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Abstract 

Abstract 

Micro assembly refers to assembly parts with sizes ranging from micrometers to 

millimeters. Typical applications of micro assembly include microelectronics, sensors 

and actuators, MEMS devices, jewelries and mechanical watch movements. 

There are some unique micro assembly problems difficult to solve, such as accuracy 

positioning (in micrometer range), high speed (acceleration in several gs), work piece 

pick and place (in milligram range), as well as quality (reliability and consistency). 

This thesis presents a new micro assembly workstation. The workstation consists of 

three parts: (a) a 3 axes positioning system (the X and Y-axes are driven by linear 

motors and the Z axis is driven by a servomotor); (b) a control system and (c) a 

computer vision system. This thesis focuses on the design and implementation of 

these systems. 

Presently, the micro assembly workstation has been completed. As an application 

example, it is used to assemble ruby bearings (jewels) onto the main plates of 

mechanical watch movements. The operation procedure is as follows: 

(a) Detect the exact bearing hole positions of the main plate using the computer 

vision system; 
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Abstract 

(b) Detect the position of the ruby bearing using the computer vision system; 

(c) Pick up the ruby bearing by means of liquid adhesive force; 

(d) Press the ruby bearing onto the bearing hole of the main plate; and 

(e) Inspect the assembly quality using the computer vision system. 

The position accuracy of the micro assembly workstation is 土 1.9 |J,m based on the 

experimental results. The time required assembling five ruby bearings (number of 

ruby bearings on one main plate) is one minute. 

It is expected that the presented micro assembly workstation will find many 

applications from various industries in the near future. 
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摘要 

微封裝是指介於微米與毫米級之間的封裝。微封裝技術主要應用在微電子學，感測器與執行 

機構’ MEMS設備，珠寶以及機械手表中。 

微封裝過程中有一些具體的問題需要著重考慮，比如：位置精度（微米級），高速（幾個重 

力的加速度），抓取與安裝微輕配件（毫克級）’還有裝配效果（重複性，持續性）。這篇論 

文介紹了一種新型的微封裝生產中心。該微封裝生產中心包括三部分：(a )三軸運動系統(X， 

Y軸由直線馬達驅動’ Z軸由旋轉伺服馬達驅動）；（b )控制系統；（C )視覺回鎮系統。這篇 

論文集中討論了控制系統和視覺系統的設計與運行。 

目前’該微封裝中心已經完成。作爲一個應用的方向，該中心現在已被用來裝配機械式手錶 

的珠寶軸承。裝配過程可以槪括爲： 

(a)用視覺系統中找到與特定珠寶軸承相應的孔洞位置。 

(b) 用在視覺系統中找到珠寶軸承的位置。 

(C) 利用液體表面粘附力將珠寶軸承抓起。 

(d) 將珠寶軸承壓裝在相應的孔洞位置。 

(e)用在視覺系統檢查裝配品質。 

實驗結果表明’該封裝機的位置精度達到了± 1.9微米。安裝一隻機械手表主板上的五個珠 
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寶軸承需要的時間是一分鐘。 

在不久的將來，該封裝中心將被開發出更多的工業用途。 
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Chapter 1 Introduction 

1. Introduction 

Micro assembly refers to the assembly of miniature parts of typically millimeter and 

sub-millimeter size. Micro assembly has become an important area of research and 

development due to the ever-increasing demand for the miniaturization of commercial 

and domestic products, such as microelectronics, micro-mechanical systems, and 

micro electrical-mechanical systems (MEMS). Although many articles and papers 

have been published on micro assembly technology, there are a few commercially 

available micro assembly machines, and even fewer that are applicable to the 

assembly of mechanical watch movements. In the project reported in this thesis, we 

designed and implemented a unique micro assembly machine to assemble mechanical 

watch movements. 

1.1. Literature Review 

There is much research on micro assembly. Although Bohringer [1] provided a 

general overview of micro assembly, most of the research focuses on specific issues. 

For example, Kasaya [2] developed an automated assembly operation by using visual 

and force control, and Keller [3] developed Hexsil micro-grippers that utilized 

integrated actuators and strain gauges for force feedback control. Zhou [4] developed 

a micro-gripper and micro-gripping strategies by using optical beam deflection 
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Chapter 1 Introduction 

techniques. Carrozza and et al [5] built a LIGA (a German acronym for 

"Lithographic, Galvanoformung, Abformung," in English (X-ray) Lithography, 

Electroplating) micro-gripper with integrated semiconductor strain gauges, and 

Nelson and et al. [6] described the use of vision-based feedback in the assembly 

process. Other work has investigated the use of virtual reality (VR) based simulation 

[2, 7], visual serving [6], and force sensing [8，9]. 

