, two methods - notifyResultQ and notifyFinalResuHQ are

provided to notify (via DF service notification in JADE) the temporary or final result

to the Agent Manager Agent (usually after Task Agent finishes its task to certain

stage).

However, the most important tasks (the message handling and the actual service

task) are not implemented in the TaskAgent class. As stated in the implementation

procedure of JADE agents, the developer who wants to implement an agent-specific

task should define one or more Behaviour (in JADE libraries) subclasses, instantiate

them and add the Behaviour objects to the agent job list.

To help developers building application-specific Task Agents for their own

Mobile Grid Services, two templates are provided. A template consists of several

incomplete classes which have already implemented most of the basic and essential

elements in a Task Agent. To complete the Task Agent implementation, developers

need to follow the guidelines in the template and complete all the classes such that

they can carry out their application-specific tasks. The details of the two Task Agent

Templates provided in the M G S API will be presented below.

TaskAgent Template This template is composed of three Java files. The details of

the template and the Java files are as follow:

• MyTaskAgent.java

It extends the TaskAgent class and it will become the main body of the

CHAPTER 5. MGSAPI 54

Task Agent. It is responsible for the declaration and implementation of any

instance variables and methods in the Task Agent. Besides, the

TaskServelncomingMessageBehaviour object is created and added to this class.

• TaskServelncom ingMessagesBehaviour.Java

This Behaviour class is responsible to receive any incoming A C L messages

and keeps reacting with all relevant messages. For instance, it will start the

migration process and move to the target host marked in the message when it

receives a "move" message from the Monitor Agent. Hence, all the message

handlings should be defined in this class. To simplify the implementation, all the

handling of pre-defined command messages such as "move" is already

implemented in the template.

• TaskBehaviour.Java

It is the class dealing with the actual service task. Developers should

implement the program logic of the service tasks in the action() method in this

class. The action() method will be invoked when the Task Agent starts. After

act ion 0 returns, the done() method will be called. The return value of this

done() method will determine the life of the Behaviour class. If the value is

true, the execution will end. Otherwise, the action() method will be invoked

again. Therefore, the stopping criteria of the execution should be implemented

in the doneQ method.

To develop a new Task Agent, a developer should implement each service task

into the indicated location of the TaskBehaviour class. Different tasks should be

implemented in different TaskBehaviour classes. Then, these Behaviour classes

CHAPTER 5. MGS API 55

should be added to the MyTaskAgent.java by following the guideline in the template.

Although, the handling of pre-defined command messages are already implemented

in the template, service developers still are responsible to implement the reaction of

receiving their self-defined command messages from the Agent Manager or other

message exchange with other agents. Finally, the user-defined instance variables and

methods should be coded in the MyTaskAgent.java (following the guidelines).

SimpleTaskAgent Template This template contains one Java file only. Before

describing the My SimpleTaskAgent.Java in the template, the SimpleTaskAgent class

(in the M G S API) utilized by the template will be presented first.

The SimpleTaskAgent class is implemented for further simplifying the work of

developers during their own Task Agent implementation. It extends the TaskAgent

class to inherit all the essential abilities and methods for the Task Agent component.

In addition, it contains three abstract methods:

• public abstract void normalExecution()

This method states the program logic of the service tasks.

• protected abstract void msgHandler()

This method will be invoked for each iteration. The handling of any

incoming A C L messages should be implemented. Template is provided where

handlings of all essential messages for M G S are implemented. Developers only

need to manage the user-defined messages.

• protected abstract boolean endCheckingO

This method is used to specify the stopping criteria of the Task Agent

execution. If the stopping criteria are met, it should return true.

CHAPTER 5. MGS API 74

Unlike the TaskAgent class without any Behaviour object, a Behaviour object is

created and added to the SimpleTaskAgent class such that its actionQ method with be

invoked repeatedly. This causes the msgHandlerQ method and the normalExecutionQ

method to be invoked once in each iteration. At the end of each iteration, the

endCheckingO method (defined in the SimpleTaskAgent class) will be invoked to

check whether the task execution should be finished. The actionQ methods will be

invoked repeatedly until the endCheckingO returns true (i.e. stopping criteria is met).

Before the execution ends, it will send an A C L message to stop the corresponding

Monitor Agent (if any).

To use the SimpleTaskAgent Template to implement a Task Agent, only the

My Simple TaskAgent.Java file is required to be considered. It extends the

SimpleTaskAgent class and thus the three abstract methods should be implemented.

The developer needs to implement the service task in the normalExecutionQ method,

specify stopping criteria in the endCheckingO method and implement the

user-defined message handling in the msgHandlerQ method following the guidelines.

The handlings of all essential messages for M G S are already implemented in the

template. Besides, the user-defined instance variables and methods should be written

in the indicated location. The developer has no need to handle any Behaviour object

because it is already implemented in the SimleTaskAgent class. Moreover, it is more

convenient to implement a Task Agent by managing a single file only. If a Task

Agent is implemented by using this template, it can be converted to a "protected"

version which supports agent protection (details in Chapter 7). However, the

drawback of this template is that the structure of the created Task Agent is less

flexible (e.g. only one Behaviour object can be added to the agent).

CHAPTER 5. MGS API 57

5.2.4 Configurable Monitor Agent

A default Monitor Agent is provided in the API. It is used to accomplish the

implementation of the Monitor Agent component in a Mobile Grid Service. The

presence of this configurable Monitor Agent allows service developers to ignore the

related implementation and thus simplifies the development process. The basis of

the Configurable Monitor Agent is MonitorAgent class which is implemented by

extending the SimpleTaskAgent class. The implementation details of the

MonitorAgent class including the three abstract methods {msgHandlerQ,

endCheckiugO and normalExecutionQ) are discussed as follows:

Constructor To make the default Monitor Agent useful under different situations

(different developers' requirements), it is designed to be configurable. This goal is

achieved by the MonitorSetting object. The constructor of MonitorAgent class will

take in a MonitorSetting object as argument. The MonitorSetting object contains

some configurable variables for controlling the execution mode (normal mode and

debug mode) of the Monitor Agent. In debug mode, the Monitor Agent will show

detailed information about any incoming and outgoing messages as well as

migration decisions on the screen for debugging purposes. In normal mode, the

Monitor Agent will keep silent (unless error occurs) to reduce unnecessary overhead

and hide the existence of the Monitor Agent from the service/resource provider.

Besides the execution mode, the migration decision logic in the Monitor Agent (in

the decideQ method) can be configured by the variables in the MonitorSetting object.

The service developers can set the minimum requirements and the importance

weights of each kind of resources (CPU, R A M , and HD). Finally, the Monitor Agent

CHAPTER 5. MGS API 58

will register to the JADE platform with service type as "monitor-agent". This allows

the Resource Information Service to recognize it during the resource information

distribution.

Instance variables The Monitor Agent will store the resource information for

migration decisions. A set of hash tables are created in the MonitorAgent class to

store those resource data (including the C P U value, R A M value and H D value

calculated by the Resource Information Service) for each host.

Private method The MonitorAgent class contains a decideQ method which is

responsible for analyzing the resource information and make migration decisions. It

will decide whether migration is necessary and where is the best place to move to.

The decideQ method does not take in any argument. It uses the information stored in

the hash tables for migration decisions. It will return the chosen host name (if decide

to move) or null (if decide not to move).

In the decideQ method, the migration decision is made after a series of

procedure is completed. The first step is to check whether the current host meets the

minimum resource requirements. The requirements represent the least CPU, R A M ,

and H D values for the current host (amount of the currently available CPU, memory

and harddisk in the current host) such that the agent has no need to consider the

migration. They can be set by the service developers through the variables in the

MonitorSetting object. If the minimum requirements are met, no migration is

required and the decideQ method will return null.

The second step of the migration decision is to decide the best host in the grid

CHAPTER 5. MGS API 59

at that time according to the current resource information. To compare the available

hosts, a "Score" value will be calculated for each host by the following formula:

Score = (CPU—weight * CPU) + (RAM—weight * R A M) + (HD—weight * HD)

The values "CPU_weight", “RAM—weight” and ‘‘HD—weight” can be set in the

MonitorSetting object such that the importance weight on CPU, memory and

harddisk used in the decision logic can be configured by the service developers. For

example, the CPU values will be more important in the calculation of "Score" if the

importance weight of CPU is higher than the others. After comparing the "Score"

values of all hosts, the host with the highest value will be marked as the best host.

The third step is to further confirm the necessity of the migration. Although the

best host is chosen in the previous step, it does not mean that an agent would get

benefits after moving to the best host. If the agent moves to a host with very similar

resource usages to those in the current host, it cannot get a significant improvement

on the execution environment. On the other hand, the execution time may be

prolonged due to the overheads induced by the worthless migration. Therefore, three

"Gain" values will be calculated to find out the expected improvement on each kind

of resources. It is done by comparing the resource values (received from the

Resource Information Service) of the current host and the best host. The formulas

are as follows:

Gain—CPU = (best—CPU — current—CPU) / current—CPU

Gain—RAM 二（best—RAM — current—RAM) / current—RAM

CHAPTER 5. MGS API 60

Gain H D = (best—HD - current_HD) / current—HD

Migration will be carried out only when any "Gain" value (Gain—CPU,

Gain—RAM or Gain—HD) is greater than five percent. This makes sure that the

migration will bring a certain gain to the agent. After this procedure, the migration

decision is completed and the decideQ method will return the decision result.

Although the provided configurable options make the decision policy of the

migration more flexible, they still cannot fulfill all developers' requirements

undoubtedly. For example, developers may require that certain hosts have extra

bonus score in the migration decision. For any special requirements (like the above

example) on the migration decision logic, service developers can also develop their

own Monitor Agent by extending the provided one. The only work required is to

override the decideQ method. In this way, they can produce their own Monitor

Agents which are best-fit to their requirements

The msgHandlerO method The msgHandlerQ in the MonitorAgent class is

responsible to handle the A C L messages received from the Resource Information

Service. When message containing resource information is received, the received

data includes the host name, the CPU, R A M and H D values will be used to update

the hash tables in MonitorAgent class. When "decide" message is received, the

decideQ method will be invoked. If the decideQ method returns a host name, it will

send "move" message to the corresponding Task Agent and then move to the

decided host together.

The endCheckingO method The end of Monitor Agent's execution is not decided

CHAPTER 5. MGS API 61

by itself but depends on when the corresponding Task Agent finishes its task.

Monitor Agent will stop the execution after receiving the "end" message from its

corresponding Task Agent. Therefore, the endCheckingO method in the

MonitorAgent class is implemented to return false all the time.

The normalExecutionQ method The main work of the Monitor Agent is receiving

resource data from the Resource Information Service and then making migration

decisions. They are completely implemented in the msgHandlerQ method. Therefore,

the nomralExecutionO method for MonitorAgent class is empty.

5.2.5 Resource Information Service
I 1
I R e s o u r c e I n f o r m a t i o n S e r v i c e ^ . - ^ ^ [j a d e p l a t f o T m ^

I „ I Objec1-to-agent c h a n n e N / I ^ ^ ^ ^ ^ ^
I Resource / d I Resource .‘ \
I Manager o b j e c t] 7 ~ [/ ^ I information l^omtor \
I 广 ' R e s o u r c e I Agents
I Manager I

i — 场 J
1 \ \ Agent /

Index Service \^nformation IJL /

G a n g l i a R e s o u r c e | ^ ^ DF ^ ^ ^
System ~ informat ion ^ 一 ^ ^ ^

Figure 5-3: Structure of Resource Information Service

Resource Information Service is responsible for providing resource information in

our framework. It is implemented in the form of standard Grid Services. In this

section, the implementation details of the Resource Information Service will be

presented.

CHAPTER 5. MGS API 62

From Fig. 5-3, we can see that the service contains a Resource Manager Agent

and a Resource Manager object. The Resource Manager Agent is a static agent

which will never perform any migration. It is used to obtain agent information from

the JADE platform and send A C L messages to Monitor Agents. On the other hand,

the Resource Manager object is used to pass command to and communicate with the

Resource Manager Agent.

The source of the resource information used in the Resource Information

Service is the Ganglia cluster monitoring system [27]. After installing the Ganglia

system on a host, the raw resource data of the machine including processor and

memory information, CPU and memory usage and host data can be collected.

Therefore, all machines in the grid must be installed with the Ganglia system in

order to generate resource data for all grid nodes. The resource data will then be

obtained by a Globus Index Service [26] called Default Index Service. The Default

Index Service will be set up automatically when the Globus container is created. It

obtains the generated data from the Ganglia system regularly and makes the resource

information accessible from others. Originally, the resource information in the

Default Index Service is updated only every five minutes which is too infrequent for

our framework. After modification, it will update the resource information every 60

seconds.

The Resource Information Service gets the resource information by querying

the Default Index Service about the value of resource property "Entry". It is repeated

every 60 seconds such that the information can be updated repetitively. Fig. 5-4

shows the resource data of a host (in form of X M L file [3]) received from the query.

The collected information will then be processed under a series of procedures.

CHAPTER 5. MGS API 63

The first step is filtering out the irrelevant information. In our current

implementation, we only focus on the information of CPU clock speed, last minute

CPU usage, current available R A M size and available harddisk space. According to

the configuration of the Resource Information Service, only resource data of the

specified hosts will be considered. If no host is specified in the configuration, the

information of all available hosts will be considered. The resource information will

be further processed to calculate three values (CPU, R A M , HD) before transferring

to the Monitor Agents. The treatments on the data are done in the Resource

Information Service in order to reduce the message size used for resource data

transmission and avoid duplicate calculations in every Monitor Agents.

<nsl:Host nsl:Name="dell04" nsl :UniqueID="dell04">
<ns 1 :Processor ns 1 :CacheLl="0" ns 1 :CacheL 1 D="0"

nsl:CacheLlI="0" nsl :CacheL2="0"
nsl:ClockSpeed=’’3192’’
nsl :InstructionSet="x867>

<ns 1 :MainMemory nsl :RAMAvailable二" 17"
nsl:RAMSize="2024" nsl : Virtual Available � "2114"
nsl:VirtualSize="41697>

<nsl :OperatingSystem nsl :Name="Linux"
nsl :Release="2.6.9-l .667smp7>

<nsl:Architecture nsl :SMPSize="47>
<nsl :FileSystem nsl :AvailableSpace="53712"

nsl :Name�"entire-system" nsl :ReadOnly�"false"
nsl :Root=7" nsl:Size="635447>

<ns 1 :NetworkAdapter nsl ;IPAddress=" 192.168.0.14"
nsl : InboundIP�"true" nsl:MTU="0"
nsl:Name="dell04" nsl:OutboundIP="true7>

<nsl :ProcessorLoad nsl :Lastl5Min="20"
nsl:LastlMin=" 149" ns l :Last5Min�"57"/>

</nsl:Host>

Figure 5-4: Resource data (XML file) received by Resource Information Service

Before presenting the calculation of the CPU, R A M and H D values, three

CHAPTER 5. MGS API 64

"maximum" variables used in the Resource Information Service will be introduced

first. These three variables are Max—CPU, Max—RAM and Max H D which are the

best possible/expected CPU ClockSpeed, R A M available and Harddisk space

available in the whole grid respectively. These variables are configurable during the

setup of the Resource Information Service and the grid managers can adjust suitable

values for their own grid according to the hardware available and the expected

service requirement. Table 5-1 shows the unit used in the three "maximum"

variables and an example configuration in a grid:

Table 5-1: E X A M P L E V A L U E OF T H E T H R E E " M A X I M U M " VARIABLES IN

R E S O U R C E INFORMATION SERVICE

Variable Name Example Value Unit

Max CPU 2800 (2.8 GHz) Megahertz (MHz)

Max—RAM 1024 (1 GB) Megabyte (MB)

Max—HD 1024 (1 GB) Megabyte (MB)

Assume that Host A has a 3.0GHz CPU and the current CPU usage is 20%.

Moverover, 499MB R A M is available now and there is 5000MB free space in the

harddisk. In the Resource Information Service, the CPU, R A M and H D values of

Host A can be calculated as follows:

CPU = (3000 * (1-20%)) / Max CPU = 2400/ 2800 = 85.71%

R A M = 499 / Max—RAM = 499 / 1024 = 48.73%

CHAPTER 5. MGS API 65

H D = 5000 / Max_HD = 5000 / 1024 = 488% (chop to 100%)

In this case, the resource data of Host A (CPU=8571, RAM=4873, HD-10000)

will be transferred to appropriate Monitors Agents.

The calculated value must be between 0 and 10000. It represents the percentage

of available CPU/RAM/HD compared with the best possible/expected resources.

After the calculation, the processed results will be sent through A C L messages.

For each round of resource information distribution (every 60 seconds), the

service will pass some commands to the Resource Manager Agent via the

object-to-agent channel in the Resource Manager. The Resource Manager Agent will

perform different actions when it obtains different types of command including

"prepare", "resource" and "decide".

When the "prepare" command is received, it represents the beginning of a new

round of resource information distribution. The Resource Manager Agent will first

determine the audience for this round of information distribution (new audience list

will be prepared for each round). It is required to search for all Monitor Agents

available in the JADE platform. Since all Monitor Agents will register to the JADE

platform and specify their service type as "monitor-agent", the Resource Manager

Agent can search for all agents with service type as "monitor-agent" by sending

query to the Directory Facilitator (DF) in the JADE main container. The received

Monitor Agent information will not be used to make the audience list directly. Only

a portion of Monitor Agents will be selected to add into the list. The selection is

done randomly according to the <SendingPercent> tag in the configuration file of

the Resource Information Service. If the value stated in the <SendingPercent> tag is

30, each Monitor Agent will be selected with a 30 percent chance.

CHAPTER 5. MGS API 66

When the "resource" command is received, the processed resource data of a

specific host is transferred to the Resource Manager Agent. Since each "resource"

command carries information for a single host only, the agent usually receives

multiple "resource" commands in every round such that resource information of all

available hosts can be collected. For receiving each "resource" command, the

enclosed resource data will be sent in form of A C L messages to all Monitor Agents

marked in the audience list.

When the "decide" command is received, it represents the end of this round of

resource information distribution. After that, a "decide" message will be sent to

each Monitor Agents marked in the audience list. Monitor Agent will ignite the

migration decision only when it receives the "decide" message. The Monitor Agents

for different Mobile Grid Services can then use the received resource information to

make their migration decisions.

5.2.6 Example Application

Fig. 5-5 shows an example of Mobile Grid Service developed on top of the M G S

API. In the constructor of this Grid Service "MyApplication", an AgentManager

object is created with the name of the configuration file (in line 5). Two methods are

implemented for the client to interact with the service "MyApplication". In method 1,

the createAgentQ method of AgentManager object is used to create a Task Agent

named "taskl" using the Java class in path "my Path. M y Task Agent" (in line 8). In

method2, we create and send an A C L message with content “stop—counting,，to the

Task Agent "taskl". After that, a reply will be received as the return of sendACLQ

method (in line 11 to 13). Further handling on the reply can be done according to the

CHAPTER 5. MGS API 67

service requirement.

