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ABSTRACT 

Research on art fractal has captured wide attention and gained considerable 

achievement in the past two decades. Most related works focus on developing two 

dimensional fractal art, and the fractal art tools usually just assist in the creation 

process, but cannot perform an automatic generation associated with aesthetic 

evaluation. The percentage of visually attractive fractals generated by fractal art 

construction formula, such as Iterated Function Systems, is not high. It is thus 

essential to develop efficient techniques for automatic 3D art fractals generation with 

user interaction. 

This paper presents a technique to create 3D fractal art forms automatically, by 

which designers can get access to a large number of 3D art shapes that can be 

modified interactively. This is based on a modified evolutionary algorithm using a 

Fractal Transformation (FT) Iterated Function System, which provides tunable 

geometric parameters. Fitness function sorting the fractal aesthetic value applied in 

evolutionary system is formulated based on characteristic parameters in fractal 

theory, including capacity dimension, correlation dimension and largest Lyapunov 

exponent. The productivity of visually appealing fractal can be enhanced greatly by 

using proposed technique. Experiments demonstrated the effectiveness of the 

proposed FT IFS formula and evolutionary system. The proposed technique can be 

applied to design jewelry, light fixture and decoration, and corresponding examples 

are included. 
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摘要 

在過去二十年，對分形藝術的研究已經取得了客觀的進展并獲得廣泛的關注。 

大部分的相關工作主要致力于開發二維分形荡術，分形藝術工具通常只能輔助 

創造過程，但不能自動生成分形體并評價其美學價值。現在的分形藝術構造公 

式，例如迭代函数系统，創建的分形體中美學價值髙的分形體所 r^比例并不 

高。困此研究[：]動生成三維分形體并允許用戶交互修改的技術是十分有必要 

的。 

這篇論文展示了一個！^動創造三維藝術分形體的方法，藉由這個方法設計師可 

以獲得大量的三維藝術體并交互地修改它們。這個方法包括一個能夠提供可調 

幾何參数的分形變換迭代函数系统（FT IFS) ,同時釆用了改進的進化算法。進 

化系統中應用的衡量分形體美學價值的適函败是由分形特徵參败制定的，這些 

參数钮括容量維數，關聯維數以及最大李亞普諾夫指败。這種方法人大提升了 

所創建的分形體屮美學價值高的分形體所比例。實驗證明了本論文提出的 

FT IFS方法的有效性。本論文提出的方法可以應ill在珠寳，燈飾及裝飾品設計 

上，文章最後包含了相應的實驗案例。 
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1. INTRODUCTION 

Fractals are applied to art and design for over 20 years. One pioneer work is 

published in an article about the Mandelbrot Set published in "Scientific American" 

in 1985 [53]. Since then, many advances have been made, both in fractal rendering 

capabilities and in the understanding of fractal geometry. The past decade has 

already seen incredible evolution, especially in the development of two dimensional 

fractal images, and the corresponding computer aided design tools have become 

much more sophisticated. Fractal images typically are manifested as prints, bringing 

Fractal Artists into the company of painters and photographers. Fractals exist 

natively as electronic images. This is a format that traditional visual artists are 

quickly embracing, bringing them into fractal art's digital realm. 

Fractal Art (FA) is a genre concerned with fractals—shapes or sets characterized by 

self affinity and an infinite amount of detail, at all scales. It is not only a tool for the 

expression of visual ideas, but also a visual depiction of complex mathematical 

equations. Fractals art works are typically created by calculating fractal objects using 

an iterative numerical process on a digital computer, and the computer-aided random 

selection of parameters in the fractal generation rule brings infinite artistic creations 

and unconventional patterns to artists. The calculation results are represented as still 

images, animations, music, textures etc.. For the most cases, it is created indirectly 

with the assistance of fractal generating software, iterating through three phases: 

setting parameters of appropriate fractal, executing the possibly lengthy calculation 

and evaluating the result. Examples of fractal art works are shown in Figure 1.1. 

Fractals Arts are sometimes combined with human-assisted evolutionary algorithms, 

either by iteratively choosing good-looking specimens in a set of random variations 

of a fractal artwork to produce new variations or collectively like Electric Sheep 

project. In Electric Sheep project, people use fractal flames rendered with distributed 



computing as their screensaver and rate the flame they are viewing, and the rating 

can influence the server to reduce the traits of the undesirables and increase those of 

the desirables to produce a computer-generated, community-created piece of art. This 

method can avoid dealing with cumbersome or unpredictable parameters. 



Figure 1.1: Collection of fractal art works 

a) A fractal flame created by the Electric Sheep [19]; b) Example of Fractal Art by 

Karl Scherer, calculated with Fractint [35] c) Bransleys Fractal Fem[41]; d) A fractal 

created using the program Apophysis and a Julian transform [41]; e) Fractal flame 

named 191 [37]; f) A non-Mandelbrot sterling fractal. [30]. 
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As we can see from the examples in figure 1.1, FA is commonly for two dimensional 

visual art at present, and is in many respects similar to photography. Most research 

and applications are confined to 2D image with limited applications in image 

compression, computer graphics, and education. It would be beneficial to extend 

fractals art to 3d and apply it to design and manufacturing industry. 

Next generation of CAD will be Computer-Automation Design rather than 

Computer-Aided Design. The current creation process of fractal art requires 

knowledge of fractal theory, and most fractal art software just assists in the creation 

process, but can not perform automatic generation with aesthetic evaluation. 

Iterated Function System, introduced by M. Bamsley and S. Demko [2], is a unified 

way of generating a broad class of fractals and has been widely used. IFS is further 

employed to build artistic fractals and evaluated the aesthetic appeal with fractal 

characteristics [43], and a series of related research and art works emerged 

subsequently. However, the percentage of visually attractive fractals generated by 

IFS associated with broadly used Random Iteration Algorithm is very low, and the 

parameters controlling the process cannot be used for interactively modifying the 

generated fractal pattern. Evolution system with certain selection criteria and user 

interaction might be a possible way to solve this problem. 

1.1 Recent research work 

Our interactive evolutionary 3D fractal modeling work is based on the fractal 

construction and IFS formula, experimental aesthetics evaluation, and the 

evolutionary design theory, the related research works are examined in this section. 



1.1.1 Fractal Art and the IFS 

Fractals are applied to art and design for long time, and the usual form of expression 

are still images, animations, music, textures etc.. They are generally divided into four 

main categories: escape time fractals, Lindenmayer systems, stochastic synthesis and 

Iterated function systems. IFS is most widely used by artist to create 2D still fractal 

images. The generated fractal images can be viewed as art collection, texture and 

screen saver, and its application are investigated by many researchers. Scott Draves， 

fractal flame uses a two-dimensional IFS to create images by plotting the output of a 

chaotic attractor on the image plane with non-linear functions, log-density display, 

and structural coloring [37]. Based on the fractal flame, Electric Sheep are put 

forward to automatically generate distributed screen-saver using genetic algorithm 

[36]. More recently, fractal is also applied to design jewelry. Wannarumon Somlak 

etc. put forward an aesthetic-driven evolutionary approach to create two dimensional 

art forms for user-centered jewelry design [50][51]. K.M. Yu et al. proposed a RAT 

data structure to represent 2d IFS fractal curves and rapid prototyping them [56]. 

Later K.M. Yu et al. put forward a RBT data structure to represent 3D IFS fractal 

[57]. W.J. Pang and K.C. Hui presented a technique for the automatic generation of 

3D art form, which allows designers to get access to large number of 3D shapes that 

can be altered interactively [58]. There are various applications of fractals especially 

in art and aesthetic field; however, research on fractals applied to three dimension is 

still rare. Berkowitz J. has tried some 3D fractal generation in Fractal Cosmos and 

uses them as virtual scene [7]. 

Iterated Function System, which was introduced in [2], allows effective modeling of 

a large class of complex objects with unlimited detail. It also provides a very 

compact representation, efficient computation, and a very small amount of user 

specification. In addition, IFS has the advantage of a single specification method to 

obtain a very large class of fractals, where "class" refers to a significant difference in 



subjective visual properties. Though IFS fractals can be of any number of dimensions 

theoretically, they are commonly computed and drawn in 2D. 

1.1.2 Aesthetic Evaluation 

Aesthetics is the science of "beautiful." Literally, it means the "science of the senses" 

and is concerned with sensuous perception and its realizations. Aesthetics and 

aesthetic measure have been researched in various ways long time ago. Galileo's 

father performed experiments on the aesthetics of musical intervals according to 

different musical scales, or tunings, published in 1588. Fechner's investigations 

prove that the measurements that reflect golden ratios are the most satisfying to 

men's eyes. From his surveys, the golden rectangles were chosen preferentially by 

over 75% of participants [13]. Moles presents a remarkable possibility to apply 

information theory to the study of aesthetic perception. He examines and analyzes 

the formal distinction between semantic and aesthetic information. Semantic 

information is the message contained in sequence. Aesthetic information is sensory, 

and restricted to the preferential choices of individuals [27]. 

Around the 1970s, Daniel Berlyne created the field of experimental aesthetics and 

examined the relations between verbal evaluations and exploratory behavior, and 

further applied the method to various fields, such as explaining music listening 

behavior and musical preference [29] [8]. Remko and Rens review several aesthetic 

measure theories. They suggest that building formal models of human perceptual 

processes are the basis of any empirical aesthetic measure [32]. Staudek studies 

visual patterns and perceptions. He presents a system with algorithmic aesthetics, 

which integrates a computer into artistic creation and aesthetic evaluation. His work 

involves mathematics, geometry, perceptual psychology, theory of communication, 

and computer graphics to classify and assess aesthetics. His system can generate 

algorithmic arts from a set of abstract images, textures, and patterns. Aesthetic 



functions evaluate aesthetics in terms of order, complexity, harmony, variety, 

entropy, and redundancy [45]. 

Since fractals are applied to art and design field, investigations on the visual 

aesthetics of fractals gradually come out, and the compactness, connectivity, 

regularity, and symmetry of fractals were taken into considerations. Mandelbrot's 

work brought attention to the relationship of fractal mathematics and dynamic 

systems to the field of aesthetics [24][54]. J.C. Sprott proved that there is a 

relationship between aesthetic judgments of fractal and their characteristic 

parameters, and a Gaussian-format formula is used to evaluate the fitness function 

with two parameters [43]. Sprott and Aks researched on the effect of Lyaponov 

exponent (quantifying the dynamics that produce fractal patterns) on visual appeal 

[1]. Spehar and Minita etc. demonstrated that the value of aesthetics, the 

compactness and connectivity of fractals mostly depends on the fractal dimensions 

and the Lyapunov exponent [26] [40]. Galanter & Levy suggested that complex forms 

and structures reflect aesthetic expression via emergent organizing properties, self-

organizing behavior, and chaotic dynamic [14]. 

1.1.3 Evolutionary Design 

Since its introduction in the mid 1960's, evolutionary algorithms have provided 

many novel and interesting solutions to problems in a wide variety of domains. The 

use of evolutionary algorithms to generate designs has attached much attention over 

the last twenty years. Evolutionary designs and art is rooted in mimicking natural 

evolution which is the survival of the fittest. In evolutionary art system, evolution 

acts as a form generator and can provide designer with much more design 

alternatives. 