Yang, Gaines, and Nelson [10] developed an experimental micro assembly work cell 

for the efficient and reliable 3D assembly of large numbers of micro-machined thin 

metal parts into micro-machined holes in 4-inch silicon wafers. The work cell consists 

of a multiple-view imaging system, a 4 Degree Of Freedom (DOF) micromanipulator 

with high-resolution rotation control, a flexible micro-gripper, and a control system. 

They also developed a piezoelectric force-sensing unit that integrates with the 

manipulator system to enhance pickup reliability. 

Huang and et al [11] presented a piezoelectric micro-gripper with a dual-cantilever 

structure that can judge whether an object has been clamped and how much force it 

has suffered from a strain signal at the root of the micro gripper (see Figure 1-1). The 

micro-force sensor ensures that the micro objects are not forced to deformation or 

even destruction. Huang et al. analyzed a piezoelectric bimorph model and its 

displacement-voltage and force-strain relationships, and showed that the gripper was 

able to complete the micro assembly tasks. However, as the apparatus is a gripper 
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Chapter 1 Introduction 

rather than a machine, it can be used only in a limited number of applications because 

it can only nip objects. 

”二： ..... , .:::,:、:,::.？:.: ..“Y^I^^^ ： 

^w I . . “ ‘ ‘ ’ 

Figure 1-1 Photograph of the micro-gripper of Huang et al. [11] 

Boettner, Cecil, and Jiao [12] highlighted that Micro Device Assembly (MDA) is an 

emerging area of importance, and that the design of advanced collaborative 

frameworks is crucial to support the rapid assembly of micro devices. They discussed 

the implementation of such frameworks and described the use of information models 

and virtual models, and then proposed and implemented various assembly approaches 

and physical activities. Virtual prototyping and simulation analysis were conducted 

before the physical assembly tasks were implemented. The authors also presented a 

software module structure that works collaboratively in micro assembly applications. 

Udeshi and Tsui [13] described a robust algorithm for planning assembly sequences 

for open-loop micro assembly. The algorithm detects any collisions that may occur 

when executing an assembly sequence, and automatically modifies the assembly 
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sequence to avoid such collisions. The algorithm has a low time complexity and is 

guaranteed to find a collision-free sequence if one exists. It can also be extended to 

generate an optimum assembly sequence. However, the system is not close-loop, 

which means that there is no feed back response. 

Robl and Farber in [14] reported a new 2 DOF precision gripper tool with a micro 

positioning system that enables a standard industrial robot to carry out micro 

assembly by compensating for the robot's vibration and inaccuracies. Its control 

system combines data from three sensors by means of signal level sensor fusion to 

correct the position errors. The control system consists of two closed-loop regulators 

and one open-loop regulator. The sensor data is synchronized to the control sample 

rate with a linear first-order extrapolation, after which the data is fused with a Kalman 

filter. The realized control system reduces vibration to less than 30%, and the position 

accuracy without disturbances is better than 2 microns according to experimental 

results. The use of sensor fusion simplifies the multi-sensor control design compared 

with approaches without sensor fusion. 

Precise micromanipulation to achieve accurate alignment is one of the principal 

challenges in the assembly of miniature electronic or optic devices. Normally, the 

mechanical misalignment of these precision devices is only noted when the device 

functionality fails. Ryu and et al [15] developed an efficient tool for the identification 

and correction of the alignment problem. As the corrective activity of miniature 
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devices is usually accompanied by some level of plastic deformation, a proper 

identification of force and deformation during operation is essential. In addition, most 

devices have a very dense population of tiny parts that are spread and arranged on a 

two-dimensional surface, and thus maintaining accessibility with a clear path during 

the corrective operation is not straightforward. Figure 1 -2 shows the system designed 

by Ryu et al. 

fiWmm 
Figure 1-2 Micro manipulation system [15] 

Chang and et al. [16] reported the design, implementation, and testing of a visual 

control micro assembly system. By employing certain design axioms, the authors 

efficiently and successfully developed a micro assembly system that satisfies the 