This example demonstrates the general techniques of implementing Mobile

Grid Services using M G S API. The basic steps include the creation of

AgentManager object, using it to create Task Agents and Monitor Agents, and use

other provided methods to implement any interactions between users and agents.

1 public class MyApplication{
2 AgentManager manager;
3 public MyApplication(){
4 ...
5 manager = new AgentManager("serviceSetting.xml");
6 }
7 public method 1 () { //start Task Agent
8 manager .createAgent("taskl"myPath.MyTaskAgent" , null);
9 }
10 public method2() { //ask Task Agent to do something
11 ACLMessage rnsg = manager.createACLMessage(‘‘task 1 ’ � �

12 ACLMessage.REQUEST, “stop—counting”）；

13 String reply = manager.sendACL(msg);
14 ... // handling of the reply
15 }
16 …
17 }

Figure 5-5: An example Mobile Grid Service developed using the M G S API

Chapter 6

Security Support for Mobile Grid
Services

In this chapter, the security support in the Mobile Grid Service Framework is

introduced. The Mobile Grid Service Framework is not practical if no security

measures are provided. To complement the framework, security mechanisms

consisting of authentication, authorization, message integrity and confidentiality,

agent permission and agent protection are added into our framework. The details of

these mechanisms except agent protection (which will be introduced in Chapter 8) as

well as the security facilities provided in the M G S API will be presented.

6.1 Overview

Security is an important consideration when deploying Mobile Grid Services to

real-world applications. Security measures should be included in the framework to

protect the computation of the services in potentially hostile environments.

Otherwise, the Mobile Grid Service Framework is incomplete and impractical. If it

68

CHAPTER 6. SECURITY SUPPOR T FOR MOBILE GRID SER VICES 69

lacks security mechanisms, the usage and development of Mobile Grid Services will

be inhibited. For example, all applications containing privacy information cannot be

developed in the form of Mobile Grid Services.

To provide security support in the Mobile Grid Service Framework, we do not

need to fully implement all required mechanisms. Since our framework realizes

service migration by combining the Java Agent Development Framework (JADE)

[14] and Globus Toolkit 4 (GT4) [8], our framework can reuse their own security

mechanisms to provide security services to Mobile Grid Services. For JADE, the

security support is provided by an add-on called JADE-S. It provides user

authentication, agent actions authorization against agent permissions and message

signature and encryption. In GT4, the part providing fundamental security services

for grid services is the Grid Security Infrastructure (GSI) [11]. It is concerned with

establishing the identity of users or services, protecting communications, and

determining who is allowed to perform what actions.

By integrating the facilities of JADE-S and GSI into our framework, we can

provide most of the essential security services for the Mobile Grid Services. Besides,

we import other mechanisms to supplement the deficiencies of JADE-S and GSI and

improve them. In general, four security mechanisms are provided in the framework.

They are authentication, authorization, message integrity and confidentiality, agent

permission and agent protection. Except for the agent protection which is presented

in the next chapter (Chapter 7), the details of the other three mechanisms will be

described separately in the following sections.

CHAPTER 6. SECURITY SUPPOR T FOR MOBILE GRID SER VICES 70

6.2 Authentication and Authorization

Authentication and Authorization are important in a secure grid system. They protect

the Grid Services against abusing by unauthorized users. Authentication is an

essential element for grid security which is the act of establishing or confirming the

identity claimed by an entity. Without Authentication, the identity claimed by each

entity may be faked and no identity can be trusted. Authorization is the process to

check if the consumer has been granted permission to use a resource. In this section,

the meaning of authorization is bound to the access right of Grid Services.

^ ^ GSI JADE-S

^ ^ < • A g e n t M a n a g e r <

U s e r F ^ L A g e n t s
C—IR—R

•F�
X.509 certificate Username

&

password

Figure 6-1: Authentication and authorization in M G S

In the framework, the authentication and authorization mechanisms for the

Mobile Grid Services are mainly based on the GSI. As shown in Fig. 6-1, X.509

certificates [12] are used in GSI to guarantee the identity of the user, service and

hosts during grid service requests. X.509 certificates provide each entity (user or

service) with a unique identifier and a method to assert that identifier to another

party through the use of an asymmetric key pair bound to the identifier by the

certificate. By using the identities, the services can be configured to allow the access

CHAPTER 6. SECURITY SUPPOR T FOR MOBILE GRID SER VICES 71

of clients with certain identities. Conversely, the client can choose to invoke services

with certain identities only. It is important for us to make sure that users get services

from valid service providers and the services are provided to valid users at the same

time.

The authorization of Grid Services is not limited to use a uniform setting within

the whole service. It can also be organized on a per method basis. That means each

method (operation) in any Grid Services can be configured separately such that only

certain users are authorized to invoke it. For example, in a grid service offering two

operations (Method_A and Method_B), Method—A can only allow User—X to access

whereas Method—B can allow both User—X and User—Y to invoke.

As our framework involves mobile agents, the authentication and authorization

of agents in the JADE agent platform should be considered as well. The

authentication and authorization mechanism in JADE-S guarantees that users

creating containers and agents are known to the system. This is achieved by

checking whether the user's usemame and password are valid or not. This prevents

agents created by unknown users from abusing grid resources or illegally interacting

with other working agents such as Task Agents and Monitor Agents.

Initially, each valid service provider should get their own username and

password pair for the JADE platform. All these password information will be

recorded in a password file in the JADE Main Container. It is used for the password

checking process during authentication. Service providers need to offer their

usemames and passwords when they start up the service (simultaneously login to the

JADE platform). This ensures that only people possessing valid passwords (valid

service providers) can login to the JADE platform. No one can login to JADE and

CHAPTER 6. SECURITY SUPPOR T FOR MOBILE GRID SER VICES 72

carry out any attack unless he gets a valid usemame and password.

The JADE-S authentication and authorization is done by service providers only

and service requestors do not need to enter passwords for their own identity for the

JADE platform. This hides the presence of the JADE platform from the service users.

In this design, the creation of agents in a service is on behalf of the service provider.

That means that all the actions done through the service (even via agents created in

the service) will be on behalf of the service provider but not the caller of the service.

This is reasonable as the agent of a Mobile Grid Service is the extension of the

service which should work on behalf of the service provider.

6.3 Message Integrity and Confidentiality

Message exchange is important in our framework since most of the interactions

between Grid Services and clients as well as the communication among agents are

based on message exchange. It will become a main security vulnerability of the

Mobile Grid Services if there is no message protection.

To prevent it, we have provided mechanisms to offer both message integrity

and confidentiality in the framework. Message integrity means the confidence that

the message data has not been tampered with during transmission. Receiver can

verify messages were not altered in transit from the sender. This can be achieved by

using message signature. A mathematical hash will be computed for the message and

stored in the message before sending to sender. The recipient can ensure that the

received message has not been changed by computing the hash again.

CHAPTER 6. SECURITY SUPPOR T FOR MOBILE GRID SER VICES 73

On the other hand, confidentiality is the confidence that only the expected

receiver will be able to read the clear message. This prevents the privacy details in

the message from being disclosed by eavesdropping. This can be achieved by

message encryption. The message will be first encrypted by the sender and then

transmitted to the receiver containing a decryption key. The content of the encrypted

message is meaningless to anyone without the correct decryption key.

GSI JADE-S

• A g e n t M a n a g e r < ^ ―

U s e r ^ ^ ^ ^ A g e n t s
SOAP ACL

message message

Figure 6-2: Message exchange in M G S

As shown in Fig. 6-2, the message protection mechanism is divided into two

levels in our framework. It is because our framework involves two types of message

exchange. One of them is the Agent Communication Language (ACL) messages for

the JADE agent communication while another is the Simple Object Access Protocol

(SOAP) [5] messages for the interaction between services and clients.

In JADE, agents communicate with each other by the A C L messages defined

by the FIPA international standard [13] for agent interoperability. JADE-S supports

signature and encryption on the A C L messages such that developers do not need to

deal with the actual signature and encryption mechanisms. Developers just need to

request a message to be signed (encrypted) or check whether a received message has

been signed (encrypted) by calling appropriate libraries.

CHAPTER 6. SECURITY SUPPOR T FOR MOBILE GRID SER VICES 74

In GT4, SOAP is used as the Web Services message protocol for

communication. All interactions between clients and services are by means of SOAP

messages. To protect the integrity and confidentiality, GSI provides mechanisms for

signing and encrypting the SOAP messages. This can be done by configuring the

corresponding policy file (security descriptor).

Since the overhead of signature and encryption heavily depends on the message

length and frequency, it may be large and affects the normal execution. Therefore, in

our framework, message integrity and confidentiality are not compulsory and

service providers can decide whether to use them or not according to their specific

consideration.

6.4 Permissions on Agents

JADE-S

A g e n t M a n a g e r <

八 A g e n t s

\ Right to /
/ action \

Policy file

Figure 6-3: Agent permission in Mobile Grid Services

In this section, the action permission of the agents in the Mobile Grid Services will

be considered. Unlike the authorization mentioned in the previous section (which is

about the clients' right to access a service), this section focuses on the permission of

CHAPTER 6. SECURITY SUPPOR T FOR MOBILE GRID SER VICES 75

agent actions in a service.

In our framework, permissions will be used to prevent agents in a Mobile Grid

Service from abusing grid resources or improper interaction with Task Agents and

Monitor Agents of other Mobile Grid Services.

Through the permission mechanism in JADE-S, we are able to assign some

permissions to agents to limit their actions. This can selectively allow agents with

certain identity to perform some actions or access some resources according to a set

of rules described in a policy file. The format of the rules must follow the Java

Authentication and Authorization Service (JAAS) syntax [29:.

JAAS has already defined a series of local resource permissions which

represent the rights to access different system resources. For instance,

FilePermission represents the right of accessing (including read, write and execute)

to a file or directory. By explicitly specifying suitable FilePermission for the agents

from a Mobile Grid Service, Resource providers can prevent those agents from

accessing other privacy files which are independent of this service. Other JAAS

defined permissions include SocketPermission (access to network) and

RuntimePermission (e.g. create class loader, halt JVM).

Besides those JAAS permissions, JADE-S has defined some JADE related

permissions which are used in the JADE architecture only. For example,

AgentPermission is used to limit the actions such as killing and creating to agents

with certain names or owned by certain identities. MessagePermission is used to

limit the communication among agents with different owners.

By setting suitable JAAS and JADE permissions in the policy file, we can

restrict the agent actions within the execution of Mobile Grid Services in each

CHAPTER 6. SECURITY SUPPOR T FOR MOBILE GRID SER VICES 76

container (grid nodes). This can prevent Mobile Grid Services from abusing grid

resources or inhibiting other Mobile Grid Services' execution.

6.5 Security facilities in MGS API

In this section, we will demonstrate the security support in the M G S API. Since the

M G S API is constructed by combining the JADE and Globus toolkits, the security

support can also be divided into 2 parts: Globus-side (between clients and Agent

Manager) and JADE-side (between Agent Manager and related agents).

Taking the advantages of conforming to the Globus Grid architecture, the

Globus-side security in the API can fully employ the facilities in the Globus toolkit.

No change is required for the implementation of the components in the M G S API.

Moreover, no additional facility for Globus-side security is necessary to be provided

in the M G S API.

The situation is different for JADE-side security. The components in the M G S

API need to be modified in order to adapt to the security mechanisms provided in

JADE-S. Besides, service developer should specifically handle agent

implementation and configuration tasks in order to employ the agent security

mechanisms. However, normal Grid Services developers are not expected to be

familiar with the mobile agent technology and the JADE toolkit. It becomes a barrier

for them to use the M G S API to develop secure Mobile Grid Services.

Therefore, extra facilities aiming to help developers to handle the agent

implementation and configuration work is provided as the security support in the

CHAPTER 6. SECURITY SUPPOR T FOR MOBILE GRID SER VICES 77

M G S API. In the following sections, the details of the security support in the form of

M G S component modifications, security libraries and M G S configurations will be

described.

6.5.1 Major modifications for MGS components

In this section, the main modifications in the components of the M G S API for

adapting to the JADE-S are discussed. The details are as follows:

SecurityHelper object To utilize the functions provided by the JADE-S, a

SecurityHelper object should be created in each agent. It provides an agent all

methods for accessing security functionalities. Therefore, it will be created during

the agent initialization of Agent Manager Agent, Task Agent, Monitor Agent and

Resource Manager Agent (in the Resource Information Service) in our framework.

However, the SecurityHelper object does not implement the Serializable

interface of Java such that it is unable to move along with the JADE agent during

migration. This is owing to JADE-S does not provide full support to agent mobility.

Therefore, special handling of the SecurityHelper object is required for the Task

Agent and the Monitor Agent (which may perform migrations during their

execution). Before any migration, the credential will be extracted from the

SecurityHelper object and then stored in an instance variable in the agent. After that,

the SecurityHelper object will be discarded. After the move, a new SecurityHelper

object will be created in the agent again and the extracted credential will be added

back to it. This can solve the serialization problem caused by the SecurityHelper

object and maintain the consistency of the credential in the agent.

CHAPTER 6. SECURITY SUPPOR T FOR MOBILE GRID SER VICES 78

Secure message exchange By using JADE-S, signing or encrypting an A C L

message can be achieved by invoking the setUseSignatureQ or setUseEncryptionQ

method of the SecurityHelper object before sending a message. However, sender

should obtain public key of receiver first in order to have a successful message

encryption. This is achieved by sending principal request to the receiver directly.

The JADEPhncipal object (contains the public key) of the receiver can be obtained

in the reply. This is an essential process for the first time of encrypted message

exchange between two agents. Therefore, the handling of principal request is added

to all kinds of agent in the M G S Framework. To ease the development of services

with secure A C L message exchange, the additional processes for sending secure

messages are encapsulated in the security libraries provided in the M G S API (details

in section 6.5.2).

For receiving signed or encrypted messages, the checking of the signature

validity and the decryption of message is done automatically by JADE-S. Hence, no

additional handling needs to be implemented in the API. For the Task Agent (and its

subclass — Monitor Agent), message receiving is caused by invoking receiveMGSQ

method. This method will return an A C L message in clear text no matter the

received message is signed or encrypted.

Establishment of secure mode Another major modification is the establishment of

secure mode. All components of the Mobile Grid Services can be chosen to run in

normal mode or secure mode. The additional codes for security support including

the M G S security libraries will execute only when the service/agent is in secure

mode. This design reduces unnecessary overheads when service providers do not

CHAPTER 6. SECURITY SUPPOR T FOR MOBILE GRID SER VICES 79

want their services running under security protection. The running mode of a service

(Agent Manager) will determine whether the created Task Agents and Monitor

Agents run in secure mode or not. It is configured by configuration files.

6.5.2 MGS Security Libraries

The security libraries mainly take charge of the A C L message protection in the

Mobile Grid Service (JADE agents communicate and interact with each other by

exchanging A C L messages).

The libraries are used in the implementation step of the Mobile Grid Services.

Through employing appropriate libraries, the message can be protected against

altering and eavesdropping by message signature and message encryption

respectively. Therefore, developers can freely decide whether the A C L messages

sent by an agent are signed/encrypted or not. The security libraries for each service

components' implementation will be described next.

Agent Manager For the Agent Manager component's implementation in a service,

Agent Manager should send A C L messages to its Task Agent at appropriate times. In

the AgentManager class of the M G S API, various methods are provided for sending

A C L messages with different protection levels to Task Agent. These methods are

sendACLQ, sendSignedACLQ, sendEncryptedA CL () and sendFullSecureA CLQ

methods for sending plain text, signed only, encrypted only and both signed and

encrypted message respectively. The actual process of signing and encrypting A C L

messages (including asking for public keys and principal exchange) is hidden from

the developers.

CHAPTER 6. SECURITY SUPPOR T FOR MOBILE GRID SER VICES 80

Monitor Agent For the Monitor Agent, the A C L message protection is determined

by the msgNeedSign and msgNeedEncrypt flags in the MonitorSetting object. The

MonitorSetting object is an argument passed in during the creation of the Monitor

Agent. These two flags indicate whether the messages sent by the Monitor Agent

require signature and encryption respectively. For example, a plain text A C L

message will be sent by this Monitor Agent if both flags are set as false. Therefore,

developers have to organize suitable settings before passing the MonitorSetting

object as argument.

Task Agent For the Task Agent, similar to the Monitor Agent, developers are

required to pass the TaskSetting object with suitable setting as argument during the

creation of the Task Agent in order to decide the A C L message protection level.

Again, the msgNeedSign and msgNeedEncrypt flags are available in the TaskSetting

object for indicating the protection level. The sendMessageQ method is the main

method provided for the Task Agent to send A C L messages according to the two

flags in the TaskSetting object. By employing the sendMessageQ method as the

unique message-sending method, the A C L messages sent by this Task Agent will

have an uniform message protection level.

However, developers sometimes may require various levels of protection for

different message exchanges in a Task Agent. Hence, the M G S API provides four

extra methods for the Task Agent to send A C L messages with different protection

levels. They are sendClearMsgQ, sendSignedMsgQ, sendEncryptedMsgQ and

sendFulSecureMsgO methods. These four methods will ignore the msgNeedSign and

msgNeedEncrypt flags and send an A C L message in the form of plain text, signed,

CHAPTER 6. SECURITY SUPPOR T FOR MOBILE GRID SER VICES 81

encrypted and signed plus encrypted respectively. They will be helpful for the

developers having special security requirements.

Besides normal message exchange, Task agent will send its task result to Agent

Manager by invoking notifyResultQ or notifyFinalResultQ method. These methods

employ the DF notification in JADE where the result content cannot be protected by

encryption. To complement this problem, notify ConfidentialResultO and

notifyConfidentialFinalResultO methods are provided in the API for sending

confidential result to Agent Manager. They will set the confidential result in the

agent first and then notify Agent Manager through DF service notification. After

receiving request for the result, the confidential result will be sent to Agent Manager

by encrypted message.

6.5.3 MGS Security Configuration

According to the Mobile Grid Service Framework, a grid supporting Mobile Grid

Services must contain a JADE platform (with containers residing on all grid nodes).

During each service's initialization, a new service container will be created and

connected to the JADE platform. In fact, secure Mobile Grid Services require a

secure JADE platform. The secure JADE platform can be realized by using the

JADE toolkit with JADE-S add-on and proper configurations.

Therefore, the configuration of M G S involves two parts: JADE platform

configuration and service configuration. If the service developers want to employ

the security mechanisms (Authentication, authorization, agent permission and

message integrity and confidentiality) provided in the Mobile Grid Service

Framework, the Mobile Grid Services as well as all JADE containers in the platform

CHAPTER 6. SECURITY SUPPOR T FOR MOBILE GRID SER VICES 82

must be configured to run in secure mode.

