
Call Graph Reduction by Static Estimated
Function Execution Probability

LO, Kwun Kit

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

©The Chinese University of Hong Kong

February, 2009

The Chinese University of Hong Kong holds the copyright of this thesis.

Any person(s) intending to use a part or the whole of the materials in this

thesis in a proposed publication must seek copyright release from the Dean of

the Graduate School.

Thesis / Assessment Committee

Professor Ho-fung Leung (Chair)
Professor Elisa Baniassad (Thesis Supervisor)
Professor Lap-chi Lau (Committee Member)
Professor Robert Walker (External Examiner)

Abstract

Abstract of thesis entitled: .

Call Graph Reduction by Static Estimated Function Execution Probability

Submitted by LO, Kwun Kit

for the degree of Master of Philosophy

at The Chinese University of Hong Kong in August 2008

When looking at an unfamiliar code base, developers have difficulty using

intuition to guess which functions are central to the functionality of code. Tools

such as reverse engineering tools, and feature, conccrn or aspcct mining tools

are helpful for providing structural insight into the system, and may provide

support for developer's intuition, but they do not reveal which functions in the

code are of central importance to the functioning of the system.

Instead, developers need to be provided a view which isolates important

functionality in the code. Call graph reduction techniques attempt this, by

removing functions that are likely to be peripheral to the system's functionality.

The current state of the art approach attempts to do this by removing small

functions, and helper functions. Though this docs result in some isolation of

the important functions, it leaves many non-corc functions present in the call

graph.

The thesis of this research is that we can provide a better isolation of

important functions in the call graph by trimming it down to only functions

that have a high probability of execution. We believe that this will provide

better accuracy of included functions, and will result in a smaller call graph.

We evaluate these claims by comparing the execution probability approach

against current the state of the art reduction tcchniquc, and against tcchniqucs

that mimic developer intuition.

摘要

在處理不熟悉的源碼的時候，開發人員的直覺往往不能準確判斷哪些函數在

系統功能上是比較重要。儘然逆向工程工具，以及一些關於功能、關注點或

側面挖掘的工具可以幫助開發人員理解系統結構，這些工具並不能提供開發

人員哪些函數是比較重要的資訊。

開發人員需要一些將重要函數從源碼中抽離的方法，而函數調用關係圖

精簡化技術便是試圖以移除與系統功能不太相關的函數來達成此目的。現行

的方法是將較小的函數以及輔助函數從函數調用關係圖中移除，雖然這可以

將核心函數從中抽離，但不少不太相關的函數依然留存在函數調用關係圖之

上。

本論文的研究就是將函數調用關係圖精簡至僅僅保留高調用機率的函

數，從以更有效地將重要函數從源碼中抽離。我們相信這種方法可以更準確

地精簡函數調用關係圖，並更有效地縮減其大小。

我們通過對現行的技術，以及仿效開發人員直覺判斷的技術，與我們的

調用概率方法進行比較，以評估本論文的主張。

111

Acknowledgments

I would like to express my gratitude to my supervisor, Professor Elisa Banias-

sad, for her patient support, guidance and encouragement along the way. This

dissertation would not have been possible without her assistance and help. I

must thank Elisa for her teaching and advice during my master as well as

undergraduate studies.

I also thank the members of my thesis examination committee: Professors

Lap-chi Lau, Ho-fung Leung and Robert Walker, for their helpful comments

in improving this thesis.

Thanks are given to Alan Chu and Jacky Chan for their insightful com-

ments and advices during my study. They are the kind of persons that arc

knowledgeable in almost any topics that you can imagine. Also thanks to

Stephen Leung, who inspired me a lot in the technical part of my research.

Finally, I would like to thank my family for their continuous encouragement.

K W U N KIT , L O

The Chinese University of Hong Kong

DECEMBER 2008

IV

Contents

1 Introduction 1

1.1 Existing Approaches in

Program Understanding 2

1.1.1 Localized Program Understanding 2

1.1.2 Whole System Analysis 3

1.2 Example of Function Execution Probability Reduction of the

Call Graph 5

1.3 Organization of the

Dissertation 7

2 Preliminary Study 8

2.1 Participants 8

2.2 Study Design

2.3 ispell

2.3.1 Subject II (i s p e l l) . .

2.3.2 Subject PGl (ispel l)

2.3.3 Subject PG2 (ispel l)

2.3.4 Subject 12 (i s p e l l) , .

2.3.5 i spe l l Analysis

2.4 PreeBSD Kernel

Malloc

2.4.1 Subject II (FreeBSD)

2.4.2 Subject PGl (FreeBSD) 17

2.4.3 Subject PG2 (FreeBSD) 18

2.4.4 Subject 12 (FreeBSD) 20
2.4.5 FreeBSD Analysis 20

2.5 Threats to Validity 21

2.6 Summary 22

3 Approach 24

3.1 Building Branch-Preserving

Call Graphs 26

3.1.1 Branch Reserving Call Graphs 26

3.1.2 Branch-Preserving Call Graphs 28

3.1.3 Example of BPCG Building Process 31

3.2 System Function Removal 34

3.3 Function Rating Calculation 35

3.3.1 Rating Algorithm Complexity 38

3.4 Building the Colored

Call Graph 39

3.5 Call Graph Reduction 39

3.5.1 Remove-high-fan-in-functions Approach {FEFR-fanin) . 39

3.5.2 Remove-leaf-nodes Approach (FEPR-/ea/) 41

4 Validation 42

4.1 Measures 43

4.1.1 Inclusion Accuracy (IA) 43

4.1.2 Reduction Efficiency (RE) 44

4.1.3 Stability (S) 45

4.2 Analysis of FEPR Techniques 45

4.2.1 Settings 45

4.2.2 Inclusion Accuracy (lA): 47

vi

4.2.3 Reduction Efficiency (RE): 47

4.2.4 Stability (S) 48

4.3 Ying and Tarr's Approach 48

4.3.1 Settings 50

4.3.2 Inclusion Accuracy (lA) 50

4.3.3 Reduction Efficiency (RE) 51

4.3.4 Stability (S) • 51

4.4 Centrality Measure Approach 52

4.4.1 Inclusion Accuracy (lA) 53

4.5 Top-down Scarch Approach 56

4.5.1 Reduction Efficiency (RE) 57

4.6 Synthesized Analysis 58

4.6.1 Inclusion Accuracy (lA) 58

4.6.2 Reduction Efficiency (RE) 59

4.6.3 Stability (S) 59

4.6.4 Threats to Validity 59

4.7 Summary 60

5 Discussion 62

5.1 Flexibility of Analysis 62

5.2 Existence of Function

Pointers, GOTOs and

Early Exits 62

5.3 Precision of Branch-Preserving

Call Graphs 63

5.4 Function Ranking and

Recommender System 64

5.5 Extending the Approach

Beyond C 66

Vll

6 Related Work 67

6.1 Existing Approaches in

Program Understanding 67

6.1.1 Localized Program Understanding 67

6.1.2 Whole Program Analysis 69

6.2 Branch Prediction and

Static Profiling 73

7 Conclusions 76

A Call Graphs in Case Studies 78

B Source Files for BPCG Builder 85

Bibliography 153

Vlll

List of Figures

1.1 Call Graph of i spel l 5

1.2 Estimated Execution Probability of i spe l l 6

1.3 Reduced Call Graph of i spel l 6

2.1 Call Graph of FreeBSD Kernel Malloc: Bird's eye view 16

3.1 Function Rating Process 24

3.2 Original Source Code 27

3.3 Resultant BRCG from the code in figure 3.2 27

3.4 Original Source Code 28

3.5 Resultant BPCG from the code in figure 3.4 29

3.6 Original Source Code 31

3.7 Building BPCG from the code in Figure 3.6 32

3.8 Building BPCG from the code in Figure 3.6 (conc.) 33

3.9 Sample C Code with Looping Construct 37

3.10 BPCG for the code in figure 3.9 37

3.11 An Equivalent BPCG for figure 3.9 38

3.12 Rcmove-high-fan-in-functions Approach (FEFR-fanin) 40

3.13 Remove-leaf-nodes Approach (FEPR-Zea/) 41

4.1 Call Graphs Obtained by Our Call Graph Reduction Approaches

(ispel l) (Bird's eye views) 46

IX

4.2 Call Graphs Obtained by Our Call Graph Reduction Approaches

(FreeBSD) (Bird's eye views) 46
4.3 Percentage Reduction of FEPR approaches under Different Pa-

rameter Settings 49

4.4 Call Graph Obtained by Ying and Tarr's Function Filtering

Approaches 50

4.5 Percentage Reduction under Different Parameter Settings 52

4.6 Distribution of Centrality Values: Ying and Tarr's Approach . . 55

5.1 Example Showing the Imprecision of BPCG 64

A.l Reduced Call Graph by remove-high-fan-in-functions approach

(Threshold=0.5’ Fan-in Max=4) 79

A.2 Reduced Call Graph by remove-leaf-nodes approach (Thresh-

old=0.5) 80

A.3 Reduced Call Graph by Ying and Tarr's approach {pbottom 二 1，

P small = 2) 81

A.4 Reduced Call Graph by remove-high-fan-in-functions approach

(Threshold�0.4，Fan-in Max=4) 82

A.5 Reduced Call Graph by remove-leaf-nodes approach (Thrcsh-

old=0.4) 83

A.6 Reduced Call Graph by Ying and Tarr's approach {pbottom = 1,

Psmall = 2) 84

X

List of Tables

2.1 Summary of Accuracy: Subject II，System i spe l l … . .

2.2 Summary of Accuracy: Subject PGl, System i spe l l . .

2.3 Summary of Accuracy: Subject PG2, System i spe l l . .

2.4 Summary of Accuracy: Subject 12, System i spe l l

2.5 Performance of Subjects in Preliminary Study (i s p e l l) .

2.6 Summary of Accuracy: Subject II，System FreeBSD . . .

2.7 Summary of Accuracy: Subject PGl, System FreeBSD .

2.8 Summary of Accuracy: Subject PG2, System FreeBSD .
2.9 Performance of Subjects in Preliminary Study (FreeBSD)

2

3

4
5
6

8
9

21

4.1 Functions in Documentations 44

4.2 Inclusion Accuracy of FEPR approaches (i spel l) 47

4.3 Inclusion Accuracy of FEPR approaches (FreeBSD) 47

4.4 Reduction Efficiency of FEPR approaches (i spe l l) 48

4.5 Reduction Efficiency of FEPR approaches (FreeBSD) 48
4.6 Inclusion Accuracy of Ying and Tarr's Approach 50

4.7 Reduction Efficiency of Ying and Tarr's Approach 51

4.8 Functions with the Highest Centrality 53

4.9 Classification of High Degree Centrality Functions 54

4.10 Degree Centrality for the Functions Mentioned in Documentations 54

4.11 BFS Visiting Order on Original Call Graph 57

4.12 BFS Visiting Order Using FEPR-Zea/Approach 58

XI

5.1 Estimated Piinction Execution Probability for functions in sort. c 65

Xll

CHAPTER 1

Introduction

Understanding the calling pattern of subroutines is a fundamental activity

for understanding an unfamiliar code base. Call graphs are a visualization

of call relationships between subroutines. They have been long recognized

as a useful structure for code based understanding[Ryd79]. However, as our

preliminary study in Chapter 2 showed, in the face of large call graphs, devel-

opers' intuition-based examination does not always result in identification of

functions important for understanding a system's core functionality.

We believe that this inability can be attributed to the large number of

functions in the call graph that are not corc to the functionality of the program.

As would be expectcd, different functions have different levels of significance

to the major functionality of the system. Some are important to the core

functionality, and are important in learning the basic functioning of the system,

while others, such as helper functions, are less central.

There has been some investigation into reducing the call graph to help focus

the developer's attention on important functionality. Ying and Tarr [YT07

provide a technique that filters out functions from the call graph if they are

small, or if they are near a leaf node of the call graph.

While their heuristics have shown benefits program investigation for devel-

oper in navigation and performing change tasks, their simple, though elegant,

technique has some inherent drawbacks: the call graphs resulting from their ap-

proach still contain a high percentage of helper and non-core functions. Proba-

bility models, however, have been used successfully in ranking [IYF+03，ZJ07

1.1. EXISTING APPROACHES IN
PROGRAM UNDERSTANDING CHAPTER 1. INTRODUCTION

and searching related components [Rob05, SFDB07]. We believe that a simi-

lar approach can be used in call graph reduction for the sake of filtering out

non-core functions.

The thesis of this work is that by filtering the call graph to retain

only those functions with a high estimated probability of execution,

we can arrive at a reduced call graph that is smaller, has a higher

percentage of important functions, and which is more robust in the

face of changing thresholds of function inclusion, than current ap-

proaches.

To validate the thesis claims, we have conductcd a series of ease studies and

comparisons, showing the improvements over current techniques in terms of

the scalc of reduction of the call graph (reduction efficiency), the importance

of functions included in the call graph (inclusion accuracy), and the robustness

of the approach in the face of changing thresholds of inclusion (stability).

In the next section, we give a high-level outline of the field of assisting

programmers understand new code bases, and indicate where our approach

falls within the field, and what benefits it brings. Then, we provide a high-

level illustration of the application of our technique.

1.1 Existing Approaches in

Program Understanding

In this section we provide a high-level view of the current work on helping

developers understand code bases.

1.1.1 Localized Program Understanding

Approaches such as Program Slicing [Wei79] and Recommendcr Systems [IYF+03,

IYYK05, SFDB07, RobOS] afford the developer the ability to investigate a

1.1. EXISTING APPROACHES IN
PROGRAM UNDERSTANDING CHAPTER 1. INTRODUCTION

program from a particular starting point. Program slicing extracts program

elements that contribute to, or that are affected by the control or data flow of

a selected statement or variable. Recommender systems provide the code of

methods as a response to a user query: these methods should act as a guide to

further development of a software system. While these systems are helpful for

developers who already have a location of interest for investigation in a code

base, or who are concerned with a particular software evolution task, they are

not helpful for developers who are new to a whole code base，and who wish to

familiarize themselves with it in general.

1.1.2 Whole System Analysis

Several fields of research are centered around providing a developer an overview

of a system without needing to be provided a starting point. Some are aimed

at facilitating system reorganization, and others provide a developer with a

structural overview of the system.

Structure Reorganization

Tools related to structural reorganization provide the developer with a way to

posit a new modularity for existing code. New modules might be components,

as in component mining ([SGMB03, GK97, LL03, TH99, THOO, IYF+03])’ as-

pects, as in aspect mining ([MvDM04, BDET04, BDET05, BZ06, ZJ07], or

formed by the developer, as in conceptual modules ([BM98, ALOl]. While

these tools afford developers an overview of an entire system, and facilitate

general system understanding,-the main goal of these techniques is not to pro-

vide developers with an initial starting point for examination, but to facilitate

restructuring.

1.1. EXISTING APPROACHES IN
PROGRAM UNDERSTANDING CHAPTER 1. INTRODUCTION

Structural Overview

Some techniques, such as pattern miners [SKL+02, PIKK98, RadOO]. fea-

ture location approaches [MM03, DDL+90，ACC+02，ZZL+06, Egy03, EKSOl,

EKS03, WS95, WC96] and reverse engineering tools [MK88, Mur96] give struc-

tural overviews of a code base. They do not, however, provide a topology of

the importance of each module or component in the system. Developers would

have to use intuition to form a guess as to what portions of the views to investi-

gate to gain an initial understanding of a system. This may result in erroneous

investigations, if developer intuition followed that observed in our preliminary

study (Chapter 2). In that study, we found that developers rely on naming,

to estimate the importance of functions in a system, and also found that this

reliance often results in poor choices of target functions. It is likely that the

same approach would need to be applied to the output of structural overview

tools.

Call Graph Reduction

Call graph reduction is an approach that involves trimming down the size of

call graph so that developers can focus initial investigation efforts on smaller

call graph that contains a higher concentration of functions important to un-

derstanding the system. Ying and Tarr have proposed a heuristic technique for

call graph reduction [YT07] in which they filter methods out of the call graph

by removal of getter and setter methods (the Don't-hit-bottom heuristic),

and by removing small methods (the Skip-small-methods heuristic). Their

reasoning is that neither get/set routines nor small methods arc likely to con-

tribute to an understanding of the core of the program.

By applying these two filtering heuristics, they found that the reduced call

graph is able to help developers identify relevant methods from the source code.

However, as we will describe in Chapter 4，Section 4.3, a high percentage of

1.2. EXAMPLE OF FUNCTION EXECUTION PROBABILITY
REDUCTION OF THE CALL GRAPH CHAPTER 1. INTRODUCTION

helper and non-core functions are still left in the reduced call graph.

1,2 Example of Function Execution Probabil-

ity Reduction of the Call Graph

In this section, we illustrate our call graph reduction technique using i s p e l l

code base as an example.

Figure 1.1 Call Graph of i spe l l

i spe l l is an interactive spell check program. .The code base consists of 168

functions and its overall size is approximately 9 K lines of code. Figure 1.1

shows the original call graph of i spe l l . Although it is a small program, the

call structure is complicated, and a starting point for investigation is difficult

to identify.

The i s p e l l walkthrough guide [ACLS02] provides the developer with a

starting point for investigation. These nodes are circled in red. But in the

absence of that guide, the developer is left to guess which functions would

be of interest. By trimming the call graph down to functions that have a

high probability of execution, we can reduce the developer's search space for

important functions.

First, we estimate the execution probability of each function based on the

structural heuristic of the sourcc code. Figure 1.2 is a visualization of the

results: The function nodes are colored according to their estimated proba-

bility of execution. The black nodes are 100% likely to be executed and the

1.2. EXAMPLE OF FUNCTION EXECUTION PROBABILITY
REDUCTION OF THE CALL GRAPH CHAPTER 1. INTRODUCTION

Figure 1.2 Estimated Execution Probability of i spe l l
^ 二 二 广 - • … — — — "――-•• ~ - ‘

.•�..W J-——� .—-ĵ g'-.v. •J'". 1 ,
� H ; . - H I � � ; ~ • ^ � �

.I \ •• ‘ U ‘ "...
� £ ^ � —_

unreachable nodes are colorcd in white. At this point, the developer can look

at dark portions of the call graph to familiarize themselves with the code base.

However, the graph is still quite large, so we apply the next step to elide less

important nodes.

Figure 1,3 Reduced Call Graph of i spe l l

ES3 • I
一 “ . — . e ± D

e g) “
'FSISISI ES!B9 BLIII ^ ^

⑧

iil GkO 尚概 tisi

, —
曲 —

Next, our call graph reduction approach removes leaf nodes and the func-

tion nodes with an execution probability lower than a certain threshold. Fig-

ure 1.3 shows the reduccd call graph of i s p e l l with a threshold of 0.5. The

core functions mentioned in the walkthrough guide arc retained in the rcduccd

call graph and are, again, circled in red. The developer now has a much re-

duced search space when looking for functions of central importance to the

system.

With the execution probability rating approach we are able to reduce the

call graph 20% more than the current state of the art approach[YTO7 .

1.3. ORGANIZATION OF THE
DISSERTATION CHAPTER 1. INTRODUCTION

1.3 Organization of the

Dissertation

The organization of this dissertation is structured as follows: Chapter 2 de-

scribes a preliminary studies which motivate our work. Chapter 3 described

the details of our approaches. Chapter 4 described the validation of the thesis

claims. Chapter 5 discusses the advantages and limitations of using our ap-

proaches. Chapter 6 cover other related work. Finally, Chapter 7 concludes.

CHAPTER 2

Preliminary Study

We conducted a small preliminary study to establish, empirically, that devel-

opers have difficulty identifying, in a large call graph, the functions important

to examine when forming an initial general understanding of the system. Sec-

ondarily, we wished to gain insight into the processes developers might use

when exploring such call graphs.

This Chapter is organized as follows: Section 2.1 introduces the participants

in this preliminary study. Section 2.2 describes the study design. Section 2.3

and 2.4 report the result of the i spe l l and freebsd respectively. Section 2.5

analyzes the threats to validity. Finally, Section 2.6 summarizes.

2.1 Participants

Four subjects participated in the preliminary study. Two of the subjects

were postgraduate students in the Chinese University of Hong Kong (PGl

and PG2), The other two subjects were programmers working in industry (II

and 12).

2.2 Study Design

We chose two systems for use in our study: i spe l l and FreeBSD Kernel Malloc.

Each of these systems has large call graphs: ispell 's call graph has 168 nodes,

and FreeBSD's call graph also has 168 nodes. Although the two systems have

2 . 2 . STUDY DESIGN CHAPTER 2. PRELIMINARY STUDY

the same number of nodes, FreeBSD has a larger number of lines of code

and a larger call structure. For each of these systems, there exists expert

documentation to guide a new developer in understanding the system. These

documents mention specific functions considered important for understanding.

In the case of i spe l l , 3 functions are considered important, and in the case

of FreeBSD, 10 functions are named as important.
We asked the subjects to examine each call graph, asking them to choose

which functions they would like to examine were they to be given the task

of understanding the code. We then compared their picks to the functions

suggested for investigation in the expert documentation about these systems.

First, we established that the participants had not seen the case study

systems before, or examined their call graphs prior to the study.

We then provided the participants with two call graphs, and asked them

to identify functions they would investigate were they to be presented with

the task of understanding the code base. Subjects were provided with the call

graph for each of the systems, but were not allowed to read the source code

associated with them.