There has been some research in the applications of evolutionary design for the 

creations of artistic images and forms (e.g., Bentley & Wakefield [4]; Gero [15]; 
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Rosenman [33]; Koile [21]; Poirson et al. [31]). Todd & Latham use evolutionary 

design to build sphere and ellipsoid to form ribs, horns and mathematical shapes with 

application in images, textures, sculptures, and animations [47]. Bentley P, Todd S. 

and Latham W. [6][46] applied evolution method to the design process, such as art 

and aesthetic forms generation. Eckert et al. [10] put forward Eckert's garment shape 

design system for modeling 2D garment parts based on the evolutionary design 

system in garment and knitwear design industry. Rowland & Biocca [34] used 

recursive tree to sculpture graph evolutionally for modeling 3D human heads and 

abstract forms. Cho [9] applied evolutionary algorithm to create 3D arm and sleeve 

part, neck and body part, and skirt and waistline part forms in fashion apparel design. 

Unemi [48] produces expression-based images and short musical pieces by evolution 

method. 

In general, evolutionary art is created with the algorithms that produce infinite 

alternatives, and which inherit high-quality characteristics from the existing ones and 

preserve variability of alternatives at the same time. Therefore, designers are able to 

explore more alternatives according to their own preferences. 

1.2 Objectives 

The objective of this thesis is to develop a technique that builds three dimensional 

fractals automatically and effectively by evolutionary system, while allowing for 

intuitive control on amending the pattern of the fractals as well as an effective means 

for evaluating the aesthetics of the generated three dimensional fractals. 

While many researchers and artists studied the generation of fractals, they largely 

focus on two dimensional images and the efficiency of fractal generation is always 

low. Although aesthetics evaluation is usually subjective, algorithmic aesthetics 

evaluation is essential for the evolutionary generation process. 



In addition, the representation and visualization of 3D fractals, and its applications in 

design are also a major concern in this thesis. 



1.3 Thesis Organization 

Chapter 1 is the introduction to this thesis, and provides a summary of the 

background of this thesis and recent related research work. The task description and 

the thesis organization are also provided. 

Chapter 2 provides a detailed study of fractal modeling. The most popular and sound 

fractal constructing method, Iterated Function System, and its mathematical 

foundation are presented as central theme. The fractal measurement and its aesthetic 

evaluation are also introduced in this chapter. 

Chapter 3 focuses on the theory and algorithm of evolutionary design, including how 

to initialize evolution, select parents and reproduce offspring and the termination rule. 

Two commonly used reproduction operations, crossover and mutation are discussed. 

The aim of this chapter is to give an introduction to evolutionary design, based on 

which we employ a revised evolutionary algorithm is proposed, and which is 

discussed in the next chapter. 

Chapter 4 studies how to build fractals with good visual aesthetics while allowing for 

intuitive control. A revised IFS formula, called Fractal Transformation IFS (FT IFS), 

together with the modified evolutionary system is suggested for building fractals 

based on the mathematics introduced in Chapter 2 and 3. This chapter mainly focuses 

on formulating the FT IFS under self-similar condition of fractals, the way to map 

the genotype to phenotype by a revised random iteration algorithm. This chapter also 

discusses the method to decode the parameters by FT IFS formula to fractal genotype, 

and the way these genotypes evolve and generate visually pleasing fractals by the 

proposed evolution system. The transforming property of the FT IFS and its effect on 

user interaction is explored. The fitness function of evolutionary algorithm is 

discussed and the details are further explained in the following chapter. 

10 



Chapter 5 is devoted to the fractal fitness function formulation. Gaussian function 

and the characteristic parameters of fractal, such as the capacity dimension, 

correlation dimension and largest Lyapunov exponent, are employed to build the 

fitness function. The meaning and calculation method of these fractal characteristic 

parameters are revealed. Correlation analysis and linear regression are used to 

analyze thousands of cases for studying the relationships between fractal parameters 

and the fitness. The normalized fitness function is then brought forward. 

Chapter 6 reveals the values of the parameters employed in the experiment and their 

results. As shown by the results of experiments, the average fitness value and the 

excellent rate of fractals (Excellent fractals refers to those fitness value above 0.85) 

both escalate from original IFS to FT IFS with evolutionary system, which 

demonstrates the efficiency and effectiveness of proposed technique. 

Chapter 7 is concerned with the visualization of fractal phenotype and its 

applications. Voxels are used as the rendering primitives for coarse rendering effect. 

Mesh surfaces of the fractals are reconstructed by Marching Cubes to obtain higher 

quality rendering. Coloring schemes, including linear gradient coloring and dual-tone 

coloring, are put forward. A collection of visually appealing fractals is exhibited. 

Chapter 8 states the conclusions drawn from this research and suggests possible 

directions for future research. 

11 



2. FRACTAL MODELING 

Fractal is a self-similar structure whose geometrical and topographical features are 

recapitulated in miniature on finer and finer scales. The major theories and concepts 

of fractals used in the research are briefly introduced in this chapter, including the 

definition of fractals, the applications of the fractals, the mathematic and geometric 

foundation of fractals, their construction, measurement and aesthetics. 

2.1 Fractal and Fractal Art 

2.1.1 Fractal 

Since the 1960s, Benoit Mandelbrot started investigating self-similarity which were 

built on the earlier work by Lewis Fry Richardson. In 1975 Mandelbrot coined the 

word "fractal" to denote an object whose Hausdorff-Besicovitch dimension is greater 

than its topological dimension. He illustrated this mathematical definition with 

striking computer-constructed visualizations. These images captured the popular 

imagination; many of them were based on recursion, leading to the popular meaning 

of the term "fractal". By the point of fractal view, people may see things differently. 

"You risk the loss of your childhood vision of clouds, forests, galaxies, leaves, 

feathers, flowers, rocks, mountains, torrents of water, carpets, bricks, and much else 

besides. Never again will your interpretation of these things be quite the same."[3] 

Fractal is a language for describing nature. Nature displays self-similar structures 

over an extended, but finite, scale range. Examples include clouds, lightning bolts, 

snow flakes, crystals, mountain ranges, river networks, cauliflower or broccoli, and 

systems of blood vessels and pulmonary vessels. Coastlines may be loosely 

considered as fractal in nature. And not all self-similar objects can be described with 

fractals一for example, the real line (a straight Euclidean line) is formally self-similar 

12 



but fails to have other fractal characteristics; for instance, it is regular enough to be 

described in Euclidean terms. 

A fractal is a complex shape which, when viewed in finer and finer detail, shows 

itself to be constructed of ever smaller parts, similar to the original. A fractal is 

generally "a rough or fragmented geometric shape that can be split into parts, each of 

which is (at least approximately) a reduced-size copy of the whole".[24] It is an 

irregular geometric object that is self-similar to its substructure at any level of 

refinement. 

The general features of fractals [12] usually include fine structure at arbitrarily small 

scales, self-similarity (at least approximately or stochastically), and a simple and 

recursive definition. Fractal is too irregular to be easily described in traditional 

Euclidean geometric language, and it has a Hausdorff dimension which is greater 

than its topological dimension for most of the cases. (Some space-filling curves such 

as the Hilbert curve do not meet this requirement). 

An amazing fact about fractals is the variety of their applications. Fractals can be 

used to describe a large number of highly irregular real-world objects. This includes 

the fractal landscape, signal and image compression, fractography and fracture 

mechanics, and the classification of histopathology slides in medicine. Among these, 

the widest and most mature application of fractal till now is in art creation, such as 

the generation of music and various art forms. 

2.1.2 Fractal Art 

Almost thirty years ago, research on the application of fractals in art and design field 

began to appear. It was first published in an article about the Mandelbrot Set in 

"Scientific American" in 1985. Starting with 2-dimensional fractals, such as the 

Mandelbrot Set, fractals have found applications in the fields of image and texture 

generation, plant growth simulation and landscape generation. Fractal art generally 

13 



refers to two dimensional visual art at present, and is in many respects similar to 

photography — another art form which was greeted by skepticism upon its arrival. 

Though fractal images are not technically fractals, they have been welcomed into the 

fractal art world for the sharing of the same basic generating technique and 

environment. Fractal images typically are manifested as prints, bringing fractal artists 

into the company of painters, photographers, and printmakers. 

Fractal Art is not computerized art, in which the computer does all the work. The 

work is executed on a computer, but only at the discretion of the artist. Fractal Art is 

not random in the sense of stochastic, or lacking any rules. Being based on 

mathematics, fractal rendering is determinate. Apply the same image generation 

steps, and the same result will be obtained. Slight changes in the process usually lead 

to slight changes in the result, making FA an activity which requires skill and 

experience, and is not a haphazard process of pushing buttons and turning knobs. 

Making Fractal Art is a creative process. The final fractal image is created like 

photography or painting. The fractal artist begins with a blank "canvas" and creates 

an image, bringing together the same basic elements of color, composition, balance, 

etc., used by the traditional visual artist. 

Fractal Art requires the intelligence of artists and their input. The Fractal Artist must 

direct the assembly of the calculation formulas, mappings, coloring schemes, palettes, 

and their requisite parameters. Each and every element can and will be tweaked, 

adjusted, aligned, and re-tweaked in order to find the right combination. The freedom 

to manipulate all these facets of a fractal image gives an artist the space to create, and 

this creation requires the understanding, intelligence and thoughtfulness of the artist 

[20]. 

14 



2.2 Fractal Geometry 

The observation by Mandelbrot of the existence of the "Geometry of Nature"[24] has 

led people to think in a new scientific way about the edges of clouds, the profiles of 

the tops of forests on the horizon, and the intricate moving arrangement of the 

feathers on the wings of a bird as it flies. Geometry is concerned with making our 

spatial intuitions objective. Classical geometry provides a first approximation to the 

structure of physical object. Fractal geometry is an extension of classical geometry. It 

can be used to make precise models of physical structures from ferns to galaxies. 

Fractal geometry is a new language, which can describe the shape of a cloud as 

precisely as an architect can describe a house.[3] 

A few fundamentals need to be discussed regarding the mathematical background of 

Iterated Function System (IFS) theory. Bamsley [3] provided a complete reference 

on this topic. This chapter will review some of the most important results of IFS 

theory. 

2.2.1 Metric Space 

The spaces where fractals live are mathematically called metric spaces. Fractal 

geometry is concerned with the description, classification, analysis and observation 

of subsets of metric spaces (X, d). 

A metric space is an ordered pair (X, d) where X is a non-empty set and d is a metric 

on X, that is, a function 

d : X x X 一 [0 ,oo) 

such that for any x, y and z in X 

1. d(x,y) = 0 if and only if x=y for all x,ye X. 

15 



2. d(x’y) = d(y,x) for all 

3. d(x,y) < d(x,z)+ d(z，y) for all x,y,zEX. 

A sequence {x.} ^ in X converges to a point XE X in the metric space (X’ d) if 

and only if the sequence ^ of numbers converges to zero. 

A sequence {xJ . j ^ in X is said to be bounded in the metric space (X’ d) if there is 

a constant 5 such that c/(jc,., x .) S for any integers i, j. 

A sequence {xj卜,^ in X is said to be a Cauchy sequence in the metric space (X, d) 

if for any positive number 8 > 0 there is a positive integer k such that d[x.,xj)< £ 

for all integers i,j > k . 

