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Abstract 

In this thesis, an automatic approach to match correspondences on 3D human bodies 

is proposed. The proposed algorithm maps correspondences on 3D human bodies in 

varied postures so that the semantic feature points can be automatically extracted. 

The semantic feature points are very important to establish the volumetric 

parameterization around human bodies for the human-centered customization of 

soft-products. For a given template human model with a set of predefined semantic 

feature points, the model is down sampled into a set of sample points (including the 

semantic feature points). Then the corresponding points of these samples on the 

human model are identified by minimizing the distortion with the help of series of 

transformation regardless of their differences in postures, scales and/or positions. The 

basic idea the proposed algorithm is to transform the template human body to the 

shape of the input model iteratively. To generate a bending invariant mapping, the 

initial corresponding/transformation is computed in a multi-dimensional scaling 

(MDS) embedding domain of 3D human models, where the Euclidean distance 

between two samples on 3D model in the MDS domain is corresponding to the 

geodesic distance between them in R3. As the posture change (i.e., the body bending) 

o f ahuman model can be considered as being approximately isometric in the intrinsic 

3D shape, the initial correspondences established in the MDS domain can greatly 

enhance the robustness of the proposed approach to the body bending. Once the 

correspondences between the surface samples on the template model and the input 

model are determined after iterative transformations, we have essentially found the 

corresponding semantic features on the input model. Lastly, the locations of semantic 

features on the input model are refined by a curvature map based local matching step. 
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此論文提請一種“含特徵描述的三維模型彎曲不變配對演算法” °此技術現廣泛 

應用於不規則物件的自動法設計中’例如成衣工業等。 

此提請的演算法是一種融合整體循環隊列調整及局部特徵配對之技術°而局部 

特徵配對乃基於兩件配對模型-範本及輸入物件之等量簽署必須為近似為大 

前題。整個過程可分為三大步驟： 

第一個步驟稱為姿勢調整。此步驟先透過兩件配對物件之等量簽署作初步配對， 

從而將範本變形至近似輸人物件之形狀。而物件之等量簽署可透過一種名為多 

維倍變之演算法獲得。 

第二個步驟稱為表面調整。此步驟主要透過重複的優化兩件配對模型的三角表 

面匹配度及流暢度。優化匹配度的程序利用物件兩方的點對點配對不斷將對方 

的表面拉近’最後以每點及附近之點互相平衡以優化表面之流暢度。 

第三個步驟稱為特徵調整。此步驟將第二步所得之調整結果透過一種”特徵描 

述”的比對從而加以修改。而此”特徵描述”更可不受物件之間的彎曲、微量變 

形或方向等等所影響，因而得出一個別於一般物件配對演算法的結果。 

有關演算法的詳細介紹，分析及測試結果等可於本論文内一一找到。 
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Chapter 1 Introduction 

Different from the design automation functions provided in current commercial 

Computer-Aided Design (CAD) systems that are developed for products with regular 

shapes [JH02] and are usually driven by dimensional parameters, the design 

automation of human centered soft-products relies on establishing the volume 

parameterization of spaces around the human bodies, where a challenging step is 

how to extract the semantic feature points on the 3D models of human body. The 

semantic feature points serve as the anchor points to constrain the volume 

parameterization [MN78]. In many previous researches 

[LDRS05][PDJ93][WWWY03a], the semantic feature points (at least part ofthem) 

are specified by users or semi-automatically selected by rule-based systems. An 

automatic method is proposed in the thesis. 

1.1 Problem definition 

Given a template 3D human model Mu represented as a polygonal mesh surface 

U G 识3 with a set of predefined semantic feature points, «", the proposed algorithm is 

going to find the corresponding feature points, a\ on the surface F o f a n input human 

model Mv. Without loss of generality, V is also represented by a polygonal mesh in 

9^^and both U and Fhave surface normal facing outwards. 

The automatic extraction is challenging for two reasons. First, the semantic features 

are not always located at the shapes extremes, therefore the local shape matching 

based methods cannot robustly give satisfactory answers. Second, the robustness of 

local shape matching is more problematic when the postures of human bodies are 
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varied (i.e., the 3D bodies are bended). 

In this thesis, a global deformation based fitting method is proposed to automatically 

find the correspondences between M^ and M^ thus the locations of semantic feature 

points on V. Specifically, a mapping f will be found to minimize the distortion 

function E as 

E{f)=\\V-f{U)fds (1.1) 
V 

With II.. .11 the 1} -norm in ^^ . In order words, by the optimal mapping function 

/ = a r g m i n ^ ( / ) (i.2) 

The semantic feature points can be determined by 

A'={a'\a'-f{a\^d'eA^} (u) 

To have a refined matching, some important points in a^ should have similar local 

shape distributions to their corresponding points in A ,̂ This will serve as constraints 

for the minimization problem defined in Eq.(1.2). 

1.2. Proposed algorithm 

The proposed bending invariant matching algorithm integrates both the Global 

Surface Alignment and the Feature Based Matching techniques, which were found as 

the two major techniques in shape matching studies 

|EK03] [CS05] [CJGQ05] [WWJGS06|. Moreover, the integration of these two 

techniques also inherits the benefits of them in one algorithm. The matching 

algorithm has three steps: 1) Posture Alignment, 2) Surface Fitting and 3) Feature 

Matching Refinement. 

Firstly，the posture alignment step transforms the template model towards the input 
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model non-rigidly according to the control points mapping defined by their similar 

isometric signatures - the multi-dimensional scaling (MDS) embedding. The MDS 

embedding of a given model is defmed in a k-dimensional domain according to the 

relative distribution of surface points on the model. The robustness of finding good 

initial correspondences according to the MDS embedding is guaranteed by the facts 

that 1) the shapes of a human body in different postures are approximately isometric 

to each other and 2) the isometric shapes have the same MDS embedding. 

Secondly, the surface fitting step refmes the surfaces o f the transformed template by 

optimizing the fitness and the smoothness iteratively. Two main process, surface 

fitness optimization and surface smoothing, will be repeatedly applied until the 

changes on surface converge to a limited amount. The surface fitting procedure 

employs a bi-direction mapping concept and the orientation-aware movement, which 

greatly improve the fitting quality oftemplate model. 

Finally, the feature matching refinement step further refmes the correspondence by 

adopting the feature descriptor constraints on particular surface regions. At this stage, 

the descriptor is encoded on a surface point with curvature distribution information 

on the surface around it. The concept is similar to the Curvature Maps presented by 

Gatzke et. A1 in [GGGZ05] but in a constrained manner. Hence, the pre-defined 

semantic points on the template model can be mapped to the input model according 

to the feature-aligned models. 
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1.3. Main features 

The main features of our method are outlined as follows. 

參 A MDS-based point matching algorithm is investigated to align the initial 

correspondences between the template human model and the given 3D 

human model. A sign-flip correction technique is developed to enhance the 

robustness of MDS embedding. The details of sign-flip problem can be 

found in chapter 3.2. Without this sign correction technique, the 

MDS-based method cannot be applied to find correct matching on those 

nearly symmetric models like human bodies [JZ06][EK03]. 

• Starting from the initial correspondences, a global alignment technique is 

exploited to iteratively find a mapping function (via the point 

correspondences) that optimizes surface proximities and is sensitive to 

semantic features (see Chapter 3.2). 

These main features of our method lead to a robust semantic feature extraction 

technique for 3D human bodies in various postures. In fact, the method proposed in 

this thesis can also be applied to other classes of models which are approximately 

isometric. Although the whole human bodies are employed as examples in this paper, 

there is no different to apply it to parts of human bodies (e.g. feet, hands, faces, etc) 

[WCY03] [WWY03b] [WHT07|. 

The rest of the thesis is organized as follows. After review the related work in 

Chapter 2, the fundamental techniques and detail methodology of the proposed 

algorithm are presented in Chapter 3.1 and 3.2 respectively. The experimental results 

are shown and studied in section 4. Lastly, the thesis ends with the conclusion 

chapter. 
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Figure 1-1: Illustration for garment design automation, where the template model has 

predefined features and the clothes are designed around the tempiate body. By the 

correspondences between human bodies, the garments are refit to the new human model. 
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Chapter 2 Literature Review 

The point matching algorithms in literature can be classified into two major 

categories: local feature matching and global iterative alignment techniques. 

2.1 Local Feature Matching techniques 

Feature based matching has been a common approach in shape matching 

[JH02] [PDJ93] [LDRS051 [JD03]. It can be found in 2D applications such as photo 

panorama, text recognition and animation morphing. The feature are always 

represented by grouping regional information in point, known as descriptor. Two 

well known descriptors for image are shape contexts and spin images [LD04], both 

utilizing a histogram obtained by binning the space around a point according to the 

Euclidean metric and collecting point counts. These methods have subsequently been 

generalized in a straight-forward manner to handle 3D point sets. However, neither 

space contexts nor spin images are invariant to shape bending. Some extra works 

have to be done to deal with non-rigid object matching problem in 3D scenario. 

The Curvature Map introduced by Gatzke et. A1. in [GGGZ05] is a kind of feature 

descriptor which gathers the local differential geometry information at a point. A 

curvature map is first defined around a point v, and then accumulates curvature 

information from a region around v and takes one of two forms: a one-dimensional 

(l-D) map, which only consider the distance from v, or a two-dimensional (2-D) map 

that uses both the distance and the orientation information. 

In most shape matching applications, geometric feature is a very important portion to 

be preserved during matching processes (e.g., reverse engineering of mechanical 
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parts [JH02]). One significant drawbacks to incorporate curvature map in 3D object 

matching is the disability to handle bended objects. Although geodesic binning is 

invariant to bending, the histograms computed are based on curvature distributions, 

which are not invariant to bending. 

Another bending invariant shape matching approach that incorporated a domain 

transformation technique has been proposed by researchers recently, that is the 

Multi-Dimensional Scaling (MDS) transformation. 

Multi-Dimensional Scaling Transform - Apart from using the most common 

proximity measure 一 Euclidean Distance in shape matching (that implies invariance 

to rotation and transformation), geodesic distances can be used as a measurement 

between mesh vertices to handle bending invariant matching. This approach is named 

Multi-Dimensional Scaling Transform. Two famous approach proposed by Jain in 

[JZ06� and Kimmel in [EK03] illustrated the power of MDS transform in shape 

matching studies. Their working principal can be summarized as following. 

Consider that given two triangular meshes, the objective is to find the 

correspondence between the mesh vertices regardless of their bending invariance. 

The spatial coordinates of the mesh have to be converted to an isometric domain first, 

such that each vertex of the mesh is represented by intrinsic structural information. 

Kimmel illustrated a good example to demonstrate how geodesic distance can be 

served as the proximity of this structure [EK03]. 