The configuration of a JADE container is done by setting parameters in the

JADE configuration file. These parameters determine whether the container is main

container, runs in secure mode, registers to which host, etc. For secure mode, an

extra JADE policy file describing agent permission is required for each container.

For the service configuration, service providers are required to prepare a file

called M G S Configuration file for each Mobile Grid Service. In the M G S

Configuration file, service providers can specify the service name, the running mode

(normal or secure) and the JADE Configuration file used for service container

creation.

MGS Configuration Helper Configuration of each container needs to handle a set

of configuration files. W e can imagine that configurations of Mobile Grid Services

and the grid supporting them involve many configuration files. Consequently, the

M G S Configuration Helper is provided to ease the configuration tasks and reduce

mistake.

It is a Java program for helping service and resource providers to handle the

configuration works of the JADE platform. Service or resource providers can handle

the JADE-side configuration works in a graphical user interface of the program

instead of dealing with the configuration files separately. (The guide for the

configuration work and using the M G S Configuration Helper are presented in

Appendix B.)

Chapter 7

Agent Protection for Mobile Grid
Services

As the mobile agents in the Mobile Grid Services will migrate to and execute on

untrusted hosts, the code or the data of the mobile agents may possibly be modified

by the hosts during the execution. Therefore, we should have some measures to

protect the agents against malicious hosts which may attack their incoming agents.

Unfortunately, this kind of agent protection is not provided in JADE or JADE-S. In

this chapter, the mechanism used to achieve the agent protection in the Mobile Grid

Service Framework is proposed. Besides, the implementation details of the

mechanism as well as its strength and weakness will be discussed.

7.1 Overview

Among several current approaches for agent protection against malicious hosts [30,

31, 32, 33] (including execution tracing, computing with encrypted function,

introducing a trusted hardware, and adding time limitation), execution tracing is the

83

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 84

most suitable one because of the high feasibility, large scalability and relatively high

accuracy. Execution tracing methods employ re-execution to detect malicious

actions. For each mobile agent execution in a host, the initial state, inputs from the

outer environment and the final state will be recorded in a trace. By using the details

in the traces, the execution can be re-executed in another host. If any inconsistent

result is found in the re-execution, modification of data or code of the mobile agent

by the malicious hosts can be detected.

[“ M o b i l e Grid Service ！

I 2—~~~ Trace B

I Agent Manager 1 ^
I I Task Aoe^
L_|i J ^ S

\\<#>
\ \ Node A Node B

Trace C ^ ^ ^ ^ ^ 4
checker

Figure 7-1: The overview of the "Execution Tracing with Randomly-Selected

Hosts" mechanism

In our Mobile Grid Service Framework, the agent protection is achieved by

combining the "Execution Tracing with Randomly-Selected Hosts" method [34] into

the Mobile Grid Service Framework. To gain the protection, service developers are

responsible to provide a checker (agent carrying out the re-execution) for each Task

Agent. Fig. 7-1 shows the steps involved when the "Execution Tracing with

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 85

Randomly-Selected Hosts" method is carried out in our framework. The steps are as

follows:

1. The Agent Manager of a Mobile Grid Service at Node A sends its Task Agent to

another host (Node B) for execution.

2. After finishing the execution on each host (Node B), the Task Agent will

produce a trace (Trace B) for this host and forward it to the Agent Manager.

3. The Task Agent can then migrate to other hosts for other resources and continue

its execution.

4. Once the Agent Manager has received the trace from a host (Node B), it will

create a checker in that host (Node B).

5. After the Task Agent has visited several different nodes, some checkers will be

residing on the visited hosts. The Agent Manager also has received some traces

and it will randomly send each received trace to one of those checkers (except

the one in the host producing that trace) for re-execution. In this example, Trace

C is sent to the checker in Node B.

6. The checker compares its result and the recorded result in the trace after

re-execution. If there is any inconsistency, there is an attack. The checking

result is positive when consistent re-execution is obtained. Finally, the checker

will report the checking result to the Agent Manager.

If the Agent Manager receives any report of attack, it will stop the Task Agent

and report it to the client. This can ensure that the mobile agents are not attacked by

malicious hosts.

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 86

7.2 Major modifications

To apply the “Execution Tracing with Randomly-Selected Hosts" to the Mobile Grid

Service Framework, some modifications must be done on the tracing mechanism as

well as the M G S Framework. The main modifications are shown in details as

follows:

7.2.1 Exempting checking for executions on home host

Since the home host (where the service is setup) is assumed to be trusted, the

execution carried out on it should be correct and never suffer attacks. It is wasteful

to do any checking for the stages executed on the home host originally. Hence,

special handling is designed to reduce those redundant checking. When the Agent

Manager receives a trace from a Task Agent who is currently executing on the home

host, the trace will not be sent to any Checkers. Instead, this execution stage will be

marked as checking completed directly. The treatment will be the same as receiving

positive checking result from a virtual checker located on the home host.

This design aims to reduce unnecessary checking and save resources in the grid.

Besides, this helps to accelerate the tracing process and allow users to receive the

reliable results earlier.

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 87

7.2.2 New definition of stage

setStageEndO setStageEnd() setStageEnd()

y r \ f ^ r

Stage 1 S tage 2 S tage 3 S tage 4 . . . S tage n

“ i I i L “

Task Agent start migration migration Task Agent end

Figure 7-2: Example stage partition in a Task Agent's execution

In the "Execution Tracing with Randomly-Selected Hosts", the execution of the

Task Agent is divided into some parts. Each part is called a stage. In the original

design, developers have to indicate the stage end before any agent migration. It is

done by invoking specific methods in the code of the agent at compile time.

However, it is not applicable in our framework where automatic agent migration will

occur. Therefore, some modifications are made on the definition of stage.

In our framework, the ending of each stage is identified by user-specified stage

end (invocation of setStageEndQ method) or migration. Fig. 7-2 is an example

showing stage partition in a Task Agent's execution. In the example, the Task Agent

enters the first stage after it starts. The first stage will end with the Task Agent

running the setStageEndQ method. After that, a new stage will start and execute until

the migration occurs. In this way, a series of stages will be formed throughout the

execution. Finally, the last stage terminates at the end of the Task Agent execution.

This design conforms to the original "Execution Tracing with

Randomly-Selected Hosts" such that each stage will be executed on a single host

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 88

only. In other words, each stage has one and only one execution host. The drawback

is that the number of stages in the Task Agent's execution is not under control.

Automatic agent migrations may bring uncountable additional stages to the

execution and induce significant overheads. However, the number of automatic

migrations should be small under normal situation.

7.2.3 Extra operations in Task Agent and Agent Manager

According to the "Execution Tracing with Randomly-Selected Hosts" mechanism,

extra operations will be done in Task Agent and Agent Manager during their

executions.

For the Task Agent, the extra operations include the creation of trace and the

request for commit. At the end of each stage, the Task Agent will create a trace by

the details of the initial state of the stage, input A C L messages and the current state.

The trace will be sent to the Agent Manager to ask for stage commit. After receiving

the reply of Agent Manager, the Task Agent can continue execution or migration.

(Details in section 7.3.2)

For the Agent Manager, the additional operations include receiving of traces

from the Task Agents, stage commitment, allocation of the received traces to

suitable checking hosts and attack handling (presented in next section). It is also

responsible to create the Checker and move them to suitable hosts. (Details in

section 7.3.1)

7.2.4 Handling of attack

The original "Execution Tracing with Randomly-Selected Hosts" mechanism can

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 89

discover an attack has possibly occurred during agent execution. However, it is

unable to find out the exact host where the attack is located on. In the mechanism, a

possible attack is found when the re-execution result is inconsistent with the original

execution in certain stage. The origin of the inconsistency may be the interfered

original execution (done by Task Agent) or the tampered re-execution (done by

Checker in another host). Therefore, the mechanism cannot determine whether the

original execution host or the re-execution host is malicious.

Finding out the malicious host in the tracing process is important for our

Mobile Grid Service framework. By recognizing the harmful hosts, other Task

Agents in the Mobile Grid Service can avoid migrating to these hosts again. The risk

of being attacked can be reduced. If we just restart the execution of the Task Agent

being attacked without discovering the malicious host, the Task Agent may migrate

to the malicious host again and thus attack occurs again in the new execution. The

execution may never finish. Marking both suspected hosts as malicious is also

impractical because this will waste a reliable resource provider.

To find out the malicious host correctly, at least one more execution for the

attack-found stage is required. This step is called judgment in our framework. The

location for performing the judgment is important. The original execution host and

the re-execution host must not be used as they are suspect. If we choose another

visited host, the judgment may be wrong since the chosen host may be malicious.

Accuracy of the judgment can be increased by repeating the execution in more hosts.

However, the number of available hosts is small in some cases. Besides, this design

will generate a large workload to the grid which is not efficient. Hence, the

judgment should be done on a trusted host instead.

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 90

In our design, the host home is chosen for performing the judgment. The

judgment must be correct since the home host is assumed to be trusted. This design

can limit the judgment to be finished in one step and speed up the judgment process.

Although the judgment will bring extra computations to the home host, the influence

should be rare as judgment is required only when attack is detected.

At the beginning of the judgment, the trace for the attack-found stage will be

sent to the Checker located on the home host. After the home Checker finishes the

re-execution, it will compare the result with that stored in the trace.

Consistent result If the result is consistent, that means the original execution is

correct. The original execution is reliable and it can be marked as checking

completed. On the other hand, if the re-execution host should be malicious then it

will be marked in a blacklist stored in the Agent manager. The blacklist will be sent

to all Monitor Agents such that they can then refer to the blacklist when making

migration decisions. This can prevent further execution and checking from being

carried out on the found malicious hosts.

The checking performed by the malicious Checker cannot be trusted anymore.

Any incoming re-execution result from the malicious Checker will be ignored. For

the stages whose checking are assigned to be done by the malicious Checker

(including those that are waiting for results and those that have already received

results), all the checking result will be removed and their traces will be sent to other

Checkers for re-execution. This makes sure the checking is reliable.

For the stages whose original executions are done in the malicious host, no

extra operation will be done. Even the executions of those stages are done on the

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 91

malicious host, any incorrect execution result will be found by the checking process.

If those stages pass the checking, we can trust their execution is reliable and the

overall execution is not affected. This can reduce unnecessary execution caused by

the detection of malicious host.

Inconsistent result If the result is inconsistent, that means the original execution is

wrong. The execution of the Task Agent is under attacks and its result cannot be

trusted anymore. Therefore, the execution of the Task Agent should be stopped and

the service requester should be notified for such an attack.

In our M G S framework, the Agent Manager will send messages to stop the

Task Agent under attack and its corresponding Monitor Agent (if any). The

execution result (stored as a MGSResult object) for the Task Agent will be marked

as "attack-found". When the requester of this service obtains the result, he can know

the situation and request for the service again (if necessary).

7.3 Implementation details

In this section, the implementation details of all components used for supporting

agent protection in the M G S Framework will be presented separately.

7.3.1 Agent Manager

To make the Agent Manager to support agent protection, modifications are made on

the AgentManager and the Agent Manager Agent classes.

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 92

For the AgentManager class, one of the modifications is the establishment of

protection mode. The facilities for agent protection support execute only when the

services are running in protection mode. This design reduces unnecessary overheads

when service providers do not want their services running under agent protection.

Therefore, protected Task Agents can only be created by the Agent Manager under

protection mode. At the same time, Task Agents which do not employ agent

protection can still be created and run properly when the Agent Manager runs in

protection mode.

A g e n t M a n a g e r � p r o t e c t i o n m o d e)

AgentManager object ^ ^ ^ ^ ^
/ ^ Z Checkers \

/ FTSBehaviour checking \

blacklist Of host] I L J 忍 ^ ^ ^ /

I 1 \ commitment \ � / " N /
judgment list \ Agent Manager � f J ^ /

h = = H \ V /
chain of StageElement — T a s k y /

I 场 ^ ^ ^ ^ ^ A g e n t ^
^ ^ ^ General ^ ^ ^ ^

Figure 7-3: Agent Manager in protection mode

Besides the establishment of protection mode, extra lists are added to the

AgentManager class for storing useful information used by the tracing process (Fig.

7-3). For example, the blacklist of available hosts is used to record all detected

malicious hosts in the service; the judgment list is used to store the trace of the

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 93

stages required to carry out the judgment. For each Task Agent, a chain of

StageElement objects is stored for keeping track of the traces and other important

information for all stages in the whole Task Agent execution. In each StageElement

object, the trace (contains initial state, final state and all stored messages), the

execution host, the assigned checker and the checking result of a stage are recorded.

In addition, a list of available Checkers is maintained for each Task Agent such that

it can be used for the random Checker selection process.

For the notification of tracing result, the MGSResult object is utilized again.

After a protected Task Agent finishes its execution, the Agent Manager will mark the

received result in an MGSResult object. Through the method provided in the

AgentManager object, the service requester can obtain a "finished" MGSResult

object even when the checking process has not yet finished. In this case, the checked

flag will be set to false (indicate that the result is not fully trusted). After all the

checking has finished and no attack is found, the checked flag will be set to true. If

an attack is found, the MGSResult object will be set as "finished" and "checked"

while its result field will become “ATTACK—FOUND”

For the side of the Agent Manager Agent class, a new behaviour class called

FTSBehaviour is implemented. The FTSBehaviour object will be created and

executes as a part of the AgentManagerAgent under protection mode. It is

responsible for all message handlings involved in the "Execution Tracing with

Randomly-Selected Hosts" process. The main operations in the FTSBehaviour

including stage commitment, Checker selection and receiving re-execution report

will be described as follows:

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 94

Stage commitment When a protected Task Agent needs to close a stage, it will

send a commit request containing the trace and other information to the Agent

Manager. In the Agent Manager, the agent's itinerary and the stage number stated in

the received commit request will be verified by referring to the chain of

StateElement object for that Task Agent. Besides, the Agent Manager will check

whether the execution host asserted in the commit request is correct. It is achieved

by sending message to ask the JADE agent platform directly. After passing all the

checking above, the commit request will be accepted and the trace and related

information will be stored in a new StateElement object. The StateElement object

will be then added to the tail of the chain.

If the received trace comes from a new execution host which is never visited by

the Task Agent, an additional operation will be done in the Agent Manager. A new

Checker for the Task Agent should be created and migrated to that host. If there is

a Checker created by the same Checker class available on that host already, no

redundant Checker will be created. Instead, the existing Checker will be shared for

all suitable Task Agents. The AID of the Checker will be then added to the list of

available Checkers for that Task Agent.

Checker selection For each received trace, a random Checker selection process will

be carried out. In the process, a checker will be chosen randomly from the checker

list for each stage not having selected a checker. The choice must obey the rule that

the chosen checker is not located on the original execution host for the same stage. If

a stage cannot be assigned by a suitable checker, it should wait for the next selection.

After each selection, the traces (containing initial state, final state and all stored

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 95

messages) for the newly assigned stages will be sent to their chosen Checkers for

re-execution. Besides the trace, the AID of the Task Agent will be included. Unless it

is in the first stage, the final execution state of the previous stage will be also sent to

the Checker. It is used for the checking of consistency between previous final state

and current initial state.

Receiving re-execution report After the Checkers finish their checking, the Agent

Manager will receive the reports from them. For the positive checking results, the

checking result field in the StageElement objects representing the appropriate stages

will be marked as true. The checking of those stages is finished. For negative

checking results, judgments are required to determine the malicious hosts. The traces

and other information of those stages will be sent to the Checker at the home host

for re-execution. Since the judgments must be done one by one, the judgments not

yet finished will be stored in the judgment list in the AgentManager object. After

checking results are received from the home Checker, the results will be matched

with corresponding judgment cases stored in the judgment list. The checking result

field in the corresponding StageElement objects will be set as true if the original

execution is correct. If opposite, they will be set as false. The detected malicious

hosts will be handled further (refer to section 7.2.4).

In fact, the Agent Manager provides three additional methods which are

particularly prepared for the agent protection support. The three methods are:

void createProtectedAgent(String agentName, String agentClass, String

checkerClass, Object[] agentArgs)

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 96

This method is used to create a new "protected" Task Agent in the service. It is

similar to the createAgent method except the created Task Agent will be executed

under agent protection support. The argument checkerClass is used to specifiy the

Java class for the corresponding Checker of the created Task Agent. Checker will

not be created during the method invocation. Instead, it will be created after the

Agent Manager receives a valid trace from that Task Agent.

void createProtectedAgentWithMonitor(String agentName, String agentCIass,

String checkerClass, Object[] agentArgs, MonitorSetting setting)

This method is similar to the one above but it will create a default protected

Monitor Agent at the same time. The argument setting is used to configure the

default Monitor Agent.

String checkingAtHome(String agentName)

This method is designed for ensuring that the tracing process of the specific

Task Agent (specified by the argument agentName) can be completed. In fact, the

tracing process may be unable to end in some cases. For example, if a Task Agent

has visited too few different hosts throughout its execution, some stages of the

execution may have no appropriate Checker for performing re-execution. The result

is that the tracing cannot be finished. In this situation, the checkAtHomeQ method

should be invoked. After that, a suitable Checker for that Task Agent will be created

at the home host. All the unchecked stages will be assigned by the home Checker.

Thus, all remaining re-execution can be done on the home host and the tracing can

be finished.

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 97

7.3.2 Task Agent

The protected version of Task Agent supporting agent protection is quite different

from the normal version. The protected version of Task Agent is composed of three

classes. They are ProtectedJbskAgent, FTSLayer and ProtectedTaskBehaviour.

Unlike the flexibility of the Task Agent Template in M G S API, some restrictions are

added such that it can run properly in the protection mode. For example, only one

behaviour (ProtectedTaskBehaviour) will be added to the agent.

ProtectedTaskAgent class It is the main body of the protected Task Agent. It

extends the TaskAgent class in the M G S API to inherit the basic functions of Task

Agent. In addition, it will instantiate a FTSLayer object which provides the essential

functions for the "Execution Tracing with Randomly-Selected Hosts" mechanism.

Moreover, it will create a ProtectedTaskBehaviour object for doing the service task.

Some methods provided in the TaskAgent class are overridden in the

ProtectedTaskAgent class. For example, moveMGS() in Task Agent only starts the

migration process; in protected Task Agent, moveMGSQ will carry out the

commitment process (send trace and request for commit) before migration. Besides,

new receiveMGS() method will not only receive incoming A C L messages, but also

store the received messages to the message log.

To implement a protected Task Agent, developers are required to extend the

ProtectedTaskAgent class. The class contains six abstract methods which must be

implemented by the developers. They are:

• public abstract void normalExecutionQ

The program logic of the service tasks should be implemented in this

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 98

method.

參 protected abstract void msgHandlerQ

This method will be invoked for each iteration. The handling of any

incoming A C L messages should be implemented. Template is provided where

handlings of all essential messages for M G S and agent protection are

implemented. Developers only need to manage the user-defined messages.

