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In P2P networks, incentive protocol is used to encourage cooperation 
among end nodes so as to deliver a scalable and robust service. How-
ever, the design and analysis of incentive protocols have been ad hoc and 
heuristic at best. The objective of this thesis is to provide a simple, yet 
general framework to analyze and design incentive protocols. We con-
sider a class of incentive protocols which can learn and adapt to other 
end nodes’ strategies. Based on our analytical framework, one can eval-
uate the expected performance gain, and more importantly, the system 
robustness of a given incentive protocol. To illustrate the framework, 
we present two adaptive learning models and three incentive policies and 
show the conditions in which the P2P networks may collapse and the 
conditions in which the P2P networks can guarantee a high degree of 
cooperation. We also show the connection between evaluating incentive 
protocol and evolutionary game theory so one can easily identify robust-
ness characteristics of a given policy. Using our framework, one can also 
gain the understanding on the price of altruism and system stability. 
This framework can help protocol designers to quickly evaluate the cor-
rectness of their incentive policies and to explore the proper incentive 
mechanism to achieve cooperation.



中文摘要

點對點網絡中，激勵協議可鼓勵終端節點相互合作，從而保證可擴展的穩定服 

務。然而，激勵協議的設計與分析仍處于特定的，啟發式的不成熟階段。本文提 

供一個簡單通用的模型框架來分析設計激勵協議。我們考慮一類可針對節點行為 

學習調整的激勵協議。基于我們的解析框架，給定一個激勵協議，我們可以評估 

系統性能，以及更為重要的系統穩定性。為了描述我們的框架，我們給出兩種學 

習調整模型和三種激勵策略模型，并得出在哪些情況下系統崩潰，在哪些情況下 

我們能保證整個點對點網絡較高的合作度。我們給出激勵模型與進化博弈論之間 

的聯系，基于這個聯系，我們能很容易確定給定激勵策略的穩定性能特征。利用 

該框架，我們能更好理解無私的行為對系統穏定性的不利影響。這個框架能幫助 

協議設計者快速評估協議的正確性，以及為促進合作探索合適的激勵機制。
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Chapter 1 

Introduction 

liicoiit.iv(3 protocols pla.y a crucial role in many networking oiiviroiiirieiits. 

l�)r ox am pie, consider a wireless mesh network wlioroin a. nodo needs 

other nodes to assist in its packet forwarding. Since packd, forwarding 

iii〔T(、a.!s(、s the energy consumption, therefore unless ihoro is soiik、built-

in incentive mechanism, rational nodes will choose not to pcrfonii any 

packet forwarding. If enough wireless nodes behave in this selfish man-

lier, the underlying wireless network will be partitioned and nodes will 

be unreachable. Another example is in P2P file sharing protocols where 

nodes rely on other nodes to perform uploading service.「rhis mutual up-

loading service offloads the server and allows the system t.o scale. Again, 

without tlie incentive mechanism to encourage nodes to pcrfonii upload-

ing service, the server will be overwhelmed and nodes may never be able 

to finish the file downloading process. The above examples illustrate one 

important point: embedding incentive protocols to encourage cooperation 

among nodes is crucial so that the overall system performance can be 

improved. However, the design and analysis of incentive protocols have 

boon ad-hoc and heuristic at best. 

It is important to point out that there is a natural tendency that 

nodes will not used a fixed strategy but instead, adapt, fro川 the、onvi-

roninent. Authors in [4,8] point out that, thoro are boiK f̂it.s for iu)(las t,o 

learn and adapt from neighboring nodes in a P2P not.work, e.g., nodes 

will provide uploading servico to other nodes, but, when the>' (liscovcr 

thai t,h(、r〔、are other nodes tlial： can free-ride on thoir altniisin and get 

good downloading service, then these nodes may choose to clumgo their 

strategies and adapt to a more selfish strategy. Therefore, to fully i.m-

derstaiid a given incentive protocol, we need to have a systematic and 

formal methodology to model the dynamic learning and adaptive) behav-

ior of cooperating/competing nodes, and to evaluate the robustness and 

efFectivcness of Uie underlying incentive protocol. The aim of this thesis 

is to provide a general analytical framework to design and analyzes a large 

class of adaptive incentive protocols for P2P networks. Our contributions 

are: 
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• W'Q propose a general analytical framework to eva.h.iat,c the [)orfor-

maiice of adaptive incentive protocols in P2P networks. 

To illustrate the utility of our mathematical framework，two dif-

ferent learning models and derive their performance uioasiires and 

robustness conditions. 

Wc carry out performance evaluation of the abovi) Um、(、incentive 

protocols and show their performance gain and formally states that 

under what conditions the P2P network will be robust and under 

what conditions the P2P network may collapse. 

Wo show the connection between evaluating the robustness of in-

contive protocols and evolutionary game theory. We illustrate how 

one can map linear incentive policies to two-player games, and to 

give an efficient technique to identify the robustness characteristics 

of linear inccMiiivo policies. 

\V(、quantify t.h() pcrformanco and robustness of tlu、syslcnn wluni 

tliore is cost associated wil.li realizing an inc()iit.iv(、pi'otocol. 

W(、show that there is a, tradeoff between altniisni and sysl.cmi ro-

bustness and justify why one may want to limit t,h() (iogreo of altru-

ism so as to encourage cooperation. 

The outline of this work is as follows. We present our inccniivc model 

in Chapter 2 which includes five sections. A general performance model of 

inceiitivo policies for P2P systems is presented in Section 2.1. In Section 

2.2, we present two learning models for strategy adaptation. In Section 

2.3, wo present two incentive policies and any incentive; policy in a gen-

eralized incentive policy class and show how to use o\ir 1.1 le framework 

to analyze tliese protocols. In Section 2.4, we derive ihc perTorniance 

iiioa^siircs such as system gain and the expected gain Ibr individual strat-

egy, as well as the robustness conditions for the given incentive poli-

cies. Results of performance evaluation are presented in Section 3 on 

the throe incentive policies. In Section 2.5, we provide the connection 

l^etweeii our framework and evolutionary game theory. Wc iiso a, simple 

game-tlicorotical technique to identify robiislnoss characteristics of lin-

ear policies. In Section 4.1 and 4.2 of Chapter 4, we piostmt tho price 

of altniisin and how it, relates to the network stability. R(、laU、(l work is 

given ill Chapter 5 and Cliapt-cr 6 conchules. 

• End of chapter. 



Chapter 2 

Model Description 

2.1 An Incentive Model for P2P Networks 

In this section, we present a general mathematical model to siiiciy some 

incentive protocols in P2P networks. Given an incentive protocol, we 

show how to use this framework to evaluate (a) its evolution and robust-

ness, and (b) its performance measures such as expected service received 

and scrvice contributed of the given incentive protocol. For the incentive 

protocols w() study, we have the following assiiinptioiis: 

• Finite strategies: wo consider incentivo policies which have finite 

st rat egios. Civon an incontivo policy V 二 {•s'h’s.2,.. . . .s,,} where ,s, 

is (ho strategy in V. Peers can c1k)()s(、t,() us(、any ,s, ( -7 ) .八 

p(、(、r using strategy .s,： is callcd a typo i peer. l)oU、iiUa.l st.raiogios 

can range from altruism (e.g., willing to contribute) k) ogoisin (e.g., 

refusing to contribute). 

• Service model: we model a P2P network as a discrete time sys-

tem. At the beginning of each time slot, each peer randomly selects 

another peer in the system and requests for service*. A seloctod peer 

may choose to serve the request based on its cvirront, sirai(^gy. Let 

gi[i) denote the probability that a type i peer will pi.ovidc; scrvice 

to a type j peer. Accordingly, one can define an n x n goncrosity 

matrix G with Gij = gi(j)- At each time slot, a poor obtains rv>0 

points when it receives a service from another peer, while loses 3 

points when it provides a service to another peer. Without loss of 

generality, we normalize (3 = I. 

Let Xi{t) denote the fraction of type i peers in the system at time t. 

Wc define E\Ri{t)] as the expected services that a type i peer can roceivc 

ill one time slot, E[Ri{t)] can be expressed as: 

/!；[/?.,.(/,)] = Y y 、 i ⑴ f o r i = 1 n. (2.1) 

^ this cussi]inpUon is also inaclo in several other 1)21) Ktuclios, o.g. [13,22]. 
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Let E[Si{t)] denote the expected number of service units provided by a 

type i peer at time /;, and this quantity can be derived as follows. Assume 

that at time t, there are N{t) number of peers in the P2P network. 

