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Abstract of thesis entitled: 
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at The Chinese University of Hong Kong in September 2009 

This research work describes a production planning problem that determines the 

production timings and quantities for multiple products over a finite number of time 

periods without violating capacity constraints. We consider this problem, which is 

often referred to as the capacitated lot sizing (CLS) problem, in the case with the 

significance of setup times. An MIP model is developed for a case without 

backordering, incorporating setup times and allowing for different types of 

production capacities, such as regular time, overtime and subcontracting. The 

formulation of our model is a variation of the traditional fixed-charge transportation 

problem. We develop a heuristic approach based on Genetic Algorithm (GA) to 

solve this CLS problem. A variety of test problems is developed for the 3-product, 2-

capacity, 12-period-planning-horizon scenario. All test problems consider three 
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parameters: seasonality of demand, the tightness of capacity, and the setup cost and 

setup time level. The computational results show that our heuristic algorithm gives 

reliable results to large problems when comparing to lower bounds generated. This 

thesis concludes with an analysis of the limitations of our work and a discussion of 

further research directions. 
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摘要 

本文討論以有限的生産資源滿足在一定計劃期間内多種產品需求的生産計劃問 

題，旨在幫助決策者制定生産計劃，確定生産啓動時間以及生産批量。該問題 

通常被稱爲有限資源下的生産批量問題，而在本文中，我們着重于帶有啓動時 

間的資源限制型生産批量問題的探討。我們建立了一個混合整数規劃模型，該 

模型不允許延遲交貨，考慮了生産的啓動時間，並且包含多種生産資源與方 

式，例如正常生産時間，加班生産和外包。我們的模型是傳統的固定成本運輸 

問題模型的變異。本論文中提出了一個基於遺傳算法的啓發式算法用來解決之 

前所提到的問題。我們設計了一個包含三种產品、兩种生産資源、十二個生産 

時期的問題，並用大量的實驗加以驗證算法的有效性。所有的實驗都引用了三 

個參数，即產品需求的季節性、生産資源的稀缺程度，以及生産啓動成本與啓 

動時間的水平。實驗計算結果顯示，通過與生成的下限作比較，可知我們的啓 

發式算法能可靠地對於大規模問題提供優良的運算結果。在本文的結論中，我 

們分析了所建立的模型和算法的局限性與不足，並對今後進一步的研究方向以 

及對本文的拓展提出了一定的建議。 
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Chapter 1 Introduction 1 

Chapter 1 

Introduction 

This research focuses on a single-level capacitated lot-sizing problem with setup time 

consideration. The model is formulated as a variation of the fixed-charge 

transportation problem. This modeling approach was designed by Gilbert and Madan 

(1991) to deal with a case without setup time consideration. We extend their work to 

handle setup time situation. A genetic algorithm based heuristic is developed. 

Extensive computational tests are presented. 

1.1 Introduction to the Capacitated Lot Sizing (CLS) 

problem 

The Capacitated Lot Sizing (CLS) Problem is a production planning problem that 

determines the production timings and the quantities of multiple products to satisfy 
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demands over a finite number of periods without violating resource constraints. It 

aims to minimize the sum of production, setup and inventory costs. This problem is 

commonly encountered in repetitive manufacturing settings involving processes such 

as assembly and stamping. This multi-product CLS problem is shown to be NP-hard 

by Madan (1988). Most solution algorithms are heuristic based. In this work, we 

consider the CLS problem with the significance of setup times. 

The modeling approach we discuss here differs from the traditional formulation in 

the aspect that it considers multiple production resource capacities. Many traditional 

models only consider a single source of capacity, i.e., regular time. Therefore, some 

temporarily adjusting means, like overtime and subcontracting, could not be taken 

into consideration explicitly. Moreover, setup times, which cannot be neglected for 

some manufacturing situations, are taken into consideration in our model. Many 

research studies just assume that they are insignificant. 

1.2 Our contributions 

The original model developed by Gilbert and Madan (1991) for CLS problems 

assumed that setup times were insignificant. However, in some industries and 

manufacturing situations, setup times cannot be reduced to zero. Due to the 

significance of the setup time, the assumption of zero setup times is not reasonable. 

Therefore, models without setup time consideration may have their limitations when 

they are applied to industry. 
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From a theoretical perspective, the inclusion of setup times in CLS problems could 

not be simply regarded as an extension of the problems without setup times. This is 

true even for the original problems without setup time consideration that are not 

tightly constrained in capacity. This assertion was supported by Trigerio et al. (1989) 

using an illustrative example. In their example, they showed that a problem may be 

unsolvable when setup times were added to the constraints. The importance of setup 

times would be discussed more in detail in the next chapter. 

The application of the fixed-charge transportation problem to a case of CLS 

problems was given by Gilbert and Madan (1991). We follow their research direction 

and formulate the problem as a variation of the classical transportation problem, and 

extend their problem to consider setup times. The modeling structure they proposed 

has some advantages over the traditional models. For instance, CLS decision 

variables can be directly obtained from the model solutions, while many traditional 

models require further calculation to find the values of these variables. These 

advantages would be further discussed in Chapter 3. 

Our computational results show that our heuristic algorithm produces solutions 

that are within the percentage difference of 4.34% on average, when compared with 

the lower bounds. Moreover, the result of our heuristic algorithm also outperforms 

the one developed by So (1997) by 0.29% on average, when setup times are forced to 

zero. 
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1.3 Organization of the thesis 

This thesis comprises 6 chapters. This chapter is a brief introduction to our research 

topic. A literature review in the problem and its solution algorithms is addressed in 

Chapter 2. In Chapter 3, we propose our model, assumptions and notations. A 

comparison between our model and the traditional one is also provided. Chapter 4 

describes the whole heuristic algorithm procedures. The design of experimental tests 

and computational results are shown in Chapter 5. The conclusion is drawn in the last 

chapter. 
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Chapter 2 

Literature Review 

We mainly review the literature on Capacitated Lot Sizing (CLS) problems in this 

chapter. A brief summary of the development of Genetic Algorithm (GA) is also 

presented. 

2.1 Research in CLS problem 

Production planning is an activity that considers the allocation of available 

production resources to best satisfy the market demands and production requirements 

over a certain planning time horizon. It could be classified into three parts from the 

point of managerial decision making, long-term, medium-term and short-term 

planning. The Lot Sizing problem is a typical type of medium-term production 

planning problem, which considers setups between production lots. When setup 



Chapter 2 Literature Review 6 

times and/or costs are significant, this problem becomes interesting and encapsulates 

one of the key issues in production planning (Bahl et al., 1987). 

Bahl et al. (1987) classified lot-sizing problems into four categories, according to 

two particularly important environment characteristics: the type of demand and 

presence or absence of resource constraints. Figure 1 below shows the four 

categories: single-level lot sizing without resource constraints (SLUR), single-level 

lot sizing with resource constraints (SLCR), multi-level lot sizing without resource 

constraints (MLUR), multi-level lot sizing with resource constraints (MLCR). 

Production Planning Problem 

Single Level (Independent Demand) Multiple Level (Dependent Demand) 

Unconstrained Constrained Unconstrained Constrained 

Resources Resources Resources Resources 

(SLUR) (SLCR) (MLUR) (MLCR) 

Figure 1: A classification of production planning (Bahl et al., 1987) 



Chapter 2 Literature Review 19 

Karimi et al. (2003) addressed various characteristics that may affect the 

classification, modeling and complexity of lot-sizing problems. The planning horizon 

may be finite or infinite, which may be usually associated with a dynamic demand or 

a stationary demand, respectively. In addition, either dynamic or static demand could 

be classified into deterministic or probabilistic type, according to whether the value 

of demand is known in advance or not. If a production system deals with only simple 

final products or those materials without intermediate subassemblies, i.e., the 

demands of products are independent, we call it a single-level system. The multi-

level problems refer to those cases that a parent-component relationship among items 

demand exists. Whether the resource capacities are with restriction or not will 

directly affect problem complexity. 

Another important characteristic is setup structure. When it is independent of the 

sequence or previous periods, it is termed a simple structure. Otherwise it is called a 

complex one. Both structures may assume whether the setup cost and/or setup time 

are taken into consideration, and thus engendering different sub-problems. Inventory 

shortage is another significant factor, which may decide whether backordering is 

allowed or not. Also, the number of products and the features of products (i.e., 

perishable products) will affect the complexity of the whole problem as wel l 

Considering the scope of our research, the literature review in this section focuses 

on the SLCR problem with a finite-planning horizon and deterministic demand for 

multi-products. Literature on both cases with or without setup time, and both cases 

with or without backordering are also reviewed. 
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2.1.1 Reviews in CLS problems 

There are several extensive reviews of lot-sizing research. Bahl et al. (1987) 

classified production planning problems into four major categories, outlining the 

research issues and reviewing selected contributions in all four categories. Their 

review covered the work by both practitioners and researchers. They assessed the 

strengths and weaknesses of these contributions, and suggested promising research 

avenues. Further, they asserted that capacity limitations, as well as other realities of 

plant environments, such as scrap, demand uncertainties or inaccurate data, were the 

big challenges of lot-sizing research. 

Drexl and Kimms (1997) reviewed both the single-level and multi-level problems, 

focusing specifically on the dynamic lot-sizing problem and continuous time models. 

Mixed-integer programming models were given for both of them. They pointed out 

the importance of the consideration of positive setup times and backlogging cases in 

lot-sizing problems, and the linkage with other planning activities such as 

distribution planning and cutting and packing. 

Karimi et al. (2003) focused their attention on the single-level lot-sizing problem. 

They addressed various characteristics that may affect the classification, modeling 

and complexity of lot-sizing problems, and summarized different algorithms and 

mathematical-based heuristics for both capacitated and uncapacitated models. 

Brahimi et al. (2004) presented four different mathematical-programming 

formulations of the classical problems for both capacitated and uncapacitated 

versions. Some remarks about the CLS problem were worth mentioning according to 

their conclusion. For example, most of the extensions of the uncapacitated case, such 
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as backlogging, perishable inventory and time windows, had not been considered in 

the capacitated one. To follow up on their work, Brahimi et al. (2006) studied a new 

family of the CLS problems. 