Finally, for each case，we analyzed the subject's function picks in the fol-

lowing ways:

1. Number of Exact Matches: the number of functions that cxactly

matched with the functions mentioned in the expert documentation

2. Number of Correct Matches: the number of functions that differ

from the functions mentioned but contribute to the same functionality

+ the number of functions that are not mentioned in the documentation

but actually contribute the major functionality of the program.

For instance, i spe l l contains prominent secondary functionality: alter-

native word suggestion for words not found in the dictionary. Though

the expert documentation did not include functions related to the core of

2.6. SUMMARY CHAPTER 2. PRELIMINARY STUDY

this secondary functionality, we have identified functions central to this

functionality manually, and count those identified by the participant as

correct matches

3. Number of Barely Correct Picks: the number of initialization

functions and the number of functions for core data structures operations.

These functions may help developer to understand the system, but are

too low level of details

4. Number of Wrong Picks: the number of help functions, clean-up

functions and other functions that do not directly related to the major

functionality of the program

5. Number of Missed Functions: the number of functions that are

mentioned in the expert documentation, but not picked by the subject

2.3 ispell

i spe l l i is an interactive spell checker program for Unix System. In our case

studies, version 3.1 is used. The i spe l l package contains 10 cxecutablc pro-

grams. Only the main program (ispell) is used in our case studies. The codc

base is consist of 12 modules (.c files) and 5 header files. The overall size is

about 9 K lines of code. Figure 1.1 shows the call graph of i spe l l .

2.3.1 Subject II (ispell)

Subject II chose eight functions: givehelp, correct, good,

makepossibil ities, dumpmode, combinecaps, expandmode and usage.

Our analysis of the correctness of these picks is summarized in Table 2.1

Hspell can be downloaded from http://fmg_www.cs.ucla.edu/geoff/ispell.html

10

2.6. SUMMARY CHAPTER 2. PRELIMINARY STUDY

Table 2.1 Summary of Accuracy: Subject II, System i spe l l
Number of Functions Picked: 8
Number of Exact Matches: 1 good
Number of Correct Matches: 2 correct,

makepossibilities
Number of Barely Correct Picks: 0
Number of Wrong Picks: 5 givehelp, dumpmode,

combinecaps,
expandmode, usage

Number of Missed Functions: 2 checkfile, checkline

Exact Matches: The function good was picked by the subject. It is a

function which check the correctness of a word.

Correct Matches: correct and makepossibilities are not mentioned in

expert documentation, however, based on analysis of their contribution to the

functionality of the system, we consider them to be correct picks. These two

functions related to a subfeature of i spe l l : trying to make the best guess

when a word is not in the dictionary.

Wrong Picks: combinecaps and expandmode are wrong picks. The former

is a helper function, and thus, by our analysis, docs not contribute to the major

functionality of the system. The latter is related to command line argument

parsing, which is not a core function of ispell. The subject also picked the

functions which print out the usage: usage, givehelp and dumpmode). These

functions are not related to the core functionality of the software and are

considered to be wrong picks.

Missed Functions: The functions checkline and checkf i l e are not picked

by subject II.

11

2.6. SUMMARY CHAPTER 2. PRELIMINARY STUDY

Table 2.2 Summary of Accuracy: Subject PGl, System i s p e l l
Number of Functions Picked: 9
Number of Exact Matches: 2 checkfile, checkline
Number of Correct Matches: 4 main, dofile,

askmode,
makepossibilities

Number of Barely Correct Picks: 1 treeinsert
Number of Wrong Picks: 2 mktemp, updatefile
Number of Missing Functions: 1 good .

2.3.2 Subject PGl (ispell)

Subject PGl chose nine functions: main, dof i l e , update—file, mktemp, checkf i l e ,

askmode, checkline, treeinsert and makepossibilities.

Our analysis of the correctness of these picks is summarized in Table 2.2,

Exact Matches: Two of the functions matched with the documentation:

checkline and checkf i le .

Correct Matches: Based on our analysis, four functions were classi-

fied as correct matches, dof i l e belongs to the same functionality group as

checkf i l e . askmode is related to the "programming mode", which is a subfca-

ture of i spe l l . main is the main function of the program, makepossibil it ies

is central to the alternative suggestion function.

Barely Correct: treeinsert is responsible for inserting words into an

internal tree representation. According to our analysis, it was determined as

a barely correct pick because it is an initialization function.

Wrong Picks: update. f i le and mktemp are wrong picks. These functions

are responsible for the creation of a backup file and temporary file respectively.

Therefore, they are not directly related to the main functionality of the system.

12

2.6. SUMMARY CHAPTER 2. PRELIMINARY STUDY

Missed Functions: The function good was not picked by the subject.

Additional Observation: In this case, it seemed that the naming of func-

tions was misleading to the subjcct. The subject picked askmode assuming that

it is related to getting user input, but actually this function is related to the

"programming mode". Under this mode, i spe l l interprets the input as com-

mand operation. This allows other program integrates i spe l l as.part of their

system. The subject also said that although he picked makepossibilities,

he could not guess its usage.

2.3.3 Subject PG2 (ispell)

Table 2.3 Summary of Accuracy: Subject PG2, System i spe l l
Number of Functions Picked: 10
Number of Exact Matches: 2 checkfile, checkline
Number of Correct Matches: 5 dofile, askmode,

correct, skiptoword,
makepossibilities

Number of Barely Correct Picks: 2 treeinsert,
treeoutput

Number of Wrong Picks: 1 update_file
Number of Missing Functions: 1 good

Subject PG2 chose 10 functions: do f i l e , askmode, checkline, correct,

skiptoword, checkfi le , update—file, treeinsert , treeoutput and

makepossibil it ies

Our analysis of the corrcctncss of these picks is summarized in Tabic 2.3.

Exact Matches: Two pickcd functions matchcd with the documentations:

checkline and checkfi le .

Correct Picks: The functions picked by subject PG2 is almost the same

貼 II. skiptoword is a correct pick since it is a function that determine which

13

2.29. STUDY DESIGN CHAPTER 2. PRELIMINARY STUDY

word can be ignored when parsing a piece of text.

Barely Correct: Functions treeinsert and treeoutput are barely correct

picks as they are operations on data structures.

Wrong Picks: update . f i l e is a wrong pick since it is for the creation of

backup file and does not contribute to the major functionality of the system.

Missed Functions: The function good was not picked by subjcct PG2.

2.3.4 Subject 12 (ispell)

Table 2.4 Summary of Accuracy: Subjcct 12, System i spe l l
Number of Functions Picked: 6
Number of Exact Matches: 2 checkfile, checkline
Number of Correct Matches: 3 main, askmode, dofile
Number of Barely Correct Picks: 0
Number of Wrong Picks: 1 expandmode
Number of Missed Functions: 1 good

Subject 12 chose 10 functions: main, askmode, expandmode, do f i l e , checkf i l e ,

checkline.

Our analysis of the correctness of these picks is summarized in Table 2.4.

Exact Matches: checkf i l e and checkline were picked by subject 12.

Correct Matched: three functions are correct matches: main, askmode

and do f i l e . main is the main function of the program, askmode is the

interpreter of "programming mode". d o f i l e is for handling file input.

Wrong Picks: expandmode is a wrong pick since it is a handler for com-

邮n d line parameters.

4

1

2 . 4 . FREEBSD KERNEL
MALLOC CHAPTER 2. PRELIMINARY STUDY

Missed Functions: The function good was not picked by subject 12.

2.3.5 ispell Analysis

Table 2.5 Performance of Subjects in Preliminary Study (i spe l l)
Functions in Documentation Chosen By
checkf i le PGl, PG2, 12
checkline PGl, PG2, 12
good 11

Of the three functions noted by the expert, three of the subjects correctly

identified the functions checkf i l e and checkline (Table: 2.5). Only one

subject identified the function good. This omission suggested that the name

of function "good" does not afford its recognition as a core function.

The functions makepossibilities and askmode were chosen by three of

our subjects. Although the two functions are correct picks, our subjects re-

ported that they have difficulty in guessing the meaning of the functions ac-

cording to the function names.

2.4 PreeBSD Kernel

Malloc

FreeBSD^ is one of the free operating systems in common use. In these case

studies, version 6.2 is used. The virtual machine subsystem is responsible

for providing a virtual address space for each process and for managing the

memory usage of the operating system. The source code of the subsystem is

spread over 23 files and contains about lOOK lines of code. The virtual memory

subsystem is initialized by the vinjnem_init function defined in vm.init. c.

Therefore, the initiation function vinjnem_init (instead of the main function)

F̂reeBSD can be obtained and downloaded at http: //www. freebsd. org

15

2.4, FREEBSD KERNEL
MALLOC CHAPTER 2. PRELIMINARY STUDY

Figure 2.1 Call Graph of FreeBSD Kernel Malloc: Bird's eye view

is used in the function rating algorithm. Figure 2.1 shows the call graph of

FreeBSD Kernel Malloc.

2.4.1 Subject II (FreeBSD)

Table 2.6 Summary of Accuracy: Subject II’ System FreeBSD
Number of Functions Picked: 9
Number of Exact Matches: 1 slab_zalloc
Number of Correct Matches: 2 vm.object_backing_scan,

vm_map_10okup_entry
Number of Barely Correct Picks: 2 uina_staxtup,

vm_page.startup
Number of Wrong Picks: 4 mtx-ini t ,

VFS丄OCK_GIANT, msleep,
vm_paging_needed

Number of Missing Functions: 6 uma_zalloc,
uma_zalloc_arg,
uma_zalloc_bucket,
uma_zone_slab,
uma_zalloc_internal,
uma_slab_alloc

Nine functions were chosen by subject II: vin_page_startup, vm_map—lookup—entry,
邮leep, vm_paging_needed，VFS_LOCK_GIANT, vin_obj ect_backing_scan, slab_zalloc,
uma.startup and mtx . in i t

16

2.4. FREEBSD KERNEL
MALLOC CHAPTER 2. PRELIMINARY STUDY

Our analysis of the correctness of these picks is summarized in Table 2.6.

Exact Matches: One function matches exactly with the documentation:

slabjnalloc.

Correct Matches: vni_object_backing_scan and vmjmap.lookup.entry

arc related to the paging mechanism. .

Barely Correct: uma_startup and vm.page.startup arc barely correct

since they are mainly related to initialization of the kernel zone memory allo-

cator and the paging queue.

Wrong Picks: mtx.init, VFS丄OCK_GIANT, msleep and vin_paging_needed

are wrong picks since they are helper functions.

Missed Functions: Six functions were not picked by subject II: uma—zalloc,

uina_zalloc_arg, uina_zalloc_bucket, uina_zone_slab, uma_zalloc_internal,

uma.s lab .alloc.

2.4.2 Subject PGl (FreeBSD)

Nine functions were chosen by subject PGl: vin_mem-init，vin_page_startup,

viii.pageq_add_new_page, pmap一page—init，uma_startup, zone.ctor, keg.ctor,

^-page.io .start

Our analysis of the correctness of these picks is summarized in Tabic 2.7.

Exact Matches: None of the chosen functions matched with the documen-

tation.

Correct Matches: vmjnem_init is the "main function" of the memory

subsystem. It is a correct match according to our analysis.

17

2.4, FREEBSD KERNEL
MALLOC CHAPTER 2. PRELIMINARY STUDY

Table 2.7 Summary of Accuracy: Subject PGl, System FreeBSD
Number of Functions Picked: 8
Number of Exact Matches: 0
Number of Correct Matches: 1 vmjmem.init
Number of Barely Correct Picks: 6 vm—page—startup,

vin_pageq_add_new_page ’
pmap_page_init,
uma_startup,
zone.ctor, keg.ctor

Number of Wrong Picks: 1 vin_page_io_start
Number of Missed Functions: 7 slab_zalloc,

uma_zalloc，‘
unia_zalloc_arg,
uma_zalloc_bucket,
uma_zone_slab,
uma_zalloc_internal,
uma_slab_alloc

Barely Correct: vm_page_startup, vin_pageq_add_new_page, pmap_page_init,

uma.startup, zone.ctor, keg.ctor are related to initialization of the system.

Wrong Picks:

tion.

.page_io-Start is a wrong pick since it is a helper func-

Missed Functions: Subject PGl identified none of the documented func-

tions.

2.4.3 Subject PG2 (FreeBSD)

Twelve functions were chosen by subject PG2: vinjnem_init, vm.pager.init,

vm.page .startup, vmjnap .startup, vm_object_init, vm_keymen_init，

vm.object_deallocate, vm.object.init, vm.object.reference, vm.page.insert,

vm_page_lookup, vin_page_remove and vin_page_free

Our analysis of the correctness of these picks is summarized in Tabic 2.8.

18

2 . 4 , FREEBSD KERNEL
MALLOC CHAPTER 2. PRELIMINARY STUDY

Table 2.8 Summary of Accuracy: Subject PG2, System FreeBSD
Number of Functions Picked: 12
Number of Exact Matches: 0
Number of Correct Matches: 5 vin_mem_init,

vm_page_insert,
vm.page.lookup,
vm_page.remove,
vm-page—free

Number of Barely Correct Picks; 6 vm_pager_init,
vm.page.startup,
vmjnap .startup,
vin_object_init,
vm_keymen_init

Number of Wrong Picks: 2 vm-object—reference,
vm.object.deallocate

Number of Missed Functions: 7 slab_zalloc,
uma_zalloc,
uma_zalloc_arg,
uina_zalloc_bucket,
uma_zone_slab,
uma_zalloc_internal,
iuna_slab_alloc

19

2 . 4 . FREEBSD KERNEL
MALLOC CHAPTER 2. PRELIMINARY STUDY

Exact Matches: None of the chosen functions matched with the documen-

tations.

Correct Matches: Five functions are correct matches: vnumem.init is the

main function, the other four functions (vm.page.insert, vm_page—lookup,

vm_page—remove, vm_page_free) are related to the paging mcchanism.

Barely Correct: vin_pager_init, vm.page.startup, vmjnap.startup,

vm_object_init, vm_keymen_init. All are responsible for initialization.

Wrong Picks: vm_obj ect.reference and vm-obj ect.deallocate are wrong

picks since the former is a helper function which increases the reference count

of vm_object while the latter is another helper function which decreases the

reference count.

Missed Functions: All functions mentioned in the documentation were

missed.

2.4.4 Subject 12 (FreeBSD)

Subject 12 dropped out of the study before providing any picks for the FreeBSD

system's call graph. 12 reported that the call graph for the system is too

complicated and hard to follow. He also said that he could not find any hints

for getting started.

2.4.5 FreeBSD Analysis

Of the seven functions mentioned in documentation, only one function slab—zalloc

is pickcd by subject II (Table 2.9). Subject 12 dropped out of the study and

reported that the call graph of FreeBSD is too complicated. This suggest that

the developer performance is hindered by the complexity of call graph.

20

2.5. THREATS TO VALIDITY CHAPTER 2. PRELIMINARY STUDY

Table 2.9 Performance of Subjects in Preliminary Study (FreeBSD)
Functions in Documentation Chosen By
slab_zalloc 11

uma_zalloc
uma_zalloc_arg
uina_zal 10 c _bucke t
uiDa_zone_slab
uma_zalloc_internal
mna_slab .a l l oc

The subjects tend to choose initialization function in this study. Of the 29

functions chosen by our subjects, 13 of them with name ended with _init and

-Startup. This may be related to naming since the naming for initialization

functions is more obvious than for the other functions of the system.

2.5 Threats to Validity

Internal Validity The internal validity of our preliminary study is threat-

ened by the bias about the correctness of the functions picked by the partici-

pants. To minimize the potential bias, our judgement of exact match is based

on the expert documentations. Although functions related to the secondary

functionality of i spe l l is not mentioned in the documentation, our identi-

fication of secondary functionality is based on the man page of ispell. We

also subcategories the fuzzy concept of correctness into Exact Match, Correct

Match and Barely Correct Match.

External Validity Although only two software systems are used in this

preliminary study, they vary in their size and application domain: i s p e l l

is a small spell checker and FreeBSD is a large piece of system source code.

We observed that our participants have difficulties in identifying important

functions in the call graph of both system. This suggests that the same problem

may arise when the call graph of other system is used.

21

2.6. SUMMARY CHAPTER 2 . PRELIMINARY STUDY

2,6 Summary

In this study we made several observations: Developers base their choices of

functions on naming, and on perceived responsibility of the function within the

system, and graph size and complexity may have an effect on the developer's

ability to identify important functions.

Function Naming We observed that poor function naming can result in

incorrect choices. For instance, in the i spe l l study, only one subject chose

the core function good as a function of interest, probably because of its un-

compelling name. In the FreeBSD system, many of the core functions were ob-
scurely named, such as the functions which actually implemented the memory
allocation policy: uma_zalloc and vm_object_coalesce. Of the 29 functions

chosen by the subjects, only 31% are exact matches or correct functions (33%

for II’ 12.5% for PGl and 41.6% for PG2).

Functionality Triggers The majority of all subjects' choices were initial-

ization functions since they seem to be triggered for the behavior of the entire

system. Initialization functions covered an average of 57% of the chosen func-

tions (33.3% for II，87.5% for PGl and 50% for PG2). This may also be

related to naming, since the initialization functions in these eases have names

that clearly indicate their function.

Graph Size/Complexity Comparing the results from the two call graphs,

we can see that size and graph complexity may have an cffect on the developer's

ability to reason about important functions: The number of correct matches

in the FreeBSD study is lower than the ispell study, and one participant
dropped out of the study because of the complexity of the larger call graph.

22

2.6. SUMMARY CHAPTER 2. PRELIMINARY STUDY

Conclusions Although small, this study provided empirical evidence to sug-

gest that the size and the complexity of a call graph limits the developers'

ability to correctly identify important functions.

23

CHAPTER 3

Approach

Figure 3,1 Function Rating Process

Our approach entails trimming the call graph of functions that fall below

a certain threshold of estimated probability of reachability, and in so doing,

providing the developer with a call graph that contains a higher percentage of

nodes that are important to understanding the system.

24

CHAPTER 3. APPROACH

To estimate reachability, we use a novel representation called the Branch-

Preserving Call Graph (BPCG). This structure is a simplification of the Branch-

Reserving Call Graph (BRCG) [QZZ+03] introduced by Qin et. al, which cap-

tures call-ordering, control flow, and branching information. The BPCG is the

same as the BRCG excepts that it ignores call-ordering.

Figure 3.1 depicts the outline of the process. First, the source code is used

to build a classical call graph and a BPCG. Next, optionally, system functions

are removed.

Next, the execution probability function rating algorithm is applied to the

BPCG. We color the classical call graph according to the calculated execution

probabilities of the functions for visualization purposes. Finally, we apply our

call graph reduction approach to produce a reduccd call graph.

We have two approaches for reducing the call graph. One involves removal

of functions with high fan-in counts, and the other involves removal of leaf

nodes. For the remainder of this thesis, we will refer to the general technique

of call graph reduction through trimming based on a threshold of function

execution probabilities as FEPR (Function Execution Probability Reduction),

to the removal of functions with high fan-in counts as: FEPR-/amn, and to

removal of leaf nodes technique as FEFR-leaf.

In this chapter we will describe each step of the process in detail:

1. The Branch Preserving Call Graphs is formed from the code (Section 3.1)

2. System functions are removed (this is an optional step) (Section 3.2)

3. A function rating calculation algorithm is applied to the BCPG to obtain

an execution probability spectrum (Section 3.3) (The complexity of the

algorithm will be discussed in Section 3.3.1)

4. The original call graph is colored to reflect the spectrum from the previ-

ous step (Section 3.4)

25

3,1, BUILDING BRANCH-PRESERVING
CALL GRAPHS CHAPTER 3. APPROACH

5. The call graph is trimmed based on the function rating algorithm's re-

sults, and the choscn threshold for inclusion (this is done vising one of

two FEPR approaches) (Section 3.5)

3.1 Building Branch-Preserving

Call Graphs

A Branch-Preserving Call Graph (BPCG) is a novel simplification of an exist-

ing structure, the Branch-Reserving Call Graph (BRCG). In this section we

describe the BRCG, and then describe the simplification to form the BPCG.

3.1.1 Branch Reserving Call Graphs

A Branch Reserving Call Graph (BRCG) is an abstract source code represen-

tation introduced by Qin et al. They used BRCG's to automatically mine use

cases from code. A BRCG is a call graph which represents both function-call

statements and branch statements, and which maintains the ordering of the

branch statements. In their work, a BRCG is defined as a tuple < TV, S, B〉，

where:

1. TV is the set of functions, branch statements, and branches in branch

statements;

2. S is the set of sequential relationships, where V < rii.n^ >G S,ni ^ N

and 712 € N]

3. B is the set of branching relationships, where V < ni,n2 >e B, rii e N

and 712 6 N; and

4. V < ni,n2 >G S and Vns € TV, < ni.ns >i B, and V < ni,n2 B and

•713 e N,< ni,n3 S.

26

3,1, BUILDING BRANCH-PRESERVING
CALL GRAPHS CHAPTER 3. APPROACH

Figure 3.2 Original Source Code

void foo(){

f l O；

if (condition){

f2();

f3();

}
else{

f4();

f5();

>
f6();

}

Figure 3.3 Resultant BRCG from the code in figure 3.2

27

3,1, BUILDING BRANCH-PRESERVING
CALL GRAPHS CHAPTER 3. APPROACH

Figure 3.3 shows the BPCG for the C code in Figure 3.2. Each circle node

represents a function. The code blocks within the functions arc denoted by

sequential nodes. Conditional statements are represented by the node BS and

the nodes B1 and B2 denote the two branches.