To compute the geodesic distance between vertex pairs, the Fast Marching on 

Triangulated Domain introduced by Kimmel in [KS981 can be applied. Various 
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similar approaches can also be found in [SSKGH05][NK02]. Once the geodesic 

distance between sampled vertices are estimated, an affinity matrix 

^ = K - X s Y [ X r - x ^ ] (2.1) 

which collected the geodesic proximities between vertices r and 5, will be served as 

the input dissimilarity matrix of the Multi-Dimensional Scaling (MDS). Further in 

Jain's approach [JZ06], they applied a Gaussian kemel on matrix A such that A 

becomes 

zf4 
jM _ 2a^ 
^rs - ^ (2.2) 

Hence the (dis)similarity on local region can be regularized. 

In Kimmel's approach [EK03], they have evaluated three MDS computation 

methods: The Classical MDS, Least Squares MDS and the Fast MDS. According to 

their evaluation result, the quality of the LS MDS and Classical MDS are almost the 

same. Therefore, the Classical MDS and Fast MDS will be evaluated in this thesis in 

terms oftheir computation performance and quality. For detail implementation o f the 

MDS, it will be further discussed in the fundamental technique section. 

The MDS transform based matching technique is an efficient method for bending 

invariant shape matching problems. The main drawback of this approach is the high 

computation time required for geodesic distance estimation. Some approaches like 

[EK03][BBK07] proposed to combine sampling and surface recovering techniques 

to enhance to performance of the MDS transform. However, there is trade off 

between quality and performance, a good choice of sample rate must be determined 

according to experiments. 
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2.2. Global Iterative alignment techniques 

In global iterative alignment matching approaches, there are two unknown variables 

to be determined: the correspondence and the transformation. While it is impossible 

to solve either variable without information regarding the other, it is possible to 

optimize these unknowns by determining them iteratively. Once the correspondence 

is given, the transformation can be guessed with reasonable knowledge. On the other 

hand, the correspondences can be searched if the transformation is known. Hence, it 

leads to a solution of the correspondence problem by alternating estimations of 

correspondence and transformation (e.g., [HPM03] [JSH01] [RCB97]). 

The ICP algorithm is the simplest one among these methods. It utilizes the 

nearest-neighbor relationship to assign a binary correspondence at each step. This 

estimation of the correspondence is then used to refine the transformation, and vice 

versa. It is a very simple and fast algorithm which is guaranteed to converge to a 

local minimum. Chui et. A1. enhanced this algorithm in [CR03] by making two 

significant improvements: the Soft-assign idea and the Robust Point Matching - Thin 

Plate Spline (RPM-TPS) matching algorithm. 

The basic idea of the soft-assign [RCB97] is to relax the binary correspondence 

variables to be a continuous valued matrix M in the interval [0，1], while enforcing 

the row and column constraints. The continuous nature of the correspondence matrix 

M basically allows fuzzy, partial mapping between the point sets. Hence the 

correspondences are able to improve gradually and continuously during the 

optimization without jumping around in the space of binary permutation matrices. 

The row and column constraints are enforced via iterative row and column 
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normalization of the corresponding matrix M. Chui et. A1. also proposed the 

RPM-TPS as the parameterization of non-rigid spatial mapping transformation. Their 

work is based on the RPM algorithm that involves a dual update process embedded 

within an annealing scheme. Obviously, the iterative alignment approach does not 

require any complicated algorithm or computation. Nevertheless, the initial guess 

mapping of correspondence must be very well enough in order to solve the bending 

invariant matching problem. 

In the contrary, a hybrid approach of this technique on the MDS signature would be a 

much reliable and advanced approach for deformable shape matching. Recently, 

Lipman and Funkhouse [LF09] propose a surface correspondence matching method 

by repeatedly computing Mobius transformations, which needs the input models to 

be two-manifold - this is more restrict than the proposed approach in this thesis that 

is based on spatial transformation. 

2.3 Other Approaches 

Apart from the feature based and iterative alignment approaches, other previous 

work of matching approaches for shape matching such as skeletal based matching 

[CS05J and image based matching have also been studied. Some famous approaches 

such as the shock graph [Kal99], reeb graph [HSKK01], conformal geometry 

[WWJGS06], canonical homology basis [CJGQ05], etc., achieved the shape 

matching goal in certain field of applications. Nevertheless, the structural 

information of these approaches does not provided detail matching ability of mesh 

surfaces. 
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Chapter 3 Correspondence Matching 

This chapter describes technical details of the proposed matching algorithm and all 

fundamental techniques required throughout the matching processes. 

The fundamental technique section introduces the related techniques contributed by 

previous researchers. They include the Farthest Point Sampling (FPS) [MD03], 

Radial Basis Function (RBF) [WHT07], Geodesic Distance Approximation [NK02], 

Multi Dimensional Scaling (MDS) [BG97J and the Curvature Tensor Estimation 

[GG03]. These techniques can be classified into three main categories: 

Problem Simplification — The Farthest Point Sampling (FPS) and Radial Basis 

Function (RBF) have been adopted as a problem simplification step in order to speed 

up the computation. All time-consuming processes will be computed on the sample 

points extracted and a smooth surface is to be recovered by the RBF at the end. 

Therefore, a good choice of simplification parameters such as sampling rate and 

regularization value, is one of the key controls o f t h e quality o f the matching result. 

This will be discussed in detail below. 

Domain Transformation - The key component of domain transformation for 

bending invariant shape matching is the computation of geodesic distance. In this 

thesis, two geodesic distance approximations will be evaluated. They are the 

Dijkstra's algorithm-based |WWTY04] approach and the wavefront propagation 

based approach on triangular mesh [NK02]. Comparison will be given in this section 

in terms of their performance and quality. Their influence on the final matching 

results will be given in experimental result section later. 
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The Multi-Dimensional Scaling (MDS) is most important technique incorporated in 

this thesis. Since the matching result highly depends on the variation o f the isometric 

signature namely, the MDS embedding between the input models, a good quality of 

MDS approach is a must to guarantee a satisfactory result. According to Elad et al，s 

introduction in [EK03], two classes o f t h e MDS approach will be evaluated in this 

thesis for comparison; they are Classical MDS and the Fast MDS. 

Feature descriptor Encoding 一 One of the major objectives of the proposed 

matching algorithm is the geometric feature matching ability. In this thesis, an 

arbitrary oriented curvature descriptor is introduced to serve this purpose. Together 

with the posture alignment process (with the MDS embedding) and the surface fitting, 

the curvature tensor value is served as a strong mapping criterion in the mapping 

algorithm. In the following section, a quick and robust curvature estimation method 

will be described in detail. 

The core matching algorithm section explains in detail the steps of identification of 

correspondence on a input model from a pre-computed template model in a 3D space. 

The matching algorithm is divided into three steps: they included Posture Alignment, 

Surface Fitting and the Feature Matching Refinement. 

In the Posture Alignment step，the best sign flipping direction is to be determined 

first between the MDS embeddings by using a newly introduced sign flip correction 

method，such a problem has already been addressed in [EK03][JZ06]. Then，the 

template model will be transformed towards the input models by minimizing the 

Euclidean distance between the sample points on-the MDS embedding. 
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In the Surface Fitting step, all vertices on the surface of the transformed template 

model will be fitted on the input model steadily by a number of iterations. Unlike 

other vertex-to-facet surface fitting algorithm [JZ06][BBK07], the proposed fitting 

algorithm approaches the vertex to the other surface by moving the vertex along it's 

normal vector. This method increase flexibility of vertex movement by ensuring it to 

moving along single direction rather than arbitrary directions. Illustration can be 

found in later section. Moreover, elimination will be taken for the surface mapping 

with either large difference of normal angle or Euclidean distance. In addition, a 

bi-directional mapping between the surface will be employed to improve the 

mapping on high curvature regions. At the end of each iteration o f the surface fitting, 

the changed surface will be interpolated by a smoothing. Hence the newly 

transformed template model becomes a surface that fit the input model and 

meanwhile keeps the smoothness of the template model. By adopting any nearest 

neighborhood searching technology, anchor points can be located by comparing this 

domain with the input model. 

Finally, the Feature Matching Refinement step encodes the curvature distribution 

information in the feature descriptor of each predefined anchor points on the 

template model. A corresponding anchor point mapping will be located on the input 

model by marching through all closest points around the instant-mapping between 

the surface fitted template and input model. Since the feature matching refinement 

process is an add-on process for particular vertex with significant geometric features, 

only a few numbers，for example around 10，of the vertices will be selected for 

refinement and the final result will affect particular regions of the surface only. 

According to the experiment, this refinement process has significant improvement on 
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regions with variant curvature distributions. Examples can be found in the 

experiment result section. 

3.1 Fundamental Techniques 

3.1.1 Geodesic Distance Approximation 

Geodesic distance is a metric defined as the length of a shortest path connecting two 

vertices that resides on the surface of a 3D geometry. The application of geodesic 

distance has been widely used as the proximities of deformable object in many recent 

3D object matching researches [LWH07] [FL95] [BBK07] [JZ06] [EK03]. 

In the proposed matching algorithm, geodesic distance is used as the primary 

technique in the following fields: 

• The input dissimilarities of the Multi-Dimensional Scaling (MDS) 

• The bounding radius for Curvature Estimation 

• The farthest distance for the Farthest Point Sampling 

Various methods have been proposed to estimate the approximate geodesic distance 

on 3D geometries [NK02] [SSKGH05] |WWTY04]. Two famous approaches are the 

Dijkstra's algorithm-based approach [WWTY04] and the Wavefront Propagation 

approach which was introduced by Novotni et. al in [NK02]. The implementation 

will be explained in detail below. 
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3.1.1.1 Dijkstra's algorithm 

The Dijkstra's algorithm-based approach is the simplest way to estimate the 

approximate geodesic distance on a well-defined triangular mesh. The 

computation of the geodesic distance g(v) of vertex v from the source point s is 

described by the pseudo code below. 

Algorithm 3.1; Dijkstra's based geodesic distance computation 

1: for each vertex v in V do 

2 : g(v) 二 00 

3: end for 

4: g(s) = 0 

5: push s in stack memory h 

6: repeat 

7: pop vertex v from h where v has minimum g(v) 

8: for each adjacent vertex Va connecting to v do 

9: if g(v) + length(v, vJ < gfvJ then 

10: push Vfl to stack h 

11: _ = g&J + length(v, Va) 

12: end if 

13: end for 

14: until h is empty 

^ 

H ^ ^ ^ ^ ^ S ^ 

“ ^ ^ 
Figure 3-1: Geodesic distance from the source point (RED) by Dijkstra algorithm. Higher 

intensity for larger geodesic distance value. 
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3.1.1.2 Wavefront Propagation 

The Wavefront Propagation geodesic distance approximation is presented by 

Novotni et. al. [NK02]. This method approximate the geodesic distance on 

vertices by iteratively propagating the geodesic distance value from the source 

point outwards along the surface. A modification of their work is computed as 

follows. 