Jans and Degraeve (2008) gave an overview of recent developments in modeling 

single-level dynamic lot-sizing problems. But no solution approaches were discussed 

in their review paper. The single-item uncapacitated lot-sizing problem and the 

capacitated multi-item lot-sizing problem were discussed as two basic lot-sizing 

problems. Research works were summarized in operational and tactical/strategic 

versions. Five aspects: set-ups, characteristics of the production process, inventory, 

demand, and rolling horizon, were discussed for CLS problems. In the real industrial 

environment, models more global in scope coordinated planning, or models with 

some degree of uncertainty such as stochastic inventory and demand, are of huge 

interest. 
� 

2.1.2 Approaches and methods to solve the traditional CLS 
problems 

Complexity theory as well as computational experiments indicates that most CLS 

problems are hard to solve. Because of the difficulties, various solution techniques 

have been proposed. Most researchers in the lot-sizing area use linear or non-linear 

mixed-integer programming based on dynamic-programming-based algorithms to 
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solve their formulated problems. Some reviews of these algorithms are presented 

here, and some representative studies on specific approaches are also outlined. 

Maes and Wassenhove (1988) analysed and compared different heuristic 

approaches to solve the multi-item single-level CLS problem in their review paper. 

Both special-purpose methods and mathematical-programming-based heuristics were 

discussed. They also presented an extensive computational review to find 

relationships between the performance of the heuristic and the computational burden 

involved in finding the solution. 

Staggemeier and Clark (2001) presented different CLS models covering several 

important aspects, such as capacity constraints, backlogs, setup costs and times, 

multiple machines and size of planning periods. They also listed major solution 

methods like mathematical programming, tabu search, simulated annealing and 

evolutionary algorithms. 

Karimi et al. (2003) reviewed different algorithms and mathematical-based 

heuristics for both capacitated and uncapacitated cases. They concluded with some 

suggestions for further research, and highlighted the lack of fast and efficient 

heuristics for NP-hard CLS problems such as those with backlogging or setup times 

and setup carry-over. Also, some relatively new solution approaches such as tabu 

search, simulated annealing, and other meta-heuristics were suggested to solve these 

complex CLS problems. 

Jans and Degraeve (2007) gave an overview on meta-heuristics for dynamic lot-

sizing problems, such as tabu search, genetic algorithms and simulated annealing. 

The key components of these approaches, such as representation, evaluation, 

neighborhood definition and genetic operators, were discussed. Other solution 
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algorithms, like dynamic programming, cutting planes, Dantzig-Wolfe 

decomposition, Lagrange relaxation and dedicated heuristics, were also looked into 

for comparison. They also discussed general guidelines for computational 

experiments. 

Quadt and Kuhn (2008) presented a literature review on problems that incorporate 

one of the following extensions to the CLS: backorders, setup carry-over, sequencing, 

and parallel machines. Formulations for each of the extensions were illustrated. The 

inclusion of setup times, multi-level product structures and overtime were also 

mentioned in this study. 

In what follows, we discuss some representative papers on the approaches mentioned 

above. Although the most general model formulations still defy optimization when 

applied to realistically sized problems, many recent contributions are both innovative 

and promising. 

Manne (1958) put forward an algorithm based on set partitioning. The formulation 

could be solved with linear programming by relaxing a 0-1 set partitioning problem 

to a linear programming problem and rounding off the resulting solutions. Dzielinski 

and Gomory (1965) used Dantzig-Wolfe (1961) decomposition principle to improve 

Marine's work. Dzielinski et al. (1963) also presented a simulation test for the lot-

sizing programming. Zangwill (1966) used the concave cost network approach to 

analyse such problems. Eisenhut (1975) used a dynamic algorithm to consider a CLS 

problem with setup cost and holding cost. Although their algorithm could not always 

guarantee a feasible solution, their contribution was still significant since uncertain 

and fluctuating demand was allowed in their model. Lambrecht and Vanderveken 
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(1979) followed up Eisenhut's work and improved the marginal cost determination 

and incorporate feasibility assurance procedure. Later, Dixon and Silver (1981) 

developed a "Greedy" algorithm to guarantee a feasible solution. 

Wagner and Whitin (1958) provided a dynamic programming algorithm to solve 

uncapacitated lot-sizing problems. Although Wagner-Whitin Algorithm provided 

optimal solutions, it required high computational resources. Silver and Meal (1969) 

developed faster heuristics to counter this problem, which was known as Silver-Meal 

Heuristic. They later (1973) used the heuristic to handle cases with deterministic 

time-varying demand rate and discrete opportunities for replenishment. Many 

(Ozdamar and Bozyel, 2000), carrying over of setups (Sox and Gao, 1999), multiple 

items (Eppen and Martin, 1987; Pfeiffer,1999; Sambasivan and Schmidt, 2002; and 

Wolsey, 2002), and supplier selection (C. Basnet and Janny M. Y. Leung, 2005). 

Algorithms based on cutting planes method were also used to solve CLS problems. 

Barany et al. (1984) and Eppen and Martin (1987) exploited concept of cutting 

planes and branch-and-bound. Pochet and Wolsey (1988) proposed a shortest-path 

reformulation which was similar to Eppen and Martin's work. Janny M. Y. Leung et 

al. (1989) studied the polyhedral structure of an integer programming formulation of 

a single-item capacitated version, and used the results to develop solution methods 

for multi-item applications. The set of valid inequalities introduced could be used to 

develop an efficient cutting plane/branch-and-bound procedure. Hindi (1995) 

presented a branch-and-bound algorithm to solve the CLS problem. 

Solving the CLS problem by Lagrangean relaxation and decomposition techniques 

is another research area in literature. Diaby et al. (1992) used this method to solve a 

very-large-scale CLS problem with setup times. Millar and Yang (1993) used 
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Lagrangean decomposition methodology to solve a CLS problem without production 

costs. They used a Lagrangean method heuristic to consider a CLS problem with 

backordering later in 1994. 

There are also some papers recognizing the importance of setup times in the 

traditional modeling structures of CLS problems. Trigerio et al. (1989) used a 

heuristic based on Lagrangean relaxation to solve the CLS problem with setup times. 

Some researchers understood that there was a trend toward reducing setup times and 

argued that the amount of setup times in many industries cannot be minimized to 

zero, such as Manne (1958), Dzielinski and Gomory (1965), Lasdon and Terjung 

(1971), Bahl (1983), Trigerio (1989)，Trigerio et al.(1989), Lozano et al. (1991), 

Pochet and Wolsey (1991), Diaby et al. (1991), Diaby et al. (1992), Salomon et al. 

(1997), Gopalakrishnan et al. (2001). Many researchers believed that the inclusion of 

setup times was simply an extension of the problem without setup times. Trigerio et 

al. (1989) rejected this assertion using an illustrative example, which would be 

discussed more in detail in next chapter. Therefore, the CLS problem with setup time 

consideration is still worthy of further investigation. 

2.1.3 Research on Fixed-Charge-Transportation-typed 
models for CLS problems 

The fixed-charge transportation problem requires each cell in the transportation 

tableau to have fixed cost and variable cost. Kennington (1976) did a computational 

study using a branch-and-bound code for the fixed-charge transportation problem. 



Chapter 2 Literature Review 4 

Kennington and linger (1976) proposed a new branch-and-bound algorithm for such 

a kind of problem. Hirsch and Dantzig (1968) concluded that an optimal solution 

could be found in an extreme point of the constraint set for any fixed charge problem. 

Balinski (1961) substituted an approximate linear objective function for the non-

linear one to solve the problem. Cooper and Drebes (1967) proposed an extreme 

point heuristic based algorithm. Steinberg (1970) developed an adjacent extreme 

point heuristic to improve the efficiency. Walker (1976) also considered adjacent 

extreme points to extend Denzler (1969)’s work to degeneracy cases. Diaby (1991) 

gave a successive linear approxiamation procedure for the generalized fixed-charge 

transportation problem. 

Gilbert and Madan (1991) proposed a model of CLS problem without 

backordering which was a variation of the fixed-charge transportation problem. The 

difference was that a fixed charge is shared by a group of cells in the transportation 

tableau, rather than a single cell, a single row, or a single column. Madan and Gilbert 

(1992) later presented an exact solution algorithm to the same problem without 

backordering. The solution procedure was based on the algorithm developed by 

Trotter and Shetty (1974) for general integer-programming problems. So (1997) 

improved Gilbert and Madan's (1991) algorithm and extended the model to a case 

with backordering consideration. Madan et al. (2001) improved their heuristic (1991) 

by using a better lower bounding procedure. And Cheng et al. (2001) extended their 

work to a backordering case. 

The model is formulated as a variation of the fixed-charge transportation problem, 

rather than a traditional MIP model for the CLS problem mentioned before. The 

advantages of this type of model will be discussed more in detail in next chapter. 
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However, for this kind of modeling structure for CLS problems, few papers 

discussed the case with setup times. Our work is mainly following the key principles 

of these papers and considering a CLS problem with setup times. 

2.2 Research in Genetic Algorithm (GA) 

The aim of creating artificial intelligence and artificial life can be tracked back to the 

earliest pioneers, like Alan Turing, John von Neumann, and Norbert Wiener 

(Melanie, 1998). They contributed to not only calculating missile trajectories and 

deciphering military codes, but also modeling the brain, mimicking human learning, 

and simulating biological evolution. These research interests later, in the 1980s, had 

grown into three fields: neural networks, machine learning and evolutionary 

computation. Among all, Genetic Algorithms may be one of the most interesting 

developments. 

The main idea in the evolutionary systems is to evolve a population of candidate 

solutions to a problem, using operations inspired by natural genetic variation and 

natural selection. Genetic Algorithms (GA) in particular became popular through the 

work of John Holland in the early 1970s, and particularly his book Adaptation in 

Natural and Artificial Systems (1975). GAs are implemented in a computer 

simulation in which a population of abstract representations (called chromosomes or 

the genotype of the genome) of candidate solutions (called individuals, creatures, or 

phenotypes) to an optimization problem evolves toward better solutions. Holland 
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(1975) presented the GA as an abstraction of biological evolution and gave a 

theoretical framework for adaptation under the GA in his book. He introduced a 

formalized framework for predicting the quality of the next generation, known as 

Holland's Schema Theorem. Research in GAs remained largely theoretical until the 

mid-1980s, when The First International Conference on Genetic Algorithms was held 

in Pittsburgh, Pennsylvania. 

