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Abstract of thesis entitled 

In this work, we present a robust method to generate mesh surface from unoriented 
noisy points. The whole procedure consists of three steps. Firstly, the normal vectors at 
points are evaluated by a highly robust estimator, which can fit surface corresponding 
to less than half of the data points and fit data with multi-structures. This benefits us 
with the ability to well reconstruct the normal vectors around sharp edges and corners. 
Meanwhile, clean point cloud equipped with normal vectors is obtained by projecting 
points according to the robust fitting. Secondly, an error-minimized subsampling is ap-
plied to generate a well-sampled point cloud. Lastly, a triangular mesh is reconstructed 
by local triangulation for fast computation or Tight Cocone algorithm for better trian-
gulation quality. A polygonal mesh which preserves sharp features can be constructed 
by the dual-graph of triangular mesh. The algorithms exploited here are highly par-
allelized to take advantage of the single-instruction-multiple-data (SIMD) parallelism 
that is available on consumer level graphics hardware. Our approach has been applied 
and succeeded in reconstructing several piecewise-smooth surfaces with sharp features 
preserved from noisy point clouds. 
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摘要 

本論文提出了一個魯棒的方法以從没有法向信息並且受噪聲影響的點雲中，重構出網 

格曲面。整個算法由三個步驟組成：首先，我們利用一個高度魯棒的估計函數求出點 

的法向。這個估計函數能夠僅用不到一半的點雲數據或是多結構的點雲數據進行曲面 

擬合。得益於上述性質，位於尖銳特徵周圍的法向都可以正確地重建。同時我們利用 

一種魯棒的擬合方法將點雲投影，就可以得到消除了噪音並配備法向的點雲。然後， 

我們對點雲進行子採樣，將採樣誤差最小化以得到良好的結果。最後，我們可以使用 

局部三角化方法快速重構三角網格’或採用Tight Cocone算法重構出三角片質量較好 

的網格。通過找出三角網格的對偶圖（dual-graph) ’構建出保留模型尖銳特徵的多邊形 

網格。本論文提出的算法能夠利用一般消費級圖形硬件中的單指令多數據流（SIMD) 

進行高度並行計算。我們已將此方法應用到有噪音的點雲數據上，並成功重構出分段 

光滑且保留完好尖鋭特徵的曲面。 
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Chapter 1 

Introduction 

The reverse engineering problem for reconstructing three dimensional models from un-
oriented noisy point clouds has been problematic for more than decades in applications 
of computer graphics, virtual reality and CAD/CAM. At present, many 3D surface 
scanning devices (using different sorts of methods like structured light, stereo vision 
based scanners) are available. These devices always generate unstructured clouds of 
measurement points in R .̂ With no surprise, measurement noises embedded in these 
points cannot be avoided, which make the downstream mesh reconstruction very trou-
blesome. In addition, as such acquisition devices become more and more accurate, the 
number of points employed to capture the shape of an industrial model has increased 
significantly. Nowadays, several hundred thousands of points are usually involved. 
This greatly enhances the possibility of reconstructing accurate models in a computer 
system. However, it also makes the reconstruction procedure very time-consuming. 
Therefore, it is impractical to use those algorithms which axe designed for processing 
tens of thousands of points (e.g., [HDD*92, BBX95, DG03]) to process a massive num-
ber of points. Furthermore, the preservation of sharp features is an important issue 
especially in reconstructing mechanical models such as gears. It is a big challenge to 
preserve those sharp features in the presence of noises as simple smoothing techniques 
like [Lev03] will probably smooth them out. To solve all these problems, we develop a 
highly parallel meshing pipeline to reconstruct mesh surface from a massive number of 
unoriented noisy points by using the strong computational power which is available on 
consumer graphics hardware with graphics processing unit (GPU). 

The existing work in literature can be classified into two major groups: 1) computational 
geometry approaches and 2) volumetric reconstruction techniques. The computational 
geometry approaches are usually based on the Voronoi diagram of a given point cloud 
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Figure 1.1: Overview of our robust mesh reconstruction pipeline: (leftmost) the 
given fandisk model with 18% Gaussian noises randomly distributed in the range of 
0.5% of the bounding box's diagonal length, (left) the fandisk model with normals 
estimated and outliers removed, (middle) the clustering result of subsampling and the 
points in different colors belong to different clusters, (right) the triangulation result 
on down-sampled points, and (rightmost) the final resultant mesh model with sharp 
features preserved. 

and reconstruct a mesh surface by directly linking the input samples. Normal infor-
mation is not required. However, it is generally difficult to avoid including noises in 
the final reconstructed surface. Moreover, as both the memory and the time cost to 
compute Voronoi diagram are expensive, these approaches are always applied to a small 
or medium size of point clouds (e.g., input with less than 50K points). 

The volumetric reconstruction techniques attempt to build a signed implicit function 
that interpolates or approximates the point cloud samples, and then reconstruct its 
isosurface using, e.g., the Marching Cubes algorithm [LC87]. Nevertheless, the com-
putation of such a signed implicit function requires the point cloud samples to be 
equipped with normal vectors, which can hardly be obtained directly from scanning 
devices. The estimation of normals on given cloudy points is actually one of the most 
critical steps in the reconstruction pipeline - especially when the points are in the 
presence of noise, sharp features, or thin structure. Although the input samples can 
be denoised slightly by applying the approximation scheme of implicit function recon-
struction (e.g., [OBSOSa]), the sharp features are always blurred together with noise. 
Furthermore, the approximation techniques like least-square fitting in general cannot 
satisfactorily handle the outliers. 

We present a robust mesh reconstruction method from noisy points in this thesis. In 
contrast to existing approaches, we evaluate normal vectors on noisy point cloud by 
a highly robust estimator which allows us to reconstruct normals which well preserve 
sharp features. The points are projected to the robustly fitted surface. The massive 
clean points resulted are further down-sampled into user specified number of points. 
The subsampling is based on an iterative clustering algorithm and with the shape-
approximation-error minimized. Note that, since only the position and the tangent 
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plane at a sample axe required for the clustering, the direction of normals determined 
in the first step is unnecessary to be consistently pointing outwards (or inwards) which 
is very difficult in surface reconstruction pipeline. Lastly, the down-sampled points are 
connected into a triangular mesh and its dual-graph, a polygonal mesh preserving sharp 
features, is computed. Figure 1.1 gives an overview of the steps in our approach. In 
order to borrow the advanced computational power available on consumer PCs, all the 
steps are parallelized using the architecture of GPU. 

1.1 Main Contributions 

Our aim is to reconstruct surface from unoriented points destroyed by a large amount 
of noises. Parallelism approadi is exploited in order to speed up the whole process 
greatly. The main contributions of this thesis fall in the following aspects: 

• A highly parallel and robust normal estimation and point projection method to 
deal with noisy point cloud while preserving the shape of sharp features; 

• A parallel subsampling method of points with shape-approximation-error mini-

mized; 

• A new, efficient and effective mesh reconstruction pipeline based on the two tech-
niques stated above. 

Thanks to the most advanced parallel computation power which has been available on 
consumer level PCs, the efficiency of our approach becomes much outstanding. 

1.2 Outline 

This thesis is organized as follows: 

• In Chapter 2, we first review the work of volumetric reconstruction which is 
the foremost approach in reconstructing surface from unoriented points. After 
introducing another approach from the computational geometry point of view, 
we focus on the robust statistics based methods as these kinds of approaches 
have gained much more attention and much works have been published recently. 
Techniques in subsampling of massive points axe then described. Lastly, the work 
in streaming and parallel computing are pointed out concisely. 
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• Chapter 3 explains the main concepts of robust normal estimation and point pro-
jection. The robust estimator is introduced first and then the detailed algorithms 
for estimating normals and projecting points are described. To speed up this 
most time-consuming step in our surface reconstruction pipeline, we also present 
the idea of parallel implementation on GPU. 

• Chapter 4 describes how to down-sample the point cloud into a smaller number 
of points. The shape-approximation-error of subsampling is minimized. Unlike 
other flooding based resampling approaches, our algorithm based on local update 
can be easily parallelized. 

• In Chapter 5，we explain the local triangulation based on the clustering result for 
a fast generation of mesh. We also describe the use of Tight Cocone algorithm 
to obtain a triangular mesh of better quality. Then the method of generating a 
sharp feature preserved mesh surface from the initial surface is presented. 

• In Chapter 6，we apply our reconstruction pipeline to a set of models to examine 
its performance in practice. The results obtained have demonstrated the advan-
tage of our approach in preserving sharp features. Statistical analysis has also 
shown the small shape errors on our reconstructed models. 

• Lastly in Chapter 7，we summarize the work conducted in this research. Some 
possible enhancements are also suggested as a future work. 

• The appendix supplements the implementation of generating the neighborhood 
table of points on GPU. 



Chapter 2 

Related Work 

The related work in the aspects of volumetric reconstruction, combinatorial approaches, 
robust statistics in surface reconstruction, down-sampling of massive points, and stream-
ing and parallel computing are reviewed in this chapter. 