On a triangle with vertices v/, v2 and v3, suppose that the geodesic distance 

values T(vi) and T(v2) have been assigned on v/ and v2, and we are looking for 

T(v3). Without the loss of generality, [NK021 assumed that the vertices v/，v̂  and 

^3 lie on the xy-plane. Then the pseudo-source point on the x>'-plane can be 

determined by the intersections of two circles - which is centered at v/ with 

radius T(vi) while the other is at v2 with radius T(v2). For the two intersections, 

0丨 and O2，the one with a larger distance from v3 is employed as the 

pseudo-source. Then T(v3) is assigned as the distance from v5 to the 

pseudo-source on the A7-plane. 

k 7 、 ） 

f ! f ,^^^ 
Figure 3-2: Geodesic distance from the source point (RED) by Wavefront propagation. Higher 

intensity for larger geodesic distance value. 
According to the experiments and referring to Figure 3-2: Geodesic distance from 
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the source point (RED) by Wavefront propagation. Higher intensity for larger 

geodesic distance value., the influence of the approximation accuracy is insignificant 

to the quality of the correspondence mappings and hence, it is not a major concern of 

geodesic distance approximation selection. On the other hand, an efficient 

approximation is necessary in order to improve the overall performance due to the 

frequent use of this technique. Therefore the Dijkstra,s algorithm is served as the 

primary approximation method throughout the experiments. 

3.1.2 Farthest Point Sampling 

Sampling process is one of the possible ways to reduce the complexity of the 

matching problem. In this thesis, a most popular sample method - the Farthest Point 

Sampling (FPS) is employed. 

The Farthest Point Sampling is introduced by Moenning et. al. in [MD03]. The main 

idea of this technique is to repeatedly placing the next sample point in the farthest 

point of the sampling domain. Whereas Fast Matching on Triangular Domain 

(FMTD) [KS98] represents a very efficient technique for the solution of front 

propagation problems and can be formulated as boundary value ofpartial differential 

equations. 

Suppose the vertex set S = fsj, s2, . . . ， s „ } is vertex set with n sample point, 

determined by the FPS algorithm. The implementation of will be explained in the 

pseudo code below: 

Algorithm 3.2: Farthest Point Sampling 

1 ： for each vertex v in mesh V 
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2: g(v) = 00 

3: end for 
4: i = 0 
5: So • Vranclom 
6: push So in stack memory h 
7: repeat 
8: repeat 

9: pop vertex v from h where v has min g(v) 
10: for each adjacent vertex Va connecting to v do 

11: if g&) + length(v, v^ < g(v^J then 
12: push Va to stack h 
B : g(v^ = g(v) + length(v, vJ 
14: end if 
15: end for 
16: until h is empty 
17: Si <- vertex v in V where v has max g(v) 

18: / = i + 1 
19: until i = n 

In this thesis, the sample rate will be default as 200 - 500 for the meshes with about 

10,000 vertices. According to the experiment, this is the best rating range to balance 

the computation time and non-rigid transformations. And the average computation 

time of the FPS is always lower than 2 seconds. 

FPS is employed as the primary sampling method based on the following criteria: 

• High efficiency and easy implementation 

• The samples are evenly distributed over the surface 

• Suitable for freeform mesh which is constructed from triangular domain 

The sample and statistical figures of the Farthest Point Sampling will be shown in the 

Experimental Result section later. 
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% ^mJ 
I ^ I 

w ^ 
Figure 3-3: 300 Sample points (BLUE) on the triangular mesh ofthe dinosaur and hand models 

determined by the FPS algorithm. 

3.1.3 Curvature Estimation 

Curvature is a measurement of the local bending of a surface, which is represented 

by a local approximation of the tangent plane and orthogonal to the normal vector. 

Moreover, the two principal curvatures ki and k]’ with their associated orthogonal 

directions e! and e2, are the extreme values of all the normal curvatures. Therefore, 

the average normal curvature K^ and the product of the normal curvature Kc of k! 

and k2 are defined as: 

1^ k\ + ^2 
KH=~Y~ (3,1) 

And 

K(; = k,k2 (3.2) 

These two curvatures represent an important local intrinsic property o f a s u r f a c e and 

as a result，it has been used for freeform shape matching widely, examples like 

[ASDLD03][GGGZ05J. 

A recent 3D curvature tensor estimation which was proposed by Pierre et. al. 
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[ASDLD03] is a fast and robust method to find the principal curvature k! and k： on a 

triangular mesh surface region. The main idea is to estimate the curvature tensor at 

each vertex and interpolating these values linearly across triangles. The 

implementation of this approach is described below. 

The curvature tensor of the vertices along the edge can be defined due to the 

existence o f the obvious minimum (along the edge) and maximum (across the edge) 

curvature. Hence, for a particular surface region B, the curvature tensor matrix T(v) is 

expressed as 

n^) = ~Y.m\enB\er (3.3) 
^ edges 

where v is an arbitrary vertex on the mesh, |5| is the surface area around v over 

which the tensor is estimated, fi{e) is the signed angle between the normal to the 

two oriented triangles incidental to edge e (positive ifconvex, negative if concave), 

|eA5| is the length of eA5 (value always between 0 and \e\\ and e is a unit vector in 

the same direction as e. 

In the experiment of the proposed matching algorithm, the surface region B is 

defined by including the vertices with the geodesic distance, sourced from vertex v, 

smaller than r. Where r is an arbitrary radius and is set to be ~ of the bounding box 

diagonal by default. 

Finally, the normal at each'vertex can now be estimated by the eigenvector of T{v) 

associated with the eigenvalue of minimum magnitude. The two remaining 

eigen-values k _ and kmax are estimates of the principal curvatures as v. Furthermore, 

as addressed in [ASDLD03], the associated directions between the eigenpairs are 
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switched, i.e. the eigenvector associated with the minimum eigenvalue is the 

maximum curvature direction 1賺,and vice versa for l _ . 

According to the experiment, this curvature estimation method is adopted in the 

proposed matching algorithm effectively. The application of this approach can be 

found in the Feature Matching Refinement section and more sample results can be 

found in the Experimental Result section later. 

^^ 
Figure 3-4: Mean curvature representation ofadinosaur and a hand. Red and blue color for 

higher and lower curvature respectively. 
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3.1.4 Radial Basis Function (RBF) 

The Radial Basis Function (RBF) is a practical solution to the incompleteness of 

interpolating surfaces which is derived from 3D meshes. It has been widely adopted 

in applications like surface reconstruction [WAAGJ05], medical imaging [CFB97] 

and geometry processing (WHT07]. However, their high computational 

requirements have confmed a limited number ofinterpolation centers. These centers 

are the control points which are defined by the correspondence mappings in the 

proposed matching algorithm. The detail implementation of the Radial Basis 

Function will be discussed below. 

*r 

Consider/- R^ — R in a real valued function ofJvariables that is to be approximated 

by s: R' - R’ given the values { • . i = 1’ 2,…n}, where {x, := 1, 2’ ...，n} is a 

set ofdistinct point in R^ called the nodes ofinterpolation. Consider approximations 

of the form: 

n 
^(^) = P.+T.c,^(\\x-x.\\) XE^',c, e^ (3.4) 

/=i 

where Pn̂  is a low degree polynomial, or is not present, ||.|| denotes the Euclidean 

norm and g is a fixed function from R+ to R. Thus, the radial basis function s is a 

linear combination of translates of the single radically symmetric function《(^队 

plus a low degree polynomial. The space ofal l polynomials ofdegree at most m in d 

variables is denoted by / , . Then the coefficients, c,, of the approximation s are 

determined by requiring s to satisfy the interpolation conditions 

片1,) = /(巧)， 'j-h2,...,n (3.5) 

Together with the side conditions 

n 
5>,�(x,) = 0， forall qeni (3.6) 
j=� 
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Hence, the linear equation system can be rewritten as 

G A » l H 「 厂 

_P: 0 loJ = W <3.7> 

Where G is the square matrix of the basis function g(\ |x, — j9| \) and g(r) = \r\ for any 

scalar r. And the unknown coefficients c, can be found by solving the equations with 

LU decomposition. 

In addition, the smoothness of the transformation with the RBF can be further 

controlled by adopting a regularization parameter A in matrix G. Therefore，the final 

linear equations of (*) is presented as 
> » 

K P ;„Tc l � / 

_p: 0 i o j n o j _ 

Where K = (G 一 XI) and I is the identity matrix o f a n appropriate size. 

In this thesis, the setting of the regularization parameter 义 is always inversely 

proportional to the certainty of the control points mapping. That is, /1 will be set to be 

very high at the beginning of the matching steps, and gradually decrease to zero at 

the final transformation of the template model. 

1 ^ 1 . 1 . S . 1 义 
1 ¾ ¾ * ¾ " V 

備 譽 钟 w p 丨 / 0 、 

n i m h f ^ 
Template Model 入=10 A = 07 A = 04 A-01 ReferenceModei 

Figure 3-5: Transformation of the Template (Left) to Input model (Right) with the RBF. 
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Transition with differenUin 2"̂  column to 5'̂  column. 



35 

3.1.5 Multi-dimensional Scaling (MDS) 

Multidimensional Scaling (MDS) is used to find the spatial structure o f a d a t a set by 

identifying the dissimilarity information among them. This technology has been 

applied in many diverse applications, such as semantic structure analysis of words 

[FL95]，texture analysis [EK01], political science and geography analysis,."etc. In 

most recent 3D object matching researches, this technique has been widely used to 

solve the freeform object matching problem. 

Several variations of the MDS algorithm were proposed by the researchers 

[FL95][EK01][EK03]. The most generic MDS approach is called the metric 

multidimensional scaling [EK01]. This approach originally assigns each item to a 

k-d point. Then it examines every point, computes the distances from the other N— 1 

point and moves the point to minimize the discrepancy between the actual 

“ dissimilarities and the estimated k-d distances. However, this approach is far from 

perfect for an efficient demanding matching algorithm. Two other classes of MDS 

approach namely, the Classical MDS and the Fast MDS, have been evaluated in the 

research of [EK03]. Their implementations and advantages will be discussed in the 

following two parts. 

3.1.5.1 Classical MDS 

Let the coordinates of n points in a k dimensional Euclidean space R^ be given by x, 

(^ = 1’ •"> "人 where x, = [Xrh Xr2, . . .， X r k f . The Euclidean distance between the r-th 

and the .9-th points is given by 

^ = K -^J''[^. -^,] (3.9) 
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Let the inner product matrix be B, where the rs element given by [B]rs = brs = x \ . 

Given the squared distance matrix A, the inner product matrix is given by 

B = -^JDJ (3,10) 

Where 

j = / � i . r 
n 

1 - fi 1 1Y 
*lxn 一 L j ''*'> . 

We also have that B = XX^, where X = [xi, ..., x,f is the n x k matrix of the 

coordinates. The inner product matrix B is symmetric, positive semi-definite, and of 

rank k. Therefore, B has k non-negative eigenvalues and n-k zero eigenvalues. The 

matrix B can be expressed in terms of i t s spectral decomposition, 

B= VAV^, 

Where 

„ Awm = diag(Xi, h, .... 4 0,…，0) 

For convenience, the eigenvalues ofB are ordered such that A/ > A2 > … � > 0. Hence, 

the required coordinates are given by using the non-zeros sub-matrix Atck and the 

corresponding eigenvectors sub-matrix V^k. 