Functional Requirements (FRs). The system consists of a 754 x 477 x 100 |Lim 

PolyUrethane (PU) micro gripper actuated by an SMA actuator for gripping, 

transporting, and adhesive bonding operations. The arc-shape Shape Memory Alloy 

(SMA) actuator has a residual stress that functions as a biased spring for accurate and 

efficient operation. In performance tests, a 20 \im diameter metal wire was gripped, 

transported, glued, and assembled to a 380-|Lim metal wire under visual control 
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(shown in Figure 1-3). However, in operation, the working environment has to be 

enclosed and isolated to avoid environmental effect on the operation of the micro 

gripper. 

l i t , 麗 -

Figure 1-3 Micro assembly system of Chang and et al [16] 

Yeh et al. [ 17] used micro resistance welding to assemble micro Ni structures with 

electro-thermal micro actuators. As the point of contact between the two structures 

has a large contact resistance, a high local temperature can be generated and a current 

can occur due to joule heating. To move the microstructure and provide welding 

pressure to generate proper contact resistance between the two microstructures, they 

used bent-beam electro-thermal actuators, and by properly designing the size and 

number of actuators identified the feasible operation parameters for contact resistance 

and pressure. The authors showed that micro-resistance welding can be achieved with 

a contact resistance of 4.6Q. to 12^ at a contact pressure of between 12 and 39.3 

MPa. 
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Tanikawa, Hashimoto, and Ami [18] reported a micromanipulation system that 

consists of a micro-hand that manipulates microscopic objects and a bonding system 

that glues the micro parts together. An adhesive bonding technique for the assembly of 

microscopic parts was also proposed. The capillary phenomenon was applied to 

obtain a micro drop of adhesive agent smaller than the micro parts. A glass fiber was 

inserted into a glass pipette to obtain a strong capillary effect, and a measured amount 

of adhesive was then drawn into the pipette. Finally, a micro drop was obtained by 

applying air pressure without control from the end of the pipette. Using this technique, 

a micro drop with a diameter of just 2 |im was obtained. As the relationship between 

the length of the liquid in the pipette and the diameter of the micro drop is almost 

linear, the micro drop size can be easily controlled. By using this bonding technique 

and the two-fingered micro hand, the authors assembled a three-dimensional 

microscopic structure "micro scarecrow." The combination of this micro manipulation 

system with the new adhesive application technique allows microscopic structures of 

various shapes to be assembled. 

Bang and et al. in [19] presented a new micro assembly system that is composed of a 

micro gripper, a micro Remote Center Compliance (RCC) unit, a voice coil 

motor-driving mechanism, and precision motion stages. The micro gripper is 1 mm in 

length. The micro RCC unit has a low translational and rotational stiffness sufficient 

for micro part assembly. The voice coil motor-driving mechanism can generate linear 

motion with an adjustable stiffness, and can also measure external force in the 
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direction of motion. Figure 1-4 and Figure 1-5 show the gripper and the RCC unit, 

respectively. 

Share mo(r<»ry alley wire ^ ^ ^ ‘ ‘ ‘ ' . ’ j 

• 翻 
(a) (b) 

Figure 1-4 Micro gripper actuated by two Shape Memory Alloy (SMA) coils [19] 

• � — Mk: 
(a) (b) 

Figure 1-5 Micro RCC units [19] 

Lee and et al [20] developed a multiple-magnification image-based micro-positioning 

system and its architecture. Micro images have different characteristics from macro 

images, and offer more precise information about micro objects. The vast visual 

information contained within such images raises the possibility of vision-based micro 

positioning. However, certain information is redundant for object recognition in 

micro-positioning systems, and the high enlargement ratio of optical microscopes 
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limits the field of view, although multiple-magnification-based micro vision systems 

solve this problem. Micro-positioning operations for micro assembly are divided into 

two parts: micro positioning of the vertical micro stage for auto focusing and micro 

positioning for the X and Y micro stages. However, there are still many problems to 

be solved before micro positioning can be used to handle micro objects. For example, 

a more precise object recognition algorithm and the development of an 

image-processing algorithm for micro image processing are both needed. The 

different heights and overlapping of the micro object and the micro gripper also have 

an influence on vision-based micro positioning systems and micromanipulation. 