2.1 Volumetric reconstruction 

Pioneered by the work of Hoppe et al. [HDD*92], the approaches in this category 
always start from estimating normals by a local principal component analysis (PCA), 
followed by a graph search to unify their inside/outside direction. Then, the samples 
equipped with normals axe used to construct an implicit function in the forms of signed 
distance field [HDD*92, HDD*94], piecewise algebraic surfaces combined with a-shape 
[BBX95], globally supported radial basis functions (RBF) [T099, CBC*01]，compactly 
supported RBF [SAAY06], blended quadratic functions [0BA*Q3, OBSOSa, XMQ04], or 
3D indicator functions [Kaz05, KBH06, BKBH07, ACSTD07]. Afterwards, a Marching 
Cubes (MC) algorithm [LC87] is employed to reconstruct the surface at the zero level-
set of the implicit function. All these approaches rely on the input of oriented points, 
which is however difficult to be obtained from scanning devices. Recently, Hornung 
and Kobbelt developed a method in [HK06] to reconstruct watertight 3D models from 
point clouds without normal information. They converted the surface reconstruction 
into a minimum cut problem of a weighted spatial graph structure. A mesh template 
fitting based method was proposed in [SLS*06] to realize a similar function. However, 
there is no direct extension of these methods to generate mesh surface preserving sharp 
features. 

5 
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2.2 Combinatorial approaches 

The problem of mesh reconstruction was also approached from the computational geo-

metric point of view. Amenta et al. in [ABK98, ACKOl] gave a provable guarantee of 

reconstructing a correct model given a minimum sampling density dependent on the lo-

cal feature size. Recently, the approach was extended to be able to handle noisy input in 

[MAVdFOS]. However, as they did not remove outliers, the quality of resultant meshes 

was not good. Several variations of [ABK98] are available in [ACDLOO, DGHOl, DG03]. 

Recently, Kuo and Yau in [KY06] proposed a combinatorial algorithm to triangulate 

a given point cloud with sharp features. When applying their algorithm to practical 

data sets, there are two di伍cdties: 1) similar to other combinatorial approaches, it is 

sensitive to noise and 2) the measured points rarely locate along the sharp features. 

Furthermore, it is uneasy to apply this sort of method to massive points. 

2.3 Robust statistics in surface reconstruction 

The computer graphics community pays more attention to the robust statistics based 

methods recently. Ivrissimtzis et al. [IJS03] employed neural network as a triangular 

mesh to connect sample points and updated the mesh respectively. A method to quan-

tify uncertainty in point cloud data by analyzing how far a point agrees with locally 

weighted planes has been proposed in [MP04]. The authors in [SSB05] used support 

vector machine for reconstruction, hole filling and morphing between data sets. Schall 

et al. in [SBSOS] employed locally defined kernels to analyze the point neighborhood, 

and then computed a global surface probability distribution. However, all these ap-

proaches did not solve reconstruction problems of a surface fitting corresponding to less 

than 50% of the data points or a surface fitting to multi-structure. Such a problem was 

first addressed in [FCOS05] by a forward search approach, but they projected points 

onto moving least squares (MLS) surfaces instead of reconstructing explicit meshes. 

The techniques employed in [DTB06] and [JWB*06] are quite similar, where both used 

a Gaussian error model in conjunction with surface priors and performed numerical 

optimization to maximize the posterior probability of the model. The work in [DTB06] 

focuses on a given triangular mesh, and Jenke et al. in [JWB*06] processed point clouds 

into well-sampled ones with noise removed. Nevertheless, since they are based on region 

growing, their computations are very time-consuming and can hardly be parallelized. 

Unlike [FCOS05] and ours, the method in [DTB06] relies on the sharp edge identificar 

tion and it may fail if the noise is less than the selected curvature threshold. Moreover, 

as shown in Fig.3.2，ours outperforms the method of [FCOS05] on the point set with 
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a very low signal-to-noise ratio. Recently, Schnabel et al. in [SDK09] presented a dif-
ferent approach to reconstruct the mesh guided by a set of primitive shapes (planes, 
spheres, cylinders, cones and tori) that are fitted to the input point cloud. With this 
guidance, a closed, sharp features preserved and noise free mesh can be reconstructed 
from the input which contains large holes and noises. However, the small size and 
variety of the set of primitive shapes limit the reconstruction in many cases especially 
the free-form objects. On the contrary, our approach does not have such a limitation 
as demonstrated in Fig. 6.7. 

2.4 Down-sampling of massive points 

Given a point set, the decimation process in [ABCO*03] repeatedly removes the point 

that contributes the smallest amount of information to the shape. Kalaiah and Varsh-
ney [KV03] represented surfaces by a sampled collection of differential points and of-
fered a novel point-based simplification technique that factored in the complexity of 
local geometry. Song and Feng [SF08] studied tlio problem of point c.loud simplification 

by searching for a subset of the original input data set according to a user-specified 
number of points. Liu et al. [LWL*08] applied quasi-Newton methods to compute Cen-

troidal Voronoi Diagram (CVD) and demonstrated a faster convergence than Lloyd's 
method [Llo82]. The time cost of computation in these approaches however is very 

expensive, and it is difficult for them to be parallelized. A technique very similar to 
ours was [VCP08] where Valette et al. proposed a local update scheme, but not K-

means [CSAD04] or Lloyd relaxation, to compute CVD on a given mesh surface, and 

then remeshed the given surface according to CVD. Although [LWL*08] can generate 

better remeshing quality in terms of the regularity of vertex degrees and shape of the 

triangle faces, [VCP08] perforins much faster due to the local boundary edge updating 

method. The most significant difference between [VCPOS] and our work is that they 

tried to locate the seeds of Voronoi diagram along sharp features, which however in 

general cannot be guaranteed (e.g., the result in the last figure of [VCPOS]). Here, we 

approximate the given point clouds with a set of proxies (i.e., Voronoi diagram). No 

matter the seeds of Voronoi diagram are along the sharp features or not, we can still 
reconstruct sharp features by using the points coupled with the normals. 

2.5 Streaming and parallel computing 

The Streaming technique has been employed in surface reconstruction from massive 
points for a long time, where the most recent work was [BKBH07]. In [ZGHG08], a 
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GPU-based implementation of [KBH06] has been developed using NVIDIA's CUDA. 
Nevertheless, the reconstruction with sharp features preserved and the reconstruction 
on noisy input have not been addressed. Regarding interpolating surfaces, it is rather 
common to use the advancing front techniques (AFT). AFT begins with a minimal 
subset of final reconstruction and iteratively expands its boundary until every part of 
the surface is covered. Therefore, its degree of parallelization is rather low. Bernardini 
et al. [BMR*99] used a ball which is pivoted around the edges of mesh boundaries 
to add subsequent triangles to the seed triangle. Besides, Crossno k Angel [CA99] 
introduced local triangulations which mark a point as finished only if it is completely 
surrounded by triangles. Recently, a GPU interpolating reconstruction method which 
makes use of local Delaunay triangulation presented by Gopi et al. [GKSOO] has been 
put forward by Buchart et al. [BBA08]. The method starts by identifying the /c-nearest 
neighbors to each point on the CPU. It proceeds onward by sorting the neighbors of 
each point on the GPU in the order of their angles surrounding it and performing local 
Delaunay triangulation. However, the noisy input has not been considered. 



Chapter 3 

Robust Normal Estimation and 
Point Projection 

To robustly estimate normal, we fit a surface to the local shape around a sample point 

in T1i(511 the point is pi.o.jwlwl onto the fittcul sui.facn and t,li(�normal vector of tli(， 

projected point is estimated. In this chapter, the basic concepts of robust estimator are 

described. The related work of moving least squares (MLS) surfaces is also reviewed, as 

well as its extension, robust moving least squares with sliarp features. The techniques 

in estimating local surface properties such as iiorinals, neighborhoods and fitting poly-

nomials are explained in detail. Lastly, we present the highly parallel iiiipleineiitation 

which can utilize the power of GPU. In our work, we choose a very robust one — A'laxi-

miini Density Power Estimator (MDPE) and adopt it in a. highly parallel algorithm of 

normal estimation and projection. 

3.1 Robust Estimator 

The most classical method for fitting a model to data is linear regression using least-

squares. However, as carefully discussed in [FCOS05], a single sample with a large error, 

9 
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0 

Figure 3.1: A single outlier can greatly distort a least squares fit: (left) no outlier 
and (right) one outlier only. Increasing the order of fitted model does not help either. 

called outlier, can change the fitted model arbitrarily. More specifically, as shown in 
Fig.3.1, a single outlier can fail a least-squares fit. Robust estimation techniques try 
to fit a model to data that contain outliers. A robust estimator of local shape is very 
useful and important when the given point sets are in the presence of noises. Generally 
speaking, when a model is correctly fitted, the following two criteria should be satisfied: 

• There are as many as possible data points on or near the model; 

• The residuals of inliers should be as small as possible. 

The least squares method uses the second criterion as its objective function to mini-
mize the residuals without distinguishing the inliers from outliers. MUSE [MS96], the 
technique employed in [FCOS05] tries to minimize the scale estimate provided by the 
/cth ordered absolute residual instead of minimizing the residual of inliers. Wang and 
Suter presented an estimator, MDPE, in [WS04] which considers both of these two cri-
teria in its objective function. In comparison, it outperforms other estimators (RESC, 
ALKS, LMedS, RANSAC and Hough Transform) by tolerating more than 85% of out-
liers. MDPE is based on the strategy of random sampling [FB81] to choose p points 
(called a p-subset) and then determine the parameters of a model for this p-subset, 
where for example p 二 2 for a line, p 二 3 for a circle or plane, and p = 6 for a quadratic 
curve. It finally outputs the parameters determined by a p-subset with the minimum 
or maximum of the respective objective function. 