1 

^nxk = Kxk\xk^ 

The classical scaling is considered to be an efficient algebraic approach to solving 

MDS problems. It can be calculated in 0(n^), where n is the number ofsample points 

in the given model. This is because there is a need to find only the first m 

eigenvalues and their corresponding eigenvectors，which can be computed by 

variations of the power method. The figure below illustrated the MDS embedding 

computed by the Classical MDS 



4 ^ 
Figure 3-6: The Multi-Dimensional Scaling result (Right) ofa dinosaur (Left). 

# M 
Af 

Figure 3-7: The Multi-Dimensional Scaling result (Right) ofa hand mesh (Left). 
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3.1.5.2 Fast MDS 

The Fast MDS is an efficient dimension scaling approach proposed by Faloutsos et.al 

in [FL95]. The efficiency of th is approach is 0(nm), where m is the target dimension. 

This technique solves the MDS problem by recursively generating a new dimension 

on new the domain at each step and hence, it m-dimensional coordinates after 

applying the recursion m times. 

The basic idea is to project the vertices on a carefully selected line L. Where L is 

connected by two far distanced vertices 0« and Ob. Then all other vertices are 

projected on L using cosine law 

^ da/+da/-db/ 
^i = :^ ^ (3.11) 

^^a,b 

The next step is to project all items to an (n-l) hyper-plane / / t ha t is perpendicular to 

the L and to generate a new distance matrix according to, 

^ Dy' = dy^-(Xi-Xj)^ 

This step is to be repeated m times. At each step, the calculated x*’ i = (l,..，n), are 

the newly added dimension coordinates. 

^ - V V ^ 
‘ f \ \ i . ^ ^ r 

/ \ 1 严 CtessicalMDS W Fast MDS 

r w 厂 f . 

1 ••. 
Source Model.、、 

Figure 3-8: The MDS transformation result ofthe source model (LEFT) with Classical MDS 

(Middle) and Fast MDS (Right) respectively. 
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Although the efficiency of the Fast MDS is better than the Classical MDS, 

experiments indicate that the Classical MDS is more practical in use comparatively. 

The main reason is due to the arbitrary determination of the pivot in Fast MDS which 

results in an inconsistent orientation of the MDS even for two isometric similar 

domains. Therefore, it poses a non-solvable sign flip problem in the later posture 

alignment process. Examples and comparisons ofthese two MDS techniques will be 

given in the experimental result section for analysis. 
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3.2 Matching Processes 

This section explains in detail the core matching process of the proposed 

correspondence matching algorithm. The include algorithm has three steps: Posture 

Alignment, Surface Fitting and the Feature Matching Refinement. 

The matching process begins from two given clockwise-piecewise triangular meshes 

in ^ ' space , denoted as U and V for the template model and input model in ^^ 

space respectively. Where the template model f/consists o f a point set ufuo, w/,…，u„} 

and the input mode l�cons i s t s of a point set v{vo, v/, .", vJ. The problem definition 

as following: 

For given U’ V and predefined anchor point set a" on U, we are going to fmd a 

mapping/by minimizing the energy function E such that: 
Ae 

minE(f)=minY.\\V-f(U)\\\ (3.l2) 

and also a set ofnew anchor point 

av=/au) (3.,3) 

on input model V. For which some important points o f V have similar feature 

descriptors to a" for their corresponding point in a". 

Since the matching process is split into three steps, the function/can be regarded as 

a composition of the corresponding partial functions in each step. And thus, 

/(W = /Fr(/v(/("r(f/))) (3.14) 

where fp^，f��and j\; ^re three non-rigid transformation functions of the 

posture alignment, surface fitting and feature matching refinement processes towards 
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model� respect ively . 

The remaining uncertainties are the determination of those three transformation 

functions f i~， /<?, and /厂「. In the following three sections, the numerical 

implementation of them will be described in detail. 

/ I ^ d i l / ~ * Multi-Dimensional Scaling 

/ T e m p l a t e / I 
(with original / r ^ — — — i — 
model, MDS / PostureAlignment 
embedding, / ^ 1. Sign Flip Correction on template MDS embedding 
curvatures / 2. Update the MDS embedding of the template model 

pre-computed) / 3. Update the spatial domain ofthe template model 

— � f^ n̂ t̂f̂ rminpH 
1 r 

Surface Fitting “ 
1. Fit the vertices of the template on input model 
2. Smooth the surface of the updated template 

f^ DpterminpH 
\ r 

Feature Matching Refinement 
1. Find the mapping of the anchor points 
2. Create the feature descriptor for the anchor points 

“ 3. Update the mapping of the anchor points with feature 
descriptor comparisons. 

f^ DetprminpH 
，[ 

< A n c h o r points a^ defined ~ ~ ^ 
on the input model ) 

Figure 3-9: Flowchart of the proposed matching algorithm 
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3.2.1 Posture Al ignmen t 

The posture alignment step is an alignment process for the posture of the template 

model to the input model. To achieve the bending invariant matching goal, the 

Multi-Dimensional Scaling (MDS) technique will be employed as the bending 

invariant signature for the meshes. Firstly, k-D MDS embeddings of the template 

model is aligned with the reference MDS embedding with a Sign Flip Correction. 

This process is proposed to solve the ‘sign flipped' problem which induced by the 

arbitrary determination of the axes directions in the MDS embeddings. It is essential 

to overcome this problem at the very beginning of the whole matching process in 

order to provide a good initial condition for further computation. Once the MDS 

embedding is aligned correctly, the template model is then being transformed 

towards the input model smoothly. In order to enhance performance and to alleviate 

the smoothness problem, the Farthest Point Sampling (FPS) and Radial Basis 

Function (RBF) are incorporated in all non-rigid transformation step of the template 

model. 

In numerical presentation, the objective o f the Posture Alignment step is to fmd the 

function Py that transform the template model U towards the input model V’ such 

that 

. " ( " ) (3.15) 

TV - p^asVrr \ 
M̂DS - V̂ ŷ MDs) <3.16) 

where U�and U ' ^ are the transformed domain of U and U , ^ respectively. 

The function P,here depends on the result o f P ^ , that is, the MDS embedding 

alignment process. Once P ， i s determined, a binary one-to-one mapping between 
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the vertices of the MDS embedding can be obtained. And the function Py can be 

computed by using this mapping as control points in the RBF transformation. The 

computation of Py and P y ^ will be discussed in the following part. 

3.2.1.1 Sign Flip Correction 

As the shapes ofhuman bodies are approximately isometric, their shapes in the MDS 

embeddings are quite similar to each other. Ideally, the correspondence between the 

points u ^ e U and v̂  e F can be determined by the closest point search. However, 

such mapping between U_s and V_s is neither bijective nor robust. According to 

the experiment, the main challenge comes from the random selection for the sign of 

eigenvalues (therefore the direction ofeigenvectors) in the MDS analysis. Thus the 

shapes of U _ s and VMos can greatly differ in terms oftheir axis directions - called 

sign-flip. Therefore, a robust sign flip correction is introduced in this thesis. 

Various solutions have been proposed in various shape matching researches on 

solving the sign flip problem that used the MDS technique. Caelli et. al in [CK04] 

proposed a dominated sign correction by ensuring that there are more positive entries 

in each eigenvector all the time. However, this approach is highly undesirable since 

according to practical experiments, the numbers ofpositive and negative entries are 

always very close. 

Under the exhaustive search framework proposed by Shapiro and Brady in [SB92], 

the alignment of the MDS embedding can be achieved by finding the combination of 

axes swapping which minimizes a shape different metric. For instance, there are / = 

似 sign flipping combination for 6D MDS embeddings. Therefore, f different sign 

flipping functions can be defined for a point u in the d-dimensional MDS domain. 
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However’ as in the presence of eigenmode switching, their determination rule will be 

violated in most symmetric models matching problem. Hence a detail 

implementation and improvement work are presented in the following part. 

Suppose that two human body objects Uem' and Ve^' are given. Their 

corresponding MDS embedding are shown in Figure 3-10 below. 

、\ , '• 乂 ‘ ] 
丫 \MOSEmb^mng MDS ^m^Mk^r<^fZt J * 

-ft fi K ofu . ofv.- - - ^ r ^ . r-V 

l M Y n 

w ? ^ A 钱！: 
Te4ftv<?rfi/ - � • - � � \ ' " ¥ • / 

^ i./ \ - -� . \ U y ’ L 
¥ / 、 今 + 

Figure 3-10: The MDS embeddings (Colored) oftwo human body objects (checkerboard) with 

surface normal (arrows) and vertex linkages (dashed line) between spatial and MDS domains. 

/, 

Firstly, the framework of the proposed correction scheme was originated from the 

greedy approach by Shapiro and Brady. Hence, alignment of the MDS embedding 

can be achieved by finding the combination ofaxis that with minimum. For instance， 

there are 2^ = 64 sign flipping combination for a 6-D MDS embedding. Therefore, 

the flipped position of vertex u on U'm the iteration d is presented as 

• A W = v x ( - l ) " - 2 , w for 0 < ^ < 2 ^ (3.17) 

Afterwards，the template model will be transformed hyf(u) towards the input model 

according to the ‘best mapping，defined between U - s and V_s, such that 

f ( / , = m i n t | v _ - r % ( " , " J j 2 _ ) 
/=0 ’ 

is the energy function to be minimized to — e f , The relative transformation 
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function/(^w; in the spatial domain is then determined by the ICP mapping on their 

embeddings between v ^ a n d f ^ k k , J . Hence f(u) is determined by 

minimizing another energy function 

« 2 
W ) = m i n S | v - / ( w ) +率/| (3.19) 

/=o 

where X\LJ\ is a Laplacian smoothness term that controls the surface smoothness by 

the regularization parameter X. A tricky setting here, is that X must be set to be of 

great value. This great value help preserving the smoothness and posture of the 

original surface after the transfomiation/r«；. Hence f(u) can be regarded as a pure 

orientation alignment of the template model to the input model. Figure 3-11 

illustrated an example of this scenario. This setting is very important for computing 

the distance errors for the cost function introduced in next part. According to the 

experiment, A = 10^ would be large enough for all testing samples. 

I I 歡 、 

I X ^ ^ x ^ ^ X < x ^ 

Figure 3-11: Transformation result (middle) ofthe template model (left) to the input model 

(right) with k = 1&. The result transformed with template's smoothness and input model's 
orientation. 

hi order to evaluate the validity of current sign flip combination for f(u)�a cost 

function C(T) is defined as 
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s s , 
c ( r ) = 2 ] X K ~^j\-{Uu,)-Uuy (3.20) 

i=0 j=0 

for 0<i,j<S and S is the number of sample point. 