Holland had two goals: to improve the understanding of natural adaptation process, 

and to design artificial systems having properties similar to natural systems 

(Goldberg, 1988). The basic idea is as follows: the genetic pool of a given population 

potentially contains the solution, or a better solution, to a given adaptive problem. 

This solution is not "active" because the genetic combination on which it relies is 

split between several subjects. Only the association of different genomes can lead to 

the solution. 

Holland method was especially effective because he not only considered the role 

of mutation (mutations improve very seldom the algorithms), but he also utilized 

genetic recombination, in other words, crossover (Emmeche, 1994). The crossover 

of partial solutions greatly improves the capability of the algorithm to approach, and 

eventually find, the optimum. 

Genetic algorithms find applications in bioinformatics, phylogenetics, 

computational science, engineering, economics, chemistry, manufacturing, 

mathematics, physics and other fields. We find that GA is a proper approach to solve 

our formulated model structure. We reviewed some general work on GA to better 

understand its main procedures. Grefenstette (1990) provided a general guide of the 

GENESIS system for function optimization based on genetic search techniques in 
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order to encourage the experimental use of genetic algorithms on realistic 

optimization problems. Khouja et al. (1998) investigated the use of GA for solving 

the Economic Lot Size Scheduling Problem (ELSP) which was formulated using the 

Basic Period (BP) approach with a formulation that was ideally suited for using GA. 

Hernandez and Suer (1999) proposed a GA approach for a single-item, and single-

level lot-sizing problem with an uncapacitated, no shortages allowed case. 

Staggemeier and Clark (2001) listed some papers on the application of GA to lot-

sizing problems, many of which were focusing on the production planning problem 

with a short-range decision-making dimension on sequencing and shop floor control, 

such as Potts and Wassenhove (1992)，Hyun and Kim (1998), and Sikora (1996), or 

on the multi-level problems, such as Kim & Kim (1996), Kimms (1999) and Ip et al. 

(2000). Few papers are on the application of GA on the medium-range dimension of 

CLS problems, which is beyond the scope for our work. 

2.3 Conclusion 

We reviewed the literature mainly on the single-level CLS problem. CLS problems 

with setup time consideration is an interesting area that is worth further study. We 

also reviewed some papers on GA studies. The application of GA method to some 

kinds of CLS problems may be promising. 
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Chapter 3 

Problem Description and Formulation 

The formulation of the problem will be presented in this chapter. A comparison 

between our formulation and a traditional one in the literature is also discussed. 

3.1 The formulation 

In this section, we present our formulation for the CLS problem with setup time 

consideration. This problem involves J products, K types of production capacities, 

and T time periods. We denote k as types of capacities, k=l，2,..., K. The cost of 

capacity k is . We also require the cost of capacity k always be less than that of 

capacity k+1 (i.e., P̂  < ，where k=l , 2,..., K), Each product needs a setup for a 

period in which it is produced. The cost of a setup for product j is S . . The downtime 

consumed by a setup operation is significant (i.e., the setup time t丨 for product j is 
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greater than zero). Each product may be produced using one type of capacity source 

or a combination of these sources, b. is an absorption rate in order to indicate the 

amount of capacity required to produce one unit of product j. Each product j has a 

holding cost of H . per unit per period. Backordering is not allowed. Further, we 

assume that there are no beginning inventories. If beginning inventories do exist, 

they can be used to satisfy the demands in the first period. This approach will ensure 

no beginning inventories and result in the reduced demands in the first period. 

To formulate the model, we define: .-

J Number of products 

K Number of types of production capacities available 

� 

T Number of time periods in the planning horizon 

Dj" Demand of product j in period n 

Units of capacity type k available in period m (capacity is measured in 

time units) 

S. Setup cost of product j 

t j Setup time of product j 
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H, Unit holding cost per period of product j 

Pk Capacity cost per unit of capacity type 

b丨 An absorption rate that indicates the amount of capacity required to 

produce a unit of product j 

A binary variable that indicates the presence or absence of a setup for 

product j in period m 

X — The quantity of product j produced using capacity source k in period 

m, used to meet the demand in period n 

The problem PI is formulated as follows: 

PI: Minimize 

J K T T J T J K T T (\ \ 

7=1 k = \ m=\ n-m j=\ m=l /=1 =̂1 m=l n=m 

Subject to 
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J K r J K m=l 2 T (2) 

弘 ” ’ ’ … ， ⑵ 

H X ji^m" : 
k=l m=l „ 1 <-) T 

n = 1 , 2 , . . 1 

K T j=l，2，...’J ( 4 ) 

1 i f E I X - � 0 
= 一 ’ m = l , 2 , . . . , T 

0 otherwise 

X j _ � 0 j = l’2，...’J (5) 

k = 1,2,, •. ,K 

m = 1’2’...’T 

n = 1’2，...’T 

The objective function (1) requires the minimization of the total cost, containing 

the sum of inventory holding costs, setup costs and capacity costs. Constraint (2) 

states that the capacity in each period cannot be exceeded. Notice that setup times are 

significant. The satisfaction of demand of each product in each period is ensured by 

the constraint (3). In constraint (4), a setup is required if production of product j takes 

place in period m. Constraint (5) ensures non-negativity of the quantity of products 

produced. 

PI is an interesting variation of the traditional fixed-charge transportation problem. 

It differs from most fixed-charge transportation problems in that each fixed charge is 
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associated with a group of cells, rather than a single cell, a single row, or a single 

column. 

Figure 1 is a tableau showing the transportation problem for PL The supplies in 

the transportation tableau are denoted by ，the quantity of source type k 

production capacity available in the period m. The demands are denoted by D丨",the 

quantity of product j demanded in period n. The rows are ordered as (I, J), •••， 

(K,l), (1,T), ..., (K,T). The columns are ordered as (J,l),…’ (JJ),…，(1 ’T)’ …’ 

(J,T). The cell in row (k,m), 1 众级’ l<m^and column (j’n)’ l<n^\ will be 

denoted by {(k’m)’(j’n)). The flow assigned to this cell corresponds to the variable 

，and the value of the setup variable Y.̂  is implicitly determined by constraint 

(4). As backordering is not allowed in our model, a tableau solution without flows in 

backorder cells is a feasible solution to PL 
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n=l n=2 ... n=T c^ 

j=l I j=2 ... I j=J j=l I j=2 ... |j=J j=l j=2 ... j=J 

m=l k=l 

k=K 

m=2 ZZTZZZZZZIZZZZZ 
k=K / 

m=T k=l 

二 -

k=K I “ 

Backorder cells 

Figure 2: An example of transportation tableau 
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3.2 Comparison with the traditional formulation 

Although our research follows Gilbert and Madan(1991) and Cheng et al. (2001), our 

formulation considers the significance of setup times. We recognize that there is a 

trend in reducing setup times in production. In many industries, however, the amount 

of setup times cannot be easily reduced to zero. Also, it could not be easily regarded 

as an extension of the problem without setup times (Trigerio et al., 1989). The CLS 

problem is much more difficult when setup times are taken into consideration. 

Trigerio et al. (1989) used an illustrative example to show the reason why setup 

time consideration is significant. The 2-item, 3-period, single-capacity problem is 

shown in Figure 3 below: 

Item Setup time Unit production time Demand by period 

"1 [ 2 [ 1 

1 H) i fo 0 n 
~2 4 i 0 6 0 

Lot-for-lot usage 10 

Capacity available 20 20 ~26 

Figure 3: An example of a CLS problem with setup times 
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It seems easy to obtain the feasible solution since there only exists 1 unit of 

overtime in period 3 which should be eliminated. To eliminate the overtime, it must 

shift some production quantities to previous periods. However, the first period cannot 

accept additional production, obviously. Period 2 cannot accept item 1 either, 

because the setup time required is too high. Hence, even if cumulative lot-for-lot 

capacity usage (including setup time) does not exceed cumulative capacity available, 

and the average utilization is only 85% (= 51/60), a feasible solution may not be 

found to this problem. 

Lack of an easy feasibility check presents a serious difficulty for an algorithm to 

such kind of problem. And since all problems of meaningful size are too large to 

solve optimally, no systematic investigation of the algorithm's ability to correctly 

solve these difficult problems can be undertaken (Trigerio et a l , 1989). Therefore, 

we realize that the CLS problem with setup time consideration is still an interesting 

research topic for further investigation. 

The formulations by Gilbert and Madan (1991) and Cheng et al. (2001) are 

different from the traditional formulations used in the CLS research. We adopt the 

Gilbert and Madan (1991)-like formulation in this research work, because their 

formulation provides additional benefits. In this section, we compare our formulation 

with a traditional one to show the advantages. 

A typical CLS formulation (Trigerio et al., 1989) is shown as follows: 



Chapter 3 Problem Description and Formulation 1_26 

Minimize: 

t I I i I i 

Subject to 

！u—i+Xr!丨丨二 d “ f o r a l l U (7 ) 

I M “ + Y M , S C A P , for a l l / (8) 
i i 

< 0 for all i, t (9) 

Ya = 0 or 1 for all i, t (10) 

Xi, and Ii, > 0 for all i, t (11) 

/,,o = 0 for al l / (12) 

Where 

Hi, is the unit holding cost of item i in period t 

Ii, is the end-of-period inventory of item i in period / 

Ci, is the unit production cost of item i in period t 

Xi, is the production quantity of item i in period t 

Sit is the setup cost of item i in period t 

Dit is the demand of item i in period t 

bi is the capacity consumption rate in producing an unit of item i 

Si is the setup time of item i 

CAP, is the quantity of capacity available in period t 

M is a very big number 
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Table 1 below summarizes the differences in the two formulations. In a 3-product, 

12-period and single-type-capacity problem, there are 61, 468 and 36 input variables, 

output variables and binary variables respectively in our problem formulation. While 

in the traditional problem formulation, there are 96, 108 and 36 input variables, 

output variables and binary variables, respectively. Note that in any equivalent 

formulation, we assume H .-H.^ and Sj = 5 f o r all t. 