Briefly, if tho model to fit, has boon corroctly cstimatod in MDPE, the data points on or 
near the fitted structure should have a high score in the following probability density 
power function 

n p - CO IN 
DP- cMlXcl) (3.1) 

where Xc is the center of the converged window Wc obtained by applying the mean-shift 

procedure, and /(X,；) is the multivariate kernel density estimator defined on a set of 
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points {Xi}i=i’...’n in a d-dimensional Euclidean space 况 a s 

f⑷二去df：辟) (3.2) 
i=l 

with the window band-width h and the Epanechnikov kernel K yielding minimum-mean 
integrated square-error. The kernel is defined as 

I 0 else 

where Cd is the volume of a unit d-dimensional sphere, e.g. ci = 2, C2 = tt, and 

C3 = 47r/3. cJ = 1 is employed in our following normal estimation and point projection. 

3.2 Mean Shift Method 

To compute the center Xc of the converged window Wc on a given set of n data points 

the mean-shift update vector can be derived from the gradient of the kernel 

density estimate in Eq.(3.2). In short, the mean-shift update vector is defined as 

= i [ X i - x (3.4) 
XieShix) 

where the region Sh{x) is a hypersphere with radius h containing 7½ data points. The 
mean-shift procedure is as follows: 

Algorithm 1: Mean Shift ‘ “ 
Choose the radius h of the search window; 
Initialize the location Xc of the window with zero; 
repeat 

Compute the mean shift vector Mh{x) by Eq.(3.4); 
Xc Xc + Mh{x); 

until reach the terminal condition ； 

We stop the iteration when either — ||M,,(.t)||)| < 0.01||M(".s�(a;)|丨 or the 

loop has run more than 300 times. 

3.3 Normal Estimation and Projection 

The above estimator is conducted to find a quadratic surface best fitting the local 

shape around a sample x. The basic idea is that, p points are randomly selected from 
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the neighbors N{x) of the given sample ；r to fit a quadratic surface S, and then the 

probability density power DP according to this fit S is evaluated by the residuals of 

points in N{x) to S. The estimation will be repeated for m times, and among the m 

fits, the surface with the maximal score in DP is utilized as the robust fitting result. 

More specifically, the robust estimation starts from choosing a search window radius h 

for MDPE and a repetition count m. The value of h greatly affects the robustness, the 

smaller h is used, the more sensitive to noises the estimator is. However, some inliers 

may be ignored if h is too small. By experiences, we choose h = 2L in all our examples 

(except the model with nonuniform point density), where L is the average of point 

distances on the given model. Theoretically, the value of m relates to the probability 

P that at least one clean p-subset is chosen from m p-subsets as 

log(l - P) .. 
" = l o g [ l - ( l 省 (3.5) 

where e is the fraction of outliers. 

After randomly selecting p-siibset, the points are used to form a quadratic surface S. 

H(�i.(、，w(�first compiito tli(，(-(uitroid of the p points, and employ the principal component 

analysis (PCA) to form a local coordinate-frame at the average position (ref. [Pet02]). 

Then, the surface S 

S{s, t) 二 as^ + ht^ + est + (Is + et (3.6) 

is fitted by the mapped coordinates of these p points at this local coordinate-frame. 

Fleishman et al. in [FCOS05] suggested to let p equal the number of parameters in a 

quadratic surface to fit. Here we do not let p = 5 although there are only five parameters 

{a, b, c, d, e) to be determined in Eq.(3.6). Instead, we use p = 6 and then determine 

5(s', i) by computing the least-square solution with singular value decomposition (SVD), 

which makes the model fitting numerically more stable. 

By a fit, the residuals of all points in N{x) to the determined surface 5(5, t) are used 

as input to the mean-shift procedure to compute a converged window. Note that, the 

mean shift is conducted in one-dimensional space 一 signed residual space. Lastly, the 

value of the probability density power function, DP in Eq.(3.1), is scored for this fit, 

S. The siirfac;c fitting will be applied for m times. Among all m fits, the fitted surface 

with maximum DP is regarded as the best surface S*. Then the projected position 

X' of X is the closest point Xc E S* to x which is searched by Newton's method. The 

normal of surface S* at Xc is employed as the normal vector to equip x\ 

Using the value of m defined in Eq.(3.5) as the number of repetition is impractical. 

There are two reasons for this. Firstly, we do not know the value of £, the fraction 
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Figure 3.2: Robust estimator, (left column) The point set with 240K samples of 
a cube model embedding (a) 6% of noises, (b) 25% of noises and (c) 70% of noises, 
(middle column) RMLS starts to fail at 25% of noises, (right column) Our approach 
with the points successfully projected even at 70% noises. Points are displayed with 
color-coded normals. 

of outliers. Secondly, using a Vcaliie of m computed by Eq.(3.5) cannot guarantee to 

find a good fit among random selections, and it can be much higher as discussed in 

[TM02]. Therefore, we use a more practical solution in our algorithm. After assigning 

a fixed number for m (e.g., m = 300), we caii obtain a relatively clean point cloud 

with singular normal on very few isolated samples. Taking the cloudy points of the 

cubes in Fig.3.2 with different percentages of noises as an example, we can successfully 

project the points onto the cubes while [FCOS05]'s RMLS starts to fail at 25% of 

noise. The ability to fit surface corresponding to less than 50% of the data points is 

very important to the correct normal estimation on samples near sharp features where 

there are iniilti-structiires. 
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3.4 Moving Least Squares Surfaces 

The related work, moving least squares (MLS) surface, defines an implicit surface which 

approximates or interpolates the given point samples using a projection operator. This 

method represents the surface by projecting all the points onto the estimated smooth 

surface. It is different from reconstructing surface which converts the points into another 

representation of surface, e.g. triangular mesh or polygonal mesh. The major work of 

projection operator introduced by Levin [Lev03] consists of two basic steps with the 

first stage of defining a local roforcnco domain and the socond stage of fitting a local 

bivaxiate polynomial over the reference domain. Many researchers investigated the 

extension of Levin's projection operator, such as [ARAA04, AA04, FCOS05]. 

3.4 .1 S t e p 1: local reference d o m a i n 

Given the point data set P = {pi\i = 1，...TV} and let x be the point to be projected, 

the local reference domain (or plane), H = {n • x — d = 0,x ^ E^} where n 6 E^ and 

||n|| 二 1，is computed by minimizing the weighted sum of squared distances from pi to 

H 
N 

Y^{n-p i -d )^e{ \ \p , -q \ \ ) (3.7) 

among all normal directions n, ^ is a smooth, positive and monotonically decreasing 

function and q is the orthogonal projection of x on H. The local reference domain is 

given by an orthonormal coordinate system on H with q as the origin. 

3.4 .2 S t e p 2: local b ivariate p o l y n o m i a l 

The reference domain of x is then used to find a local bivariate polynomial approxima-

tion to fit the points in the neighborhood of x. Let qi be the orthogonal projection of pi 

onto H, and fi = n- (p,： — q) be the height of pi over H. The polynomial approximation 

g is computed by minimizing the weighted least squares error 

N 

—/7:)2 外 l l i ^ l l l ) (3.8) 
i=l 

where {xi, yi) is the local 2D coordinates of qi in the local reference domain H. The 

projection of x is then given by the polynomial value at the origin 

vl/(x) = g + ^(0,0)n (3.9) 
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Figure 3.3: The procedure of MLS projection: (left) a local reference domain H is 
determined, (right) then a local bivariate polynomial g over H is computod. '^'{x) 
(green point) is the MLS projection result. 

Figure 3.3 illustrates the whole MLS projection steps. 

3.4 .3 S impler I m p l e m e n t a t i o n 

In practice, the MLS surface is computationally expensive due to the non-linear opti-

mization of local reference domain computation. Inspired by MLS surfaces, Alexa and 

Adamson [ARAA04] present,od a much simpler and officiont projection operator which 

also allows the orthogonal projections by computing the exact surface normals. Their 

projection iteratively computes the locally weighted average position and projects the 

point along the normal direction yielding a new position until it converges. 
Given a point x, the locally weighted average is defined as 

( ) _ I ： 二 身 - P 北 （3.10) 

where 0 is a w(nglit func-.tioii which spccific^s tlio iiifiuoiicc of the point. This wcnglit, 

function is smooth, positive and monotonically decreasing. Typically, a Gaussian-

shaped function is used such that 

m = e-舉 (3.11) 

where h is the anticipated feature size which is a global scale factor tha t determines 

the Gaussian kernel width. Features would be smoothed out if their feature sizes are 

smaller than h. Choosing a suitable h is difficult for non-uniformly sampled point set. 

[AA04] computed h as the average Euclidean fc-nearest neighborhood distance with 

A； = 6, which gives a practically adaptive approximation of local sampling density. 
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Figure 3.4: The first two projection steps of [ARAA04]. In each step, the current 
updated position x' is used to compute the orthogonal tangent frame by a{x') and 
n(a;'). Then x is projected onto the local frame to compute the new approximation. 

Then, the next updated position x' of x is computed by 

x' = X - n{x)^{x - a{x))n{x) (3.12) 

where n{x) is computed by a weighted least squares fit 

N 
n{x) == a r g m i n Z — Pi)fe{\\x - (3.13) 

i二 1 

or a weighted averaging of input normals n,； 

n � = 〒 丨 (3.14) 
IIEi l i^dk-pdDni l l 

The projection procedure is performed by repetitively computing the updated position 

；̂ 1+1 with a{x^) and n(;z;”. The convergence of the iteration yields a point on the surface. 

Figure 3.4 gives an illustration of the first two projection procedures of [ARAA04]. 