A metric space (X, d) is said to be complete if any Cauchy sequence {�},.=i 2,...in X 

converges to some point XE X . Intuitively, this means no limit point in the space is 

missing. From now on, all metric spaces used in our applications will be assumed to 

be complete. 

Let (X’ d) be a complete metric space. Let Se X . Then S is compact if and only if it 

is closed and totally bounded. 

2.2.2 Contraction Mapping Theorem 

A map f \ X — X from the metric space into itself is called a transformation. 

In general, in most applications, a transformation is expected to be bijective mapping. 

For any point x of X there is some unique point z of X to map into, / ( x ) = z , and 

there is also some unique point u of X to be mapped from, / ( w ) = x . Or equivalently, 
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f is invertible, i.e., there is another transform -.X X , called the inverse of f, 

such that their composition is the identity: 

/�/-丨=f o = identity 

A transformation f : ^ -> X on a metric space {X, d) is called contractive if there is 

a constant 0 < 5 < 1 such that 

d{f{x\f{y))<s-d{x,y) 

for all x,y€L X . The number s is called a contractivity factor for the transformation 

/ • 

A point as X is called a fixed point of the transformation f if f(a) = a. 

The Contraction Mapping Theorem Let f-.X ^ X hQ contractive transformation 

on a complete metric space (X, d). Then the transformation f possesses exactly 

one fixed point X . Moreover, for any x e X , the sequence 

I ， / � , F (X) = … J K � = / ( 广 ' � ) , • • • 

converges to the fixed point a，i.e., 

l i m / ( x ) = a 

The fixed points of certain set are discovered as the attractor of fractals. 

2.2.3 Transformations on metric space 

A transformation f in the n-dimensional real space is a function that maps from 

ST to itself. The most interesting and useful transformations of real space ST are the 
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affme transformations studied in linear algebra and the analytic transformations 

studied in complex analysis. 

An affme transformation / : -> is a transformation that can be written as 

f [ x ) = Ax + b = 

“n" J V-^/i 

+ 
� 

K 

where A = (cz,̂ .)" is an nxn matrix in SH'""', called the transformation matrix of f , 

and b = � b j )广 , i s a vector in 9?"，called the translation vector of f . 

Given the norm ||*|| of the vector space ST，the norm of an affme transformation f 

which is a transformation matrix A, is defined by the following formula: 

l l / I H M I L = max 
I I M 

It can be deduced that for the p = \,l,---,°<=>, their corresponding norms for the 

transformation matrix have the following intuitive formulas: 

II A 丨丨2= • ( “ � � ) , 义 肌 is the largest eigenvalue of the matrix, 

IM 丨 “ = m a x 力 a I’ 

for any nxn matrix A = (a.j)" in 
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With the above definition, an affine transformation f with transformation matrix A 

is said to be contractive if || ^ ||< 1. Furthermore, it is said to be contractive within the 

factor s, for some 0 < 5 < 1 , if || 1|< 5 . 

In the 3-dimensional case, « = 3, a transformation composes of scaling, rotating, 

shearing and translation. 

a) Scaling 

Uniform scaling is a linear transformation that enlarges or diminishes objects; the 

scaling factor is the same in all directions; it is also called a homothety. The result of 

uniform scaling is similar (in the geometric sense) to the original. Below is the 

transformation matrix for scaling in 3 dimensional space: 

A = 

s 0 0 
0 s 0 
0 0 s 

>0 

In general, scaling can be performed with a separate scale factor for each axis 

direction. Non-uniform or anisotropic scaling is obtained when at least one of the 

scaling factors is different from the others; a special case is directional scaling (in 

one direction). Non-uniform scaling changes the shape of the object; e.g. a square 

may change into a rectangle of a different shape. A general scaling in 3 dimensional 

Euclidean space can be represented by a scaling matrix as below: 

A = 
5, 0 0 

0 0 
0 0 

>0, / = l,2,3 

b) Shearing 

19 



In mathematics, a shear mapping is a particular kind of linear mapping. Shearing is a 

transformation that effectively rotates one axis so that the axes are no longer 

perpendicular. A shear matrix is an elementary matrix that represents the addition of 

a multiple of one row or column to another. A simple shear matrix may be 

constructed by taking the identity matrix and replacing one of the zero elements with 

a non-zero value, i.e. 

S = 
'1 0 X 

0 1 0 

0 0 1 

’ / U O 

c) Rotation 

A rotation is a rigid body movement of an object in a circular motion about a point 

fixed. This definition applies to rotations within both two and three dimensions (in a 

plane and in space, respectively.) In two-dimension, an object rotates around a center 

(or point) of rotation. In three-dimension, an object rotates about an axis. This 

follows from Euler's rotation theorem. 

Rotations around the x, y and z axes are called principal rotations. Rotation around 

any axis can be performed by taking a rotation around the x axis, followed by a 

rotation around the y axis, and followed by a rotation around the z axis. Any spatial 

rotation can be decomposed into a combination of principal rotations. The three basic 

rotation matrices in three dimensions are: 

1 0 0 

0 COS 没 一 s i n 没 

0 sin 没 cos <9 

cosO 0 sin 没 

0 0 

一 sin 没 0 cos 没 
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K { e ) = 

cos 6 一 sin 没 0 
sin 没 cos 6 0 
0 0 1 

These matrices represent rotations of an object relative to fixed coordinate axes, by 

an angle of 6. 

d) Translation 

In metric space, a translation moves every point by a fixed distance in the same 

direction. It can also be interpreted as the addition of a constant vector to every point, 

or as shifting the origin of the coordinate system. A translation f can be written as 

/ ( x ) = x + Z?, where Z) is a fixed vector. 

Figure 2.1: Translation 

2.3 Construction of Fractals 

Some common techniques for generating fractals include escape time method, 

Lindenmayer systems, stochastic synthesis and Iterated Function Systems. 

Escape-time fractals (also known as orbits fractals) - These are defined by a formula 

or recurrence relation at each point in a space. Examples of this type are the 

Mandelbrot set, Julia set, the Burning Ship fractal, the Nova fractal and the 

Lyapunov fractal. The 2d vector fields that are generated by one or two iterations of 
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escape-time formulae also give rise to a fractal form when points are passed through 

this field repeatedly. 

Random fractals - Generated by stochastic rather than deterministic processes, for 

example, trajectories of the Brownian motion, Levy flight, fractal landscapes and the 

Brownian tree. The latter yields so-called mass fractals, for example, diffusion-

limited aggregation or reaction-limited aggregation clusters. 

Strange attractors — Generated by iteration of a map or the solution of a system of 

initial-value differential equations that exhibit chaos. 

Iterated function systems (IFS) - These systems require the use of a fixed geometric 

replacement rule. Cantor set, Sierpinski carpet, Sierpinski gasket, Peano curve, Koch 

snowflake, Harter-Highway dragon curve, T-Square, and Menger sponge are some 

examples of such fractals. Any set of linear maps or affine transformations associated 

with a set of probabilities determine an Iterated Function System. Each IFS has a 

unique attractor which is typically a fractal set. Specification of only a few maps can 

produce very complicated objects. Iterated function system is the tool we use to build 

fractals. 

2.3.1 Iterated Function System (IFS) 

An iterated function system consists of a complete metric space {X,d) together with 

a finite set of contraction mappings ^ X , with respective contractivity factors 

s ” for k=l，2，...m. The contractivity factor s of IFS is defined to be the maximum of 

the contractivity factors of the transformations: s = max{|| w, ||’|| w] ||，...，|| ||}. 

Denote :K�X~) as a compact subsets space of the metric space {X,d) • Given an IFS 

妒= { ，沙2，…，}，define its associated transform in the space ^ [ X ) , by 
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for each B e 9 { { X ) . 

Theorem 2.3.1: Let fF be an iterated function system with 

contractivity factor s. Then its associated transform W H(X) ^ H[X) is a 

contractive mapping in the space with the corresponding Hausdorff metric d 

with the same contractivity factor s. That is, 

d[W{B),W{C))<s-d{B,C), 

for all 5 , C E Its unique fixed point, Ae ^ { X ) obeys 

a = W[A)=[}IM^) 

and is given by A = limfV' (B) for any Be . The fixed point 
/—>00 

力 e described in the theorem is called the attractor of the IFS. 

An example of constructing fractals by IFS is shown in below Figure 2.2. The 

diagram shows the construction of an IFS W, composed of two affine functions Wi 

and W2. The function transforms the outlined square into the shaded square 

respectively, and then the functions are represented by their effect on bi-unit square. 

Three iterations of the operator W are shown, and then the final image is the fixed 

point, the final fractal. 
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u 

W\ W2 
w 

Figure 2.2: Procedure of constructing fractals by IFS [55] 

2.3.2 IFS with Probabilistic Method 

What will happen if one transformation is chosen much more frequently than the 

others in the random transformation selection procedure? To answer this question a 

new concept needs to be introduced first: IFS with probabilities. 

An IFS {W: WpWj,---, w„,} with probability P = {p^,p2,---,p,„} is an IFS with a 

positive number associated to each transformation; the sum of the probabilities is 1. 

That is, 

Pi 
"t 

> 0 f o r all i = 1 , 2 , . . .m , a n d ^ = 1 

The Random Iteration Algorithm and Recurrent IFS are two fractal construction 

methods divided into this category. The Random Iteration Algorithm is originated in 
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ergodic theory, and these probabilities play an important role in the visualization 

computation of the attractor of an IFS. 

a) The Random Iteration Algorithm (RIA) 

Let {W: Wi, be an IFS. Choose a compact set Â  c^T，with probability 

Pi > 0 assigned to for i = l’2,...’m, where V " ' A =1 . Choose x^e X and then 
/ 二1 

choose Xk recursively and independently, 

where the probability of the event =w,. ) is p.. Thus, construct a sequence 

:/c = 0 , l , 2 ,3 , . . . }c j r . 

To be efficient and to cover the space as quickly and evenly as possible, the best 

procedure is to set the value of each probability to be proportional to the volume of 

its corresponding transformation. The volume of a transformation is defined as the 

volume of the transformed unit cube, which is exactly the absolute value of the 

determinant of the deformation matrices. In conclusion, the default probabilities 

should be set to 

Pi 
dQiA： 

Z | d e t 4 

where W^ (x) = A.x + b. for all / = 1，2’ …’ m 

Here the symbol « means "approximately equal to". If for some i, det A. = 0，then p. 

should be assigned a small positive number, such as 0.001. 

b) Recurrent IFS (RIFS) 
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In RIA, the fractal construction uses a set of probabilities, one positive number for 

each transformation. What will the fractal look like if it is visualized with different 

probabilities other than the default one? 

According to Theorem 2.3.1, it will converge to the same image or object, which is 

the attractor of the IFS. The images will appear identical after enough iterations. 

However, the procedure is much more different from the constructing procedure 

using RIA. 

Bamsley, Elton and Hardin generalized the concept to that of Recurrent Iterated 

Function System. RIFS is an IFS with a set of probability sets, and one probability 

set is attached to each transformation. 

Let { f T . - W p W j , b e an IFS. In a Recurrent IFS structure, there is a matrix 

P = { 1 of probabilities with the following properties: 
L J J ;,y=l,2,...m 

m 
1. YjPij=\foralliJ = \,2’...m 

7=1 

2. for any i’j = Y’2,“.m, there is some finite sequence 

k 
such that •So =i’S/^ = j, andYlPs�”��>0. This is the irreducibility property of the 

/)=0 

RIFS. 