As the control-flow of the program can be captured by BRCG, runtime

execution traces can be simulated by traversing the graph. By pruning the

unimportant nodes in the BRCG, the collected execution traces become the

use cases of the program. This provides evidence that call graphs which contain

branching information are useful for software engineering tasks, such as code

base understanding.

3.1.2 Branch-Preserving Call Graphs

Figure 3.4 Original Source Code

void f(int a, int b){

if(a > b){

printf("Branch l\n")

puts("A > B")；

}
else{

printf("B <= A")；

}
}

A Branch-Preserving Call Graph (BPCG) is an extension of the classical

call graph: It is a call graph with branching information preserved. In a BPCG,

a functions or procedures are depicted by a node labeled with their name. Code

blocks, such as the blocks contained within procedures, functions, loops and

conditional statements are represented by BLOCK-nodes. Branching (if and

switch) statements themselves are represented as BRANCH-nodGs. Figure 3.5

shows the BPCG for the C code in Figure 3.4. The function f has its own

node at the top of the figure. The code block within function f is denoted by

28

3,1, BUILDING BRANCH-PRESERVING
CALL GRAPHS CHAPTER 3. APPROACH

Figure 3.5 Resultant BPCG from the code in figure 3.4

printf puts printf

the BLOCK-Node, BL0CK_0. The if-statement is depicted by the BRANCH-

Node, BRANCH_0. The body of code in the two branches of the ^/-statement

(the if-block, and the else-block) are represented by BLOCK�and BLOCK一2

respectively. BPCG differs from BRCG as it ignores call-ordering.

Formally, BPCG can be defined as follows:

Definition 3.1 A Branch-Preserving Call Graph is a directed graph G =<

^A, K , > where:

• is a set of BLOCK-nodes, which represents composition relationships.

In other words, each BLOCK-Node represents a code block;

• Vv is a set of BRANCH-nodes, which represents branching relationships;

• Vf is a set of function node,- represents the functions in the source code;

• is as set of directed edge in which u,v G V^U Vy U Vf, u invokes

V => {u,v) e E.

such that G is the union of all the subgraphs created by the buildBPCG

algorithm depicted in Algorithm 1.

29

3,1, BUILDING BRANCH-PRESERVING
CALL GRAPHS CHAPTER 3. APPROACH

Algorithm 1 buildBPCG(u, s)
1
2

3

4

5

6
7

8

9

10

bpcg g <=(/)
for all function f in the source code do

subgraph h
fn createFunctionNode{f) and insert into h
block Node <= V/^ and insert into h, v^ G V/\
create a directed edge (fn, block Node) G E and insert into h
createSubgra/phifilockNode, codeBlockOf(fn) and insert into h
g union with h

end for
return g

Algorithm 2 crcatcSubgraph(ii, s;

3:

4:

5

6
7

8

9

10

2
3

4

5

6
7

8

1 9

20
21
22

subgraph g <= u
for all 5 G { Function call statements, branch statements, and looping
constructs in the code block s} do

if isCallStatement[s) then
create a directed edge (u, v) e E to the node of the function called
V, V G Vf and insert into g

else if isLoopingConstruct(s) then
Mock Node 4= v^ and insert into h, v^ e V^
create a directed edge (u, blockNodeJ) E E and insert into g
Sloop <= code block of the loop
gioop createSubGraph(u, sioop) and insert into g
create a directed edge {blockNode, rootNodeOf (gioop)) e E and insert
into g

else
branchNode <= Vy and inset into g, Vy G Vy
create a directed edge (n, branchNode) G E and insert into g
for all branches b in the branch statement do

block Node V/\ and insert into h, ^A G Va
Sb <= codeBlockO f [h)
gb 4= createSubGra/phipranchNode, Si) and insert into g
create a directed edge (branchNode, rootNodeO f{gb)) G E and in-
sert into g

end for
end if

end for
return g

30

3,1, BUILDING BRANCH-PRESERVING
CALL GRAPHS CHAPTER 3. APPROACH

A Branch-Preserving Call Graph builder is implemented with the help of

ANTLR parser generator^. In this work, ^/-statements and case-statcmcnts

are treated as branch statements. Recursive function calls are not included

in the BPCG as the rating calculation step requires the BPCG to be acyclic.

The source code of our Branch-Preserving Call Graph builder is included in

Appendix B.

Unlike [QZZ+03], looping constructs are not considered as branching state-

ments because looping constructs rarely perform conditional branching. In-

stead, BLOCK-nodes are used to represent looping constructs and treat them

as code blocks.

3.1.3 Example of BPCG Building Process

Figure 3.6 Original Source Code

void odd(){

puts("Odd Number")；

}

void mainO{

int i;

for(i=0; i<100; i++){

if(i%2 == 0){

printf("Hello World\n")

puts("Even Number");

}
else{

oddO;

}
} .

>

This section shows an example of how the BPCG of sourcc code (Figure 3.6)

is built using the BPCG building algorithm (Algorithm 1).

L ANTLR can be obtained at http://www.antlr.org/

31

http://www.antlr.org/

3.1. BUILDING BRANCH-PRESERVING
CALL GRAPHS CHAPTER 3. APPROACH

Figure 3.7 Building BPCG from the code in Figure 3.6

main

(a) Creating the
Function node for
function main

(b) Loop is denoted (c) Creating a branch-nodc
by a block-node for the 2/-statement

odd puts prinlf

(d) The BPCG Subgraph for the for-
loop block is created

32

3,1, BUILDING BRANCH-PRESERVING
CALL GRAPHS CHAPTER 3. APPROACH

Figure 3.8 Building BPCG from the code in Figure 3.6 (conc.

odd puts printf

(a) B P C G Subgraph for function (b) BPCG Sub-
graph for function
odd

(c) B P C G for the code in Figure 3.6

33

3.2. SYSTEM FUNCTION REMOVAL CHAPTER 3. APPROACH

There are two functions defined in the source code shown in Figure 3.6 ,

main and odd. A BPCG subgraph is created for each function and the resulting

BPCG is the union of these subgraphs.

Figures 3.7 and 3.8 show the process of building a BPCG subgraph for

the main function. Initially, a function node is created and attached with a

block-node (block.O) which represents the code block of the main function

(Figure 3.7(a)). Then, another block-node (block」）is created representing

the for-loop inside the code block of function main (Figure 3.7(b)).

Inside the for-loop, there is an i/-statement. The createSubgraph algorithm

is called recursively. As shown in Figure 3.7(c), the ^/-statement is represented

by a branch-node (branch_0) and the first branch of the if-statement is rep-

resented by a block-node (block.O).

The function nodes printf and puts arc creatcd and attached to the block-

node of the first branch. Similarly, odd node is created and attached to the

block-node of the second branch. Figure 3.7(d) shows the resulting subgraph

of the whole /or-loop block. The subgraph is then connected by an directed

edge linking block_0 arid brock.l. Figure 3.8(a) shows the BPCG subgraph

for function main.

Similarly, the BPCG subgraph for function odd is shown in Figure 3.8(b).

The resulting BPCG for the code in Figure 3.6 is the union of the 2 subgraphs.

3.2 System Function Removal

The second step of the process is to remove function nodes representing the

system functions before applying the function rating algorithm. Functions

such as printf 0 do not contain interesting information in most applications.

However, this kind of function is usually called frequently and thus has a

misleadingly high probability in our function rating process. Although these

34

3.3. FUNCTION RATING CALCULATION CHAPTER 3. APPROACH

functions are likely to be called in our call graph reduction phase, their inclu-

sion at this phase causes a performance degradation, so we remove them here

preemptively. This step is optional since system function nodes can be crucial

in some application domains: Operating systems and utilities may rely heavily

on these system functions, and they may be core to their functionality.

In our implementation, functions provided in the standard C Library and

the POSIX API can be filtered as needed. ‘

3.3 Function Rating Calculation

The function rating algorithm is based on the assumption that all branches

have the same probability of being called.2 With this assumption, it is possible

to estimate the probability of execution of each function using BPCG.

It is comparatively easier to compute the probability of r ^ reaching a

particular function f from the main function than computing the reachability

from main to f directly. Algorithm 3 is a recursive approach to estimating

the probability of not reaching a particular function, where u is the starting

node, V is the desired function and g is the Branch-Preserving Call Graph of

the program.

branch-Nodes which have an out-degree of one are probably a single if-

statement without an ELSE clause. Therefore, their probability is reduced by

half.

Then, 1 — unreachable Probability (main, /，g) is the probability of execu-

tion of function f .

This approach deals with function reachability but not frequency of execu-

tion. Unlike the techniques in [WMGH94] and [WL94], estimation of loop-trip

^While it is true that this assumption is not a perfect one, it is reasonable for a static
approach, since the actual probability profile of execution is impossible to predict without
running the program. Further discussion is provided in Chapter 6.2

35

3.3. FUNCTION RATING CALCULATION CHAPTER 3. APPROACH

Algorithm 3 unreachableProbability(u, v, g)
Require: g is acyclic

1： if u == V then
2: return 0
3: end if
4: if unReachable(u, v, g) then
5： return 1
6： end if
7： if w is a leaf node then
8； return 1
9： else if It is a block-Node then
0： p<= 1
1： for all child in childrenOf [u, g) do
2： p <= p X unreachableProbability{child, v, g)
3： end for
4: return p
5: else if u is an branch-Node then
6: if u has only one child then
7： return unreachableProbability(child, v,g)/2
8: else
9: p ^ O
20： deg <= degreeOf{u,g)
21： for all child in childrenO f(u,g) do
22: p p 4- unreachableProbability(child, v, g)/deg
23： end for
24： return p
25： end if
26： else
27： child <= childrenOf{u,g)
28： return unreachableProbability(child, v, g)
29： end if

36

3.3. FUNCTION RATING CALCULATION CHAPTER 3. APPROACH

Figure 3.9 Sample C Code with Looping Construct

int main(){

int a, b;

scanf (丨7。d W , &a, &b) ;

if (a > b){

int i;

for (i = 0 ; i < 3 ; ++i){

fO；

}
}
else{

g();
>
return EXIT SUCCESS;

}

Figure 3.10 BPCG for the code in figure 3.9

37

3.3. FUNCTION RATING CALCULATION CHAPTER 3. APPROACH

Figure 3.11 An Equivalent BPCG for figure 3.9

f() g{)

count is not necessary using this approach. This feature is illustrated in Fig-

ures 3.9’ 3.10 and 3.11.

Figure 3.10 shows the Branch-Preserving Call Graph for the code in Fig-

ure 3.9. The ^/-statement is represented by an branch-nodc and the /or-loop is

represented by an block-nodc. If we rewrite the /or-loop by calling the function

f 3 times, we can obtain an equivalent Branch-Preserving Call Graph to that

shown in Figure 3.11, It is obvious that the probability of reaching function f

remains unchanged no matter how many iterations have been made.

3.3.1 Rating Algorithm Complexity

The complexity of Algorithm 3 depends on the implementation of the sub-

routine unReachable{u,v,g). This subroutine determines whether function v

is unreachable from function u in the BPCG g, A trivial implementation for

unReachable{u,v,g) is to use Depth First Search, for which the complexity is

0(V + E). The overall complexity becomes 0({V + E)^) for each function to

be analyzed.

Pre-calculating the reachability between all vertices inside a BPCG is a

reasonable way to reduce the complexity. The complexity of the subroutine

unReachable(u, V, g) then can be reduced to 0(1) while the extra constant

cost of pre-calculation is only 0{V{V + E)). The overall complexity becomes

38

3.4, BUILDING THE COLORED
CALL GRAPH CHAPTER 3. APPROACH

0(V(V 4- E)) for each function to be analyzed.

3.4 Building the Colored

Call Graph

The output of the function rating algorithm is the execution probability for

each function. This output forms a spectrum of probability of function ex-

ecution likelihoods. For example, for the code in Figure 3.9, the execution

likelihoods for this code would be: { f:0.5, g:0.5 }.

With the execution probabilities calculated, we can create a colored call

graph in which each function node is colored to reflect the probability of ex-

ecution. Unreachable nodes are colored white, while black nodes are 100%

likely to be executed. The colored call graph is a visualization of the proba-

bility spectrum so that the result can be easily visually interpreted.

3.5 Call Graph Reduction

Once the execution probabilities are calculated, we can make use of this result

to remove the nodes in the call graph which have an execution probability

beneath a certain threshold. In this way, we trim down the call graph such that

only the core functions are left. In this section, we introduce two approaches

for call graph reduction: One involves the automatic removal of function nodes

with high fan-in counts, and the other involves automatic removal of leaf nodes.

3.5.1 Remove-high-fan-in-functions Approach (FEPR-

fanin)

Marin et al. have proposed an aspect-mining method [MvDM04] based on

identifying methods which have a high fan-in on the call graph. They have

39

3.5. CALL GRAPH REDUCTION CHAPTER 3. APPROACH

observed that aspects, which can be seen to contain functionality superimposed

on the core functionality of the system, [RB03], are usually implemented by

methods with high fan-in values [MvDM04]. Moreover, according to their

findings, a large number of methods with high fan-in values are usually get-

setters or utility methods. Since we are only interested in the core functionality,

it is reasonable to use this approach to filter out aspects and utility functions.

Thus, we remove the functions with high fan-in values from the call graph.

Our Remove-high-fan-in-junctions process is described as follow:

1. Remove functions which are called by more than 2 functions and have

fan-in value greater than threshold Fan-in Max

2. Remove functions which have execution probability less than threshold

Threshold

Figure 3.12 Remove-high-fan-in-furictions Approach {FEFR-fanin)

(a) Original Colored Call
Graph

(b) Remove High Fan-in (c) Remove Func-
Functions tions with Low

Execution Probabil-
ity

Figure 3.12 shows our Rernove-high-fan-in-functions{FEFR-fanin) process

with Fan-in Max = 2 and Threshold 二 0.6. Function d is removed since it

has fan-in greater than Fan-in Max. Function e is also removed sincc it is
only connected to function d which is already removed. Function b, c and f

are removed since their execution probabilities are lower then Threshold.

40

3,5. CALL GRAPH REDUCTION CHAPTER 3. APPROACH

3.5.2 Remove-leaf-nodes Approach (FEPR-Zea/)

Through our own examination of many call graphs, we have determined that

leaf nodes of a call graph are usually utility functions that are not relevant

to the task of program understanding. Therefore, removing the leaf nodes

is a reasonable heuristic to trim down a call graph. One advantage over the

previous approach is that the call tree structure is still maintained under this

approach.

Our Remove-leaf-nodes Approach process is described as follow:-

1. Remove the leaf nodes from the call graph

2. Remove functions which have execution probability less than threshold

Threshold

Figure 3.13 Remove-leaf-nodes Approach (FEPR-Zea/)

(a) Original Colored Call (b) Remove Leaf Nodes (c) Remove Func-
Graph tions with Low

Execution Probabil-
ity

Figure 3.13 shows our Remove-leaf-nodes(FEFR-leaf) process with Thresh-

old 二 0.6. Leaf nodes e and f are removed as shown in Figure 3.13(b).

Function b, c are removed since their execution probabilities are lower then

Threshold.

41

CHAPTER 4

Validation

The thesis of this work is: By trimming the call graph to remove functions

below a certain function execution probability threshold, we can reduce the size

of the call graph, while retaining a higher percentage of the functions important

to an understanding of the code base than current approaches.

This thesis can be decomposed into the following claims:

1. Inclusion Accuracy: Trimming based on function execution proba-

bility chooses more important functions (precision), and misses fewer

important functions (miss rate) than current approaches for call graph

reduction.

2. Reduction Efficiency: Trimming based on function execution prob-

ability will allow a higher degree of reduction, resulting in smaller call

graphs.

3. Stability: The Inclusion Accuracy and Reduction Efficiency for a graph's

reduction will remain stable under different trimming-thresholds of func-

tion execution probability.

For the remainder of this chapter, we will refer to the technique of call

graph reduction through trimming based on a threshold of function execution

probabilities as FEPR (Function Execution Probability Reduction). As de-

scribed in Chapter 3，we have developed two versions of FEPR : removal of

functions with high fan-in counts, which we will refer to as: FEPR-/anm, and

removal of leaf nodes, which wc will refer to as: FEPR-Zea/.

42

4.1. MEASURES CHAPTER 4. VALIDATION

To validate these claims, we revisit the i s p e l l and FreeBSD case studies
from our preliminary analysis, and compare the performance of FEPR against

other techniques:

We begin by presenting the results for Inclusion Accuracy, Reduction

Efficiency and Stability for the two FEPR techniques.

We then apply Ying and Tarr's approach to the same case studies, and

analyze their graphs in terms of Inclusion Accuracy, Reduction Efficiency

and Stability.

Next, we use a centrality measure to identify important functions in the

call graph, and compare this measure against FEPR in terms of Inclusion

Accuracy.

We then compare functions chosen using breadth first search of the origi-

nal call graph with the FEPR techniques in terms of Reduction Efficiency.

Finally, we discuss the results for each of the measures from all studies.

Measures

In this section we describe how we assess each measure in the two case study

systems.

4.1.1 Inclusion Accuracy (lA)

We evaluate the accuracy of the call graph reduction techniques by comparing

the functions appearing in the FEPR generated call graph to the functions

picked out by domain experts. A function found in the reduced call graph that

is also in the expert documentation is counted as a "match", and a function

listed in the expert documentation but not found in the reduced call graph is

counted as a "miss".

43

4.1. MEASURES CHAPTER 4 . VALIDATION

The expert documentation used in the i spe l l case is the walkthrough

guide: [ACLS02]. They have reported their proccss of software understanding

and implementation of morphological analyzer for Italian language based on

i spe l l . In that guide, three functions arc mentioned as important for gaining

an initial understanding of the codebase. The expert documentation used in

the FreeBSD case is the walkthrough guide article by Lee [李08] on the kernel

malloc mechanism. 10 functions are listed in that guide. The functions for

each of these guides are shown in Table 4.1.

Table 4.1 Functions in Documentations
Code Base Functions

ispell checkfile, checkline, good

FreeBSD Kernel Malloc

uma_zalloc, uma-zalloc.arg, uma_zalloc-bucket,
uma-Zone_slab, slab-zalloc, uma-zalloc-intemal,
uma.slab.alloc, umaJarge.malloc, page—alloc,
kmem.malloc

Inclusion accuracy is measured by Precision and Miss Rate, The size of

the call graph is the number of function nodes on the call graph.

1 Prprision- noOf Match
丄 . s i z e O f R e d u c e d C a l l G r a p h

2 M k s Ratpi. noOfMiss
“ ' 丄 r t d i ^ t ； • noOfFunctiansMenticmedlnDocumentaticm

4.1.2 Reduction Efficiency (RE)

We evaluate the reduction efficiency by comparing the size of rcduccd call

graph with the original call graph. It is measured by the pcrcentagc reduction

of the call graph. “

1. Percentage Reduction: The percentage reduction in the size of call
1 rpi , . sizeOfNormalCallGraph-sizeOfReducedCallGraph

graptl. mat is： sizeOfNarmalCallGraph

Miss Rate is also equals to 1 - recall.

44

4.2. ANALYSIS OF FEPR TECHNIQUES CHAPTER 4. VALIDATION

4.1.3 Stability (S)

Our rating approaches for call graph reduction required developer to specify

the threshold for inclusion as a parameter and the maximum fan-in value

of a function. It is important to see how the parameter values impact the

result of our approaches. For a stable approach, the result should not change

significantly when the parameter values only changed a little bit. This property

stability is especially important when the developer wants to fine-tune their

analysis. •

To assess the stability of our approaches, we analyze the size of the reduced

call graph under different parameter settings: The Threshold and Fan-in Max

of FEFK-fanin approach, and the Threshold of FEPR-/ea/ approach.

4.2 Analysis of FEPR Techniques

As mentioned in Section 3,5，we have two call graph reduction approaches

based on function rating. The remove-high-fan-in-functions approach (FEPR-

fanin) removes the high fan-in functions first and then trims down the call

graph by removing functions under a specified threshold of execution proba-

bility. The remove-leaf-nodes approach (FEPR-/ea/) removes the leave nodes

first and then trims down the call graph by removing functions under a spec-

ified threshold of execution probability. In this section we first provide the

settings used for the application of FEPR on the i spe l l and FreeBSD sys-

tems. We then report on the FEPR results for Inclusion Accuracy, Reduction

Efficiency and Stability. ,

4.2.1 Settings

The following settings are used in our validation. For each approach, the

parameter values that lead to the best performance are chosen.

45

4.2. ANALYSIS OF FEPR TECHNIQUES CHAPTER 4. VALIDATION

ispell

Figure 4.1 Call Graphs Obtained by Our Call Graph Reduction Approaches
(i spe l l) (Bird's eye views)

(a) FEFR-fanin (b) FEPR-/ea/

1, FEPR-/amn: Reduced Call Graph by remove-high-fan-in-functions

approach (Threshold=0.5, Fan-in Max=4). As shown in Figure 4.1(a).

2. FEPK-leaf: Reduced Call Graph by remove-leaf-nodes approach

(Threshold=0.5). As shown in Figure 4.1(b).

Larger pictures of the call graphs are provided in Appendix A.