3.5 Robust Moving Least Squares by Forward Search 

The conventional MLS surface defines a surface that is smooth everywhere, thus it 

cannot preserve sharp features. The sharp features are however important in recon-

structing the mechanical parts such as gears and engines. The presence of noises in the 

data smoothes out the sharp features, or even distorts the real surface. Fleishman et al. 

[FCOS05] introduced a robust method, forward search algorithm, to identify the out-

liers. Starting from a small outlier-free region estimated by an initial robust estimator, 

one good sample is added iteratively to re-fit the polynomial until the largest residual 

is greater than a certain threshold. One surface is then classified and the whole process 

is repeated until the sample set is empty. Finally, a number of surfaces are classified. 
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Figure 3.5: Pcrfoniiaucc coiiiparisoii of di fib rent estimators at a highly noisy corner 
region: (a.) the forward search misclassifies the regions as LMS fails to obtain a good 
initial fit, (b) the kth order estimator over classifies the regions, thus a, surface region 
is mistakenly recognized on outliers, and (c) our MDPE based estimator does not have 
theac problems - only tlic best fitted surfacc is estimated. 

A new projection operator is exploited to define a piecewise smooth surface using this 

classification. 

3.6 Comparison with RMLS 

The approach in [FCOS05] requires a robust initial estimator to start the forward search 

algorithm. It is essential for the initial estimator to fit an outlier-free surface as the 

forward search is carried out based on this initial guess. Tliey adopted kth ordered-

statistics [MS96] to grade the fitted surfaces instead of using least median of squares 

(LMS). In Fig.3.5, we compare the influence of LMS and kth order to the forward search 

with the MDPE at a corner of noisy region. We can clearly notice from Fig.3.5(a) that 

the forward search misclassifies the region as LMS fails to obtain a good initial fit. With 

A:th order statistics, a good initial fit can be obtained but the region is over classified 

to four surfaces at a corner which actually contains three surfaces only as shown in 

Fig.3.5(b). This is because one forward search is conducted on outliers. It is however 

difficult to determine whether the regions classified by forward search belong to outliers 

or real surfaces. Hence, the point would be projected to a wrong position. In contrast, 
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Figure 3.6: A miss-projected point outside the model (left) can be eliminated by the 
clustering (middle) and the subsequent subsampling (right). 

our approach only ostimatos tho bost. fitted surfacc among tho noisy region with MDPE 

as demonstrated in Fig.3.5(c). This ensures that the point is projected to the correct 

surface. Note that if the point is outside of the actual model, there is a chance for the 

point to be projected on an invalid position. Nevertheless, such points are eliminated 

in the subsequent subsampling step as illustrated in Fig.3.6. 

3.7 K-Nearest Neighborhoods 

In local approaches, only the points that are spatially close together (usually in terms 
of Euclidean distance) arc involved in the computation. Hciicc, a fast and efficient 
method to compute the /c-nearest neighborhoods (A;NN) is important when we deal 
with a massive number of points. Finding /cNN can be split into two steps, construc-
tion of an efficient data structure to store the points and a fast access method to query 
the A:NN. Conventionally, octree and A;d-tree are the most common spatial data struc-
tures to decompose the space into different cells. Recently, with the advance of parallel 
computing technologies (multi-core CPU and many-core GPU), a number of publi-
cations presented the parallel implementation of these space partitioning algorithms 
[SSK07, ZGHG08, ZHWG08] and other techniques [GDBOS] for fast computation of 
fcNN. 

3.7.1 Octree 

Octree is a hierarchical data structure based on recursively decomposition of space. 

Given a data set, a bounding box is first computed and then recursively subdivided 

into internal cells which contain data. Each cell can be subdivided into a maximum 

number of eight nonempty octants and hence such a data structure is called octree. 

Recently, Zhou et al. [ZGHG08] implemented a parallel construction of Octree data 
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structure on GPU, which is over two orders of magnitude faster than CPU octree 

construction algorithm. 

3.7.2 Kd-Tree 

In general, 3D data points cannot be subdivided evenly into eight octants, which may 
lead to an unbalanced and suboptimal data structure. Kd-tree however can ensure the 
generation of a fully balanced binary search tree and the partitioning of the space into 
a minimal number of subdivisions. Zhou et al. [ZHWG08] presented an algorithm to 
construct kd-tree on GPU in real-time. In terms of speed, their algorithm performs 4 
to 7 times faster than the well-optimized single-core CPU algorithm by [HMS06] and is 
competitive with the multi-core CPU algorithms by [SSK07]... It also outperforms the 
kd-tree algorithm in the open source ANN library [MA06] by being 20 times faster. 

3.7.3 Other Techniques 

Besides the space partitioning techniques, Garcia et al. [GDB08] proposed a "brute 

force" /cNN search which is implemented on GPU by CUDA. Their BF algorithm is 

actually an exhaustive search. First, all the Euclidean distances between the query 

point Qi and the data points P = {pi\i = 1, ...N} are computed, which are then sorted 

by insertion sorting algorithm. The k reference points corresponding to the k smallest 

distances are the result of /cNN. By utilizing the highly parallel computing of GPU, 

their approach is up to 148 times faster than ANN kd-tree [MA06]. However, such an 

enhancement can only be achieved when the data dimension is very large. Besides, 

the number of data points is also limited due to the restriction of GPU hardware. In 

surface reconstruction, we deal with a massive niiinber of data points in 3-dimensional 

space. The "brute force" algorithm is obviously unsuitable for this application. 

In appendix, we introduce a GPU /cNN computation based on space partitioning method 

using CUDA. Different from [ZGHG08, ZHWG08], our approach is simple and easy to 

be implemented. It can also be run in a streaming mode so that it is able to process a 

massive number of points. 

3.8 Principal Component Analysis 

The z-axis (upward direction) of the local coordinate-frame can be estimated through 

local principal component analysis for the local surface normal. This approach in fact is 
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Figure 3.7: Local neighborhood (left) and covariance analysis (right). 

an eigenanalysis of the covariance matrix of a local neighborhood [PGK02]. Within k-
nearest neighborhoods, the covariance matrix is computed and then the surface normal 
direction can be deduced from the eigenvector associated to the smallest eigenvalue. 
The 3 x 3 covariance matrix C for a sample point x is given by 

xi — X xi — X 

C = . . . • . . . ,Xi e N(x) (3.15) 

00 CO 00 00 

where x is the centroid of the neighbors Xi of .t (see Figure 3.7). Consider the eigenvector 
problem 

C-Vj = A , - V j , i G 0 , l , 2 (3.16) 

Since C is symmetric and positive semi-definite, all the eigenvalues Xj are real-valued 

and the eigenvectors vj form an orthogonal frame corresponding to the principal compo-

nents of the point sot dofinod by N{x). The Xj measures the variation of the Xi G N{x) 
along the direction of the corresponding eigenvectors. The total variation (sum of 

squared distances) of Xi from their center of gravity is 

-到2 = Ao + Al + A2 (3.17) 

Assume Aq < Ai < A2, it follows that the plane 

T{x) :{x-x)-^0 = 0 (3.18) 

passing through x minimizes the sum of squared distances to the neighbors of x. Thus 

vo approximates the surface normal at x. 
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3.9 Polynomial Fitting 

Fitting surface S in Eq.(3.6) means solving all the coefficients in the polynomial. In our 

case, we need to fit the surface with some p points. As stated in [Pet02], the general 

approach is started by computing the average position p of the p points, and these p 

points will then be mapped into a rotated principal frame, i.e. local coordinate frame, 

by a transformation. Let pi be those p points with coordinates expressed in global 

coordinate frame and p[ be the mapped points that are expressed in local coordinate 

frame. Then 

p； = R{pi - p) (3.19) 

where R is a. rotation matrix called the attitude matrix. One useful local principal 

frame is defined by choosing R = ( r i , r2 , r3 )^ as follows: -

(I - nn了)i 
= n’ = � 2 = rg x n (3.20) 

where i is along the first axis in the global coordinate frame, I is the identity matrix and 

n is the normal vector at p computed as mentioned in the previous session. In other 

words, rotation R aligns p[ with the projection of pi onto the tangent plane defined 

by n. The coefficients of the rotated principal quadric can be obtained by solving the 

following over-determined system of linear equations: 

a 
_ "1 � _ 

Si siti Si ti b S{si,ti) 

: : : : : c = •： e N{x) (3.21) 
tp2 Sptp Sp tp d _ <S(Sp, tp) 

e 

with 

T a 
Si2 i i 2 Sih Si ti Si^ Siti Si ti 1 h 

• • • • • • • • ^ 

Sp^ Sptp Sp tp Sp tp Sptp Sp tp d 

[ e J (3-22) 
T 

Si2 ti^ Siti Si ti 1 [ S(si,ti)-
• • . . . • 

_ Sp tp^ Sptp Sp tp _ tp) 
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Algorithm 2: Normal Estimation and Point Projection 
1： Initialize DP^ax of a given sample x by zero; 
2： for z = 1 to m do 
3： Randomly choose p points to form a p-subset, P,；; 
4： Fit a quadratic surface S to Pi', 
5： Compute the signed residuals for all neighbors of x] 
6： Use the mean shift procedure to determine the center Xc of converged window 

on the residuals; 
7： Evaluate DPi by Eq.(3.1); 
8： if DPi > DP服 t h e n 
9： I)尸max — DPi and 尸max — Pi] 

10： e n d if 
11： e n d for 
12： Fit a quadratic surface S* to 尸max; 
13： Find the closest point Xc on S* to x; 
14: X' <— Xc'i 
15： Let the surface normal of S* at Xc be the normal of X'\ 