Consider a tagged type i peer and denote Af as the set representing the 

otlior N{t) — 1 peers in the P2P network. Let keAf, then the probability 

that this tagged type i peer will provide service to this poer k is which 

can bo (expressed as: 

C — Proh[/i: sclects this Lypo'/: p(x)rj x 

l^rol)[iype i peer will server k] 

N{t) 
Y^ Prob[A; is of type j](),(j) 

and 

ProbfA; is of type j 

Xj(t)N(t) 
N(t)-1 

Xi(t)N(t)-
二
 

-
7
 

r

 r
 

f
o
 f
o
 

(2/2) 

Since \J\f\ 二 iV⑴—1, the expected number of servicc units providod 

by this tagged type i peer in one time slot is ⑷ 1 - |N(/>) —1] C. 

Combining the above expressions and by assuming that the ininibcr of 

peers N{t) in a P2P system is relatively large, we have 

丑[s�)]。Y^Xj獻 j) fori = 1,2, n. (2.3) 

Define f)i{L) be the random variable denoting the perfonnanc'.e gain of 

l,v])e i jx ôr at tinio slot t and denote its expectation l)y /),(/,). Because a. 

p(、(u, r(K'oivns a points Cor each service it receives aiid l()s()s /i -二 1 point, 

for (、a.('li service it provides, t,ho expccted pei'foriiiaiia、gain p(、r slot at, 

time I. is Pi{t), which can be expressed as: 

1 / 2 , (2.1) 

The above n equations can be expressed in matrix form and /)(/,)’ tlie 

expected gain per time slot for the P2P network at time t is 

(2.5) 

wlicre x{t) is a column vector of [a：!⑴’...,Xn(t) 

111 sumiliary, to evaluate the performance and robustness of a given 

incentive protocol, one has to first "determine" all values in matrix G 

(i.e., all gi{j) for a given incentive policy). In Section 2.3, we will illustrate 

how to use this analytical framework to study several incentive protocols. 

Note that for an incentive policy, it may in elude sl.rategios such as 

serving other peers upon request, or refusing to serve iipoii request. A 
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peer uses strategy Si may choose to adapt to a new strategy Sj when this 

peer discovers that strategy Sj will provide a better performance gain, 

or Pj{t) > Pi{t). How to discover and adapt to thaX strategy Sj with a 

higher gain than s,： can be modeled by the underlying learning procoss, 

which we will describe next. 

2.2 Learning Models for P2P Networks 

Learning and adapting to the environment are natural behavior of a ra-

tional individual, l̂ eers may get information from external environment, 

and adjust t.lieir strategy so as to obtain better perfonimnca This pro-

coss can 1)0 spontaneous and gradual. The rate of adaptation depends 

on tlie truthfulness of iiil'ormation received by peers and tlic scjisilivily 

of peters toward this information. Since peers learn and adapt, iiaUirally, 

ono ca.li consider adding a layer of software so as to guide ])cerH to loarn 

so the system will operate at a desirable point. In short, l(、a.niiug ac-

tivities do exist and it is worthwhile to promote in P21) sysloins. As a 

result, such learning behavior has a significant impact on the evolution 

and dynamics of the system. In this thesis, we will present two 1 (earning 

models and will study how these learning models can affect the dynamics 

of incentive policies in P2P networks. 

2.2.1 Current-best Learning Mode l ( C B L M ) 

One learning abstraction is that peers discover the best strategy at the 

current time and adapt to it. We call this the “currerd-besl, learning 

rnoder and it can be described as follows: at the end of a time slot, a 

pe(3r can choose to switch (or adapt) to another strategy s' G V with 

probability which we called the adapting rate. To decide which strat-

()gy to switch to, a peer needs to "/earn" from other peers. Let .s/i⑴ 

be tlie strategy that has the highest expected gain among all h G V at 

Ihv. (Mid of tlio time slot t (or h G argmax?.{/)“/,)}). Th(、n a i)。(、r using 

St.rat cgy ,s, will switch to strategy at time slot, L -1 1 wiili probabil-

it.y 7.s(/)"(,) — P,(/.)), where 7« is the sensitivity to the i)(、rfonmmc。gap. 

W(、call the product 7 二 7„7., as the learning raU). Under tliis learning 

iiiodd, peers will adapt to the ciuTent best strategy, and tlic probabil-

ity of adaptation to this current winning strategy is proportKriial to the 

performance gap of the expected gain. 

Note that there are many ways to realize this learning abstraction, and 

one approach is the following: a P2P system can distril川t'ivdy oloct a 

l(、ad()r and all peers report their current performance gain t,o this loader. 

The loader is responsible for computing the average gain for all stra.tcgies. 

Peers can query this leader about the current best st.rategy si,(L). Note 

lliat wlien 7 is sufficiently small, the leader will not be ovorwliclined by 
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the query workload. 

Let us illustrate how the current-best learning model can affcct, the 

system dynamics of a given incentive policy. One can (express x ( t ) = 

.7：! (/.), •. . ,；!；„ ⑴],where .t,:(/,) is the fraction of peons using st,rat,。gy .s, at 

tiiim、/,, using tho following difference equations: 

Ml + ] ) = — jx,(t) {hit) — _ , i 十 k, 

and for Sk{t), the strategy that has the highest expected gain, we have 

n 

Xh{t + 1) 二 x,{t) + 7 而 ⑴ ( 戶 “ ⑴ — _ • 

We can transform the above difference equations to a continuous modeP as: 

ir/h 

= 7 

dxi{t) 

(it 

/ _ 

lUt)-Y.x,{t)P,(t) 二7 (/^⑴一/-)(,)) , (2.6) 

\ J 

出 = - l x , { t ) {I\{t)-m)). i' h. (2.7) 

In sviiiiinary, given an incentive policy, we first need to dcienninc all 

entries in the corresponding generosity matrix G — {//,;(j)}, tlicn we 

can evaluate the dynamics of the system using the above clifl'cn-oiitial 

equations. 

2.2.2 Opportunist ic Learning Mode l ( O L M ) 

The current-best learning abstraction requires each poor to update its 

typo and its gain to a data, collecting node (or loader), and this node 

needs to compute the average gain for all peers in a P2P network. There-

fore, the computational requirement may be high and the data, collecting 

node needs to be resourceful or else one will face the scalability problem. 

Here, wo propose another learning abstraction which we called the ''op-

portunistic learning modelP. This learning abstraction can be described 

as Col lows: at, the end of a, time slot, each p(x)i’ randomly cl looses another 

poor ill t,h(、network as its teacher with probability 7,,. 1「Uu) t,(、a.di(〕r is 

of a. difi.(、r()iit, t,yi)() and has a bct.t.or i)orfornianco gain, llio pw、r adapts to 

tlic teacher's stratc^gy with sensitivity to their i)(、iT(>niia.uc() gap. One 

iiitcrost ing note is t hai this learning abstraction docs not roquirn (V(K]uent 

Înibriiially, the transformation can lie carricd out by assuming that. (1) Uie poor iGcuiost pioccss 
is a Poissoti process with rate equal to 1, (2) the number of adapting events is a. I'oisKoii ijrocoss with 
rate 7,,. (3) In each event, the sensitivity to performance gap is 7.,, and we have 7 = 7,,7.s.. 
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access to shared global history and can be realized in a fully distributed 

fashion. 

r.et us illustrate how this learning abstraction can affccl. the system 

(ly 11 an lies of a given incentive policy. Let fi[pi(J:)) h(、the probability 

density function (pdf) of random variable p.“ Pij{t) be tlio rate that, type 

/ p(3()i.s will switch to ty[)c j poors at time t, then: 

Pr[type i peer switches to type j when j is a. teachor| — 

f ls{Pj{t) - Mt)) f.版[t)) fj[Pj(L))&ML)dML). 
JfH{t)<pjit) 

Since the fraction of type i peers is Xi(t), the teacher will ho ()「t,ype j 

with probability Xj{t) and adapting rate is thus Iho rate l.luit type i 
peers switches to type j peers is: 

fhi(t) = lxS)T,i{t) X / fe⑷-⑴)•W伤⑴)力fe ⑷ ) ( 坂 ⑴ ⑴ . 
Jpiit)<pj{t) 

Similarly, the rate that type j peers switches to type i: 

Pn⑴ 二 7.T糾:r,(Ox f (Mt) - PAt))MML))MMi'))他.⑴(kMO. 
JvAtXMi) 

'rhore('or(\ thv. total rate of population flow from t,yp() i to t.;vp(、j is f、:/(/')， 

where: 

S.J it) = fH,{t) 一 = lx^it)x,{t)E[pj(t) 一 /;,(/,)] 

- ⑴ : • ⑴ — 戶 i ⑴]. 