Chen and Huang [21] proposed a new vacuum gripper for handling micro targets that 

has a two-layered control architecture with a computer as the upper layer controller 

and an Micro Controller Unit (MCU) as the bottom layer controller. The device is 

able to carry out pick, hold, and place operations for 100-0 to 300-|Lim sized targets. A 

fuzzy PD-based controller was also designed to control the working pressure, the 

satisfactory performance of which was validated by simulation experiments. However, 

the gripper's application is limited, as it can only operate with targets of between 100 

and 300 |im. 

Strijp, Langen, and Onosato [22] investigated the use of adhesive forces and the 

dominant interactions in micro assembly, and found that volumetric forces have a 

smaller or negligible influence. The influence of the van der Waals force is negligible 
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for separations larger than 100 nm and has a small effect on objects in micro assembly. 

The electrostatic force is the most important force, but only when the capillary force 

can be avoided. The capillary force is found to dominate all other forces at the micro 

scale. A dry or vacuum environment that eliminates this force has been suggested and 

assumed for further analysis, but this gives rise to onerous environmental 

requirements. 

Cecil and Trivedi [23] provided an overview of two components (the virtual reality 

environment and the path planning modules) in the development of an 

Information-Based Manufacturing (INBM) framework for Micro Device Assembly 

(MDA). These components can be viewed as software resources in a virtual enterprise 

for micro assembly. The other resources in the virtual enterprise scenario include 

additional software tools and physical resources. To mimic the modeled scenario, the 

virtual assembly environment, Enterprise level Task Manager (ETM), and path 

planning modules were hosted on various computers linked via the Internet. A second 

micro assembly work cell is under development to increase the scope of the micro 

assembly capabilities. However, there is a need for future research that focuses on 

developing additional criteria for comparing the plans generated by various software 

entities in a virtual enterprise (such as cost and interface compatibility). 

1.2. Project Background 
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Chapter 1 Introduction 

A Mechanical watch movement has a complicated structure and many parts of it are in 

the range of millimeter. The Hong Kong Watch Manufactures Association, Federation 

of Hong Kong Watch Industry and Trade and Hong Kong Innovation and Technology 

Commission support a project in our unit. The aim of this project is to develop 

advanced technologies and capability for design and build high-quality mechanical 

watch movements and other precision engineering parts. 

Thus far in the project, we have improved many of the parts of mechanical watch 

movements, and are testing whether these enhanced parts improve the mechanical 

watch movement, which will determine whether the improvements are suitable or not. 

Although, as the previous section demonstrates, there is much research on micro 

assembly, little work has been conducted on mechanical watch movements. As the 

dimensions of the mechanical parts of watch movements are in millimeters, they are 

hard to assemble. To avoid the negative impact of man-made factors during assembly, 

there is a need to design and implement an assembly machine for assembling 

mechanical watch movements. 

We have developed a machine to assemble the ruby bearings of the main plate of 

watches, which are important components in mechanical watch movements. Figure 

1-6 shows that a mechanical watch movement is made of over 100 miniature parts, 

including pinions, wheels, and ruby bearings. As shown in the figure, in mechanical 
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watch movements ruby bearings act as bridges that connect other watch parts with the 

main plate. This means that if the ruby bearings are not suitably assembled, then the 

whole watch will not work fluently or may not even work at all. 

Main P l a t e - ^ ^ f P 

V 
Figure 1-6 Watch Structure 

Figure 1-7 shows a more detailed photo of the main plate of a watch, which is the 

base that holds the other parts of the movement. It can be seen that the pallet wheel 

pinion is connected to the main plate through the pallet wheel ruby bearing, which is 

assembled in the pallet wheel hole on the main plate. The micro assembly machine 
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presented in this thesis functions to assemble such ruby bearings into the 

corresponding bearing holes on the main plate. 

Pallet wheel hole 

Escape . e e l hole 

^ ^ ^ ^ ^ ^ ^ B a r r e . wheel hole 

wheel hole 

Wheel hole 

Figure 1 -7 Main Plate 

The five kinds of ruby bearings to be assembled on the main plate are shown in Figure 

1-8 (magnified by 438 times), and Table 1-1 shows the dimensions of the ruby 

bearings. 

by 

― 一 w T « 

Figure 1 -8 Ruby Bearings 
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Ruby B arrel arbor ruby Center wheel aiby Escape wheel ruby Third \\heel ruby Pallet fo rk mby 

Outer diameter of mines 1.40377 1.20534 0.90362 0.70239 0.9052S 

Inner diameter of rubies 0.69753 0.2PS97 Q.1Q165 0.161P2 0.1 _ 

Height ofmbies 0.4 ^ ^ ^ O.IS 

Table 1-1 Sizes of ruby bearings (mm) 

There are two critical requirements for the successful assembly of the ruby bearings: 

the first is the depth of the ruby bearings relative to the bearing holes on the main 

plate, which affects the height of the pinions; and the second is the gradient of the 

ruby bearings, which affects the flatness of the pinions. These two requirements must 

be met to ensure that the neighboring pinions are meshed; otherwise, the movement 

will not work fluently or may not work at all. 