This costing function is a generic distance changes function as adopted in Shapiro 

and Brady's approach. Obviously, this costing ftinction has its own drawback. It 

results in two possible T,(u) that holds the same minimum cost as illustrated in 

Figure 3-12. 

、 • - y , C v ^ 分 

K f M 不 A 
,小、 么 … ^u yuo. 
PossiWe best flippng Posable b̂ st flipping _ -， 
with Vu-,̂  "- ―― -一- with V"n=: — ‘ 

‘ -〜---〜 — - 一 

Figure 3-12: Illustration of several possible combination ofaxis Hipping. It can be observed that 

two flipping ¢1 and ¢3 have minimum cost value. 

MDS embeclttlng Uuos 
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reii^ioXrV 八 ) 每 
j j � " X > ^ ‘ � 

K 
Figure 3-13: The mapping RED, BLUE line obtained by ttipping U _ s to ¢, and ¢, respectively, 

lt shows that the mapping obtained by ¢1 is incorrect because it is left-right swapped. 

Such drawback is caused by the inconsideration of surface normal after the 

transformation of T,(u). Therefore, the costing ftinction should be modified in order 

to guarantee a satisfacto^ result. It can be achieved by adopt a normal-offsetting 
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technique in the sign flip correction. 

/ . � ^ ' - / ^ ' _ ^^^T^ 
/ ‘ 、广 / ‘ 

‘ ‘ / 、 ^ 

“ 。 • 、 、 、‘ - r A ‘ ' • 丨 

^ M ‘ ‘ ^ ‘ ‘ 
: \ ^ ‘ … J 八 

f t- ^ \ 丨丨““/) .v 1 錢 

Figure 3-14: Left and right image illustrate the transformation ofthe spatial domain by ^, and 

•1 respectively. The surface normal ofthe spatial domain is flipped using • � , 

Referring to Figure 3-14, the costing C(T) obtained by ¢, and ¢3 are identical except 

that the surface normal of the spatial domain is inversed. The cost ftmction Q 7 ) thus, 

can be improved by replacing the vertex coordinate v with (v +mn), where n is the 

surface normal and o) is the offset distance ( � is set to be 1.0 in general). 

Hence, the costing function C(T) in (3.20) is replaced by 

CW = Z/=oS/=o| \(Ui + con^ - (Uj + o)rij)f -

\(Tx(Ui) + conn) — (rx(uj) + conn)f |, (3.2i) 

Figure 3-15 illustrates an example with offset coordinate presented. A correct and 

unique minimum costs can therefore, be determined by the new costing function. 

^ ^ ^ f c ^ ^ ^ ^ g ^ _ — ^ ^ ^ Z : ^ ~ ~ 

| / i , k . ‘ 丨 广 一 — i 
I & f . , ^ I \ . i f ； \ 
f M^^^"M. \ frr^'j^Oobr,>n^hr^. � ^nm^^Uotuine<iby^] 

Figure 3-15: Sign Flip correction with normal offset component in costing function. Significant 

difference can be distinguished by comparing the length ofthe RED line which constructed by 

the normal offset ofthe vertices between the template model (Left) and the transformed models 

(middle:^, and right: ^j). 

The pseudo code of the whole sign flip correction algorithm is presented as follow: 

Algorithm 3.3: Sign Flip Correction 

1: initialize Jl = 00, C 'fTmin) = 00 
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2: ford=0to2^ 

3: for each vertex u m s in Ums 

4: U 'MDS = ^d(u) 
5: end for 

6: define the 1-to-l mapping/between U'MDs and V ^ 

7: define the non-rigid transformation 7 ^ f o r U'Mos towards VMos 

8: update U'MDs = TxJJJ'Mos) 

9: compute CW by 一 m ^ + conn) — (Tx(Uj) + conTi)\' I， (3.21) 

10: i f C ' m < C'CTmin) 
11： T_=T 
12: end if 
13: end for 

14: u _ e U M D s = T “ U M D s ) 

The proposed sign flip correction is a very reliable solution to solve the symmetric 

models matching problem. According to the experiment, the accuracy is achieved 

90o/o for symmetric samples like human models, hand, animals and some primitive 

shape. Moreover, this correction scheme is very effective even for meshes with large 

“ vertex count. Since the operations in flipping iterations do not involve any topology 

linkage information, the vertex set can be reduced to a coarser level by the Farthest 

Point Sampling (FPS). And hence, the efficiency cost o f t h e sign flip correction is 

0 (办 where k is the MDS dimension. Experimentally, the sign flip correction for k = 

6 dimensions take less than 10 seconds to complete. More examples can be found in 

the experimental result section later. 
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3.2.1.2 Input model Alignment 

After a proper sign flip correction of the MDS embedding, two isometric similar 

MDS embeddings can be used for mapping the anchor points between the template 

and input models. In many reviewed shape matching researches [JZ06][CR03J, they 

stop further exploring on a more accurate surface matching and hence current result 

is served as a coarse level of object recognition technique, rather than anchor point 

matching. Nevertheless, since the work in this thesis is to propose a robust vertex 

mapping with feature descriptor, further computation is needed to improve the 

mapping result on MDS embedding alone. 

Some shape matching algorithm such as [JZ06][PDJ93][WWJGS06], apply the 

rigid transformation on the input model in a single pass. This approach is based on 

the assumption that the initial m a p p i n g / o f the control points is highly reliable. 

“ Nevertheless, this assumption is impractical for bending invariant shape matching， 

espedally for the meshes with sharpen regions or local maxima. Therefore, Chui et. 

al proposed an iterative RPM-TPS transformation scheme for non-rigid alignment 

[CR03]. They determined the non-rigid Thin-Plate Spline (TPS) transformation 

ftmction T(u) and the correspondence function/fw；, and then increase the sensitivity 

between the control points steadily by reducing the regularization power. This 

approach is suitable for a good, but not perfect initial guess of control point 

mappings and hence, it is adopted in the posture alignment process. 

The i ^ u t model alignment process first finds the mapping/between the sample 

point set o f two models in U ^ and V_s . The number ofsample point R should be 

increase gradually from a small number, for example R = 50’ to avoid trapping on 
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local maximum at the beginning o f t h e iterations. Next, the transformation flinction 

rA will be found by using the control points u and f(u). Initially, the value of the 

regularization A is set to be the mean distance between all vertices mappings in U ^ s 

and VMDS. As explained in [JZ06], this scale-dependent assignment ofU is robust to 

the scale o f t h e point sets. Then A will be decreased by about 1/10 gradually after 

each loop. According to the experiment, the changes should be converged to ^within 

10 iterations. The implementation o f t he Posture Alignment Step will be described in 

the following pseudo code. 

Algorithm 3.4: Posture Alignment 

1 ： update UMDs by the Sign Flip Correction 
2: initialize X, R 

3: repeat 

4: define the 1-to-l mapping/between UMos and V^Ds 
5 : define the non-rigid transformation 广 for U^os towards V^DS b y / 

6: update U'MDS^ 丁腦、。腦、 

7: defme the non-rigid transformation T for U towards V b y / 

” 8： update U'= T{U) 

9： se te = u'-u 

10: update U= JJ 

11: updatef /^ / )s=t / 'MD5 

12: decrease X 

13: increase R 

14: until e < s 

As the captioned purpose, the "posture" o f t h e template model has been aligned with 

the input model. Yet, the surface o f t h e transformed template is not fitted on the input 

model and hence error will be accumulated in convex regions，refer to the 6出 column 

in Figure 3-16. This problem leads to the next step, the surface fitting, to improve the 

mapping result by eliminating the ambiguity of anchor point mappings between the 

transformed template and input model. Figure 3-16 below illustrated an example of 

the posture alignment transition for the spatial domain and MDS embedding. 
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Figure 3-16: Transition ofa human body from the template (left) towards input model (right). 

The spatial domain (top row) and their corresponding MDS embedding in the same iteration 

throughout the transformation. 
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Figure 3-17: Flow ofthe posture alignment step and the linkage between the spatial, MDS 

domain ofthe template and input models. 
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3.2.2 Surface Fitting 

Given a posture aligned template model U’ and input model V, the fitting process in 

this section further increase the accuracy of the anchor point matching by optimizing 

the surface of U'. The technical details will be discussed below. 

Since the posture aligned model U' is the transformation product which obtained by 

optimizing the global energy ftmction, the vertices set {u} on the surface are not 

tightly mapped on the input model. In order to map the anchor points of the template 

on the input model, the whole surface of the template must be fully fitted on the input 

model without loss ofcontinuity. Also, the smoothness of the surface should be kept 

during the fitting process. Figure 3-18 shows an example before and after the surface 

fitting. 

$ y i M h 

_ i 
Figure 3-18: Human body mesh (left) before surface fitting and (middle) after surface fitting to 
the (Right) Input model. 

One common approach for finite surface fitting is called multi-resolution alignment, 

presented in [BBK07]. The concept o f the multi-resolution alignment is very simple. 

The core process is to define the transformation function and correspondence 
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mappings in a coarse level by simplifying two meshes. Then this process will be 

repeated iteratively by increasing the resolution of the meshes, and the transformed 

result is interpolated with the one in previous iterations. The mild interpolation of 

transformed domain prevent the suddenjump occurred in mis-mapping anchor point 

pairs. And hence errors will not be accumulated in local maxima. However, the 

simplification step in the multi-resolution alignment is highly depends on a small 

distortion level of the mesh in local maxima. For example, it is infeasible to apply 

multi-resolution on the army' hand region o f the human body. 

Jain et. al have addressed the local maxima problem in [JZ06] and proposed a 

proximity-aided matching step right after the non-rigid transformation of the input 

model. This proximity-aided process first selects a number ofpoint mappings, where 

these mappings are supposed to be best matched and not too closed to each other. 

Then the rest o f t h e anchor points will be re-mapped by heuristically minimizing the 

distance of two metrics: the L2 distance between the MDS embeddings and the 

geodesic proximities to the best-matched point set. However, their method is not a 

general solution for any bended objects scenario. Since the determination o f t h e best 

mapped points and the geodesic proximities metric will be encountered required two 

assumptions: the quality of the best-mapped point set is very good and, the stretching 

effect p f t h e whole mesh is small. Jain et. al also noted this problem and hence they 

restricted the number of anchor points to be fixed to three vertices only. 

As the mentioned solution above poses many restrictions in usage, such as 

best-matched anchor point pre-requisites, small distortion level and similar geodesic 

proximities...etc, they are not considered to be a robust surface fitting approaches. In 

the following part, a robust，local matching and non-restricted fitting solution will be 
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introduced. 

Numerically, the surface fitting process is denoted as a transformation Sy, as stated in 

the global transformation function, where Sy is obtained by iteratively optimizing the 

surface smoothness and fitness between U' and V. The optimization of these two 

terms will be explained in the following section. 