3.10 Highly Parallel Implementation 

Similar to all other random sampling techniques, the computation of robust estima-

tors is very costly in time. Running the above algorithm on an advanced PC with 

25OK points takes about one and a half hour. Different from the techniques employed 

in [FCOS05, DTB06, JWB*06], the proposed estimation method in this work can be 

parallelized using the single-instniction-miiltiple-data (SIMD) parallelism and the ar-

chitecture that is available on the consumer graphics hardware with the graphics pro-

cessing unit (GPU). We first store all samples in the given point cloud in the device 

memory of graphics card. Then, the ANN KD-tree [MA06] is adopted to find k nearest 

neighborhoods of every sample. Following the suggestion of using k = 6p neighbors 

gives good results in our tests. Since the KD-tree does not allow multiple access at 

the same time, we store the query result in a neighborhood information table for later 

use. Afterwards, records of the table are passed to Algorithm 2 to evaluate the normal 

vectors and project points in a streaming manner. Because of the texture memory 

limitation on a graphics card, we process 2048 samples at each pass. The parallelism 

is easy to be implemented by NVIDIA，s CUD A library. 
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Error Controlled Subsampling 

M m 
It is impractical to generate a iiiesli connecting the cleaned point cloud immediately 

after the first step. As the data points are projected onto their fitted surface, the 

total iiuniber of points remained is the same as that of the original point cloud which 

contains massive iiiimber of samples. Therefore, we down-sample the point set into 

user specified number of points to be further triangulated. However, it is unavoidable 

that reducing the complexity of the point cloud will create some approximation errors. 

In order to control the quality of subsampling, we developed an energy miiiimizatioii 

based method that groups the given massive points into optimal clusters. The shape of 

points in a cluster is then approximated by a proxy represented by a site point, which 

is the average position of all points in this cluster. 

4.1 Centroidal Voronoi Diagram 

Voronoi Diagram is a kind of decomposition of the space into a discrete set of cells. 

Clustering is performed by applying the Centroidal Voronoi Diagraiii (CVD) on the 

surface. CVD is a special Voronoi Diagram where the site point (seed) of each Voronoi 

cell is located at the centroid position. Given a, connected compact region C let 

23 



Chapter 4. Error Controlled Sub sampling 24 

S = {si|z = 0,n - 1} be the set of n distinct site points, and the CVD is defined as n 

Voronoi cells Ci as 

Ci = {xe n\d{x,Si) < d{x,Sj),\fj ^ i] (4.1) 

where d is the Euclidean distance and the site point is 

(4.2) 
.Ici 

where p(x) is a density function. 

4.2 Energy Function 

Our clustering is driven by minimizing the discrete energy terms. Our formulation of 

energy function in clustering is based on two criteria: 

• The distribution of clusters should enable their proxies to best approximate the 

shape of the given model. 

• Clusters should maintain a disk-like shape. 

To satisfy them, we define two energy terms to score clusters. 

4.2.1 Dis tance Energy 

To control the disk-like shape of clusters, we introduce an energy term based on distance 

according to the site point pi of a cluster Ci as 

Edist{x) = \ \ x - p i f . (4.3) 

4.2.2 Shape Prior Energy 

Our shape prior energy is 

Eshapei^) = IIOc — Pi).�||2 (4.4) 
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Figure 4.1: Using the shape error measurement obtained by the proxy plane which 
passes through the site point cannot avoid moving site point away from the surface 
near sharp features, which however gives large error using our shape prior energy term 
Eshape.i^)- The samples hi different colors belong to different clusters. 

Note that, different from [CSAD04, SF08], we employ the normal vector 7½ at a sample 

X but not using the normal vector of a proxy as Ef,{x) = ||(;r - pi) • Up.^ with np., 

the average normal of all samples in the proxy. This is because using a metric with 

the proxy normal does not sensitively reflect the shape-approximation-error when the 

cluster is crossing a sharp edge. For example, in Figure 4.1, the site point is far from 

the original surface but shows zero energy by Ep. Locating a site point far from the 

original surface will introduce large shape error on later generated mesh surfaces. Such 

error can hardly be recovered, and should be prevented. On the contrary, using Eshape 

defined in Eq.(4.4) will make the resultant site points of optimization near to the given 

point cloud, and thus mesh surfaces with less shape error will be generated. 

4.2 .3 Global Energy 

The energy on a cluster Q is weighted to control the influence of each criterion and so 

it is defined as 
E{Ci) = wiY^ Edist{x) + W2J2 Eshape[00), (4.5) 

xeCi xeCi 

and the global energy of a clustering is defined by adding the energy terms of all clusters 

together as 

Eglobal = Y l ^ i ^ i ) - (4.6) 
i 

Figure 4.2 demonstrates the clustering results contributed with different weight ratios 

of the energy terms. With E(Ci) totally contributed by E^isu it actually performs 

uniform clustering, but the clusters are likely to be located across the edges. Besides, 

if only Eshape is taken into account, the clusters will be formed in an arbitrary shape. 

Hence, to let the clusters better approximate the curvature while maintaining a disk-like 
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Figure 4.2: Clustering with different weight ratios: (left) wi = 1,W2 = 0, where the 
clusters are formed uniformly; (middle) wi — Q,W2 = 1, where the clusters formed are 
arbitrary in shape in the regions of similar curvatures; and (right) wi = 0.1, w;2 - _ 0.9， 

where the clusters best approximate the surface with a. disk-like shape. 
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Figure 4.3: Geometric meanings of Eshape, (left) and E,iiH (I'ight). Note that the 
value of Eshape, is much .smaller than that of Edist, so a scale term is necessary to 
balance them. 

shape, we choose W[ = 0.1 and W2 — 0.9c; with 

；=a v ( j { E a i , t [ x ) ] (4 7) 
avg{Esh(if)e[x)� ‘ 

defined according to the initial clustering to balance the weight between Edist and 

Eshape in Eq.(4.5) (see the illustration of Fig.4.3). 

4.3 Lloyd's Algorithm 

Lloyd's algorithm starts from an initial partitioning step which groups the points into n 

cluster sets. This initial partitioning step is performed randomly for iiniforin clustering 

result. However, if adaptive clustering is desired, the random approach slows down the 

convergence speed as the clusters in low density regions move slowly towards the high 

density regions. An initial distribution according to density function is suggested by 

[VCP08] to produce an adaptive initial sampling in order to speed up the convergence. 

The algorithm is then iteratively performed by the following two steps: 

1. Compute the centroid of each cluster as the representative point of cluster. 
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Figure 4.4: Example showing clustering steps: After the random initial seed selection 
(left), boundary points will be shifted to another cluster if such a change reduces global 
energy (middle). Within several iterations, the clustering is optimized (right). 

2. Form the new partition by assigning each data point to its closest representative 

point in Euclidean space. 

The algorithm stops wlien the points no longer shift to other clusters, or the ceiitroids 

of clusters remain unchanged. 

4.4 Clustering Optimization and Subsampling 

Similar to Lloyd's algorithm, we first perform an initial clustering by partitioning the 

cleaned point cloud into n, a user specified number, clusters, n points are randomly 

selected from the point cloud as site points of clusters, and are inserted into a KD-tree. 

Then, the cluster ID of every rest point is assigned by querying the closest site point 

through the KD-tree. This initialization step in general can be completed very fast. 

Second, the clustering is optimized by iiiiiiirnizing the global energy in Eq.(4.6) with 

an iterative algorithm. A clustering can be optimized just according to the tests on the 

boundary points between different clusters. Given a boundary point xi € Q adjacent 

to another cluster Cj{i + j), shifting p from the cluster Q to the cluster Cj will change 

the energy locally on E{Ci) and E{Cj). Therefore, the cluster ID of :¾ is changed from 

i to j if such shifting reduces the global energy. Figure 4.4 illustrates the process. 

Due to the local maimer of clustering update, the optimization step can be parallelized 

to employ the computing power of multi-core CPU or GPU. The fc-nearest neighbors 

of each sample are pre-computed by the spatial partition techniques (e.g., KD-tree) 

and stored in a neighboring iiifonnatioii table. Choosing k = 10 can balance both the 

quality and the speed. Through this table, we can in parallel detect every sample if it is 

oil the boundary by comparing its cluster ID with the cluster ID of its iieiglil)ors. The 

cluster shifting of a boundary point by comparing the local energy change can also be 

performed in parallel. We have implemented the Algorithm 3 using CUDA on GPU. 
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There is no data confliction between threads - thus the efficiency of parallelization is 

very high. 

Algorithm 3: Clustering Optimization 
repeat 

for each cluster Ci in parallel do 
Update the site point to the average position of all points in Ci； 

Find the boundary points in Q; 
end 
for each cluster Ci in parallel do 

for each boundary point Xfj G Ci do 
for neighbors xj G Cj of Xb do 

if moving xi, to Cj reduces the energy then 
I Update the cluster ID of 

end 
end 

end 
end 

until the change of Eglobal is less than 1% ； 

Lastly, there are two options to generate the subsampling by the result of clustering 
optimization: 

• Using site points as the down-sampled points; 

• Or using the closest point in a cluster to the site point as the down-sampled point 
in this cluster. 

Normals are also assigned to down-sampled points as they are important to the sharp 

feature reconstruction. There are also two options to generate normals: 

• Using the average normal of all points in a cluster; 

• Or using the normal at the closest sample point to the site point. 

By our experiences, using site points and the normals at their closest points gives better 

results than other options. 