1.3. Objectives 

Based on the literature review, it would appear that most existing research work 

concentrates on one part of micro assembly, such as the gripper or the control, and 

that few of the existing machines are suitable for the assembly of micro-mechanical 

systems such as mechanical watch movements. In general, micro-mechanical 

assembly systems must have the following features. 

1. A high position accuracy (typically in the range of |jjn). 

2. Sufficient assembly force (typically in the range N). 

14 



Chapter 1 Introduction 

3. A high speed (typically, 3.6 m/s and 1 in/s^). 

The objective of the research is to design and build a micro assembly machine that 

can assemble many kinds of micro mechanical parts. Presently, the assembly machine 

has been built. As a first step, it assembles five different ruby bearings (the third 

wheel ruby bearing, the pallet wheel ruby bearing, the escape wheel ruby bearing, the 

center wheel ruby bearing and the barrel wheel ruby bearing) onto the watch main 

plate of a mechanical movement at the speed of 3.6 m/s with a success rate higher 

than 99%. 

This thesis presents our micro assembly machine, which can be used to assemble 

various micro-mechanical systems, although presently it is specialized for the 

assembly of ruby bearings on the main plate of mechanical watch movements. The 

remainder of the thesis is organized as follows. Chapter 2 describes the design of the 

machine. Chapter 3 discusses the implementation of the machine in terms of both the 

hardware and the software module. Chapter 4 presents the experimental results. 

Finally, Chapter 5 gives some conclusions and details future work. 

15 



Chapter 2 Design of the micro assembly machine 

2. Design of the micro assembly machine 

Our micro assembly machine is designed to assemble mechanical parts that are of a 

millimeter and sub-millimeter size. Currently, the micro assembly machine is set up 

for the assembly of ruby bearings in mechanical watches, but can be expanded to 

other applications in the future. 

This chapter presents the design of the micro assembly machine. It first details the 

aspects that need to be met by micro assembly machines for mechanical watch 

movements. Hardware has been chosen based on these requirements and the 

objectives listed in Chapter 1，namely, a high position accuracy (typically in the range 

of |im), sufficient assembly force (typically in the range of N), and a high speed, 

typically, 3.6 m/s and 1 m/s^). Mechanically, the machine consists of an actuating 

system, a control system, and a computer vision system. One of the keys to the 

success of the assembly process is the gripper. This is discussed in detail in this 

chapter, and a new micro assembly force is introduced. 

2.1. Aspects that need to be met 
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Chapter 2 Design of the micro assembly machine 

According to the literature review in Chapter 1，there are some aspects that micro 

assembly machines must meet. These micro assembly machines are not particularly 

designed for mechanical watch movements, so we develop a micro assembly which 

can be used for mechanical watch movement assembly. The design of the machine for 

watch assembly concentrates on improving the following two aspects. 

a) Broad applications. Most micro assembly machines are designed to assemble 

only one kind of micro part. Our micro assembly machine is designed to be a 

multiple-purpose machine that can be used for many applications, such as the 

assembly of pinions and pillars in mechanical watch movements. 

b) Low environmental requirement. To achieve a high accuracy, most micro 

assembly machines must be operated under particular environmental 

conditions, such as a constant temperature and constant humidity. In contrast, 

our micro assembly machine can complete demanding assembly tasks in a 

normal environment. 

2.2. Hardware of the micro assembly machine 

Figure 2-1 shows the hardware of the micro assembly machine, which consists of 

three main parts: the actuating system, the vision system, and the control system. 

17 
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' ’ t � " 〜 ， , , , . 八 二 
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, ： r — ^ ~ ~ m . . .. ‘ * 
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Figure 2-1 Micro assembly machine 

The relationship between the three parts of the system can be summarized as follows. 