3.2.2.1 Optimizing Surface Fitness 

Given a posture aligned template model U' and a input model V’ each vertex u on U' 

are going to be fitted on the surface of V. Some generic approaches fit the surface 

from one to the other by the vertex-facet intersection formula |WHT07]. This 

method has two critical problems. Firstly, wrong mapping will be happen on near but 

opposed surfaces. Secondly, the surface smoothness will be distracted on dense 

regions. Figure 3-19 shows an example of surface fitting with this generic approach. 

良爲、爹 
Figure 3-19: Surface fitting result (middle) of a posture aligned template (left) to input model 

(right) by generic approach. Smoothness distracted in black region, arm wrongly mapped to 

opposite side. 
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To solve the wrong mapping problem of the generic surface fitting approach, surface 

normal will be encountered in the proposed surface fitting optimization. First ofall , a 

one-to-one mapping of each vertex of U' on V will be found by the kD-Tree 

technique. Each mapping of u will be further validated by checking two variable 

constraints. Firstly, the dot product of the angle of the normal vectors between two 

mapping vertices must be larger s, where s is set as 0.9 in the experiment. While s 

will be decreased gradually in next iterations. Another constraint is the relaxation 

power r which controls the maximum allowing Euclidean distance between the 

mappings u and v. The value r is set as 0.1 initially and it will be increase by 10% in 

next iteration. After the validation of the mappings, vertex u can be adjusted by the 

distance between u and v by the following formula: 

u = u + dnj- (3.22) 

where n" is the normal vector of u and d = 0.5 is a constant value to halve the 

changes ofw along the normal direction. 

“ 

Another outstanding control of the surface fitness is the introduction of the 

bi-directional mapping. For most matching approach, the mapping of the point is 

single direction, that is, just find the best mapping of u on v. In contrast, this thesis 

proposed a bi-directional mapping to also find the best mapping of v on u for the 

surface fitting optimization. The figure below illustrated the difference between 

single and bi-direction mapping in surface fitting. 

Reference Model 
^ ¢ ^ Template Model ^ ^ ¢ ^ , 

^^^^y^'"l(^^^^ l _ _ " Fî dSurface y^^"^^^^^ 

/ ^ ^ ^ ^ ^ 1 ^ ¾ ; ^ ^ ^ ¾ ¾ ^ 
) ) f 

Single Direction Bi-Direction Mapping 
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Figure 3-20: Surface fitting by single and bi-directional mapping of points. Fitted surface 

displayed in dashed line. Nearest mapping is displayed by the arrows from the source to target. 

Obviously, the proposed bi-direction mapping has significant influence on tip points 

and this further improve the fitting quality of the surface. Figure 3-21 shows the 

difference between single and bi-direction mappings. 

^ / 1 
Figure 3-21: Surface fitting in single direction mapping (left) and bi-direction mapping (right) 

3.2.2.2 Optimizing Surface Smoothness 

Another optimization criterion of surface fitting is the smoothness. As the number of 

iteration increase, surface smoothness will be distracted if running fitness process 

alone. It is essential to interpolate the changes of the fitting process iteratively to 

reduce any bias on local maxima or convex region. The implement of surface 

smoothness is carried out by applying interpolating the vertex coordinates with the 

Fast Marching on Triangular Domain (FMTD) technique. The pseudo code of the 

smoothing process is described below: 

Algorithm 3.5: Triangular Surface Smoothing 

1: for each vertex u in U 

2: initialize vector z = {0} 

3: for each vertex w, in U with geodesic distance to u smaller than r 

4: update z = z + w, G(d) 
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5: end for 
6: update u = z 
7: end for 

The radius r is chosen as two times of the mean edge length of the mesh by default. 

d' 

Where the Gaussian function G(d) is defined as ~ j L ^ '"，and d is the geodesic 

_yj2nr」 

distance of the vertex w, within r. 

• • 

Figure 3-22: Surface Htting with (left) and without (right) smoothing optimization. 

/<f 

Figure 3-22 shows the significance and importance of the smoothing step in the 

fitting process. The implementation of the surface fitting step is described by the 

following pseudo code. 

Algorithm 3.6; Surface Fitting Step 

1: mkializer = ?̂J，fl = ?̂.9 

2: repeat 

3: define the 1-to-l mapp ing /be tween [ a n d V 
4: for each vertex u in U 
5: V ^ f ( u ) . 

6: i f«„«v>athen 
7: if \u + dnj- - v| < | u - dnj- - v| then 
8: update u = u + dnj 
9: else 
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10: update u = u - dn^r 
11： end if 
12: end if 
13: end for 
14: decrease a 
15: increase r 

16: update " b y Smoothing 
17: until a < a^j^ and r > Yma：, 

爲 、 J \ d ^ L ( ) � 

貧 貧 【 》 卜 

� ‘ . 、 \j^ 
Figure 3-23: An example of surface fitting. Left: posture aligned template; 2"' column: Surface 

fitted template by the proposed surface fitting approach; 3̂ ^ column: Surface fitted template by 

^ simple vertex-facet fitting approach |WHT07|; Right: Input model 

Efficiency, however, is one of the rooms for improvement in this refinement process. 

Since the surface fitting process required a one-to-one mapping for all vertices of the 

template and input model, and vice versa, it is not feasible to apply the proposed 

technology in real time computation in current stage. Some other latest technologies 

such as the Graphics Processing Unit (GPU) computation may improve the 

performance issue and further works will be done on this area in the future. 
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3.2.3 Feature Matching Refinement 

The last step of the matching algorithm is named Feature Matching Refinement. The 

purpose of this section mainly improves the quality of the anchor point matching by 

optimizing the surface of the refined template model U. The technical details are 

discussed below. 

Feature-to-feature matching has been the major objective in shape matching 

approaches [JH02] [PDJ93] [LDRS05] [JD031. However, the feature characteristics 

o fan object may not be the primary consideration in different approaches due to their 

own nature and field of applications. For example, the iterative alignment scheme 

fCR03] and bending invariant shape in [EK03] optimizes the global surface 

smoothness instead of local feature mappings. On the other hand, some previous 

researches have integrated the feature matching refinement process in their proposed 

^ non-feature matching approach, such as [JZ06][CJGQ05]. Nevertheless, the 

application ofthese approaches has always been restricted by many limitations such 

as the requirement of a very good initial guess. Hence they cannot be served as a 

general solution for 3D shape matching applications. 

In this thesis, a feature matching refinement process will be proposed which increase 

the sensitivity of the anchor points mapping to the features between the template and 

input models. The process included two parts: a feature descriptor construction and a 

feature descriptor matching. These parts will be described in detail in the following. 

To increase the sensitivity of the mappings to local features, the feature points on 

template model U should be identified. Various advanced feature identification 
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algorithm can be found in shape matching researches. 

Jiao and Heath proposed a feature detection algorithm in [JH021 to identify the 

geometric features, such as ridges and corner, on the mesh surface. Their basic idea is 

to identify strong and valid curves on the surface, and then subdivided these curves at 

strong vertices. Hence the features o f the surface can be obtained by grouping these 

sub-curves at invalid vertices, according to their ranking. The ranking ofaver tex is 

defined according to their number ofincident feature edges. Obviously, this feature 

identification algorithm required a very clear definition ofedge and flat plane on the 

mesh and hence it is applicable for regular 3D shapes, for example the mechanical 

parts. 

Another famous feature extract approach is Laplacian Operator. This approach has 

been widely adopted in 2-D image feature detection algorithm, such as the Harris 

“ Corner Detection [LD04]. The main idea of this algorithm is to smooth the mesh 

with a Gaussian operator and then subtract that smoothed surface by its original 

model. The feature point is determined by filtering the largest values on the 

Laplacian surface with a variable threshold value. In the proposed feature matching 

algorithm, the feature points on the template will be identified by this approach 

according to the several reasons. Firstly, this implementation of this approach is 

simple and hence the efficiency is also high. Secondly, the application of this 

technhue regardless of the mesh natures (i.e. regular/ freeform mesh) and therefore it 

is suitable for the proposed algorithm. The mesh with Laplacian Operator L is 

defined by 

V"=^V) = V_S(V) 

where Fis the input mesh and S is the Gaussian Smoothing Operator as described in 
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the surface refinement process. 

3.2.3.1 Feature descriptor 

In 2D computer vision and 3D object matching, feature descriptor has always been 

the most popular and effective measuring unit. Based on the application of the 

matching algorithm, feature descriptor with different nature should be applied. A 

very successful example o f 2 D image descriptor is the SIFT descriptor [LD04]. The 

SIFT descriptor is encoded by capturing the properties like coordinates, gradient and 

intensity orientation...etc, on each vertex of the image. And hence the encoded 

information can be served as a unique signature for a robust matching approach. 

Practically, it is very hard to define a unique feature descriptor in 3D space due to the 

variations ofmesh topology and deformation levels. 

“ 

In this thesis, a 3D feature descriptor is proposed, which is invariant to the 

differences of scale, orientation and topologies between the template model U and 

input model V. Where the feature descriptor of a vertex v is a synthesis of the 

following components: 
• Relative coordinates of the vertices around v within radius R to origin of F 

• . Normalized Gaussian curvature C, ofalI vertices v, around v within radius R 
C ' 

The construction of the feature descriptor and its components will be explained 

below. • 

Given a vertex v on a triangular 3D surface 77 and a vertex set {¥^} that consists of 

the points around v within radius R. The feature descriptor F(v) ofver tex v will be 

constructed by the following steps. 
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The first component is an axis frame F with three orthogonal unit vectors tj, t2 and t3 

will be defined at vertex v as shown in the figure below: 

j2 
A 

办‘二 
Figure 3-24: Axis frame F of the vertex v on the triangular surface 

V is acted as the origin and the normal vector of v defined t2. The first vector ti is 

defined as the projection of the edge e that connecting to the vertex v and 

perpendicular to t2. And e is selected arbitrarily. The final vector t3 is then obtained 

by the cross product of ti and t2. Hence the function T(v) that transform the vertex v 

from the space between {-R, R} to {-1’ 1} in R^ can be obtained by the RBF function 
A-

with three control point pairs: {v+t!R, 1}, {v+t2R, 1} and {v+t3R, 1}. 

Now the relative coordinate of each vertex v, in {Vn} can be embedded in the feature 

descriptor by applying the function T(vr). Afterwards, the curvature information of 

the vertices will be encoded into the descriptor by incorporating the curvature 

estimation technique introduced in the fundamental technique section. ^ 

The second component of the feature descriptor is the normalized Gaussian curvature. 

Recalling to the curvature estimation technique section, the Gaussian curvature is 

defined as the product of two principal curvatures k _ and kmax. These two curvatures, 

however is a scalar value relative to the maximum and minimum curvature of the 

whole mesh, i.e., a mesh with one extreme tip point will dominate a wide range of 
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kmax value of the whole mesh, as a result all other features of the mesh will be 

regarded as insignificant comparably. Hence, in order to provide consistency 

curvature information between similar surfaces, the feature descriptor embeds the 

normalized Gaussian curvature of the local vertex set {Vn}. Where the normalized 

curvature is defined by rescaling of the Gaussian curvature of v and the vertices in 

{Vfih such that the vertex with minimum Gaussian curvature value will be -1 and the 

vertex with maximum Gaussian curvature will be equal to 1. Figure 3-25 below 

shows an example of the feature descriptor of a local concave region in radius R. 