• protected abstract boolean endCheckingO

This method is used to determine whether the execution of the Task Agent

is complete. It should return true when stopping criteria is met.

• protected abstract byte[] getlnitStateQ

This method is responsible for extracting the initial execution state from

specific instance variables.

• protected abstract byte[] getFinalState()

This method is responsible for extracting current execution state from the

core instance variables.

• protected abstract void updatelnitStateQ

This method is responsible for updating the specific instance variables

(used for extracting initial state) by the current values of the core variables. It

will be invoked when a new stage starts. Since every Task Agent will have their

own structures of execution state, this method is defined as abstract such that

developers must implement it.

ProtectedTaskBehaviour It is the class dealing with the actual service task. The

abstract methods msgHandlerQ, normalExecutionQ and updatelnitStateQ in the

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 99

Protected丁asLigent class will be invoked by this class.

Figure 7-4 shows the core pseudocodes for the action() method in the

ProtectedTaskBehaviour class. At the beginning of each invocation of actionQ,

msgHandlerQ will be called to receive one incoming message(if any) and try to react

with it (in line 2). After that, normalExecution() is invoked if the agent does not run

in protection mode (in line 17). Otherwise, the execution of each stage is divided into

three phases: begin phase, execution phase and end phase. The begin phase

represents the beginning of a stage. The beginStageQ method in the FTSLayer object

and the updatelnitStateQ method are invoked to update the initial state in the Task

Agent and start a new stage respectively (in lines 5 to 6).

After that, the execution phase is entered. The execution of the service task is

performed in this phase. The normalExecution() will be invoked only during this

phase (in line 10). When the stage is going to end, the end phase is entered. The

commitO method in the FTSLayer object is called for carrying out the commit

process (in line 13). The initial and final states obtained by invoking getlmtStateQ

and getFinalStateO method will be passed as arguments of the commit() method. In

the method, a trace will be created and sent to the Agent Manager for requesting

commit of the stage. After the commit is accepted, the start phase will be entered

again.

After the act ion () method returns, the endCheckingO method (defined in the

Protected丁asLigent class) will be invoked for determining whether the task

execution should be finished. The action() methods will be invoked repeatedly until

the endCheckingO returns true (i.e. stopping criteria is met).

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 100

1 void action(){
2 msgHandlerO;
3 if(agent is in protection mode) {
4 if (begin phase) {
5 ftsLayer.beginStageO;
6 updatelnitStateO;
7 enter execution phase;
8 }
9 else if (execution phase) {
10 normalExecutionO;
11 }
12 if (end phase) {
13 ftsLayer.commit(getInitState(),
14 enter begin phase;
15 }
16 else{
17 normalExecutionO;
18 }
19 }

Figure 7-4: The core pseudocodes for the ProtectedTaskBehaviour class

FTSLayer class This class is responsible for providing methods to allow the Task

Agent to perform the "Execution Tracing with Randomly-Selected Hosts"

mechanism. Besides, it keeps track of the agent's itinerary (execution locations for

each stage) and the current stage number during the execution of the Task Agent.

This class is also used to store the information of the home host and the Agent

Manager for the use of tracing communication.

In order to carry out accurate re-execution in the checking, all message inputs of

each stage must be replicated completely during the re-execution. A message log

(implemented in form of the MessageLog class) residing in the FTSLayer object is

for this purpose. The msgHandler() method will be invoked every iteration. In the

method, it will try to receive one A C L message from the incoming message queue. If

the queue is empty, null message will be received. For each iteration of the task

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 101

execution, the received message including related message, unrelated message and

null message will be recorded in the message log.

In the MessageLog object, unrelated messages will be stored as null messages in

the message log in order to save the storage space. To further reduce the size of the

message log, only non-null messages and the iteration number of their occurrences

are recorded. In this way, the huge amount of null messages (since most of the

iterations should have no incoming message) can be kept away from the message log

and the size of the message log can be minimized.

The most important operation provided by FTSLayer class is the commitQ

method. It is used to create the trace and send commit request to the Agent Manager

at the end of each stage. The trace contains the initial state and the final state (in form

of byte arrays) as well as the message log of the current stage. Besides, the current

stage number and the agent's itinerary will be included in the commit request and

sent to the Agent Manager for the trace consistency checking. The method will return

only after it receives the acceptance of the commit request from the Agent Manager.

This makes sure that new stage starts only after the previous stage ends.

7.3.3 Monitor Agent

Since the MonitorAgent class (the basis of the Configurable Monitor Agent) does not

extend the ProtectedTaskAgent class, it does not support agent protection. On the

other hand, the MonitorAgent class is implemented by extending the

SimpleTaskAgent class. By using the Convert Tool provided in the M G S API, the

classes for the protected version of Monitor Agent as well as the corresponding

Checker can be generated. When the createProtectedAgentWithMonitor() method is

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 102

invoked, a protected Monitor Agent will be created using the

ProtectedMonitorAgent class (with the specified protected Task Agent).

The protected Monitor Agent executes in the same way as the normal Monitor

Agent does except it will also act as a protected Task Agent to carry out the

operations for agent protection (e.g. sending trace to the Agent Manager). The

execution state of the protected Monitor Agent includes the stored details of the best

chosen host as well as the CPU, R A M and H D values of each available host.

Without protection on the Monitor Agent, attack over Monitor Agent cannot be

detected and it may lead to improper execution of the Task Agent (e.g. wrongly send

"move" message to Task Agent). For the tracing result, service requester can obtain

the MGSResult object for the specified Monitor Agent (as a Task Agent) in order to

check the checking result. This provides a complete agent protection covering both

the Task Agent and Monitor Agent.

7.3.4 Checker

To employ the agent protection provided in the M G S Framework, developers are

required to prepare a Checker for each protected Task Agent. Checker is used to

re-execute the tasks done by the protected Task Agent in order to make sure that the

result produced by the Task Agent is reliable. The re-execution done in the Checker

should be exactly the same as the original execution completed in the Task Agent

such that their results will be identical. In fact, simplification of the re-execution is

allowed. For example, re-execution can only concentrate on a single instance

variable and execute the codes which will affect the final value of that variable.

However, the number of iterations (e.g. cannot check first 10 iterations only) and

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 103

messages received (e.g. cannot remove any receiveMGSQ operations) in the

re-execution must be kept unchanged.

Each Checker is created at the home host by the Agent Manager at the

appropriate time. It will move to a suitable container immediately after the creation.

When the Checker receives a trace from the Agent Manager, it will start re-execution

according to the traces. After the re-execution, the Checker will report the

consistency of the execution results to the Agent Manager and start re-execution for

the next trace.

The structure of the Checker is similar to that of the protected Task Agent. The

Checker is also composed of three classes. They are Checker, FTSLayerRE and

CheckingB ehaviour.

Checker class It is the main body of the Checker. It will instantiate a FTSLayerRE

object which provides the essential functions for the Checker to perform the

"Execution Tracing with Randomly-Selected Hosts" mechanism. Moreover, it will

create a CheckingB ehaviour object for doing the re-execution.

To implement a Checker, developers are required to extend the Checker class.

The class contains six abstract methods which must be implemented by the

developers. They are:

• public abstract void normalExecution()

The program logic of the corresponding service tasks should be

implemented in this method such that re-execution can be done during

checking.

• protected abstract void msgHandlerQ

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 104

This method will be invoked for each iteration. The handling of any

incoming A C L messages should be implemented same as those of the

corresponding Task Agent. Unlike the one in the TaskAgent class, this method

will obtain the incoming messages from the message log stored in the trace.

• protected abstract boolean endCheckingO

This method is used to determine whether the execution of the task is

complete. It should be equal to the same method in the Task Agent.

參 protected abstract byte[] getFinalState()

This method is responsible for extracting current execution state from the

core instance variables. It should be equal to the same method in the Task

Agent.

• protected abstract void restoreState(byte[] state)

The method will be used to restore the instance variables in the Checker to

the condition recorded in the specified execution state.

• public abstract boolean stateEquals(byte[] state 1, byte[] state2)

This method is used to determine whether two execution states are equal.

Since execution state for each Task Agent should be different, developer should

provide method to check the equality of any two states. It should return true if

the two states are equal.

All methods provided in the TaskAgent class will be also available in the

Checker class. Therefore, developers can implement their Checkers by simply

copying the codes in the normalExecution() of the TaskAgent class to those of the

Checker class. However, to eliminate the influence of the re-execution over other

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 105

agent and simplify the work of Checker, those methods involve sending A C L

messages (e.g. sendMessageQ and notifyResultQ) are dummy. The result is that no

real A C L message will be sent during the re-execution.

CheckingBehaviour class It is the class simulating the actual service task. The

abstract methods msgHandler(), normalExecutionQ and restoreStateQ in the

ProtectedTaskAgent class will be invoked by this class.

Figure 7-5 shows the core pseudocodes for the actionQ method in the

CheckingBehaviour class. At the beginning of each invocation of actionQ,

realMsgHandlerQ will be called to receive one real message and try to react with it

(in line 2). The potential received messages are the trace and the "end" message

from the Agent Manager. The received traces will be stored in a trace list. This

allows the Checker to receive other traces even when it is performing re-execution

for a trace. After that, msgHandlerQ is invoked (in line 3). The msgHandlerQ

method will get the message from the message log instead of the real incoming

message queue.

The checking process is also divided into three phases: begin phase, execution

phase and end phase. The begin phase represents the beginning of a stage. At the

beginning of the begin phase, the first trace in the trace list will be taken out. The

trace will be checked if it is valid before the re-execution (in line 6). The validity of

the trace is determined by the consistency of the previous final state and the current

initial state stored in the trace. If the trace is not valid, negative checking result will

be sent to the Agent Manager directly by invoking the reportQ method (in line 8).

Then, the actionQ method will return. If the trace is valid, it will be used to initialize

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 106

the FTSLayerRE object and restore the instance variables in the Checker to the

condition recorded in the initial execution state (in lines 11 to 12).

1 void actionQ {
2 realMsgHandlerO;
3 msgHandlerO;
4 if (begin phase) {
5 if (traceList is not empty) {
6 check if the trace the list is valid;
7 if(trace not valid) {
8 report(false);
9 return;
10 }
11 use the trace to restore checker's state;
12 ftsLayerRE.beginStageQ;
13 enter execution phase;
14 }
15 }
16 else if (execution phase) {
17 normalExecutionO;
18 }
19 if (end phase) {
20 report(ftsLayer.REcommit());
21 enter begin phase;
22 }
23 }

Figure 7-5: The core pseudocodes for the CheckingBehaviour class

After that, the execution phase is entered. The re-execution of the service task

is performed in this phase by repeatedly invoking the normalExecution(){\n line 17).

When the stage is going to end (i.e. migration or user-specified stage end occurs),

the end phase is entered. Then, the commitQ method in the FTSLayerRE object is

called for comparing the final states of original execution and re-execution. The

result will be sent to the Agent Manager (in line 20). After that, the start phase will

be entered again. Next checking will start when the trace list is nonempty. The

execution of the Checker will never end unless "end" message is received from

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 107

Agent Manager.

FTSLayerRE class This class is responsible for providing methods to allow the

Checker to perform the "Execution Tracing with Randomly-Selected Hosts"

mechanism. At the beginning of each re-execution for a trace, it will store all the

information such as final state and message log recorded in that trace. Besides, this

class is used to store the information of the home host and the Agent Manager for

the use of tracing communication.

The most important operation provided by FTSLayerRE class is the commit()

method. The method will be used at the end of the re-execution. It is different from

the one in the FTSLayer object for the Task Agent which is responsible to create

trace and send commit request to the Agent Manager. The commit() method in the

FTSLayerRE object will compare the current state of the re-execution (at the end of

the stage) and the stored final state of the original execution. The comparison is done

by invoking the stateEqualsQ method in the Checker class. It will return true if the

two execution states are consistent.

The stored message log is important to simulate the execution environment of

the original execution. During re-execution, the msgHandlerQ method will get the

message from this message log instead of the real incoming message queue in the

Checker. The well-ordered messages in the message log will be obtained

consecutively during the re-execution in the Checker. Owing to the special design of

the protected Task Agent's structure and the management of the message log, the

same message will be obtained and handled at the same iteration during the original

execution and the re-execution. As a result, we can completely simulate the

execution (including receiving of message) during the re-execution process.

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 108

Even for a stage which is ended by an unpredictable automatic migration

during the original execution, the Checker can recognize the end of the stage when it

obtains a "move" message (sent by the Monitor Agent) from the message log at

certain iteration. Then, it can stop the re-execution and start the comparison of the

result.

7.4 Discussions

The performance of “Execution Tracing with Randomly-Selected Hosts" is evaluated

in [34]. In this section, the strength of the agent protection in the M G S Framework is

demonstrated by analyzing different kinds of attacks. Moreover, the weakness and

the major overheads of the proposed mechanism will also be discussed.

7.4.1 Against modification of code and data

Modifications of the code or data can be detected. Consider the case that a malicious

host modifies the code and data of the Task Agent in a service. If the code and data

for re-execution and execution are different, the resulting state of the re-execution

should be different from the recorded final state in the trace. Attack can be detected

when the Checker compares the two states. If the modification does not affect the

result, it can be ignored since no damage is caused.

7.4.2 Against masquerade

Since agent protection is provided when the Mobile Grid Service is under secure

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 109

mode, the identities of the hosts and agents are under protection. It is impossible to

forge an agent's identity under the protection of authentication. Therefore,

masquerade is impossible.

7.4.3 Against fake information in trace

Fake information in traces may prevent the tracing from detecting attacks. Since the

traces are created by the Task Agents executed in untrusted hosts, the information

may be false when the agents are under attacks. In our framework, it is prevented by

checking the validity of the received trace before re-execution. By comparing with

the final state in the previous trace, fake initial state in a trace can be detected. On

the other hand, fake final state will be discovered as an attack after the re-execution.

Furthermore, the execution host marked in the trace is verified by querying the

JADE platform.

7.4.4 Against escape from re-execution

Any stage is impossible to hide from the whole agent execution. The validity of the

received trace is checked before re-execution by verifying the stage number and

comparing the previous final state and the current initial state stored in the trace.

Any missing of trace will be detected, thus no stage can escape from re-execution.

7.4.5 Against collaboration of different hosts

The hosts assigned for re-execution are unpredictable. They are all randomly selected

by the Agent Manager which is located on a trusted host (the home host). Moreover,

the traces contain no information about their original execution hosts. Checkers are

CHAPTER 7. A GENT PROTECTION FOR MOBILE GRID SER VICES 110

unable to know the identities of the original hosts during the checking process.

Hence, the difficulties for several hosts to collaborate are increased.

7.4.6 Detection of malicious host

Owing to additional judgments conducted at trusted hosts (the home host of the

services), the malicious hosts performing the detected attacks can be identified. This

can decrease the risk of attack over later executions.

7.4.7 Weaknesses

This method has the common weakness for execution tracing approaches. Although

attacks over agents can be detected, they cannot be prevented at all. Moreover, the

detection of attacks cannot be achieved immediately. The tracing process can only be

started after the Task Agent has visited enough hosts. The reason is that the approach

needs a certain number of visited hosts for random selection. Furthermore, it may not

be appropriate for any types of applications. For the applications requesting a lot of

data from their hosts, this approach may bring significant overheads to them due to

the transfers of the traces over the network.

Chapter 8

Performance Evaluation

Experiments were conducted to evaluate the performance of Mobile Grid Services

developed by using the M G S API. In the experiments, the execution times of

different Mobile Grid Services were executed under different settings. From their

execution times, we can examine the performance and the overheads of the Mobile

Grid Services. The details, results and analysis of the experiments will be presented

in the following sections.

8.1 Experimental Setup

The experiments were carried out in a grid with four nodes running Fedora Core 3.

Each node is equipped with 3.2GHz dual-Xeon CPU and 2 G B memory. The

machines were connected through a dedicated lOMbit/sec switched Ethernet. They

were all running with Globus toolkit 4.0 [8] and JADE 3.4. Their Java Virtual

Machine versions were JDK5.0.

In the experiments, the four nodes were called Host A, B, C and D. Host A

111

CHAPTER 8. PERFORMANCE E VAL UA TION 112

acted as the home host where the experimental services were running on it. On Host

B, the JADE main container and the Resource Information Service were running.

The roles of Host C and Host D were providing available platforms for agents to

migrate to.

8.2 MGS Performance

8.2.1 Experiment details

In this experiment, the load balancing performance of M G S in different number of

available hosts is measured.

To test the performance of the Mobile Grid Services, a sorting service was

implemented by using the M G S API. When the service was requested, a new Task

Agent would be created. Monitor Agent was created with the Task Agent in order to

handle the resource information and make migration decision. After that, 600000

integers were generated randomly and insertion sorting was carried out in the Task

Agent. After it finished the sorting, it would notify the Agent Manager of the service.

As the service was a Mobile Grid Service, the Task Agent could migrate to other

hosts with better resources during the sorting process.

The sorting service was setup on Host A in normal mode (no security facilities

running) first. To test the load balancing, the sorting service was requested 50 times

simultaneously with various numbers of hosts (1, 2, 3 and 4) available in the grid.

Their execution times were measured as the time from the Task Agent creation to the

receiving of Task Agent's final notification.

CHAPTER 8. PERFORMANCE E VAL UA TION 113

The experiment was repeated by requesting the service for 10 times and 1 time.

To obtain more reliable results, 2, 10 and 5 trials were performed respectively in the

experiments simultaneous requesting service for 50, 10 and 1 times. The average

execution times of the sorting service under different settings are shown in Table 8-1

and Figure 8-1.