「rhe total ill-flow to type j , which we denote as Xj, is: 

n. (2.8) 

In summary, given an incentive policy V、we first iiood l.o derive all 

entries in the corresponding generosity matrix G, then wo can uso Kqna-

tions (2.6)-(2.8) to study the system dynamics and detorinine the ro-

bustness condition. In the following section, we present several incentive 

policies to illustrate this analytical framework. 

2.3 Incentive Policies for P2P Networks 

L(、t, us now i)rosoiit sovoral incentive protocols and iUust.ra.U、how t,() use 

ilio niathcinatical framework to analyzo thoir ()v()lut,i()ii aiul (l(、t,(、niiiiK) 

tilidr rohiistnoss conditions and porfonnance rm、a.sim、s. K()r siniplic.it.y 

of illustration, we classify peers in a P21) network according t.o tlioir 

behavior iipoii receiving a. request [4]. These inchulo: 
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1. Cooperator: a. peer has an altruistic behavior and it, a.lwa.ys .serve 

other peers independent of whether other poors provide scrvice or 

not. 

2. Dcfector: a. peer has a selfish behavior and it always rĉ fiiso to serve 

any request from other peers in the network. 

3. Reciprocator: a peer has a reciprocative behavior when it serves 

the requester according to the requester's service strategy, o.g., if 

the requester is a cooperator (defector), this peer will SCTV(、(deny) 

the request. The rationale of this type of behavior is t.o make a. fair 

exchange of scrvice. 

One interesting question is how to design a proper incentive policy so 

as to keep the P2P networks as scalable and robust as possible. Let us 

proceed to illustrate using our methodology. 

2,3.1 Mir ror Incentive Policy Vmirror 

Tlie first, policy wo consider is called the mirror vriccniivc'. policy 

For this policy, when a. rc^ciprocative poor rocoiv(̂ s a r(、qii(、st, I'or s(、rvic(.、’ 

this peer infers (e.g., similar to the tit-for-tac operation in B'V) the vv-

q 11 ester's ropiitation, and it will only provide service wit h ilio same pToh-
ability as this requestor serves other peers in the system. For ox am pie, 

suppose peer k received 100 requests from other peers and servcci 60 of 

them, then when peer k requests a reciprocator for service, peer k will 

only get the service with probability of 0.6. Hence, if the reciiicstor is a 

cooperator (defector or reciprocator), the receiving peer will act exactly 

like a cooperator (defector or reciprocator) to the requestor. This is the 

reason why we coin it the mirror incentive strategy. 

Under the Vmirror policy, there are three pure straiogi(\s: (1) pure 

cooperation, or Si, (2) mirror reciprocation, or 6'2, and (3) ])iire do foci ion, 

or 53. To evaluate the performance and robustness of V_.「or、、v(、iiood 

to derive all entries in the generosity matrix G , or which is the 

probability that a peer of type i will serve a peer ol. type j. Based on 

ihc definition of the mirror policy, it is easy to see that gi (j) 1 and 

:: 0 for j e {1, 2, 3}, g2⑴ 二 1 and "2(3) = 0. The reinaiiiing issue 

is tlic expression of .仍(2j，and it can be derived as follows: 

(•72⑵ 二 Proh)[a reciprocator will grant a n、qii(、st, 

= ^ ^ Prol)[tho requester is of t,y丨)(、/'] x 

Pr()b[graiiting the request|ty])(̂  / rociuosis 

= + X2[t)g2{2) + ⑴"2(3) 

=Xi[ t )^-X2{t )g2{2) . 
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Solving tho ahovo equation, w() have 

.(72(2)= 
xi(t) xi(t) 

X2⑴ X i ⑷ + .T3⑷ 
(2.9) 

In other words, the probability for a reciprocator to servo another recip-

rocator is close to 1 when the fraction of defector is closc t,o zero, but, a,s 

the probability will approach zero when the fraction of dclbctor increases. 

2.3.2 Proportional Incentive Policy V prop 

W() consider another incentive policy which we callod the proportional 

incentive policy Vprop- This incentive policy was proposed in |4] in which 

results were obtained via simulation only. Reciprocative strategy S2 in 

Vprop is defined as follows: peers using S2 serve the requester (sa.y type j) 
with the probability equal to the requester's contribution/consumption 

ratio, or E[Sj]/E[R.j]. When the ratio is larger than one, the probability 

to s(}rvo the requester is equal to one. By definition, if ihv ro(]\ioHt(M- is a 

cooporator, its ral.io can be larger than one. Thus, w(、hav(、(j2{l) —— 1. If 

the request,er is a defoctor, its ratio is zero, honco .(/2⑶-• (). Tli(、rciiiaiii-

ing issue is the exy)ression for .<72(2), which can bo dt、i’iv(ul as follows: 

对 ⑴ 1 - x,{t)g,{2) + x-2{t)g2(2)+x,(t)g,{2) 

二 ：EiM + ;r2⑴.92(2), 

E[S2{t)] = x,{t)g2(l) + X2{t)g2(2) + x,(/;)ry2(3) 

Since 即? ‘2⑴]=⑴]，we have 仍⑵=1 , or a. reciprocator will 

always serve another reciprocator. The other values of arc ()\{j) -二 1 

and 仍(j) = Ofor je{l’2，3}. , • ‘ 

Comparing to the mirror strategy, the proportional strategy takes into 

account the services consumed by requesters and reciprocatorvS can enjoy 

more service from other reciprocators. Also, the reciprocator will serve 

another reciprocator independent on the state of the system. 

2.3.3 Linear Incentive Policy Class Cup 

The proportional incentive policy belongs to a '‘class” of iiicciil.ivo policies 

which we called the linear incentive policy class, C/,//). Any policy in Cup 

has a constant generosity matrix G 二 [G^ where (：丨：丨-.fy,:(j). In lioro, 

constant implies that gi(j) is independent of any ,x,；(/.). It is (、asy to soc 

that the perfomiaiicc of ca.ch strategy is a, linear finictioii of :/;.,:(/,) for a 

linear policy. 

To implement, a policy in Cup, one can first design a classifier Cor re-

ciprocative peers to infer the types of requesters. For example, suppose 
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there are three strategies available: cooperation, reciprocation and defec-

tion. We can design the following classifier: it visits the shared history, 

and identifies those peers who never contribute as defectors. Those who 

serve the defectors are cooperators, and the rest are reciprocators. With 

such a classifier, a linear strategy can serve cooperators, rcciprocat'ors 

and defectors with diflerent probabilities Pc’ Pr’ Pd as spodfind l)y the 

protocol designer. The generosity matrix G is: 

G 二 Pc Pr Pd 

0 0 0 
(2.10) 

It is easy to see that the proportional incentive policy belongs to the 

linear incentive policy class {Vprop ^ Cup ) bccaiiso Pc = 1, Pr ~ 1 and 

Pft — 0 while the mirror incentive policy is not {Vmirror i ^ i jp) iK^cause 

its .(/2(2) depends on Xi{t) and .T3(/.). 

2.4 Performance and Robustness of Incentive Poli-

cies 

111 this section, we analyze and compare the performance and robustness 

of the three incentive policies described in the previous section. Iiifor-

inally, an incentive protocol of a P2P system is robust when the system 

will finally stay at a high contribution level (e.g., most, peers ar() co-

operators or reciprocators) and the P2P network is iminuno l,o system 

perturbation such as peer arrivals or departures. 

2.4.1 Robustness Analysis of Mirror Incentive Policy using 

the current-best learning method 

We first consider the mirror incentive policy Vmirror UKing the current-

host. loariiing mociel (CBLM). Given the derivation of ".'.(j) of Vmirror in 

Scction 2.3, we substitute them into Eq. (2.4) and (2.5) to obtain I)八t), 

tlio oxi)octcd gain of using strategy s,； for i — {1,2, 3}, as well as 户⑴’ 

the expoctocl gain of the system. These performance nu、a,sun、s a rev. 