PreeBSD Kernel Malloc

Figure 4.2 Call Graphs Obtained by Our Call Graph Reduction Approaches
(FreeBSD) (Bird's eye views)

" mm. mmammmmt
^mmmmatmm^^rnm'' _ —

mm 虑 _ _ 幽 "TT
— ， _ wmm m mm^^ sM*

(a) FEPR-fanin (b) FEPR-leaf

FEFR-fanin: Reduced Call Graph by remove-high-fan-in-functions

approach (Threshold=0.4, Fan-in Max=4). As shown in Figure 4.2(a).

46

4.2. ANALYSIS OF FEPR TECHNIQUES CHAPTER 4. VALIDATION

2. FEPR-iea/: Reduced Call Graph by remove-leaf-nodes approach

(Threshold=0.4). As shown in Figure 4.2(b).

4.2.2 Inclusion Accuracy (lA):

The results of ispell study and Freebsd study arc shown in Tables 4.2 and

4.3. The precision of FEPR-Zea/ approach is higher than FEFR-fanin ap-

proach. The miss rate of FEPR-fanin is slightly lower than FEPR-/ea/.

Table 4.2 Inclusion Accuracy of FEPR approaches (ispell)
FEPR-fanin FEPR-Zea/

Size: 55 38
Precision: 3/55 = 0.05 3/35 = 0.09
Miss Rate: 0 0

Table 4.3 Inclusion Accuracy of FEPR approaches (FreeBSD)

FEPR- fan in FEPR-Zea/
Size: 55 35
Precision: 7/55 = 0.08 6/35 = 0.17
Miss Rate: 3/10 = 0.3 4/10 = 0.4

4.2.3 Reduction Efficiency (RE):

Table 4.4 shows the result of the ispell study using the rating approaches.

In both approaches, more than 50% of the functions arc removed from the

call graph. Our remove-leaf-nodes {FEFR-famn) approach reduced the call

graph by 77.4%. The reduction by remove-high-fan-in-functions (FEPR-/ea/)

is 67.3%.

The result of FreeBSD case study is shown in Table 4.5. The percentage

reduction of remove-leaf-nodes {FEPR-fanin) approach and remove-high-fan-

in-function (FEFR-leaf) approach are 67.3% and 79.2% respectively.

47

4.3. YING AND TARR'S APPROACH CHAPTER 4. VALIDATION

Table 4.4 Reduction Efficiency of FEPR approaches (i spe l l)
FEPR-fanin FEPR-leaf

Size of Call
Graph:

55 38

Percentage Re-
duced:

(168-55)/168 = 67.3% (168-38)/168 = 77.4 %

Table 4.5 Reduction Efficiency of FEPR approaches (FreeBSD)

FEPR-fanin FEPR-leaf
Size of Call
Graph:

55 35

Percentage Re-
duced:

(168-55)/168 = 67.3% (168-35)/168 = 79.2

4.2.4 Stability (S)

Figure 4.3 shows the percentage reduction of the i spe l l call graph under dif-

ferent parameter settings using different approaches. The result of the FEPR-

fanin approach is shown in Figure 4.3(a). As shown in the figure, there is no

sharp change in percentage reduction when we change the parameter value of

Fan-in Max and Threshold of FEFR-fanin approach. Figure 4.3(b) shows the

change in percentage reduction when tuning the value of Threshold in FEPR-

leaf approach. In both FEPR approaches, the percentage reduction on the

call graph does not change much when there is some minor modifications to

the parameters.

4.3 Ying and Tarr's Approach

As described in Chapter 1，Ying and Tarr produce a reduced call graph to

isolate important nodes by removing small methods, and by removing leaf

nodes. Here we compare the success of their technique to our own in terms of

Inclusion Accuracy, Reduction Efficiency and Stability.

48

(b) F E P R - l e a /

49

4.3. YING AND TARR'S APPROACH CHAPTER 4. VALIDATION

Figure 4.3 Percentage Reduction of FEPR approaches under Different Pa-
rameter Settings

(a) FEPR-fanin

30

20

4.3. YING AND TARR'S APPROACH CHAPTER 4. VALIDATION

4.3.1 Settings

1. ispell: Reduccd Call Graph by Ying and Tarr's approach {pbottom = 1,

psmall = 2). As shown in Figure 4.4(a).

2. PreeBSD: Reduced Call Graph by Ying and Tarr's approach {pbottom =

1, J)small = 2). As shown in Figure 4.4(b).

Figure 4.4 Call Graph Obtained by Ying and Tarr's Function Filtering Ap-
proaches -

(a) ispell (b) FreeBSD

Larger pictures of the call graphs are provided in Appendix A.

4.3.2 Inclusion Accuracy (lA)

The results of ispell study and Freebsd study are shown in Table 4.6.

Table 4.6 Inclusion Accuracy of Ying and Tarr's Approach
ispell FreeBSD

Size: 76
FEPR-/amn:4-21
FEPR-/ea/:+38

60
FEPR-/amn:+5
FEPR-/ea/:+25

Precision: 3/67=0.04
FEPR-/amn:-.01
FEPR-/ea/:-.05

5/60=0.083
FEPR-/amn:+.003
FEPR-/ea/:-.083

Miss Rate: 0 •
FEPR-/amn:0
FEPR-/ea/:0

5/10=0.5
FEPR-/amn:+.2
FEPR-/ea/:+.l

The FEPR approaches outperform Ying and Tarr's function filter approach

in both cases. The precision of our FEFR-fanin approach yields a similar

50

4.3. YING AND TARR'S APPROACH CHAPTER 4. VALIDATION

result in precision to Ying and Tarr's approach but with a lower miss rate.

The FEPR-Zea/ approach outperforms the other approaches in both precision

and miss rate.

4.3.3 Reduction Efficiency (RE)

The results of i s p e l l study and FreeBSD study are shown in Table 4.7.

Table 4.7 Reduction Efficiency of Ying and Tarr's Approach
i spe l l FreeBSD •

Size of Call Graph: 76
FEPR-/anm:+21
FEPR-/ea/:+38

60
FEPR-/amn:+5
FEPR-iea/:+25

Percentage Reduced: (168-76)/168 = 54.8%
FEPR-/anm:-12.5%
FEPR-/ea/:-22.6%

(168-60)/168 = 64.3%
FEPR-famn:-3%
FEPIUea/:-14.9%

Table 4.7 shows that the performance in terms of reduction efficiency for

the FEPR approaches is better than the performance for the Ying and Tarr

approach. The FEPR-Zea/ approach performed best, bettering Ying and Tarr's

approach in terms of overall graph size by 38 and 25 for i s p e l l and FreeBSD

respectively, and by 22.6% and 14.9% for i spe l l and FreeBSD respectively for

percentage reduction.

4.3.4 Stability (S)

Figure 4.5 shows the percentage reduction on the call graph of i s p e l l of Ying

and Tarr's function filtering approach. Only the i spe l l system was used for

Stability comparison, becausc the reduction of the call graph for the FreeBSD

system resulted in such a proliferation of reduced call graphs that comparison

was intractable.

As shown in Figure 4.3，our FEPR approaches are more stable than Ying

and Tarr's approach (Figure 4.5). When the Pbottom is changed from 1 to 2，

51

the percentage reduction reduces 40% more.

The perfonnaiice of Ying and Tarr's approach was likely hurt by the shallow

call depth of i s p e l l call graph. When the parameter Pbottom is set to 2, almost

all functions in the call graph are removed. Therefore, the PboUom parameter can

only be used as a coarse-tuning parameter. The Psmaii parameter is intended

to filter out functions with small number of callees such as delegation function.

Altering the Psmaii parameter does not have much effect on the degree to which

the call graph is reduced. As shown in Figm.e 4.5, tlie percentage reduction

only increased a little bit when the Psmaii changed from 1 to 4.

As a result of the limitations of these two parameters, it is hard to fine

tune the result in this case. In contrast, the results of our approaches can be

fine-tuned by adjusting the execution probability threshold. Figure 4.3 shows

that the percentage reduction can be changed by more than 50% when the

execution probability threshold is adjusted from 0.0 to 1.0.

4.4 Centrality Measure Approach

When faced with the task of using a call graph to gain an iiiiderstandiiig of a

system, one approach a developer might employ is to spot functions that seem

52

4.4. CENTRALITY MEASURE APFROACHCHAPTER 4. VALIDATION

Figure 4.5 Percentage Reduction under Different Parameter Settings

4.4. CENTRALITY MEASURE APFROACHCHAPTER 4. VALIDATION

central to the functionality of the system — particularly, functions that are

called by, or which call, a high number of other functions. Here, wc compare a

call graph composed of such functions to a call graph produced by the FEPR

technique.

The Centrality Measure determines the relative importance of a vertex

within a graph. There are various measures of centrality in network analysis

Pre79]. In our study, degree centrality is used. Mathematically,' the degree

centrality of a vertex v in a graph G is defined as follows:

centrality {v) = rnaxDegreeOfvirticesIn{G)

We compare the quality of the functions with the highest centrality value,

including the role of functions picked and the accuracy of using this approach.

4.4.1 Inclusion Accuracy (lA)

Table 4.8 Functions with the Highest Centrality

ispell

FreeBSD

Function(Centrality Value)
main(1.00),printf(0.73),

correct(0.58),

fprintf(0.55),strcpy(0.30),

checkline(0.27),

TeX_strncmp (0.23) ,usage(0.23),

treeinit(0.22),

linit(0.22),strlen(0.21)

VM_0BJECT_UNL0CK(1.00),

VMJDBJECT 丄 0CK_ASSERT(0.97),

vm_object_deallocate(0.94),

vm_obj ect_backing_scan(0.85)，

vm_object_page_cleaii(0.65),

vm_object_collapse(0.62),

vin_object_page_collect_flusli(0.56),

Z0NE.UNL0CK(0.53),

VM_OBJECT 丄 OCK^.SS)，

viii_object_terminate(0.50),

uma_zalloc_arg(0.50)

Table 4.8 shows the functions with highest centrality value in the case

53

4.4. CENTRALITY MEASURE APFROACHCHAPTER 4. VALIDATION

studies. We classify the functions by their role as shown in Table 4.9. The

distribution of centrality values is shown in Figure 4.6.

Table 4.9 Classification of High Degree Centrality Functions
Role ispell FreeBSD
Helper pnntf, fprintf,

strcpy,
TeX.strncmp,
strlen

VM. OBJECT一 UNL 0 CK,
VM-OBJECT丄 OCK-ASSERT,
ZONE-UNLOCK,
VM-OBJECT丄 OCK •

Initialization treeinit, Unit
Clean up vm.objecLdeallocate, ..

vm.object.page.clean,
vm.ohject.page.collect.flush,
vm.ohject.terminate

Functional main, us-
age, correct,
checkline

vm—0 bject-backing 一 s can,
vm.object.collapse, uma_zalloc_arg

Table 4.10 Degree Centrality for the Functions Mentioned in Documentations
Code Base Functions Degree Execution

Central- Probabil-
ity ity

ispell checkline 0.27 1
good 0.12 0.95
checkfile 0.05 1

FreeBSD Kernel uma-zalloc 0,15 1
Malloc

uma^zalloc.arg 0.5 1
uma.zalloc.bucket 0.32 1
uma.zone.slah 0.12 1
slab-zalloc 0.5 1
uma_zalloc-intemal 0.47 1
uma.slah.alloc 0.06 1

Tables 4,9 shows the role of the functions with highest centrality value.

Only 30% of functions are related to the functionality of the system. The

table also shows that most of the functions chosen using this strategy arc utility

functions: Helper and clean up functions usually have higher fan-in value, and

54

4.4. CENTRALITY MEASURE APFROACHCHAPTER 4. VALIDATION

Figure 4.6 Distribution of Ceiitrality Values: Ying and Tarr's Approach

Distribution of Degree Centrality for the Functions in ispell

(a) ispell

Distribution of Degree Centrality for the Functions in FreeBSD

0.1-0

(b) FreeBSD Kernel Malloc

The charts show the distribution of centrality value of all the function inside each system. The number indicates
the range of centrality value. The centrality value of the functions mentioned in documentation is range from
0.05 to 0.5. This range covered 90% of the functions in both system.

55

^
 n
^

4.5. TOP-DOWN SEARCH APPROACH CHAPTER 4. VALIDATION

initialization function usually have a higher fan-out value, and hence they have

a misleadingly prominent ranking.

Table 4.10 also shows that the functions mentioned in the documentation

do not have high degree of centrality (the centrality value of the functions

mentioned in the documentation are all below 0.5). According to Figure 4.6,

this range of centrality value covered 90% of the functions in the systems. This

means that using centrality value to rank the functions is unable to effectively

reduce the search space for finding important functions.

In contrast, the functions mentioned in documentation have a very high

rating ranged from 0.95 to 1.00 using our FEPR approaches. This range of

rating only covered 20% of the functions in the systems (Figure 4.3).

4.5 Top-down Search Approach

It has been shown that programmers tend to use a top-down approach when

trying to gain a high-level overview of a system [vMV95], In this case study,

wc mimic the proccss of searching for important functions using a top-down

strategy by using Breadth-First Search (BFS) to try to reach the functions

mentioned in the ispell and FreeBSD walkthrough guides.

We start from the root nodes in the call graph and count the number of

functions that have to be visited before reaching each function in the walk-

through guides. The measure for this study is the number of functions that

have to be visited so that all the functions mentioned by the expert documen-

tation are visited. We consider both left-to-right and right-to-left searching

orders.

We picked main and vmjnem_init as the root nodes for the i s p e l l and

FreeBSD study respectively, because they are the first functions called when

the system is executed.

56

4.5. TOP-DOWN SEARCH APPROACH CHAPTER 4. VALIDATION

4.5.1 Reduction Efficiency (RE)

Table 4.11 shows the number of nodes that have to be visited before reaching

all the functions mentioned in the expert documentation. The developer has

to visit an average of 74 functions in ispell and 80 functions

in FreeBSD Kernel Malloc using the top-down approach.

Table 4.11 BFS Visiting Order on Original Call Graph ；

Code Base Functions Order Order
(Left
Right)

to (Right to
Left)

ispell checkline 83 52
good 91 57
checkfile 8 23

FreeBSD Kernel umcL-zalloc 101 55
Malloc

uma-zalloc—arg 102 56
uma.zallocJ)ucket 103 57
uma-zoneslab 25 31
slab-zalloc 13 37
uma-zalloc.internal 15 29
umaslab .alloc 23 33

Sincc our FEFR-fanin approach and Ying and Tarr's approach do not

preserve the call tree structure, we cannot evaluate their performance in dircct

comparison to the BFS approach. Therefore, we only compare the BFS results

with the FEPR-Zea/ approach. These results are shown in Table 4.12.

When comparing the BFS results with the FEPR-/ea/ approach, only an

average of 20.5 and 22.5 functions are visited in the reduced

call graph of ispell and FreeBSD Kernel Malloc respectively. In contrast,

an average of 74 and 80 functions are visited in the original call

graph of ispell and FreeBSD Kernel Malloc (Results shown in Tabic 4.11).

The FEPR-/ea/ approach reduced the number of nodes visited by about 70%.

57

4.6. SYNTHESIZED ANALYSIS CHAPTER 4. VALIDATION

Table 4.12 BFS Visiting Order Using FEPIUea/Approach
Code Base Functions Order Order

(Left to (Right to
Right) Left)

ispell checkline 18 14
good 23 18
checkfile 7 7

FreeBSD Kernel uma-zalloc 26 15
Malloc

uma-zalloc_arg 27 16
uma—zallocJmcket 28 17
uma-zoneslab 17 . 12
slab-zalloc 18 9
uma—zallocjinternal 15 10
umaslab .alloc missed missed

4.6 Synthesized Analysis

4.6.1 Inclusion Accuracy (lA)

To evaluate accuracy, we compared our FEPR approaches with Ying and

Tarr's approach and the centrality approach. The precision of the FEPR-

fanin approach (ispell:0.05, FreeBSD:0.08) is similar to Ying and Tarr's ap-

proach (ispell:0.04, FreeBSD:0.083) but with a lower miss rate (ispell:no

different, FreeBSD:0.3). The precision of the FEPR-/ea/ approach the best

among the approaches (ispell:0.09, FreeBSD:0.17). The miss rate of the

FEPR-/ea/ (ispell :0, FreeBSD:0.4) is slightly higher than that for FEPR-

fanin (ispell :0, FreeBSD:0.3) approach, but still better than Ying and Tarr's

approach (ispell:0, FreeBSD:0.5). FEPR approaches are more accurate in

rating the importance of functions than the centrality approach. Functions

mentioned in expert documentation do not have high centrality values, but

obtain high rankings using our probability ranking approach.

58

4.6. SYNTHESIZED ANALYSIS CHAPTER 4. VALIDATION

4.6.2 Reduction Efficiency (RE)

To evaluate reduction efficiency, we compared our FEPR approaches with Ying

and Tarr's approach and the top-down approach. The percentage reduction of

our FEPR approaches is better than Ying and Tarr's approach in i spe l l and

FreeBSD study, and reduced the node visited when finding important functions

in the original call graph by 70%.

4.6.3 Stability (S)

To evaluate parameter stability, we compared the percentage reduction of the

call graph using the FEPR approaches with Ying and Tarr's approach under

different parameter settings. We found that our FEPR approaches are more

stable than Ying and Tarr's approach: There is no sudden change in the size

of the reduced call graph when the parameters change gradually using the

FEPR approaches. In contrast, the percentage reduction by Ying and Tarr's

approach changed sharply when we changed the parameter Pbottom from 1 to 2.

Therefore, in these cases, our approaches perform better in terms of fine-tuning

than Ying and Tarr's approach.

4.6.4 Threats to Validity

Internal Validity

The internal validity of our studies is threatened by the bias about the im-

portance of a function. Determining whether a function is important or not

is a subjective judgement. To minimize the potential bias, we identified exact

matches from expert documentation. We also identified correct functions in

the codebases before applying any call graph reduction or other analysis. In

this way we were unable to choose functions that did well in our approach, but

were ignored in others.

59

4.7. SUMMARY CHAPTER 4. VALIDATION

Construct Validity

The construct validity of our studies is threatened by the fact that Ying and

Tarr's function filter approach is designed for Java language while the code

bases of our studies are written in C. Although their heuristics do not make use

any Object-Oriented language properties, it is possible that there are some po-

tential difference in the reduction performance when applying their technique

on C code.

Generalizability

We have evaluated our technique in two different kinds of systems: a spell

checker (i spe l l) which is a small application-based system and an Operating

System Kernel (FreeBSD) which is a large piece of system software. The case

studies show that our technique upholds our claims in the two systems. This

suggests our call graph reduction would also be cffcctivc in other systems.

4.7 Summary

In this chapter, we compared our FEPR approaches against other techniques to

evaluate our thesis claims: FEPR approaches are better in inclusion accuracy

than existing approaches; FEPR approaches can more cffcctivcly rcduce the

size of call graph; FEPR approaches results are stable enough for fine-tuning

and are more stable than current approaches.

We evaluated the claim of improved inclusion accuracy by comparing the

FEPR approaches to Ying and -Tarr's approach and to the centrality approach.

We showed that our FEPR approach has a higher precision, lower miss rate

and better in ranking function importance.

Wc evaluate the claim of improved reduction efficiency by comparing the

FEPR approaches against Ying and Tarr's approach and against a top-down

60

4.7. SUMMARY CHAPTER 4. VALIDATION

search of the original call graph using BFS. We showed that the FEPR ap-

proaches are more efficient in reducing the size of call graph and in decreasing

the number of functions to be visited.

Wc evaluated the claim of improved stability by comparing the FEPR ap-

proaches against Ying and Tarr's approach. We found that the reduction

efficiency remains more stable under different thresholds of function execution

probability than Ying and Tarr's approach.

61

CHAPTER 5

Discussion

5.1 Flexibility of Analysis

The static nature of the proposed approach allows for a high-degree of flexi-

bility of analysis. Dynamic analysis suffers from the inherent limitation that

it cannot be used to analyze unexecutable code, whereas static analysis does

not.

In addition, analysis can be performed on part of the source code by replac-

ing the original starter function, main as shown in the case study of FreeBSD.

API library functions can also be analyzed in a similar way. After constructing

the Branch-Prescrving Call Graph of the API library, the function probability

spectrum can be estimated by using the API interface function as the starter

function.

5.2 Existence of Function

Pointers, GOTOs and

Early Exits

Ideally, a Branch-Preserving Call Graph will capture all of the possible con-

trol flow of a program. However, the dynamic behavior of the programming

language, including the use of function pointers, increases the difficulty in

constructive the BPCG.

62

5.3. PRECISION OF BRANCH-PRESERVING
CALL GRAPHS CHAPTER 5. DISCUSSION

Antoniol et al show that the existence of function pointers can hurt the

accuracy of the constructed call graph [ACT99]. Additionally, the cxistcncc of

GOTO statements and early exits increase the difficulty of building an accurate

BPCG.

While building a completely precise call graph is equivalent to solving the

halting problem in general, there have been attempts to construct a high preci-

sion call graph in the presence of function pointers ([MRR04], [Atk04]). How-

ever, the implementation of a call graph builder is non-trivial. Data flow infor-

mation must also be considered during call graph construction. This will make

the construction and further extension of the BPCG much more complicated.

It would be possible to use partial analysis to get a localized set of priorities

for a subsystem that is reachable only by function pointers. Just like we can

use vm_fault as the starter function when analyzing the page fault handling

mechanism.

