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W e examine the game-theoretic equilibria within a setting of 

several profit maximising public-transit operators servicing mul-

tiple routes in various forms of road networks. Service providers 

maximise their individual profit by determining the set of routes 

to service while satisfying the capacity constraints (maximum 

number of routes it can offer service). Through numerical simu-

lation using a game-theoretic model, we investigate the competi-

tion among the service providers under different infrastructural 

frameworks. 
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摘录 

我們探討在各種不同形式的道路網絡及設定下，幾個服務多條路線並尋求最大利潤 

的公共交通服務營辦商之間的（納什）博弈均衡。在不違反容量限制（服務路線數 

量的頂點）之下，各服務商將個別選擇不同路線的集合，以優化其盈利。通過博弈 

論的方法，我們做了一些數值模擬，以便調查服務商間在不同基礎設施框架下的競 

爭。 
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Chapter 1 

Introduction 

1.1 Motivation 

Public Transport Issues in Malaysia 

In Malaysia, the authority in transport policy and regulation, in-

frastructure, and operator licenses are distributed among three 

、 ministries: Ministry of Transport, Ministry of Works, and Min-

istry of Entrepreneurial and Cooperative Development. Lack 

of coordination among ministries result in poor transportation 

planning. 

A long-distance bus service, 'Express Bus' is a popular means 

of inter-city travel in West Malaysia. Other than some safety 

issues — speeding — the system runs under a sustainable and 
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CHAPTER 1. INTRODUCTION 2 

profitable manner. O n the other hand, town buses are under-

utilised and require government subsidy. Specialized services, 

such as school and factory buses, further affect the profitabil-

ity. In Penang, poor public-bus operations (in terms of infre-

quent service, comfort level, slowness and accessability) make 

public transport a last-resort choice for the travelling public. 

For almost two-thirds of travellers, the preferred mode choice 

is 'private car’. This is primarily due to poor public transport; 

cheap petrol price, and an affordable national car (with about 

60 percent market share) also exacerbate the decline in the use 

of public transport. Owning a motorcycle not only ease the user 

from all the aforementioned concerns, the corresponding long-

term average-cost is also not much higher compared to taking 

、 public transport. 

1.2 Background 

In recent decades, a big portion of the population and economic 

growth was markedly due to metropolitan areas. In the United 

States, the 40 metropolitan areas (each with at least one mil-

lion population in 1990) accounted for 53.4 percent of the na-
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tion's population[10]. The Bureau of Economic Analysis of the 

U.S. Department of Commerce stated that, "metropolitan ar-

eas produced 90 percent of U.S. current-dollar GDP; the five 

largest metropolitan areas accounted for 23 percent of the U.S. 

total" in 2005. As a result of the increasing population and eco-

nomic activities, commuting time as well as travel distance for 

the metropolitan populace have also significantly increased. For 

instance, the net commuting into the 35 major U.S. metropoli-

tan areas increased from less than 300,000 in 1980 to nearly 

800,000 in 1990[10]. The average work trip distance in 2001 in 

the London boroughs was approximately 10 kilometres[2] and 

13 kilometres for the new towns outside London's Greenbelt[3 . 

This indicates that a heavier burden is now being placed on the 

、 transport systems in metropolitan areas, leading to increased 

traffic congestion and attendant safety and environmental con-

cerns. 

In most places, development of transport infrastructure and 

public transit services failed to keep apace with the swell and 

sprawl of metropolitan areas. A typical public transit run by 

government authorities has the following difficulties. With lim-
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ited budgets, services and connectivity are severely restricted. 

It is very common to have serious congestion in central business 

districts in contrast to insufficient coverage in peripheral areas. 

For example in Seattle, the bus service from the city centre 

to the major university suburb (that is only 20 minutes' drive 

away) runs only every half an hour and necessitates an interme-

diate bus transfer. In metropolises where public-transit services 

are provided by private firms in a relatively free market, oper-

ators tend to focus on high-profit routes and outlying smaller 

communities are usually under-served or ignored. Similar sce-

nario can be seen in Hong Kong. The already congested Central 

business district is often jammed with half-empty double-decker 

buses from all the bus operators, while bus services to satel-

、 lite communities in the New Territories are very infrequent and 

expensive. 

This thesis investigates the competitive situation when sev-

eral service providers offer public transit services, and the impact 

on the total set of services offered to the public and the resultant 

level of ridership of the system. W e will investigate the competi-

tion among the service operators under different infrastructural 
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frameworks by using a game-theoretic approach. The interplay 

between the basket of services offered and the overall ridership 

of the system will also be investigated. 

With the modelling and analysis done here, government au-

thorities may find it useful when tendering for public transit 

services. While providing insights and guidance on the number 

and types of routes (and their possible bundling) being offered 

for bidding, the result also helps in the decision regarding the 

provision of facilities or locations for transportation interchanges 

and hubs. 

1.3 Literature Review 

Although not explicitly acknowledged, concepts of game theory 

have been pervasively used in traffic studies. As pointed out 

by Fisk (1984) , the famous Wardrop's (1952) user-equilibrium 

principle is essentially the condition for a Nash (1950) game-

theoretic equilibrium among road-users, since no driver can re-

duce his/her travel time by switching to a different route choice. 

Wardrop's principle has been a cornerstone in road traffic re-

search for decades. Hollander and Prasliker (2006) give an ex-
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cellent review of recent literature on non-cooperative games in 

transport research. 

Somewhat surprisingly, there has not been studies on the 

competitive situation amongst public transit operators in the 

literature. Castelli et al. (2004) modelled a game between two 

authorities (one determining flow, and the other capacities) in a 

freight transport network. This is obviously different to a pas-

senger transit network as the transportee (freight) do not choose 

its route, a passenger does. Martin and Roman (2003) studied 

a game among airlines related to hub locations for each airline. 

According to Hollander and Prashker (2006), the “small num-

ber of such games is surprising, considering that N C G T (non-

cooperative game theory) seems a natural tool for analysing re-

、 lations between authorities" [11 . 

In this thesis, our models revolve around a t3,pe of game 

called potential games, but first we need to know what conges-

tion games are. Congestion games were introduced by Rosenthal 

.16], and later generalised by Moderer and Shapley [14] to the 

class of potential game. Congestion games are non-cooperative 

games where the players' utilities (payoff functions that are iden-
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tied for every player) depends on the choices of all players (to be 

exact, the total number of player choosing the same resource). 

Every congestion game admits a potential function and has at 

least one pure Nash equilibrium. A Nash equilibrium is a se-

lection of strategies for all players such that no one player can 

unilaterally improve its payoff by switching to a different strat-

egy. Potential games are games where the equilibrium can be 

computed by solving an auxiliary mathematical programme with 

the potential function as the objective function. 

Milchtaich (1996) studied a class of congestion games with 

player-specific payoff functions (as contrast to the universally 

identical payoff function in traditional standard congestion games), 

with two assumptions. First, each player's strategy involves 

、 choosing only one resource (which in our case is the route se-

lection) and second, the payoff received actually decreases (not 

necessarily so) with the number of other players selecting the 

same resource (monotonic payoff functions). Congestion games 

where each player chooses only one resource are sometimes called 

singleton/simple congestion games. As pointed out by Milch-

taich, "these congestion games, while not generally admitting 
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a potential, nevertheless always possess a Nash equilibrium in 

pure strategies" [13]. Similar to Milchtaich's model, we con-

sider a model with player- and route-specific payoff function. 

The major different is the non-singleton congestion games in 

our setting. Players can choose more than one resource, and 

may be restricted by capacity constraint, if any. 

O n the other hand, leong et al. (2005) study a more gener-

alized singleton congestion games. No simplifying assumption 

on the payoff/cost functions was made but they share the same 

restriction as of Milchtaich's first assumption. It was observed 

that Nash equilibrium solution in a singleton congestion games 

can serve as the Nash equilibrium solution of the subgame simply 

by excluding routes that are no longer in the complete-route-set 

、 of the subgame from the strategy sets. However, to construct 

a Nash equilibrium from two smaller equilibria (siibgames), it 

must satisfy some conditions. With this, a better-response dy-

namic algorithm [12] was proposed. They showed that the algo-

rithm finds the optimal Nash equilibrium for singleton games in 

polynomial time. Although we cannot construct algorithm for 

non-singleton congestion games which can be solved by break-
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ing it into subgame, we proposed a best-response algorithm for 

finding the equilibrium. 

Recently, there are many other works which study congestion 

games. They add different interpretations and perspectives to 

congestion games. Fabrikant et al.(2004) and Voecking (2006) 

proves that finding a Nash equilibrium in general congestion 

games is PLS-complete ^ [8], [17]. Chakrabarty et al. (2005) 

were the first to study centralized solutions for congestion games 

where the objective is to minimize the total cost[7]. Blumrosen 

and Dobzinski (2007), on the other hand aim to maximize the 

social welfare under a "centrally controlled" game. They also 

relate congestion games to combinatorial auctions and proposed 

、 an algorithm based on the useful connection between congestion 

games and combinatorial auctions [5 . 

• E n d of chapter. 