P i ( 0 二 咖⑴+:r2⑴）— 

hit) = (c^-1)-

m) = axi{t), 

P(t) = ( a — 1). 

xijt) 

-X2{ty 

xi(t) 

一 X2(t) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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Lot us consider their respective differences 

Ps{t) - A W : 

1 - ax2{t), 

Xi(t){l - ax2(t)) 

户 2⑴一户 1⑴ 

l-X2{t) ’ 
{1 - ax2(t))(l - x,{t) - X2(t)) 

l-X2{t) 

Based on the above expressions, wc have the following important obser-

vations: 

• Case A: when X2{t) > l / a , we have Pi(t) > 1\(1) > /)3(/,)’ or 

cooperators always enjoy the best performance. Therefore defectors 

and rociprocative peers will continue to adapt their strategies to the 

cooperative strategy. Therefore, X2[i) and will cku r̂oaso until 

X2{t) = I /q . 

Case B: when .T2(/;) = 1/a, the performance of tlioso tliroo strate-

gioH arc the same and hence, there will not be any strategy ad apt a.-

t.iou ill the systoin. 

Case C: when ;r‘2(/') < 1/a, we have 戶3(/;) > > In 

other words, defectors have the best performance and so cx)oporat,ors 

and reciprocative peers will adapt their strategics to tlic defective 

strategy. Since X2[t) < l/o; will continue to hold, the population 

of cooperators and rcciprocative peers will keep (iocrcasing vintil 

defectors dominate the system (e.g., most peers adapt, the ddecUve 

strategy). At this time, the P2P network collapses siiic,o no one 

wants to contribute service to others. 

When a P2P system uses the Vmirror incentive protocol midcr CBLM, 

the Kystcm has two equilibria: B and C respectively. At B, the fraction 

of rociprocative peers X2{t) will stay at the level l / a . At C, the P2P 

network will be dominated by defectors. However, i)oiiit, /i is not a, 

stable equilibrium. Suppose the system is at B with :r:2(0 := 1 /» , and 

.7:2(0 changos a little bit (e.g., due to arrival or (iopart.iire of i)(、(、i,s ami 

those i)ccrs arc of defoct.ivc behavior). If the c'lmngo is posit i v(、，t.li(、syst em 

will go to case A and then drop back to B. Bui if tho (.lia.iig(、is lu^gaiivo, 

the P2P network will go to C and never return to B. Since wo cannot 

control the arrival or departure of peers, the system will cvontually go 

to case C and contribution will cease to exist. In summary, Uk、Vmirror 

incentive policy is not robust and eventually all peers will clioosc the 

defective strategy. 



C U A P T F A l 2. MODEL DESCRIPTION 12 

2.4.2 Robustness Analysis of Mirror Incentive Policy using the 

opportunist ic learning method 

Now, let. us consider using Vmirror under the opportunistic leaTiiiiig model 

(OLM). We have: 

m - m = 工 ， 1 二 : f ) )， 

h i t ) - p{t) 二 0， 

(1 - ax2{t))(l - x,(L) - x.2iL)) 
m) — m 

-工-2(0 

Based on Eq. (2.8), the population of the reciprocative poors will not 

change. The final state of the system depends on the initial redprocaUve 

population, which we classify into the following cases: 

• Case A: when X2 > l/a'，we have 戶3(/,) < /)(/;) < /)i ⑴ . F r o m 

Eq. (2.8), we see that defectors will keep decreasing until they 

boconie extinct, and the P2P system will only have cooperative and 

reciprocative peers. 

• Case B: when X2 = l / a , we have A ⑴ = P ( t ) = /)i(/'). Tlie system 

is ill an unstable equilibrium and will go to either ca,s(、A or ca,s() G if 

there is any increase or decrease in x-2{t) due t.o arrival or departure 

of lociprocativc peers. 

• Case C: when X2 < ]/q'，we have 戶3⑴ > /)(/.) > "i ⑴.Cooioera.-

t.ors will bccoiiic extinct and the system will eventually colUipse. 

Remark : Based on the above analysis, one can concludc tluxt the incen-

tive policy Vmirror IS not lobust Under the current-best learning 111 odd or 

the opportunistic learning model. This result implies that Vmirror not 

a proper incentive protocol for P2P networks. 

2.4.3 Robustness Analysis of Proport ional Incentive Policy 

Using the current-best learning method 

I'or the policy 7^叩，we have derived gi(j) in Section 2.3. The exj)ccted 

gain of the three strategies and the expected gain of the sysiein are: 

Pi{t) = aOr!⑴ + •仍⑴）—1’ (2.15) 

= (a —1)0^1(0 + 0:2(0), (2.16) 

户3(0 = ax,(t), (2.17) 

P(/：) = (a - 1)(.ti(0 + .XI(0.T2(0 -I-4(0)- (2.18) 



= > 0 , 

=1 — ax2{t). 

One iii”)ort,ant note is that under the proportional incentive policy, re-

ciprocal ivo bcihavior is always better than coopcirativo l)(、liavior, and w() 

haw Ui(、following ca.s()s: 

• Case A: when :C2(/') > ；^冗 i (0 , we have l\(t) > l]\{l). Tliord'orc, 

Uk、 fraction of rociprocative peers X2{t) will ka、p increasing until 

th(、y dominate in the P2P system. In this situation, the oxpccted 

system gain P{t) reaches the maximum at a — 1 and tho sysieiii 

stabilizes at this point. 

• Case B: when X2{t) = we have 戶3⑴=户2(0 > 户i⑴• 

Therefore, only cooperative peers will continue to adapt, to either 

strategy 52 or ,93. In this case, .Xi (t) will decrease but.工之⑴ will not. 

Therefore, the system will eventually go back to case A. 

• Case C: when X2{t) < -^X] (/.), defective behavior lias the highest 

perfonnance so peers will adapt to this strategy, llowevor, since S2 

lias a. higher performance than Si, X\{t) will decrease at a faster rate 

than X2(t) until the system reaches X2{t) = -^X i l t ) and the system 

will go to case B. 

In summary, the P2P system is robust and the system will eventually 

operate at case A, where the fraction of reciprocativc i)eers doniinaics the 

sysUmi. Moreover, the system achieves the optimal (n'(”.a.ll i)(、i.l.()nnanc(、 

at. this point. It is important for iis to point out tliat. this inatluMiialical 

r(、sult, agrees with the ol)yervat,ion made in [4j, which was obt.aiiuHl only 

via, siiinilation. 

2.4.4 Robustness Analysis of Proport ional Incentive Policy 

Using the opportunist ic learning method 

Consider the policy Vprop under the opportunistic leaniiiig model (OLM). 

From Eq.(2.15)-(2.18), we have: 

m) - P{t) 二 xi{t)-(a-l)x2{t)(l~x2{t)). 

_ - P[t) 二 {a - l)x2(t)xs{t) > 0, 
Pi{t)-P{t) 二 （(a —⑴—：1)：1;3(/:). 

Since P'zit) — I)(J') > 0’ then based on Eq. (2.8), the mnriber of recip-

rocativc peers will keep increasing until defectors become extinct, while 

CDoperators will start increasing after X2{t) becomes larger than 1/(q； —1). 
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The performance difference of these strategies are: 
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=a{xi{t) + PcX2{t)) — 1, 

二 a(xi(t) + PdX2(t)), 

= ( a - l)(X:(l) + PcXl(t)x2(t) + Pr-4(0)-

To analyze the robustness under the current-best learning model, the 

porfonriance gaps between any two strategies are: 

户3 ⑴ 一 7)2 ⑴ ⑴ +PdX3 ⑴—(c^Pr-Pr-CyPd)x2(l')， 

户2⑴ 一 A ⑴ — P c 工 1 ⑴—(Pr-C^Pr-\-aPc)^2{t) —PdXsit), 

Comparing with the proportional strategy V t , ( ) niako this policy 

robust,, one sufficient condition is: 

Vd = 0 (2.19) 

Pr > Pc (2.20) 

Following the performance gap analysis for the proportioiml incentive 

policy, it is easy to check that the system is robust for bolli the current-

best and opportunistic learning models when Eq. (2.19) and (2.20) 

are satisfied. 

It is important for us to point out that by Eq. (2.20), wlicn Pa is small, 

the system is more likely to be robust. It may seem counior-iniviiiive 

since rcciprocative peers are punishing the altruistic cooperators. The 
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Finally, the system will achieve the optimal overall performance since the 

P2P system only has cooperators and reciprocators. 

Remark : Based on the above analysis, we show that the proportional 

st.rategy Vprop is robust under both the currcnt-best learning and ilie 

opportunistic learning methods and this incentive pi.()k)c.ol can encourage 

peers to contribute. 