5.3 Precision of Branch-Preserving

Call Graphs

There is always a tradeoff between computational complexity and precision.

A Branch-Preserving Call Graph is a simple abstract representation of source

code which provides just enough information to estimate the execution prob-

ability of the software. By ignoring data flow information, the construction

of a BPCG is more efficient than other static abstract representation such as

the dependence graph which is computationally expensive [Wei84]. It is also

computationally efficient to use BPCG for further processing.

However, the weakness of BPCG is also due to the abscncc of data informa-

tion. Consider the code fragment shown in Figure 5.1. in this work, function

f cannot be detected as unreachable code.

63

5.4. FUNCTION RANKING AND
RECOMMENDER SYSTEM CHAPTER 5. DISCUSSION

Figure 5.1 Example Showing the Imprecision of BPCG

i f (x > 1 && X < 1) {
f (x) ;

}

Constraint Propagation is one way to solve this problem[KROO, Bin94

Using the techniques in constraint programming, branch prediction can be

more accurate. Although precise, there is a computational complexity tradeoff.

5.4 Function Ranking and

Recommender System

Other than using the estimated function execution probability for call graph

reduction, it also provides a mean to quantify and rank the importance for the

functions in a certain code base.

Table 5.1 shows an example of estimated execution probability for the

functions with highest rating in sort .c, which is a UNIX sort utility included

in the GNU Coreutils package^ comprised of about 2500 lines of code and

39 functions. The functions with a high rating are considered as important

and suggested to be investigated first when understanding an unfamiliar code

base. Our technique in execution probability estimation can be integrated

with Recommender System such that the importance of functions is also be

considered.
iGNU Coreutils can be downloaded at http://www.gnu.org/software/coreutils. In here,

Coreutils 5.0 is used.

64

http://www.gnu.org/software/coreutils

5.4. FUNCTION RANKING AND
RECOMMENDER SYSTEM CHAPTER 5. DISCUSSION

Table 5.1 Estimated Function Execution Probability for functions in sort . c
Function Rating
inittables

buffer Jinelim
fillbiif

compare
sigemptyset

sigaction
main

posix2_version
bindtextdomain

textdomain
hardJocale
localeconv
sigaddset
gettext 0.996019
error 0.995581
die 0.99473

__builtin_alloca 0.953705
keycompare 0.953705

limfield 0.951715
xalloc-die 0.93896

initbuf 0.9375
begfield 0.908898

tririi-tmiliiig—blanks 0.908898
create_temp_file 0.875

sigprocmask 0.875
mkstemp 0.875

fstat 0.75
stat 0.75

mergefps 0.75
merge 0.75

65

5.5. EXTENDING THE APPROACH
BEYOND C CHAPTER 5. DISCUSSION

5.5 Extending the Approach

Beyond C

Currently, this approach is implemented to work on code written in the C pro-

gramming language. In theory, our approach can be applied to other languages

as well, such as C + + or Java. However, as mentioned before, the precision

of the approach relies on the accuracy of the construction of a correct Branch

Preserving Call Graph. With the existence of function pointers, call graph

construction is not trivial. Object-oriented programming languages present

further problems, due to their reliance on dynamic properties such as poly-

morphism and dynamic binding. Static call graph construction algorithms are

available [GDDC97], and the approaches could be straightforwardly extended

to extract Branch-Preserving Call Graphs, but the trade-off between accuracy

and efficiency is unavoidable.

66

CHAPTER 6

Related Work

We categorize the related work in two groups: current program understanding

approaches (section 6.1), branch prediction and static profiling approaches

(section 6.2).

6.1 Existing Approaches in

Program Understanding

In this section, we describe work aimed at helping developers understand source

code.

6.1.1 Localized Program Understanding

Localized program understanding approaches help developers to investigate

a program from a particular starting point. Our FEPR approaches differ

from these localized approaches in that they are intended to provide a general

overview of the source code, but not to facilitate a focuscd investigation of

specialized areas of interest.

Program Slicing : Program slicing identifies the parts of a program that

may affect the values computed at some point of interest [Wei79]: it extracts

the program elements that are potentially affected by, or that affect the control

flow or data flow of the selected statements or variables. As such, program

67

6.1. EXISTING APPROACHES IN
PROGRAM UNDERSTANDING CHAPTER 6. RELATED WORK

slicing is a localized analysis technique. It can facilitate investigation of one,

or of a collection of points of interest. It is not, however, intended to provide

a general overview of a code base, or to identify potential points of interest.

Although program slicing is a useful technique for reverse engineering, the

construction of program slices is time consuming [Wei84]. The size of program

slice is usually large [Wei84, BGH07]. Our approach, on the other hand, has

a complexity of 0((V + E)^), and even for a large program works in less than

an hour. .

Even though a program slice can be view as a reduced call graph, FEPR

approaches can achieve a better reduction efficiency than program slicing in

terms of narrowing the whole program down to points of interest for a new-

comer to a code base. Program slicing is not suitable for initial understanding

as points of interest must be provided, while it is not possible for a developer

to come up with the potential points of interest without inspecting the code

manually. The FEPR approaches do not require developers to provide any

starting points of investigation. Developers who do not have knowledge about

the system are still able to apply the FEPR approaches. Furthermore, the es-

timated execution probability of the functions can provide hints to developers

in locating the starting points for investigation on the reduced call graph,

Recommender System : A recommender system can suggest related meth-

ods in response to user queries. When provided a set of methods of interest, the

system can automatically suggest a list of related methods [IYF+03, IYYK05,

SFDB07, Rob05]. Xie et al. make use of external open source repositories

in mining API usage patterns. In their work, a developer can obtain sugges-

tions for API invocation sequences and usages samples by providing a query

describing a method or class of an API [XP06, TX07 .

Recommender systems can help developers search for functions related to

a function of interest. Like program slicing, user has to provide starting points

68

6.1. EXISTING APPROACHES IN
PROGRAM UNDERSTANDING CHAPTER 6. RELATED WORK

of investigation when using recommender systems. It is not possible for a

developer to come up with such stating points when he is completely new to

the system. In contrast, FEPR technique does not require any user input.

It operates on the whole system and estimate the execution probability of

each function. For this reason, FEPR is a more suitable technique for initial

understanding.

6.1.2 Whole Program Analysis

Whole program analysis techniques allow developers to obtain an overview of

a system without providing a starting point.

Structural Recognition

Structure recognition tools are aimed at discovering candidate modules from

source code. They facilitate refactoring of the source code into a more desired

modularization. This differs from the FEPR approaches because the FEPR

approaches are intended to facilitate initial understanding, but not provide

support for restructuring or structure discovery. Such approaches are valuable

for positing a new structure for a system, but are less effective in helping a

developer navigate and find salient points of an existing system structure.

Component and Aspect Mining : The goal of component mining is to

identify software components from the source code. Graph-based partition-

ing [SGMB03, GK97, LL03] and metric-based partitioning [TH99, THOO] are

the two major approaches in component mining. Inoue et al. proposed a com-

ponent ranking technique called Component Rank [IYF+03] based on the page

rank web-searching technique [PBMW98].

Aspect mining involves the identification of crosscutting conccrns in the

source code. Crosscutting concerns are identified by looking for functionality

that is repeated, or that does not fit cleanly into the existing modularization

. 69

6.1. EXISTING APPROACHES IN
PROGRAM UNDERSTANDING CHAPTER 6. RELATED WORK

of a system. Different approaches based on fan-in analysis [MvDM04], clone

detection [BDET04, BDET05], version history [BZ06] and random walk [ZJ07

has been proposed.

Component and aspect mining focus on mining candidate components that

can be refactored into modules. They do not tell the developer about how these

modules interact with each other. FEPR approaches aimed at trim down the

size of a call graph such that it is more useful in providing an high level

overview to the developers. In addition, call relations between, core functions

are retained in the reduced call graph. This is particularly useful for developers

attempting to understand the call interactions between the functions.

Conceptual Modules : Conceptual modules is a technique to allow the

developer to posit new desired modules for a code base [BM98]. A conceptual

module is a logical module which consists of a set of lines of codc. Once it is

defined, a developer can perform queries of a desired structure on conceptual

modules to find out the correspondent code segment in the source code.

The conceptual module approach is intended to aid the developer in finding

relevant code segments for a desired structure. It is not suitable for obtaining

an initial understanding of a code base as the lines contributing to a conceptual

module have to be specified by a developer who has already established an

initial understanding of the system. Even if the conceptual modules were

already specified, a developer who is new to the system would not know where

to start in terms of navigating and understanding the structure.

Structure Overview

In this section, we describe the techniques that aimed at providing an overview

on the code base.

70

6.1. EXISTING APPROACHES IN
PROGRAM UNDERSTANDING CHAPTER 6. RELATED WORK

Pattern Miners : Pattern miners [SKL+02, PIKK98, RadOO] allow a de-

veloper to discover design patterns in the source code. Given an architectural

description, pattern miners return a collection of segments of code that to-

gether conform to that description.

While pattern mining approaches can aid developer understand a system

by locating the code segment related to some particular patterns, they cannot

tell the developer which part of the source code is more important to the core

functionality. This is important for initial understanding as developer does

not know where to start even if a high level overview were already obtained

through pattern mining. Using the FEPR approaches, functions that are not

furictioiialy significant are filtered out in the reduced call graph. The relative

importance of functions can be dcduced by the estimated cxccution probability.

Feature Location : Feature location affords a developer an understanding

of a new system by providing a mapping between the sourcc codc and the

features of a program. This effort can be split into static approaches and dy-

namic approaches. Some static approaches involve the use of natural language

techniques [MM03, DDL+90] or information retrieval approaches [ACC+02，

ZZL+06]. However, it is less accurate for these static approaches. Dynamic

approaches include the use of scenario-driven analysis and software reconnai-

sance [Egy03, EKSOl，EKS03, WS95, WC96]. These approaches must be ap-

plied to a runnable system. Scenarios and test cases have to be carefully de-

signed before performing the analysis. FEPR approaches are static techniques

and can be applied to a non-running system.

Feature location techniques intend to reestablish linkage between source

code and features. Therefore developer must have a list of features or sce-

narios as input when applying these tools. Because of this, feature location

approaches are not suitable for initial understanding as the features or scenar-

ios of a system can only be provided by the developers who are already familiar

71

6.1. EXISTING APPROACHES IN
PROGRAM UNDERSTANDING CHAPTER 6. RELATED WORK

with the system. In contrast, the FEPR approaches do not require human

intervention during the analysis and no initial understanding of the system is

required.

Semiautomatic Overview Tools : Semiautomatic overview tools such as

Rigi [MK88] and RMTool [Mur96] can aid developer in gleaning a high level

structure of the source code. Rigi is a reverse engineering tool through which a

developer can obtain a high level visualization of system structure by applying

functionality clustering operations.

RMTool is intended to assist the establishment of architectural confor-

mance of a system. It requires a developer to specify an architecture for con-

formance checking. However, this cannot be done by a developer who knows

nothing about the system. Furthermore, developers who would like to form

an initial understanding are likely not initially interested in the architecture's

conformance. Even if an architccturc diagram of the codc base were to be

given to the developer for the sake of applying RMTool, the tool would not

tell them which portions of the code are central to understanding the system.

Rigi is intended to help developers build up an high level overview of a

system architecture. Developers have to perform visual clustering of the vi-

sualization of system structure until an high level overview is obtained. This

process is infeasible for a developer who is new to the system as the cluster-

ing process requires knowledge of the system. Additionally, like RMTool, Rigi

docs not provide any hints about which part of the source code is core to the

system.

Unlike these tools, the FEPR approaches arc intended to help developers

who are inexperienced with the code base to know where to start their task of

forming an initial understanding. Users are not required to have any knowl-

edge about the system when applying the FEPR approaches. The estimated

execution probability of functions also provide hints to developer where to

72

6.2. BRANCH PREDICTION AND
STATIC PROFILING CHAPTER 6. RELATED WORK

start in the reduced call graph.

6.2 Branch Prediction and

Static Profiling

The goal of static profiling is to estimate the program profile of a program

prior to runtime. Program profiles may be split into different kinds of pro-

files, such as block count, procedure time, reference count or procedure entry

count. Program profiles are particularly useful in compiler optimization. Since

static profiling relies on the structure of the source code to predict the runtime

behavior of the program, accurate branch prediction is necessary.

Static Branch Prediction [BL93] predicts the direction of branches, (con-

ditional branches and loop branches) based on the original source code, or

based on the binary code structure. By knowing the branching behavior, a

compiler can obtain a better scheduling of machine instructions thus yield a

better optimization.

There arc many techniques for branch prediction that use a simple heuris-

tic [WMGH94, WL94] or constraint propagation [KROO, Bin94]. Wagner ct

al. use a simple estimate of branch probabilities in their work in program

optimization [WMGH94). They assign a predefined weighting for each kind of

branching statement during calculation. Ball and Larus obtain a list of static

heuristics for branch prediction [BL93] by analyzing the statistics of branching

behavior. Their result was used by Boogerd and Moonen for their work in

software inspection [BM06 . •

Some approaches for branch prediction were integrated into generalized

techniques for static profiling. Wagner et al. also apply Ball and Larus's

branching heuristics [BL93] to estimate the block execution frequencies pro-

file [WMGH94]. However, their estimation is limited in that it is only capable

73

6.2. BRANCH PREDICTION AND
STATIC PROFILING CHAPTER 6. RELATED WORK

of inter-procedural level analysis and cannot extend to perform whole-program

analysis dircctly. Wu and Larus applied the same branching hcuristics in esti-

mating execution frequency of function calls [WL94]. They improve Wanger's

work by combining different heuristics and extending the scope of analysis. Wu

and Larus apply the Dampster-Shafer theory, a method of calculating event

probability by combining different pieces of evidence, to combine the predic-

tions obtained from different heuristics. Their approach has been shown to

work at an intra-procedure level.

The estimation of loop trip count is necessary in both Wu's and Wag-

ner's approaches in order to estimate the frequency profile. However, loop-trip

count is not straightforward to establish. While both approaches use Ball and

Larus's Loop branch heuristic when estimating the loop trip count, there is

considerable doubt as to the accuracy of the Loop branch hcuristic. When con-

sidering the mean miss rate and the standard deviation (Mean: 25%, Standard

Deviation: 28%) as reported in the Ball and Larus study [BL93], it is clear

that enormous errors can be made, especially when nested loops are encoun-

tered. Execution frequency can also be overestimated by assuming that the

execution paths are independent. Moreover, as point out by Wong [Won99],

their approaches are on machine code level and are susceptible to differences

in compilers and architectures.

Wong has proposed a set of heuristics for branch prediction at the sourcc

code level [Won99]. He observed that some kind of branches, such as branches

contain print out statement to STDERR, are unlikely to be executed at run time.

By considering the general programmer coding habit, it is likely to obtain to

more precise branch prediction.

The FEPR approaches avoid the estimation of loop trip count by estimat-

ing the function execution probability by graph reachability instead of function

execution frequency: It is impossible for execution frequency to be accurately

estimated using static analysis.

� 74

6.2. BRANCH PREDICTION AND
STATIC PROFILING CHAPTER 6. RELATED WORK

In this work, all branches are "assumed equal"，because as there is no way to

predict the actual probability profile without running the program. Although

more accurate results maybe achievable by adopting branch heuristics, heuris-

tics like [WMGH94, BL93] are at the machine code level which are not appro-

priate to apply them on our work. Wong's source code level heuristics [Won99

maybe suitable for our work, but these heuristics have not deeply statistically

evaluated as in Ball's work [BL93]. Furthermore, we believed that acceptable

accuracy can be achieved without the use branch heuristics. .High accuracy

has been reported in probability-based recommender systems [Rob05, SFDB07

even though their systems assumed that each method call has the same prob-

ability of execution.

75

CHAPTER 7

Conclusions

It is not easy to navigate the source code to understand the .program. Our

preliminary study found that developer intuition does not help much in iden-

tifying core functions in a call graph, especially when the call structure is

complicated and large. We believed that this inability is due to the large num-

ber of functions in the call graph that are not core to the functionality of the

program.

Our aim, is to reduce the size of call graph so that a developer can focus

on the functions that are core to the functionality of the program. To achieve

this goal, we proposed a technique to filter out the functions in the call graph

with a low estimated probability of execution.

The thesis of this work is that by filtering the call graph to retain only those

functions with a high estimated probability of execution, we can arrive at a

reduced call graph that is smaller, has a higher percentage of important func-

tions, arid which is more stable in the face of changing thresholds of function

inclusion, than current approaches.

To validate the thesis claims, we have conducted a series of case studies. To

evaluate accuracy, we compared our FEPR approaches with Ying and Tarr's

approach and the centrality approach. The results showed that our FEPR

approaches are better than Ying and Tarr's approach in inclusion accuracy

and better than the centrality approach in rating the importance of functions.

To evaluation reduction efficiency, we compared our approaches with Ying

and Tarr's approach and with a top-down approach. The results showed that

76

CHAPTER 7. CONCLUSIONS

FEPR approach is better than Ying and Tarr's approach in reducing the size

of call graph and in reducing the number of nodes to be visited when searching

for core functions. To evaluate parameter stability, we compared the percent-

age reduction of the call graph using the FEPR approaches with Ying and

Tarr's approach under different parameter settings. We found that our FEPR

approaches are more stable than Ying and Tarr's approach.

In addition to the demonstrating the validity of the thesis statement, the

research makes three contributions.

First, we have conducted a preliminary study showing the developer's in-

ability in identifying corc functions when faccd with a large call graph.

Second, we provided a variation of the call graph, called the Branch-

Prcscrving Call Graph, to represent call relations and branching relations of

the source code.

Third, we provided two FEPR approaches in call graph reduction and

validated that our approaches are more effective than current approaches.

There are many possible future directions for this work as discussed in

Chapter 5. One is to incorporate Wong's code level branching heuristics [Wori99

into our heuristic when estimating the function execution probability. This

may help improving the accuracy of our call graph reduction approaches. An-

other possible direction is to extend our work to Recommender System. This

would provide a better accuracy as the importance of function is also taken

into account.

77

APPENDIX A

Call Graphs in Case Studies

This chapter includes the call graphs used in validation: .

1. Figure A. l : Reduced Call Graph by remove-high-fan-in-functions

approach (Threshold=0.5, Fan-in Max=4)

2. Figure A.2: Rcduccd Call Graph by remove-leaf-nodes approach

(Threshold=0.5).

3. Figure A.3: Rcduced Call Graph by Ying and Tarr's approach

{Pbottom = 1 ’ Psmall = 2) .

4. Figure A.4: Reduced Call Graph by remove-high-fan-in-functions

approach (Threshold=0.4, Fan-in Max=4).

5. Figure A.5: Reduced Call Graph by remove-leaf-nodes approach

(Threshold=0.4).

6. Figure A.6: Reduced Call Graph by Ying and Tarr's approach

(Pbottom = 1，Psmall — 2).

78

Fi
gu

re
 A

.l
 R

ed
uc

ed
 C

al
l G

ra
ph

 b
y

re
m

ov
e-

hi
gh

-fa
n-

in
-fu

nc
tio

ns

ap
pr

oa
ch

 (
Th

re
sh

ol
d=

0.
5,

 F
an

-in
 M

ax
二

4
)

A P P E N D I X A . C A L L G R A i I N
 C A S E S T U D S S

Fi
gu

re
 A

.2
 R

ed
uc

ed
 C

al
l G

ra
ph

 b
y

re
m

ov
e-

le
af

-n
od

es
 a

pp
ro

ac
h

(T
hr

es
ho

ld
=0

.5
)

<x

A P P E N D I X A . C A L L G s i I N C A S E S T U D I E S

Fi
gu

re
 A

.3
 R

ed
uc

ed
 C

al
l G

ra
ph

 b
y

Yi
ng

 a
nd

 T
ar

r's
 a

pp
ro

ac
h

{p
bo

ua
m

 =
 1

, P
sm

ai
i

=
2)

ij

oo

aw
m.̂

 i
I j

—
j

LL

丨
T̂；

nu
ll
.1
1n
ui
TT
ir
ii
TT
)

〜
.一

J"*"!

"：
二

"I
：

；

['N
K.m

.
.

.
.

.
.

‘
^

‘ a：

、
、

插
丨

宁
R

省
恐

-m
.

A P P E N D I X A . C A L L G R A i I N
 C A S E S T U D I E S

Fi
gu

re
 A

.4
 R

ed
uc

ed
 C

al
l G

ra
ph

 b
y

re
m

ov
e-

hi
gh

-fa
n-

in
-fu

nc
tio

ns

ap
pr

oa
ch

 (
Th

re
sh

ol
d=

0.
4,

 F
an

-in
 M

ax
二

4
)

oo

to

A P P E N D I X A . C A L L G s i I N C A S E S T U D S S

F
ig

ur
e

A
.5

 R
ed

uc
ed

 C
al

l G
ra

ph
 b

y
re

m
ov

e-
le

af
-n

od
es

ap

pr
oa

ch
 (

Th
re

sh
ol

d二
0.