^Polynomial Local Search (PLS) problem was defined by Johnson et al. (1988) as an 
abstract class of local optimization problem. 



Chapter 2 

Game Theoretic Models For 

Competing Operators 

Some preliminary investigation about the strategic gaming sit-

uation among competing public transit service providers have 

been carried out. In the first-cut model, we assume that all the 

operators have the same cost and price structure, and that the 

total ridership between each origin-destination pair is equally di-

vided among all the operators that service that particular route. 

In this setting, a player of the game is the service provider, and 

its strategy is the set of routes that it chooses to offer service. 

Each player tries to maximize its total profit, and a Nash equi-

librium is achieved when no player can improve its profit by 

10 



CHAPTER 2. GAME THEORETIC MODELS FOR COMPETING OPERATORS 11 

unilaterally changing the set of routes it services. 

W e can show that this game can be modelled as what is 

known as a congestion game (first introduced by Rosenthal, 

1973) where the equilibrium can be computed by solving an 

auxiliary mathematical programme. The original objective func-

tion is a non-linear function, we proposed an equivalent mixed-

integer programming formulation to the problem. 

A model that maximize the net profit was considered next, 

follow by a model that gives the most equitable route assignment 

given the maximized net profit. W e still assume that the over-

all ridership will not be affected by the total number of route 

being offered services nor the total number of operator offer-

ing service on a particular route; and the assumption that the 

、 payoff functions are universal (identical for each player). Under 

these assumptions, the net profit maximizing model (centrally 

controlled) finds solution where at most one operator offer ser-

vice per route while the competitive equilibrium model finds a 

solution that assigns as many operators as the market can bear 

to each route. 

W e further extend the model to incorporate player- and route-
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dependent operating cost. A best-response algorithm and greedy 

approach was introduced and compared with the equivalent po-

tential game. Whilst the optimisation model (potential game) 

finds a Nash equilibrium, it may finds one that has low overall 

revenue, whereas the greedy approach finds the Nash equilib-

rium solution with highest total profit (optimal welfare). 

2.1 Competitive Equilibrium Model 

2.1.1 Base M o d e l Formulation 

W e consider a game with n players (the service providers or oper-

ators) and m possible routes (origin-destination pairs). Through-

out the discussion in this thesis, we will use route and origin-

destination pair interchangeably). Let 2似 be the set of all sub-

sets of the routes. Player i,s strategy consist of a subset of 

routes, Si C M. For each route j, let kj denote the num-

ber of players choosing to offer service on the route, that is, 

kj = I {i : j e 1¾} I. Note that kj depends on the collection of 

strategies S2,…，5'^} but with an abuse ofTiotation, we will 

omit the denotation for simplicity. Each player offering service 
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on route j earns an identical payoff" of Pj{kj) which depends on 

the number of players serving that route, namely, 

(發-S , if kj > 0 

0 , if/^ = 0 
\ 

where aj is the total ridership of origin-destination pair j, and 

6 is the fixed operating cost of route j. Each player tries to 

maximize its total profit tt̂  (5̂ 1, S2,..., S^) — ^ Pj{kj). A pure-
jeSi 

strategy Nash equilibrium is a set of strategies {5^, S*^,..., 5*} 

such that for each player i, 

^ii^ii •..，57—1, S*, 57+1，..•，—兀?:(对,，，.，《—1, Si, 57十 1,..., 5*), 

、 \/Si e 2M, 

Following the framework of Rosenthal (1973), we can show 

that a pure-strategy Nash equilibrium can be obtained by solv-

ing the following auxiliary mathematical programme: 

m kj __ 

(GO): Max,imize (0.0) 
j二 1 y=l 

subject to: 
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n 

Yl^i 二 kj, Vj - 1 , . . . , m ; (0.1) 
i=l 

xj e {0,1},Vi = 1,...,n;Vj = 1,...,m. (0.2) 

where xj indicates whether route j is in the set Si of routes of-

fered by player i according to its strategy Sf, that is, xj = 1 

if j e Si, zero otherwise. W e note that this is not a straight-

forward binary linear programme, since the kj values are also 

variables, so the objective is not a linear function. From the 

potential games point of view, the objective function of the aux-

iliary mathematical programme (0.0) is the potential function. 

Pure-Strategy Nash Equilibria 

、 Since solution to (GO) exist, it suffices to show that any so-

lution to (GO) gives rise to a pure-strategy equilibrium. Let 

{x*-̂ ', fc*}, e 5*, solve (GO), and suppose the associated strat-

egy combination is not an equilibrium. Then for some I (player), 

A 
there is a strategy Si such that 
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jeSi j^St 

贿 m 

where S^ is the strategy used by I as indicated by the values of 

Consider the new values {x{, kj] associated with player 

I changing to the pure-strategy Si (with the rest of the players 

八 

not changing their strategies). (0.0) evaluated at kj is: 

77?.. kj m 

i=i ？/=1 y=i jeSi 
贼 m 
、 V >0 

h* 
m 

〉 [ [ M y ) 
j=i ？/=1 

which contradict with the optimality of {x*-̂ , k*}. | 

Intuitively, we can also argue why the solution of (GO) give 

rise to a pure-strategy Nash equilibrium. At any point, if there 

exist an origin-destination pair j which provide an opportunity 

to a player (not yet offering service on this origin-destination 

pair) to increase its profit, origin-destination pair j will cer-

tainly be included in its strategy set. With each player try-
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m 

ing to maximize their profit function defined as Pj(̂ 'j)̂  Nash 

equilibrium is guaranteed when each Pj(kj) took the minimum 

value that is greater than zero, leading to the maximum value 

of expression (0.0). No additional player will offer service on the 

origin-destination pair when Pj(kj + 1) < 0. 

2.1.2 Capacitated M o d e l Formulation 

In our base model, we assume that operators are not limited 

by the number of routes that they can serve (thus, an operator 

will serve a route as long as it is profitable). Due to capital 

limitation in equipment purchase, infrastructural investments, 

skilled labour availability, etc., it would be more realistic to 

assume that there is a capacity limit on the number of routes a 

service provider can offer. Let b.i define the maximum number 

of origin-destination pairs that player i can afford to provide 

service. The capacity restriction can then be modelled by adding 
•m , 

the capacity constraints, ̂  < b.i, to (GO), as follows: 
i=i 

m kj ~ 
(Gl) : Ma:rimize (1.0) 

？/=1 
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subject to: 

n 
Y A 响,Vj G M ; (1.1) 
i=l 

m 

< Vi G TV; (1.2) 

xj e {0,1}, i eN； j G M. (1.3) 

where N = {1, 2,..., n} and M — {1,2, ...,711} are sets of players 

and routes respectively. 

For cases where operators have ample capacity, constraint 

(1.2) is automatically satisfied. Once the constraint (1.2) cannot 

be omitted (i.e. bi < m), the problem become capacitated. With 

this, 

、 1. Would the game amongst the operators still be a potential 

game? That is, would the optimal solution to the extended 

model (Gl) still yield the Nash equilibrium? 

2. H o w would the capacity limit alter the equilibrium solu-

tion? 

3. H o w would the selection of services offered to the public be 

affected? 
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Introducing the capacity constraints may change the kj value 

and hence the optimal solution. It is natural to expect a change 

in the potential function (objective function of the auxiliary 

mathematical program) or in worst case scenario, the game may 

not be a potential game when the capacity constraint is intro-

duced. To answer these questions, we now proceed to argue 

that the previous proof still remain valid. Consider the case 

where there are still some profitable route, say route c, not se-

lected by any player at the optimal point (clue to the capacity 

constraints). The reason route c is not included in the optimal 

solution is that the least profitable route (among the chosen 

routes) provide greater gain than route c. In other word, it will 

only reduce the value of the objective function if we substitute 

、 route c with any selected route of the optimal solution. This is 

in accordance to the players' aim to maximize their own profit, 

it is not beneficial to include route c into their service. No player 

can do any better by unilaterally changing his strategy (set of 

routes to provide service) at the optimal point, which means 

equilibrium achieved. Note that this particular equilibrium ob-

tained by solving the auxiliary mathematical programme does 
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not guarantee maximal gain for each player and the total sum of 

all players' profit. It is only the point that no player will deviate 

from their strategies. 

It may not be profitable for an operator to serve some routes, 

even without the capacity constraint. Due to social responsibil-

ity, the authority may require certain origin-destination pairs to 

be served although it is not profitable. However, for simplicity, 

we assume operators will only service origin-destination pairs 

which give positive payoff throughout our work. The model can 

be easily extended to represent a much practical case simply by 

setting a cut off point, say /), to each origin-destination pair. 

That is, operators will offer services only if Pj{k) > fj. Alterna-

tively, we can also consider to shift the payoff function so that 

、 the cut off point become negative, which may be regarded as a 

fixed amount of government subsidy. 