2.4.5 Robustness Analysis for Incentive Protocol in the Linear 

Incentive Class 

Tlie idea of reciprocative strategy is to infer the type of requester from 

the shared history and provide differentiated service. Although it is fea-

siblê  ill thoory, it may bo difficult to implement in real systems due to 

incoinpl(U.c hist.ory and delay in the rey^utation updates Mow will this 

inaccuracy aifcct, the P2F iid'work and what, is Uk、（l。si圳 nia.rp,in".̂  To 

answer (heso (juostions, let us now analyze the robust ness of any incentive 

policy in the generalized linear incentive class C/j/>. 

For any incentive policy in Cup, we have .92(1) == p。"2(2) — Pr, 

•(J.2⑶=pd. The performance of these three strategies and the overall 

system are: 

A
 -
c
r

 -
C
T

 -
p
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explanation is that the blind altruism of cooperator helps dofcctors to 

survive thus damages the system. To protect rocipi.ocativo poers, we 

iKxxl to control the degree of altruism in the network. In later section, 

we also quantify the impact of altruism in a P2P system. 

Let lis now restrict our attention to linear strategies with p.,., Pc > Pd > 

0. The robustness of these policies depends on the initial population cc(0), 

and this is especially true for the reciprocators. Let \ia define 

_ ^ 
Cupper (a - l)(pr - Pd) + Pc - Pd 

^Hower 
Pd 

l){pr-pd) 

(2/21) 

(2.22) 

It is easy to show that for both learning methods, when ,T2(0) > c卿cr， 

tho 1)21) system will be robust, and when X2(0) < c^er’ the P2P system 

will collapse under the current-best learning method. As for other initial 

conditions, the robustness depends on the learning iiiocliaiiisiii and the 

(Tact ion of other strategics. 

To illustrate the robustness region of the linear incentive policy, let 

us consider the ca.se that, Pc — 0.9, Pr = 1, Pd — 0.3 and t.lio r()l)usl,iiess 

region is depicted iii Figure 2.1. The horizontal axis is the fracUmi of 

CO op orators while tlic vertical a.xis is the fraction of reciprocators. Since 

their sum is less than or equal to one, the whole state space is l)d()w the 

diagonal line. There is a boundary curve shown for eacli learning model 

and if the initial state is above the curve, the system will 1)0 robust 

for the corresponding learning model. We can observe that, the robust 

region of the opportunistic learning method is strictly larger than that 

of ilio currcnt-best learning method, and the boundary curves intersect 

the vertical axis at xo. = c,卿pr = 0.0714. 

0.6 0.8 
Fraction of Cooperators 

Figure 2.1: Robust regions for the two learning methods. 

It is interesting to note that the current-best boiuKlary curve rises 

while opportunistic boundary curve drops as the initial fraction of coop-
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orators increases. This implies that cooperators help in koepiiig the P2P 

system robust under the opportunistic learning but harm tlic 1)21) system 

under tlic current-best learning model. This can be explainod a.s follows. 

Under the current-best learning, when reciprocators are overwliclniod by 

defectors, cooperators merely help defectors to increase, which makes the 

P2P system less robust. However, in the opportunistic learning, coop-

erators compensate the loss for reciprocators and help ihcni to increase, 

which makes the system more robust. 

• End of. chapter. 
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2.5 Connection with Evolutionary Game Theory 

It is important for us to show that there is a. connection botwcoii our 

model and the evolutionary game theory. As a result, ono ca.n use a, 

game-theoretic technique to identify important characteristics for system 

robustness. 

Evolutionary game theory considers a population of individuals with 

pure strategy set S. A population profile is a vector cc, where Xi is the 

probability that a peer in the population is using strategy si E S. The 

pa.yofl' of strategy a in a population with profile x is denoted as 7r(a, x). 

That is, the whole population acts as the second player. The evolution 

of tlio population profile is the key concern of evolutionary gaino theory. 

Ono c(、】it,ml c()nc0])t in ovohitioiiary game tlioory is Uu、tlu、l.'�v()l.ul,wnary 
Stable Strategy (I^jSS), which is the strategy thai pr()(iiic。s an (H|iiilil)i ium 

point, in the evolution. Wc have the following dofinil.ioii. 

Definit ion 1 八 mixed strategy cr* is an KSS if there exist an f > 0 such 

that for every 0 < e < e and every mixed strategy a /- a*, inequality 

7r(f7*, Xe) > 7r(a, x^) holds. Here, x^ is the post-entry population profile 

with Xf = (1 — e)(j* + ecr, which depicts population profile after- a small 

mutation from the strategy a* to cr. 

One simple and important class of evolutionary game is the pairwise 

contest population game. In such a game, the payoff to a, focal individual 

using a in a pop川lation with profile x is 

7r(a,£c) = (2.23) 

se6' s'es 

where p{s) and x(s') are the probability that the focal player and the 

selected player from the population using strategy s and respectively. 

The associated two-player game for this population game is given by the 

following payofT function: 

7ri(.s,.s') - 7r2(s',.s) - 7r'(.s,.s'). (2.24) 

Remark : In a pairwiso cont,est population game, for ono pi ay or. the 

川 lat icm with profile x is iiidisting\iisha,blo fro in a siiigl(、i)lay(、r tliat 

uses a. mixed strategy a with a(f) 二 With this in mind, w() use a 

strategy to denote a population profile and vice versa. To chock and find 

ESSs in a pairwise contest population game, we have: 

Theorem 1 a* is a ESS in a pairwise contest population game if and only 

if for any a ^ a*, either one of the following two conditions holds: 

1 > n'ia, a*), 

2 7r'((7*,cr*) = 7r'(cr,a*) and 7r'(a*,a) > 7r'(a,a). 
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7r'(-, •) is the payoff function of the associated two-pi ay game. 

Proof: please refer to [17]. I 

The implication of this theorem is that all ESSs of a. pairwiso contest 

l)opnlal ion game arc Nash equilibria and can be found from the strategic 

fbrni of the associated two-player game. 

Note that payoff function alone does not tell us how the population 

evolves. Payoff has to be interpreted to define a, dynamic model of evolu-

tion. In replica dynamics [17], the payoff is interpreted as the imniber of 

offsprings as the result of certain strategy. Let 7f(x) be the average payofT, 

tlien tlie system can be describe by a system of differential (X]iiat,ions: 

Xi = (7r(si, x) — W(x))xi Si e. S. (2.25) 

Now we give the definition of an important stability coiicc])t in dynamic 

systems and its connection with ESS. 

Definit ion 2 An asymptotically stable fixed point (ASF) of a dynamic sys-

toiii is a fixed point that any small deviation from it is oliininated by the 

(lynainics as /： —> oo. 

Theorem 2 P()r pair wise contest population games, t.lie 〕SS of the asso-

ciatod two-player game is an asymptotically stable fixed poiiU, (ASK) of 

Eq. (2.25). ’ 

Proof: please refer to [17]. I 
In short., Theorem 2 justifies ESS as the evolutionary end point.. 

Let lis apply the game-theoretic results to onr incentive niodol. To 

find the underlying game, we derive the payoff function first. By Eq 

(2.1)-(2.4), the payoff of strategy Si against the population profile x{t) 二 

Xi ( , ) ’ . . • ’ Xn{t)] at time t is: 
n n 

n 

= — gi{j))xj{t), 'A = 1,. . . (2.26) 

.7=1 

Note that the payoff 7r(.s,；, x) and generosity gj{i) are actually functions 

of /,. H(Te wc ignore argument t for readability. Comparing Eq. (2.26) 

with (2.23), wc can constnict the associated t,wo pi ay or gaim、wil.h 

pa.v()n. 

7ri(.s-,, .s,) = 7r2(.s” ,s、) = agj(i) — f/,(j). (2.27) 

The physical meaning of the above payoff expression is as follows: it is 

the J)oil its gained by using strategy Si after exchanging a pair of sor vices 

with a peer using strategy Sj. 
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111 summary, one can map our mathematical framework into a pairwise 

contest game if the generosity matrix G is constant, ami the associated 

two-player game is just an exchange of service. Both our model and the 

pairwise contest game have the field payoff described by Eq. (2.26), so 

ilioir dynamical properties arc the same. Formally, wc liavc: 

Theorem 3 A linear incentive policy can be mapped to a hvo-playor s,yni-

niotric game, and the ESS of this game is an ASF of its opportunistic 

kianiing dynamics described by Eq. (2.8). If the ESS is a pur(、strategy 

.s'p G tS, it is also an ASF of its cvirrent-bcst learning dynamics (loscril)od 

by Kq. (2.())-(2.7). 