8.2.2 Experiment results

Table 8-1: A V E R A G E EXECUTION TIMES (IN SECONDS) OF T H E SORTING

SERVICE U N D E R DIFFERENT SETTINGS

1 host 2 hosts 3 hosts 4 hosts

50 services 11645.0 4571.3 2415.9 1772.0

10 services 1939.6 962.9 717.6 691.2

1 service 266.6 266.5 266.6 267.2

— 5 0 services •• 10 services — 1 service

1 4 0 0 0 0 0 0 「 —

g 12000000 • ：

^ \ ！

e 10000000 一 \ ^ \

I 8000000 V _ - ~ ‘
3 — \ — —

U 6000000 - V
§ 4 0 0 0 0 0 0

< 2 0 0 0 0 0 0 _ 一 - I

~~~~ « a I 
o' 赢 * * — — ^ ； 

0 1 2 3 4 5 

I No. of hosts 

Figure 8-1: The changing of the execution time against the number of available hosts 



CHAPTER 8. PERFORMANCE E VAL UA TION 114 

For invoking 50 sorting services at the same time, the host was overloaded heavily 

due to work load of services when one host existed only. The created Task Agents in 

the services needed to share the CPU cycles and perform the execution by turns. The 

result was that the average execution time of each service was over 11000 seconds 

(which was 43 times more than the single service's execution time). When one more 

host was available, the average execution time reduced to about 4600 seconds which 

was 39.26% of the single host's execution time. The work load of the tasks was 

shared between the two hosts in the grid and the service performance improved 

significantly. When there were three hosts, the execution time further improved to 

20.75% of the single host's execution time. For using four hosts, the average 

execution time reduced to 15.22%. The curve was similar to the curve ‘‘y=l/x，，and 

we can see that the execution time tended to be further decrease when more hosts 

are available. This shows that the overloading problem can be solved and the 

performance of the service can be improved by providing more hosts and resources 

for service migration. 

When 10 sorting services executed together in home host only, overloading 

occurred and average execution time was nearly 2000 seconds (over 7 times of the 

single service's execution time). When the grid size increased to 2，3, and 4, the 

average execution time improved to 49.65%, 37.00%, and 35.63% of execution time 

in a single host respectively. W e can observe that the improvement was minor when 

available hosts changed from 3 to 4. Their execution times appeared to approach a 

boundary. 

The reason is that all Task Agents were created on the home host (Host A) and 

they would initially execute at there. At this part of execution, the Task Agents 



CHAPTER 8. PERFORMANCE E VAL UA TION 115 

needed to compete for resources (mainly CPU cycles) in the overloaded home host 

before they had opportunities to migrate. Owing to the design and the configuration 

of the Resource Information Service and the Monitor Agents, the formation of the 

load balancing required some time to finish. Thus, each agent spent certain time on 

the former part of the service execution but only little work could be done due to the 

overloading. When several hosts were available (i.e. the execution time became 

short), the overall execution times of the Task Agents were mainly contributed by 

this overloading period. Further adding available hosts in the grid could not speed up 

the load balancing and so could not shorten the length of this period. Therefore, the 

execution time of the services could not improve significantly when approaching the 

boundary even if more hosts are added. 

For requesting one service only, the average execution time was maintained at 

around 267 seconds when the size of the grid changed from 1 to 4. This 

phenomenon can be explained by the fact that the home host's resources being 

consumed by a single service was little such that agent migration was not triggered. 

Therefore, all the measured execution times were similar which represented the time 

required for a Task Agent to execute at home host until it ended. 

From Figure 8-1, we can find that the curve for 50 services is the steepest 

among the three curves and it tends to be flattening slower. This shows that load 

balancing performs better when the home host is more overloaded. It is reasonable 

because a higher level of overloading will lead to a longer execution time which can 

lessen the effect of boundary execution time caused by the gradual load balancing 

formation. 



CHAPTER 8. PERFORMANCE E VAL UA TION 116 

8.2.3 Discussion 

From this experiment, we can see that Mobile Grid Services are able to relieve the 

overloading problem and make use of idle resources in the grid by employing their 

migration ability. In fact, the testing service used in this experiment is implemented 

in a general way. W e can improve the service performance by specifically modifying 

the service in the implementation stage. By proper Task Agent implementation, the 

Task Agents in the service can be moved to other available hosts randomly at the 

beginning of their execution. This can avoid too many Task Agents (created by 

multiple service requests) working on a particular host initially. This procedure is 

suitable for the services which are expected to be requested heavily within a short 

period (i.e. a large number of Task Agents are created simultaneously). 

In the M G S Framework, the load balancing is achieved by appropriate Task 

Agents' migrations (which are decided by their corresponding Monitor Agents 

individually). Developers can configure or overwrite the migration decision policies 

in the Monitor Agents in order to improve the load balancing among the available 

hosts. 

For example, instead of deciding to move to the host with highest resource 

values, developers can adjust the Monitor Agents to find several hosts with higher 

resource values and decide to migrate to one of them randomly. This allows the load 

share to the available hosts faster and the balancing to be achieved in a faster way. 

If the loads of the hosts are unbalance, the resource data will reflect this fact 

and Monitor Agents in more busy hosts will decide to move to less busy hosts. 

Finally, load balancing should be achieved unless the loads naturally cannot be 

uniformly distributed (e.g. existence of an especially heavy task). To relieve that 



CHAPTER 8. PERFORMANCE E VAL UA TION 117 

problem, one solution is modifying the migration decision policy such that moving 

to a visited host is discouraged (e.g. deduct the resource values of visited hosts). 

This can prevent the unnecessary non-stop migration due to naturally unbalance 

loads. When there is a change on the load (e.g. new tasks appear and old tasks 

finish), migration process will be carried out again in order to maintain the load 

balancing. 

8.3 MGS Overheads 

8.3.1 Experiment details 

A set of new Mobile Grid Services was used in this experiment. This experiment 

concentrated on the general overheads, migration overheads and message overheads 

of Mobile Grid Services in different modes. 

A new service called Service X was implemented by using the M G S API. 

When the Service X was requested, a new Task Agent would be created. Monitor 

Agent would not be created such that no unexpected migration would occur to 

influence the result. At home host (Host A), the Task Agent would carry out 100000 

times the prepared task. For each prepared task execution, 200 random integers were 

generated for doing summations with a variable and other 200 random integers were 

generated for subtractions. Meanwhile, it would send and receive five clear A C L 

messages to and from an agent located in Host B. After that, the Task Agent would 

migrate to Host C and then Host D to carry out 100000 times the prepared task 

respectively. Finally, it would move back to Host A. 

In the experiment, Service X setting up on Host A in normal mode was invoked. 



CHAPTER 8. PERFORMANCE E VAL UA TION 118 

The time started from the Task Agent initialization to the end of execution was 

measured as the execution time of the service. 

Service X was modified to a set of new services for measuring the execution 

times of the service under different settings. The new services were equal to Service 

X except for the specific differences below: 

1. No migration. 

2. No A C L message sending and receiving. (Include versions with and without 

migration) 

3. Running in secure mode. (Include versions with and without migration) 

4. Using signed message instead of clear message. (Include versions with and 

without migration) 

5. Using encrypted message. (Include versions with and without migration) 

6. The prepared task was changed from 200 times to 100 times of random integer 

summations and subtractions. 

7. Service developed in standard Grid Service (GS) instead of Mobile Grid 

Service (MGS). The migration and message transmission were missing due to 

the absence of related supports. 

8. Standard Grid Service version. The prepared task was changed from 200 times 

to 100 times of random integer summations and subtractions. 

All the new services were executed separately and their execution times were 

recorded. For each service and setting above, 10 trials were performed. The average 

results of the experiments were shown in Table 8-2. 



CHAPTER 8. PERFORMANCE E VAL UA TION 119 

8.3.2 Experiment results 

Table 8-2: T H E E X E C U T I O N TIMES (IN MILLISECONDS) OF Service X 

U N D E R DIFFERENT SETTINGS 

Service Running Message 100 summations 200 summations 200 summations 

form mode mode and subtractions and subtractions and subtractions 

without migration without migration with 3 migrations 

GS N/A None 4053.5 7991.0 N/A 

M G S Normal None 5038.3 8892.4 9867.3 

M G S Normal Clear N/A 9019.9 10030.5 

M G S Secure Clear N/A 9027.6 10207.7 

M G S Secure Signed N/A 9072.2 10420.5 

M G S Secure Encrypted N/A 10734.9 11922.1 

In Figure 8-2, the execution times of the service without message transfer in the 

form of standard Grid Services (GS) and Mobile Grid Services (MGS) are compared. 

For both the prepared task consisting of 100 or 200 summations and subtractions, 

the M G S version requires a longer time to finish. This is reasonable as M G S has a 

general overhead caused by the agent creation and the additional works in agent 

execution (e.g. examining incoming messages and checking if stopping criteria are 

met). For 100 addition and subtraction, the M G S version executed 984.8 

milliseconds (24.30%) longer than the standard Grid Service version. For 200 

addition and subtraction, the M G S version executed 901.4 milliseconds (11.28%) 

longer than the standard Grid Service version. 



CHAPTER 8. PERFORMANCE E VAL UA TION \ 20 

• GS • MGS 
— 

10000 r 1 
^ n""“ 
1 8000 r 

: c I 
I o 6000 I 
！ 3 n n 夕 
I I 4000 / —— 

o J 
2 2000 I 

丨 g i 
I < n I I I I i z z_1 I 」 

(J 
100 200 

I No. of summations and subtractions 
I 

in each prepared task 

Figure 8-2: Execution times of Service X in form of standard Grid Service (standard 

GS) and Mobile Grid Service (MGS) 

W e can find that the M G S overheads are similar for different prepared task 

contents. Actually, the M G S overheads mainly contributed by the essential works in 

agent execution such as examining incoming messages and they are independent 

from the prepared task in each iteration. By taking the average value of the 

execution time's differences, we can estimate that the general overhead of Mobile 

Grid Services is about 0.003 milliseconds per iteration. For example, the overheads 

will contribute to 0.3% of the overall execution time if the task spends 1 millisecond 

in each iteration. 

From the experimental results, we can also see that the task execution time in 

each iteration determines the proportion of the M G S general overheads in the overall 

execution. Longer execution in each iteration will make the M G S overheads less 

significant. 

Figure 8-3 shows the migration overheads of the Mobile Grid Services under 



CHAPTER 8. PERFORMANCE E VAL UA TION 121 

different running modes and message forms. The migration costs represent the 

overheads of each agent migration in the Mobile Grid Services. They are calculated 

by one-third of the execution time differences between service with migration and 

without migration under the same setting (since three migrations were involved). 

tYn 449.4 

贫 393.4 1—7] 395.7 
6 400 - -. . I__ ^ - ~ 
^ 325 n ^ n 
8 300 m ra f - J 
O z , / / / 
g 200 - ^ ^ ； f / 

•扫 z/ 華 / ' 夢 

S 100 ^ ^ ^ 多 ， § 

0 ~——~‘ ‘ 
a b o d e 

Diffeî nt running mode and message forni 

Figure 8-3: The migration costs under different running modes and message forms, 

where a = normal mode without message transmission; b = normal mode with clear 

message transmission; c = secure mode with clear message transmission; d 二 secure 

mode with signed message transmission; e = secure mode with encrypted message 

transmission 

From the graph, we can observe that the migration costs are alike under 

different settings. By taking the average value, the overhead for each migration is 

about 330 milliseconds in normal mode while 410 milliseconds in secure mode. 

Migration introduces more overheads in secure mode than normal mode because 

extra secure process and checking is present such as authentication and agent 



CHAPTER 8. PERFORMANCE E VAL UA TION 122 

permission checking. In fact, the migration cost will be affected by the size of the 

agent execution state. For example, an agent with a lot of instance variables should 

have higher migration overheads. 

Figure 8-4 shows the estimated message overheads in different running modes 

and message forms. The values are calculated by one-fifth of the execution time 

differences between the service without A C L messages transmission in normal mode 

and services under other settings (since five message sending and receiving were 

involved). The values stand for the costs of sending and receiving one A C L message 

under different modes. 

4 m 368.5 

I _ 丨 

I 300 丨 

g 200 i 
0 / 4 

1 100 -
1 25.5 27 .M 35.96 , 
2 0 网 I__nm C Z H _ ^ _ _ _ L j 

clear dear signed encrypted 
(normal (secire (secure (secLre 
mode) mode) mode) rrode) 

Iv/fessage form 

Figure 8-4: Message overheads for different message forms and running modes 

From Figure 8-4, we can see that secure mode does not bring significant 

overheads to the service handling clear A C L messages. The costs for clear message 

are very similar in normal and secure mode. Both values are less than 30 



CHAPTER 8. PERFORMANCE E VAL UA TION 123 

milliseconds and this shows that handling clear A C L messages is a light-weight 

operation. The overhead for signed messages (35.96 milliseconds) is higher but it is 

still not a heavy operation. Comparatively, the handling of encrypted messages 

introduces a much larger overhead. The cost for an encrypted message is 10 times 

higher than that for a signed message. However, it is reasonable as encryption and 

decryption are known as time-consuming processes. In fact, the message overheads 

above will be affected by the size of the A C L messages. 

8.3.3 Discussions 

From this experiment, we know the general overheads, migration overheads and the 

message overheads of the Mobile Grid Services. Although those overheads cannot 

be completely eliminated, service developers can maintain good service 

performance by appropriate Task Agent implementation (e.g. reduce the number of 

iterations, migration and message transmission in the Task Agent). 

In the M G S Framework, we have tried to diminish the influence of the 

migration overheads by minimizing number of migration in the automatic load 

balancing process. Unnecessary migrations are avoided by the "Gain" checking in 

the migration decision policy of the default Monitor Agent. This checking makes 

sure that the resource values (i.e. CPU, R A M and HD) of the decided host have a 

significant improvement (more than 5%) when compare with the current host. 

Otherwise, migration will not take place. 

On the other hand, only part of Monitor Agents will receive resource data in 

each round of data distribution. This can prevent all Task Agents from migrating to 

the currently best host together and overloading that hosts. Unnecessary migrations 



CHAPTER 8. PERFORMANCE E VAL UA TION 124 

due to this kind of collective migration can be avoided. 

8.4 Agent Protection Overheads 

8.4.1 Experiment details 

In this experiment, the overheads of the Mobile Grid Services using agent protection 

are considered. For the Mobile Grid Services, agent protection is provided by the 

"Execution Tracing with Randomly-Selected Hosts" [34] mechanism. In the 

mechanism, the execution of Task Agent is divided into some stages and extra 

operations are required at the end of the stages. The main purpose of those 

operations is to produce traces which store partial execution results. The traces will 

be used by Checkers to carry out re-execution and find out any inconsistent results 

(attacks) in each stage. 

To make the Agent Manager and the Task Agents in the service to perform the 

mechanism, the service has to be executed in protection mode and the Task Agent 

should be written in appropriate format. Besides, a corresponding Checker should be 

provided. 

To ease the transformation of normal Mobile Grid Service to Mobile Grid 

Service with agent protection, the M G S API provides a convert tool to generate 

appropriate "protected" Task Agent, Checker and related files from the user-defined 

Task Agent's Java file. 

Services in the previous experiment involve random integer summations. They 

are not suitable for this experiment as the generated Checker can never re-execute 

with consistent results. Consequently, a new service called Service Y was 



CHAPTER 8. PERFORMANCE E VAL UA TION 125 

implemented. When Service Y was requested, a new Task Agent would be created 

(without Monitor Agent). At home host (Host A), the Task Agent would carry out 

10000 times the prepared task. The prepared task is 400000 times of summations. 

After that, the Task Agent would migrate to Host B and then Host C to carry out 

10000 times the prepared tasks respectively. Finally, it would move to Host D and 

send final notification to Agent Manager. 

In the experiment, Service Y (with normal Task Agent) was setup and invoked 

on Host A in secure mode and protection mode respectively. Their execution times 

were measured. 

By using the convert tool in the M G S API, "protected versions" of the Task 

Agent and corresponding Checker were generated. They were used to setup the 

"protected version" of Service Y (with protected Task Agent) for carrying out the 

experiment. In fact, the tracing process would finish some times after the Task 

Agent finished its task. Thus, the times between the Task Agent initialization and 

the finish of whole tracing process was also measured. 

For obtaining more information, the executions of Service Y (with normal and 

protected Task agent) were repeated by replacing the prepared task from 400000 

times to 800000 times of summations. For each service and setting above, 10 trials 

were performed. The average results of the experiments are shown in Table 8-3. 

8.4.2 Experiment results 

In Table 8-3, the execution times of first invocation of all services are extracted from 

others and handled independently. The first invocation of the service always has an 

unusual long execution time than the invocation afterward because the JADE 



CHAPTER 8. PERFORMANCE E VAL UA TION 126 

platform will optimize agent migration to known containers. For services using 

agent protection, the first invocation introduces a much larger variation. This is due 

to the creation of the checkers in each host. The time reserved for the checker to 

setup and move to the target location contributes mainly to the difference. After the 

first invocation, the checkers will not be killed and can be used by the invocation 

later. Thus, the execution time of subsequent invocation can be improved. To reduce 

the variation, the data of first invocation will not be considered in the following 

analysis. 

Table 8-3: EXECUTION TIMES (IN MILLISECONDS) OF Service Y U N D E R 

DIFFERENT SETTINGS 

Protected Protected 
Normal agent Normal agent agent in agent in 
in Secure in Protection Protection Protection 
mode mode mode (task mode (tracing 

end) end) 
4 0 0 0 0 0 

summations 6 1 0 1 . 0 6 2 1 3 . 4 1 7 9 9 7 . 0 1 8 2 8 0 . 4 
invocation) 
800000 

summations 8 8 4 3 . 4 8 8 7 6 . 8 1 9 8 6 8 . 6 2 0 0 9 5 . 2 
(” ' invoca t ion) 

4 0 0 0 0 0 

二 3987.9 3999.2 5 1 1 1 . 8 5 9 5 4 . 9 

invocation) 

800000 

s ( = 二 6 6 3 7 . 2 6 6 7 4 . 1 7 8 3 9 . 0 9 4 7 7 . 2 

invocation) 

From the data in Table 8-3, we can see that execution times for services with 

normal Task Agent in Secure mode and Protection mode are similar. That means 

Protection mode does not introduce significant overheads to the execution of normal 

Task Agent. 



CHAPTER 8. PERFORMANCE E VAL UA TION 127 

Figure 8-5 is plotted for the execution times of Service Y in protection mode 

under different settings. W e can see that the agent execution requires longer time if 

protected agent is used instead of the normal one. This is due to the additional works 

such as trace creation and trace transmission completed by the protected agent. If we 