2.1.3 Solution Methods 

Solution Approach for (GO) 

Assuming there is no restriction on how many origin-destination 

pair each operator can serve, 6¾ > 'm for all i; which means op-
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erators can choose to serve zero to m, origin-destination pairs 

depending on their own strategy. Without lost of generality, 

assume each ridership contribute to one dollar in revenue (the 

travel fare). As we have mentioned earlier, operators will offer 

services only on profitable routes, and they will continue to "en-

ter the market，，for a route as long as it is profitable. With this, 

we can set the value of k* before solving the problem, 

fc* 二 max | o , ?nax { / i 6 Z + : ^ — (5〉0 , f t〉0}} 

Let x̂- denotes the decision variables that indicates whether 

route j is in the set Si of routes offered by player i accord-

ing to its strategy Si] xj = 1 if j G Si, zero otherwise. Since 

we already know the value of k;, thus as long as the number of 

player choosing each origin-destination pair j equals to /c*, the 
J t 

solution to (GO)is automatically an equilibrium. W e will discuss 

later in Section 3.1 two different structure of the network and 
m 「 n 

compare them according to the total profit, E Pj{kj) . 
i=i L -

m 

Note that the total profit is equivalent to E A:沐(^0, which in 
J 二1 

fact can be calculated once {A:*} is set. The steps of solving the 

problem are: 
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step 1: determine the value of fc* 

step 2: evaluate all Pj{kj) 

step 3: assign the routes to the operators according to the de-

termined k value and calculate the total profit. 

Thus, (GO) can be solved by following these few simple steps. 

Solution Approach for (Gl) 

To solve (G2), an equivalent mixed-integer programming for-

mulation for (Gl) is presented below. This formulation will al-

low us to analytically (or computationally) compare the Nash-

equilibrium solution to one that is "centrally" controlled and 

maximizes the total operator net profit, where function. A fur-

、 ther variation of the model would give a solution that is "fair" 

in the sense of minimizing the profit difference among operators, 

after we obtained an optimal total net-revenue (an upper bound 

of the total net profit of the network). 

An equivalent formulation for (Gl) is as follows: 

\ 
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Let variable 

1 if kj = k 
Vjk = 

0 otherwise 
v 

Also we define: 

f 

k 

J2Pj{z) for k > 0 
Pj{k) = 

0 if A: 二 0 
\ 

where 

p 刺 二 

(Gl) is equivalent to: 

m n 

、 (G2) : Ma^yimize ^ ^ (2.0) 

j=l k=0 

subject to: 

n n 
= Vj G M ; (2.1) 

m 、 

Y A 仏 Vi e TV; (1.2) 
j=l 
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xj e {0,1}, i G N] j e M ; (1.3) 

n 

J ^ y j k ^ h V j e M； (2.4) 

k=0 

Vjk e {0,1} , k e N u { 0 } ; J e M . (2.5) 

Constraint (2.4) would specify a unique “/c/' for each j. This 

ensure the correct R H S for (2.1) and for the objective function. 

If hi > 771, for all 2, then we can see that: 
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Observation 1: 

Since Pj{k) is maximized at kj where 

kj = max {0, max {/i G : Pj{h) > 0}} 

(G2) is optimized when operators continue to "enter 

the market" for route j until there are kj operators 

offering service. The intuition behind it is as follows. 

With each player trying to maximize their profit 
m 

function defined as Pj(̂ j)̂  a player will include any 

profitable route in its strategy whenever possible. That 

is, when the player has not reached its capacity limit 

and there are still origin-destination pair/s (not yet 

included in its strategy) which provide an opportunity 

to increase its profit. No additional player will serve 

the origin-destination pair where Pj(kj + 1) < 0. Hence 

the equilibrium is reached when each Pj{kj) attains the 

minimum positive value, which will also lead to the 

maximum value of objective function (2.0): 
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Given a set of values of a/s and we can first calculate all 

the possible pj(k) values, where k = 1,2,..., n. Using (G2), we 

can then get the solution as depicted in Figure 2.1. Note that 

fc*'s are at their maximum value where Pj(kj) greater than zero. 
m 

Also, f̂ jPj(̂ j) can be calculated once we obtained as 

mentioned earlier in the first approach. 

«1 «2 «3 «4 <̂5 «6 

466 650 693 250 59 507 
S 

219 ki Pi(ki) Piiki) P j) P4(l<4) P s(k 5) Pei^e) 
1 247.00 431.00 474.00 31.00 -160.00 288,00 
2 14.00 106.00 127.50 -94.00 -189.50 34.50 
3 -63.67 -2.33 12,00 -135.67 -199,33 -50.00 
4 -102.50 -56.50 -45.75 -156.50 -204.25 -92.25 

k：* kj /C3* k: ks* /cg* 
2 2 3 1 0 2 

/ = 1 . / = 2 / 二 3 J =4 / = 5 / = 6 

Player 1 1 1 1 1 0 1 
- Player 2 1 1 1 0 0 1 

Player 3 0 0 1 0 0 0 
Player 4 0 0 0 0 0 0 a-

fyt^My) 
k: ^ ^ 

261.00 537.00 613.50 31.00 0.00 322.50 1765 
. ‘ ^ 

j:: 1 
k j P j i k j ) 28.00 212.00 36.00 31.00 0.00 69.00 376 

Figure 2.1: Typical Solution from {G2),�> m 
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2.2 Net Profit Maximizing 

W e might want to study the potential maximum profit that can 

be sought from a particular network. N o w consider the problem 

of maximizing the sum of net profit for all the operators: 

m n 
(G3) : Maximize kpj{k)yjk (3.0) 

subject to: 

n n 

= 灼 g m ; (2-1) 

i=l k=0 

m 

YA 仏 (1-2) 

xj e {0,1}, i e N] j e M； (1.3) 
- n 

= G M ; (2.4) 

keNu{0}； J eM. (2.5) 
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Observation 2: 

Since kpj{k) — fc (警一5) = cij — 5 k, for k ^ 0, 

the objective is optimized when kj = 1 if aj > 5. 

Hence if > m , for all i, the optimal solution is 

Uji = I or yjo = 1，for all j. That is, there is at most 

one operator for each route. 

Observation 3: 

For the iincapacitated case, the "competitive" equi-

librium solution has all operators offering service on 

all routes (until Pj{k) < 0 ), whereas the "centrally 

controlled" solution has at most one operator per route! 

2.2.1 Equitable Route Assignment 

After maximizing the net profit, another problem arises as to 

how to assign the route to operators. The problem of finding a 
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most "equitable" solution can be modelled as: 

(G4) : Minimize Z.腿-Z^in (4.0) 

subject to: 

n n 
= 灼 e M ; (2.1) 

i=l /,:=0 
m 

⑷ ， V z G TV; (1.2) 

xl G {0,1}, ieN； jeM； (1.3) 
n 

= Vj G M ; (2.4) 

y沖 G{0,1}, J G M ; (2.5) 
rn / n \ 

. Z臓 > Y J 调 Vjk 4, Vz G N; (4.6) 
i=l \k=0 / 
m / n \ 

z爪in < Y , j y 爛 Vjk x l Vz G TV; (4.7) 

j=l \k=0 / 
m n m 

> (4.8) 
j=l j=i 

where kj is the derived optimal values from the optimal solution 

for (G3); Zmax and Zmin are the profit of operator with the most 
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and least total profit respectively. 

Constraint (4.8) ensure that we do not get a trivial solution such 

as xj = 0, for all i and j. Note that (4.6) and (4.7) are non-

linear constraints! 

These can be linearized by introducing binary variables Wijk, 

intended to be: 

f 
1 if x\ — 1 and yjk — 1 

Wijk == < 
0 otherwise 

\ 

This can be enforced by the following constraints: 

n 

A;=0 
n 
Y ^ w,jk < kyjk. \/keNU {0}; j e M; 

-

xj + yjk < w.ijk + 1, Vi eN； j eM； keNu {•}. 

So a mixed-integer programming formulation of (G4) is given 

by: 

： Minimize —^min (4.0) 
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subject to: 

n n 
= 灼 G M ; (2.1) 

i=l 

m 

VzGiV; (1.2) 

:r!、{0，l}, z G TV; j e M ; (1.3) 
n 

Vj ^ M ; (2.4) 
人 : = 0 

Vjk G{0,1}, fcGTVU {0}; J G M ; (2.5) 

m n 

Z-max > 溯肌i休,Vi G TV； (4.6，） 

m n 

Z,mn < Y I Y ： 洲 Wijk, Vi G iV； (4.7,) 
j=l k=0 

m n m 

- >^kjPj{kj); (4.8) 

j=l k=0 j=l 
n 

Y ^ w 吵 S x l iGN', j e M ' , (4.9) 

人 : = 0 

n 
Y^UHjk < kijjk, keNU {0}; j e M ; (4.10) 
？ : = 1 

xi + ijjk < w,jk + ieN; J eM； keNU {0}; (4.11) 
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Wijk e {0,1}, i e N] j G M ; keNU {0}. (4.12) 

Note that when hi > m, for all i, constraint (1.2) can be 

omitted as it will automatically satisfied. 

Observation 4 

Solving (G4) require hours or even days when there is 

no fixed cost, 5 = 0. 