Based on the experimental tests, selecting R as ten times of the average edge length 

on U will be a good trade-offbetween robustness and speed. 

_ B P 
‘ Figure 3-25: Construction of the feature descriptor: normal (green), x-axis (red), cross-product 

(blue). Curvature gradient map generated within red circle. Illustrated in grayscale. 

3.2.3.3 Feature Descriptor matching 

Once the feature descriptor scheme has been developed and the feature points on the 

template model has been defined, the surface of the template model U' will be 

refmdd iteratively by realigning the feature mapping between the template model U 

and input m o d e l � o n c e at a time. 

For simplicity, the feature mapping algorithm will focus on a single vertex a" in U in 

a single iteration. The correspondence a � o f a" must be found on the surface o f t h e 

input human model V such that the feature descriptor cost 
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C,{a\a') = \F{a')-F{a')\ (3.23) 

is minimized as 

a " = arg min C^ ( a " ,a') (3.24) 

•Where F(d") and F(d') are the feature descriptors ofvertex a" and d' respectively. 

The search of an optimal a�starts from d' = / � ( a " ) . A search window with radius r 

is established to include all surface points (sampled) on V with distance to a^ less 

than r. Then，the minimal feature descriptor cost C between ？ and all these surface 

points can be found by an exhaustive search. Note that, during the search, the local 

frames on the surface samples are rotated to find a best match as the ax i s J^o fa local 

frame is arbitrary on the tangent plane o f the surface point.. 

• _ • . _ 

Figure 3-26: The upper row illustrated the region covered by the feature descriptor centered 

from an anchor point. The bottom row illustrated the feature descriptor of the anchor point. 

Bhie region indicated the searching region and best descriptor matching ofthe template. 
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Figure 3-27: Visualization of the feature descriptors on a particular region ofa vertex on two 

matching objects. The top row displayed the feature descriptor at different orientation. 

The feature matching process is described below: 

Algorithm 3.7; Feature Matching Refinement 

1: Find the 1 -to-1 mapping f for the anchor points of U on V 
2: Initialize k, R, C_ = oo 
3: for each anchor point a^ in U 
4: ifK(a) > Mthen 
5: a � = m 
r V V 
0- a best = a 

7: construct the feature descriptor Fa for d" 
8: for each vertex d^, with g(a\ a�) < R in V 
9: construct the feature descriptor F, for a \ 

10: for each angle d between [-e, e] 

11: upda teC = | F ^ - F / | 
12： i f C < C _ U i e n 
13- C,nin = C 

1 4 : d"best = a \ 

15： end if 
/, 

16: end for 
17: end for 
18: u p d a t e / r f l U ) = A ^ 
19: end if 
20: end for 
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Chapter 4 Experimental Result 

In the following section, the experimental results of the proposed correspondence 

matching algorithm in this thesis will be illustrated. These results will be organized 

into four parts: 

• The results of the fundamental techniques with different parameter settings 

• The matching result in each matching step 

• The comparison of the proposed algorithm to other similar approaches 

• The statistical figures of the effectiveness, efficiency on different experiment 

samples 

The proposed algorithm is implemented in a prototype program by Visual C++ with 

OpenGL library for 3D visualization of models. The experimental tests are carried on 

a PC with Intel Core i5 430 CPU (2.27GHz) plus 4GB main memory running 64bits 

“ MS Windows 7. Basically the computation ofal l examples can be completed in less 

than one minutes. 

4.1 Result of the Fundamental Techniques 

This part illustrates the results of five fundamental techniques incorporated in the 

proposed algorithm. They include the geodesic distance approximation, Farthest 

Point Sampling (FPS), Radial Basis Function (RBF), curvature estimation and Multi 

Dimensional Scaling (MDS). 

Before evaluating the result of the proposed matching algorithm, the choosing of the 

parameters in the fundamental technique must be determined. Hence, this section 

illustrates the output of those techniques with different parameters settings, such as 
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sample rate, warping regularity and region sizes...etc, help to analyze the influence 

of this settings affect the matching process. 

4.1.1 Geodesic Distance Approximation 

The first technique to be evaluated is the geodesic distance approximation. In 

this research, the geodesic distance computed from a given source point will be 

illustrated on the surface by grey color gradient in increasing order, i.e. the 

source point in white and farthest point in black. According to the experiment， 

the two testing method Dijkstra algorithm and Wave Front Propagation Method 

generated a very close result for all testing samples that with about 10,000 

vertices. Hence the Dijkstra Algorithm is regarded as the primary choice 

because of the simplicity consideration (Implementation refer to the 

Fundamental Technique Section). The visual illustrations o f t h e testing samples 

can be found in Figure 4-1. 
/•. 

M i k 
Figure 4-1: Geodesic Distance examples ofhuman bodies in different postures. (Source 

point in RED, higher intensity for larger geodesic distance from the source) 

4.1.2 Farthest Point Sampling (FPS) 

The only parameter for the Farthest Point Sampling is the sample rate. The 

experiment evaluates the performance of the Farthest Point Sampling and the 
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quality o f t h e sample points by applying different sample rate, i.e., 10, 100, 500 

and 1000，on it. The figure below illustrates the distribution o f the sample points 

on different examples. 

• f l f f | 

�� i ^ i L • 1 ^ 
Figure 4-2: Sample points defined by the Farthest Point Sampling on example 1. Number 

ofsample points = 10,100,200 and 500 from left to right 

. _ _ _ _ 

i ! | M m i i i 

� W ) ^ U j ^ j ^ t U ^ S (1嫌 
Figure 4-3: Sample points defined by the Farthest Point Sampling on example 2. Number 

of sample points = 10,100，200 and 500 from left to right. 

According to the experiment, the average computation time o f the Farthest Point 

Sampling on different sample rate is always below one second. Therefore the 

consideration o f t h e sample rate is not the major concern in the Farthest Point 

Sampling process itself. On the other hand, the sample rate is constrained by the 

performance of the warping function, the Radial Basis Function as explained 

below. 
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4.1.3 Radial Basis Function (RBF) 

The result o f the Radial Basis Function is controlled by three main parameters: 

The control points, regularization parameter lambda and the basis function g(r). 

Experimentally, the control points are generated by the Farthest Point Sampling 

and hence the computation time of the RBF mainly controlled by the sample 

rate. The second parameter lambda controls the warping smoothness of the 

surface，which is usually set between 0 and 1. The transition output with 

different lambda can be found in Figure 4-4. The basis function g is chosen as 

g ( f ) = k|. 

0秦參 4 & 
& ^ !'丨• I ~ f ' ^ A 

^ 炉 ”…。 、‘广。。 ^ s � � \ i / i s ^ 

h i ^ ^ i , r 

‘ m m m ^ ‘ 

f i p 卜 
I I ".7S ^ X = 0,5 H X=0.25 

Figure 4-4: Warping result ofexample E (Left) to example A (Right-most) by Radial Basis 
Function in different parameterization. (Upper row: Fixed A = 0 and Number of sample 
points = 10,100 and 200; Bottom row: Fixed Sample Rate = 200 and 义=0.75，0.5 and 
0.25) 
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Figure 4-5: Warping result ofsample F (Left) to sample C (Right-most) by Radial Basis 

Function in different parameterization. (Upper row: Fixed A = 0 and number of sample 

points = 10,100 and 200; Bottom row: Fixed Sample Rate = 200 and A = 0.75,0.5 and 

0.25) 
j> 

4.1.4 Curvature Estimation 

In the experiment, the principle curvatures on the continuous surface of 3D 

models are presented by the Red (high) and Blue (low) color channels. Some 

examples can be found in the found in the Figure 4-6 below 

m n 
Figure 4-6: Curvature distribution ofdifferent human body examples. Blue for low Mean 



71 

Curvatures and Red for high Mean curvatures. 

According to the experiments, this curvature estimation method is reliable and 

accuracy working on triangular domains. The major concern of th is technique is 

the performance in practical use, where it can be controlled by adjusting the 

window size radius of the processing vertex. For simplicity, the bounding radius 

o f t h e curvature tensor is set as the 1/100 o f t h e bounding box size by default. 

And hence the computation time can be controlled within 10 seconds for all 

testing samples in the experiments. 

4.1.5 Multi-Dimensional Scaling (MDS) 

The Multi Dimensional Scaling is one of the most important techniques in the 

proposed matching algorithm. In this thesis, two different approaches of MDS 

have been evaluated; the Classical MDS and Fast MDS. 

<v 

For both approaches, the dimension k o f the MDS embedding result should have 

higher ranking than its original domain, i.e. k > 3，also suggested in [JZ06]. 

Therefore, the dimensional k of the MDS embedding is set to 6 in the 

experiment, where the 4出，5出 and 6出 dimensional are presented in the RED, 

GREEN and BLUE channels respectively. Figure 4-7 illustrated some examples 

of the MDS transformation result with different parameter settings (Classical/ 

Fast MDS, sample rate, basis function). 
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M f 
^ y ^ 如 y ^ 

.>K>> 
x ) ^ X X 

Figure 4-7: MDS result ofhuman body with different parameterization. Top row: Original 

-human body meshes; 2"̂  row: Classical MDS with 50 sample points; 3'^ row: Classical 

MDS with 500 sample points; Bottom row: Fast MDS with 500 sample points; 
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4.2 Result of the Core Matching Processes 

In this section, the mapping results at different core matching processes will be 

illustrated. The sample meshes are presented as triangular meshes with about 8,000 -

10,000 vertices, and build up in winged-edge topology. Moreover, in order to show 

the matching ability against deformable (or bending invariant) shapes, the chosen 

samples are all human body that in different postures. Figure 4-8 below illustrated 

the samples ofhuman bodies 

i k f b ^ i f k f ^ I ^ % \ h ^ f , 如 f , 

l J V M h J f\] \\ 

{ V i M {f\； \V 
‘ U « \ k 』 i i a \ L k 1 

Figure 4-8: Testing examples of human bodies in differsent postures. (Left: Template model, 

others: Input models) 

/ 
'i 

4.2.1 Posture Alignment Step 

This part illustrated the first alignment step o f t h e input model in the matching 

process. The quality of this step can be analyzed by evaluating three important 

transition result of the input model, they are the sign flip corrected MDS 

embedding V—s, the transformed MDS embedding towards template's MDS 

and the instant mapping of the correspondences on the input model by UMos and 

VhiDS-
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Figure 4-9: PostureAIignment exampIe 1 -Transitions oftempiate model (Top-Left) to input 

model (Bottom-Right) in posture alignment step. 
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Figure 4-10: Posture Alignment example 2 - Transitions oftemplate model (Top-Left) to input 

model (Bottom-Right) in posture alignment step. 
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Figure 4-11: Posture Alignment example 3 - Transitions oftemplate model (Top-Left) to input 

model (Bottom-Right) in posture alignment step. 
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Figure 4-12: Posture Alignment example 4 - Transitions of template model (Top-Left) to input 

model (Bottom-Right) in posture alignment step. 
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4.2.2 Surface Fitting Step 

The surface fitting result based on the best posture aligned template from the 

previous step. 