Chapter 5 

Mesh Generation 

Resultant meshes are generated by first triangulating the down-sampled points into 
a surface M using the Tight Cocone algorithm [DG03]. We also developed a local 
triangulation method based on the clustering result. However, the sharp features are 
chamfered due to the positions of tlie dowii-sainpled points. To recover sharp features 
we generate a, dual-graph M of M by converting each vertex in M to a polygon and 
each triangle Ti G M into a vertex Vj, G M. As every vertex in M generated from the 
down-sampled point cloud is equipped with a normal vector, we locate vertex Vi G M 
l)y tlic position which iiiiiiiinizcs tlio (Quadratic： Energy Fiiiictioii (QEF) ddii icd by the 

three vertices in T,； and their normals. To be robust, the position is computed using tlie 
singular value decomposition (SVD). The resultant polygonal iiiesli M thus preserves 
sharp features quite well. 

5.1 Tight Cocone Triangulation 

Tight Cocone reconstructs water-tight surfaces by computing an initial surface usiiig 

Voronoi based approach followed by a subsequent marking and peeling step for filling 
all holes to complete the mesh reconstruction. The initial surface is obtained by the 

29 
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modified Cocone algorithm in [DGHOl] which removes the needless triangles near the 

undersampled regions that produce holes and other artifacts. Before the peeling process, 

there is a marking step to identify the poor tetrahedra to be peeled. 

5.2 Clustering Based Local Triangulation 

Our meshing step can also be performed based on the clustering result to connect site 

points for triangulation. Similar to [OBS05b], we first reconstruct an initial surface 

which contains non-manifold parts due to the local triangulation approach. A cleaning 

process is then performed to clean out those redundant triangles as well as filling the 

holes generated. 

5.2.1 Init ial Surface R e c o n s t r u c t i o n 

Every site point Si forms triangular faces with its neighboring site points s G Nbhd{si). 

To obtain the connectivity information of site points S = {si\i = 1, ...Nc], we first, build 

a neighboring cluster table which stores all neighboring cluster information. Again, the 

first element in each row is used to store the number of neighboring cluster. The 

Cluster ID of each point is compared with its neighboring points to see if they belong 

to different clusters. If so, their clusters are adjacent. For instance, if the Cluster ID of 

Si + ClusterlD of Sj but Si and Sj are neighbors, then Cj G Nhhd{Ci). This further 

implies that Sj G Nbhd{si) and hence should be connected. As only the boundary 

points are involved in the comparisons, the computational cost is very low. 

Similar to [BBA08], the neighboring site points are then projected onto the tangent 

plane of s and sorted radially according to the angles to reference vector Denote Sj 

to be the j - th neighboring site point of s and Sj = Sj - s be the vector pointing to 

Sj, then the projected vector f j is computed by 

f — Sj - {sj . ns)ns 

“ ii^-i^.n-Kir 网 

Taking ô as the reference vector iv, the angle between tj and v*r is 

f &TCCOs{fj . Vr) if {Vr X 7¾) • ^ > 0 
Oj = < — ^ (o.zj 

I 271" — arccos(ij • v^) if (v^ x r^) • tj < 0 
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S i < S j < S , \ 

Figure 5.1: An example showing that duplicate triangles are avoided during local 
triangulation. Triangle is created (left) as the index of Si is the smallest. In contrast, 
triangles are discarded (right) for Sj and Sk. 

Note tliat it is unnecessary to compute the actual value of angles for sorting. We can 

simply multiply the dot values by - 1 which gives the same order as tha t resulted using 

actual angles, so the computations of arccos are eliminated. 

A l g o r i t h m 4: Local Triangulation 
1: for each site point s,： in parallel do 
2： for each neighboring site point sj do 
3： Project points to tangent plane forming tj by Eq.(5.1); 
4: end for —# 
5: iTr <— to; 
6: 00 <——1； 

7： for j = 1 to {neighNum-1) do 
8： Compute Oj by Eq.(5.2); 
9： e n d for 

10： Sort Sj according to 9j； 

11： for each pair of consecutive neighboring points sj, sk do 
12： if index of s,； is the smallest t h e n 
13： Create triangle AsjSjSk] 
14： end if 
15： e n d for 
16： end for 

Triangulation is performed locally for each site point by connecting itself with its neigh-

boring site points as described in Algorithm 4. As the construction of triangles is im-

plemented on GPU in the single-iiistriictioii-imiltiple-datai (SIMD) manner, duplicate 

triangles are likely to be created. For example, if Si, s j and s^ are neigliboring to each 

otliCL, AsjSjSfc might be constructed three times by the threads running on Si, s j and 

Sfc respectively. Therefore, to avoid this kind of redundant triangles, we only connect 
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the points to form one triangle in the thread of Si if the index of Si is the smallest 

among the three. Figure 5.1 gives an illustration. 

5.2 .2 Cleaning P r o c e s s 

Similar to all other local triangulation based surface reconstruction approaches, the 

triangulation itself cannot guarantee to generate closed mesh surfaces with two-manifold 

topology. To correct the non-manifold conductivities and fill the holes, we use the 

cleaning procedure as stated in [OBS05b]. 

Given a mesh vertex v, the curvature of its 1-ring neighborhood D is defined as 

k{D) = max � ( 5 . 3 ) 

where Ojj+i is the dihedral angle between Tj and Tj+i which are the triangles of D 

sorted clockwise or counter-clockwise. Then the curvature measure of v is 

k{v) = min k{Di) (5.4) 
i 

where Di is all the disk-shaped 1-ring neighborhood of v. The detailed algorithm of 

cleaning process is given in Algorithm 5. Holes are filled by Liepa's method [Lie03]. 

Figure 5.2 shows an example after performing the cleaning process. 

Algorithm 5: Cleaning 
1： Sort all V according to k{v); 
2: VQ <— mint*; 
3： Mark VQ as visited; 
4： Q push{vo)] 
5： while ！isEmpty(Q) do 
6： V ̂  'po'p{Q)-, 
7： Find D{v), the minimal curvature disk-shaped 1-ring neighborhood of V] 
8： if D{v) exists then 
9： Remove all the triangles around v and 该 D{v)-, 

10： for all boundary vertices Vj of D{v) do 
11： if Vj is not visited then 
12: Q <— push{vj)\ 
13： Mark vj as visited; 
14： e n d if 
15： e n d for 
16： e n d if 
17： e n d whi l e 
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im 
Figure 5.2: An example showing that the non-inanifold parts are cleaned and the 
holes are filled. 

i p ^ ^ E mmm^m 

_ _ 

Figure 5.3: Close view of reconstructed surfaces in region of close structures: (left) 
Tight Cocoiie algorithm, (middle) Ohtake's method and (right) our clustering based 
approach. 

5.2 .3 C o m p a r i s o n s 

In our case, we reconstruct the surface from the simplified point cloud which is much 

sparser than the raw input data. This causes the Tight Cocone algoritliiii to fail in 

regions of thin and close structures as demonstrated in Fig. 5.3 (left). Our triaiigulation 

method however can handle such cases because it is performed based on the clustering 

result. Neighborhood information of clusters can be obtained accurately from the data 

points as they remain dense after projection. This ensures that the triangles will not 

be created across distinct surfaces in thin and close regions. 
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Figure 5.4: Dual graph computation: original chamfered mesh (left) can be sharp-
enecl by minimizing the distance to all the tangent planes (middle). Note that there 
are two parallel normals, which shows that using SVD can handle such cases with 
sharp features reconstructed (right). 

Comparing our meshing algorithm with Olitake's, the main difference is in the stage 

of reconstructing the initial mesh. They create triangles by generating spheres and 

inspecting the intersections between the spheres. Wrong connections are likely to hap-

pen near the thin structures as there are intersections between the spheres formed in 

separate surfaces as shown in Fig. 5.3 (middle). In contrast, we create triangles by 

examining the neighborhood information of clusters, which leads to a much better ap-

proximation of the surfaces. Figure 5.3 (right) shows an example of triangiilatioii result 

using our clustering based approach. More detailed results are discussed in the next 

chapter. 

5.3 Computing Dual Graph 

Locating vertex G M actually is a task to find the optimal position in collapsing 

the edges e,； G T?: where Tj, G M. The ideal vertex position should minimize the 

deviation from all the tangent planes corresponding to each Vi G Tj,. In other words, 

such position should have a minimum distance to the tangent planes (see figure 5.4). It 

is more practical to compute the solution in a least squares sense as the tangent planes 

approximated may not intersect each other at certain single point. 

Consider one vertex u-,, G T,:，the quadratic distance of an arbitrary point x from the 

supporting plane of that vertex is defined as 

{n[x 一 dif (5.5) 

where rii is the normal vector of Vi and 

di = {vi - v) • Hi (5.6) 
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where v is the average of Vi e Ti. Thus, the objective function for minimization is given 

by 
E{x) = [ ( n f x - dif (5.7) 

i 

The iso-contours of this error function are ellipsoids and hence this function is called 
QEF. The minimized position is given by the solution of 

n inf )x = mdi) (5.8) 
i i 

The above system of equations can be solved directly if the matrix has full rank, i.e. 

the normal vectors n,： are not parallel. In order to make the solution robust and avoid 

handling of special cases, a Singular Value Decomposition (SVD) should be used here 

as illustrated in Figure 5.4 (middle). 
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Chapter 6 

Results and Discussion 

6.1 Results of Mesh Reconstruction form Noisy Point Cloud 

We have implemented the pipeline of mesh reconstruction from unoriented noisy points 

into a prototype system by C++. NVIDIA's CUDA library is utilized to implement 

the parallel algorithms on GPU. Our test platform is a PC with two Intel Xeon 2.8GHz 

quad-core CPU and 4GB main memory. The PC also has a graphics card with NVIDIA 

GeForce 9800 GTX GPU and 512MB memory, and runs Windows Vista operating 

system. 