2.3 Congestion Game Model with Player- and 

Route-dependent Operating Cost 

In reality, each operator might have different operating costs 

- on different routes. Hence we try to model a congestion game 

with player- and route-specific payoff functions. With a simple 

monotonic revenue function, we manage to extend our basic 

congestion model to a congestion game with player- and route-

specific payoff functions which admit a potential. In contrast 

to Milchtaich's work [13], our model is not a singleton game; 

players can choose more than one route in their strategy sets. 
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W e define kj) 二 芒 一 知 . ， a payoff function which depends 

on player ⑷，route (j) and the total number of player choosing 

that particular route {kj). W e extend the basic congestion model 

to the following: 

There are n operators (players) competing for m routes, where 

the revenue to each player i serving route j is 

rjikj)=字 for kj > 0 

and kj is the number of players offering services on route j, 

W e claim that a Nash equilibrium of this problem can be 

found by solving the following auxiliary problem: 

m % m n 

{GDI) : Maximize ^ ^ r j { y ) - ^ ^ ^ x j (IclO) 
j=l y=l j=l i=l 

subject to: 

n 
YA = k” vj € M ； (1.1) 

i=l 

m 

V i e N ; — (1.2) 

xi G {0,1}, i eN； j e M； (1.3) 
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The proof is a simple extension of the approach of Rosenthal 

(1973). Essentially, we show that (Id.O) is a potential function 

of the potential game. 

Proof: 

Let X* be an optimal solution of (GDI), and let S'J,…,5*) 

be the corresponding strategies of the players. 

If this is not an equilibrium solution, then for some player I, 

A 
there exist another strategy Si such that 

payoff/(5̂ ,,.., Si, Ŝ +i,..., 〉PayoffK对,…’ ̂ 7-1, 5^+1,…，《)， 

that is: 

- E 志 - E I - E <%+ E % > ( * * ) 
je或VS'f “ J jeSi\St jeSt\Si 

A 八 

Let (x, k) be the solution of (GDI) corresponding to (5̂ ,..., S^—i, Si, Ŝ +i’...’ 5*). 

Then 

m kj m n 

j=l y—l j=l i=l 
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z-* 

m rn n 

j=l y=l j=l i=l 

/ rn m \ 

\jeSi\S； ] jeSt\Si� 产 1 产 1 / 
u* 

m S m n 

二 E E ，洲 - E E ~ < ” 
/ ( \ ( \\ 

\jeSi\St \ J } jeSt\Si \ 3 / / 
� J 

-sr 
> 0 by (氺*) 

u* 

m Kj m n 

j=i 2/=1 i=i ^=1 

So we have another solution x with a better objective value, 

- contradicting the optimality of 

2.3.1 Best-Response Algorithm 

Before proceeding to the correspond mixed-integer programming 

formulation, let us consider a best-response algorithm on solving 

this problem. For simple illustration, we will consider the case 
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where the operating cost is operator (player) dependent only. A 

player- and route-dependent case can be extended easily. Pri-

ority will be given to operator with lower operating cost. The 

argument is that operator with better operating efficiency will 

be able to offer a more competitive charge (not necessary so, 

or perhaps provides better service that is beneficial to the pas-

senger if the authority controls the fare charges and keeps it at 

certain prices) and can stay longer in competition. Hence, even 

operator may cheat by declaring a lower than actual cost, they 

may not be able to sustain its operation for long and will be 

replaced by other operator sooner or later. In contrast, we can 

do it the other way round ——give opportunity for operator with 

higher operating cost to enter the competition first. They will 

- be eliminated as time passes. But in that case, it is possible 

for operators with lower operating cost to end up servicing little 

or no route at all. Should we penalize them because of their 

high efficacy? For the welfare of the passenger and to keep a 

healthy competition, we therefore stick to the former way. The 

best-response steps are as follows: 

1. First, rank the operator based on their operating efficiency 



CHAPTER 2. GAME THEORETIC MODELS FOR COMPETING OPERATORS 36 

using their respective operating cost, Si 一 lower cost higher 

rank. 

2. W e can start at any point and let the best-respond dynam-

ics lead the solution to an equilibrium. Here, we randomly 

assign the route to operators, then determine the corre-

spond fcj's as the initial point for the next step's iteration. 

3. Then start the iteration with the following simple algo-

rithm: 

while (non-equilibrium)/ 

(exist operator that can improve his profit) do 

for (last to first ranked operator) do 

exclude non-profitable route from current set of service 

end for 

for (first to last ranked operator) do 

- include profitable route into current set of service 

end for 

end while 

Return Strategy set 

Note that best-response dynamics simulate local search on 

the potential function; improving moves for players increase 

the value of the potential function. Even if operators ex-

clude service to a route, it only exclude routes which are 
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unprofitable (i.e. when Sij > rj{k), which will result in the 

increment of the potential function). Since the algorithm 

will terminate whenever no player can unilaterally improves 

their payoff (Nash equilibrium achieved), it may not always 

maximizes the potential function. As it is possible to reach 
m n , 

an equilibrium with higher overall cost, ̂  ^ Sijxj. W e 
j=li—l 

will discuss in further detail later in the proof for Theo-

rem 1. Best-response dynamics always converge to a Nash 

quilibrium, however. 

Observation 5: 

From 1000 cases each for network with 4, 5, 6, 7 and 

8 nodes studied, it took at most four iterations in solv-

ing the problem. The best-response dynamics converge 

- fairly quickly. 

To look for a Nash equilibrium with higher overall total profit 

from all operators, consider the following greedy approach. Sim-

ilar to the previous algorithm, the greedy algorithm is as follows: 

1. First, rank the operator based on their opemting efficiency 

using their respective operating cost, Si — lower cost higher 

rank. 
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2. Instead of start at a random point, we initiate with all kĵ s 

and xj^s equal zeroes. 

3. Then start the iteration with the following simple algo-

rithm: 

while (non-equilibrium)/ 

(exist operator that can improve his profit) do 

for (first to last ranked operator) do 

include profitable route into current set of service 

end for 

end while 

Return Strategy set 

Observation 6: 

As before, operators will continue to “enter the market" 

until it is unprofitable to do so, assuming that the op-

‘ erators are not capacity constrained (i.e. hi > m). 

In this case the optimal value fc* is defined by 

kj 二 ma'jc{k : rj(fc) — > 0} 

where [•] is a permutation of {1, 2,…’ n} such that 
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T h e o r e m 1: 

The solutions obtained from the greedy algorithm are Nash equi-

librium with the highest overall total profit from all operators. 

Proof: 

Before proving Theorem 1，we will first show that while the 

best-response algorithm always converge to a Nash equilibrium, 

it does not promises a high overall total profit from all opera-

tors. With that, it will reinforce the rationale behind Theorem 

1. 

Lets have a closer look at the best-response algorithm. By set-

ting kj = rnax{k : rj{k) — 问）> 0}, we know that route j 

can be serviced by at most k】operator/s simultaneously with-

out bearing any losses. Note that 5[/̂]j，s are sorted according to 

their respective operating efficiency — lowest to highest cost. 

Hence operator/s with cost greater than 5[九’沙.who happened 

to servicing route j will leave route j once there are k* oper-

ator/s in service, or when it is no longer profitable to service 

route j (whichever come first). Follow by the entering of op-

erator with lower cost. It is also possible for operator/s with 
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cost higher than to stay in service when there are fc* op-

erator/s servicing route j, i.e. when there exist an operator c 

where — S[c\j > 0, for n > [c] > fc*. In other words, that par-

ticular operator with cost higher than 5[“、(which already in 

service) would not leave as it is still profitable. However, it will 

be replaced by other operator/s if there exist another operator d 

where ^ ^ — 5[ci]j > 0, for fc* > [d] > 1. Note that the aforemen-

tioned scenarios would not occur in the greedy algorithm since 

operators are assigned according to its respective operating effi-

ciency. No matter how, the solution will eventually converge to 

the equilibrium where kj — max{k : rj{k) — 5阅j > 0}, with the 
771 n . 

overall cost, ̂  ^ 5ijxl, vary depending on the initial point of 
j—l i—l 

the best-response algorithm. This is true because as long as the 

- total number of operators in the network is less than fc*, there 

will be at least one operator can unilaterally improves it profit. 