I §r • t 
II 氣 a k 
条，養養秦 
h nlAn 
”•. . ; / S \ \ .• • \ I \ \‘ • 

. 、 、 人 “ k , 」 u . 
Figure 4-13: Surface Fitting example 1 - Transitions oftemplate model (Top-Left) to input 

model (Bottom-Right) in surface fitting step. 
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Figure 4-14: Surface Fitting example 2 - Transitions oftemplate model (Top-Left) to input 

model (Bottom-Right) in surface fitting step. 



80 

1 惑 1 4 
i ] j V \ \ r \ \ r V \ 
l l k \ i U u \ i u U 

滴、(森森ffj% 
^ ： V) M : V ( , R / : i J o / r 

• w^kti 
Figure 4-15: Surface Fitting example 3 - Transitions of template model (Top-Left) to input 

model (Bottom-Right) in surface fitting. 
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Figure 4-16: Surface Fitting example 4 - Transitions of template model (Top-Left) to input 

model (Bottom-Right) in surface fitting. 
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4.2.3 Feature Matching Refinement 

The feature refinement step based on the best surface fitted template from the 

previous step. 

f ^ Before feature refines \ j 

^ H ® # 、 

( f ] F ^ R ^ A 
i m ^ / j A i 

( I I After feature refines / / ！ '• 

\ \. 丨 、 \ ： ‘ j *i ,’ 
kiX i . v Inout Model ^ ^ 

Temolate Model 

Figure 4-17: Feature Matching Refinement example 1: The template model with anchor 

points predefined on the left; matching result of the input model before (upper zoom 

window) and after (bottom zoom window) the refinement is displayed on the right. 

Vertices refined my the feature matching is circled in red thin line. 

{ I Before feature refines / ^ ‘ ' * " ^ ^ ^ 

[ 7 > ^ ^ T 7 n ^ - : ^ r w ^ 7 T ^ 

a - : ( i P ^ / o i J / f V 
! \ v i ' : . M ^ f f W 

^ f W A p ^ 
！ Predefined ooints ) , ', ', / \ ‘ .. < 
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Temolate Model 

Figure 4-18: Feature Matching Refinement Sample 2 - (Left) Anchor points defined on 

template; (2"^ column) Anchor Points on template with surface transformed after posture 

alignment and surface fitting; (3'^ column) Anchor point mappings on input model of the 

2" column's model; (Right): Refined anchor points mapping on local surface of input 

model with feature descriptor. 
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Figure 4-19: Feature Matching Refinement Sample 3 - (Left) Anchor points defined on template; 

(2"d column) Anchor Points on template with surface transformed after posture alignment and 

surface fitting; (3'^ column) Anchor point mappings on input model of the 2"̂  column's model; 

(Right): Refined anchor points mapping on local surface of input model with feature descriptor. 
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Figure 4-20: Feature Matching Refinement Sample 4 - (Left) Anchor points defined on template; 

(2"d column) Anchor Points on template with surface transformed after posture alignment and 

surface fitting; (3'^ column) Anchor point mappings on input model of the 2"̂  column's model; 

(Right): Refined anchor points mapping on local surface of input model with feature descriptor. 
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4.2.4 Application of the proposed algorithm 

4.2.4.1 Design Automation in Garment Industry 

國 圓 國 
Template ModelJ • Input Models Output Modbls 

Figure 4-21: Input models with feature and garment designed (left); Input models in different 

postures，mesh structures or body appearances (e.g. thin or fat) (middle); The garment design 

fitted on the input models from the template (right). 

舊言養资 
Figure 4-22: Input models with feature and garment designed (left); Input models in different 

postures, mesh structures or body appearances (e.g. thin or fat) (middle); The garment design 

fitted on the input models from the template (right). 
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Figure 4-23: More examples ofdesign automation ofclothes on the human models with semantic 

features extracted by the proposed algorithm. 

The application of the proposed technology can be applied in garment industry for 

clothes fitting as the figure illustrated above. The technology can be ftuther extended 

to more finite garment design fields such as gloves and swimsuit...etc. More other 

application such as computational effect (morphing, animation, 3D object 

panorama..etc) are under evaluation and more practical applications will be released 

in the future. 
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4.3 Analysis 

4.3.1 Performance 

The following table illustrated the computation time in each steps of the matching 

processes for the standard sample set used. 

Example 1 Example 2 Example 3 Example 4 

Pre-computaiton U J 12.5 — 13.3 I z 6 

PostureAHgnment 18.6 15.2 16.1 5 ^ 

Surface Fitting 1 ^ 12.6 i ^ r 7 J 

Feature Matching 12.1 9.6 10.9 ^ 
' • " * • ^ " ^ ™ " " " ^ ™ " ^ " ^ ™ * ^ ^ " ^ ^ ^ ^ ^ " ^ " * ^ ^ ^ ™ » ^ ^ M B M ^ M M H ^ M M ^ B a O ^ K O H n ^ ^ M B M ^ ^ n O I ^ ^ ^ M m s ^ M 

Total Time 56.9 49.9 57.1 59.7 

Table 4-1: Computation Time at different step of matching processes 

120 

I eo : I I I I 1 ^ 
$ i|U y = n ,Mi> H ff H |Mg=p OPostureAlignment 

20 “ • ^ • ' _ | ^ • OSurfaceFitting 

0 - = L J L _ i ^ _ H _ _ , - _ J B _ i— _ B _ � OFeature Matching 
1 2 3 4 

Example 

Table 4-2: Chart of computation time distribution in the matching process 

The performance of the matching process highly depends on the posture alignment 

step. A trade off can be made by increase the reduction rate of the regularization 

parameter in each iteration. Hence the number of iteration in posture alignment 

process can be reduced. 
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4.3.2 Accuracy 

The following table illustrated the distance error between the transformed template U' 

and the input model Fat different matching stage. 

Example 1 Example 2 Example 3 Example 4 

i t i a l 1 442.34 一 217.5 一 398.73 “ 526.17 
Sign Flip Correction � 57.2 40.9 40.88 40.77* 
PostureAlignment 28.74 21.25 28.77 23.52 
Surface Fitting 4.11 ^ ^ [ ^ 
Feature Matching 3.59 ^ ^ ^ 

800 n 

700 — Sample 
600 \ ~ ~ i - ~ ~ -

. 5 0 0 - = X 4 — 4 3 

g 400 ~ ~ \ ^ ^ ^ 2 1 
300 ^ ^ 1 一 2 — 1 

200 \ 、 . ^ 

100 - — — ^ ^ ^ ^ ^ : : 

“ 0 4 , ~ ^ ^ ^ = ^ = = = = ^ : . … , . -
Imtlal Sign Flip Posture Surface Feature 

Correction Alignment Fitting Matching 

Table 4-3: Chart ofdistance error in different stage ofthe matching processes. 

It is difficult to measure the accuracy of anchor points mapping numerically. Instead 

ofmeasuring the anchor points only, the distance error ftmction measure all 1-to-l 

mapping ofthe points between template and input model. Therefore the actual 

accuracy of the anchor points should be different from the calculated result. 
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4.3.3 Approach Comparison 

The table below illustrated the distance error of different matching approaches. 

(RED) Large error induced because of incorrect sign flip correction in MDS 

approaches. 

Sample 1 Sample 2 Sample 3 Sample 4 

Jain’s MDS approach 17.75 421.72 ~ ~ 2 ^ 4 0 ^ 

Elad,s MDS approach 387.5 426.5 ~~310.91 ~ 3 9 . 7 2 ~ ~ 

Chui，s Iterative Alignment 76.28 56.33 44.25 71.77 

Our approach 3.59 5.25 — 6.45 ^ 

Table 4-4: Approach Comparison ofthe proposed approach with other previous works. 

氣 ？ ( 
赫 ^ . n \ 

1 f f\ 
“ -

Figure 4-24: Simulation of the transformation of the template with other approaches. Jain's 

approach (left) transform the object by MDS mapping without surface fitting and smoothness; 

Elad，s approach (middle) using 3-D MDS embedding for transformation; Chui's approach 

(right) using soft-assign correspondence determination cause local maxim in sharpen regions. 
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Chapter 5 Conclusion 

5.1 Strength and contributions 

The proposed algorithm in this thesis presents a robust correspondence identification 

algorithm on a 3D model by referencing the isometric similar template model. The 

presented approach is designed for engineering applications that required robust 

feature identification on the surface of 3D human bodies. The experimental testes 

have verified the correctness and effectiveness of the proposed approach. The 

research work presented in this thesis can support the geometric solution or the 

design automation ofhuman-centered customization offree-form products including 

clothes，shoes, glasses, etc. As a preprocessing step for the volumetric 

parameterization for design automation [WHT07], the automatic method for 

extracting semantic feature points can further shorten the time ofproduct design and 

“ fabrication cycle. The major contribution of the proposed algorithm can be outlined 

as follow: 

• A MDS-based point matching algorithm is investigated to align the initial 

correspondences between the template human model and the given 3D 

human model. 

• A sign flip correction technique is developed to enhance the robustness of 

MDS embedding, which is very important for solving symmetric models 

matching problem such as human bodies. 

• Starting from the initial correspondence, a global alignment technique is 

exploited to iteratively fmd a mapping function (via the point 

correspondences) that optimizes surface proximities and is sensitive to 

semantic features. 
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5.2 Limitation and future works 

According to the experimental tests, a satisfactory result can be obtained for those 

testing examples with moderate level of deformation. However, one of the 

limitations of the proposed approach is its restriction on the deformation effects 

between the models in local regions. - specifically, isometric deformation is assumed. 

For instance, a particular highly stretched area, a dense point distributed region or a 

twisted surface may vanish the validity of the algorithm. Future works can be done to 

overcome this problem and one possible solution is to segment the mesh surface 

before applying MDS transformation. This can greatly reduce the stretch error 

accumulated in the MDS embedding and eliminate those local dense regions. 

However, there is a drawback of multiple sign-flip correction problems i f the divided 

segment is symmetrically identical, for example, sign flip correction cannot work on 

two arm segments alone. Therefore, the possibility of segmentation is still under 

evaluation at this moment. 

Last but not least, more future work can be done to enhance the performance of the 

proposed algorithm. In current implementation, the computation time is highly 

depends on the sample rates, number of iterations and the RBF warping processes in 

each steps. In our near future work, the parallel computing power, which is nowadays 

available on the desktop PCs, will be consider to speed up the proposed approach. 
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