Our problem formulation Traditional problem 

formulation 

Input variables H 丨 , 8 ” b ” P " C k … D � H 

Output variables X _ ， X , ’ K, ’ I丨丨 

Binary variables K., 

Total no. of constraints 4 6 

No. of constraints 

containing the binary 2 3 

variables 

No. of input variables""“4J + K + K^T + UTtTzFt 

No. of output variables + 

No. of binary variable J休T J^T 

where J, T and K represent the number of products, time periods and types of 

capacity available in the problem. 

Table 1: Comparison between our formulation and traditional formulation 
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In comparison, our problem formulation provides more output variables. For 

example, our formulation is able to show which period's demand will be satisfied by 

a production run. Although our formulation is structurally more complicated, it uses 

the same number of binary variables and makes use of many continuous variables. 

The structural complication should not significantly increase the computational effort. 

3.3 Conclusion 

In this chapter, we formulate the CLS problem with setup times without 

backordering consideration as a type of the fixed-charge transportation problem. A 

comparison of our formulation and the traditional one is also presented to address the 

advantages of our formulation. 
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Chapter 4 

Description of the Heuristic 

Our heuristic is based mainly on Genetic Algorithms (GA), which contains the 

following procedures: initialization, selection, crossover, mutation (if any), 

evaluation and termination. The setup time in the constraint (2) is represented by a 

setup string, and used to transform the original problem into a modified one that is 

similar to the traditional fixed-charge transportation problem, from which the 

production quantities could be determined. A consistency test is used to judge 

whether the solution generated by the two steps discussed above is feasible or not to 

the original problem. The feasible solutions according to different setup strings 

would be kept in the feasible solution pool, from which the population of candidate 

solutions for GA is formed. The algorithm is terminated when the pre-determined 

iteration limit is reached. 

The flow chart of the whole heuristic algorithm is shown in Figure 4，and the flow 

chart of the procedure to get the initial feasible solution pool is shown in Figure 5. 

Each step in the charts would be discussed in detail in this chapter. 
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InlMaMzfr th<» original feMlt)f« solution pool 

I J 
GcfĤratQ th« popijJal̂ on of tha KAti4p Ntrlng.ft ftnm fho poni accorriirvg ta .1 carta in detection alsjoftthm 

Sol up KtHngs cr0«i50wrr 
A作d mirlalion 

^ ‘ 
ChooffA ofw snhjp xlrfng ar̂d convert th« orlgfcnâ  problem Into a 4 — frap>ftp>arlalicKn proWom And xohreil 

^̂ ''"•'̂ ĉoitaUt«n( with 
cfkin qwnnlttv,,.̂ ^̂ ''̂  

No 

» Adfust the a o hi lion 

^ . ^̂  ‘ Ritcord a nflw incumbent 

No 

No J^Qh the*>nfrc� 

Mmlt for the ^ ^ 

Ye« 
, -…n 人 \ 
Discard tht. setup .Iring Y 扣 — — 位 丨 

Vest 
1 r 

Rnnk tlw now foasJfaMir 
, _ , .. No Ĵ rtfach the iterafem^ aoluUons tag«thw ŵth 

"erAtlon 4 tor lh« whole those 丨《 tZ 
� ftlQorllhm? solution pool and plcK iha 

•op to updalo Ihg pca\ 
YB« 

1J 
Sefftcr th© solution with tho lowest ob.ectlvci function value and stap th» .tl̂ orilhm 

Figure 4: A flow chart of the heuristic algorithm 
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p. Generate a »etiip string 

Convert the original problem into a tmnsportation probiom ai>d solve it 

�consistent with > • AdjuM the solution 4 ^ 
Vtî jdî on quanjuy' 

Yes 

Record a new incu,nben. Z \ ^ . c h 他 
solution in the feasible 4 cT̂  Consistent? N ^̂ ctermincd iteratioĥ  

soMion poo. 

Ym 

NO 二、\ 
Increment the Iteration ^ <̂ olormlnod ltorotion"X Discard this setup 

number ^ "mi" Y,„ 
� 

Yes 

,；, Yas No feasible solution to 
poo,細p丨—— 

\ \ algorithm 
\、丫7 I 

No 

Y拥 Regard thi» solution as 
/isthere onlv one\ ^ 们solution lo the 

algorithm 

No 

Go to the fioloction 
algonthm 

Figure 5: A flow chart of the procedure to generate the original feasible solution pool 
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4.1 Initialization 

As previously mentioned, GA mainly comprises six steps: initialization, selection, 

crossover, mutation (if any), evaluation and termination. 

This initialization procedure is to build up the initial feasible solution pool, from 

which the population of candidate solutions of GA is generated. It mainly contains 

three phases: setup string generation, the transportation problem, and the consistency 

test. Figure 5 above illustrated the main procedure. 

4.1.1 Setup string generation 

We use three main procedures to generate setup strings here: Wagner-Whitin 

Algorithm, a variation of Wagner-Whitin-Algorithm-generated solutions, and 

random generation of setup strings (i.e., Y.^). Half of the solutions in the initial 

feasible solution pool are with setup strings that are randomly generated. Another 

half are with those generated from the first two ways. 

Firstly we separate the original problem into J uncapacitated, single-item and 

independent problems, each with the setup cost, inventory holding cost and 

production cost consideration in a T-period planning horizon. To achieve this 

separation, we ignore the setup time and capacity restraints temporally. We use the 

well-known dynamic programming method, Wagner-Whitin Algorithm (Wagner and 
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Whitin 1958，and Sven Axsater, 2006), to solve these sub-problems of each product 

and obtain a setup string by simply integrated the three sub-strings. 

Three costs are considered in Wagner-Whitin Algorithm, which are holding cost, 

unit capacity cost and setup cost. In our problem, k types of capacity resources are 

considered, such as regular time, overtime, and subcontracting. When the original 

problem is decomposed into uncapacitated and single-item problems, only type 1 of 

the capacity is chosen for consideration for its lowest capacity cost. According to the 

assumption that we make the cost of capacity k always be less than that of capacity 

k+1 (i.e., Pk<Pk+i where k=l , 2，...’ K.), the cost of type 1 of capacity is the lowest. 

For each product j, we introduce the following notations: 

f minimum costs over periods 1,2,..., v, i.e., when we disregard periods v+1, 
J V 

1+2，...，T’ 
� 

y � minimum costs over periods 1，2 ’...’ v’ given that the last setup is in period t, 

(l<t<v). 

We can get that 

f v 二 Min�的 f��丨 ( 1 3 ) 

since the last setup must occur in some period in the optimal solution. 

Assume that the demands occur at the beginning of a period. It is obvious that: 
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/ o = 0 (14) 

./I 力’ 1 ^ ] I ] \ (15) 

Assume now that we know/t.i for some t>0. It is then easy to obtain/v,t for v>t as 

following form: 

4 + 巧 + 〜1 +".+仏)+付/ *[巧+1 (16) 

where S. , , H . and D", are the setup cost of product j, capacity cost per unit of 

capacity type 1，unit holding cost per period of product j, and demand of product j in 

period n, respectively, according to the notation shown in Chapter 3. 

After assigning the costs and demands for each product in each period, these 

independent uncapacitated and single-item problems can be solved by Wagner-

Whitin Algorithm. Therefore a set of or several sets of setup decisions is obtained. 

We put the independent setup strings for each product together to get a whole setup 

sting Yjm to the original problem PL The string would be regarded as an input to 

transform PI to a variation of a transportation problem. We can get the production 

quantities by solving the transportation problem, which would be discussed later in 

this chapter. Note that there is a possibility that this setup string coming from three 

feasible setup strings for each product respectively may not be feasible to the whole 

problem, or may not be consistent with the production quantities decided by solving 

the transportation problem, a consistency test would be introduced to check the 
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feasibility of the final solution of decision variables X _ and Y.^ to PI, which may 

be discussed in detail later. 

The second way to generate setup strings is to create minor changes to the strings 

generated by Wagner-Whitin Algorithm. We let some positions of the original string 

change from 0 to 1 or from 1 to 0. The number of positions that need to be changed, 

and the specific position to change are both decided stochastically. When one 

position of a setup string is chosen for variation, its value would be changed from its 

current value, 0, to 1，and vice versa. 

The third way is to generate the setup strings randomly. This will widen the search 

area covering a bigger solution space. In addition, it is also useful in avoiding the 

situation that the final solution may be trapped in a local optima. 

� 

4.1.2 Transportation problem 

Given the set of setup decisions generated in the first subsection, the original 

problem PI can be transformed into a transportation problem TP I (Thizy and Van 

Wassenhove, 1985) as shown below: 
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TPl\ Minimize 

J K T T ( 1 7 ) 

jkmn 
/=l 人'=1 m=l ；7=1 

Subject to 

' ' * k=l,2”..，K (18) 
ikmn — ^ km 

厂 — m = l , 2 , . . . T 

+ 今 * j = l,2,...,J (19) 
/ J / I jkmn jn 

n = l , z , . . 1 

M J = l’2, . . . , j (20) 

k = 1,2,...,K 

m = 1,2,...T 

n = 1,2，...,T 

where DjJ denotes the modified demand of product j in period n; denotes the 

modified amount of capacity of type k available in period m; is the production 

quantity of product j using capacity of type k in period m to meet the demand in 

period n; and P丨kmn is the cost assigned to the cell ((k,m), (j ,n)) in the transportation 

tableau. 

The objective function of TPl (17) is to minimize the sum of inventory holding 

cost, capacity cost and setup cost. The constraints (18)-(2()) require that all period 

demands are satisfied with capacity limitations, and the production quantities must 

be positive. 
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TPl can be represented by a transportation tableau shown in Figure 6, in which 

rows are denoted by the modified supplies of production capacities and columns are 

denoted by the modified demands. The rows are ordered as (1,1), (K,l), ...’ 