N o w we have describe the process in the best-response algo-

rithm, the proof for Theorem 1 is then ver), obvious. Also with 

kj 二 max{k : rj{k) — 5阅） > 0}, the greedy algorithm provides 

Nash equilibrium with the highest overall total profit from all 

operators. This is due to the priority rule, which ensure it cap-
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tures the least possible overall cost from all operators when there 

are k* operator/s servicing route j, i.e. I 
i=l 

2.3.2 Integer Programming Formulation 

Similar to the basic model, (GDI) can be formulated as an 

equivalent integer programming: 

m n 7Ti n 

{GD2) : Maximize ^ ^ Rj (k) y^k ^ij 4 (2d.O) 

j=\ k=0 j=l i=l 

subject to: 

n n 

i=l k=0 
m 

- ^ x ] <6,, \/ieN； (1.2) 

j=i 
xj e {0,1}, i G N] j e M ; (1.3) 

n 
E%.A” = l , V j G M ; (2.4) 
k=0 

Vjk e {0,1}, A. eivu{0}； j e M: (2.5) 
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where 

y=i 

Observation 7: 

Whilst the optimisation model finds a Nash equilibrium, 

it may finds one that has low overall profit, whereas the 

greedy algorithm finds the highest-net-profit Nash equi-

librium solution. The major different between the so-

lutions is that kj = max{k : rj{k) — (¾) > 0} for the 

greedy approach while fc* = max{k : rj(fc) — 5[k]j > 0} 

for the game theoretical approach. And it happened 

only when there exist a route where the last operator 

joining the service is making zero profit on that partic-

. ular route, consequently drag down all the involving op-

erators' profits. Since by incorporating operator/s with 

zero profit into the solution will not violate the equilib-

rium and the objective function of the auxiliary mathe-

matics programme for the game theoretical approach. 
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2.3.3 Net Profit Maximizing 

N o w consider the "centralized" model where the objective is to 

maximize "total" operator profit. This can be found by solving 

m n m n 

{GD3) : Maximize H k Vj {k) ijjk 'YlYl 工 i (3d.O) 
j=l k—O j=l i=l 

subject to: 

n n 

灼 gM; (2.1) 

i=l k=0 

m 

j y i 仏 (1,2) 

xi e {0,1}, i eN； j e M； (1.3) 

n 

= e M ; (2.4) 

- fc-O 
fcG7VU{0}; j e M . (2.5) 
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Observation 8: 

Note that krj(k)—(警）k = aj for k + 0. So assuming 

all 5ij > 0, then clearly the optimal solution is to have 

each route j operated by the operator i with minimum 

6ij if aj > 5ij for that operator; and with no operator for 

that route if aj < 5ij for all i, assuming that the opera-

tors are not capacity constrained (i.e. bi > m). To get 

the solution with maximal total net profit ("centrally" 

controlled), it is therefore equivalent to solve (G3) using 

the top ranked operator's profit function. 

So again we get the dichotomy of “at most one operator 

per route" for the "centrally controlled" case versus "as 

many operators as the market can bear” for the "com-

petitive" case. 

W h e n bi < m for some operators, then the assignment 

of routes to operators is not so clear-cut and {GD3) is 

a "real" optimization problem to be solved! 

• E n d of chapter. 



Chapter 3 

Network Design 

Using the framework developed in the previous chapter, we will 

explore the impact of the network structure on the profit for the 

service providers. W e consider a service area with t townships 

(nodes) and compared the equilibrium solution for a network 

structure where direct services are offered between every pair 

- of townships to the equilibrium for a hub-and-spoke network, 

where every route between any two townships involves an inter-

change via a central hub. (See Figure 3.1) In the second net-

work structure, the routes offered are between a township and 

the central hub, and the total rider ship from each origin (to all 

destinations) is consolidated into the riclership from the origin 

to the central hub. For each service provider, the profit from a 

45 
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route depends on the operating cost of offering the service, the 

total profit due to the ridership and the number of competitors 

also servicing that route. 

W e examined numerically one thousand cases assuming the 

ridership and operating cost is the same for all origin-destination 

pairs, for various combinations of values for the ridership (a) 

and route operating cost {5). Interestingly, the numerical re-

sults seems to suggest that the ratio | is pivotal. For low and 

high values of the ratio (when operating costs are very low or 

very high relative to the ridership), the service providers (at a 

Nash equilibrium situation) make a higher profit with a hiib-

and-spoke network than with a complete direct-service network, 

and the cut-off values seem to be quite sharp. Analytical re-

- suits are obtained that can clearly delineate when one network 

structure is favoured by the service providers over the other. W e 

then investigate networks with different ridership among origin-

destination pairs. The switch-over value of ̂ ^ between the two 

network structure are not as clear-cut. Computational experi-

ments for cases where the payoff functions are player- and route-

specific were also studied. Again, we observed a not very clear-
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cut switch-over value of between the two network structures. 

3.1 Network Structure 

As mentioned earlier, we examine two different structure of a 

network. The first one is a complete network with t nodes and 
纟—1 

E 'a =力(二1) links, one for each origin-destination pair. The 
'U=1 

second is a hub-and-spoke network with 力 + 1 nodes and t links. 

Figure 3.1 illustrate these two networks with t = 6. For the sec-

ond structure, we assume no loss of ridership due to the change 

in network structure, as explained below. 

广-1 r, 
产：;：、、- . - - 們 - \ / \ \ " : x： Z 丨 \ / .；〜-、J \ 

�-�L:::::::..: 7 ' \ 「：二 
\、\、/- \v-ZT / 
\ ,,,、〉<〜..丨 / 

- \广.广 �-��-w 
U L> 

(a) Complete point-to-point Network 
(-) O 
- � \ , , 广 

\ . / . 
X , , , 

、“ 7'、: 
\ y 

(b) Hub-and-spoke Network 

Figure 3.1: Complete point-to-point direct services vs. Hub-and-spoke with 
central interchange 
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From the original origin-destination pairs in the first 

structure to t origin-destination pairs in the second structure, 

the ridership will be redistributed as illustrated in the following 

manner. Consider a four nodes network with respective ridership 

as depicted in Figure 3.2. W h e n links AB, BC, CD, DA, AC, 

and BD is replaced by links AO^ BO, CQ, and DO, passenger 

who wish to travel from or to A must pass through link AO, 

hence we assign a ridership of ai + a4 + ciq for link AO. The 

ridership for BO, CO, and DO are obtained similarly. Since the 

hub-and-spoke network require each passenger to travel on two 

links to reach the destination, we assume that the fare for each 

link is cut to half a dollar.i As mentioned earlier, to compare 

the two structure, we assume that the system operate according 

- to a competitive equilibrium but we measure the total profit 
m 

generated from the network, which is, E ^jPji^j)^ to compare 

the two networks. When hi > rri, it is sufficient to solve (Gl) to 

obtain a competitive equilibrium solution. 
1 Other fare structure can be studied with this same model. 
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(a) Complete point-to-point Network 

��� 

� � � w . ' . . ' 
. Z 一、、\气 、-、％、 

名 z ��� 

(b) Hub-and-spoke Network 

Figure 3.2: Four Nodes Networks 

3.2 Comparison Between Two Network Struc-

tures 

3.2.1 Routes with S a m e Ridership 

W e try to study a simple scenario first. Assuming a network with 

four players, and four nodes, where all the origin-destination 

pairs have the same ridership, â  = a, Vz, and operators are not 

capacity constrained, hi > m，Vi. One thousand cases with ran-

dom ridership, a, and operating cost, 5, were simulated. Both 

a and 5 are pseudo-random numbers uniformly-distributed be-

tween zero and 1000 (generated using ExcePs random function). 

W e then compare the total profit of the two network structure 
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under a competitive environment. Refer to Figure 3.3 for the 

plot I versus "Kh —爪c, where the y-axis refer to the revenue/cost 

ratio while the x-axis refer to the difference in total profit be-

tween the two network structure. Total profit for complete struc-

ture and hub-and=spoke structure are denoted by ixc and tth re-

spectively. Out of the 1,000 cases, 167 cases are irrelevant as the 

fixed operating cost is far greater than the total profit. From 

the remaining 833 cases, 68% of the cases perform better when 

hub-and-spoke structure is imposed. The improvement ranging 

from 0.22% to 10,933%. While about 11% of the cases show that 

the two structure perform equally well. The rest are cases where 

hub-and-spoke structure is inferior. One interesting observation 

is that hub-and-spoke structure is inferior when the | ratio fall 

- between clear cut ranges ——2) and [|, 3). 

Several other combination of different nodes (4,5,6,7,8) and 

players number (4,5,6) were investigated. Similar observation 

was found. Figure 3.4 shows the results for different number 

of nodes, t. While Figure 3.5 gives the plots when we take the 

logarithm value of the revenue-cost ratio. 
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Figure 3.3: | versus tth — tvc 

Analytical Result 

Let TTc and tth denote the total profit for complete network and 

hub-and-spoke network respectively. The total profit is obtained 

by summing up profit of each route from all operators. Since all 

routes have the same ridership and there will be only k opera-

tors offering services on each route, thus the total profit for the 

complete network is J2Y1 ̂ i'Pji^) = 人'ft.(人力，where 
2=1j—1 

, for fc > 0 
Pj{k) 二 < . 

0 , for /c 二 0 
V 
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Figure 3.4: Plots with several other value of i 

Therefore 

f 

t罕[a - 5 k) , for k>0 
TTc = <! “ 

〇 ，for A: = 0 
\ 

where k = max {h ： f > 0 < /1 < n} 

or 
/ 

0 , for a <b 

k = < n ， for ̂  > 5 
‘ n 

1 , otherwise 
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Figure 3.5: log{~) versus tth — ttq 

For hub-and-spoke structure, we have t routes and 

警-S , forfc,〉0 
P 购 = { . 