need to wait for the whole tracing process to finish, additional time is required. 

Although the tracing processes are mainly performed in parallel with the service 

execution, the re-execution of the last stage can be started only after the original 

service execution is completed. Therefore, additional time is required to wait for the 

tracing process to finish. 

• 400000 summations in prepared task 
_ 800000 summations in prepared task 

^ 8000 ^ i 
g n 
g 6000 ^ I 
H _ , 
c 

• 2 4 0 0 0 ~ - —— 

3 〒 / 
X z 

⑴ 2000 — , z __{ 
々 i • i 

0 ‘——~~̂  \ ‘ 

w i t h o u t t r a c i n g w i t h t r a c i n g w i t h t r a c i n g 
( t a s k e n d ) ( t r a c i n g e n d ) 

running mode 

Figure 8-5: The execution time of Service Y in protection mode under different 

settings 

Protected Task Agent with 400000 summations as prepared work requires 



CHAPTER 8. PERFORMANCE E VAL UA TION 128 

1112.6 milliseconds (27.82%) more than normal agent to get the final result and 

needs to wait an extra 843.1 milliseconds for the tracing to finish; while Protected 

Task Agent with 800000 summations as prepared work requires 1164.9 milliseconds 

(17.45%) more than normal agent and needs to wait an additional 1638.2 

milliseconds for the tracing. 

From the execution time difference, we can estimate the agent protection 

overhead per stage for the execution of protected Task Agent. Since the 

measurements cover three completed stages, the overhead is equal to [(1112.6 + 

1164.9) / 2] / 3 = 379.6 milliseconds. On the other hand, the time for waiting for the 

whole tracing to finish cannot be estimated because it depends on the execution 

length of the last stage in Task Agent execution. 

8.4.3 Discussions 

In the M G S framework, execution tracing techniques are employed to achieve agent 

protection against malicious hosts due to its high feasibility, large scalability and 

relatively high accuracy. This approach makes use of re-execution to check for any 

attacks on the service execution. In our implementation, most of the re-execution is 

done in random hosts in parallel with the original Task Agent execution. This design 

not only allows the tracing process to be finished earlier (no need to wait double 

execution time), but also prevents the re-execution from delaying the original 

executions. 

On the other hand, service developers can prepare simplified Checker for their 

own applications. For example, only re-execute the codes affecting an important 

variable and check for the final value of it. This can further speed up the tracing 



CHAPTER 8. PERFORMANCE E VAL UA TION 129 

process. 

From the experiment, we can see the overheads on the service execution when 

the agent protection support is used. The overheads are mainly contributed by the 

additional works of the Task Agent such as trace creation and stage commitment at 

each stage end (which will be ignited by migration). However, the number of 

migration should be small under normal situation and the service performance 

should not be degraded by the agent protection overheads. 



Chapter 9 

Conclusion and Future Works 

In this thesis, the Mobile Grid Service Framework which supports Mobile Grid 

Services in a secure manner is presented. According to current grid technologies, 

standard Grid Services lack the runtime migration ability and have to stay at the 

home host even when idle resources are available throughout the grid. Static Grid 

Services can be enhanced by adding mobility and becoming Mobile Grid Services. 

The aims of this research are developing a middleware framework for grids to 

support secure Mobile Grid Services and providing facilities for easy and flexible 

service development. 

The Mobile Grid Service Framework constructed by combining Java Agent 

Development Framework (JADE) [14] and Globus Toolkit [8] is introduced. Mobile 

Grid Services are realized as a special type of Grid Services which distribute the 

actual working task to mobile agents. This design makes Mobile Grid Services 

conform to the Globus Grid architecture while service mobility is achieved by the 

mobile ability of mobile agents in the services. 

To support easy and flexible service development in the proposed framework, 

the M G S API consisting of AgentManager class, Configurable Monitor Agent, Task 

130 



CHAPTER 9. CONCLUSION AND FUTURE WORKS 131 

Agent Templates and Resource Information Service is implemented. It provides 

libraries, templates and tools for service developers to develop their Mobile Grid 

Service. 

To supplement the proposed framework, security support is added to ensure 

that Mobile Grid Service can execute securely. Taking the advantages of conforming 

to the Globus Grid architecture, globus-side security of the service can be fully 

reused. For agent-side security, security measures for mobile agents are deployed 

into the proposed framework. The details of these measures including authentication, 

authorization, message integrity and confidentiality, and agent permission 

mechanisms are presented. 

To protect the agents in Mobile Grid Services from malicious hosts, an agent 

protection mechanism which is achieved by deploying "Execution Tracing with 

Randomly-Selected Hosts" into our framework is introduced. Re-execution is used 

to detect any malicious actions caused by hostile hosts. 

Experiments have been conducted for evaluating the performance of Mobile 

Grid Services. Their results and analysis are discussed in this thesis and they show 

that the overload problem can be relieved by using Mobile Grid Services. The 

estimation of the general overheads, migration overheads, message overheads and 

agent protection overheads are also presented. 

In the future, the Resource Information Service and the Configurable Monitor 

Agent in the M G S API will be improved to provide better load balancing 

performance. Extra resource metrics will be studied and added to the resource 

information exchange system in the Mobile Grid Service Framework such that the 

MonitorAgent can make appropriate migration decisions as soon as possible. 



Appendix A 

Administrator Guide for MGS API 

In this appendix, a full installation of the M G S API and the setup of the M G S platform 

will be shown. 

A.l Installation of MGS API 

A.1.1 Installation of pre-requisites 

Install Java JDK 

Download Java JDK5.0 from Java homepage (http://iava.sun.com) install them in all 

machines in the grid. 

Install and configure Globus toolkit 4.0 

Download GT4 from globus homepage (http://www-unix.ulobus.oru ) and 

install them in all machines in the grid. Make sure that RFT service is configured 

well (i.e. no warning message during container starts). 

Reference: 

hUp://ww\v-unix.globus.org/toolkit/docs/4.0/admin/docbook/quickstart.html 

132 

http://iava.sun.com
http://www-unix.ulobus.oru


APPDENDIXA. ADMINISTRA TOR GUIDE FOR MGS API 133 

Install and configure Ganglia 

Download and install the Ganglia monitor core v2.5.6 (newer version may not 

be compatible with GT4) from the following link: 

http://prdownloads.soiirceforge.net/gaiiolia/ganglia-moiiitor-core-gmond-2.5.6-l 

•i386. rpin?down 丨 oad 

Then, run the ganglia tools using the command "gmond". A X M L file 

containing the host's resource data will be generated. 

(Can be tested by the command “telnet localhost 8649") 

Reference: http://ganglia.sourceforge.net/docs/ganglia.httTil 

To make G L O B U S receiving resource information from the ganglia, we should 

set the <defaultProvider> option in the file 

"$GLOBUS_LOCATION/etc/globus_wsrf_mds_useflilrp/gluerp.xmr' 

as 

<defaultProvider>java org.globus.mds.usefulrp.glue.GangliaElementProducer 

</defaultProvider> 

(Make sure that G L O B U S and postgresSQL are installed and configured well) 

Install JADE and JADE-S 

In all the hosts, download JADE v3.4 and JADE-S from httpi/Viadc.tilab.com 

and install it. However, since we have modified some code of JADE for our API, the 

pure version of JADE and JADE-S may get error during Mobile Grid Service 

execution. W e have provided the modified JAR file for JADE and JADE-S in the 

ZIP file of our API. They are located in the "jadeLib/" folder. 

To install JADE and JADE-S, unzip the API_vl.0.zip file (file for M G S API) in 

http://prdownloads.soiirceforge.net/gaiiolia/ganglia-moiiitor-core-gmond-2.5.6-l
http://ganglia.sourceforge.net/docs/ganglia.httTil


APPDENDIXA. ADMINISTRA TOR GUIDE FOR MGS API 134 

all machines as user "globus" (recommend to unzip it in /home/globus/mgs folder). 

Then, copy all the JAR files (including commons-codec-1.3.jar, jade.jar, 

jadeTools.jar, http.jar, iiop.jar, bcprov-jdk 15-133jar and jadeSecurityjar) in the 

"jadeLib/" folder to $GLOBUS—LOCATION/lib directory. 

Then, add all 7 JAR files to the CLASSPATH environment variable (Be careful 

for the files' privilege). This can be done by: 

Method 1: 

Modify /root/.bash_profile (permanent) by adding the follow lines: 

CLASSPATH=$CLASSPATH:$GLOBUS_LOCATION/lib/commons-codec-1.3.jar: 

$GLOBUS_LOCATION/lib/jade.jar: $GLOBUS_LOCATION/lib/jadeTools.jar: 

$GLOBUS_LOCATION/lib/http.jar: SGLOBUS—LOCATION/lib/iiop.jar: 

SGLOBUS—LOCATION/lib/ bcprov-jdkl5-133.jar: 

$GLOBUS_LOCATION/lib/jadeSecurity.jar 

export CLASSPATH 

Then run 

source /root/.bash_profile 

Method 2: 

Using the following commands (temporary): 

export CLASSPATH二$CLASSPATH:$GLOBUS—LOCATION/lib/jade.jar 

export CLASSPATH=$CLASSPATH:$GLOBUS_LOCATION/lib/jadeTools.jar 

...etc 

(Check the environment variable by "echo $CLASSPATH" command) 

Reference: JADE administrator's guide (Section 2.3) 

nittp://iade.tilabxom/doc/administratorsgiiide.pdO 

http://http.jar
http://http.jar


APPDENDIXA. ADMINISTRA TOR GUIDE FOR MGS API 135 

A.1.2 Installation of MGS API library 

To install the M G S API library, unzip the API—vl.O.zip file (file for M G S API) in all 

machines as user "globus" (recommend to unzip it in /home/globus/mgs folder). 

Then, copy the mgs.jar into $GLOBUS_LOCATION/lib directory. Then, add this 

file to the CLASS PATH environment variable (using method above). 

A.2 Setup of MGS platform 

To setup a platform for the Mobile Grid Services, a JADE platform must be 

established in the grid to provide agents in the services with an execution 

environment. After that, Globus containers deployed with the Resource Information 

Service and the Mobile Grid Services should be started. The detailed procedures of 

setting up a M G S platform will be shows as follows: 

A.2.1 Setup of JADE platform 

In a trusted host, start the JADE main container by command: 

Java jade.Boot —conf <JADE config file〉 

(The JADE configuration file must be set to run as main container) 

In other hosts (which want to provide resources), start the JADE containers by the 

same command: 

Java jade.Boot -conf <JADE config file〉 

(The JADE configuration file must be set to run as normal container and connect to 

the main container) 



APPDENDIXA. ADMINISTRA TOR GUIDE FOR MGS API 136 

The JADE configuration file can be prepared by using the M G S Configuration 

Helper (Details in section B.5). 

A.2.2 Setup of Globus containers 

In a trusted host, deploy the Resource Information Service into local Globus 

container by: 

$GLOBUS_LOCATION/bin/globus-deploy-gar org_mgs—resource.gar 

(The org_mgs_resource.gar is the G A R file for the Resource Information Service 

which can be found by extract API_v 1.0.zip file.) 

Then, start the Resource Information Service and the corresponding Globus 

container by: 

$GLOBUS_LOCATION/bin/globus-start-container 

In other hosts where Mobile Grid Services are deployed, start the Globus containers 

by: 

$GLOBUS_LOCATION/bin/globus-start-container 

(Remember to configure the JADE configuration files for the creation of service 

container in the Mobile Grid Services) 



Appendix B 

Developer Guide for MGS API 

In this appendix, the method of implementing and configuring a Mobile Grid 

Service, the useful tools provided and the interface of the M G S API are presented. 

B.l Steps of developing a Mobile Grid Service 

This section shows the steps of developing a Mobile Grid Service. 

B.1.1 Design Mobile Grid Service 

Before developing a Mobile Grid Service, several questions should be considered 

first: 

• How many operations should be provided in the service? 

• How many kinds of task should be available? 

• What each task should do? 

137 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 138 

B.1.2 Define WSDL 

The W S D L file is used to define the interface of the service. W e need to define well 

all operation elements (methods allow to be invoked by users) as well as the related 

message and type elements in this file 

The details of preparing the W S D L file are described in the following Globus 

document: 

ht tp: / /gdp.( j lobus .org/gt4- t i i tor ia l /mul t ip leht inl /apa.html 

B.1.3 Implement the service 

Mobile Grid Service is composed of three components (Agent Manager, Task Agent 

and Monitor Agent). Therefore, the implementation of a Mobile Grid Service can be 

divided into three parts. Each part is responsible for the implementation of one 

component. The details of them will be described in section B.2. 

B.1.4 Configure deployment in WSDD 

The Web Service Deployment Descriptor (WSDD) is used to configure the 

deployment details of a service. In the W S D D file, developer needs to specify the 

class for service implementation (Agent Manager component), the W S D L file and 

the security descriptor (for specifying the security configuration of the service), etc. 

The details of preparing the W S D D file are described in the following Globus 

document: 

http: / /Qdp.globus.org/gt4-tutorial /mult iplehtrnl /ch()3s03.html 

http://Qdp.globus.org/gt4-tutorial/multiplehtrnl/ch()3s03.html


APPDENDIX B. DE VELOPER GUIDE FOR MGS API 139 

B.1.5 Compile and deploy the service 

Compile the service 

Developer can compile the service by a shell script. The command is: 

./globus-build-service.sh -d〈service base directory〉-s〈service's W S D L file〉 

Assume that the W S D L file is "schema/mgs/example/MyApplication.wsdl", the 

W S D D file is placed in the "org/mgs/example" folder and the Java files for the 

service implementation are placed in the "org/mgs/example/impl/" folder. The 

service can be compiled by the following command: 

./globus-build-service.sh -d org/mgs/example 

-s schema/mgs/example/MyApplication.wsdl 

A G A R file (containing all the files and information the web server needs to 

deploy the service) will be generated. The name of the output file depends on the 

“service base directory" argument. In our example, the G A R file 

"org_mgs_example.gar" is generated. 

Deploy the service into Globus container 

Deployment is done with a GT4 tool that unpacks the G A R file and copies the files 

within (WSDL, compiled stubs, compiled implementation, W S D D ) into key 

locations in the GT4 directory tree. After deploying the service, the service will be 

setup when the Globus container starts up. 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 140 

The deployment command is: 

$GLOBUS_LOCATION/bin/globus-deploy-gar〈service's G A R file> 

In our example, we can deploy the service by: 

$GLOBUS_LOCATION/bin/globus-deploy-gar org_mgs—example.gar 

To undeploy the service, we can use the command: 

$GLOBUS_LOCATION/bin/globus-undeploy-gar org_mgs—example 

B.2 Mobile Grid Service Implementation 

Mobile Grid Service is composed of three components (Agent Manager, Task Agent 

and Monitor Agent). The implementation of each component will be described as 

follows: 

B.2.1 Implement Task Agent 

This step is responsible for the implementation of Task Agent in the service. The 

main task of the Mobile Grid Service should be implemented in the Task Agent 

component. It can be done with the help of the Task Agent Templates (in 

mgs/template/ folder) in the M G S API. The implementation methods for Task Agent 

with and without agent protection are different. Therefore, they will be considered 

separately: 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 159 

Task Agent without agent protection (can run in any mode) 

The implementation of Task Agent must extend the TaskAgent class. Developer can 

use the TaskAgent Template or the SimpleTaskAgent Template to implement the 

Task Agent. The security libraries can be used only for secure mode. 

For using the TaskAgent Template 

Three files including TaskBehaviour.Java, My TaskAgent.Java and 

TsiskServelncomingMessagesBehaviour.java are required to be considered. 

Developer should implement the Task Agent (following the guidelines inside the 

template file) as the steps below: 

1. Implement service task in the file TaskBehaviour.Java. Multiple TaskBehaviours 

can be implemented if multiple different tasks will be performed in the service. 

2. Rewrite the TaskServelncomingMessagesBehaviour.Java in order to specify the 

A C L message handling for extra request from Agent Manager. 

3. Create newly-defined TaskBehaviour objects in MyTaskAgent.java. Also, add 

user-defined instance variables and methods (if any) to the indicated location in 

this file. 

For using the SimpleTaskAgent Template 

Only the My Simple TaskAgent.] ava file (in mgs/template/ folder) is required to be 

considered. Developer should implement the Task Agent (following the guidelines 

inside the template file) as the steps below: 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 142 

1. Declare user-defined instance variables and methods (if any) in the indicated 

location. 

2. Implement service task in the normalExecution() method. 

3. Specify stopping criteria of the task in the endCheckingO method. 

4. Implement the user-defined message handling in the msgHandlerQ method. 

Task Agent with agent protection (can run in protection mode only) 

The implementation of protected Task Agent (with agent protection) must extend the 

ProtectedTaskAgent class (comparing to the TaskAgent class for agent without agent 

protection). Besides, a class for Checker component (extending the Checker class) 

must be prepared for doing the re-execution. There are two methods to achieve this: 

The first method is using convert tool provided in M G S API. The Task Agent 

must be implemented by using the SimpleTaskAgent Template first. Then, the Java 

files for corresponding protected Task Agent as well as Checker can be generated by 

using the convert tool provided in M G S API. (Details in section B.3) 

The second method is directly implementing Task Agent and Checker by 

extending the ProtectedTaskAgent class and the Checker class respectively. All the 

abstract methods in the ProtectedTaskAgent class (the normalExecutionQ, 

msgHandlerQ, endCheckingO, getFinalStateQ, getlnitStateQ and updatelnitStateQ 

methods) and the Checker class (the normalExecution (), msgHandler(), 

endCheckingO, getFinalStateQ, restoreStateQ and stateEqualsQ methods) must be 

implemented. For the details of these abstract methods, please read the section B.6.3 

and B.6.4. 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 143 

Common notices 

• During the implementation process, developer can use the library in the 

TaskAgent class to develop the service task. Security library is also provided, 

but it can be used only when the Task Agent runs in secure mode. The details 

of the provided library are described in section B.6.3. 

• Developer should remember to change the file name and the class name when 

using the templates so that no duplicate classes are implemented. 

眷 Message protection in the Task Agent can be configured by changing the 

settings in the TaskSetting object which is a parameter of the TaskAgent class 

(Details in section B.4.1). 

參 After the implementation, the codes for Task Agent implementation should be 

compiled and then packed in a JAR file by using the following command: 

jar cvf〈name of output file〉〈folder containing the file〉 

The output JAR file should be placed to SGLOBUS—L〇CATION/lib/ folder. 

B.2.2 Implement Monitor Agent (optional) 

A default Monitor Agent (in mgs/monitor/ folder) is provided in the M G S API 

already. Migration decision's policy in the Monitor Agent can be configured by 

changing the settings in the MonitorSetting object which is a parameter of the 

MonitorAgent class (Details in section B.4.2). The default policy of migration 

decision is: 

If the C P U value of current host is less than 9000 (i.e. 90 per cent of best 

expected clock rate in the grid), the host with best CPU resource will be chosen 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 144 

as migration target (where memory and harddisk resources are ignored). 

Otherwise, no migration will be performed. 

If the default Monitor Agent cannot fulfill your requirement in the migration 

decision, you can also develop your own Monitor Agent by extending the provided 

one. The required work is just overriding the decide() method in the MonitorAgent 

class. 

B.2.3 Implement Agent Manager 

In the implementation of the Agent Manager component, an AgentManger object 

must be created. By using the methods provided in AgentManager class, we can 

create the Task Agent (with Monitor Agent or not), send command (in form of A C L 

message) to Task agents and carry out other actions. 

Each Mobile Grid Service should provide some service operations (defined in 