The procedure of visualizing a fractal using RIFS is the same as using IFS with 

probabilities. Instead of following the same probability set all the time, an RIFS 

follows a probability set determined by the transformation in each iteration. That is, 
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after applying the /th transformation, the probability set will be {p.^,p……,p.„] for 

all i = l，2,...m. 

2.3.3 IFS without Probabilities 

IFS without probabilities is also called the deterministic algorithm. The Deterministic 

Algorithm is based on the idea of directly computing a sequence of sets 

) starting from an initial set Aq ； and the probabilities play no role in the 

Deterministic Algorithm. 

The Deterministic Algorithm: 

Let {W: } be an IFS, and choose a compact set Â  a . Then compute 

successively according to 

4 丨 � f o f k = \,2,… 

Thus construct a sequence {為 : / : = 0,l,2,3,.. .} Then by Theorem 2.3.1 the 

sequence [A,^} converges to the attractor of the IFS in the Hausdorff metric. 

2.4 Fractal Measurement and Aesthetics 

2.4.1 Fractal Dimension 

What is the size of a fractal? How to compare two fractals and decide how much 

similar they are? What measurements can be made to tell whether two fractals are 

metrically equivalent or not? A range of parameters can be employed to compare 

fractals, which are generally called fractal dimensions. These parameters quantify the 

subjective feeling of how densely a fractal occupies the metric space; it is also a 

measure of how complicated a self-similar object is. Fractal dimensions provide an 
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objective means for comparing fractals. 

Fractal dimensions are important because they can be defined in connection with 

real-world data, and they can be measured approximately by means of experiments. 

For example, one can measure the fractal dimension of the coastline of Great Britain, 

and its value is about 1.2. Fractal dimensions can be attached to clouds, trees, 

coastlines, feathers, networks of neurons in the body, dust in the air at a particular 

time instant, clothing, the distribution of frequencies of light reflected by a flower, 

the colors emitted by the sun, and the wrinkled surface of the sea during a storm. 

These numbers allow us to compare sets in the real world with those laboratory 

generated fractals, such as attractors of IFS. 

Fractal dimension generally refers to any of the dimensions commonly used to 

characterize fractals, e.g., capacity dimension, correlation dimension, information 

dimension, Lyapunov dimension, Minkowski-Bouligand dimension. These 

parameters have a profound effect on the visual appearance of fractals. 

2.4.2 Experimental Aesthetics 

Our evaluation of 3d fractal aesthetics is based on the work of Clint Sprott [42][43]. 

This work proposed fractal dimension and Lyapunov exponent as a measure of 

complexity of a fractal image, and examined its relationship to aesthetic perception. 

The work of Sprott reported in [43] suggested a preference peak at correlation 

dimension 1.51 土 0.43 and average Lyapunov exponent -0.24 士 0.15 bits per iteration 

for 2D iterated function systems by averaging the 76 images rated 5 on a scale of 1 to 

5. It was also found that for a given dimension, the largest negative values of 

Lyapunov exponent correspond to cases in which the two exponents are equal, 

implying the same contraction in all directions and perfect self-similarity. The largest 

negative Lyapunov exponent and fractal dimension are bounded by a curve, 

-FL<\ogOI\ogD 
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where F is the correlation dimension, L is the largest Lyapunov exponent, O is the 

number of mappings and D is the dimension of the system of equations. Sprott also 

proposed an effective criterion to select visually appealing fractals automatically, 

( 2 - F ) / 1 . 2 ] ' + r ( 2 + L/logC>)/1.6f <1 

Another groundwork is the work of Wannarumon S. etc. [50][51]. They used 

correlation analysis and linear regression to study hundreds of cases and built 

aesthetics function for 2d fractal pattern. 

fac\ = 0.304 • F\ + 0.234. F̂  - 0.202. + 0.317. + 0.186. - 0.065.F, + 0.17 •尸7 + 0.060. F, 
/ac2 = 0.103. — 0.010 •尸2 + 0.077.尸3 + 0.19 •尸4 + 0.085.尸5 -0.425•尸6 + 0.428. F, + 0.448 • F, 
之=-38.8442 +39.0150.己_7.加| - 0 . 3 9 1 7 . / a c � - 0 . 6 5 2 6 - f a c l +Q.155?>-facl (2.1) 

where F! ~ Fg are normalized capacity dimension, correlation dimension, largest 

Lyapunov exponent, image complexity, golden ratio, mirror symmetry, rotational 

symmetry, logarithmic spiral symmetry respectively, fac�measures aesthetics in 

terms of compactness, connectivity, and complexity of art forms that includes mirror 

symmetry, fac : represents aesthetics as rotational symmetry and logarithmic spiral 

symmetry. S^ is the mathematical aesthetics of fractal. 

The visual attraction of fractals, including compactness, connectivity, regularity and 

symmetry is evaluated by a fitness value in this research and the fitness value will be 

further employed to sort the generated fractals and select parents in an evolutionary 

process. 
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3. OVERVIEW OF EVOLUTIONARY DESIGN 

The use of evolutionary computation to generate designs has taken place in many 

different aspects over the last twenty years. Designers have optimized selected parts 

of their designs using evolution, artists used evolution to generate aesthetically 

pleasing forms, and computer scientists adopted evolutionary algorithm for 

simulating artificial life. Evolutionary Design is a general category that includes 

several research directions, such as evolutionary design optimization, creative 

evolutionary design, evolutionary art and evolutionary artificial life forms [5]. (See 

Figure 3.1) 



Figure 3.1: The root of Evolutionary Design and Aspects of Evolutionary Design by 

Computers[5] 

Creative evolutionary systems allow artists to develop stunning pieces of art, or 

allow musicians to create new sounds and new compositions. By using guided 

evolution, users are able to explore new ideas that emerge through the mechanisms 

of evolution. Other creative evolutionary systems take this approach one step further. 

Guidance is provided through automatic software controls that make judgment on 

evolving solutions without the need of human input. Designs are evolved from 

random blobs to fully functional forms. Novel circuits, ship hulls, architectural forms, 

even chemical structures are now routinely evolved by computers. This automatic 

generation of innovation by creative evolutionary systems allows designers to 

consider more solutions effectively. These systems allow us to sidestep limitations of 

"conventional wisdom" and "design fixation". Creative evolutionary systems can 
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even suggest entirely new methods and principles that we can then exploit in our 

own designs. [6] 

There are four main kinds of evolutionary algorithm in use today, three of which 

were independently developed over thirty years ago. These algorithms are: the 

genetic algorithm (GA), evolutionary programming (EP), and evolution strategies 

(ES) and the genetic programming (GP). Among these, GA is a simple and effective 

method applied to the evolutionary design. 

In GA, many different individuals are created who then vie for the chance to 

reproduce and then pass on their genetic information. Each individual is described by 

a string or matrix of digit parameter. This string or matrix can be thought of as the 

individuals' DNA. In a classic Genetic Algorithm, a 'fitness value' is calculated for 

each individual. This value describes how well the individual's quality is. By 

selectively breeding individual with high fitness value, more successful art forms are 

reproduced. To produce a child individual from two parent individuals, some 

recombination of the two parent genes must occur. Once the genetic representation 

and the fitness function are defined, GA proceeds to initialize a population of 

solutions randomly, and then improves it through repetitive application of mutation, 

crossover, inversion and selection operators. Below is the procedure of a common 

genetic algorithm. 
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< Choose initial 
population 

Evaluate the fitness of each 
individual in the population 

Terminate ^ ^ 

Select best-ranking individuals to 
reproduce 

Breed new generation through genetic 
operation and give birth to offspring 

Evaluate the individual fitnesses of 
the offspring 

Replace worst ranked part of 
population with offspring 

Figure 3.2: Flowchart of a typical genetic algorithm 

3.1 Initialization 

Initially, solutions are randomly generated to form an initial population. The 

population size depends on the nature of the problem, but typically contains several 

hundreds or thousands of possible solutions. Traditionally, the population is 

generated randomly, covering the entire range of possible solutions. Occasionally, 

the solutions may be "seeded" in areas where optimal solutions are likely to be found. 

3.2 Selection 

During each successive generation, a proportion of the existing population is selected 

to breed a new generation. Individual solutions are selected through a fitness-based 

process, where fitter solutions (as measured by a fitness function) are typically more 
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likely to be selected. Some selection methods rank the fitness of each solution to 

select the best solutions. Other methods rank only a random sample of the population, 

as this process may be very time-consuming. 

Most functions are stochastic and designed so that a small proportion of less fit 

solutions are selected. This helps to keep the diversity of the population large, 

preventing premature convergence on poor solutions. Popular and well-studied 

selection methods include roulette wheel selection and tournament selection. 

3.3 Reproduction 

The next step is to generate a second generation population of solutions from those 

selected through genetic operators: crossover (also called recombination), and/or 

mutation. 

For each new solution to be produced, a pair of "parent" solutions is selected for 

breeding from the pool selected previously. By producing a child solution using the 

methods of crossover and mutation, a new solution is created which typically shares 

many of the characteristics of its parents. New parents are selected to produce new 

child, and the process continues until a new population of solutions of the desired 

size is generated. 

These processes ultimately result in a generation of chromosomes that is different 

from the initial generation. In general, the average fitness of the population will be 

increased by this procedure, since only the best organisms from the first generation 

are selected for breeding, along with a small proportion of less fit solutions. 

3.3.1 Crossover Operation 

Crossover varies changes the arrangement of chromosomes from one generation to 

the next. It is analogous to biological reproduction and crossover, upon which 
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genetic algorithms are based, 

a) One-point crossover 

A single crossover point on both parents' chromosomes is selected. All data beyond 

that point in either organism string is swapped between the two parent organisms. 

The resulting organisms are the children: 

Cr 

Figure 3.3: One-point crossover [44] 

b) Two-point crossover 

Two-point crossover calls for two points to be selected on the parent organism 

strings. Everything between the two points is swapped between the parent organisms, 

giving two child organisms: 

poll"! 

O<y-> 

Figure 3.4: Two-point crossover [44] 

c) "Cut and splice" crossover 

Another crossover variant, the "cut and splice" approach, results in a change in 

length of the children strings. The reason for this difference is that each parent string 

has a separate choice of crossover point. 
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Figure 3.5: "Cut and splice" crossover [44] 

3.3.2 Mutation Operation 

In genetic algorithms, mutation is a genetic operator used to maintain genetic 

diversity from one generation of a population of chromosomes to the next. It is 

analogous to biological mutation. 

The classic example of a mutation operator involves a probability that an arbitrary bit 

in a genetic sequence will be changed from its original state. A bit, can also be called 

allele, is one member of a pair or series of different forms of a gene, and are usually 

coding sequences. In other words, alleles are members of a gene that produce 

different traits in a gene's characteristics. A common method of implementing the 

mutation operator involves generating a random variable for each bit in a sequence. 

This random variable tells whether or not a particular bit will be modified. 