To test the robustness of our approach in handling the noises and sharp features, we 

applied Gaussian noise to the original point cloud by shifting the points in a range 

of 0.5% of the bounding box's diagonal. The Gaussian noise is randomly distributed 

with the specified percentage of amount. In addition, we compare our results with 

RMLS [FCOS05] by embedding RMLS into our mesh reconstruction pipeline for the 

estimation of normals and projection of points. The first example we tested is the 

Octa-flower with 18% of noises as shown in Fig.6.1. The thin and sharp features have 

been successfully reconstructed by our approach but damaged by RMLS. A mechanical 

model Gear which contains a huge number of points is distorted with 11% of noises and 

the reconstructed surfaces using RMLS and our approach are given in Fig.6.3. A much 

more complicated mechanical model Hub is distorted with a large number of noises and 

the results are demonstrated in Fig.6.5. In order to test the performance of our method 

on sculpture objects, we choose the Dragon model in Fig.6.7 with 18% of noises. The 

computational statistics of all these examples are listed in Table 6.1. Benefited from the 

parallelization of our algorithms, the speed of our surface reconstruction outperforms 

other methods using robust estimators. Model of half a million points only needs about 

five minutes to process. Another interesting study is to measure the shape error of 
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reconstructed models to original models. We adopt the publicly available Metro tool 

[CRS98] to measure the Hausdorff distances between the reconstructed meshes and the 

original meshes. The distance errors Emean and Emax are given with respect to the 

diagonal lengths of bounding boxes. To visualize these errors, we use another mesh 

comparison tool, PolyMeCo [SMS05], to illustrate the geometric differences between 

the reconstructed meshes and the original ones. Figures 6.2，6.3 and 6.5 show the 

comparison results of the corresponding models using a common color scale. It can 

be concluded from the statistics in Table 6.1 and the visualizations that our method 

generates very small errors on reconstructed models. 

In Fig.6.8，we further compare the performance of normal estimation and point pro-

jection between our approach and RMLS on an example of edge. When the noise level 

increases, our approach can still project the points onto the surface and estimate the 

normals correctly. On the contrary, RMLS starts to produce errors at 10% noise and to-

tally fails at 60% noise as demonstrated by the points that are color-coded with normals 

in Fig.6.8(b). In short, our approach is much more robust with the use of MDPE. 

For real raw data, noises usually are not present everywhere. It is therefore impractical 

to perform the robust estimation for all points. It would waste a lot of time as the 

results of our projection and conventional Levin's projection [Lev03] are nearly the 

same for inliers. Hence, we can first check the region around the point as described 

in [FCOS05]. If it is identified as .smooth, we simply project the point by Levin's 

projection. Otherwise, the point is projected using our proposed approach. 

One of the difficulties in dealing with the real scanned data is the presence of struc-

tural noises which exist in a larger number and are distributed uniformly as shown in 

Fig.6.9(a). To deal with this, we increase the neighborhood size and process iteratively 

so that the sigiial-to-iioise ratio is large enough for our robust estimation. Figure 6.9(c) 

shows the process dealing with structural noise in three iterations. 

Lastly, to check whether the clustering based subsampling algorithm converges, we 

draw the bar chart of shape approximation error energy, Eglobal, and study its variation 

during the optimization. From Fig.6.10, we can easily observe that the energy, Eglobal, 

drops very fast using our local update based clustering algorithm. Usually, the iteration 

stops within ten steps. 
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Figure 6.1: Reconstruction of the Octa-Howcr model: (top) input points with 18% of 
noises, (middle) reconstruction using RMLS for normal estimation and point projec-
tion, and (bottom) our approach can successfully reconstruct the sharp features that 

are damaged when using RMLS to estimate normals and project points. 

• • 

Figure 6.2: Geometric deviation of Octa-flower: (left) RMLS, and (right) our ap-
proach. 
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攀面 

Figure 6.3: Reconstruction of the Gear model: (top) input points with 11% of noises, 
(middle) reconstruction using RMLS for normal estimation and point projection, and 
(bottom) our approach can successfully reconstruct the surface with sharp features 
from large amount of points. 

mm 
Figure 6.4: Geometric deviation of Gear: (left) RMLS, and (right) our approach. 
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^aJBF 
^SfHB 

Figure 6.5: Reconstruction of the Hub model: (top) input points with 21% of noises, 
(middle) reconstruction using RMLS for normal estimation and point projection, and 
(bottom) our approach can reconstruct the mesh surface from the input with high 
amount of noises. 

Figure 6.6: Geometric deviation of Hub: (left) RMLS, and (right) our approach. 
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j p ^ 靜 

0m 
Figure 6.7: Reconstruction of the Dragon model: (top) input points with 18% of 
noises, (middle) reconstruction using RMLS for normal estimation and point projec-
tion, and (bottom) our approach can successfully reconstruct the sculpture model. 
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(a) 

(b) 

(c) 

Figure 6.8: Projection test of RMLS versus our approach on an edge: (left column) 
original points, (middle column) RMLS result and (right column) our approach by 
MDPE. (a) Clean data, (b) Distorted with 10% Gaussian noises in range of 1% of 
diagonal, (c) Distorted with 60% Gaussian noises in range of 1% of diagonal. 
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• t 
(a) (b) 

(c) 

Figure 6.9: The mesh reconstruction of real scanned data Carter: (a) raw input with 
546K points, (b) resultant mesh generated from lOK down-sampled points, and (c) the 
robust estimation step is performed three times in order to project the structural noise. 
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6.2 Results of Clustering Based Local Triangulation 

Besides, the proposed algorithm of clustering based local triangulation is implemented 
and tested on a PC with Intel Core2 Quad 2.4GHz CPU and a NVIDIA GeForce GTX 
295 1792MB graphic card. We used NVIDIA CUDA to implement the algorithms on 
GPU which is a highly parallel processing unit that can do works simultaneously in 
many threads. The number of thread blocks and threads per block are needed to be 
specified for device functions. We use 192 threads per block as suggested in [NVI08] 
which also balances the speed and device memory usage. The number of thread blocks 
is then computed by dividing the number of single-instruction by the thread number 
per block (e.g. N�/观 for the clustering algorithm). Note that if it cannot be fully 
divided, the number of thread blocks should be added by one. Furthermore, we set 
jfe = 8 for the fcNN which is sufficient for the whole processes. 

We performed tests on various types of massive point data. Figure 6.11 shows the 

meshing of a dragon consisting of 549K points with different user input Nc which is 

the only parameter required to be specified. The example given in Fig.6.12 is used 

to demonstrate that our approach can deal with thin and close structures very well. 

Figure 6.13 demonstrates two more examples of surface reconstruction. 

Table 6.2 lists the computational time for all the data sets tested. Note that only 

the building of Cellbuffer is performed on CPU and all the other steps are processed 

on GPU in parallel. Hence, the speed of our method outperforms some conventional 

methods. We compared the computational time of our approach with Ohtake's ap-

proach [OBS05b], which claimed to be faster than the MPU method [OBA*03], the 

RBF-based approach of [CBC*01] and the greedy Delaunay-based surface approach of 

[CSF02]. The comparison of time results on various models shown in Fig.6.14 indicates 

that our approach is around 3-4 times faster. As Ohtake's method cannot precisely 

control the vertex number of the output mesh, we adjusted its parameter Terr to give a 

close quality of output for correct comparison 一 Table 6.3 lists details of the parameters 

used in the comparison. The last column of Table 6.2 is the geometry approximation 

errors Emean measured by the publicly available Metro tool [CRS98]. Emean gives the 

mean distance with reference to the bounding box diagonal between the original meshes 

and the reconstructed meshes, which concludes that our approach generates very small 

errors on the reconstructed meshes. 

In order to check whether the clustering algorithm converges, we draw the curve of 

the shape approximation energy Eglobal and study its variation during the optimization 

in Fig.6.15. Prom it, we ca,n easily observe that Eglobal drops rapidly in the first few 
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iterations and then remains nearly unchanged. The iteration of our local update based 

clustering algorithm usually stops within ten steps. 
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mm 
Figure 6.11: Users can directly control the desired number of vertex in resultant mesh 
by specifying parameter Nc (from top to bottom: lOK, 20K, 40K, 80K respectively). 
Desirous level of details can be obtained easily and intuitively. 
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_ 

H 
Figure 6.12: Successful reconstruction of Filigree and a mechanical model Engine 
which contain many thin and close structures. 
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麗 
Figure 6.13: Two more examples reconstructed from scattered point data: (left) Armalido and (right) Statue. 
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Scattered Data Output Vertex # Ter^ Total Time 
A r m a l i d o ° 59276 1.5 x 10"^ 1 0 . 6 8 3 s ^ 

Statue 69435 7.5 x 10"^ 14.287s 
~ ~ Filigree 47693 1.4 x 10—^ 13.735s 

Buddha 82335 1.0 x 10"^ 18.469s 
— E n g i n e — 92320 4.3 x 10"^ 30.171s 
— D r a g o n — 79025 7.5 x 10"^ 18.599s 
— — L i o n 47654 2.0 x 10—6 17.876s 

Table 6.3: Details of testing Ohtake's program in [OBS05b]. 