W S D L ) which allow service requestors to invoke. The implementation of those 

operations is done in this step. The provided methods in the AgentManager class 

should be use to achieve it. For example, 

參 Task Agent can be created to by using the createAgentQ method (or methods in 

same series). 

• Command can be sent to the created Task Agent to perform specific task by the 

sendACLQ method (or methods in same series). 

• The execution result of the Task Agent can be obtained by the getFinalResuHQ 

method. 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 145 

The details of the provided methods in the AgentManager class are described in 

section B.6.1. Fig B-1 shows an example of the implementation of the Agent 

Manager component. 

1 public class MyApplication{ 
2 AgentManager manager; 
3 public MyApplication(){ 
4 ... 
5 manager = new AgentManager("serviceSetting.xml"); 
6 } 
7 public method 1 () { //start Task Agent 
8 manager.createAgent(“taskr’，"myPath.MyTaskAgent", null); 
9 } 
10 public method2() { //ask Task Agent to do something 
11 ACLMessage msg = manager.createACLMessageC'taskl", 
12 ACLMessage.REQUEST, “stop—counting”）； 

13 String reply = manager.sendACL(msg); 
14 ... // handling of the reply 
15 } 
16 … 
17 } 

Figure B-1: An example Mobile Grid Service (Agent Manager component) 

More information of how to implement a Grid Service can be found in this link: 

http:/7gdp. globus.org/gt4-tutorial/'nuiltiplehtml/ch03s02.html 

B.3 Convert tool 

It is a Java program provided in the M G S API (in tools/ folder) for preparing a 

protected version of Task Agent (with agent protection) from a Task Agent (without 

agent protection). This program will read a Java file of Task Agent (specified by user) 

and use the details (e.g. instance variables, methods and task implementation) to 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 146 

generate the essential files required for protected Task Agent creation automatically. 

The input Task Agent must be developed by using the SimpleTaskAgent Template 

because the program recognizes different parts of code (e.g. user-defined variables, 

user-defined methods and initialization) according to the marks in the template. 

After running the program, three files will be created as follow: 

• A protected Task Agent which is the protected version of the input Task Agent 

(extending ProtectedTaskAgent class). 

參 A Checker corresponding to the input Task Agent (extending Checker class). 

The generated Checker will do the re-execution by repeating the execution in 

Task Agent (i.e. no simplification for the re-execution). 

參 An AgentState class which is used to store all instance variables in the protected 

Task Agent for serialization. 

To run the convert tool program: 

Java ConvertTool〈input file〉〈output class name〉 

For example, if the program is run by command "java ConvertTool 

MyAgent.java NewAgent", three files named as NewAgent.java, 

NewAgentChecker.Java and New AgentState.Java respectively will be generated. 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 147 

B.4 Service configuration 

B.4.1 TaskSetting object 

A TaskSetting object is required to pass as argument when the createAgentQ 

method (or method in same series) of AgentManager class is called. The 

msgNeedEncrypt and msgNeedSign variables in the object are used to decide the 

A C L message protection level for the Task Agent. The sendMessageQ method in the 

Task Agent will send A C L message according to the msgNeedEncrypt (perform 

message encryption) and msgNeedSign (perform message signing) flags. The 

configuration method is invoking setMsgNeedSign(true) or/and 

setMsgNeedEncrypt(true) methods of the TaskSetting object before passing the 

object to the createAgentQ method. 

B.4.2 MonitorSetting object 

A MonitorSetting object is required to pass as argument when the 

createAgentwithMonitorQ method of AgentManager class is called. It is used to 

configure the execution mode, migration decision and message protection of the 

Monitor Agent created. 

By setting the min—CPU, min—RAM and min—HD variables, the minimum 

requirements on the current host's resources (such that no migration is required to 

perform) can be configured. Besides, the weight—CPU, weight—RAM and 

weight_HD variables are used to determine the importance weights of each kind of 

resources (CPU, memory, and harddisk) in the migration decision. The calculation 

of the score of each host is done by the follow formula: 

Score = (weight-CPU * CPU) + (weight—RAM * R A M ) + (weight_HD * HD) 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 148 

The host with the highest score will be chosen as the new execution host. 

Therefore, the migration decision policy can be adjusted by configuring the 

importance weights. 

The msgNeedEncrypt and msgNeedSign variables in the object are used to 

decide the A C L message protection level for the Monitor Agent. The Monitor Agent 

will send resource data (in form of A C L message) according to the msgNeedEncrypt 

(perform message encryption) and msgNeedSign (perform message signing) flags. 

B.4.3 MGS Configuration file 

The configuration of each Mobile Grid Service is relying on the M G S configuration 

file. In each service implementation, the file name of the corresponding M G S 

configuration file should be passed as argument during the creation of 

AgentManager object. Fig B-2 shows an example of M G S configuration file. 

� s e r v i c e � 

<Application_name>CounterService</Application_name> 
<SecureMode>true</SecureMode> 
<ProtectionMode>true</ProtectionMode> 
<JadeConfigFile>secure_service.conf</JadeConfigFile> 

</service> 

Figure B-2: Sample M G S configuration file 

The configuration options in the M G S configuration file are described as follows: 

The description of the M G S configuration file is as follows: 

參 Application—name 

It is used to specify the name of the service. 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 149 

• SecureMode 

It is used to specify whether the service run in secure mode. The security 

mechanisms (authentication, authorization, agent permission, message integrity and 

confidentiality, and agent protection) can be utilized only when the service run in 

secure mode. 

參 ProtectionMode 

It is used to specify whether the service run in protection mode. The agent 

protection support can be utilized only when the service run in protection mode. 

• JadeConfigFile 

It is used to specify the name of the configuration file used for service container 

creation. 

B.4.4 Configuration for Resource Information Service 

The Resource Information Service can be configured by a X M L file named 

resourceSetting.xml. Fig. B-3 shows a sample configuration file for the Resource 

Information Service. 

� r e s o u r c e � 

<Max_CPU>3200</Max_CPU> 
<MaxlRAM>2048</Max_RAM> 
<Max :HD> 1024</Max_HD> 
<SendingPercent>25</SendingPercent> 
<SecureMode>false</SecureMode> 
<NeedSign>false</NeedSign> 
<NeedEncrypt>false</NeedEncrypt> 
<JadeConfigFile>resource.conf</JadeConfigFile> 

� / r e s o u r c e � 

Figure B-3: Sample configuration file for the Resource Information Service 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 150 

The configuration options in the Resource Information Service's configuration 

file are described as follows: 

眷 Max_CPU (Unit: Megahertz) 

It is used to specify the best possible/expected CPU ClockSpeed in the whole 

grid. The value “3200” means that the best possible/expected C P U is 3.2 Gigahertz. 

• Max R A M (Unit: Megabyte) 

It is used to specify the best possible/expected R A M available in the whole grid. 

The value "2048" means that the best possible/expected R A M available is 2 

Gigabyte. 

• Max—HD (Unit: Megabyte) 

It is used to specify the best possible/expected Harddisk space available in the 

whole grid. The value "1024" means that the best possible/expected Harddisk space 

available is 1 Gigabyte. 

• SendingPercent 

It is used to specify the chance (in percentage) that a host is chosen as target 

audience (in each round of data distribution). The value "25" means that the service 

will send resource data to about one-fourth of available hosts randomly in each 

round of resource information distribution (every 60 seconds). 

• NeedSign 

It is used to specify whether the resource messages sent by the service need to 

be signed. 

• NeedEncrypt 

It is used to specify whether the resource messages sent by the service need to 

be encrypted. 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 151 

參 JadeConfigFile 

It is used to specify the name of the configuration file used for service container 

creation. 

B.4.5 Globus-side security configuration of the service 

The Globus-side security measures like authentication, authorization and message 

protection can be configured in the security descriptor. The details of the security 

descriptor can be found in the following link: 

]ittp:/.\v\v'w 

.html 

B.5 MGS Configuration Helper 

It is a Java program for helping service and resource providers to handle the 

configuration works of the JADE platform. The JADE platform in the Mobile Grid 

Service Framework is formed by a main container with some containers (created by 

resource providers for agents to migrate on) connecting to it. During each service's 

initialization, a new service container will be created and connected to the JADE 

platform. Configuration of each container needs to handle a set of configuration files. 

W e can imagine that configurations of Mobile Grid Services and the grid supporting 

them involve many configuration files. Consequently, the M G S Configuration 

Helper is provided to ease the configuration tasks. Service or resource providers can 

handle the JADE-side configuration works in a graphical user interface of the 

program instead of dealing with the configuration files separately. 

The M G S Configuration Helper program is composed of three panels: “Main 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 152 

Container", "Container" and "Service". They are responsible to help three different 

types of users respectively. The details of these three tagged panels are as follow: 

B.5.1 "Main Container" Panel 

/ M a m Container | Container , Service 

P la t lorm Settings 

Plat form Name Mobi!eOridSen,oce 

Secure Mode GUI 

Airthorizerf O w n e r s for P lat form 
AUniinistr^itur 

Administrator 
！ . 尔 O H ; ! -

i 
！ 

Resource Providers j 

I 

j 

！ 

Output File N a m e I 

JADE ConfKjuration File main conf 

M D i fdiicy policv_rnairi txt 

i � s p a s s w o r d s . U t 

: /usn!ocai/g!obus-10.3 

I 
Generate | 

： : …..J 

Figure B-4: Graphical User Interface of M G S Configuration Helper (Main Container 

Panel) 

Fig. B-4 shows the appearance of the “Main Container" panel. The administrator of 

the grid supporting Mobile Grid Services (i.e. administrator of the JADE platform) 

can use this panel to generate all configuration files for the JADE main container. 

The configuration works can be done by: 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 153 

In the "Platform Settings" division 

參 Specify the name of the JADE platform in the “Platform Name" field. 

• Tick the "GUI" check box if you want a graphical user interface to be launched 

on the main container (for controlling of the life-cycle of the JADE platform 

and all the registered agents). 

參 Tick the "Secure Mode" check box if you want the main container to run in 

secure mode 

In the "Authorized Owners for Platform" division (only enabled when secure 

mode is chosen) 

• Set the usemame and password of the administrator in the "Administrator" 

section. 

• Add more valid owners (resource or service providers) to the platform by 

pressing the "Add..." button and then inputting the usemame and password of 

the new owners in the message dialogs coming out. 

In the "Output File Name" division 

眷 specify the names of the output configuration files. 

Finally, a full set of configuration files for the main container will be created by 

pressing the “Generate’，button. For secure mode, these files include a JADE 

configuration file (for specifying container settings), a JADE policy file (for 

specifying the agent permission), a JADE password file (for storing passwords of 

each valid owner) and a J A AS configuration file (for specifying the login handling). 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 154 

For non-secure mode, only the JADE configuration file will be created. 

The agent permission in the JADE policy file is created according to the details 

of the valid owners. The generated file contains the basic permission such that all 

authorized owner are able to create agents on this container and communicate with 

Administrator. If more permission is needed to be set, the resource provider should 

directly modify the generated policy file. 

B.5.2 "Container" Panel 

Main Container 1 Combiner ( Service 
产 4 j.. 

Container Settings 

Plat form Host 

Container Name Secure Mode 

Authorized O w n e r s for Container 
Container Owner 

I 

Other Valid O w n e r s 

I > 
i 
i 
i Administrator of Plat form 
i 

Oiitpiit File N a m e 

JADF CmiTiguration File c n m r n e r r.onf 
：•";“?-V —… pohcŷ containertd 

�…i. : /usr/locai/globiJs-4 0 3 

j Generate 

Figure B-5: Graphical User Interface of M G S Configuration Helper (Container 

Panel) 

Fig. B-5 shows the "Container" panel of the program. The resource providers who 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 155 

want to contribute their resources in the grid (or the grid administrator) can use this 

panel to generate the configuration files required for their JADE containers. The 

configuration works can be done by: 

In the "Container Settings" division 

• Specify the host name of the administrator machine (where the main container 

is running on) in the "Platform Host" field. 

參 Specify the name of this container in the "Container Name" field (The host 

name of the machine hosting the container should be used). 

• Tick the "Secure Mode" check box if the container runs in secure platform (i.e. 

main container is in secure mode). 

In the "Authorized Owners for Container" division (only enabled when secure 

mode is chosen) 

參 Input the usemame and password of this container in the "Owner" section. The 

usemame and password should be already assigned to the resource providers 

such that they can successfully register to the JADE platform as a valid owner. 

• Add the name of all valid owners (without password) into the "Other Valid 

Owners" section. 

• Specify the administrator name of the JADE platform (i.e. identity of the grid 

administrator in the JADE platform). 

In the “Output File Name" division 

參 Specify the names of the output configuration files 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 156 

Finally, a JADE configuration file and a JADE policy file (for secure mode 

only) for the container will be created by pressing the "Generate" button. All the 

details in "Authorized Owners for Container" division will be used to prepare the 

basic permission policy for this container. 

B.5.3 “Service，，Panel 

M a i n Container f Container ^ Serv ice 

I Se rv ice Set t in q s 

P l a t f o r m Host S e c u r e M o d e 

Seivice Ndrne 

Author ized O w n e r s for Container 

‘ Container O w n e r 

Other Val id O w n e r s 

A I I U . . ； 

D̂lme 丨 

Administ rator of P l a t f o r m 

Name 

Output hile N a m e 

JADE Conf igurat ion File service com" 

' ^mt i'om-̂ / policy_service.txt 
M G S Configurat ion File serviceSettirig ^rnl 

I 腳 ) u s Lac^m) /usr/local/globus-'l.O.S 
： ! i 
！ 

j G e n e r a t e 
1 
} 

Figure B-6: Graphical User Interface of M G S Configuration Helper (Service Panel) 

Fig. B-6 shows the "Service" panel of the program. The service providers who want 

to provide their Mobile Grid Services in the Grid can use this panel to generate the 

configuration files required for their Mobile Grid Services. The configuration works 

can be done by: 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 157 

In the "Container Settings" division 

參 Specify the host name of the administrator machine (where the main container 

is running on) in the "Platform Host" field. 

• Specify the name of this service in the "Service Name" field. The container 

name will be automatically set by concatenating the host name (machine where 

the service resides on) to the service name, separated by the ‘_’ character. For 

example, a service called Y deployed in a machine called A will create a 

container called "A Y". 

• Tick the "Secure Mode" check box if the container runs in secure platform (i.e. 

main container is in secure mode). 

• Tick the "Protection Mode" check box (only enabled when secure mode is 

chosen) if the service needs to run in protection mode (i.e. the service supports 

agent protection). 

In the "Authorized Owners for Container” division (only enabled when secure 

mode is chosen) 

• Input the usemame and password of this container in the "Owner" section. The 

usemame and password should be already assigned to the resource providers 

such that they can successfully register to the JADE platform as a valid owner. 

• Add the name of all valid owners (without password) into the "Other Valid 

Owners" section. 

• Specify the administrator name of the JADE platform (i.e. identity of the grid 

administrator in the JADE platform). 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 158 

In the “Output File Name" division 

• Specify the names of the output configuration files 

Finally, a JADE configuration file and a JADE policy file (for secure mode only) for 

the service container will be created by pressing the "Generate" button. The M G S 

configuration file for the service will be also generated. The "Output File Name" 

division is more important in the ‘‘Service’’ panel because multiple Mobile Grid 

Services may be deployed in a single machine. The file should be named properly 

such that each service has its own set of configuration files. 

B.6 Interface details 

B.6.1 Package mgs.manager 

Class AgentManager 

Constructor: 

AgentManager(String configFileName) 

Description: 

Create its own JADE container and Agent Manager Agent. All 

implementation of Mobile Grid Services should create an AgentManager object 

and use this object to further create/communicate with other Task Agents. 

Parameters: 

configFileName — name/path of the M G S configuration file 

Public methods: 

1) void createAgent(String agentName, String agentClass, Object[] 

agentArgs) 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 159 

Description: 

Create a task agent. The reference of the newly created agent 

(AgentContainer) is stored in a hash table in the AgentManager object. 

Parameters: 

agentName - A platform-unique name for the newly created agent. 

agentClass - The fully qualified name of the class that implements the 

agent. 

agentArgs - An object array, containing initialization parameters to pass 

to the new agent. 

Variants: 

void createAgentWithMonitor(String agentName, String agentClass, 

Object[] agentArgs, MonitorSetting setting) 

Description: 

Create a task agent with a default monitor agent (configured with the 

input MonitorSetting). The name of MonitorAgent will be 

"Monitor-<agentName>". 

void createAgentWithMonitor(String agentName, String agentClass, 

Object[] agentArgs, String monitorClass, Object[] monitorArgs) 

Description: 

Create a task agent with a specific monitor agent. Developers can use 

their self-defined MonitorAgent by this method. 

void createProtectedAgent( String agentName, String agentClass, 

String checkerClass, Object[] agentArgs ) 

Description: 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 160 

Create a protected task agent. The〈checkerClass〉specify the 

Checker for this Task Agent. (Used for protection mode only) 

void createProtectedAgentWithMonitor( String agentName, String 

agentCIass, String checkerClass, Object[] agentArgs, MonitorSetting 

setting) 

Description: 

Create a protected task agent with a default protected monitor agent. 

The〈checkerClass〉specify the Checker for this Task Agent. (Used for 

protection mode only) 

2) MGSResult getCurrentResult(String taskName) 

Description: 

Get the current result of task agent from the resultTable 

Parameters: 

taskName - The name of target Task Agent. 

3) MGSResult getFinalResult(String taskName) 

Description: 

Get the final result of task agent from the resultTable 

Parameters: 

taskName - The name of target Task Agent. 

4) AgentSituation getAgentSituation(Stnng agentName) 

Description: 

Get the current situation of specific agent. The result is returned as an 

AgentSituation object (includes agent state, position, etc). 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 161 

5) void iTioveAgentTo(String agentName, String containerName, String 

containerAddress) 

Description: 

Force agent to move to a specific host (with monitor agent if any) 

6) ACLMessage createACLMessage(String agentName, int performative, 

String content) 

Description: 

Create an A C L message by specify its receiver, performative and content. 

Parameters: 

agentName - The name of agent who should receive this A C L message 