0 ，for k' = 0 
V 
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Therefore 

f 

, for > 0 
TTf/ = < 乂 

0 , forfc'二 0 
v 

where k丨=7nax : ^ ^ - 5 > 0,0 < h < n^ 

or 

f 

0 ，for ^ < 5 

= \ n ，for > S 

。‘(y) , otherwise 

W e wish to know which network structure perform better, and 

under what circumstances. For case t < 2, the two networks 

are identical, therefore to compare the two network structures, 

一 we assume that t, the original number of nodes in the network, 

is not less than three. Both k and k/ cannot take value greater 

than n due to the fact that the total number of operators of-

fering service is at most equal to the total number of operators 

in the network. Since ^ ^ ^ > [fj for t > 3, that is > k, 

there are five scenarios to be considered:-
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C^se 1 - [k^ = {k= [l\) = 0 

This implies 

冲-1) / 1 

I T " 、 丄 

a , 2 
S ^ t^ 

111 this case, ttq = tth — 0. 

Case 2 — n> = ^ ^ J ) > {k 二 [fj) 二 0 

Note that in this case, 

兀 C < ^H 

^ 0 s 力 簡 ） 

. . a(t-i) c 。(亡一 1) 
^^^ [ 2(5 J 二 2(5 

Also, 

••• n > > 0 and [fj = 0 

^ n + 1 > ^ ^ > 1 and f < 1 

.-. or 1 < ^ < 7 7 , + 1 

以 「 2 . 广 + -G , mm 1， tor this case. 
0 [t — 1 V t — I J J 
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Therefore, when | G m m (1， 

ic < 帅 if ^ ¢ ^ . 

else TTc = 7VH' 

Case 3 — n > (fc, = ^ ^ J ) > (k = [fj) > 0 

In this case 

and 

« > 1 

s o f e ( l M ) . 

Hence, 

TTc • ^H 

..t(t-l) “ S ^ ] < f f。(亡—1) _ A 。 ( 力 一 1 ) ) 

_ a(t-l) < t-1 a 

That is, the turning points will occur each time | or ^ ^ 
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reach an integer value. Where, 

TTC〉TTH if 

沉c 二 if 

if 

Figure 3.6 shows a closer look at the plot for Case 3 (from 

a network with four players, four routes). 

To examine the situation when | 孝 and 樂 

we consider the two cases when t is odd and t is even. 

Let I = fc + £ where fc G and 0 < £ < 1. 

i) t is odd, say t = 2g + 1 with q G Z"^. 

Then 

- 簡 = l i k + 

= kq + sq 

=kq + [eq ‘ 
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and 

t — 1 a . 
j bJ = 

so 

7TC > TT//. 

W e also note that when t is odd, then 

a a — 1\ 
产 1 ( 分 忍 + 

so we would never have | G and | ( ^ ) • Z+. 

Thus, when t is odd, we have 

兀c > tth 

with equality holding when ! 6 Z+. 

ii) t is even, say t = 2q with q G 

Then 

b " ) b ] 个 。 ( 、 
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and 

= + 利 

=[k 

Hence, if k is even, then 

TTc > 兀H, 

else if k is odd, then 

TTC > tt仏 when £ {q - > 臺 

or ^ > th^ 

and 

TTc < when £ < 

Case 4 — [ ^ J > 二 n) > {k =[!」）〉〇 

兀C • 冗H 

肖 销 a — 4 f J ) • 力 ( 华 - 5 n ) 

^ _ ^ ^ < a — 
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Also, 

• • 令 1) > 77〉 

^ ^ ^ > 7 ^ + 1 and 71 + 1 > f 

... n + 1 〉 - 缚 ， i . e . + 

Note that if 為 is integer valued, 

then since, 

a \ 2n I 2 

6 — ~ ^ ~ 

a \ 2n 

SO 

爪H > 

If 告 is not integer valued, say, 

2n p 

where q G Z+j) G Z+,0 < p < t - 1, and let 

a — 2(72+1) 
S — t-1 

二 g + 击 + 為 + 厂 
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then 

when + r > 1 

or when r > 1 —肖 . 

— t—丄 

Hence tih > ttc when 

a〉 2n 

~5 - T^ . 

Case 5 一 ^ ^ > [fj > (fc, = k = n) 

TTC < 沉 H 

<=> ^ (a-(5 71) < t { ^ - 5 n ) 

^=^ t > 3 

••• we only consider networks with t > 3 

沉H > TTc, if [fj > n 

With these inequalities we can determine when ttq is larger 

(less) than or equals to tih, in other words, complete network 

(hub-and-spoke) is preferable or both network structures per-

form equally well in terms of profitability. 
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Figure 3.6: Close up look for tt// — ttc versus | 

Table 3.1 and table 3.2 are examples for network with n = 

t = A and n = A^t = 5 respectively. 

Under the assumption that all the operators share the same 

cost structure and that the ridership is the same for all origin-

destination pair, we have just shown that there is an analyti-

cal relationship between the relative revenue/cost ratio and the 

- choice of the network structure (complete network vs. hub-and-

spoke) by the service providers. In the next part, we will try 

to extend the analytical result to a more realistic case, where 

each origin-destination pair may have different ridership, to see 

if similar analytical relationships between the revenue/cost ratio 

and the network structure exists. 
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广 a a(t —1) 1 1,/ a t-1 a a(t-l) ^ ^ 
Case J k k L 万 」 T L万」 ttc 

1 0.666 0.999 0 0 0 0 = 0 0 = 0 
I 1 0 i 0 0 < 1 0 = 0 

2 0.667 1.0005 0 1 0 0 < 1 0 < 0.002 
0.999 1.4985 0 1 0 0 < 1 0 < 1.994 
1 Es 1 1 1 L 5 ^ > 1 0 < 2 

1.332 1.998 1 1 1 1.5 > 1 1.992 < 3.992 
1 2 1 2 1 1.5 < 2 2 > 0 

3 1.999 2.9985 1 2 1 1.5 < 2 5.994 > 3.994 
2 3 2 3 2 3 = 3 0 = 0 

2.666 3.999 2 3 2 3 3 3.996 = 3.996 
I 4 2 4 2 3 < 4 4 > 0 

2.999 4.4985 2 4 2 3 < 4 5.994 > 1.994 
3 4.5 3 4 3 4.5 > 4 0 < 2 

3.333 4.9995 3 4 3 4.5 > 4 1.998 < 3.998 
f 5 3 4 3 ZE < 5 2 ~ 4 

3.999 5.9985 3 4 3 4.5 < 5 5.994 < 7.994 
‘ 4 4 6 4 4 4 6 = 6 0 < 8 

4.666 6.999 4 4 4 6 6 3.996 < 11.99 
¥ 7 4 4 4 6 < 7 4 < 12 

4.999 7.4985 4 4 4 6 < 7 5.994 < 13.99 
~ 5 5 4 4 ^ 7.5 > 7 6 < 14 

Table 3.1: | Range for a Network where n = t = 4： 
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f 旧 I 早 ⑷ I I 卜 c I I 兀H 

1 0.499 0.998 0 ~ 0 0 0 0 = 0 
0.5 1 0 1 ~~0 0 < 1 0 = 0 

2 0.501 1.002 0 1 0 0 < 1 0 < 0.01 
0.999 1.998 0 1 0 0 < 1 0 < 4.99 

1 2 1 2 1 2 = 2 0 = 0 
1.499 2.998 1 2 1 2 = 2 4.99 二 4.99 

3 1.5 3 1 3 1 2 < 3 5 > 0 
1.999 3.998 1 3 1 2 < 3 9.99 > 4.99 

2 4 2 4 2 4 = 4 0 = 0 

2.499 4.998 2 4 2 4 二 4 4.99 = 4.99 

^ 5 2 4 2 4 < 5 5 = 5 

2.999 5.998 2 4 2 4 < 5 9.99 = 9.99 
3 6 3 4 3 6 二 6 0 < 10 

3.499 6.998 3 4 3 6 = 6 4.99 < 14.99 
4 3.5 7 3 4 3 6 < 7 5 < 15 

3.999 7.998 3 4 3 6 < 7 9.99 < 19.99 
- 4 8 4 4 4 8 = 8 0 < 20 

4.499 8.999 4 4 4 8 = 8 4.99 < 24.99 
4.5 9 4 4 4 8 < 9 5 < 25 

4.999 9.998 4 4 4 8 < 9 9.99 < 29.99 
5 5 10 4 4 ^ 10 10 10 < 30 

Table 3.2: | Range for a Network where ?i = 4,t = 5 
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3.2.2 Routes with Different Ridership 

Another 1,000 cases were simulated. This time around, each 

origin-destination pair may have different ridership. a/s and 

5 were generated similarly (pseudo-random numbers uniformly 

distributed between zero and 1000). 89 cases were excluded 

due to the extreme operating cost, 6》aj. About 68% of 

the remaining cases showed that hub-and-spoke structure is su-

perior, with the improvement ranging from 0.19% to 49,950%. 

Whereas around 2% of the cases share the same profitability 

between two structures. In other words, less than 31% of the 

cases are actually in favour for the complete network structure. 