Proof: The mapping is given by Eq. (2.27). Move accuratoly, tlio payoff 

matrix of first player is aG — G?, and the payoff matrix of tlio sccond 

player is aG^^ — G. 

To prove the first part of the theorem, by Theorem 2，the HSS of the 

pairwise contest is an ASF of Eq. (2.25). Note that 7r(.s',；, x) — ⑴ 

and n{x) = P(t), therefore Eq. (2.25) is the same as Eq. (2.8) up to a 

constant factor 入 and hence they have the same set of ASF. So the ESS 

is also an ASF of Eq. (2.8). 

For the second part, consider a small deviation from the pure ŝ  popu-

lation. I3y Theorem 1, one can show that Sg's payoff 7r(.s'e, x^) > 7v{a, x^) 

for any other strategies a. Since 7r(si, x) = Pi(t), we have Pe(t') > 

for any i + e. So ŝ . is ilie winner, and by Eq. (2.6)-(2.7). will increase, 

which eliminates the deviation. Therefore Sp is an ASF. I 

The above tliooreni provides a simple game-tli(X)rct,ical inoihod to an-

alyze the robustness of our incentive model. For example, consider the 

linear iiicontive policy in section 2.3 with p^ — 0.9, p,. — 1, ]),i = 0.3. 

Wlicn a = 7, the associated two-player game has payoff table as follows: 

S\ S2 S3 

sl 6,6 5.3,6.1 -1,7 

6.1,5.3 6,6 -0.3,2.1 

7,-1 2.1,-0.3 0,0 

r i 

lo 

by 

find ESSs, we find Nash equilibria first. Noticing that .s'l is dominated 

5-2，we can reduce the payoff table to 

S2 S3 

S2 6,6 -0.3,2.1 

S3 2.1,-0.3 0,0 

This game has tlircc Nash equilibria: .s'2 and .ŝ  and a mixed strategy: 

(ciower̂  1 — ('lower)- Horo C/。川(’厂 二 0.0714 (soG Soctioii 2.3). Using Th(、or()iii 

1, w(’ can chock that, ihv first, t,w() pure Nash (、qiiilil)ria ai.(、l̂ SSs and llie 
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mixed Nash equilibria will collapse under small disturbance. By Theorem 

3, for both learning models, the system has two stable states: one that 

all peers use the linear strategy and another that all peers decide to have 

the defective behavior. Which ESS the system will converge to depends 

on the initial state cc(0). When there is no cooperator, the players in the 

associated game will converge to S2 if X2 > Qotoer and to if X2 < ciower • 

This result agrees with our analysis in Section 2.3 and is verified by our 

experiments in Section 3. 

• End of chapter. 



Chapter 3 

Performance Evaluation 

We (ievelop a simulator and carry out simulations to co川pare and val-

idates our inaihcinatical framework. We present the pcrfonnancc ovalu-

ation results ill this section to show the dynamics and pcn-roniuuice of 

various iiicentivo protocols. Unless wo .st.ato othorwis(\ Ui(、paTaiviotcrs 

\v(、11 so arc: shown in Table 3.1. Tlie aiimilatioiis arc carriocl out via dis-

N # of peers 500 

a gain per service provides 7 

P cost per service takes 1 

7 learning rate 0. 004 

Table 3.1: Parameters 

Crete time slots. In each time slot, peer randomly solocts aiiothor p(、(、r for 

service. The selected peer decides whether to grant a sorvicc or not, ac-

cording to a given incentive strategy (i.e., Vmirror, Vprop, or an incentive 

policy ill C[jp). When all peers finish making their decisions, information 

is u})dated, then each peer learns to adapt to a new strategy according 

1,0 a given probability and learning methods. 

3. Performance and Robustness of the Mirror In-

centive Policy {Vmirror)' 

The population dynamics of Vmirror under different, initially coiulilions 

cf;(0) and (lifi'orent learning models are depleted in Figure^ 3.1 and 3.2. The 

solid liiK\s arc rosiilts from the simulation and t.hc dotted linos aro results 

of our niaXhoinatical framework. Again, Xi(t) represents Iho fracUon of 

l)eors using strategy Si at time t, with si,s.2 and 6*3 bdiig cooperative, 

redprocative and defective strategy respectively. 

Lot lis consider the dynamics under the current-best learning method. 

Figure 3.1 depicts the result. In the left graph, the {Taction of recipro-

cators at t 二（）is 0:2(0) < 1/a. One can observe that the fraction oi 
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Defectors 

Reciprocators 
i 

500 
t ime slot 

Defectors 

Cooperators 

Recipj)cators 

bOO 
t ime slot 

•"igurc 3.1: Evolution of Vimwor with current-best learning, 

.oft: x(()) = (0.4,0.1,0.5)'^'. Right: x(0) = (0.3,0.2,0.5)'^'. 
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coopcraiors, xi{t), gradually drops to zero and the syst.cin collapses. In 

tlui riglit, graph, when .X2(0) > 1/n；, the systoin scorns t.o he robust at 

first; since t.hcrc is a. significant increase of tlie fraction of cooporatoi-. At 

t = 500-, w(、have x{t) - (0.51,0.16,0.33)'^'. H()w()v(、r’ a.t, L 500, wo 

iiitrodiico a. small disturbance where new coopoiaiors arrive and some 

reciprocators leave the system, so x(500) = (Q.54, 0.13,0.33)'^. A1 though 

there are more cooperative peers, this small disturbance caiisos the Crac-

tion of reciprocative peers to drop below the threshold 1 /a', causing the 

system to collapse. As we observe at t 二 2000, there is a significant 

fraction of defector in the system. 

The dynamics of under the opportunistic learning metliod is depicted 

ill Figure 3.2. The initial conditions is similar to thos(、in Fig. 3.1. 

The left graph shows the system collapses duo to small .T2(0), in the 

right graph, the system survives the disturbance and is robust, b(3causc 

the non-clecrcasiiig X2(t) leaves a generous margin for disturbance. The 

perfonnance gains at t 二 2()()0 for Figure 3.1 and 3.2 arc: 

Po Pi h P 

(0.4,0.1,0.5)^ -0.37 0.04 0.04 0.04 

(0.3，0.2’ 0.5 广 0.42 0.81 0.90 0.81 

(0.4,0.1,0.5)^ 0.08 0.24 0.28 0.24 

(0.3,0.2,0.5)'^ 4.81 4.78 4.59 •1.78 

111 coiK'hisioiK w() validate our matheinaiical model and confirm tliat 

t.h(、Vjuirror poHcy is Ti.of, robvist under the ciirrent-bcst kuiniiiig may 

survive when .T2(0) is above a threshold. 
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Figure 3.2: Evolution of Vmirror with opportunistic learning. 

Left: x(0) = (0.4,0.1,0.5)^. Right: £c(0) = (0.3,0.2,0.5)^. 

3.2 Performance and Robustness of the Proportional 

Incentive Policy (Vprop)' 

The population dynamics of Vprop under different initially condit.ioiis :c(0) 

and different learning models are shown in Figure 3.3 arid 3.4. Tlu) siinn-

1 at ion settings are the same as that Exp. 1. The d3niainic of the cur rent-

best learning is depicted in Figure 3.3. In the left graph, ilio initial 

condition is x(0) = (0.4, 0.1, 0.5)'^. We can see that after about 500 time 

slots, peers abandon the defective strategy and the P2P network roaches a 

robust state. In the right graph, initially we have cc(()) = (0.3, 0.2’ 0.5)7 , 

so the 1)2P network begins with a large fraction of rociprocat.ors. At 

/; ：二 500-, we have x{i) = (0.24’ 0.75’ 0.0])了’. At t - 500. wo int.rodiicc 

the sail 10 (listurbance as before and we have ic(50()) = (0.27, 0.72, O.Oiy . 

W(、can s(、(、(.hat. l.lio P2P network is robust after this dist urbance. In P'ig-

\uv. 3.1, w() repeat, the same oxporiments imdcr the oppod uiiist.ic Ic^aniihg 

and similar conclusion can be made. The perfonnaiico gains at, Uu、（nui 

of each 

工 ( 0 ) Po A A P 

(0.4,0.1,0.5)^ 5.97 5.97 - 5.97 

(0.3,0.2’ 0.5 广 5.96 5.97 - 5.97 

(0.4,0.1,0.5)'^ 5.97 5.99 - 5.98 

(0.3’ 0.2’ 0.5 广 5.98 5.98 - 5.98 

111 suniiiiary, our mathematical framework is very accurate and more 

iiiiportantly, wc show that the proportional incentive policy Vprop is more 

robust than the mirror incentive policy Vmirror. 
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Figure 3.1: Evolution of Vprop with opportunistic learning. 
Left: cc(()) = (0.4,0.1’0.5广.Right: cc(0) = (0.3,0.2,0.5)^. 