(1，T),…’（K’T). The columns are ordered as (1 ’ 1 )’...，（J, 1 )，...，（ 1 ,T), ...’（J’T). The 

cell in row (k,m), l<k<K, l<m<T and column (j，n)’ l<j<J, l<n<T, will be denoted 

by ((k,m),(j ,n)). The flow assigned to this cell is the decision variable X 卜 . 
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n=l n=2 ... n=T c. * 
^ km 

j=l j=2 ... j=J j=l j=2 ... j=J j=l j=2 ... j=J 

m= 1 k=l 

k=K 

m=2 k= 1 

二 J Z : : : : : : : 二二二 

k=K / 

m=T k=l 

-1 ‘ 

一 ： ― = = = : 2 

零圓mil 
Backorder cells 

Figure 6: A transportation tableau for the modified problem 
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The modified supplies C j " and modified demands DjJ are given by the 

following scheme: 

* ^ * for k=\ (21) 

7 = 1 

c * 二 c f0Yk=2,...,K (22) ^ km km 

p * = b丨 * Djn l,2,...,y and (23) 

n=\,2,...,T 

where 

Y* _ Denote the set of setup 

decisions obtained from 

the three procedures 

discussed in section 4.1.1 

Since capacity 1 (i.e., regular time production capacity) has the lowest setup cost, 

it will encourage all setup operations to be performed using capacity 1. Note that we 

assume the original capacity type 1 in each period is enough for a setup, otherwise it 

may be unreasonable in the real industry. Therefore, setup time is consumed by the 

setup operations in capacity type 1 and the capacities of other types remain 

unchanged. 

We apply the concept of fixed charges to estimate the nominal cost of the cells in 

the transportation tableau. A fixed charge is shared by a group of cells in the tableau, 

instead of a single cell, a single row or a single column. In the objective function of 
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TPl (17), the cost coefficient is denoted by / 3 • Different cells in the transportation 

tableau have different values of — , which are computed in the following costing 

scheme. To ensure that flows in backordering cells will not occur, a positive infinite 

value M is assigned to all backorder cells (i.e., m > n) in the transportation tableau. 

For non-backorder cells with setups planned, according to the setup-string generation 

K T 

procedures discussed in the last section (i.e., m <n and H X > 0), 

— 私 私 b ’ ] / b j (24) 

For non-backorder cells without setups planned, according to the setup-string 

K T 

generation procedures discussed in the last section (i.e, m <n and H X 丨^^丨丨川=0 )， 

k=l '1=1 

= [(" — m)*//, + / r b丨J/h. + Sj IQ (25) 

where rmin|m+M',ri K 1 (26) 

� t=m k-\ ^ 

w is the window size (w=0, l , . . . , r - l ) 

Dj* is the unmet demand of product j in period t 

is the unused capacity of type k in period m 

To calculate the portion of fixed charge shared by a group of cells, we introduce a 

window size concept where we consider production quantity enough to satisfy 

demand in current period, in next period, or in T-1 periods. The window size concept 
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provides a more accurate and better estimate of the nominal costs in the 

transportation tableau. The window size is denoted by the variable w, where w = 0, 

1,...,T-L Products produced in period m will be held for w period(s) to satisfy the 

demand from period m to m+w. So, there will be K*(w+I) cells sharing the same 

min I ( m + w ) , r I 

setup cost. Total demand associated with these cells will be equal to ^ D ; . 
f=m 

Hence, the flow assigned to the cell (i.e., Q) will be given by 

min(m+w'T) K 
(2 = min X D / , > 

� t=m 众 = 1 ^ 

The above costing scheme strongly discourages the existence of flow in backorder 

cells. For non-backorder cells, the costing scheme encourages production in the cells 

with setups planned according to the pre-determined setup string, by assigning lower 

costs to these cells. For non-backorder cells without setups planned, an additional 

component is added to the costs of these cells additionally. The term Sj / Q 

represents the fixed charge shared by the cell ((k,m), (j,n)) if an additional setup is 

required for production. With this addition, the costing scheme encourages 

production in the cells with setups which is pre-determined. 

A feasible tableau solution corresponds to a feasible solution to TPL The 

procedure of solving the transportation problem TP I involves two phases. 

Phase 1 is the generation of an initial feasible solution by applying a procedure 

similar to Vogel's approximation method (Reinfeld and Vogel, 1958). The difference 

is that the cost coefficients consider the fixed charge associated with each cell in the 

tableau, as mentioned in the above costing scheme. 
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Selection of cells for initial feasible solution in the Vogel's approximation method 

is based on the difference between the two lowest-cost cells leaving an origin or 

entering a destination. This difference is called the penalty that indicates the highest 

increase in cost by departure from the lowest cost allocations. The maximum 

possible value is assigned to the variable associated with the cell having the largest 

penalty. The cost coefficients of all cells in the tableau are "greedy" costs, and 

represent the average rate of increase in the objective function of TPl if the 

corresponding cells enter the basis. 

Instead of fixing the holding period window size to a specific value between 0 to 

T-1, procedure of Phase 1 is repeated by T times to obtain the best initial feasible 

tableau solution among all window sizes (w = 0,],...,T-I). Among all window sizes, 

the best initial solution that gives the smallest value of total cost is selected to enter 

phase 2. 

Phase 2 attempts to improve the solution obtained in phase 1 by replacing 

variables in the basis. It is similar to a primal network simplex algorithm, and the 

major difference is that it considers both fixed cost and variable cost in pricing the 

pivots. We call it the procedure of pivoting. At each iteration, the non-basic cell 

variable selected to enter the basis is the one that will result in a reduction of the total 

cost. Note that the non-basic cell selected must not be a backorder cell, since 

backordering is not allowed in our model. Given an initial feasible solution, the 

corresponding change in the objective function will be given by ATC = AS + AV, 

where AS and AV are the changes in setup cost and variable cost respectively if a new 

non-basic cell enters the basis. At the end of phase 2, a set of production quantities is 

generated and denoted by X一: = {X ] . 
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Note that for the transportation problem, usually the total demand is equal to the 

total supply. It is obvious that the problem is infeasible if the total demand exceeds 

the total supply. In addition, in cases without backordering, it implicitly tells us that 

the problem is infeasible if the total cumulative demand for a given period is greater 

than the total cumulative capacity available of the given period. In the cases that the 

total demand is less than the total supply, then an additional column (dummy demand 

column) is introduced, with the demand quantity equaling the excess supply. 

If the total demand for products over the planning periods is less than the total 

available capacity, we define Dj+i t+i as follows: 

D _ = t ± C � j : D j „ (27) 
k=l m=l 7=1 n=l 

where Dj+it+i is demand for the dummy column (J+1，T+1). We then add the 

following demand constraints for dummy demand. 

k = 、 m = l 

Constraint (18) will be changed to equality constraints as shown below. 

J r * 
X 2 X jkmn + ^J+\kmT+\ : ^km 

k=l，2’...，K (29) 

m = 1,2,...T 

Thus, a standard traditional transportation model is formulated. 
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The procedures of two phases mentioned before are shown as follows: 

Procedure of Phase 1 

Step 1: Initialize the window size to zero (i.e, w = 0). 

Step 2: Assign costs to all the cells in the tableau according to the costing scheme. 

Step 3: For each unmarked row, compute row penalty ， w h i c h is the difference 

between the lowest nominal cost and the second lowest nominal cost in the row (k,m). 

Step 4: For each unmarked column, compute column penalty G",，which is the 

difference between the lowest nominal cost and the second lowest nominal cost in 

the column (j,n). 

Step 5: Compute E人,,….=max{ | for all k = 1，2’…K and m = 1,2,...,T, where k' 

€ {1,2,...,K}\ m' € "’2’…’ T}. Gj.…=max{ G.^ } for all j = 1,2,..J and n = 1,27, 

where j' e (1,2,...,J}\ n' € (l,2,...,Tj. 

If > G,„.’set =min{ ] for a l l ; = 7,2,...7 and n = 1,2,...J. 

Else set > ^ 加 „ = min{ P丨、打’} for all k = 1,2,...K and m = 1,2,...,T. 

The cell ((k',m'), (j',n')) is the one selected to enter the basis. 
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Step 6: Let 

Xj'k'm'n' is the flow assigned to the cell ( (k ' ,m ' ) , (j'’n')). 

If Xj-k'm'n' = 0, mark the column (j',n') and return to step 3. 

Else continue to step 7. 

Step 7: Update the capacity in the row (k',m') and the demand in the column (j',n'). 

If cv:， 

set - D y J and D^, / = 0 , 

mark the column {j\n') to indicate that the corresponding 

demand is met. 
\ 

Else 

set D.J =DyJ - C , J and 

mark the row {k\m') to indicate the corresponding supply 

is used up. 

If any row or column is unmarked, return to step 3. 

Else, a feasible solution is formed and go to step 8. 

Step 8: For each feasible tableau solution using window size (w), compute 
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TT�=X X i i > - � *" / * X—+i y"” 

7=1 =̂1 m=l n=m / 二 丨 m=l 

7=1 k=\ m=\ n-m 

i f w < r - 7 , 

increment the value of window size (i.e, w = w + I), 

unmark all rows and columns in the tableau and return to 

step 2. 

Else 

Select the best feasible solution with the lowest cost TCmin 

=min{ TC(w) | for w = 0,1,...,T-]. 

Then, go to Phase 2. 

Procedure of Phase 2 

Step 1: Initialize the starting position at the cell ((I,1),(J,1)) in the tableau. 

Step 2: Find the next non-basic cell along the same row. 

Step 3: Compute So, Sj, Vo, Vj, 

where So is the fixed cost (i.e., setup cost) of the current tableau, 
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Vo is the variable cost (i.e., holding and capacity costs) of the current tableau, 

Si is the fixed cost if the non-basic cell found enters the basis, 

Vy is the variable cost if the non-basic cell found enters the basis, 

Compute ATC = AS + zlV, where AS = Si - So and AV = Vj - Vq 

If ATC < 0 (i.e., the objective function value will be reduced), update the tableau by 

entering the cell into the basis. Go to step 4. 

Else go to step 4. 

Step 4: If no non-basic cell in the whole tableau can reduce the objective function 

value (search the cells in the same row first, and then go to the next row), go to step 5. 

Else go back to step 2. 

Step 5: Compute the total cost of the new tableau solution 

TC =灶ih— * H, X + S , Yjm 

y=l m= l n=m j=\ /n=i 

7 = 1 众 = 1 m=\ n=m 

4.1.3 Consistency test 

The solution obtained from the transportation problem is already feasible to TPl, 

since it satisfies all period demands with capacity limitation and it involves no 
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backordering. Now we must check whether the solutions from the two steps 

discussed above are feasible to the original problem P I . 