4)

oo

CO

B
B

B
B

A P P E N D I X A . C A L L G R A P H S I N C A S E S T U D S S

F
ig

ur
e

A
.6

 R
ed

uc
ed

 C
al

l G
ra

ph
 b

y
Yi

ng
 a

nd
 T

ar
r's

 a
pp

ro
ac

h
{j

ph
ot

ta
m

 =
 1

, P
sm

ai
i

—
 2

)

oo

H
Z

I
vm
kj
^.
tm
rm
 I

A P P E N D I X A . C A L L G R A P H S I N C A S E S T U D I J E S

APPENDIX B

Source Files for BPCG Builder

We have implemented a Branch-Preserving Call Graph Builder using ANTLR

version 2.7. The grammar files for our builder is modified by the GNU C gram-

mer files developed by John Mitchell and Monty Zukowski. The original gram-

mar files can be downloaded from http://www.antlr.org/grammar/cgram.

The Makefile, the additional source files (BPCG .Java and Node .Java), and

the 3 modified grammar files (StdCParser • g’ GnuCParser, g and expandedCParser. g)

are shown below.

Listing B.l: Makefile

iles - BPCG.Java CSymbolTable.Java CToken.Java GNUCTokenTypea .java GnuCLexer.java

GnuCLexorTokenTypes . java

STDCTokenTypes .java StdC

class STDCTokenTypos

all :

java antlr . Tool St

java antlr . Tool -j

javac $(javafil«8)

clean :

rm $(classflies)

rm expandedGnuCParser . g

GNUCTokenTypes . class GnuCLexer.class

lass Node.class PreprocessorinfoChaunel

Listing B.2: BPCG.java

AUTHOR： KK Lo. 7/2007

Output

85

http://www.antlr.org/grammar/cgram

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

<file 1> <file 2>

REVISION HISTORY:

public

public Stat:

//Print

. p r i n t l n C

ANTLR 2.7 to compilc

(int

try{

String flleName - args[i]；

DataZnputStream dls “ null;

if (fileNamo.oqualsC'-")) •

//Reading from STDIN

//Reading from files

dis • new DatalnputStream (

new FilelnputStream(fxleName))

/ /

// i
try

sy

etTokenObjectClass

nitiaXize ()；

e the input

oetASTNodeType(TNode.claa

etTokenVocabulary("GNUCTokeaTypes

(new

RecognltionExceptlon e)

tem.err.printIn("Fatal] " + i

86

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

Sy8t< ； ⑴

(TokenstreamExceptic

rstem . err . print In ("Fi
rstem.exit (1)；

:\n"+e);

in input

//Footer of

.println (•

Listing B.3: Node .Java

in Branch-Preserving Cftll

AUTHOR： KK Lo, 7/2007

REVISION HISTORY:

public

public Node(String

.g. functic

if(type . i

myld

s if(type.equalB("OR")){

myld - orId++;

s _ "0R_" + myld;

87

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

public Sti

Listing B.4: StdCParser.g

file

AUTHOR: KK Lo, 7/2007

REVISION HISTORY:

Description

•mmmm%rmm
Copyright (c) Non, Inc. 1997 -- All Eights Reserved

PROJECT:

MODULE:

Mitchell (johQ9non.net〉，Jul 12,

REVISION HISTORY；

Fixed 1

expressions

DESCRIPTION；

ISO/ANSI

88

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

to back up your

typedefName is

•/••/••/••///•nm̂^̂

. i o.

.util

optic

buildAST “ true;

ASTLabelTyp© « •

/ /
codeGenMakeSvitchThreshold

II Suj

public

C++-Btyle

// access to symbol

public CSymbolTablo

II

public

unnamedScopeCounter - 0;

I isTyp«defNam«(String name) {

Lse ；

.lookupNamelnCurrentScope

null ； de .g«tNextSibling ()

LITERAL.

public getAScopeName ()

89

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

return "“ + (unnamodScopeCount«r++)

public void pushScope(String scopeNaae)

symbolTabl©.pushScope(scopeName)；

public void popScope()

aytnbolTablo

public void reportError(RecognitionExceptioa ex) {

try {

System,err.printIn ("ANTLR Parsing Error: " + ex C L A d)])

(TokenStreamExcoption e)

rstem.err,printIn("ANTLR

c.prItttStackTrace(Systam.

public void

. p r i n t i n g ANTLR

public void reportWarning(String

System.arr.printXn("ANTLR Pai

(TokenstreaoException e)

rstem.out.println("Match("+tokenNames[t]H

try

X++) System.out.print

match : "-t-tokonNames

丨[t]):

MismatchedTokenExceptiOD (tok«nNames , LT (1)

[LA(l)]

getFilename ())；

/ / fetch until LA/LT

90

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

(TokenStreamExceptic

(TQkenStreanExcept

Empty source files

,err.prIntln (”Empt

declaration[parent]

L C i m m expr [parent] RCURLY 丨 SEHI I

[Node parent]

• n u l l丨 }

；declSpeciflers [parent] { dsl - astFactory.dupList (#cls〉;

91

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

) ?
SEMI I

II
II it finds a non-'

varnWhenFollovAmbig

8:BtorageClaesSpecifier

I typeQualif ier

I ("struct" I '_unioa"丨"enum" I typeSpocif ier

specCount - typeSpecifier [specCount , parent]

:ifier

functionStorageCls

typeSpecifier [int 8； [int retSpecCount]

>? typedefName

92

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

IsTypedefName (LT(1).getText()) }7

•C ## • #(#[NTyf)edefName:i • #i);

structOrUnionSpecifier

{ String acopeName； }

： so

((I D LCURIY

#1.satText(acopeName)；

pushScope(scopeName)；

RCURLYI

I 11:LCURLY
{

scopeName • getAScopeName()

#11.8etText(scopeName)；

pushScope(scopeName)；

[parent]

{ popScope()

RCURLYI

#(

"struct•

"union"

specifierQualifiorList [parent]

speciflerQualifierList

// it finds a non-t;

warDWhenFollouAmbig

II

typeSpecif ier [specCount

93

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

[parent] (COMMA [parent]

COLON constExpr[parent]

#(#[NStructDeclar8itor] • ##〉;

enumSpecifj

ID LCURLY

LCURLY a m

；Ci.getText ()

It] RCURLYI

[String

[enuoNaae • [enuaName

symbolTable

#(null,

#[LITERAL_Gnum ,‘

ID, enumName]

(ASSIGN conatExpr[parent])7

COMMA

‘declarationSpecifiers ,

,[declaratloaSpecifiers •

；1[declaratioaSpecifiers

CAST

String

.dupList(declarationSpecifi

.dupLxst(#d)；

#(null, dsl, dl)

ASSIGN [parent]

94

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

COLON expr[parent]

#(#[NIiiitDecl]

pointerGroup

#[NPoiiiterGroup] , ##)

CNod« parent]

assignExpr[parent]

LCURLY COMMA!)? RCURLY！

[Node

declarator[boolean

[parent]

ushScope(declName);

[f ale

par0nt3)«> p: parameterTypeList [parent]

#(n u l l , #(# [N P a r a m 0 t e r T y p e L i s t] ,))；

(i:idList)?

n u l l , ##, # C N P a r a m e t e r T y p e L i s t] , *i)) :

95

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

snt])? RBRACKET

parameterTypeList [Node pari

； parameterOeclaratic

warnWhenFollovAmbig » false；

}：

COMMA ！

paraoeterDecXarat ioD [parent]

COMMA 1

VARARGS

parameterDeclaration

AST d2. ds2;

.dupLiat ；

.dupList (#<U);

ieclName , #(null, ds2 , d2))；

)? {
• #[NParameterDeclaration3

JTC ;

This handles both new and old style

rule to see

SEMI：

style . may want to do

(but I assume

• /

1 typo decls j

to check for

la will b« lea

[true

.dupList(#d)i

96

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

.dupList(#da)；

Le.add(declName . ds2, d2));

pushScope(declName)；

//I add the code here

audNode • new Node("AND")；

SysteiD . out. print In (decIName + " [shape "rectE

System.out.printlx

(VARARGS)? (SEMI

popScopG ()；

ompoundStatement

[Node

(options { II this loop properly aborts

II it finds a non-typedofName ID MBZ

warnWhonFollowAmbig • false；
} ：

functionStorageClassSpecifier

I typeQualifler

I (“struct" I "union" I “eaum" I typeSpecifier [bpecCount

(options { // this loop

it it finds a non-typedefName ID MBZ

warnWbenFollovAmbig « falsej

(options { " o n l y want to

warnWhenFollowAmbig - false；

[parent]

compoundStatement [String scopeName

： LCURLYI

{
pushScope(scopeName)；

}
((d « c l a r a t i o n P r e d i c t o r [parent])"

(atateroentLxat[parent])？

{ p o p S c o p e O J }

RCURLY！

#[NCompoundStatement , scopeName] ,

97

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

i [n u l l ；

： SEMI II Empty statements

I compoundStatement [getAScopeName () , type , parent] // Group of s-

I e x p r [p a r e n t] S E M I丨 # [N S t a t e m e n t E x p r 3 • # #) ; :

II Iteration statements :

I " w h i l e L P A R E N ! expr[parent] RPAREN! atateneat["while " , parent]

I "do"" statement["do". parent] "while"! LPAREN ！ expr[parent] RPAREN！:

I I "for"
LPAREN (Gl:expr[parent])? SEMI («2:expr[parent])? SEMI (e3:expr[parent]

s：statement ["for", parent]
{

if (*ei -« null) { - *[NEmptyExpresBion]: }

if (#e:2 null) { #e2 - #[NEmptyExpreaaioa] ： }

if (#e3 " null) { #e3 - *[NEmptyExpreasioa]； }

• #[LITERAL_for • "for"]. , #e2, #03’ #s)；

II

// Jump

)? SEMI

II Labeled statements :

I ID COLON丨（options {uarnWhenFollowAmbig«

林#); }

I "case"* constExpr[parent] COLON丨 statem<

I "default"" COLON！ atatement["default". i

II Selection statements :

I "i广

LPAREN！ expr[parent] RPAREN丨 statement

(/ / s t a n d a r d if-else ambiguity

options {

varnWhenFollovAmbig • false；
} ：

"else" statement C'eloe", parent])?

98

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

assignExpr[parent] (options {

/• HBZ:

COMMA is ambiguous between comma expreoi

argument lists . argExprLiat should got priority

and it does by being deeper in the expr rule tre<

and using (COMMA assigaExpr) *

*/
warnWhenFollowAmbig • false；
> ：

‘{ .aetType(NCommaExpr)； } assignExpr[parent]

signExpr [Node

slgnOperator

ASSIGN

DIV.ASSIGN

PLUS一ASSIGN

MINUS.ASSIGI^

RSHIFT.ASSIGN

LSHIFT.ASSIGN

BOR.ASSXGN

BXOR.ASSIGN

iignOperator 丨 assignExpr [parent] 褲& •

logicalOrExpr[parent]

QUESTION* expr[parent] COt^ON丨 conditionalExpr[parent])?

constExpr [Node parent]

: conditioaal£xpr[parent]

logicalOrExpr [Node parent]

: logicalAndExpr [parent]

inclusiveOrExpr[parent] { LAND“ inclusi

oxclusxvoOrExpr [parent] (BOR" exclusiveOrExpr[parentJ

99

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

rent]

‘[Node parent]

parent] (BAND* e q u a l i t y E x p r [p a r e n t]

equalityExpr [Node

: relational

((E Q U A L " I NOT.EQUAL-) r e l a t i o n a l E x p r [p a r e n t]

r e l a t i o n a l E x p r [N o d e parent]

: s h i f t E x p r [p a r e n t]

((L T - I LTE- I GT- I GTE") s h i f t E x p r [p a r e n t]

ShiftExpr [Node parent]

； a d d i t i v e E x p r [p a r e n t]

((L S H I F T " I RSHIFT") a d d i t i v e E x p r [p a r e n t]

additiveExpr [Nod©

multExpr [Node parent]

: c a s t E x p r [p a r e n t]

((S T A R " I D I V I MOD-) castExpr [parent]

caatExpr [Node parent3

: (L P A R E N t y p e N a m e [p a r e n t]

LPAREN！ t y p e N a m e [p a r e n t]

#[NCaBt: , "(•‘],

iryExpr [parent 3

typeName [Node p a r e n t]

: a p e c i f i e r Q u a l i f i e r L i a t [parent] (n o n e m p t y A b s t r a c t D e c l a r a t o r [parent])‘

Q o n e o p t y A b s t r a c t D e c l a r a t o r [Node

100

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

pointerGroup

((LPAREN

(nonemptyAbstractDeclarator [parent]

I parameterTypeLiat [parent]

)7

RPAREN)

t (LBRACKET (expr[parent])? RBRACKET)

(LPAREN

(nonemptyAbstractDeclarator[parent]

I parameterTypeList [parent]

) ?
RPAREN)

(LBRACKET (expr [parent])? RBRACKET)

#(#[NNonemptyAba

nonemptyAbstractDeclarator

// null

LPAREN nonemptyAbatractDeclarator RPAREN

LPAREN RPAREN

(LBRACKET (expr)? RBRACKET)

unaryExpr [Node parent]

postfixExpr[parent 3

I INC" unaryExpr[parent]

I D E C unaryExpr [parent]

I u:unaryOperator caatExpr[parent] #[NUnaryExpi

I " s i z e o f

((L P A R E N typeName[parent])-> LPAREN typ«Name[parent] RPAREN

I unaryExpr[parent]

101

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

parent]{String i d N a m e " ; }

idName “ f:prlmaryExpr[parent]

(
postfixSuffix[parent , idName] {## 骤 #(#[NPoatfixExpr]

//{System.out.println("STD : POSTFIXSUFFIX丨

I LBRACKET

1 INC

I DEC

) +

//{System . out . println (•• STD : FUNCTION CALL'

LPAREfT (a:argExprList[parent])? RPAREN

primaryExpr [Node parent] returns [String idName]{idName

: id: ID {idName - i d . g e t T e x t O ；}

// JTC:

// ID should catc

II leaving it in

ft
I LPARENI expr[parent] RPAREN1 #[NExpi

aaaignExpr[parent] (COMMA I aasignExpr[parent]

102

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

nsignedOctalConst

onglntConst

UnsignedlntConst

ongHexConsI

LongDoubleConst

NDecl

NStruct

NFuncti

Group

lonGr

nCall

yAbst

izer

ntExp

press

erTyp

itpr

NUnaryExpr

NRangeExpr

NlnitializerElementLabel

NLcurlyXnitializer

NAsaiAttribute

NGnuAsmExpr

NTypoMisaing

103

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

optic

()
String

PreprocessorlnfoChannel preprocessorInfoChaDoel

iNumber - 0;

countingTokens “ true ；

public void setCouutingTokens(boolean ct)

couDtingTokens • cl

if (countingToXene

public void setOriginalSource(String

public

public PreprocessorlnfoChannel getPreprocessorInfoChannel ()
{

return preprocessorinfoChaQDel ；

}

public void setPreprocessingDirective(String pro)
{

preprocessorInfoChannel . addlineForTokenNumber (pre, new Integer(tokenNumber)

104

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

t)
:ountingTokeQS

i(t) i

.aotLine(lineObject.lino)；

.setSource(lineObJect.sou]

public

public

..，\377】

/*

ASSIGN

COLON

COMMA

QUESTION

// DOT ft

II the Ni

/ /

// VARARGS

VARARCS:

105

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

LBRACKET

RBRACKET

LCURLY

RCURLY

EQUAL

NOT-EQUAL

LTE

LT

GTE

GT

INC

MINUS

MINUS.

DEC

MOD.ASSIGN

RSHIFT

RSHIFT.ASS

LSHIFT

LSHIFT ASSIGN

BOB

BOR.

Whitespace

(

'\037' ,\177' .. ,\377J

106

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

-ttype

C

-ttype -

PREPROC.DIRECTIVE

options {

((' ' I '\t' I '\014O+ '0'. . '9'))

oldCountingTokens

//thia

(Str

LineObject ()：

,parseint(n.getText ()));

try

nglndexOutOfBoundsException e) { »

ineOblect.setSource(fi.getText())；

(true)； })?

Le(true); })?

• 1)〉；

107

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

.setSystemHeador(true); })7

；(true) ; })?

" N r X n " I " X r " I " N n "

preproceesorlnfoChannel . addLxneForTokenNumber(new LineObject(lineObject)• new Integer(tokenNumber))

» Note that we do NOT handle tri-graphs nor multi-byte

*/

Its, Strict reading of

& carriage returns .

,\r' { deferredNewliae ()

I ,\n, {
deferredNevline ()；

.ttype • BadStringLiteral ；

F
I ,\V ,W {

() ;

,\r' I I

)d BadStringLiteral

// Imaginary token

108

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

exactly.

with a leading \x

s { w a r n W h e n F o l l o w A m b i g '

W

)?)7

options{warnWhenFoIlowAmbig“

• '7') (optioas<warnWheiiFollowAmbig - false ;};

options{warnWhenFollowAmbig-false ； > ; Digit

Digit (options{waraWhenFollouAmbig'
Digit)?

Digit

D i g i t

109

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

DoubleDoubleConst

LongDoubleConst

LonglntConat

UnsignedlntConst

LongHexConst

UnsignedHoxConst

((D i g i t

Digit)•

) ?

)? (Digit

LongOctaaConst

UnsignedOctalConst

I I 'E，))-> (Digit

) ?

110

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

Digit 〕

- t t y p e
) ?

-ttype

-ttype

.ttype « LongOoubleConst

.ttype • LongOctalConat；

C _ttype • UnsignedOctalCoDst

>9' (Digit

UnsignedSuffix

- t t y p e
LongSuffix

I UnsignedSuff]

-ttype

Digit

LongHexConst ；

• UnsignedHexConst

AUTHOR: KK Lo, 7/2007

REVISION HISTORY:

Listing B.5: GnuCParser.g

•Preserving Call

Initial

•/••/•mummm

PROJECT:

111

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

Monty Zukovski (jamzQcdsnet.net) April 28.

DESCRIPTION : This is a grammar for the GNU

subclass of StdCParser , overriding oaly the

•/_mmummm%m

import .io.•i
• util

antlr,CommonAST；

antlr.DumpASTVisitor；

exportVocab » GNUC；

buildAST - true ；

ASTLabelType - "TNode"；

//Copied following options

c o d e G e n M a k e S v l t c b l h r e s h o l d

//Suppport C++ - style

public static boolea

//access to oymbol table

public CSymbolTable symbolTable - xxev CSymbolTable()；

//source for names

to unnamed scopes

protected Int unnamedScopeCouater “ 0；

public boolean isTypedefName(String namo} {

U l u e • false ；

• symbolTable.lookupNa

le !- null； node • (TNode)

I — LITERAL_typed«f) {

true ；

public String getAScopeName (}

112

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

(uDnaiDedScopeCount«r'4"t')

public void p u s h S c o p e (S t r i n g

s y m b o X T a b l e . p u s h S c o p e (s c o p e N a

public

public 、

try

1 r e p o r t E r r o r (R e c o g n i t x o n E x c e p t i o n ex)

item.err.println("ANTLR Parsing Error: ” +

.printStackTrace(System.err)；

[LA(l)])

reamException e)

stem, err .printlnC'ANTLR

, p r i n t S t a c k T r a c e (S y a t e m .

public r e p o r t E r r o r (S t r i n g

.printlnC'ANTLR Parsi String I

public void r o p o r t W a r n i n g (S t r i n g

S y s t e m . e r r . p r i n t l n (" A N T L R Parsing

public :h(int t) throws Mi8matchedTokenE*ceptj

debugging - false；

for (int

try

(debugging)

.print

. p r i n t l n C Ct]
CLA(l)]

with LA (1)-

E > 0) ?"

c a t c h (T o k e n S t r e a m E x c e p t i o n e)

S y s t e m . o u t . p r i n t l n (" M a t c h |[t] ((i n p u t S t a t e .

1":",.));
0)

try

(LA(1) !- t) {

if (debugging)

for (int X - 0 ; X < traceDepth； x++)

.out .print (" __);

.println("token mismatch :‘

•！•” + tokonNames [t])；

H i s m a t c h e d T o k e n E x c e p t ion

[U(1)J

LT(l)

fetch until LA / LT

113

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

publi

(int X++�
.print

try
,println("> “ + rname 入

O “ + LT(1).getText()

LA(1)' CLT(l) . g e t T y p e O]

catch(TokonStreamExcepti<

public

try

(int X - 0; X < traceDepth； x++)

System . out . print (__ ••);
{

System.out•println ("< " + rname —

+ __〉" + LT(1) . getText ()

[LT(1) . g e t T y p e O]

catch (TokenStreamException e)

Empty

LCURLY expr [parent] RCURLY(SEMI)

idLlst

:ID(options

warnVhenFollovAmbig

}:COMMA ID) •

‘[parent]

typelessDeclaration

13丨"as a valid

114

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

((functionDecXSp«cifj

[true, parent]

(declaration[parent]) • (VARARGS) ？ (SEMI)

LCURLY

typelessDeclaratlo

AST

#[NTyI>ê !isBing] : }
:xnitDeclList [typeMisaing

« #(#i:NTypeMiaBing：] , ##):

:((((xnitializerElementLabel [parent]) - >initializerElementLabel

(assignExpr[parent] I Icurlylnitializer[parent]) {

• # (

//GCC allows more apocifi<

initialIzerElementLabel [Node parent]

！((LBRACKET((constExpr [parent] VARARGS) • >rangeExpr[parent]

I ID COLON

I DOT ID ASSIGN

) {
•林（#[NInit:ializerElementLabel] , ； }

RBRACKET(ASSIGN〉

//GCC

LCURLY - (initializerList [parent] (COMMA !) ?) ？ RCURLY
{

BetType (NLcurlylaitializor) ； }

[parent] (options

warnWhenFollovAmbig «

}： COMMA

declarator[boolean

decZNanie “ ;

}

(pointerGroup) 7

(id : ID {

declName id . g«tl
}

ILPAREN declNane • _

)
(declaratorParaoaterList [isFunctionDef inltion

5

1

1

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

LBRACKET(expr[parent]) ？ RBRACKET

declareitorParainaterList

(isFunctionOef inition)

leclSpecif iers [parent]) • >parameterTypeList

(idList) 7

丨Oi

(COMMA

RPAREN

setType(NParameterTypeList

parameterTypeList [Node parent]

: parameterDeclaration [parent]

(options {

varnWhenFollovAmbig “ false；
}：

(COMMA I SEMI)

parameterDeclaration [parent]

) •

((COMMA I SEMI)

VARARGS

localLabolDeclarat ion

I (declarationPredictor

localLabelDeclaration

： (/ / G N U note:

"__label__" - ID(options {

varnWhenFollouAmblg • false；

}： COMMA 丨 I D〉 • (COMMA 丨〉？ （SEMI !)