The purpose of mutation in GA is to allow the algorithm to avoid local minimum by 

preventing the population of chromosomes from becoming too similar to each other, 

thus slowing down or even stopping evolution. This reasoning also explains the fact 

that most GA systems avoid only considering the fittest of the population in 

producing the next generation but rather a random (or semi-random) selection with a 

weighting toward those that are fitter. 

3.4 Termination 

This process for producing new generation is repeated until a termination condition 

is reached. Common terminating conditions are: 
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a) A solution is found that satisfies the criteria; 

b) A fixed number of generations is reached; 

c) The allocated budget (computation time) has been reached; 

d) The solution with the best fitness is reached; 

e) Manual inspection; 

f) Combinations of the above. 
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4. EVOLUTIONARY 3D FRACTAL MODELING 

This chapter gives a detailed description of the methodology we used in modeling the 

three dimensional fractals, such as how to construct fractals in three dimensional 

space using evolutionary algorithm. Finally, the transforming property and user fine-

tuning are discussed. 

4.1 Fractal Construction 

Iterated Function System (IFS) is an effective way to model fractals and is widely 

used. It provides a very compact representation, efficient computation, and a very 

small amount of user specification can obtain a very large class of diverse fractals. 

IFS is represented by a set of affine transformations, which can be any combination 

of scaling, rotation, shearing and translation of point sets. An IFS is defined by a set 

of contraction mappings ŵ  in complete metric space {X, d)，where W f . : X - ^ X 

with respective contraction factors s^, | < 1 faf k = , and k is the index for 

each affine map. An affine transformation of a point set in the Euclidean three 

dimensional space can be written in matrix form: 

A 12 

22 

X 

y + 
� 

(4.1) 

« 32 ^ 3 3 UJ 
w,lx,y,z = 

where the elements � c o n t r o l scaling, rotation and shearing, and dj control 

translation. 

4.1.1 Self-similar Condition of Fractal 

The FT IFS (Fractal Transformation IFS) under the self-similar condition of fractal is 

formulated, which possesses straightforward geometric meaning. This provides 
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intuitive user control on the shape of the fractal by tuning the parameters in each 

affine map. 

Let St'""' denote the set of nxn matrices and let A be a finite family of the 

expanding matrices A 人.€ ？fi—, k = l ,2, . . .m, m is the number of the matrices in the 

family (i.e. A^, with all the module of its eigenvalues > 1，is an expanding matrix). 

Let D = ld�,d2’."d," czST be a set of n dimensional vector with real number 

component. 

We define the affine maps w^(X) = (^X + and call {w;. (Jf)}二 a self-affme 

iterated function system. If an attractor T = T{A,D) satisfies T = , then T 

is a self-affme set. For the special case that all A,, equal to A, the self-affme set T 

always exists under the expanding condition. If all the A,, are similar matrices, T is a 

self-similar set. In general, T or its boundary dT (if T has non-void interior) are 

fractal sets [17]. 

4.1.2 Fractal Transformation (FT) IFS Formulation 

To adapt fractal modeling to three dimensional space, IFS is modified in this 

research and a FT (Fractal Transformation) IFS formula is put forward. 

In the proposed method, a combination of rotation, translation and scaling in three 

dimensional Euclidean space is adopted to build fractals. Rotations about each axis 

are often used while transforming an object to a desired posture, position or 

coordinate systems. The proposed approach can also be viewed as a kind of IFS. 

In the following discussion, the angle of rotation is specified with a right hand 

coordinate system. The rotation about the z axis will be referred to as roll, rotation 

about the y axis as yaw, and rotation about the x axis as pitch [49]. A rotation will be 
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considered positive if it is clockwise when looking down the axis towards the origin. 

The proposed IFS equation is as follow: 

A=P 

,^3 

(4.2) 

+ s i n a I s in 

+COS a I s in 

+ s m | a I s m 

sin a sin 

Where p is the amplification factor, which ranges from 0 to 1; otp is pitch, rotation 

angle about x axis; cty represents yaw, rotation angle about y axis; ccr is roll, rotation 

angle about z axis, otp, (Xy and otr range from - k io K. See Figure 4.1, x is rotated to 

X’. This formula has a geometric meaning that is a rotation in three dimensional 

space. The order of rotations applied here is to rotate about the y axis first (yaw), 

then the x axis (pitch), and then the z axis (roll). 

Y 

Figure 4.1: Rotation Decomposition in Eqn. (4.2) 

According to Eqn. (4.2), it is clear that A；' is the expanding orthonormal matrices, 

and all the A are similar matrices, so the proposed formula satisfies the self-similar 
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condition described in sec. 4.1.1 and the self-similar set always exists. And according 

to contraction mapping theorem, the fractal construction is repeatable. 

Compared to the original IFS, the FT IFS formula provides a more straightforward 

geometric meaning, which is the foundation for intuitive user interaction, and the 

productivity of good fractals is higher while using the FT IFS formula to build art 

fractals. 

4.1.3 IFS Genotype and Phenotype Expression 

Genotype is the "internally coded, inheritable information" describing an individual 

[39]. Genotype is the genetic information describing fractals in this research. An IFS 

is encoded as a genotype in the form of an N by 7 matrix. Each row of the matrix is a 

gene, which is encoded by rotation angles, scaling factor and the offsets of the affine 

maps. M. Bamsley and S. Demko [2][3] and physicist J.C. Sprott [43] etc. applied 

two to three affine maps in IFS. The fractal phenotypes' chromosome consisting of 

two or three genes can be easily controlled, N takes a value of 2 or 3 in this research. 

The N by 7 chromosome matrix is shown in Figure 4.2. 
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Gene 2 
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� � � P d � d , ci^ 

Chromosome 

Figure 4.2: IFS Genotype 

Phenotype is the "outward, physical manifestation" of the individual, which is the 

fractal individual generated with the genotype and development rule. Expression is 

the process of converting genotype to phenotype. The genotype is mapped to a 

phenotype through a probability selection process and a translation process. In this 

research, a revised Random Iteration Algorithm (RIA) is adopted for the probability 

selection. The affine map in the IFS formula is a gene in the genetic algorithm, and a 

fractal genotype corresponds to a chromosome. There are at least two genes in a 

chromosome. In this thesis two and three genes are used for a chromosome. The 

phenotype will be rendered as volume points or reconstructed as mesh surface later 

on. 

Revised RIA 

Bamsley put forward a Random Iteration Algorithm (RIA) [2], which is a popular 

selection probability assigning method for its fast convergence rate. The original RIA 

formula is as shown in Eqn. (4.3). 

n _ IdetA and V Pt=land Pi>Q \
1
I
/
 

3
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The RIA selection probabilities can lead to fast convergence while generating fractal. 

However, it is found that the selection probability of one gene according to this RIA 

rule may be too small to have effect in the expression process. If this happens to a 

two-gene chromosome fractal, there might be only one gene that actually works, and 

this will greatly reduce the diversity of the expressed phenotypes. On the other hand, 

if the random probability scheme [50] is applied, the convergence rate can not be 

guaranteed. Based on this consideration, a minimum probability Pmin is introduced in 

this research. 

厂,“I丨=1/(a* AO (4-4) 

The influencing factor a, which is larger than 1，is used to adjust the diversity of the 

fractals. If a is large, the effect of a certain gene might be reduced and the phenotype 

of the generated fractal might be less diverse. This formula means there will be no 

selection probability lower than the minimum probability. If one probability Pj is 

below Pmin, it will be added to Pmi„. Because the sum of all the selection probabilities 

is one, the gene with highest probability will be adjusted to Pmax+Pi-Pmin- This 

minimum probability scheme can reconcile the conflict between the diversity of the 

fractal pattern and the convergence rate. 

4.2 Evolutionary Algorithm 

Specifically, genetic algorithm is employed as the fractal evolutionary system in our 

research. 

Before the individual fractals evolve to the next generation, selection of parents has 

been performed as the first stage in the process. The fitness value of fractal is 

calculated in this stage and parents are selected from the fractal chromosome library. 

Fitness is a reference used to decide the likelihood of survival and is used for 
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selecting parents for generating successive generation. The selection process reflects 

the basic concept of survival and fittest in evolutionism and it is critical to the 

convergence of the evolution process. In the second stage, the fractal genotypes of 

new generation are reproduced based on the selected parents' chromosomes. 

Crossover and mutation, which are classic operations in genetic algorithm, are 

employed in this evolution process. Besides, an inferior elimination mechanism is 

introduced in case of the sudden occurrence of inferior fractal individual. The 

crossover operator applied here is single-point crossover, which recombines two 

chromosomes at a certain random position. The mutations operation creates variation 

for each allele with a certain occurrence probability. (Allele is an alternative unit in a 

gene found at the same place on a chromosome.) The stability of the process is 

related to the crossover occurrence probability and the mutation occurrence 

probability. If the occurrence probabilities are too high, the average quality of 

generated fractals will be unstable. The proposed evolutionary system will terminate 

when a pre-defined maximum number of generations or a certain number of 

individuals is reached. 

Figure 4.3: Flowchart of proposed Evolutionary System 
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4.2.1 Single-point Crossover 

The crossover operator is to recombine portions of the chromosomes of fractal 

individuals, by which variation is generated to the given chromosome. The crossover 

position is created randomly. However, genes will not be exchanged wholly, which 

means the intervals between genes are excluded from crossover position (intervals, 

j=7 in the chromosome matrix O). Crossover probability Pc controls the occurrence 

of crossover operation. 

O, 

a = 

j) :7) 

••j) C^if.N,^ 

'(72(1: U : j) C^il-.iJ : 7 ) � 

: N,1 ••j) 丨：7) 

(4.5) 

where (i, j) is the crossover point, o\ and o[ are the chromosomes of the offspring, C/ 

and C2 are the chromosome matrix of parents, and C(l:i, l:j) means submatrix of C 

from row 1 to row i and column 1 to column j. 

4.2.2 Arithmetic Gaussian mutation 

The mutation operation produces an arithmetic Gaussian random value for each 

allele in the gene pool. Mutation might bring uncontrollable changes to gene, and 

hence is strictly controlled by mutation probability Pm. If the mutations are less 

favorable, they will be reduced in the selection process and not pass to next 

generation; on the contrary, if the mutations are favorable, they may accumulate and 

result in adaptive evolutionary changes. 

k. if prob > P 
0 = 0 丨 + 财，似(z’力二 {• dse 一 饥 (4.6) 

where k is a Gaussian distribution random number with mean 0, variance 1 and 
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standard deviation 1; O is the new offspring, and O ‘ is the chromosome matrix after 

crossover operation. 

4,2.3 Inferior Elimination 

Due to the randomness of the evolution process, there might be sudden occurrence of 

quality decline for the generated fractals. Thus an inferior elimination mechanism is 

introduced in the evolutionary system. If the fitness of the chromosomes generated 

by the crossover and mutation operations is below a pre-defined cut-off score, the 

individual will not be passed to the parents' selection process and will be viewed as 

unqualified and eliminated. This mechanism can obviate inferior chromosomes and 

enhance the average quality of the generated fractal. 

4.3 Interactive Fine-tuning using FT IFS 

Design of fractal objects is made relatively simple and intuitive by the transforming 

property and the straightforward geometric meaning of the parameters in the revised 

FT IFS. After fractal is built by the evolutionary system automatically, users may 

further modify the fractal pattern to a desired shape. 