We define: 

St = the set of cells with setup Y ; = 0 and production quantity X > 0 

S2 = the set of cells with setup Y ; = 1 and production quantity X = 0 

The following 2 cases are our concern: 

Case 1: The set Si is not null. 

Case 2: The set S2 is not null. 

When Si and S2 are null, a feasible solution is formed according to the consistency 

of pre-determined setup decisions and the resulted set of production quantities. So 

when a production takes place, a corresponding setup is assigned. Besides, there is 

no extra useless setup in the production plan. 

When either case 1 or case 2 prevails, it implies that the set of production 

quantities does not match with the pre-determined setup decisions. Therefore, we 

must give up the desirable solution of the production quantity from the transportation 

problem, and try to find another one which is consistent with the pre-determined 

setup string (i.e., Y.̂  ). Or we should generate a new setup string, to see whether a 

consistent solution could be found. A total of four integrated procedures are used to 

resolve the inconsistency of the cells where Si is not null (case 1) or S2 is not null 

(case 2). In case 1, forcing production out or forcing setup in will be applied 
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depending on which one can induce a lower total cost. In contrast, forcing production 

in or forcing setup out will be used in case 2 depending on which one can give a 

lower total cost. 

When we choose the strategy to change the setup string (i.e., Y)…)to eliminate the 

inconsistency, the setup string is changed. The transportation problem is solved again, 

according to a new modified from the new setup string. This process of 

resolving the transportation problem is repeated until a consistent solution results or 

a fixed iteration limit is reached. . 

When we choose the strategy to change the production quantities (i.e., X to 

eliminate the inconsistency, a procedure which is similar to the pivoting is run, to 

find whether some certain production quantities X could be forced to be 

consistent with the pre-determined setup string . If a feasible solution is found, 

update the original objective function value. Otherwise, we discard the inconsistent 

solution. 

For each case, we will try both these two strategies and put all the consistent 

solutions into the feasible solution pool, for the use of the selection procedure later. 

Meanwhile, we will select the setup string from the pool which is generated by 

Wigner-Whitin Algorithm with the lowest total cost, change it in different positions 

to generate other setup strings. 

We use this consistency test to filter the inconsistent decision variables A：如训 and 

Yjni，and regard the consistent pairs as the feasible solution to the original problem 

PL Then we rank the feasible solutions and pick the first n solutions to form an 

initial population pool with the size of n, for the selection procedure discussed later. 
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4.2 Selection 

Selection is the process of choosing structures for the next generation from the 

structures in the current generation. In our problem here, we aim to select the binary 

variable from the current feasible solution pool. 

While there are many different types of selection, we will cover the most common 

type here, the roulette wheel selection, also known as Fitness proportionate selection. 

In roulette wheel selection, individuals are given a probability of being selected that 

is directly proportionate to their fitness. Proper individuals are then chosen randomly 

based on these probabilities and produce offspring. The offspring will then bring new 

solutions to the whole problem, which we rank with the solutions in the current 

feasible solution pool, and update the pool to a new generation composed by those 

solutions with the top objective function values. 

4.3 Crossover 

After we have selected the individuals, we are supposed to somehow produce 

offsprings with them. The most common solution is something called crossover. If, 

after crossover, the offspring are different from the parents, then the offspring 

replace the parents, and are marked for evaluation. 
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Crossover exchanges alleles among adjacent pairs of the first structures in the new 

population. (Recall that the population is randomly shuffled in the selection 

procedure.) It can be implemented in a variety of ways, but there are theoretical 

advantages to treating the structures as rings, choosing two crossover points, and 

exchanging the sections between these points (Grefenstette, 1990). The segments 

between the crossover points are exchanged, provided that the parents differ 

somewhere outside of the crossed segment. While there are many different kinds of 

crossover, the most common type is single point crossover. 

As you can see from Figure 7, the children take one section of the chromosome 

from each parent. The point at which the chromosome is broken depends on the 

randomly selected crossover point. This particular method is called single point 

crossover because only one crossover point exists. 

Crossover point 

Parent 1 ^ ^ ^ ^ ^ — 

I i io io i 111111 oioi i| 011| 11011111 d RwwTfTPnnfwii 
‘Ji:：!^ 二 二 一 二 — 二 îii：么 d 一 

Child 1 Child 2 

1| d d 1] 11 i | o | : i j : i | ' f i | ‘ ! | , o | 0 | 們 刚 i p t i 9 ' 1 1 1 | q 11 q i丨 i ioi i| i i d 
I I I I I I I phhM l‘H:j II I ,hvA I I I I I I I I I I 

Figure 7: An illustration of single point crossover 
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In single point crossover, we choose a locus at which you swap the remaining 

alleles from one parent to the other. This is complex and is best understood visually. 

Sometimes only child 1 or child 2 is created, but oftentimes both offspring are 

created and put into the new population. Crossover does not always occur, however. 

Based on a set probability, no crossover occurs and the parents are copied directly to 

the new population. 

4.4 Mutation 

After selection and crossover, we now have a new population full of individuals. 

Some are directly copied, and others are produced by crossover. In order to ensure 

that the individuals are not all exactly the same, mutation may be applied to each of 

these child structures. Each position is given a chance of undergoing mutation. If 

mutation does occur, the binary value of the mutation position is changed, which 

means we replace 1 for the position if it is 0 originally, and vice versa. We loop 

through all the alleles of all the individuals in this way. A visual for mutation is 

shown in Figure 8 below. 
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Before mutation: 

1 n [ o ~ 1 0 1 1 | ~ 0 n | ~ 0 n n n ~ n r o r o r o r o 

After mutation: Mutation point 

1 n 1 0 10 1110 1110 1 1 n n n n o 丨 o 丨 o 

Figure 8: An illustration of mutation 

Mutation is vital to ensuring genetic diversity within the population. In our 

problem it means the probability of adding or reducing a setup. 

4.5 Evaluation 

After the crossover and mutation procedure, we take one structure (i.e., one setup 

string, i.e., ) in the new population as an input and operate the whole procedures 

of the transportation problem and consistency test discussed above in the first section, 

to return a new feasible solution, if there exists one, and record it. After every setup 

string, i.e., in this new population is evaluated, we rank the new feasible 

solutions with the solutions in the current feasible solution pool, and update the pool 
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to a new generation composed by the solutions with the top objective function values, 

for the next round of selection. 

4.6 Termination 

So far, one entire iteration of the whole procedure of our algorithm is described. An 

iteration limit number is set for the iteration procedure. The algorithm will stop when 

the pre-determined iteration limit is reached. We compare all the solutions in the 

pool then, and pick the one with the lowest total cost as the best solution among the 

pool for the whole problem. 

4.7 Conclusion 

In this chapter, we discuss the whole heuristic algorithm to the CLS problem with 

setup time consideration described in Chapter 3. The heuristic is based on Genetic 

Algorithm (GA), which is an iterative procedure that maintains a population of 

candidate solutions to the objective function, usually operated in the following 

procedures: initialization, selection, crossover, mutation, and termination. An 

algorithm to initialize the candidate solution pool is introduced in this chapter. And 
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the procedures to transform the original problem to a fixed-charge transportation 

problem are also addressed. The consistency test is presented to test whether a 

solution is feasible or not to be allowed into the candidate solution pool. 
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Chapter 5 

Design of Experiments and Computational 

Results 

In this chapter, we will design the experiments to test the performance of our 

heuristic algorithm. The methods to generate the information data and lower bounds 

are introduced, and analysis of the computational results would also be presented. 

A 3-product, 2-capacity, 12-period-planning-horizon problem is designed for a 

variety of test problems. And all test problems considered three parameters: 

seasonality of demand (no, medium, and extreme seasonality), the tightness of 

capacity (80%, 100% and 120%), and the setup cost and setup time level (low, 

medium and high level). 
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5.1 Design of experiments 

We develop test problems following Graves (1982), Trigerio et al. (1989) and Gilbert 

and Madan (1991). A 3-product, 2-capacity (regular working time and overtime), 12-

period-planning-horizon problem is designed here. The details are given in this 

section. 

• Product demands 

In each problem set, the demand of product j in period n is given by: 

么 、 (30) 
化:二2>八’ 

where 

ZjJ is a multiplicative seasonality factor of type i for product j in period n, 

r,, is the p̂ ^ random draw from a uniform distribution over the range 

[〜，U， 

u山)’ 丨丨)are the upper and lower limits of the value of r,) respectively, 

Pj is equal to 5’ 5 and 10 for product j= l , 2 and 3 respectively. 
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The values of multiplicative seasonality factors are stated in Table 2. 

The ranges of demands for each product are summarized in Table 3. 

Period 

Seasonality Product "1 | ~ 3 R f l Pz"“"“[1 ~1~9""”I 10 1 1 1 1 2 

None i r o ~ T o " " “ ~ 1.0 T o i x T 1.0 1.0 T o " " ” l c T T o ~ 

(,=1) 一1 Lo" 1.0 ToL O""“L o " i.o 1.0 1.0 T o F I T T o ~ 

"1 i l T T o n r T o i i r 1.0 1.0 1.0 T o i l T T o ~ 

Moderate i i l T T o i l T T o i l T 1.0 1.0 1.0 1.0 1.0 T o " " “ ~ 

(i=2 ) 1 08~ 0.8 0.7 " o l ~ ~(vT" 1.0 1.0 1.2 ~ ~ H""“UT 

~3 I x T T o ~ 1.5 1.3 1.0 ( v F l ^ " " “ o T " 

Extreme i L O 0 8 ^ " " “ M " " ” O J " " “ L O ~ 0.8 T 6 I o ~ T 5 I o ~ 

(i=3 ) "2 0 8 " " “ 0 6 0 4 O l " " “ ^ ~ 1.5 T o " " “ ~ " " “ ~ 

~ ^ 0 5 0 6 " " “ L O " " ” r J ~ T 5 ~ 2.2 T s L O " " “ 0 5 o T ~ 

Table 2: Values of multiplicative seasonality factors 
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Product 1 

~ r i o f l o [ I s [25 f l o 

"To ^ 25 65 
I却 

"T ^ ^ ^ ^ ^ 

一f 150 150 
〜， 

Product 2 

|~80 |~15 [40 |~40 |~55 

"/ m B ^ ^ 85 
I'll) 

ioo ioo 
"vp 

一 f m m ^55 200 

Product 3 、 

"T f l o [ 2 0 H o f l o [ 2 0 ~ H o ~ f l o ~ f l o r ^ " " “ [ 4 0 

—I 40 40 50 ^ 40 10 50 m 80 ^ ~ I dp 

"T T^ 150 150~~ 

一f 250“""“BoBo"""""250250 250 250 250 

Table 3: Ranges of demands and setup costs for products 
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• Quantity of capacity available for production 

The quantity of regular time capacity available in period m for a time horizon 7 with 

seasonality of type i is given by: 

c,； = IT 
- ' = " = 1 」 （ 3 1 ) 

where 

N. is the number of setups required which is determined by the Economic Order 

Quantity (EOQ) of product j, i.e., 

D 
N j : I “ 

‘ 2 * Z ) , ” * \ (32) 

i Hj . 