The vision system detects the targets and transfers information about the position of 

the targets to the control system. The control system commands the actuating system 

to complete the assembly tasks, and the actuating system and the vision system work 

collaboratively under the command of the control system to perform the assembly 

tasks. If the whole machine were a human being, then the control system would be the 

brain, the vision system the eye, and the actuating system the hand. 

2.2.1. The vision system 

18 



Chapter 2 Design of the micro assembly machine 

Detecting and logging the position of the targets is very important in a micro 

assembly process. The use of a vision system to undertake these tasks ensures that the 

assembly process will be fluent and efficient. A vision feedback system is used in the 

machine that is based on a commercial system (Manufacturer: Keyence: 

http://china.keyence.com/company/asia.php, Model: CV-3000 Figure 2-2). Once 

calibrated, a vision resolution of 2 pm can be achieved. 

Figure 2-2 Keyence CV-3000 (http://china.keyence.com/company/asia.php) 

2.2.2. The control system 

The control system consists of a PC-based motion controller card and an industrial 

computer. The controller card is a low-level control system and is used to manipulate 

the actuating system. The industrial computer is a high-level system and acts as the 

decision-making center. The industrial computer controls the machine by 

commanding the actuating system and the vision system. The commands for the 

19 
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Chapter 2 Design of the micro assembly machine 

actuating system are transferred through the motion controller, whereas those for the 

vision system are transferred directly. 

One computer-based motion controller card is used to manipulate the actuating 

system. The motion controller card is manufactured by the Chinese company 

Googoltech Technology Limited (http://www.googoltech.com.cn/web/chi/main.jsp) 

and the model number is GT-400-SV (Figure 2-3). Each card is capable of controlling 

up to four axes during independent motion and up to three axes during coordinated 

motion. Typically, in the micro assembly machine the controller card is used to 

control three axes and a handy pulse. The structure of the control system is shown in 

Figure 2-4. 

Figure 2-3 Motion controller 
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Figure 2-4 Control system 

At the top level of control, the industrial computer acts as the decision-making center, 

and decodes the human operator's commands into c language script. This script is 

then decoded into analogue and numerical signals. Some of these signals are 

transferred to the multi-axis controller card and the rest are transferred to the vision 

system. The actuating system and the vision system work collaboratively. The 

controller card separates the signals transferred to the actuating system for different 

amplifiers, which then amplify the signals to stimulate the relevant motors. The 

method of separating the signals is a means of making the motors work 

collaboratively. 

2.2.3. The Actuating System 

The actuating system consists of three axes, a gripper, and a workbench. The three 

axes are used to position the gripper and workbench in the desired place. The gripper 
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fetches the ruby bearings and assembles them in the relevant bearing holes on the 

watch main plate, which is mounted on the workbench. 

2.2.3.1. The gripper 

The gripper has a flexible structure, which allows the gripper heads to be changed to 

those most suitable for the assembly task. Three gripper heads are used for assembling 

the mechanical watch parts. 

Head 1 Head 2 Head 3 

Figure 2-5 Gripper 

As is shown in Figure 2-5, head one, head two, and head three pick up different ruby 
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bearings separately. Each gripper head has a different cross section. According to the 

geometric properties of the heads (Table 1-1)，head one is used for the assembly of the 

third wheel ruby bearing, the pallet wheel ruby bearing, and the escape wheel ruby 

bearing; head two is used for the center wheel ruby bearing; and head three is used for 

the barrel wheel ruby bearing. The working head is pushed downward by 5 mm by a 

pneumatic valve to avoid collision with the other heads during the assembly process. 

The pneumatic valve that activates the working gripper head is supported by 

compressed air that is fed into the valve by a 0.7 MPa air pump. The diameter of the 

contact surface between the gripper head and the compressed air is 5 mm, which 

means that the maximal force that the gripper head can supply is 13.5 N. In other 

words, the limit force for the micro assembly machine is 13.5 N under 0.7 MPa of air 

pressure. If a larger force were needed in another type of assembly application, then 

the air pump would need to be replaced with a larger model. 