performative - The FIPA performative of the message (e.g. REQUEST, 

INFORM) 

content - The content part of the message 

7) String sendACL(ACLMessage query) 

Description: 

Send A C L message command or query to Task agent through Agent 

Manager Agent. The A C L message is neither signed nor encrypted. 

Parameters: 

query - The ACL message being sent. 

8) String sendSignedACL(ACLMessage query) 

Description: 

Send A C L message command or query to Task agent through Agent 

Manager Agent. The A C L message is signed. (Used for secure mode only) 

Parameters: query - The A C L message being sent. 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 162 

9) String sendEncryptedACL(ACLMessage query) 

Description: 

Send A C L message command or query to Task agent through Agent 

Manager Agent. The A C L message is encrypted. (Used for secure mode only) 

Parameters: 

query - The ACL message being sent. 

10) String sendFullSecureACL(ACLMessage query) 

Description: 

Send A C L message command or query to Task agent through Agent 

Manager Agent. The A C L message is both signed and encrypted. (Used for 

secure mode only) 

Parameters: 

query - The ACL message being sent. 

11) String checkingAtHome(String agentName) 

Description: 

This method is designed for ensuring that tracing process of the specific 

Task Agent (specified by the argument〈agentName〉）can be completed After 

this method is called, a suitable Checker for that Task Agent will be created at 

the home host. All the unchecked stages will be assigned by the home Checker. 

Thus, all remaining re-execution can be done on the home host and the tracing 

can be finished. (Used for protection mode only) 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 163 

Class AgentManagerAgent 

Description: 

Relay between Agent Manger and Task agents. 

(Developers need not to care about this class) 

Class MGSResult 

Constructor: 

MGSResult(String result, boolean finished, boolean checked, long 

startTime, long endTime) 

Description: 

Create a MGSResult object which will be stored in the Result Table. 

Parameters: 

result - The result string to be stored in the MGSResult object, 

finished - Boolean value indicating whether the result is final result, 

checked - Boolean value indicating whether the result is verified. 

StartTime — Long value for the start time of the Task Agent 

endTime — Long value for the end time of the Task Agent 

Public methods: 

void setResult(String result) 

Description: 

Set the result field in the MGSResult object. 

String getResultQ 

Description: 

Return the result part in the MGSResult object. 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 164 

boolean isFinishedQ 

Description: 

Return a boolean value indicating whether the result is final result, 

boolean isCheckedQ 

Description: 

Return a boolean value indicating whether the result is verified, 

long getStartTimeO 

Description: 

Return a long value which is the start time of the Task Agent, 

long getEndTimeO 

Description: 

Return a long value which is the end time of the Task Agent. 

Class AgentSituation 

Constructor: 

AgentSituation(String agentState, String agentLocation) 

Description: 

Create an object store the situation of an agent. Information include agent 

state and location 

Public methods: 

String getAgentStateO 

Description: 

Return the agent state in the AgentSituation object. 

String getAgentLocationQ 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 165 

Description: 

Return the agent location in the AgentSituation object. 

String toStringO 

Description: 

Return the agent state in the AgentSituation object. 

B.6.2 Package mgs.monitor 

Class MonitorAgent 

Description: 

This class extends the TaskAgent class. It will wait to receive A C L message 

from Resource Information Service, update data, and then call decide() method to do 

the migration decision at appropriate time. 

Constructor: 
MonitorAgent(MonitorSetting setting, String taskAgentName) 
Description: 

Add MonitorServelncomeMessagesBehaviour to the agent 

Parameters: 

setting — contains setting of the Monitor Agent (debug mode, GUI or not, 

other parameters to control the migration decision logic) 

taskAgentName — The agent name of corresponding Task Agent. 

Public methods: 

String decideO 

Description: 

Method called to make the migration decision; return the target 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 166 

containerName or null if not decide to move. If developer requires a 

tailor-made logic, he can implement a new MonitorAgent by extending this 

class and override this method. 

Class ProtectedMonitorAgent 

Description: 

This class extends the ProtectedTaskAgent class. It is the protected version of 

MonitorAgent. Except the agent protection support, other details are just the same as 

those of MonitorAgent class. 

Class ProtectedMonitorAgentChecker 

Description: 

This class extends the Checker class. It is the Checker for the 

ProtectedMonitorAgent class. 

(Developer need not to care about this class) 

Class MonitorSetting 

Description: 

Create a MonitorSetting object with default value. 

Constructor: 

MonitorSetting () 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 167 

Table B-1: INSTANCE VARIABLES OF MonitorSetting CLASS 

Variable Type Default Description 

min C P U int 9000 Minimum C P U requirement on current host 

(90%) 

min_RAM int 0 Minimum memory requirement on current 

host 

min H D int 0 Minimum harddisk requirement on current 

host 

weight—CPU double 1 Weight of C P U value on best host decision 

weight-RAM double 0 Weight of memory value on best host 

decision 

weight—HD double 0 Weight of harddisk value on best host 

decision 

debugMode boolean false Indicate whether the Monitor Agent run in 

debug mode 

msgNeedSign boolean false Indicate whether the message sent by 

Monitor Agent requires signature 

msgNeedEncrypt boolean false Indicate whether the message sent by 

Monitor Agent requires encryption 

secureMode boolean false Indicate whether the Monitor Agent run in 

secure mode (set by Agent Manager) 

Public methods: 

Get and Set methods for all variables in the table above, 

(e.g. getMin_CPU(), setMin_CPU(int min_CPU)) 

B.6.3 Package mgs.task 

Class TaskAgent 

Constructor: 

TaskAgent(TaskSetting setting) 

Description: Create a Task Agent. 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 168 

Parameters: 

setting — contains setting of the Task Agent (secure mode, message need 

sign/encrypt or not) 

Public methods: 

public void notifyResult(String value) 

Description: 

This method is used to send the current result to Agent Manager. The 

result is sent through DF service notification, 

public void notifyFinalResult(String value) 

Description: 

This method is used to send the final result to Agent Manager. The result 

is sent through DF service notification, 

public void notifyConfidentialResult (String value) 

Description: 

This method is used to send the confidential final result to Agent Manager. 

It will set the confidential result in the agent first and then notify Agent 

Manager through DF service notification. After receiving request for the result, 

the confidential result will be sent to Agent Manager by encrypted message. 

(Used for secure mode only) 

public void notifyConfidentialFinalResult (String value) 

Description: 

This method is used to send the confidential final result to Agent Manager. 

It will set the confidential result in the agent first and then notify Agent 

Manager through DF service notification. After receiving request for the result, 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 169 

the confidential result will be sent to Agent Manager by encrypted message. 

(Used for secure mode only) 

public void setConfidentialResult(String value) 

Description: 

This method set the confidential result which will be obtained by Agent 

Manager. (Used for secure mode only) 

public String getConfidentialResultQ 

Description: 

This method returns the confidential result which is ready to be obtained 

by Agent Manager. (Used for secure mode only) 

public void sendMessage(ACLMessage msg) 

Description: 

This method is used to send A C L message according to the msgNeedSign 

and msgNeedEncrypt flags in the TaskSetting object, 

public void sendClearMsg(ACLMessage msg) 

Description: 

This method is used to send plain text A C L message no matter what the 

msgNeedSign and msgNeedEncrypt flags are. 

public void sendSignedMsg(ACLMessage msg) 

Description: 

This method is used to send signed A C L message no matter what the 

msgNeedSign and msgNeedEncrypt flags are. (Used for secure mode only) 

public void sendEncryptedMsg(ACLMessage msg) 

Description: 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 170 

This method is used to send encrypted A C L message no matter what the 

msgNeedSign and msgNeedEncrypt flags are. (Used for secure mode only) 

public void sendFullSecureMsg(ACLMessage msg) 

Description: 

This method is used to send signed and encrypted A C L message no matter 

what the msgNeedSign and msgNeedEncrypt flags are. (Used for secure mode 

only) 

public void nioveMGS(Location nextHost) 

Description: 

This method is used to move the Task Agent to target location, 

public ACLMessage receiveMGS(MessageTemplate pattern) 

Description: 

This method is used to receive A C L message. 

Class SimpleTaskAgent 

Description: 

This class extends the TaskAgent class. It is implemented for easing the 

development of Task Agent. 

Constructor: 

SimpleTaskAgent(TaskSetting setting) 

Description: 

Create a Task Agent. 

Parameters: 

setting - contains setting of the Task Agent (secure mode, message need 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 171 

sign/encrypt or not) 

Abstract methods: 

protected abstract void msgHandlerQ 

Description: 

This method will be invoked for each iteration. The handling of any 

incoming A C L messages should be implemented. Developers should add the 

management of the user-defined messages, 

protected abstract void normalExecutionQ 

Description: 

This method states the program logic of the service tasks, 

protected abstract boolean endCheckingQ 

Description: 

This method is used to specify the stopping criteria of the Task Agent 

execution. If the stopping criteria are met, it should return true. 

Class ProtectedTaskAgent 

Description: 

This class extends the TaskAgent class. It is the protected version of Task Agent. 

Agent protection mechanism will be performed during its execution. 

Constructor: 

ProtectedTaskAgent(TaskSetting setting) 

Description: 

Create a Task Agent. 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 172 

Parameters: 

setting — contains setting of the Task Agent (secure mode, message need 

sign/encrypt or not) 

Abstract methods: 

protected abstract void msgHandlerQ 

Description: 

This method will be invoked for each iteration. The handling of any 

incoming A C L messages should be implemented. Developers should add the 

management of the user-defined messages, 

protected abstract void normalExecutionQ 

Description: 

This method states the program logic of the service tasks, 

protected abstract boolean endCheckingO 

Description: 

This method is used to specify the stopping criteria of the Task Agent 

execution. If the stopping criteria are met, it should return true, 

protected abstract bytef] getlnitStateQ 

Description: 

This method is responsible for extracting the initial execution state from 

specific instance variables. 

protected abstract byte[] getFinalStateQ 

Description: 

This method is responsible for extracting current execution state from the 

core instance variables. 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 191 

protected abstract void updatelnitStateQ 

Description: 

This method is responsible for updating the specific instance variables 

(used for extracting initial state) by the current values of the core variables. It 

will be invoked when a new stage starts. 

Public methods: 

public void setStageEndQ 

Description: This method is used to specify a user-specified stage end. The 

current stage of Task Agent execution will end after invoking this method. 

Class TaskSetting 

Constructor: TaskSetting () 

Description: Create a TaskSetting object with default value. 

Table B-2: INSTANCE VARIABLES OF TaskSetting CLASS 

Variable Type Default Description 

msgNeedSign boolean false Indicate whether the message sent by Task 

Agent requires signature 

msgNeedEncrypt boolean false Indicate whether the message sent by Task 

Agent requires encryption 

secureMode boolean false Indicate whether the Task Agent run in 

secure mode (set by Agent Manager only) 

protectedMode boolean false Indicate whether the Task Agent run in 

protection mode (set by Agent Manager 

only) 

agentManager AID null AID of the corresponding Agent Manager 

appArguments Object[] null Pass extra arguments for the application to 

the Task Agent 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 174 

Public methods: 

Get and Set methods for all variables in the table above. 

(e.g. getMsgNeedSignO, setMsgNeedSign(boolean msgNeedSign)) 

B.6.4 Package mgs.ftsFramework 

Class Checker 

Constructor: 

Checker(TaskSetting setting) 

Description: 

Create a Checker. 

Parameters: 

setting - contains setting of the corresponding Task Agent 

Abstract methods: 

public abstract void normalExecutionQ 

Description: 

The program logic of the corresponding service tasks should be 

implemented in this method such that re-execution can be done during 

checking. 

protected abstract void msgHandlerQ 

Description: 

This method will be invoked for each iteration. The handling of any 

incoming A C L messages should be implemented as same as those of the 

corresponding Task Agent. Unlike the one in the TaskAgent class, this method 



APPDENDIX B. DE VELOPER GUIDE FOR MGS API 193 

will obtain the incoming messages from the message log stored in the trace. 

protected abstract boolean endCheckingO 

Description: 

This method is used to determine whether the execution of the task is 

complete. It should be equal to the same method in the Task Agent, 

protected abstract byte[] getFinalStateQ 

Description: 

This method is responsible for extracting current execution state from the 

core instance variables. It should be equal to the same method in the Task 

Agent. 

protected abstract void restoreState(byte[] state) 

Description: 

The method will be used to restore the instance variables in the Checker to 

the condition recorded in the specified execution state, 

public abstract boolean stateEquals(byte[] statel, byte[] state2) 

Description: 

This method is used to determine whether two execution states are equal. 

Since execution state for each Task Agent should be different, developer should 

provide method to check the equality of any two states. It should return true if 

the two states are equal. 



Bibliography 

1] I. Foster, C. Kesselman, and S.Tuecke, The Anatomy of the Grid, Enabling 

Scalable Virtual Organizations, International Journal of Supercomputer 

Applications, 2001, pp.200-222. 

'2] Ian Foster and C. Kesselman, editors, The Grid2: Blueprint for a New 

Computing Infrastructure, Morgan Kaufmann, 2004. 

[3] Extensible Markup Language (XML). 

U R L http://www• w3.org/XML/ 

[4] R. Chinnici, M. Gudgin, J.-J. Moreau, S. Weerawarana, Editors, Web Services 

description language (WSDL) version 1.2, World Wide Web Consortium, 2003, 

http : /7www.w3.ore/TR /2003/WD-wsdl 12-2003 03 03/ 

[5] Simple Object Access Protocol (SOAP) 

U R L hUp:/7www.w3.org/TRySOAP 

6] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, The Physiology of the Grid: An 

Open Grid Services Architecture for Distributed Systems Integration, Technical 

report, Globus Project, 2002. 

[7] Global Grid Forum. 

U R L http://www.gridforiini.org 

176 

http://www.w3.ore/TR/2003/WD-wsdl
http://www.w3.org/TRySOAP
http://www.gridforiini.org


BIBLIOGRAPHY 195 

:8] Globus toolkit. 

U R L http:/Vwww.idobiis.()rWtookit 

Globus Alliance. 

U R L hUp://vv'wvv.globus.org 

10] Web Services Resource Framework (WSRF), 

http://www.globus.org/wsif/spccs/ws-wsrf.pdf 

11] Grid Security Infrastructure: A Standards Perspective 

U R L http: // w w w .globus, org/too 1 k i t/docs/4.0/sccurity/G T4-GSI-O very icw. pel f 

[12] X.509 certificates. 

U R L hup:,'/www.ietf.org/rfc/rfc2459.txt 

13] The Foundation for Intelligent Physical Agents (FIPA). 

U R L http://www.fipa.orR 

14] Java Agent Development framework (JADE). 

U R L http:/7iadc.tilab.com/ 

15] M. Fukuda, Y. Tanaka, N. Suzuki, L. F. Bic, and S. Kobayashi, A 

mobile-agent-based PC grid, in: Proceedings of Autonomic Computing 

Workshop Fifth Annual International Workshop on Active Middleware Services 

(AMS), 2003, pp. 142-150. 

[16] N. Suri, P. T. Groth, J. M. Bradshaw. While You're Away: A System for 

Load-Balancing and Resource Sharing Based on Mobile Agents, in: Proceedings 

of the 1st International Symposium on Cluster Computing and the Grid 

(CCGRID), 2001, pp. 470-475. 

http://www.globus.org/wsif/spccs/ws-wsrf.pdf
http://www.ietf.org/rfc/rfc2459.txt
http://www.fipa.orR


BIBLIOGRAPHY 196 

'17] R. M. Barbosa and A. Goldman, MobiGrid - Framework for Mobile Agents on 

Computer Grid Environments, in: Proceedings of the first International 

Workshop on Mobility Aware Technologies and Applications (MATA), 2004, 

pp. 147-157. 

18] A. Goldchleger, F. Kon, A. Goldman, M. Finger, and G. C. Bezerra, InteGrade: 

Object-Oriented Grid Middleware Leveraging Idle Computing Power of 

Desktop Machines, in: Concurrency and Computation: Practice & Experience. 

Vol.16, pp. 449-459. 

19] Aglets. 

U R L http:/7aglets.sourceforge.net/ 

[20] N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth, G. A. Hill, R. Jeffers, and T. 

S. Mitrovich, An Overview of the N O M A D S Mobile Agent System, in: 

Proceedings of the 14th European Conference on Object-Oriented Programming 

(ECOOP), 2000. 

[21] N. Suri, J. M. Bradshaw, M. R. Breedy, K. M. Ford, P. T. Groth, G. A. Hill, and 

R. Saavedra. "State Capture and Resource Control for Java: The Design and 

Implementation of the Aroma Virtual Machine", in : Proceedings of the Java 

Virtual Machine Research and Technology Symposium, 2001. 

[22] J. Hulaas, W . Binder, and G. D. M. Serugendo, Enhancing Java Grid Computing 

Security with Resource Control, in: Proceedings of the First International 

Conference Grid Services Engineering and Management (GSEM) 2004, pp. 

30-47. 

[23] OASIS. “UDDI Technical White Paper". 

U R L http:/7uddi.org 



BIBLIOGRAPHY 179 

:24] W . Zhang, J. Zhang, D. Ma, B. L. Wang, Y. T. Chen, Key Technique Research 

on Grid Mobile Service, in: Proceedings of the Second International Conference 

on Information Technology for Application (ICITA), 2004, pp. 144-148. 

"25] T. Ma, and S. Li, Secure Grid-based Mobile Agent Platform by 

Instance-Oriented Delegation, in: The Second International Workshop on Grid 

and Cooperative Computing (GCC), 2003, pp. 916-923. 

26] Globus Index Service. 

U R L hUp://www.globus.org/toolkit/docs/4.0/info/indcx/ 

'21] Ganglia monitoring system. 

U R L hup://eanglia.soiirceforge.net 

[28] JAVA. 

U R L http:/7iava.sun.coni 

29] Java Authentication and Authorization Service (JAAS). 

U R L http://iava.sunxom/products/iaas/ 

[30] G. Vigna, Cryptographic traces for mobile agents, in: Mobile Agents and 

Security, 1998, pp. 137-153 

31] T. Sander, C. F. Tschudin, Towards mobile cryptography, in: Proceedings of the 

IEEE Symposium on Research in Security and Privacy, IEEE Computer Society, 

Technical Committee on Security and Privacy, IEEE Computer Society Press, 

1998. 

[32] S. Funfrocken, Protecting mobile web-commerce agents with smartcards, 

Autonomous Agents and Multi-Agent Systems, Volumn 4, Issue 4, 2001, pp. 

339-358. 

33] O. Esparza, M. Soriano, J. L. Munoz, J. Fome, A protocol for detecting 

malicious hosts based on limiting the execution time of mobile agents, in: IEEE 

Symposium on Computers and Communications (ISCC), 2003, pp. 251-256. 

http://www.globus.org/toolkit/docs/4.0/info/indcx/
http://iava.sunxom/products/iaas/


BIBLIOGRAPHY 180 

34] K.K. Leung, and K.W. Ng, Detection of Malicious Host Attacks by Tracing with 

Randomly Selected Hosts, Embedded and Ubiquitous Computing, 

Springer-Verlag, 2004, pp.839-848. 



Publications 

Accepted publications 

Sze-Wing Wong and Kam-Wing Ng, A Middleware Framework for Secure Mobile 

Grid Services, in: International Workshop on Agent based Grid Computing at 6th 

IEEE International Symposium on Cluster Computing and the Grid (CCGrid), 2006. 

參 Corresponding to Chapter 3 and 4 

Sze-Wing Wong and Kam-Wing Ng, M G S : An API for Developing Mobile Grid 

Services, in: OnTheMove Federated Conferences (OTM), 2006, L N C S 4276, 

p p . 1 3 6 1 - 1 3 7 5 , 2 0 0 6 

• Corresponding to Chapter 5 

Sze-Wing Wong and Kam-Wing Ng, Security Support for Mobile Grid Service 

Framework, in: International Conference on Next Generation Web Services 

Practices (NWeSP), 2006. 

Sze-Wing Wong, and Kam-Wing Ng, Security Support for Mobile Grid Services, in: 

International Journal of Web Services Practices (IJWSP), 2006. 

• Corresponding to Chapter 6 

181 





C U H K L i b r a r i e s 

004461196 