Then, this quantity is multiplied by 0.8, 1.0 and 1.2 for problems with 80%, 100% 

and 120%, which represents the tightness of capacity, respectively. 

The quantity of overtime capacity available in period m with seasonality of type i 

is given by C；^ =0.5*C；^. 
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• Capacity costs 

The unit costs for using regular time and overtime capacity are respectively 40.0 and 

60.0 for all periods in all problems. 

• Inventory holding costs 

The inventory costs for carrying a unit of product 1,2,3 for one period are 

respectively 4.0，7.0 and 6.0. 

• Setup costs 

Setup cost for product j is given by: 

^ ^ (33) 

产 1 

where 

t丨,is the/？山 random draw from a uniform distribution over the range [ « 、 . , ） ’ / . J, 

û p ’ I印 are upper and lower limits of t^ respectively, 

P丨 is equal to 5, 5 and 10 for product j= l , 2 and 3 respectively. 

The ranges of setup costs for products are shown in Table 3. High, medium 

and low setup cost for product; are computed by 2*Sj, 1*5； and 0.5*乂 respectively. 
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• Setup times 

Low, medium and high level of setup time of a product is an integer selected from 

the range [10,20], [20,35] and [35,50] respectively. The level of setup time varies 

with the level of setup cost. 

• Absorption rate 

The capacity absorption rates of all products are simply set to 1 (i.e., hj = 1 for j = 

1 y t » t y • 

• Generation of larger problems 

The same problem generating algorithm is applied when there exists more than 3 

products or 12 periods. For example, a 6-product problem is treated as two 3-product 

problems, while a 9-product problem is treated as three 3-product problems. 

Similarly, an («*12)-period problem is treated as n 12-period problems. 



Chapter 5 Design of Experiments and Computational Results Zi 

5.2 Discussion of lower bound procedures 

Two procedures for computing a lower bound for the problem PI is described here, 

which are presented by Gilbert and Madan (1991), to evaluate the effectiveness of 

our algorithm. 

• Procedure I for computing a lower bound 

The objective function (1) of problem PI is to minimize the sum of holding, setup 

and production costs. A lower bound on total cost for PI is computed by solving two 

separate relaxations of ihe problem, one problem with setup and holding costs only 

and another one with production costs only. Therefore, the value of the lower bound, 

LB 1，can be obtained by solving one relaxation of PI with only setup and holding 

costs in the objective function, and another one with only production costs, and 

summing the two objective function values. 

The first relaxation problem could be regarded as several single-product 

uncapacitated lot-sizing problems, and solved by the Wagner-Whitin Algorithm. We 

sum the individual objective values for each product and get the first part of the 

lower bound. 

The second relaxation problem is a standard transportation problem. Hence, the 

objective function value is easy to be obtained. 

The summation of these two parts above gives a lower bound on the objective of 

PI. We call it Lower Bound 1 (LBl) in the following analysis. 
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• Procedure II for computing a lower bound 

Another approach is also based on solving two separated relaxations of the original 

problem PI ‘ The difference is that, the first part is a problem with the fixed cost only, 

i.e., the setup cost, and the second part is a problem with the variable cost only, i.e., 

the holding cost and the production cost. 

For the first part, the lower bound on the total setup cost is found by determining a 

minimum number of setups required for feasibility. For each product, the number of 

setups required is the smallest integer that is greater than the quotient of the total 

demand for this particular product and the capacity available per period. Thus, the 

lower bound of setup costs equals: 

一 T — 

^ z � 

J = l km 
k=\ I 

For the second part, we force the setup cost to be zero in PI and consider the 

problem as a traditional transportation problem. 

The summation of these two parts above gives a lower bound on the objective of 

PL We call it Lower Bound 2 (LB2) in the following analysis. 
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5.3 Computational results 

We consider two cases here: (1) the CLS problems with setup time consideration; (2) 

the CLS problems without setup time consideration. The problems with setup times 

are exactly our model as described previously, and we just take the problems without 

setup times as a special case in which setup times are all zero. The results of test 

problems for the first case will be compared with the lower bounds of each problem 

respectively. And the results of test problems for the second case will be compared 

with those in So's research thesis (So, 1997). 

5.3.1 CLS problems with setup times 

We classified the test problems into 27 ( ) combinations according to the given 

three parameters. And for each combination, we run 10 different problems with 

different information data generated by the scheme discussed above and compute the 

average solution gap with both Lower Bound 1 and Lower Bound 2. The quality of 

the solution is evaluated by computing a percentage difference as following: 
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哪 -乙万” 00% 
LB (35) 

where OFV is the Objective Function Value of our heuristic algorithm, and LB is the 

Lower Bound value. 

The results of the 270 problems are summarized in Table 4-1 and Table 4-2. 

Tables 5-1, 5-2, Tables 6-1’ 6-2, and Tables 7-1, 7-2 illustrate the effect of the three 

parameters on the value of the Average Percentage Difference (A. P. D.) with two 

Lower Bounds respectively. Table 5-1 and Table 5-2 show the A.P.D. between the 

heuristic solution value and the Lower Bounds for different levels of setup for all 

problems. Table 6-1 and Table 6-2 are for different setup levels for all problems 

across different levels of seasonality. And Table 7-1 and Table 7-2 are for different 

setup levels for all problems across different tightness of capacity. 

The average A.P.D. across all 270 problems is 1.66%, ranging from 0.00% to 

7.16%, when compared with LBl . In about 70% of the cases, the A. P. D. is less than 

1.79%. When compared with LB2, the average A.P.D. across all 270 problems is 

7.02%, ranging from 3.01% to 12.21%. And in about 70% of the cases, the 

A. P. D. is less than 9.54%. 

We discuss the performance of our algorithm with respect to three parameters: (1) 

level of setup; (2) seasonality of demand; and (3) tightness of capacity. When 

compared with LB 1, we find the most critical factors are the setup level and tightness 

of capacity parameter, while change in seasonality of demand has less apparent 

change in the average solution gap, except for the case with extreme seasonality (see 

Table 6-1). When compared with LB2, similar results are found. The setup level 
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affects most on A. P. D.，while change in seasonality of demand and tightness of 

capacity bring minor change in the average solution gap, except for the case with 

tight capacity (i.e., 80% capacity) (see Table 7-2). 

We also analyse the simultaneous effect of the combinations of two parameters of 

the three. The results are shown in Tables 8-1，8-2, Tables 9-1，9-2，and Tables 10-1， 

10-2. 

Table 8-1 and Table 8-2 show the simultaneous effect of seasonality and setup 

levels. When compared with both lower bounds, for low and medium setup cases, the 

heuristics performs better than high cases. Among all levels of setups, the A.P.D. for 

none seasonality cases is the lowest, with the value of 0.31% when compared with 

LBl (see Table 8-1). While the lowest A. P. D. falls into extreme seasonality case 

among all setup levels, with the value of 3.05%, when compared with LB2 (see 

Table 8-2). 

Table 9-1 and Table 9-2 present the simultaneous effect of seasonality and 

capacity tightness. For 100% capacity and 120% capacity cases, the heuristics 

performs better than tight capacity case (i.e., 80% capacity), when compared with 

LBl . While compared with LB2, no apparent difference exists among all capacities. 

The lowest A. P. D. appears in moderate seasonality across all tightness of capacity, 

with the value of 0.22%, when compared with LBl (see Table 9-1). Refer to the 

comparison with LB2, the A. P. D. for extreme seasonality case among all tightness 

of capacity is the lowest, with the value of 5.96%, when compared with LB2 (see 

Table 9-2). 

Table 10-1 and Table 10-2 summarize the simultaneous effect of setup levels and 

capacity tightness. Our heuristic performs better in the case of 100% and 120% 
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capacity than 80% capacity, and the case of low and medium setup level than high 

level. The lowest figures of A. P. D are both in the case with low setup level among 

different tightness of capacity, valuing 0.12% and 3.12%, respectively, when 

compared with two Bounds. 