No clear cut range can be obtained as of the previous study but 

a pattern is observed, refer to Figure 3.7. However, we can still 

approximately draw lines to separate ranges where the hub-and-

spoke structure outperform the complete structure. Figure 3.8 

is the plot for a network with four players and eight nodes. The 
E 

revenue-cost ratio between 18 and 41 ( i.e. 18 < ^ ~ < 41) is 

the indistinct range where no clear indication as of which net-

work structure is better. As the number of nodes increases, the 

dividing line become clearer and a shrinking of the ambiguous 
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range is observed. 
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Figure 3.7： Cases with different ridership on each route 
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Analytical Result 

n rn . 

Now, the total profit for the complete network is X] J] x• Pj(kj) 二 
i=lj=l 

t { t - l ) 
~ 2 ~ 

kjPj{kj)^ where 

f 

芽 — 5 , for kj > 0 

Pjikj)= ’ . 

0 ，for kj =〇 
V 

Therefore 

(t{t-i) tjt-i) 
~ T ~ 2~ 
E 〜 一 J E kj , for kj > 0 

TTc 二 

0 , for kj = 0 
� 

where kj 二 min {n, m.ax {〇，max {/i : ^^ 一 5〉 0 , 〉O}}} 

or 

f 

0 , for = 0 

kj 二 L字J , for 0 < L ^ ^ � S n 

n , for y > n 

For hub-and-spoke structure, we have t routes' and the corre-

spond ridership are redistributed as mentioned earlier in section 
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3.1. Let a'j — ^ a“ where Aj is the set of ridership (in the orig-

inal complete network) which were partially served by current 

route j (in the correspond hub-and-spoke network). Refer back 

to Figure 3.2 for example, Ai = {ai, a4, ag}, a[ = ai + a4 + ag 

etc. Hence 

4 - ( 5 , for E > 0 

0 , for k'j 二 0 
\ 

and 

h i - 5 ， f o r ^ > 0 

llH 二 \ •^二 1 产 1 

0 , for fc^ = 0 

where fc;. = m.in 卜 max | o , max ！ : - 5〉0, h > o||| 

or 

f 

0 , for 阁 = 0 

^ = ^ I [i\ , for 0 < [gj < n 

n , for ^ > n 
\ L -

Again, we wish to know which network structure perform better, 

and under what circumstances. The original number of nodes in 
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the network, t, must not less than three and all kj and k'j cannot 
协 - 1 ) ^ 

a'-

possibly greater than n. Note that E = E f. However, 

we cannot further simplify kj as a'” which depends on 為‘，vary 

for different t. Thus, no general conclusion can be drawn here. 

Further more, to compare the two network structure for routes 

with different ridership, there are more than two ranges of vari-

ables to consider; as oppose to only two — the range of k and 

k' 一 in networks where all routes have the same ridership. 

3.2.3 Network with Player- and Route-specific Profit 

Function 

Similar to the previous comparison, we observed a pattern of 

the plot ̂ ^ versus tth — ttc. Refer to figure 3.9 for the plots of 

“ network with 4, 5, 6 and 7 nodes. With the same difficulty faced 

in the previous part, we cannot obtain any analytical result here 

either. 

• E n d of chapter. 
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Chapter 4 

Elastic Demand 

In this chapter, we investigate networks with service-quality-

basecl elastic demand. W e only manage to construct a model 

that maximizes the total net profit (which give "centrally con-

trolled" solutions). The "competitive" equilibrium solution is 

harder to get as we cannot find the respective potential function 

- for the game. 

4.1 Congestion Game Model with Service-Quality-

Based Elastic Demand 

So far in all presented models, they share a common restrictive 

assumption — network structure and the total service bundle 

being offered will not affect the overall ridership. That is to 

71 
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say, all passenger who would travel from town X to town Y 

with direct service will still travel even if the trip involves an 

interchange via a central hub. Clearly , the convenience level, 

travel time and possibly travel cost will not be the same for 

the two trips. Also, apparently with wider service coverage and 

greater number of operators servicing a particular route (higher 

frequency), it will attract more ridership. Hence, a more realis-

tic approach is to assume that both the network structure and 

the total service bundle will affect the overall ridership. Incor-

porating this assumption in the base model would mean that the 

profit function of a route may depend not only on the number 

of operators serving that route, but on the entire set of services 

offered by all the operators. 

- Recall that the ridership redistribution assumption made in 

section 3.1 (Figure 3.2), from a complete network structure to 

a hub-and-spoke one. No loss of ridership is assumed, even if 

some of the routes may not be serviced. Consider the following 

example. Figure 4.1 shows the ridership on each network struc-

ture, and 4.2 is the solution. Note that for the hub-and-spoke 

network (right hand side of Figure 4.2)，route AO, BO, CO, and 
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DO are denoted by j — 1,2,3,4 respectively. The solution for 

the hub-and-spoke problem is to service route v40, BO, and CO 

while abandoning DO. Strictly speaking, operators who are ser-

vicing those three aforementioned routes will suffer some loss of 

ridership. As passenger who wish to commute from yl, or C 

to D can only reach 0 under this service bundle. Assuming the 

same profit function described earlier, the fee charges are cut to 

half as compare to the charges on complete network, which is 

one dollar. The loss of ridership is therefore at most a： + a4 + ag 

and the subsequent loss in revenue would be a sum of (。'1+。广6)没 

less than the revenue acquired by solving (G2), where 9 denote 

the percentage lost of ridership. Then it make sense to antici-

pate that at least one operator will cover the losing route, DO, 

- as long as the loss induced by the loss of ridership is greater 

than the loss from route DO alone. 

With the more realistic model, is it still possible to model the 

problem as a potential game? W e may need to develop a formu-

lation of the game for this model and investigate algorithms for 

finding the Nash equilibrium for the different prototypical net-

work structures. W e can even look for models where additional 
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Figure 4.1: Case Example 

ridership may be induced, for example, in a backbone network 

where the main truck routes are bus-only lanes that enable the 

bus to traverse the congested city centre faster than private cars. 

Or the ridership between an origin-destination pair will be af-

fected by the number of interchanges required in the trip and 

the expected travel time and cost. Below, we will show the pro-

posed model, (GB4), which maximize the total net profit. W e 

assume that the ridership between an origin-destination pair is 

affected by the total number of routes being serviced, following 

a logistic distribution. Note that we can always try with other 

distribution according to specific situation and model it simi-

larly as follows, as long as the profit is the function of h and k. 
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Complete Structure Hub-and-spoke Structure 
a I ci2 fl3 a^ a s ci(, o i a2 n j 4 
466 650 93 250 59 507 611,5 587.5 625 ？.01 6 6 
2.19 219 

1(1 i) P ij Pjjki) PiUu) p s{l< 5) P6il<6) P\(l'\) PlO'l) P 4) 
1 247.00 431.00 - 1 2 6 , 0 0 3 1 . 0 0 -160,00 288.00 1 392.50 368,50 4 0 6 . 0 0 - 1 8 . 0 0 
1 14.00 106.00 -172.50 -94.00 -189.50 34.50 2 86.75 74.75 93.50 -118.50 
3 -63.67 -2,33 -188.00 -135.67 -199.33 -50.00 3 -15.17 -23,17 -10.67 -152.00 
4 -102.50 -56.50 -195.75 -156.50 -204.25 -92,25 4 -66.13 -72.13 -62.75 -168.75 

k \ k 2 k 3 k 4 k 5 k ^ k ^ k > k ^ - k ^ 
2 2 0 1 0 2 2 2 2 0 

/ = 1 J = 2 j = 3 j = 4 . / = 5 7 =(, 1 / = 1 j = 2 / = 3 / =̂  4 
Player 1 1 1 0 1 0 1 Player 1 1 1 1 0 
Player 2 1 1 0 0 0 1 Player 2 1 1 1 0 
Player 3 0 0 0 0 0 0 Player 3 0 0 0 0 
Player 4 0 0 0 0 0 0 Player 4 0 0 0 0 

” V I, y - -' 

^ p j { y ) 261.00 537.00 0.00 31.00 0.00 322.50 1152 261.00 537.00 613.50 31.00 943 
( / - I . ™ ！'" I ‘ 

j m I ；/•—} 

k ' j P j ( k J ) 28.00 212.00 0.00 31.00 0.00 69.00 340 "；Jft",::;.) 28.00 212.00 36.00 31.00 337 

Figure 4.2: Case Example's Solution 

where h denotes total number of routes under service, and k is 

the number of operators serving route j. 

W e define the profit on route j for an operator as: 

1 S for A- > 0 
- 巧仇 AO 二 Hi+e-(“"2)) J f o r b O 

0 if k = 0, 
V 
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Let 

/ 

m n 

1 if E E Vjk = h 

Uh = < "二1 二 1 ，for h = 0,1,..., m; 

0 otherwise 
V 

and let 
m n 

Zh = H kpjih, k) Vjkj 

J 二1 /c 二 0 

where u^s are binary variables whereas Zh denotes the total rev-

enue when there are h routes under service. W e need to ensure 

a unique Uh’ which can be enforced by the following constraints: 

rn 

Uh = 1； 

h=0 
m m 71 

= 

(GD4) is given by: 

m 

(GD4) : Maximize y ^ Uh Zh (4d.O) 

h=0 

subject to: 
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n 71 
Y^xi 二 yj e M； (2.1) 

k=0 

m 

VzGTV; (1.2) 

e {0,1}, 2 G iV; j e M ; (1.3) 
n 

難 = 1 , Vj e M ; (2.4) 

k e N U { O y ^ j G M ; (2.5) 
m 

[Uh 二 1; (4d.6) 
h=0 

m m n 

h=0 j=l 人 : = 1 

Uh e {0,1}, VheMU{0}. (4d.8) 
m n 

- Zh — ^ k) Vjk] (4d.9) 
j=l k=0 

Constraint (4d.6) would specify a unique h. This ensure the 

correct R H S for (4d.7) and for the objective function. 