3.3 Performance and Robustness of incentive policy 

in the Linear Incentive Class (Cl//)): 

(or Iho linear iiicontivo policy, we set 二（).9, Pr -- ].() and p(i - 0.3. 

Kiguix、3.5-3.6 show ilie population dynamics of this linear policy under 

different initial conditions and learning models. 

Figure 3.5 shows the dynamics under the current-best learning. In 

the left graph, the initial population profile is cc(0) = (0.7, 0.13, 0.17), 

which is in the robust region of current-best learning. Wo can see that 

reciprocators finally dominates the system. However, in the right graph, 

when the initial population profile cc(0) 二（0.7, 0.07’ 0.23)'厂 is not in the 

ro])ust region of ciuTent-best learning, the system collapsos. Kigmo 3.6 

shows the result under the opportunistic learning. The initial condition 

Mgure 3.3: Evolution of Vpr,>p with currcut-best, learning. 

Loll: 3；(0) = (().4,0.1,0.5)'''. Right: x(0) = (0.3,0.2,0.5)'^'. 
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Figure 3.5: Evolution of Vun with current-best learning. 

Left: x(0) = (0.7,0.13,0.17)了. Right: x(0) = (0.7,0.07,0.23)'^ 

3.4 The Effect of Non-adaptive Peers: 

111 t.liis (̂ xixM-inieiit. we consider tlio impact to tho 1)21) iiot.works wluni a 

"fix(xl i)ortioii" of peers do not adapt. The reason for carrying out Uiis 

cxpcHinient is to understand the impact of maintaining some p(M-cciitage 

of cooperators or reciprocators and to see whether the system can still 

be robust. As before, we denote the fraction of type i peers at, time slot 

t by Xi{t). Since the service model is independent with learning process, 
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ill the left graph is the same as that of the right graph of 3.5. However, 

the system becomes robust under the opportunistic learning. Note Umt 

二（0.7, ().07, 0.23广 is between the two boundary curves. In t.he right 

graph of Figure 3.6, the system collapse when the initial state x'(0)= 

(0.1, 0.05,0.85)^is not in the robust region of opportunistic learning. The 

performance gains for this policy are: 

Po A h P 

(0.7,0.13,0.17)^ 5.56 6.00 - 6.00 

(0.7,0.07,0.23)^ - -0.24 0.04 0.04 

(0.7,0.07,0.23)^ 5.37 6.00 - 6.00 

(0.1,0.05,0.85)'^ - -0.22 0.04 0.04 

111 conclusion, we validate our mathematical framework. When 'p(i + 

0, the rc)l)ustiiess of tlie linear policy depends on the initial condition 

x'(0). Wlicii tlierc are many reciprocators, the system tends to be robust, 

otluM'wiso, it is nioro likely to collapse. Opportvuiistic l(、ai.ning is more 

robust than the c川Toiit-bast, learning in the, sense tlial it has a la.rgcr 

i()l)ust region. 
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Reciprocators、, 

Defectors 

Figure 3.6: Evolution of Vun with opportunistic learning. 

Left: x(()) = (0.7,0.07,0.23)^'. Right: a:(0) = (0.1,0.05,0.85)'^\ 

given the fraction of each type, the performance /?:(/;) of type i peer is 

the same as before. Let the fraction of type i peers thai do not, Icani be 

fi, tlien for current-best learning, the system dynamics is described by: 

Xi(t + l)^Xi{t) - - fi) — (3.1) 
n 

+ + 7 ^ M t ) - fO (Pkit) — (3-2) 

Sinco t,h(、fraction of any typo of non-adaptivo I)(、(TS d()(、s not cliango, 

to com pare system pcrronnaiicc and robustness uii(l(、r (lifk)r(、iit. policy 

and learning inechanisni, we need to focus on tlio dyiiamies ol mlaptivo 

peers. We say a system is robust if adaptive poery have、liigli conti'ibution 

level on average, otherwise, we say the system coll apses. In luiro, wc 

consider two policies under the current-best learning method and show 

how non-adaptive peers affect the system dynamics. 

Mir ro r pol icy w i th C B L : Using the performance gap analysis, we lia.ve 

the following results: 

• When /2 > 1/a, all adaptive defectors will switch to cooperative 

strategy, and the system is robust. 

• When ,1.2 < 1/a, all adaptive cooperators will switch to (l(、l()ct,ive 

strategy, and the system collapses. 

Remark : We see that the system robustness under the iiiiiTor policy 

and the current-best learning method depend only on the fraction of 

non-adaptive reciprocators. • 

Propor t iona l policy w i th C B L : Using the performance gap analysis, 

wc have the following results: 

• if X2 < j ^ f i , all adaptive peers will become (kfcctors and the 

system collapses. 

• 0 5 6 0 " 
t ime slot 

0.1 

。0 500 
time slot 

Defectors 

Reciprocators 

/ Cooperators 
/ 
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Figure 3.7: Evolution of V.nirvov with current-best learning. 

L(、ft: x(0) = (0.5,0.1,0.4)^. 0.1 fraction of fixed cooperators. 

Right,: x{{)) = (0.2,0.3,0.5)^. 0.1 fraction of fixed cooperators, 0.2 fraction of fixed 
rociprocators. 

Figm-C 3.7 shows two scenarios for the the minor iiicoiitivo policy 

wiUi the curront-best learning. In the loft grapli, initially then、a,i.(、0.5 

fnicUon of cooperators and 0.1 fraction of cooporal.ors ar(、m川-adaptive. 

Wo sec l.liat the defectors finally dominates the systcMii and only tlio fixod 

cooperators are left. In the right graph, There are 0.2 Craciioii of. noii-

adaptivo reciprocal,ors and we see that the defectors are drive】】 out, of tlie 

P2P system. 

Figure 3.8 shows the simulation results for the proportional incentive 

policy with the current-best learning. In the left graph, there arc 0.4 frac-

tioii of non-adaptive cooperators and 0.05 fraction of rociprocators ini-

tially. The system finally collapses with only defectors and non-adaptive 

cooperators left. In the right graph, there are 0.1 fraction of non-adaptive 

cooperators and 0.1 fraction of reciprocators initially ami tlic systein is 

robust. 

口 End of chapter. 
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if 工2 > T ^ x u all adaptive defectors will adapt to reciprocators and 
the system is robust. 

fl <X2< T^Xi , whether the system is stable or not depends • if ‘ 

on the initial condition 

Remark : Here wc can see that the non-adaptive cooperators, i.e., the 

seeders in a P2P system, has a negative effect on the system robustness 

iiiKlor tlic proportional incentive policy with the current-best learning. 

Tlie reason is that adaptive peers will have no inot.ivatioii to contribute, 

i lowover, i(" the seed ors roach a high fraction, 1,1 le 1)21) sy>sU、】i) can still 

have higli aver ago perfonnanco. 
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Figure 3.8: Evolution of Vprop with current-best learning. 

Loft: = (0.6,0.05,0.35)^. 0.4 fraction of fixed cooporators. 

Right: x(0) = (0.1,0.1,0.8)'^. 0.1 fraction of fixed cooperators. 
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Chapter 4 

Adversary Effect of Altruism 

4.1 The Effect of Protocol Cost 

111 previous sections, we assume that there is a reputation service niain-

taiiiod by the system. In a distributed system, such service is specified by 

the incentive protocol and maintained by those who follow this protocol, 

i.e., tlie reciprocators. R.eciprocators will provide their private history 

of traiiKactions to this service and in return, they can access the type 

information of any requester, and avoid the cost of serving defcctors. 

If the reputation servicc is implemented via the (iistiihutod hash table 

(1)1-IT) method, each reciprocator also has to coiitribiito local storage, 

bandwidth and computing power to manage the information. In short, 

Uicre is additional protocol cost for reciprocators. Wo (ionoto 1,1 lis cost as 

0. In previous analysis of the proportional incentive strategy, wĉ  igiioixxi 

0 and i’()ach the conclusion that the fraction of recif)rocator will finally 

dominate the P2P system and defectors will extinct. However, tho result 

may be different if we take 6 into account. 