35 — 

• Our Approach 
30 .—— • 

• Ohtake's Approach 

Armalido Tslnghua Filigree Buddha Engine Dragon Lion 
Statue 

Scattcrtd Data 

Figure 6.14: Comparison of processing time of our approach with Ohtake's [OBSOSb], 
Note that the processing time of our approach mainly depends on the number of input 
data points, while Ohtake's approach depends on the vertex number of output inesli. 
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Figure 6.15: The energy graph of clustering. Energy drops very fast in the first few 
iterations and converges within ten steps. 



Chapter 7 

Conclusions 

This chapter summarizes the key contributions and the limitations of the current im-

plementation. The possible future research directions are pointed out at the end. 

7.1 Key Contributions 

In this work, we have developed a robust and parallel mesh surface reconstruction 

technique that reconstructs mesh surfaces from imoriented noisy points. To solve the 

most difficult problem in surface reconstruction, preserving sharp features, we adopt a 

highly robust estimator which is able to fit surface corresponding to less than 50% of 

the data points. Therefore, the sharp features, which are in the form of data with multi-

structures, can be reconstructed. After removing outliers and equipping the inliers with 

normals, an error-controlled subsampling is applied to result in a well-sampled point 

cloud. Lastly, a combinatorial approach is employed to reconstruct a triangular rnesh 

connecting the down-sampled points and its dual-graph polygonal mesh is computed 

to recover sharp features. Parallelization method of our algorithm has also been given. 

The approach has been applied to reconstruct several piecewise-smooth surfaces from 

noisy point clouds with sharp features preserved. This demonstrates the functionality 

of our robust mesh reconstruction pipeline. 

7.2 Factors Affecting Our Algorithm 

The main factor affecting our algorithm is the point density. For example if the point 

density near the round edges is not high enough, in other words, if the point distances 

are larger than the radius of round edges, false sharp edges would be introduced. As 
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we recover the sharp features by locating optimized vertices of dual graph, which are 

estimated by minimizing QEF, such estimated vertices may not be actually located on 

the real surfaces. If the downsampling ratio is set too high in our second step, this 

kind of errors will be more obvious. For instance, as shown in Fig. dragon, sharp claws 

which are not present in the original model are generated under our approach. This 

shows that our method does not perform well in handling semi-sharp features namely 

radius fillets or smooth blonds botwoon neighboring surfaces, which appear particularly 

in the free-form objects that contain many round features. However, dealing with the 

free-form objects which are smooth everywhere is a much simpler problem as many 

works have been proposed in literature that performed well. In our approach, we 

can actually skip the dual graph generation step to give a smooth result, but our 

goal is to reconstruct the surface with sharp features preserved, which indeed is much 

more difficult especially with the presence of noise. Our approach can be extended to 

overcome this situation by performing adaptive clustering in the downsampling step. 

Smaller clusters are formed near the edges or corners while larger clusters are formed 

in region with small curvature. This can increase the point density near the sharp 

features so that the error of the optimized vertices of dual graph is minimized. Hence, 

our approach can be worked in any kinds of models, even the one contains both sharp 

features and round features. 

Aiiotluir factor iiifiuriidiig our algoritliiii is tlu) syst(�iii parani(it(u-s. Th(，i.() aiv, two 

major parameters to be set in our method. The first one is the repetition count m for 

the robust estimation. The larger the number of iterations is, the better the estimation 

result will be. However, the computational time will be increased as well. The second 

one is the number of clusters in the downsampling step. It directly controls the number 

of points ill the downsampled point cloud. More detailed features can be reconstructed 

if larger number of clusters is set. Similarly, longer time is required for the whole process 

to be performed. 

7.3 Future Work 

As discussed in the previous chapter, the major limitation of our approach is our inabil-

ity to deal with structural noises well. As our approach is performed in a local manner, 

it is hard to distinguish such kind of noise from the real surface. [SYSC08] introduced 

a new approach to remove non-isolated surface outlier clusters. In our future work, we 

will consider this as a preprocessing step followed by the method proposed in this thesis 

so that it is capable of dealing with the measurement errors generated from scanning 

devices. A desirous result can then be achieved. 
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And currently, the cleaning procedure is carried out sequentially on CPU, which is 

inefficient and slows down the whole process. Redesigning the cleaning algorithm with 

divide-and-conquer scheme is a way to utilize the parallel computing power of multi-

core CPU or many-core GPU. In addition, processing extremely massive point sets 

requires a large amount of memory. To overcome the memory limitation problem, the 

whole process can be performed using out-of-core techniques like [WKOSj. Other im-

provements in the quality of the reconstructed meshes are also considered as our future 

work. For instance, to generate anisotropic meshes, we can include a density mapping 

according to the local curvatures [VCP08] in the energy function for clustering. 
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Appendix A 

Building Neighborhood Table 

This chapter describes how to build the neighborhood table with fc-nearest neighbors 

to each point. We first explain the region subdivision based method for parallel and 

streaming computation of /cNN. Then, a novel approach is introduced which effectively 

and efficiently constructs the neighborhood tabic in parallel through a buffer. 

A. l Building Neighborhood Table in Streaming 

The neighborhood information is vital in local operations as only some of the neighbor-

hoods are contributed to the computations. We first find out the fcNN for each point 

and store their indices in a table (so-called neighborhood table) which is therefore kxN 

(where N is the total number of points) in size and is stored in the global memory of 

graphics hardware. 

The simplest way to find /cNN is computing the Euclidean distances between all the data 

points and the query point first. Then sort the distances in ascending order and the first 

k points with respect to the distances are the result. It is however very computationally 

expensive. The authors of [GDBOSj implemented this approach on GPU which resulted 

in a faster computing compared with other traditional kNN algorithms on CPU[MA06]. 

Nevertheless, the enhancement is only conspicuous when the dimension of data is high. 

Besides, the size of data set is also limited due to the restriction of GPU. In comparison, 

our algorithm for finding /cNN is based on partition of the region of space that is 

occupied by the input data so that only a small portion of data is involved in calculation 

at each time. This enables our algorithm to perform in a streaming manner, thus our 

approach does not restrict to massive points. Currently, uniform partition is adapted 

to divide the data into cells of dimension d^ which is varied according to the number 

of points. 
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yA / ] 业 X l X l / Z..7 VI 
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Figure A. l : Uniform partitioning of the point data (left) and streaming to process 
one layer of cells (red in right) with neighboring two layers. 
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Figure A.2: Data structure of CellBuffer. 

Given a scattered point data, set P = {'pi\i 二 1, ...N}, the actual cell size Csize is 

determined as the greatest margin to dimension ratio l/d of the bounding box. Then 

each point pi is assigned to its corresponding cell with a CelllD in parallel and it is 

given by 

CellID{x) = ( x - Xrnin}/Csizc- (A.l) 

After that, a coordinate work is conducted on CPU to form a set of cells C : {ci\i 二 

1, ...cfi} to build the neighborhood table cell by cell (see the illustration in Fig.A.l). As 

for each point p 6 c-,：, only the points in Nbhd{ci) are involved in computation. Hence, 

at each stream, we process one layer of cells in parallel while passing three layers of cell 

information as illustrated in Fig. A.l. 

Such approach however is not very efficient as there can be a relatively high number 

of empty cells at each stream, which then idle many of the threads. To overcome this 

problem, we selectively pass the required cells through the CellBuffer to GPU. The 

CellBuffer consists of two parts: 1) self cell point indices; 2) neighbor cell point indices 

(see Fig. A.2). Note that the size of each block Block size mnst bo fixed in order to fetch 

the correct portion of memory in each thread. We simply set it as the maximimi number 

of points in the 3x3x3 cells (i.e., Block size 二 27 x Cell size)- Due to the fixed size of 

blocks, the first olcnicnt of each part is used to store the nimibor of points contained in 

the corresponding part, as for valid visit across the points. Currently, the construction 



Appendix A. Building Neighborhood Table 61 

Algorithm 6: Building Neighborhood Table 
1： for each point pi in parallel do 
2: Compute the CelllD by Eq.(A.l); 
3： e n d for 
4: Build the CellBuffev, 
5： for each BufferBlock Bi in parallel do 
6： selfCellPtNum — Bi[0]; 
7： neighborCellsPtNum. Bi[i * Bgize + Cgize]； 

8： temp Array 卜 new array; 
9： for i = 0 to selfCellPtNum do 

10： for j = 0 to selfCellPtNum + neighCellsPtNum do 
11： Compute the square distance d between pi and 
12： if d > 0 and d < radius then 
13： Store pj to temp Array, 
14： e n d if 
15： e n d for “ 
16： Sort tem/pArray by insertion sort k times; 
17： Store the result as the first k elements in temp Array., 
18： e n d for 
19： e n d for 

of the CellBuffer is carried out on the CPU. To further speed up, we ignore the points 

outside the sphere centered at p with radius = 0.01% of the diagonal of bounding box 

during sorting. Detail pseudo-code is given in Algorithm 6. 
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• Hoi Sheung and Charlie C. L. Wang, "Robust mesh reconstruction from unori-

ented noisy points", SIAM/ACM Joint Conference on Geometric and Physical 

Modeling, October 5-8, 2009, San Francisco, California. 

• Hoi Sheung, Siu Ping Mok and Charlie C. L. Wang, "A highly parallel approach 

to meshing scattered point data", ASME 2009 International Design Engineering 

Technical Conferences (IDETC) k Computers and Information in Engineering 

Conference (CIE), August 30-September 2，2009，San Diego, California. 
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