116

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

.[Node parent] {

AST dsl - null ;

declSpeciflers

.dupLlat (

[dsl. parent]

) ？

(SEMI) +

{
林林• #(tfCHDeclaration], ##);

>

functionStorageClassSpecifier

sSpecifier [int

retSpecCount •

I [int

I structOrUnionSpecif ier [parent] (optic

warnWhenFollowAmbig » false；

}: att]

IenumSpecif

} 7 typedefName

I "typeof" - LPAREN

((typeName[parent]) • >typeName[parent]

:ifier [Node

((ID LCURLY)

7

1

1

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

#1.setText(scopeName)；

pushScope(scopeNaoe)；
}

(structDeclarationList [pare]
{

popScope()；
}

RCURLY

I 11: LCURLY

{
scopeName “ getAScopeName ()

. set Text (scopeName)；

pushScope(scopeName)；
}

(StructDeclarat ionList [parei
{

popScope ()；
}

RCURLY

I ID

) {

窗 #sou , ## 〉；

specifierQualiflerList [parent] (COMMA 丨）？ (SEMI

uarnWhenFollovAmbIg

}： COMMA

: (declarator [falae ,]

(COLON constExpr[parent])

#[NStructDeclarator], ##)

<(ID LCURLY)

I LCURLY eni

t ID

LCURLY onumLlst [i. RCURLY

varnWhenFollovAmbig

(COMMA

118

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

initDeclList [AST declarationSpecifiers . Node

: initDecl[declarationSpecifiers » parent

(options {

warnWhenFollovAmblg » false；

}: COMMA I initDecl [declarationSpecifiers

(COMMA ！) ？

initDecl [AST declarationSpecifiers

.dupList(declarationSpec

.dupLiat(

sysibolTablo . add (declName

#(null, dsX » d l))；

(ASSIGN

expr[parent]

#(#[NIiatDecl] , ##

Jttribute“ • LPAREN

LPAREN stringConst RPAREN

ttributo(options {

warnWhenFollowAmbxg

}： COMMA attribul (COMMA)

'(LPAREN I

I LPAREN

COMMA)

compounds t at eiaent

I LCURLY -

pushScope(I

}
(//thia

options {

uarnWhenFolXowAmbig

I[parent])

[parent])

119

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

RCURLY

setTyp©(NCompoundStatement

//only for

:ifiers

[fall

.dupList (

Lo . adcKdeclName ,

#(null, dB2, d2))；

pushScope(declName)；

}
(declaration[parent]) *
{

popScope 0 ；

>
compoundStatement

• #[NFunctionDef] , ##

statement[String type , Node parent】

/ / / " / / / / / / / / / / / / " / / / / / / / / " / / / / / {
Node andNodel - null ；

Node andNode2 null ；

Node orNode - null ；

}

/////////////////////////////////

： SEMI // Empty statements

I compoundStatoment [getAScopeNaae ()•

type , parent] // Group of

#(#[NStatemeiitExpr] •杯杯) ; > II Expressions

Systc

120

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

[parent]

[parent]) ？ SEMI丨 (e3

null)

null)

#[NEmptyExpression

)2 • #[NEmptyExprosi

if (

null) { “3 « NEmptyExpresc

#[LITERAL_for , "for"], #el , i

//Jump

I"goto" " oxpr[parent] SEMI

I"continue ” SEMI I

1"break ” SEHX ！

I ID COLON t (options {

warnWhenFollovAmbig « fale

} : statement[”label“, \

林林• #(tfCNLabel], ##); }

//GNU allows range expressions In

((constExpr[andNodelj VARARGS) • >raiigeExpr CandNodel] [andNodel]) COLON ！ (options {

warnWhenFollowAmbig

COLON 1 (options {

warnUhenFoXlovAmbig

andNodel])

andNodel])

121

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

" i f " "

LPAREN 丨 expr[parent] RPAB

orNode • new Node(“OR“

tement ["if",

//If block

(//standard if -

else

ambiguity

options {

warnWhenFollowAmbig » fale

}：

"else" statement [“else“ . i

/ /
else

block

S y s t e m . o u t . p r i n t I n (o r N o d e

•switch" “ LPAREN 丨 expr [parent]

orNode - new Node("OR");

logxcalOrExpr[parent]

(QUESTION 我(expr[parent]) 7 COLON c o n d x t i o n a l E x p r [p a r e n t])

rangeExpr[Node parent] //

: constExpr[parent] VARARGS

• # (# [N R a n g e E x p r] , ##); }

caatExpr [Node parent]

:(LPAREN typeName[parent]

LPAREN - typeName[parent]

8«tType(NCast) ； }

I u n a r y E x p r [p a r e n t] ；

nonemptyAbatractDeclarator

pointerGroup

((LPAREN

(n o n e m p t y A b a t r a c t D e c l a r a t o r [p a r e n t]

RPAREN) • >

R P A R E N (c a s t E x p r [p a r e n t]丨 I c u r l y l n i t i a l i z e r [p a r e n t])

122

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

(COMMA ！) ？

RPAREN)

I (LBRACKET(expr[parent]) ？ RBRACKET)

I((LPAREN

(nonemptyAbBtractDeclarator [parent

I parameterTypeList [parent]

)？

(COMMA 丨）？

RPAREN)

I (LBRACKET(expr[parent]) ? RBRACKET)

#(#[NNonemptyAb8tractDeclarator],林称

unaryExpr [Node

INC • castExpr[parent]

DEC " castExpr[parent]

u:unaryOperator castExpr[parent]

t • #(#[NUnaryExf>r] , ##) ; }

((LPAREN typeName[parent]) « >LPAREN typeName[parent]

It]

((LPAREN typflNane[parent]) typeName[parent] RPAREN

I gnuAsmExpr[parent]；

unaryOperator

:BAND

I STAR

！ PLUS

I MINUS

/ /
I LNOT

I LAND //

r _ — r e a l "

I imag"

gnuAsmExpr[Node paren

："asm" " (" v o l a t i l e”

LPAREN BtringConat

(options {

warnWhenFollowAmbig 丨

}：

COLON(strOptExprPair

(options {

warnWhenFollowAmbig

(COMMA St

123

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

(COMMA strOptExprPair [parent])

(COLON stringConst(COMMA stringConst) •) ？

RPAREN
{

o«tTyp«(NGnuAsmExpr) ； }

I

//GCC requires the PARENs

StrOptExprPair [Node parent]

stringConst(LPAREN expr[parent] RPAREN)

primaryExpr[Node parent] returna[String idNam<

id: ID {

idName • id.

” J T C :

" I D should catch tii

" l e a v i n g it in gives ambiguous arr

// jenumerator

I (LPAREN LCURLY) - >LPAREN “ compoundStateraent

I LPAREN 一 expr[parent] RPAREN {

oetType(NExpresBionGroup)； }

antlr

k - 3;

importVocab - GNUC;

public

124

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

ANTLRHa

ANTLRHa

ANTLRHa

ANTLRHa

ANTLRHa

ANTLRHa

ANTLRHa

ANTLRHa

ANTLRHa

ANTLRHa

ANTLRHa

sm—，.，this).

ttribute__ “,

o m p l e x - 一 t h

onst", this)

this

th

E R A L .

TERA

(LI

ERA

ITE

O);

.inli

a . i n

LITERAL.ai

TERAL.type

LITERAL.ty

LITERAL_vx»

t))
g))

))

iae

l)) l

d))；

f));

eof));

a t i l e))：

olatile))；

Preprocessorlnf©Channel ()

public void setCountingToke

countingTokens « ct;

if

tokenNumber

ct)

public void

originalSource

public

I (src)

public

public

eprocessorinfoChannel getPreprocessorInfoChannel ()

n preprocessorInfoChannel ；

id setPreprocessingDiractive(String pr

ocesBorlnfoChannel . addLineForTok«nNumb«r (pre,

t) {

5untingToken8)

.line)

125

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

public void

deferredLineCount

public void newline ()

ewline ()；

((, ‘ I ' \ t ' I

" \ r \ n "

•()；

newline ()；

-ttype

C o p t i o n s {

varnWbenFollovAmbig

I (' 0 ' . . ' 3 ') (o p t i o n s {

uarnWhenFollovAmbig

}： Digit) *

l(,4,.. '7') (options {

warnWhenFollowAmbig

}: Digit) •

warnWhenFollowAmbig

126

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

IntSuffix

((Digit)

'(Digit)

I - X D i g i t)

(NuffiberSuffd

.ttype - VARARGS；

((Digit) + (Exponent)

'9,(Digit)

(IntSuffix

if (i.getType() “ LITERAL.

$setType(Token.SKIP)j

} else {

$sotType(i.getType ())；

Digit)

127

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

aptic

,. I 'A' ..'Z' I
•Z' I I I '0' .. '9'

$setType(CharLiteral)：

WideStringLiteral

I {

newline ()；
}

1 {

auline ()；

' \ r ' 丨 I

Listing.B.6: expandedGnuCParser.g

expandedGnuCParser .g - Grammar file for expanded Guv

- M o d i f i e d for building

Branch-Preserving Call Graph

AUTHOR: KK Lo, 7/2007

REVISION HISTORY:

128

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

antlr

antlr

2；

G N U C ;

IG ；

ASTLabelType- "TNode"j

codeGenMakeSwitchThreahold“

codeGenBitsetTestTbresbold•

importVocab-STDC；

II Suppport C++-style

public static boolean

// access to symbol table

public CSymbolTable symbolTable • new CSymbolTable()；

II source for names to unnamed scopes

protected int unnamedScopeCouater - 0;

public boolean iaTypedefName(String name) {

false ；

^mbolTable.lookupNamoInCurrentScope (name)；

null: node • (TNode) node.getNextSibling ()

tType () " LITERAL.typedef) {

public String getAScopeNam« () {

return “ “ + (unaamedScopeCounter ：

public void pusbScope(String scopeNan

symbolTable.pusbScope(scopeName),

public vol

.popScopo(),

int traceDopth “ 0；

public void reportError(RecognitionException ex]

try {

System . err . print In (" ANTLR Parsing Error CLA(l)])

129

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

,printStackTrace(System.

(TokenstreamException e)

rstem . err . println (" ANTLR

【.printStackTrace(System•

Error : " + ex)；

public void reportError(String

System.err.println("ANTLR F String:

public void reportWarning(String s

System.err.println("ANTLR Pars

public t)

rsing Warning from String:

HismatcbedTokenException 4

3an debugging

debugging)

for

try

X + +〉 .print

.println("Match(" + tokenNameB [t]*") with LA(1)•

i [LA (1)3 + ((inputState.guessing>0)?"

ate.guessing + "]":""〉〉；

catch (TokenstreamException e)

System.out.println

try

LA(1)！-t) {

If (debugging

for (int

H
0; x<traceDepth； x++)

println("token mlsmat<

！-"+ tokonNamea[t])；

.print

[LA �]

throw new MismatcbedTokenExceptic 38 , LT(1) getPilename ())

II until LA/LT

(TokenStreamExceptlc

public

publi< ：(String rname:

130

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

(int

try
X+ +)

.println("< '' + rname+“; LA(1)-

'•) " + LT(l) .getText () +

,print丨

CLT(l)

catch (TokenstreamExceptic
}

traceDepth -•« 1;

LCURLY

idList :ID (options{varaWbenFolIovAmbig‘

typolessDeciaratIon[parent]

aaiD.expr [parent]

SEKI

3t]

(functionDeclSpecif ds；functionDeclSpecifd

(VARABGS》？ (SEMI

typelessDeclaration [Node :

[typeMissing

AST typeMiosiag • #[NTypeMisaing];

SEMI { # # - # (#[irrypeMi«

(InitializorElementLabel

a&signExpr[parent] I Icurlylnitializor [par.

initializerElementLabel [parent]

t - »(

Icurlylnitializer [parent]

inltializerEXemontLabel I

constExpr [parent])

I ID COLON

！ DOT ID ASSIGN

LBRACKET ((t

(ASSIGN)?

VARARGS)-> rangeExpr[parent]

#(# [N I n i t i a U z 0 r E l e m e n t L a b e l] , ##)

Icurlylnitializer [Node parent] :LCURLY' (initializerList

{ ##.setType(NLcurlylnitializer) ； }

COMMA I)?)? RCURLY

131

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

l8t [Node options{warnWheDFollowAmbig•

pointerGroup) ?

declaratorParamaterList [isFunctionDofinition

I LBRACKET (expr[parent])? RBRACKET

declaratorParamaterLiBt [boolc

if (IsFunctlonDefinitlon)

pushScope(declName)；

declName]{

:LPAREN*

(decXSpecij

I (idLiat)'

parameterTypeList

p o p S c o p e O；

}
(C O M M A I)?

RPAREN

{ setType(NParaneterTypeList)

parameterTypeList [Node pare

(options <

warnWhenFollowAobig « false；
} ：

(C O M M A 丨 SEMI)

parameter Declaration [parent]

) •
((C O M M A I SEMI)

VARARGS

) ?

:parameterDeclaratic

// it finds a non-typedefName

uarnWhenFollowAmbig • false；

// thif

132

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

localLabelDeclaration :(//GNU

(o p t i o n s { w a r n W h e n F o l l o w A n b i g . f a l s e ； > ： C O M M A！ I D) - (C O M M A !) 7

[Node null 1

:declSpecifiers [parent] { del » aetFactory

#(tfCNDeclaration] , ##)

unctionStorageClassSpecif

"static"

[int specCount , Node parent] returns [int

:1f ier [parent] (

enumSpGcifier[parent]

{ spflcCount""O }? typ«defName

" t y p o o f L P A R E N

typeName[parent])•> typeName[parent]

expr[parent]

K w a r n W h e n F o l l o w A m b i g «

scopeName

,setText(scopeName)；

pushScope(scopeName)

{ popScope ()；〕

RCURLY

I 11:LCURLY

133

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

pushScope(scopeName);

specifj
COMMA!)?

[parent]

optious{warnWheuFollowAmbig• COMMA

COLON conotExpr[parent])?

LbutoDecl) *

尊（#[NStructDeclarator]

nSpecifier [Node parent] :“f

ID LCURLY)-> i:ID LCURLY

LCURLY enumList["anonymous RCURLY

RCURLY

COMMA I
options{varnWhenFollowAmbig'

ST declarationSpeclf iers , Node

opt ions{warnWhenFollowAmbig-false ；}: COMMA丨

initDecl[declarationSpc

[declarationSpecifiers

.[AST declaratlonSpecifier8 String

ASSIGN
I COLON

.dupLiat(declarationSpecifiers:

,dupLlst (#(i) ； •

.addCdeclName , #(null , dsl , d l)) ;

It]
#(#[NInit;Decl]

-attribute"- LPAREN LPAREN

134

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

I{varnWhenFollovAmbig•

•(LPAREN I

I LPAREN

COMMA)

^ompoundStatement :LCURLY'

iScope(scopeName);

//this

options {

warnWhenFollovAmbig

(nestedFunctionDaf

jtType (NCompouadStatement

String

[" a u t o ")7 //only for nested functions

(functlonDeclSpecifiors [parent]>•

)7

d2, ds2：

.dupLiat (#<is)；

_ #(ii\ill,

pushScope(declName)；

d 2)) i

compoundstatemeat [declNz I(declName)]

- D u l l ；

難 nulli

null ；

II Empty

compoundStatomeut [getAScopeName () , type , parent] " Group of

expr[parent] SEMI丨 { * * - # (#[NStatenentExpr] , ##) ; } "

135

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

expr[parent]

•AND")；

,printli

R P A R E m SEMI 丨

！ "for"

PAKEN (el: expr [parent]) ？ SEMI (e2 : expr [parent]) ?

Systc

9 n t]

if

• #(

C " null)

(n u l l)

〔 # e 3 “ null)

tCLITERAL.for ,

NEmptyExprc

NEmptyExprc

SEMI 1 ' g o t o “* e x p r [p a r e n t J

'continue" SEMI！

•break" SEMI！

'return''" (expr [parent])? SEMI I

I ID COLON! (options {warnWhenFollowAmbig«

N L a b e l] , * #) ; }

ft GNU allows range expressions in cas

System.out.printla(parent -

}
((constExpr[andNod«l] VARARGS)'

varnWbenFollovAnbig-false

r a n g e E x p r [a n d N o d e l]丨 constExpr[andNodel]} COLON丨

System .out,printla(parent + " - >

}

COLON ！ (opt ions-CwariiWheijFollowAmbig"

// Selection statements :

"if

LPARENI It]

136

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

II If

options {
uarnWheoFoXlouADblg

// e】

) ?
I "switch"" IPARENI

RPAREN!

QUESTION" (expr[parent])？ COLON conditionalExpr[parent]

rangeExpr[Node parent] :constExpr[parent] VARARGS constExpr[pareot]

{ ## • #(#[NfUngeExpr]• **); }

castExpr[Node parent] ：(LPAREN typeName[parent] RPAREN)•>

iEN" typeName[parent] RPAREN (castExpr[parent] I Icurlyinitializer[parent]

t, setType(NCast)； }

unaryExpr[parent]

noneniptyAbatrac

pointerGroup

((LPAREN

(nonemptyAbstractDeclarator [parent]

I parameterTypoList [parent]

)? *

(COMMA丨〉？

RPAREN)

I (LBRACKET (expr[parent])? RBRACKET)

(LPAREN

(nonemptyAbstractDeclarator [parent]

I parametarTypeList [parent]

) ?
(COMMA丨〉？

137

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

RPAREN)

(LBRACKET RBRACKET)

#(#[NNonenptyAbst;ractDeclarator],轉林

:poatfixExpr[parent] ryExpr [Node pare

I N C castExpr [parent]

DEC" castExpr[parent]

u:unaryOperator castExpr[parent] #[NUnaryExpi

LPAREN typeNam©[parent])•> LPAREN typoName[parent] RPAREN

unaryExpr[parent]

LPAREN typeName[parent]

unaryExpr[parent]

gnuAsmExpr[parent]

typeName[parent]

jnaryOporator

I STAR

for

LAND //for

gnuAsmExpr[Node

LP

(o p t i o n s { warnWhenFollowAmbig

COLON (strOptExprPair[parent]

RP

IMMA StrOptExprPair [parent])*)？

false； }：

rent] (COMMA strOptExprPair [parent])*)?

COMMA stringConat)*)7
setType(NGnuAsmExpr)i

RPAREN)?

idName]{idName

id.getText()

“ J T C :

" I D ！

ft leav

138

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

//
I (LPAREN LCURLY) _> LPAREN" compoundStatement [getAScopeNamo () . ”sc<

I LPAREN" expr[parent] RPAREN { ##.setType(NEjcpressionGroup)

II

// inherited from gramma

declSpecifiers [Node parent] {

:(options { II

// it finds a n

varnWhenFollovAmbig

if ier

•struct'

^ount - typeSpecifier [specCount

// inherltod from grammai

pecif ier : \

functionStorageClassSpec

// inherited :

typeQualifier

II inherited from gramma

typedefName :{ isTypedefName (LT(1) . g e t X e x t O) }?

i:ID { ## • #(#[NTypedefName3, ;

/ /

/ /

II Inherited from gramma

specifierQualiflerLiSt [Node parent] { int specCouat 顯 0;

:(options { II this loop properly abort

// it finds a non-typedefName ID MBZ

warnWhenFollowAmbig - false；

} ：

(" s t r u c t " I "union“ I "enum“ t typeSpecifier [sp

139

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

/ /

H null,

#[LITERAL.eiium ,丨

#[ID, enumName]

(ASSIGN constExpr [parent])‘

symbolTable

// inherited

polnterGroup typeQualific ## • #(#[HPoiiiterGroup] , 丨

It inherited from ,

paramotorDeclarati<

• dupList (#<i)；

.dupList (#cla)；

#(nullI 4 2)) i

noneoptyAba

• #(#{;NParamet0rDeclaration]:

/ /
String

(functionDeclSpecifiers ：functionDeclSpe

[true,

AST d2, ds2;

.dupLiBt(#d〉；

.dupListUda)；

.add (declName , # (n u U 丨

pushScope(declName)；

//I add the code here

d 2)) i

• printIn(declName

.printIn(declName

(VARARGS)? (SEMI

{ popScope ()；
}

compoundStatemeat

140

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

II inherited from gramma

functionDeclSpecifxers [Node parent] { int specCount • 0; >

:(options { II this loop properly aborts vben

// it finds a non-typedefName ID NBZ

warnWhenFollowAmbig - false；

}：

functionStorageClassSpecifier

I typeQualif ier

I ("struct" I "union" I "ennm “ I typeSpecifier [specCount

// inherited from gramma

declarationPredictor [Node parent] :(options { //only want to look at

typedef

warnWhenFollovAmbig “ false；

II inherited from gramma

ode parent] :(atatement[null,

II inherited from gramma

expr [Node parent] :assignExpr[parent] (optic

/• MBZ:

liould get priority

IS by being deeper ia the expr rule trei

(COMMA assignExpr)*

setType(NCommaExpr)； > assignExpr[parent]

// inherited from gramma

assignExpr[Node parent] :conditionalExpr[parent] (a:assignOperator 1 assignExpr[parent]

):} }?