Here we analyze the effect of cost 9 on the proportional policy with 

the current, best learning method. Using similar approach, wc can derive 

the performance gaps as: 

户3 ⑴一戶1 ⑴ = l - a x 2 ( t ) , 

hit) - A W = l-ax2[t) 

户 2 ⑴ 一 戶 1 ⑷ = X 3 ( i ) - e. 

1 '̂irst, let us see what happens when there are only two types of users 

(o.g.、(a) reciprocators and cooperators; (b) reciprocators and defcctors). 

Wc lmv(、four cases: 

• ⑴ = 0 . The cooperators will dominate t,ho system and Ui(、overall 

average performance P reaches the optimal value of fv 1. 

• :1：2(/;) — (). The system will be overwhelmed by defectors, f) — 0. 

29 



CHAPTER 4. ADVERSARY EFFECT OF ALTRUISM 30 

• Xi{t) = 0,X2(0) > The system will be dominated by recipro-

cators and P = a — I — 9. 

• X\(t) 二（)’；^2(()) < The system will be dominated by defectors 

and P = 0. “ 

If w(、have all three typos of users initially, it Umis out tliat. tJie P2P 

systcMTi will either collapse or oscillates. We can (iivki(、the Hy.steiii dy-

namics into four phases: 

P I : Reciprocation is the best strategy. In this phase, X\(l,) and x-^(t) de-

crease while Pi{t) increases. When is less than 0, cooperation 

becomes better than reciprocation and the system oiitci's ])hase 1)2. 

P2: Cooperation is the best strategy. X2(t) and x-i{t) decrease while P3 

increases. Once X2{t) is less than •，defectors get the best perfor-

mance and the system enters phase P3. 

P3: Defection is the best strategy,工之⑴ > In this phase, xi[i) and 

•T2⑴ decrease. As Xs{t) rises, reciprocation regains the advantage. 

If .7:2(0 does not drop below the threshold reciprocation finally 

beconics the best strategy and the system enters phase PI again, 

starting another cycle. If X2(t) drops below the threshold, the system 

enters phase 1)4, in which the system will collapse. 

P4: Defection is the best; strategy, X2(t) < In this pha.se, recipro-

cat.ors keep decreasing and defectors finally dominat-os UK、systoivi. 

Remark : Whether the system collapses or oscillatcs dqxmds on 0 and 

the initial condition. In general, systems with larger 0 are more likely 

col lapse l)eca.\ise of the cost of realizing an incentive protocol. On the 

other hand, if wc can prevent cooperators from getting better pcrfor-

111a,ncc than reciprocators, the system will stay in PI and bo robust. 

Figure 4.1 shows the simulation and the mathematical results. In the 

left graph, the initial condition is a;(0) = (0.6,0.15,0.25)''' and 0 — 0.1. 

We can see that the system oscillates with a period of about 4500 time 

slots. Due to the error accumulated for all simulation slots, t.borc is a 

little offset between the curves of simulation results and tho ciirvos of 

our model prediction. However, our model still predicts the right shapes 

and trends of these performance curves. In the right graph, the initial 

condition is the same but 9 = 0.3. We can see that the system collapses 

after one cycle. 

4.2 The Tradeoff between Altruism and System Ro-

bustness 

111 tlie previous section, we see that when there is a protocol cost, t.hc pro-

portioned incentive policy may not be a.ble t,() cliininato dd.(、ct()i,s under 



1 一 喂 2 ⑴ ’ 

{a - l)x2{t) - pxiit) —0、 

1 + {a-I- ap)x2U) — pxiU) - 0. 
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on tlio perlbniianco gaj) analysis, wo have: 

• When X2 < reciprocators keep decreasing and tlie sysioiii will 

eventually collapse. 

• When X2 > ma,x{g^, (二-)。二)}’ reciprocators finally dominates 

the system. 

Remark : The max expression in the second scenario decreases as p 
increases. So the protocol cost 6 and ethics level p are all reversely 

related to to system robustness. 

Figure 4.2 shows the effect of of altruism p by the cooporators. In the 

left graph，we set p = 0.96 and we sec that tlie systoni is robust. In the 

limo slol 

3000 叩 00 SOOO 
lime slot 

Mguro .1.1: Kvolution of with curreiit-hesi, learning, 

^oft: cc(()) = (O.G,().ir),().:25)',’’f? = (U. Right: 0 = 0.3. 

the currcnt-best learning method. Defectors can revive and degrades the 

system performance periodically or permanently. This is mainly caused 

by the blind altruism of cooperators in providing services to others so 

that other peers will not have incentive to contribute. To prevent, the pe-

riodic or permanent performance recession, reciprocators should limit or 

constrain coopcrators so that cooperators will not overnni reciprocators 

wlieii there are very few defectors. One interesting question is liow much 

should rcciprocators constrain the cooperators? Applying heavy limita-

tion may not, be fair to cooperators and may hinder cooporat.i(川 between 

rcciprocators and cooperators, while little limitation ina,y not be enough 

to ensure the robustness of P2P systems. To address this problem, we 

consider and analyze a linear policy with Pc ="’厂” = l , p d 二 0. Using 

the similar approach, we can derive the performance gaps as: 
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Figure 4.2: Evolution of 巧”.叩 with current-best learning. 

Left: x(0) = (0.6,0.15, 0.25)'^', p = 0.96. Right: p = 0.99. 

right, graph, the initial condition is the same but we sot p 二（).99, which 

is only a litUe bit, higher. We see that the little clifroreiico of p l()a,(ls to 

conipletcly (iiffercnt result and the system eventually col lapses. 

口 End of chapter. 



Chapter 5 

Related Work 

The earliest work on how to encourage cooperation in P2P networks 

6]. In essence, it uses a centralized approach to 

When a node provides service to another node, 
in 

is via micro-payment 

issue virtual currency. 

virtual currency is exchanged. This approach is further explored by 

which tlie price mechanism in economics is applied to obtain high system 

performance. Authors in [10-12] present the incentive issues and service 

(liffereiitiatioii in P2P networks. In [2,18, 20, 21], authors also present 

their study of incentive issues in wireless networks. In [16], authors show 

that shared history based incentives can overcome the scalability problem 

of privalc history based nicclianisnis. lAirtherniorc, one can use DIIT [15], 

or tnisted coinponont. [3, 9] to implement the shared history incentive 

iiiechanisin. One example of shared history based incentive mocliaiiism 

is the rociprocativo strategy [4,8]. Each node makes decisions according 

to the reputation of requesters and is studied via siiruilation only. 

As for learning mechanisms, Q-learning [6] and Slaccr [7] arc t,w() lca.ni-

ing methods and their performance study was carried out via simulation 

or via small scale prototyping only. This thesis focus on the general 

niatheinatical framework to analyze the robustness and properties on 

adaptive incentive protocols with different learning mechanisms. 

lliere are also some models developed to help in designing incentives 

mechanism. Authors in [5] assume that each peer has a fixed strategy 

set with a certain distribution while we assume peers can adapt their 

strategies. In [19], authors show that a proportional strategy can lead to 

market equilibria, but the result does not generalize to multiple strategies. 

Authors in [14] analyze a reputation based reciprocative strategy and its 

evolution dynamics in a biological context. This thesis focuscs on the 

robustness of distributed learning mechanisms. 

匚j End of chapter. 
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Chapter 6 

Conclusion 

The main contribution of this thesis is on introducing a general iimUie-

niatical framework to model and evaluate the perforrnaiice and robust-

ness of incentive policies in P2P networks. We assume that, peers are 

rational and they adapt their strategy based on the behavior of other 

peers. To illustrate our mathematical framework, we present two incen-

tive policies and show that the mirror incentive policy Vmirror may lead 

to a complete system collapse, while the proportional incentive policy 

Vprop, which takes into account of service consumption and contribution, 

can lead to a robust system. We also analyze a general class of incentive 

policies (the linear incentive policy class) and show that, for a system 

to })o robust, wo liave to assure certain fraction of rcciprocators in the 

1)2P system. Peers can learn about the payoff of other strategies via dis-

tributed learning rneclianisni. We also present t;wo loaniiiig irioc.lianisins 

and how tlioy can be ovaluatcd in our mathoinatical franunvork. We 

show that the current-best learning is less robust than UK、opportunistic 

learning, altruism may have detrimental impact on the system, and when 

the cost of realizing an incentive mechanism is high, tlic overall systeiri 

may not be robust. In general, learning mechanism is worthwhile and 

one may consider incorporating this feature into the incentive protocol 

design so as to encourage peers to adapt and cooperate. This way, the 

P2P system can quickly converge to the desirable operating point. 

匚j End of chapter. 
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