Parameters provided by the formula can be tuned to modify the corresponding 3D 

fractal pattern. A fractal is a sequence of 3d points, and each successive point is 

obtained from transforming the previous 3d point. The parameters control the 

position of 3d point in each iteration, and thus affect the shape of fractals as a whole. 

As shown in Fig.4.4，xr is transformed to Xk+i through rotation, scaling and 

translation. The rotation is a combination of the rotations about x, y, z axis. 

Parameters otp，cxy and ctr are to expand or shrink the orbit radius about their respective 

axis. If dp is large, the fractal object is farther away from the x axis far. p is the 

scaling factor in each iteration, and it changes the volume of the fractals, p should not 

be larger than 1，otherwise, the fractal will spread all over the space. The translation 
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vector is the vector with exponent of di, d: and da, which can adjust the density and 

the span length along one coordinate axis. Besides, the selection probability for 

affine map can be changed to adjust the influence of one affine map in the phenotype 

mapping process. If a user considers one affine map is excellent, he can increase the 

effect of that map. An IFS system may have extremely high selection probability or 

comparably very low selection probability. When this occurs, those with high 

selection probability are dominant and those with low selection probability are called 

subsidiary affine maps. For example, when there are two affine maps, the selection 

probability of one is much higher than the other's, and then they are dominant affine 

map and subsidiary map respectively. On the contrary, if all the affine maps share 

relatively similar selection probabilities, there will be no dominant and subsidiary 

affine maps. In general, the dominant affine map usually can not take effect if the 

contribution of the subsidiary affine maps is too small. This means the selection 

probability of the subsidiary affine maps should not be zero. 

Z Scaling 
Translation / 

Fractal 
Points 

Figure 4.4: Transformation from Xk to Xk+i in an iteration 

Through tuning these geometric parameters, users can modify the fractal pattern 

according to their own wills instead of complete random generation. As for the 
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computing time, reproducing a fractal with changed parameters only needs a few 

seconds. An example is shown in Chapter 7. 

4.4 Gaussian Fitness Function 

After the fractals are built by the proposed FT IFS formula and are expressed to 

phenotypes, their fitness values need to be evaluated for further processes in the 

evolutionary system. The fitness of fractals reflects the quality of phenotype and 

generally represents their visual aesthetic appeal. They are used to rank the fractals. 

We formulated a Gaussian like fitness function by considering the mathematical 

quantities of fractal based on a large number of samples. The fitness value computed 

is then employed to select parents for the next generation in the evolutionary system. 

This fitness function will be presented in detail in the next chapter. 
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5. GAUSSIAN AESTHETIC FITNESS FUNCTION 

Fitness describes the capability of an individual of certain genotype to reproduce, and 

usually is equal to the proportion of the individual's genes in all the genes of the next 

generation. If differences in individual genotypes affect fitness, then the frequencies 

of the genotypes will change over generations; the genotypes with higher fitness 

become more common. This process is called natural selection. As fitness measures 

the quantity of the copies of the genes of an individual in the next generation, it 

doesn't really matter how the genes arrive in the next generation. That is, for an 

individual it is equally "beneficial" to reproduce itself, or to help relatives with 

similar genes to reproduce, as long as similar amount of copies of individual's genes 

get passed on to the next generation. 

An individual's fitness is manifested through its phenotype. As phenotype is affected 

by both genes and environment, the fitnesses of different individuals with the same 

genotype are not necessarily equal, but depend on the environment in which the 

individuals live, and the environment is the selection probability in this research. 

However, since the fitness of the genotype is an averaged quantity, it will reflect the 

reproductive outcomes of all individuals with that genotype. 

Fractal fitness refers to the compactness, connectivity, regularity, symmetry and most 

importantly the aesthetic appeal. There are a number of different techniques for 

measuring these properties. In [42][43], a relationship between visual aesthetic 

judgments of fractal, their fractal dimensions and Lyaponov exponent has been 

proved and a Gaussian-format formula was used to evaluate the fitness function with 

two parameters. 

Fractal dimension is a statistical quantity that gives an indication of how complete a 

fractal appears to fill a given space. The capacity dimension and correlation 

dimension are widely used in practice, partially due to their ease of implementation 
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and fast computation. 

The appealing of fractals, including compactness, connectivity, regularity and 

symmetry is evaluated by a fitness value in this research. This fitness value is used to 

rank the generated fractals so as to select parents in the evolutionary process. This 

quantitative measure of the aesthetics of fractal is formulated based on the 

considerations described in section 5.1. This formula will be used as the fitness 

function in the evolutionary algorithm to enforce the evolution of fractals. In the 

following discussions, we denote Capacity dimension as D^, Correlation dimension 

as D^，and Largest Lyapunov exponent as LLE. 

5.1 Fitness Considerations 

5.1.1 Capacity Dimension 

One of the essential features of a fractal is that its Hausdorff dimension strictly 

exceeds its topological dimension [41]. In mathematics, capacity dimension, also 

named the Hausdorff-Besicovitch dimension or Hausdorff dimension, is an extended 

non-negative real number associated with a metric space. The capacity dimension 

generalizes the notion of the dimension of a real vector space. In particular, the 

capacity dimension of a single point is zero, the capacity dimension of a line is one, 

the capacity dimension of the plane is two, etc. There are however irregular sets that 

have noninteger capacity dimension. 

The capacity dimension can be calculated using box-counting method [22], which is 

a way of determining the fractal dimension of a set S in a Euclidean space ST or 

more generally in a metric space {X,d). Assume the fractal lying on an evenly-

spaced grid or putting the three dimensional fractal in a cube, and count how many 

boxes are required to cover the set. Making the boxes smaller gives more detail, 
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which is the same as increasing the magnification. The box-counting dimension is 

calculated by considering how this number changes while making the grid finer. 

Suppose that N(s) is the number of boxes of side length 8 required to cover the set. 

Then the box-counting dimension of a fractal S is defined as: 

一 l o g ( l / f ) 

As we investigate on three dimension fractals, the D^ generated in our experiments 

ranges from 0 to 3, and it is normalized to [0，1] by dividing Z ) � b y 3. 

5.1.2 Correlation Dimension 

The correlation dimension is a measure of the dimensionality of the space occupied 

by a set of random points. Compared with other fractal dimension, such as capacity 

dimension, D^ also measures the contraction rate of the points that land on a fractal. 

D^ can be calculated using the distances s[i,j) between each pair of points X.,Xj 

in the set of N number of points. 

s{ij) = \X-X 

A correlation function, C(r), is then calculated using 

C[r) = -^x[}mmberof pairs(ij) with s{i, j) < 

C(r) has been found to follow a power law: C[r) = kr^' . Therefore, D! can be 

derived with estimation techniques from the formula: 

r— log(r) 
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C(r) can be written as 

=7+1 

where 6 is the Heaviside step function described as, 

dir- x-x、 
1 r - X . - X j > 0 

0 r- <0 

We use the Peter G. and Itamar P.'s correlation integral method [16], TSTool for 

nonlinear time series analysis [25] and linear regression to compute the correlation 

dimension. of 3D fractals is in the range of [0，3], we normalize D^ into the 

range of [0’ 1]. The higher is D^, the wider the fractal globally spread. 

j j p ^ ‘源“.....:...:;,:::、:.:？ iV.法, 
...‘ 

Do=0.6171; D2=2.2700 

Figure 5.1: Comparison of fractal with different D^ and D^ 

5.1,3 Largest Lyapunov Exponent (LLE) 

The Lyapunov exponent or Lyapunov characteristic exponent of a dynamic system is 

a quantity that characterizes the rate of separation of infinitesimally close trajectories. 

Quantitatively, the separation of two trajectories in phase space with initial 

separation 5T J�can be expressed as 

8L[t) 
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where X is the Lyapunov exponent. 

Lyapunov exponent can be thought of as the rate at which information about the 

initial condition is lost. A negative value means that information is gained. The rate 

of separation can be different for different orientations of initial separation vector. 

Thus, there is a whole spectrum of Lyapunov exponents—the number of the 

exponents in a spectrum is equal to the number of dimensions of the phase space. It 

is common to just refer to the largest one, i.e. to the Largest Lyapunov exponent 

(LLE), because it is the one that dominates in the subsequent iterations and 

determines the predictability of a dynamic system. A positive LLE is usually taken as 

an indication that the system is chaotic. 

We use Eckmann J. P. and Ruelle D.'s ergodic theory [11] and LET tool [1] to 

calculate the largest Lyapunov exponent, which ranges from -1.4123 to -0.0033 in 

this experiment. A lower LLE indicates a larger separation between two nearby 

points; the fractal pattern becomes more disconnected and less compact [51]. 

5.2 Fitness Function Formulation 

In section 2.4.2, linear log equation is proposed to calculate the fitness and aesthetic 

value of 2D fractals [50]. However, experiment showed that the correlativity of 

fitness value and fractal characteristic parameters using linear equation is quite low. 

Sprott [43] proposed to use a quadratic sum equation to select nice fractal on 2D 

space and proved its effectiveness. Here we propose to employ Gaussian function to 

build the fitness function due to its characteristic symmetric bell shape curve that 

quickly falls off towards infinity, which can enhance the correlativity under the 

circumstance. 

The fitness equation in evolutionary process classifies fractal patterns as qualified or 

unqualified based on an acceptance criteria. First, fitness score are rated. There are 
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five items in the rating list, including overall appealing, compactness, connectivity, 

inerratic, and symmetry, and each of them takes 20%, and the final fitness score is 

normalized to [0，1]. Secondly, we statistically analyze relationships between 

variables Do, D2, LLE and fitness. It is found that capacity dimension, correlation 

dimension, and the largest Lyapunov exponent have influence on fractal fitness. 

Capacity dimension indicates how effective a fractal fills up the space and its density. 

Correlation dimension suggests the fractal's dimension and its contraction rate. The 

Largest Lyapunov exponent estimates the separations of points in a fractal. The 

fitness of a fractal S can be formulized as: 

,(D(,-do)2i(D2-d2)2i(LLE-Ue)2� 

f i t � S ) = a,e 2 � 2a； 

where do is the mean for variable Do, d: is the mean for variable D2, lie is the mean 

for LLE, ai , 02 and 03 are corresponding variances in Gaussian function, a and b are 

the linear coefficients. 

According to Jacob [18], a multiple regression/correlation analysis, with the 

significance criterion a equal to 0.05 and small population effect size, requires a 

sample size of 541. Since there are three variables in the regression, the total sample 

size should be 1641. Before rating the samples, interrater reliability was built up, and 

the reliability is 80%. The range of Do for all sample cases is from 0.271 to 0.849; D2 

is from 0.035 to 0.980; and LLE is from -1.4123 to -0.0033. For the 29 cases that 

were rated best out of 1641 samples (fitness score equal or above 0.9), the average 

capacity dimension is Z ) � = 0.334土 0.038，the average correlation dimension is 

D^ =0.587 ±0.326 ， the average Largest Lyapunov exponent is 

乙乙£： = —0.057 ±0 .046. So 0.334， /̂之 二 0.587，lie =-0.051. Take In (./?/ +0.5) 

as dependent variable, (D � -0 .334 )2 , (Z)^-0.587)' ’ and +0.057) ' as 
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variables, correlation analysis and linear regression is used to analyze all sample 

cases for studying their relationships. The correlativity of fitness function built by 

Gaussian equation in this research is 0.71. The fitness function after normalization is 

educed as follow: 

f i t [ s ) = 1.493 xe 

—0.334)2 (£>2-0.587)2 (LLE+0.057f 
2x().84()'^ 2x0.6982 2x1.092^ 

一 0.5 (5.1) 

fit{S) is the fitness value of fractal S, which lies in the range [0’ 1]. 