We also generate larger problems (i.e., we double the number of products, the 

number of capacities, or the planning periods) to further test the performance of our 

algorithm. The computational time increases by about 2 or 3 times on average, 

though still reasonable for realistically sized problems. The similar trend appears 

that, in general, our heuristic performs better in looser capacity scenario and lower 

setup level one. 
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‘ Setup Costs and Setup Times 

Low Medium High 

A E ? . 1^2 132 2M 

Table 5-1 

The effect of setup levels on A.P.D. compared with LBl 

Setup Costs and Setup Times 

Low Medium High 

A ^ . ^ ^ nio 

Table 5-2 

The effect of setup levels on A.P.D. compared with LB2 
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Seasonality 

A/one Moderate Extreme 

A.D.P. r 0 4 i n 

Table 6-1 

The effect of seasonality on A.P.D. compared LBl 

Seasonality 

Low Moderate Extreme 

A.D.P. T ^ 7 3 4 K35 

Table 6-2 

The effect of seasonality on A.P.D. compared with LB2 
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Capacity 

诵c W0% 120% 

A.D.P. ^ LOO 0 2 8 

Table 7-1 

The effect of capacity tightness on A.P.P. compared with LBl 

Capacity 

而 � Tod% 7 m 
� 

A.D.P. T ^ ^ ^ 

Table 7-2 

The effect of capacity tightness on A.P.D. compared with LB2 
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Seasonality 

Setup None Moderate Extreme 

L ^ 0?̂  ^ 
Medium oli ( m 2M 

Hiih 147 \ 1 9 1 1 5 

Table 8-1 

The effect of seasonality and setup levels on A.P.D. compared with LB 1 

Seasonality 

Setup None Moderate Extreme 

L ^ 3 3 8 

Medium ^ ^ ^ 

m ^ 12.07 12.16 1028 

Table 8-2 

The effect of seasonality and setup levels on A.P.D. compared with LB2 
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Seasonality 

Capacity None Moderate Extreme 

mo r^ ^ 
J ^ c 0 4 8 1 0 2 

J20% 0 3 1 ^ O32 

Table 9-1 

The effect of seasonality and capacity tightness on A.P.D. compared with LB 1 

Seasonality 

Capacity None Moderate Extreme 

'mo T ^ ^ ^ 
Jdo% 7^09 ^ 

Imc tH ^ ^ 

Table 9-2 

The effect of seasonality and capacity tightness on A.P.D. compared with LB2 
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Setup 

Capacity Low Medium High 

^ l52 3 3 9 47I8 
100% O ^ 0 4 9 r ^ 

120% 0 1 2 0 0 9 

Table 10-1 

The effect of setup levels and capacity tightness on A.P.D. compared with LBl 

Setup 

Capacity Low Medium. High 

^ ^ 11.94 

100% I n UM 

120% 3A2 K m 

Table 10-2 

The effect of setup levels and capacity tightness on A.P.D. compared with LB2 



Chapter 5 Design of Experiments and Computational Results Zi 

5.3.2 CLS problems without setup times 

We force all setup times to be zero and relax the problem to a CLS problem without 

setup time consideration. To analyse the performance of our heuristic, the solution 

value of our algorithm is compared with that of So's (So, (1997)), who discussed a 

CLS problem without setup times. 

The computation of Difference Percentage is as follows: 

吟 隣 2 * 1 0 0 % (36) 
OFK 

where OFVi is the Objective Function Value of So's heuristic algorithm, and OFV2 

is the Objective Function Value of our heuristic algorithm. 

The same analysis method is used to evaluate the results for the case without setup 

times. We totally generated 27 different combinations of the cases according to the 

three parameters, and for each case, 10 problems were generated randomly to obtain 

the average percentage difference. 

The performance of our heuristic is evaluated by comparing the objective function 

value of both our algorithm and that of So's. The results of the comparison are 

concluded in Table 11. On average, we improved the objective function value by 

0.29% better than So's algorithm. As we can see from the table, our heuristic 

performs better when seasonality of demand is extreme or setup level is high. 
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Further, we compare the performance of our heuristic with So's algorithm under 

different problem characteristics. The results are shown in Table 12 to 14. In each 

comparison, Average Percentage Difference (A. P. D.) is calculated. 

Table 12 presents the difference between two algorithms on the effect of setup 

level on A. P. D.. We can find that our algorithm takes more advantage as setup level 

turns higher from the low case. 

Table 13 summaries the difference between two algorithms on the effect of 

seasonality on A. P. D.. When the seasonality becomes extreme, our algorithm 

performs better than in the case with none seasonality. 

Table 14 is the difference between two algorithms on the effect of capacity 

tightness on A. P. D.. Our heuristic is better on average, although the advantage is 

minor. No apparent changes appear when the tightness varies from 80% to 120%. 

In addition, the interactions among three parameters are analyzed in the following 

tables from Table 15 to 17. Our algorithm performs better than So's, especially in the 

case with high setup level and loose capacity (i.e., 120% capacity), and the case with 

extreme seasonality and loose capacity as well. 
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Seasonality Setup Capacity Average Percentage Difference (%) 
No Low 8TO O i ^ 
No ~ Low 100% 0.00 一 

No Low 1 2 0 ^ 0.00 — 
No — Medium 80% 0.00 — 
No — Medium 100% 0.00 一 

No — Medium 120% Q.QQ 一 

No — High 80% - 0.00 • 
No High 100% 0.31 
No “ High 120% 0.95 

M o d e r a t e L o w 
Moderate 100% Q.QQ 

Moderate— Low 120% Q.QQ 

Moderate Medium 80% 0.01 
Moderate Medium 100% 0.06 
Moderate ~ Medium 120% 0.06 
Moderate High 80% — 0.06 ‘ 
Moderate ~ High 100% 0.38 — 
Moderate "" High 120% 1.07 
Extreme 一 Low 80% 0.01 一 

Extreme — Low 100% 0.01 一 

Extreme 一 Low 120% Q.QQ “ 
Extreme — Medium 80% 1 . 9 8 � 

Extreme Medium 100% 0.11 
Extreme — Medium 120% 0.24 
Extreme — High 80% ~ 0.57 “ 
Extreme 一 High 100% 0.83 ‘ 
Extreme High 120% 1.22 “ 

Table 11: Average difference percentage of the 27 problem cases between our 

heuristic and So's heuristic 
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Setup Costs and Setup Times 

Low Medium High 

A.D.P. O ^ 

Table 12: The effect of setup levels on A.P.D. 

Seasonality 

None Moderate Extreme 

A.D.P. 0 l 4 0 1 8 0 5 5 

Table 13: The effect of seasonality on A.P.D. 

Capacity 

丽c W0% 120% 

A.D.P. 0 2 9 a T 9 O ^ 

Table 14: The effect of capacity tightness on A.P.D. 
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Seasonality 

Setup None Moderate Extreme 

L ^ o o o a m 

Medium (UX) 004 

Hi^ KE ^ 

Table 15: The effect of seasonality and setup levels on A.P.D. 

“ ‘ Seasonality 

Capacity None Moderate Extreme 

而。 OOO 0 0 3 

Tdd% O ) o l 5 

J J m 0 3 2 0 3 8 0 4 9 

Table 16: The effect of seasonality and capacity tightness on A.P.D. 
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Setup 

Capacity Low Medium High 

o o l O ^ 

100% OOO 0 0 6 0 5 ] 

120% oTo im 

Table 17: The effect of setup levels and capacity tightness on A.P.D. 

5.4 Conclusion 

In this chapter, we designed a 3-product, 2-capacity, 12-period-planning-horizon 

problem for a variety of test problems. All test problems considered three parameters: 

seasonality of demand, the tightness of capacity, and the setup cost and setup time 

level. Two Lower Bounds are computed for comparison. Our heuristic algorithm 

performed quite well when compared with Lower Bound 1. Also, we forced all setup 

times to zero to relax the problem to a CLS problem without setup time. The 

computational results for this case are also good and reliable, compared with similar 

problems discussed by So in his research thesis (So, 1997). 
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Chapter 6 

Conclusion 

The Capacitated Lot Sizing (CLS) Problem is concerned with the planning of 

production that determines the setup decisions and production quantities for multiple 

products over a finite number of periods without violating capacity constraints. In 

this research, we develop a model for the CLS problem with the setup time 

consideration. The model is extended to consider major CLS decisions such as setups, 

production levels, inventory levels, and overtimes. Its objective is to satisfy the 

known demands for various products in each period with capacitated resources and 

to minimize the sum of production, setup and inventory costs without incurring 

backorders. This CLS problem can be found in many repetitive manufacturing 

settings. Processes like assembly and stamping are some practical examples. 

The CLS problems attract a lot of interest in the literature. But a few researchers 

explored the area of CLS problem with setup times, especially for CLS problems 

with the formulation structure that we use here. Many of them believed that CLS 

problem with setup times was only a simple extension of the one without setup times. 

We showed the difficulty of solving CLS problem with setup times using Trigerio el 

al.'s (1989) example. Hence, it is worth further investigating CLS problem with 

setup times especially in manufacturing industries with significant setup times. 
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We use a new model that considers setup times and allows for different types of 

production capacities such as regular time, overtime and subcontracting. So, our 

model is more realistic and comprehensive. We apply a heuristic approach based on 

Genetic Algorithms to solve the CLS problem with setup times. We use a 3-product, 

2-capacity, 12-planning-period problem to test the performance of our heuristic. 

Larger-sized problems are generated as well for further investigation. The 

computational results show that our algorithm gives reliable results within the 

average percentage difference of 4.34%, ranging from 0.00% to 12.21%, by 

comparing with two lower bounds generated. Except for those problems having very 

high setup level or problems with very tight capacities, our heuristic produces 

solutions quite efficiently. Moreover, our algorithm improved the results of So's 

(1997) algorithm by 0.29% on average, when the original CLS problem is relaxed to 

one without setup time consideration. 

Due to the nature of the problem, it is very difficult to solve Ihe CLS problem with 

setup times optimally. Heuristic methods are applied to find reasonable solutions. 

However, these methods cannot perform well especially in cases of high setup cost 

and time, and very tight capacity. Besides, in our specifications of test problems, the 

values of setup cost and setup time are directly proportional to the level of setup. If 

the level of setup is high, the amount of setup time will be large and it will consume 

a significant portion of the production capacity available. Hence, capacity allocated 

for production will be reduced after setup, and it affects the efficiency of production. 

One extension of our model is to consider the case when backorder is permitted. A 

new information data, the backorder cost, may be introduced, and the whole model 

would be modified. One suggestion to solve this kind of problem is to follow Cheng 
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et al's (2001) work, which is a CLS problem with backorder consideration and 

without setup times. A proper integration of the main idea to solve their model and 

that in our model might be a feasible way to deal with the CLS problems with both 

setup time and backorder consideration. 

We could also have some further discussion about the procedure to generate the 

setup strings. In this thesis, we let 50% of the strings generated by Wagner-Whitin 

Algorithm or by making minor changes to the strings using Wagner-Whitin 

Algorithm. Other algorithms could also be tried to get a setup string, like Silver-Meal 

Heuristic (1969), for instance. 

Another development of this paper work is to find a better approach to generate 

Lower Bounds. According to the computational results, it is obviously that the results 

compared with Lower Bound 1 are much better than those with Lower Bound 2. The 

improvement of the procedure to generate a better Lower Bound is also a big 

challenge for validating a heuristic algorithm. 
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