/ /

DIV.ASSIGN

MINUS.ASSIGN

RSHIFT.ASSIGN

LSHIFT.ASSIGN

141

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

// inherited from gramma

constExpr [Node parent] :conditionalExpr [parent]

// inherited from gramma

logicalOrExpr [Nod© parent] : logicalAndExpr[parent] (LOR" logicalAndExpr[parent]
»

// inherited from grammar StdCParser

logicalAndExpr[Node parent] : inclusiveOrExpr [parent] (LAND" inclusiveOrExpr [par*

// inherited from gramma

ode parent] : exclusiveOrExpr [parent] (BOR"

// inherited from gramma

[Node parent] :bitAndExpr[parent] (BXOR" bitAndExpr[parent]

// inherited from gramma

bitAndExpr [Node parent] :©qualityExpr[parent] (BAND" equalityExpr[parent]

/ / i n h e r i t e d f r o m g r a m n

e q u a l l t y E x p r [N o d e p a r e r

((E Q U A L - I N a T _ E Q U A L -

II inherited from gramma

shiftExpr [Node parent] :additiveExpr[parent]

((L S H I F T - 丨 a S H I F r) additiveExpr[paront]

II inherited from g

additiveExpr [Node parent] :multExpr[parentJ

((P L U S - 丨 MINUS-

// inherited from gra

multExpr [Node parent]

((S T A R - 丨 D I V -丨 MOD") castExpr[parent]

// inherited from gramma

typeName[Node parent] ： specifierQualif ierList [parent] (nonooptyAbatractDeclarator [parent])‘

/ /

:primaryExpr[parent]

142

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

postfIxSuffIx[parent m • #(#[NPostfixExpr]

/ /
://{System.out.println("STD: POSTFIXSUFFIX‘

LBRACKET

INC

DEC

[Node parent , String

PAREN" (a：argExprList[parent])？

.printlnC'STD: FUNCTION CALL •

:(Str

LongOctalConst

UnsignedOctalConst

IntlntConet

LonglntConst

UnBignedXntCoast

IntHexConst

LongHexConat

UnsignedHexConst

siguExpr[parent] (COMMA！ assigaExpr[parent]

LongDoubleConst

- #(#[NStringSeq], #«>

143

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

NExpressioDGroup

NFunctionCallArgfi

NNonemptyAbe

NInxtializer

NStatementExpr

NEmptyExpression

NParameterXypeList

NFunctionDef

NCompoundStaternent

NParameterDeclaration

NCommaExpr

NUnaryExpr

NRangeExpr

NStringSeq

NlnitializerElementLabel

NLcurlylnitializer

NAsmAttrlbute

NGnuAsmExpr

NTypeHissing

import ji

//import

3;

importVocab- GNUC;

public

:e(src)1

public

In

this) ITERAL.aam))；

(LITERAL.asm))；

...attribute))；
))；

(LITERAL.con5t));

erCLITERAL.const))：

144

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

P U

NTLRHashS

NTLRHaflhS

of",

of..'

tile •

LITERAL.__

LITERAL.in

r(LITERAL.inlin

LITERAL...real

LITERAL.signed

r(LITERAL.sign

LITERAL.typeof

r(LITERAL.typo

r(LITERAL.vola

))：

d))
))；
le));

O) ;

LineObject lir

String

PreprocesaorlnfoChaanel

ioct 0 ；

preprocessorlnfoCbannel Preproceasorinf oChannel (•)

public

if (countingTokena

public void setOriginalSource(String

or:

lii

public

lii

public PreprocessorinfoChanneX getPreprocessorlnfoCbannel ()

preprocessorlnfoCbanaal ；

public void sotPreprocesaingDirective(String pre)

preprocesBorlnfoChannel . addLinoForTokonNumbor (pre , new

t)

Integer(tokenNumber)

.raakeToken(t)

I (liaeObject . line);

145

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

public

public

Whitespace :((' ' I ’\t,丨'\014')

I " \ r \ n " { n e w l i n e () ；

I (’ W I , \ r ') { n e w l i n e ();

rotected Escape : '\\'

options{warnWhenFollovAmbig-false；}:

- (' 0 ' . I

I ('0 ' . . *3 ') (options •CwaruWhenFollowAmbig - false ；}: Digit

I ('4 '. . '7 ') (options-CvarnWhenFollowAmbig-false ；}: Digit

I 'X' (options{warnWhenFollowAmbig-false ； }: Digit I

protected IntSuffix

NunberSuffix :IntSuffiJ

： ((D i g i t

Digit)• I
I I)) - > (D i g i t

) ?

146

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

,•‘ { .ttype

Digit)+ (Exponent)?

_ttype “ Number; >

,9' (Digit

,0' ('X' I 'X') (i I Digit

IntSuffix

• LITERAL-
.SKIP);

$setType(i.getType())：

SsetType(CharLiteral)i

$setType(StringLiteral)；

(
I ' W

nevline ()；
}

I ' \ n '

newline()；

147

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

77 ‘

if
COLON

//

COMMA

/ /
QUESTION

/ /

”inhf
LPAREN

//

RPAREN

it
LBRACKET

148

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

//

LT

It \
GTE

II
GT

“\
DIV

" 3
DIV,

II

I I i n h e r i t e d

PLUS.ASSIGN

// j
XNC

/ / inl

MINUS

/ / i n h e r i t e d

MINUS.ASSIGN

/ /

/ /

i t i n h e r i t e c

STAR.ASSIGN

/ /

I I i n h e r i t s

MOD.ASSIGN

/ /

I I i n h e r i t e d :

RSHIFT.ASSIGN

// inhc

LSHIFT

/ / i n h «

LSHIFT.

)?

149

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

II ii

LNOT

/ /

/ /

II

/ /

// i
BOR

n inherit«

BOR.ASSIGN

n

/ /

-ttype •SKIP;

II

II

-ttype - Token.SKIP；

iberlted fron grammar

lOC.DIRECTIVE

I I ((' ' I ' \ t ' '))
I (- ' w

- t t y p e

JsingDirective(getText()):

150

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

II

/ /

'\t�

oldCouDtingTokens

false；

)?
(Space:

_')? //this would be for if the > +
ix i lineObj e c t . s e t L i n a (I n t a g o r .

)+
fn:StringLiteral { try {

,Bubstring(1,fn.getText()

(StringlndexOutOfBoundsException e) { /•not possible,

[D { lineObjoct.setSource(fi.getText())； >

{ lineObject.aetEntoringFile(true)； })?

Le(true); })?

BtSystemHoader(true) ； })?

for GNU

-D)

»\r' I *\n'))*

r\n" I ••�!•" I 丨|\11__>

pr eprocessorXnfoCbannel.addLineForTokenNumber

countingTokens

L i n e O b j e c t (l i n e O b j e c t) . new I n t e g e r (t o k e n N u m b e r))

II

/ /

II

/ /

BadStringLiteral ://

Digit : '0' ..

151

APPENDIX B. SOURCE FILES FOR BPCG BUILDER

/ /

II

// inherited from grammar StdCLexer

protected Exponent : (I 'E') (I)? (Digit

/ /

/ /

/t Inherited from grammar

protected LongDoubleConst

II

// Inherited from gramaai

protected LongOctalCoast

II inherited from grammar Sti

protected UnsignedOctalConst

/ /

II

// inherited from grammar

protected UnaignedintConst

/ /

II inherited from gramc

protected LongHexConst

" i n h e r i t e d from grammar I

protected UnsignodHexConat

152

Bibliography

ACC+02] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, An-

drea De Lucia, and Ettore Merlo. Recovering traceability links

between code and documentation. IEEE Trans. Softw. Eng.,

28(10):970-983, 2002.

ACLS02] Lcrina Aversano, Gerardo Canfora, Andrea Dc Lucia, and Silvio

Slefanucci. Evolving ispell: A case study of program understand-

ing for reuse. In IWPC，02: Proceedings of the 10th International

Workshop on Program Comprehension, page 197, Washington,

DC, USA, 2002. IEEE Computer Society.

ACT99] G. Antoniol, F. Calzolari, and P. Tonella. Impact of func-

tion pointers on the call graph. In CSMR '99: Proceedings of

the Third European Conference on Software Maintenance and

Rccnginecring, page 51，Washington, DC, USA, 1999. IEEE Com-

puter Society.

ALOl] Gail C. Murphy Albert Lai. Capturing concerns with concep-

tual modules. In Position Paper for the Workshop on Advanced

Separation of Concerns, held as part of ICSE 2001, 10 2001.

Atk04] Darren C. Atkinson. Accurate call graph extraction of pro-

grams with function pointers using type signatures. In APSEC

，04: Proceedings of the 11th Asia-Pacific Software Engineering

153

Conference (APSEC，04), pages 326-335, Washington, DC, USA,

2004. IEEE Computer Society.

BDET04] M. Bruntink, A. van Deursen, R. van Engelen, and T. Tour we.

An evaluation of clone detection techniques for identifying cross-

cutting concerns. In Proceedings of the IEEE International

Conference on Software Maintenance (ICSM). IEEE Computer

Society Press, 9 2004.

BDET05

BGH07

Bin94

BL93

BM98

M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwe.

On the use of clone detection for identifying crosscutting concern

code. IEEE Transactions on Software Engineering, 31(10):804-

818， 10 2005.

David Binkley, Nicolas Gold, and Mark Harman. An empiri-

cal study of static program slice size. ACM Trans. Softw. Eng.

Methodol., 16(2):8, 2007.

David Binkley. Interprocedural constant propagation using de-

pendence graphs and a data-flow model. In CC '94: Proceedings

of the 5th International Conference on Compiler Construction,

pages 374-388，London, UK, 1994. Springer-Verlag.

Thomas Ball and James R. Larus. Branch prediction for free.

In PLDI '93: Proceedings of the ACM SIGPLAN 1993 conference

on Programming language design and implementation, pages 300-

313, New York, NY, USA, 1993. ACM Press.

Elisa L. A. Baniassad and Gail C. Murphy. Conceptual module

querying for software reengineering. In ICSE ’98: Proceedings of

the 20th international conference on Software engineering, pages

64-73, Washington, DC, USA, 1998. IEEE Computer Society.

154

BM06] Cathal Boogerd and Leon Moonen. Ranking software inspection

results using execution likelihood. In Jaap van der Heijden, editor,

Proceedings of the Philips Software Conference (PSC), page 10.

Philips, November 2006.

BZ06] Silvia Brcu and Thomas Zimmermann. Mining aspccts from his-

tory. In Sebastian Uchitcl and Steve Easterbroak, editors, 21st

IEEE/ACM International Conference on Automated Software

Engineering (ASE 2006). ACM Press, September 2006. Accepted

for publication.

DDL+90] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer,

George W. Furnas, and Richard A. Harshman. Indexing by latent

semantic analysis. Journal of the American Society of Information

Science, 41(6):391--407，1990.

EgyOS) Alexander Egyed. A scenario-driven approach to trace depen-

dency analysis. IEEE Trans. Softw. Eng., 29(2):116-132, 2003.

EKSOl] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Aiding

program comprehension by static and dynamic feature analysis.

In ICSM，01: Proceedings of the IEEE International Conference

on Software Maintenance (ICSM'Ol), pages 602-611, Washington,

DC, USA, 2001. IEEE Computer Society.

EKS03] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Locating

features in source code. IEEE Trans. Softw. Eng., 29(3):210—224’

2003.

Fre79] Linton Clarke Freeman. Centrality in social networks: Conceptual

clarification I. Social Networks, 1:215—239，1979.

155

GDDC97] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Cham-

bers. Call graph construction in object-oricntcd languages.

In OOPSLA ,97: Proceedings of the 12th ACM SIGPLAN

conference on Object-oriented programming, systems, languages,

and applications, pages 108-124, New York, NY, USA, 1997.

ACM Press.

GK97] Jean-Prancois Girard and Rainer Koschke. Finding components in

a hierarchy of modules: a step towards architectural understand-

ing. In ICSM，97: Proceedings of the International Conference

on Software Maintenance, pages 58-65, Washington, DC, USA,

1997. IEEE Computer Society.

IYF+03] Katsuro Inoue, Reishi Yokomori, Hikaru Fujiwara, Tetsuo Ya-

mamoto, Makoto Matsushita, and Shinji Kusumoto. Component

rank: relative significance rank for software component search. In

ICSE ’03: Proceedings of the 25th International Confcrcncc on

Software Engineering, pages 14-24’ Washington, DC, USA, 2003.

IEEE Computer Society.

lYYKOSj Member-Katsuro Inoue, Member-Reishi Yokomori, Member-

Tetsuo Yamamoto, and Member-Shinji Kusumoto. Ranking sig-

nificance of software components based on use relations. IEEE

Trans. Softw. Eng., 31(3):213-225，2005.

KROO] Jens Knoop and Oliver Riithing. Constant propagation on

the value graph: Simple constants and beyond. In CC ’00:

Proceedings of the 9th International Conference on Compiler

Construction, pages 94-109, London, UK, 2000. Springer-Verlag.

6

5

1

LL03] Jonas Lundberg and Welf Lowe. Architecture recovery by

semi-automatic component identification. Electronic Notes in

Theoretical Computer Science, 82(5):98-114, April 2003.

MK88] H. A. Miiller and K. Klashinsky. Rigi-a system for programming-

in-the-large. In ICSE '88: Proceedings of the 10th international

confcrence on Software engineering, pages 80-86，Los Alamitos,

CA, USA, 1988. IEEE Computer Society Press.

MMOS] Andrian Marcus and Jonathan I. Maletic. Recovering

documentation-to-source-code traceability links using latent se-

mantic indexing. In ICSE '03: Proceedings of the 25th

International Conference on Software Engineering, pages 125-135，

Washington, DC, USA, 2003. IEEE Computer Society.

MRR04] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Precise

call graphs for c programs with function pointers. Automated

Software Engg., 11(1):7-26，2004.

Mur96] Gail C. Murphy. Lightweight structural summarization as an aid

to software evolution. PhD thesis, 1996. Chairperson-Alan Born-

irig,

'MvDM04] Marius Marin, Arie van Deursen, and Leon Mooiien. Identifying

aspects using fan-in analysis. In WORE，04: Proceedings of the

11th Working Conference on Reverse Engineering, pages 132-141，

Washington, DC, USA, 2004. IEEE Computer Society.

PBMW981 Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Wino-

grad. The pagerank citation ranking: Bringing order to the web.

Technical report, Stanford Digital Library Technologies Project,

1998.

1

PIKK98] Lutz Prechelt, Fakultat Fur Informatik, Christian Kramer, and

Kanthor Ag Karlsruhe. Functionality versus practicality: Em-

ploying existing tools for recovering structural design patterns.

Journal of Universal Computer Science, 4:88-2, 1998.

QZZ+03] Tao Qin, Lu Zhang, Zhiying Zhou, Dan Hao，and Jiasu

Sun. Discovering use cases from source code using the branch-

reserving call graph. In APSEC ’03: Proceedings of the

Tenth Asia-Pacific Software Engineering Conference Software

Engineering Conference, page 60, Washington, DC, USA, 2003.

IEEE Computer Society.

RadOO] Ansgar Radermacher. Support for design patterns through

graph transformation tools. In ACTIVE '99: Proceedings

of the International Workshop on Applications of Graph

Transformations with Industrial Relevance, pages 111-126，Lon-

don, UK, 2000. Springer-Verlag.

RBOS] Awais Rashid and Lynne Blair. Editorial: Aspect-oriented pro-

gramming and separation of crosscutting concerns. Comput. J.,

46(5):527-528, 2003.

Rob05] Martin P. Robillard. Automatic generation of suggestions for pro-

gram investigation. SIGSOFT Softw. Eng. Notes, 30(5): 11—20,

2005.

[Ryd79] B. G. Ryder. Constructing the call graph of a program. IEEE

Trans. Softw. Eng., 5(3):216—226’ 1979.

SFDB07] Zachary M. Saul, Vladimir Filkov, Prernkumar Devanbu, and

Christian Bird. Recommending random walks. In ESEC-FSE，07:

Proceedings of the the 6th joint meeting of the European software

158

engineering conference and the ACM SIGSOFT symposium on

The foundations of software engineering, pages 15-24，New York,

NY, USA, 2007. ACM.

SGMB03] Simon C. Shaw, Michael Goldstein, Malcolm Munro, and Eliza-

beth Burd. Moral dominance relations for program comprehen-

sion. IEEE Trans. Softw. Eng., 29(9):851-863, 2003.

SKL+02] Reinhard Schauer, Rudolf K. Keller, B. Laguc, Gregory Robitaillc,

Sestieu Robitaille, and Guy Saing-Denis. The spool design reposi-

tory: architecture, schema, and mechanisms, pages 269-294, 2002.

TH99] Vassilios Tzerpos and R. C. Holt. Mojo: A distance metric for

software clusterings. In WCRE '99: Proceedings of the Sixth

Working Conference on Reverse Engineering, page 187, Washing-

ton, DC, USA, 1999. IEEE Computer Society.

THOO] Vassilios Tzerpos and R.C. Holt. Acdc: An algorithm for

comprehension-driven clustering, were, 0:258, 2000.

TX07] Suresh Thummalapenta and Tao Xie. Parscweb: a program-

mer assistant for reusing open source code on the web. In ASE

，07: Proceedings of the twenty-second IEEE/ACM international

conference on Automated software engineering, pages 204-213,

New York, NY, USA, 2007. ACM.

vMV95] A. von Mayrhauser and A. M. Vans. Industrial experience with

an integrated code comprehension model. Software Engineering

Journal, 10(5):171-182, 1995.

WC96] Norman Wilde and Christopher Casey. Early field experience

with the software reconnaissance technique for program compre-

hension. In ICSM '96: Proceedings of the 1996 International

159

Conference on Software Maintenance, pages 312-318, Washing-

ton, DC, USA, 1996. IEEE Computer Socicty.

Wei79) Mark David Weiser. Program slices: formal, psychological,

and practical investigations of an automatic program abstraction

method. PhD thesis, Ann Arbor, MI, USA, 1979.

Wei84] Mark Weiser. Program slicing. IEEE Trans. Software Eng.,

10(4):352-357, 1984.

WL94] Youfeng Wu and James R. Lams. Static branch frequency and

program profile analysis. In MICRO 27: Proceedings of the 27th

annual international symposium on Microarchitecture, pages 1 -

11，New York, NY, USA, 1994. ACM Press.

WMGH94] Tim A. Wagner, Vancc Mavcrick, Susan L. Graham, and

Michael A. Harrison. Accurate static estimators for program opti-

mization. In PLDI ’94: Proceedings of the ACM SIGPLAN 1994

conference on Programming language design and implementation,

pages 85-96, New York, NY, USA, 1994. ACM Press.

Won99] Weng-Fai Wong. Source level static branch prediction. The

Computer Journal, (42), 1999.

WS95] Norman Wilde and Michael C. Scully. Software reconnais-

sance: mapping program features to code. Journal of Software

Maintenance, 7(l):49-62, 1995.

XP06] Tao Xie and Jian Pei. Mapo: mining api usages from open source

repositories. In MSR ’06: Proceedings of the 2006 international

workshop on Mining software repositories, pages 54-57, New

York, NY, USA, 2006. ACM.

160

YT07] Annie T. T. Ying and Peri L. Tarr. Filtering out methods you

wish you hadn't navigated. In cclipsc ’07: Proceedings of the 2007

OOPSLA workshop on eclipse technology eXchange, pages 11-15,

New York, NY, USA, 2007. ACM.

ZJ07] Charles Zhang and Hans-Arno Jacobsen. Efficiently min-

ing crosscutting concerns through random walks. In AOSD

'07: Proceedings of the 6th international conference on

Aspect-oriented software development, pages 226-238, New York,

NY, USA, 2007. ACM.

ZZL+06] Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, and Puqing Yang. Sni-

afl: Towards a static noninteractive approach to feature location.

ACM Trans. Softw. Eng. Methodol., 15(2):195-226, 2006.

李08丨 李昂.Prcebsd-7 内核 malloc 原代碼分析.Published in l l laaa.

cublog.cn, January 2008.

161

'.V

^ 1

知'I
m

I ‘ T4 tr
• - � ‘ '

二

1

r

 ̂

r

 .
 J,

J

：：給

会4

輪.

纖

酵

， C 梅 :

. 5 . . . ‘

C U H K L i b r a r i e s

0 0 4 5 6 1 4 1 7

“

.
.

.

.

/

 -
.

.

.

-

 .
.
.

 ,
厚
•
.
一

、

.

.

.

.

.

)