5.3 Results and Discussion on Fitness Function 

Fractals with different fitness value are shown in Figure 5.2. The number of voxels 

used for visualization the examples is 5000. 
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Figure 5.2: Fractals with different fitness value, the view is rotated clockwisely from 

left to right 
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Figure 5.2: (cont'd) 
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The corresponding fitness value and gene code for these fractal pattern is as below in 

Table 5.1. 

Index Op Cty Or P di d2 d3 Fitness 

-2.2409 -1.0422 -0.9395 0.8569 -1.1245 1.6351 -0.1989 

5.3-1 1.6690 -0.1722 -2.3885 0.2574 1.7357 -1.2559 0.3075 0.6688 

2.4887 -2.0523 -0.0114 0.0255 1.9375 -0.2135 -0.5723 

5.3-2 
-2.6096 0.2659 -0.4418 0.0726 1.7221 0.5651 0.2201 

0.6734 
0.0365 0.8885 -3.0947 0.9273 -0.4123 0.7399 1.3128 

0.6734 

5.3-3 
1.9545 -1.0370 1.4752 0.3177 -0.0228 0.8128 -1.0046 

0.7229 
1.2910 0.4296 0.8534 0.7758 0.1106 1.0091 0.2830 

5.3-4 
-1.8816 -1.4478 -1.8274 0.9539 0.7358 1.4443 0.6863 

0.7490 
2.6635 -0.2329 -2.5700 0.1312 -0.6409 -1.1590 0.7304 

5.3-5 
0.2535 -2.5441 -1.3460 0.2008 0.5809 -0.9381 0.3760 

0.7499 
2.9436 -0.4846 2.0856 0.9155 1.7786 -0.9167 0.9098 

-2.2188 -1.4472 0.5363 0.3458 -0.2656 0.9863 0.2341 

5.3-6 1.5405 0.8805 -0.0215 0.9267 -1.1878 -0.5186 0.0215 0.8380 

-0.0130 -1.2466 2.4961 0.2892 -2.2023 0.3274 -1.0039 

-3.1200 3.0313 2.9841 0.9845 -0.9471 -1.0559 -1.2173 

5.3-7 -0.8081 -0.6351 3.1063 0.1709 -0.3744 1.4725 -0.0412 0.9719 

-2.8234 1.8679 -2.5867 0.1784 -1.1859 0.0557 -1.1283 

Table 5.1: The fitness value and gene code for fractal examples in Figure 5.2 
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6. EXPERIMENT RESULTS and DISCUSSION 

6.1 Experiment of Evolutionary Generation 

A chromosome library, which contains a hundred of fractal chromosomes, is built for 

the initial selection of parents. The library is dynamic, and each time when new 

offspring are reproduced the library will be refreshed and enlarged automatically. 

According to Eqn. (4.4), the influencing factor a is set to 4 and the minimum 

mapping probability Pmin, which is applied in the mapping process from genotype to 

phenotype, is set to 0.125 when N=2, and Pmin is set to 0.083 when N=3. To control 

the stability of the evolution, the mutation probability Pm is assigned to 0.5，and the 

crossover probability Pc is assigned to 0.75. The cut-off score used in inferior 

elimination is 0.6. The termination criterion of the proposed evolutionary system is 

to reach a pre-defined maximum number of generations or a certain number of 

individuals. In the experimental system, the termination criterion is set to 15 

generations. The iteration number used in fractal phenotype expression is 5000. The 

experiments are conducted on a PC with Intel Pentium 4, dual CPU 3.40 GHz, 2GB 

RAM. The average running time of reproducing a qualified fractal is 7.15 sec. 

From Figure 6.1 we can see that, the average fitness value of the offsprings is all 

over 0.8，which means the quality of the fractal generated by employing the proposed 

evolutionary system is acceptable and stable among different generations. We 

systematically examined all the fractals generated in the evolution process and found 

that they are nearly all visually interesting. 
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Fitness Evolution 

2 3 4 5 6 ^ 8 9 10 11 12 13 14 15 16 

Generation 

Figure 6.1: Average fitness value of fractals generated in the evolution process 

6.2 Comparison on Different Methods 

We conducted a comparison experiment to explore the effectiveness of fractal 

generation using different formulas and evolutionary systems. Three different 

methods are compared. In the first case, Eqn. (4.1) under contraction condition (i.e. 

A is random orthonormal matrix with |detA| less than 1) is employed to build a 

hundred of fractals. In the second case, Eqn. (4.2) is used to build a hundred fractals. 

In the third case, fractals are built by Eqn. (4.2) combined with evolutionary 

algorithm. There are 15 generations totally and each generation has a population size 

of 10. Considering to the stochastic characteristic of the evolutionary system, the 

experiments were conducted for ten times, and all the values shown in the below 

table are the average values from the ten experiments. 

As we can see from Table 6.1，average fitness and excellent rate are increasing from 

case 1 to case 2 and from case 2 to case 3，and the average running time is also 

increased. The data demonstrates that using Eqn. (4.2) with evolutionary system can 

effectively enhance the quality of the generated fractals and the productivity of the 
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fractals generation process. 

Case Average Fitness Excellent Rate* 
Average 

Running Time (sec.) 

1 0.704 0.320 332.48 

2 0.840 0.542 441.42 

3 0.912 0.868 1072.35 

Table 6.1: Some primary parameters for the three cases 

Excellent rate means the percentage of fractals with fitness larger than 0.85. 
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7. 3D FRACTALS RENDERING and APPLICATION 

The property of the fractal transform is the foundation for intuitive user interaction. It 

is illustrated with some tests in this chapter. Moreover, the visualization and 

rendering influence how the three dimensional fractals can be applied to a great 

extent. Based on the visualization and rendering method applied, various applications 

of three dimensional fractals are discussed. 

7.1 Transforming Property and User Modification 

7.1.1 Test on Transforming Property 

According to Eqn. (4.2)，the shape of the fractals transforms smoothly while the 

variables are changed. This is shown in Figure 7.1. Figure 7.1(a) shows the original 

appearance of fractal 7.1.1-1. Figure 7.1 (b，c, d) shows the result of changing the 

pitch, yaw, and roll by adding a value of 士；r/30 in each step. Figure 7.1(e) illustrates 

the result of changing di by a value of 0.1. Figure 7.1(f) shows the effects of 

reducing p by 5% in each step. There are 10000 voxels used for the rendering. 

Parameters otp, ay and (Xr control the rotation angle about each axis, which can be used 

to enlarge or reduce the orbit radius about an axis, and the range of a is [0, ；r]. As 

shown in Figure 7.1 (b), if ap is large, the fractal object moves away from the x axis, 

p influences the scale of the fractals, which can be used to decide the size of a fractal. 

However, p should lie in range [0，1]，otherwise, the fractal will not converge, di, di 

and da are offsets in the x, y, z axes applied in each iteration, and they can be used to 

adjust the density and the span length in each coordinate direction. If di is large, the 

fractal is loose along the x axis. 
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Figure 7.1(a): Multi-views of the 3D fractal 7.1.1-1，rotated clockwise from left to 

right 

Figure 7.1(b): Effect of changing pitch, the bottom-right comer is the enlarged view 

of the rightmost three fractals 
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Decreasing Roll 

Figure 7.1(c): Effect of changing yaw. 

Figure 7.1(d): Effect of changing roll 
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Figure 7.1(e): Effect of changing di 

Figure 7.1(f): Effect of changing p 

7.7.2 Example of user interactive fine-tuning 

The example in Figure 7.2 shows a modified fractal pattern 7.1.1-2 and its 

application as a pendant in jewelry design. The fractal pattern is adjusted based on 

7.1.1-1 shown in Figure 7.1(a) by adding ；r/10, ITTHS and ；r/15 to pitch, yaw, and 

roll respectively. 
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Figure 7.2: Fractal 7.1.1-2，modified based on the fractal 7.1.1-1, rotate clockwisely 

from left to right 

7.2 Visualization and Rendering of 3D Fractals 

7.2.1 Volume Point Rendering 

The fractals generated through phenotype expression are represented by a set of 

voxels. Due to the lack of topology and non-uniform distribution characteristic of the 

fractal representation, the rendering primitives employed for 3D fractals are the 

volume points, which can be rendered fast and provide users with a coarse image of 

the fractals. 

The rendering process is implemented using OpenGL. A linear gradient coloring 

scheme is applied for rendering the 3D fractals. The color of the fractal at a specific 

position is determined by its 3D coordinates. The color of a fractal point is denoted 

as C(x, y, z) which is the color vector (r, g，b) at the position. The color is decided by 

C(x’ y, z), 

C{x,y,z) = {r,g,b) = {\X\)xa{x,y,z), 
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The r，g, b channel are associated with the x, y, z coordinate respectively. 

A dual-tone gradient color scheme is applied for cases 7.2.1-3, 7.2.1-10-7.2.1-12. 

The desired color C(x, y，z), 

C{x,y,z) = {r,g,b) = C,-C^xa{x,y,z) 

where Ci and C2 are the dual base colors. 

There are twelve examples shown in Figure 7.3，which are generated in the 

evolutionary system. The fractals are rendered using linear gradient coloring with 

50000 points, and the rendering process takes 5.24 seconds on average. Their 

corresponding gene codes are listed in Table 7.1. 
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Figure 7.3: Examples of 3D fractals generated in the evolutionary system using linear 

gradient coloring, rotate counter-clockwisely from left to right 
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Figure 7.3: (cont'd) 
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Figure 7.3: (cont'd) 
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Index «P Cty Ctr P d, d2 da 