However, the objective function of (G_D4) is a non-linear func-

tion. A n equivalent mixed-integer programming, {GD5), will be 

presented below. W e introduce binary variables i)hjk, intended 
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to be: 
f 

1 if Uh 二 1 and z/jk = 1 
Vhjk = < 

0 otherwise 
\ 

which can be enforced by the following constraints: 

m n 

Y , ” hjk = huh, yh G M U {〇}; 
j=l k=l 

m 

= yjk, ^keNu {0}； J e M ; 
h=0 

Uh + ijjk < Vhjk + 1, V/?̂  G M U {0}; fc G TV U {0}; j G M ; 

A mixed-integer programming of {GDb) is given by: 
m m n 

{GDb) : Maximize ^ ^ ^ kpj{h, k)vhjk (5d.O) 

/7.=0 j=l k=0 
subject to: 

n n 

= Vj G M； (2.1) 

A—0 
m 

Vi e N; (1.2) 
j二1 ‘ 

xl e {0,1}， i e N； j e M； (1.3) 
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n 

灼 e M ; (2-4) 
k=0 

y沖 G{0，1}, fcG7VU{0}; J G M ; (2.5) 

m 

= (4d.6) 
h 二Q 

m m n 

/i二0 j=l k^l 

Uh e {0,1}, V / i g M U { 0 } . (4d.8) 

rn n 

Y j Y 1 ” h 休 = h U h , V / i G M U { 0 } ; (5d.9) 

m 

= m, j keNU {0}; (5d.l0) 

Uh+Vjk < Vhjk+1, , h e MU{0}; j G M ; k e iVU{0}; (5d.ll) 

Vhjk e {0,1} , he Mu {〇}; j e M； keNu {0}； (5d.l2) 
“ m m n 

kpAh, k)vhjk > 0. (5d.l3) 
h=0 j=l fc 二 0 

Constraint (4d.6) would specify a unique h. This ensure the 

correct R H S for (4d.7) and for the objective function. While bi-

nary variables Vhjk are enforced by constraints (5d.9) to (5d.ll). 

Since operators will not offer any service if the overall opera-

tion is unprofitable, we introduce the last constraint, (5d.l3)，to 
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reduce the feasible region. 

Observation 9: 

Constraint (5d.l3) reduce the computational time from 

days to only a few minutes for some extreme cases. 

Similar to (G2), we might want to model a competitive-

demand-elastic model as a potential game model. Unfortu-

nately, we have no idea as of how to model an equivalent poten-

tial game yet. However, we can proceed from the previous net 

profit maximizing solution to find the Nash equilibrium solution 

with the algorithm below: 

Solve (G_D4) to get the initial kj set 

for (each route j where /cj=l) do 

if (the market can bear more than n , i.e. when ( 丄 + 己 二 〜 - ” 几 > "then 

kj = total number of operators, n 

else 

kj = as many operators as the market can bear, “+已.,:，。— 

end if 

end for 

for (each route j where kj=0) do 

for (first to last ranked operator) do 

if (overall profit increase by including this route) then 
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^ = 1 

h = /1+1 

end if 

end for 

end for 

Return Strategy set 

The idea is to find the maximum possible profit from the 

network first. Only then we allow the operators to compete for 

the route. That is, with the optimal solution from (GD4), we 

proceeds to let as many operators as the market can bear to en-

ter profitable routes. While having the number of routes under 

service, h, unchanged. Finally, we add in the following consider-

ation. During the competition, operators will consider servicing 

- unprofitable routes as long as the lose can be covered by the ex-

tra induced profit from (ridership on) the other servicing routes. 

To take into consideration that when more operator servicing 

a route, more ridership induced, we may replace all h, Uh with 
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g, Ug respectively and define the following: 

rn n 
1 if E gkyjk = g, 

Ug — < •̂二 1 for ̂  = 0,1,..., m + n, 

0 otherwise; 
\ 

and 

t S for /r > 0 
P,{CJ^) = \ 2)) forA'〉0， 

0 if fc 二 0, 
\ 

while changing constraint (4d.7) to 

m in n 

(4d.7，） 
g=Q j=l k=l 

Note that g refers to the total number of routes offered by all 

- operators, where the same route served by two operators counts 

as two routes. 

4.1.1 Network with Service-Quality-Based Elastic De-

m a n d 

W e also numerically investigate the comparison of a hiib-and-

spoke and a complete network. Again, we observed some pat-
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Figure 4.3: Plots of vs. tih — ttc — Service-Quality-Based Elastic 
Demand 

terns when we plot the graph for versus 兀丑一ttcs similar 

to previous results, tyh and ttc refer to the overall total profit 

from all operators when a hub-and-spoke network and a com-

plete network is implemented respectively. Figure 4.3 shows the 

plots of network with 5，6, 7 and 8 nodes. W e face the same 

difficulty in obtaining an analytical result. 

• E n d of chapter. 



Chapter 5 

Conclusion 

5.1 Future Work 

W e will discuss various directions of research to be explored. 

5.1.1 Impact of Network Design and structure 

So far, we only consider two types of network 一 complete net-

work and hub-and-spoke network. Other prototypical network 

structures may be worth investigating. Some such prototypi-

cal structures are spanning trees, Manhattan grids, and hub-

and-spoke with ring-roads. (See Figure 5.1.) W e would like to 

explore how the structure of the network and the revenue/cost 

ratio impact: 

84 
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1. the equilibrium solution chosen by the operators? 

2. the overall profit for the operators? 

3. the set of routes being served? 

For each network structure, would it be possible to identify, 

for each link in the network, a threshold value for the operating 

cost whereby operators would be induced to offer services on 

that link? 

j ： O (y) K.) O � 0 
I i 
I 1 6 o o 〇 

Manhattan Grid Spanning Tree 

O 

P p. 

X j / ^ 众 > 

Y / V V " . 〇 

/ -"•i V-' \ -s. 

、—,丫 。 ” 
(J 

, , . , , � � Major Backbone network 
Hub-and-spoke Ring road ^ h sub-clusters 

Figure 5,1: Other Prototypical Network Structures 
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5.1.2 Non-cooperative and Cooperative G a m e s 

The potential game framework is a non-cooperative game frame-

work. Operators may consider to cooperate when their resources 

are limited (which is mostly true). One operator may offers ser-

vices on a part of the network that serve as feeder links to the 

service provided by another operator, and vice versa. Develop-

ing a cooperative game-theoretic model may help us to compare 

and contrast the equilibrium solutions of both setting, the co-

operative game and non-cooperative settings. 

W e are then left with questions like: 

1. What is the impact on the resulting service level offered to 

the public transit ridership? 

“ 2. What is the impact on the overall profit for the service 

providers? 

3. What is the appropriate profit-sharing scheme to induce 

higher profits or more comprehensive services for the pub-

lic? 产 
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5.1.3 Joint game-theoretic model of both passenger 

and providers 

Hopefully with this project we can develop a comprehensive 

game-theoretic model that enable us to seek for a balance among 

the service providers' strategic competition and the interplay 

between the basket of services provided, and the total rider-

ship of the system as a whole. A n appropriate representation 

of the model may be a bi-level one. Where the "upper-level" 

would represent the strategic game among the service providers 

as they select the services to be offered to maximise their indi-

vidual profit. While the "lower-level" is the game between the 

public and the operators as a group, in that the public may be 

diverted to other forms of transport (e.g. taxis, private vehicles) 

if the availability and service quality (e.g. interchanges required, 

circuitous routes, travel time) of the basket of services offered by 

the operators are too low. The two levels of the bi-level problem 

are interlinked since the choice of the public — to utilise pub-

lic transit or not — would affect the potential ridership of the 

system and thus impact the potential profit of the operators. 

W e plan to develop this model and investigate algorithms for 
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finding its equilibrium solution(s), and study the impact of the 

parameters (costs, network structure, demand function, etc.) on 

the resulting equilibrium. 

By investigating this bi-level game, we may obtained insight 

into the relationship among the network infrastructure, compet-

itive situation between operators and the impact on the type and 

level of services offered to the public. These relationship could 

further guide us in decision making on possible infrastmctural 

investments and incentives to offer both operators and the riding 

public, which is very helpful for the government authorities and 

to ensure a public transit system that well-serves the public and 

benefits the community in terms of costs, convenience, quality, 

environmental impact and other concerns being designed 

• E n d of chapter. 
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