7.2.1-1 
-2.5900 -0.2154 1.9586 0.2793 -0.9179 -1.2826 0.5331 

0.7182 -0.9256 3.0556 0.9677 0.8829 -0.3807 0.0029 

-2.8438 1.1909 0.7555 0.8832 1.2880 -0.5563 1.3717 

7.2.1-2 1.7701 1.1045 -0.3307 0.1178 -0.0135 0.7556 0.2456 

1.0339 -2.4817 0.3572 0.2307 -1.3333 -0.9119 0.1188 

7.2.1-3 
-1.1030 -1.7176 2.5104 0.7542 -1.7473 -0.6002 1.1685 

-0.6791 -3.1013 -0.4611 0.7352 0.9580 0.4858 0.9375 

7.2.1-4 
2.9765 2.2132 -0.9220 0.5128 2.1764 -0.4438 -0.3157 

1.2971 -0.2559 -1.0080 0.9255 0.4316 0.0300 0.9778 

7.2.1-5 
-1.6536 -2.1031 2.1542 0.8952 1.1259 0.6706 -0.3158 

2.1971 0.6442 2.0935 0.3530 1.7177 -1.1508 0.1947 

0.2535 -2.5441 -1.3460 0.2008 1.3614 0.6004 0.8391 

7.2.1-6 2.9436 -0.4846 2.0856 0.9155 -0.3950 -0.3844 -0.7047 

0.8611 1.2827 -0.9874 0.4224 -0.0935 -1.3934 0.5502 

1.9352 2.7315 -3.1066 0.1039 2.7786 -0.3765 -0.4451 

7.2.1-7 2.3017 2.4483 -2.9740 0.6815 0.6308 1.9092 0.9879 

-2.7245 -2.6631 -0.9796 0.6373 -0.6972 0.7471 1.2293 

0.4098 0.2564 1.2435 0.1343 -0.7845 -0.6577 -0.2600 

7.2.1-8 -1.4164 1.9393 -1.4556 0.7039 1.0941 -0.0352 0.8753 

1.1650 -2.9849 0.9214 0.7360 -0.4980 0.7629 -0.3071 

0.7965 0.2119 -1.1741 0.5835 0.0098 -0.9190 0.4921 

7.2.1-9 -0.0044 0.2654 -1.5714 0.4592 0.6552 -0.3989 2.0563 

0.3056 -0.3511 2.6642 0.7395 -2.7659 1.2394 -1.5298 

2.2237 1.7187 0.3243 0.7794 0.2761 1.0610 1.7711 

7.2.1-10 1.2230 -0.1873 0.0150 0.8465 1.3295 1.1357 -0.0139 

-2.1695 0.9688 0.0180 0.2624 1.2817 1.0508 -1.1341 

2.9523 2.9343 2.9154 0.2095 -0.5115 0.2966 -0.0109 

7.2.1-11 0.1554 -2.4184 -0.1682 0.5514 0.0268 -0.8664 1.1950 

-0.3223 3.0522 2.3830 0.8780 -0.4476 -1.2096 -0.9740 

-1.1886 1.2925 2.6916 0.0397 -1.0043 -1.9483 -1.9868 

7.2.1-12 0.0203 0.1246 1.2773 0.9802 -0.5522 -0.4016 0.9956 

-0.7206 -1.9475 0.4351 0.0965 1.1693 0.0640 0.2261 

Table 7.1 ： The gene code for fractal examples in Figure 7.3 
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7.2.2 Mesh Surface Rendering 

To achieve high quality rendering of fractals, marching cubes is applied to 

reconstruct the mesh and topology, of the fractals. The reconstruction mesh can then 

be rendered using standard graphics packages. The Marching cubes technique 

proposed by Lorensen and Cline [23] extracts a polygonal mesh of an isosurface 

from a three-dimensional scalar field (also called voxels). 

The algorithm works on voxels representing a scalar field. Taking eight neighbor 

locations at a time (thus forming an imaginary cube), then determines the polygon 

that represents the part of the isosurface passing through this cube. The individual 

polygons are then combined to form the desired surface (see Appendix A). The effect 

of rebuilt fractals is like this: 
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Figure 7.4: Mesh surface rebuilt by Marching Cubes (Based on the fractal 7.1.1-2 

shown in Figure 7.2) 

a) Wireframe of the reconstructed mesh surface with a grid of 199x165x86. b) 

Wireframe of the reconstructed mesh surface with a grid of 90x74x39. c) Smooth 

rendering of the reconstructed mesh. 
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7.3 Applications in Design 

The three dimensional fractal constructed with the proposed system may have 

potential application in different design fields. This includes applications in jewelry, 

decoration and light fixture design. 

7.3.1 Jewelry Design 

The fractal patterns in the examples below are generated with the proposed 

evolutionary system, and are converted into mesh surfaces using the Marching Cubes 

method. Figure 7.5 and 7.6 illustrates the design of two pendants using the fractal 

generated with the proposed system. Figure 7.8 shows a earring design generated 

with the proposed system. 
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Figure 7.5: Multi-views of 3D fractal jewelry 7.3.1-1, rotate clockwisely from left to 

right 

Figure 7.6: Multi-views of 3D fractal jewelry 7.3.1-2, rotate clockwisely from left to 

right 
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Figure 7.7: Multi-views of 3D fractal jewelry 7.3.1-3, rotate clockwisely from left to 

right 

Figure 7.8: Multi-views of 3D fractal jewelry 7.3.1-4，rotate clockwisely from left to 

right 
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7.3.2 Decoration Design 

Good 3D fractal patterns can be used for all kinds of decorations, such as indoor 

decorations, ornamental parts of watches, giflware, car, architecture and furniture. A 

Christmas tree with decorations is shown below. The Christmas tree itself includes 

two of the fractal with an angle of 90 degree, and the fractal pattern is the first one 

shown in Figure 7.10. Some parts of the tree are shown respectively in Figure 7.9. 

Figure 7.9: A Christmas tree with decoration generated using voxel rendering 
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Figure 7.10: Parts of the Christmas tree, rotate counter-clockwisely from left to right 
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Name ap ay Ctr P d. d2 d3 

Tree 
-1.1210 2.2344 -0.0970 0.5559 0.5775 -0.1670 0.3658 

Tree 
-0.5045 3.0315 0.7601 0.9209 0.7531 -0.5818 -0.5489 

Conch 

1.7688 0.4645 2.9645 0.1149 -1.2266 0.9570 -0.8926 

Conch -0.2650 -0.4257 -1.6297 0.3862 -0.1897 -0.5334 0.2787 Conch 

1.5227 1.3276 0.8000 0.9554 -0.3017 -0.9011 -0.7458 

Bowknot I 

-0.4123 -2.8664 -2.8508 0.2834 -0.4495 0.9077 0.4105 

Bowknot I -1.9922 2.7999 -0.7459 0.1449 -1.5479 2.3696 1.0526 Bowknot I 

3.0092 -1.3821 0.4589 0.7591 -0.0958 0.5198 0.4288 

Ribbon 
1.9939 -1.5441 0.2536 0.5762 -1.8628 -0.6521 -0.2206 

Ribbon 
0.3131 -1.0922 -2.8812 0.9214 -0.4542 0.1033 -0.2790 

Star 
0.2266 -2.1118 -1.6956 0.5096 0.7508 -0.5173 -0.7534 

Star 
-3.0754 2.2943 -3.0442 0.8928 0.5002 -0.5592 0.9258 

Bowknot II 

-2.8638 -1.8174 -0.9384 0.4143 1.0163 0.2510 0.5775 

Bowknot II 0.8404 -1.8456 -2.2571 0.1471 -2.6759 0.7920 0.2907 Bowknot II 

-3.1260 -1.3764 0.4473 0.6898 -0.0052 0.5922 0.4090 

Table 7.2: The gene code for fractal examples in Figure 7.9 

7.3.3 Light Fixture Design 

By considering the voxels representing a 3D fractal as locations of light emitting 

diode (LED), patterns generated with the proposed technique can be used for light 

fixture design. A virtual scene of a light fixture with decoration effect in a room is 

shown in Figure 7.11. 
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Figure 7.11: Example of light fixture design. The scene is rotated clockwisely from 

top view to bottom view and the bottom-left comer in third frame is the enlarged 

view of the leftmost light fixture 
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8. CONCLUSIONS and FUTURE WORK 

8.1 Conclusions 

In this research, an approach for automatic construction of 3D fractals is proposed. A 

new three-dimension IFS formula, called Fractal Transformation IFS (FT IFS), with 

revised random iteration algorithm is put forward which can improve the efficiency 

in the generation of fractals. The parameters in the formula can be easily controlled 

by designers and thus allow interaction in the generation process. 

A revised evolutionary algorithm is developed to further improve the system 

efficiency. Crossover, arithmetic Gaussian mutation and inferior elimination are 

applied during the evolutionary process. Fitness function is built up using linear 

regression based on 1641 cases. Parameters, borrowed from dynamics and chaotic 

system, such as Capacity dimension, Correlation dimension and Largest Lyapunov 

Exponent, constitute the 3D fractal fitness function. 

Finally the fractal transform method for controlling fractal patterns is tested with 

different design applications. The visualization and rendering of three dimensional 

fractals are discussed. Potential applications are explored and examples are included. 

The proposed FT IFS method has some limitations. The running time of generating 

and rendering a fractal pattern is 12.39 seconds on average, and this restricts the 

instant user interaction. Due to the randomness of the constructing process, it is 

possible that the generated fractals look like a mass over the space. 

8.2 Future Work 

IFS does not limit the dimension of the system. The dimension of the proposed FT 

IFS is three, and it is possible to extend it to more dimensions, 4-dimension or N-
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dimension. Some researchers [43] adopted three dimension IFS for the 2d fractal art, 

and stored the color information in the third dimension. Due to the transforming 

property of the proposed FT IFS, fractal shape transform smoothly as the parameters 

change. It could be extended to four dimensional space to produce animation, and the 

fourth dimension can store the time function. 

More aesthetic rules of 3d fractals can be developed to classify the aesthetics value 

more accurately and further enhance the percentage of the generated visually 

appealing fractal. Factors, like symmetry, golden ratio, complexity, can be taken into 

consideration, and how these factors are quantified for 3d fractals could be 

investigated. 

Stylistic aesthetic evaluation equation and evolutionary system for specific designer 

could be developed. Special fitness function can be formulated by collecting data 

when the designers are selecting the fractal pattern during the process. Other criteria 

that should be taken into account in design evaluation are color and 

manufacturability. 

Work may also be done to explore various application fields of the proposed 

approach and identify any scope for improvement. 
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Appendix 

Marching Cubes Method 

Marching Cubes is an algorithm for rendering isosurfaces in volumetric data. The 

basic notion is that we can define a voxel (cube) by the pixel values at the eight 

comers of the cube. If one or more pixels of a cube have values less than the user-

specified isovalue, and one or more have values greater than this value, we know the 

voxel must contribute some component of the isosurface. By determining which 

edges of the cube are intersected by the isosurface, we can create triangular patches 

which divide the cube between regions within the isosurface and regions outside. By 

connecting the patches from all cubes on the isosurface boundary, we get a surface 

representation. This algorithm is often used to extract the surface of medical organs. 

It provides a fast and easy way to get from serial sections to a complete 3D object 

[52]. 

The main concept of Marching Cubes is to create an index to a precalculated array of 

256 possible polygon configurations (28 = 256) within the cube, by treating each of 

the 8 scalar values as a bit in an 8-bit integer. All these cases can be generalized in 15 

families by rotations and symmetries, see figure below. If the scalar's value is higher 

than the isovalue (i.e., it is inside the surface) then the appropriate bit is set to one, 

while if it is lower (outside), it is set to zero. Finally each vertex of the generated 

polygons is placed on the appropriate position along the cube's edge by linearly 

interpolating the two scalar values that are connected by that edge. 

The gradient of the scalar field at each grid point is also the normal vector of a 

hypothetical isosurface passing from that point. Therefore, we may interpolate these 

normals along the edges of each cube to find the normals of the generated vertices 

which are essential for shading the resulting mesh with some illumination model. 
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The algorithm of Marching Cubes is as follow: 

1，Read four slices into memory; 

2, Create a cube from four neighbors on one slice and four neighbors on the next 

slice; 

3, Calculate an index for the cube; 

4’ Look up the list of edges from a pre-created table; 

5, Find the surface intersection via linear interpolation; 

6, Calculate a unit normal at each cube vertex and interpolate a normal to each 

triangle vertex; 

7，Output the triangle vertices and vertex normals. 
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