The main reason for using three gripper heads rather than one is that the heads need to 

fetch different types of ruby bearings and avoid mechanical collision between the 

heads and the watch main plate. The gripper heads pick up the ruby bearings through 

liquid adhesive force, which has a linear relation with the area of the cross section of 

the heads. To guarantee sufficient adhesive force, the gripper heads thus need to have 

cross sections that match the particular size of ruby bearings that they are tasked with 

picking up. For example, head one's surface is too small to generate enough adhesive 
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force to fetch barrel wheel ruby bearings, and head three's surface is too large to pick 

up the third wheel ruby bearing, the pallet wheel ruby bearing, and the escape wheel 

ruby bearing, which means that there would be a mechanical collision between head 

three and the watch main plate during assembly of these three bearings. 

In micro assembly, to pick up a part, various types of forces can be employed, 

traditionally, including liquid surface tension force, electrostatic force, magnetic force, 

and pneumatic suction force. Each method has its advantages and limitations. For 

example, a magnetic force gripper can only be used for magnetism parts, large 

gripping forces may result in parts being damaged, and electronic parts may be 

damaged by electrostatic force. The most appropriate method depends on the part to 

be assembled, the environment, and the assembly requirements. Actually, there are 

two forces, the liquid surface tension and liquid adhesive force, have the most suitable 

characteristics for the mechanical watch movements assembly. A study of these forces 

is presented as follows. 

Where an electrostatic force is used, the material of the assembly components should 

have dielectric properties. However, a micro assembly machine may be designed for 

many applications, some of which are not dielectric, such as ruby bearings, and thus 

the use of this kind of force is not always appropriate. 

Magnetic force is unsuitable for use in watch assembly because watch components 
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must be kept away from magnetic objects. 

A seemingly suitable force is suction force. When this force is used, the gripper 

usually consists of a thin tube or pipette connected to a vacuum pump, which is thus 

cheap to manufacture and easy to replace. The cycle time can also be maintained at 

well below 100 ms, and it is possible to release components by using a puff of air. 

This type of gripper force has applications for a wide range of materials, and will not 

alter the properties of the assembled components. 

The main limitation of a suction gripper is mechanical collision between the gripper 

head and the component to be assembled. This leads to high levels of collision and 

static forces during the pickup and placement of components, which may damage 

both the gripper head and the components. Another limitation is the possibility that 

small particles may obstruct the tube when handling certain kinds of porous materials. 

The presence of particles is a common issue during micro assembly using suction, 

which is why it is usually performed in a clean room environment [24]. However, 

such environmental requirements make the use of this force expensive compared with 

the selected method. 

The liquid surface tension method has several advantages: it is free from magnetic 

noise, there is no electrostatic damage to the parts, and it has a large application 

domain. Because of these advantages, this force was used at the beginning of this 
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project to pick up the components in the micro assembly machine. However, the 

performance of liquid surface tension systems is affected by environmental 

temperature, pressure, liquid density, purity, and other liquid characteristics. The 

process of picking up the ruby bearings and placing them into the corresponding 

bearing holes on the main plate using liquid surface tension is shown in Figure 2-6. 

Gnpp«r 

Liqu<d 

J / p f M L 
mm^m iiwiiiHMfi m^mm^ 

(a) (b) (c) 

Figure 2-6 Illustration of the pick up action: (a) The gripper head is dipped into some 
liquid; (b) The gripper head moves to the ruby bearing location; (c) The gripper head picks up 
the ruby bearing using liquid surface tension. 

However, several problems arise when this method is used in watch component 

assembly. The main drawbacks are as follows. 

1 The hardware requirement is onerous, because a difference in z-axis as small as 

0.01 mm can determine whether the gripper head is successful or fails. The 

working bound value is hard to control, because the volume of the liquid changes 

from time to time due to environmental factors. 

2 The depth of the liquid pool that contains the liquid changes as a result of 

vaporization, causing the liquid volume on the gripper head to change. The liquid 

on the side surface of the gripper head, which will be part of the final liquid on 

the gripper head, changes with the depth of the liquid pool, which results in a 
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difference in the liquid volume on the gripper head. This causes the liquid surface 

tension to change and means that the previous gripper working bound may not 

work the next time around. The velocity of the gripper head also has a significant 

influence on the volume of the liquid. In summary, any factor that affects the 

volume of liquid on the gripper head will affect the result of the assembly. 

3 Environmental conditions have a great effect on the assembly results. For 

example, different temperatures and humidity levels will change the volume of 

liquid on the gripper head, which will further alter the liquid surface tension. 

4 To eliminate the effect of environmental conditions, a high density and low 

volatility liquid should be used, but the side effect is that the liquid surface 

tension becomes larger and the ruby bearings, especially the third wheel ruby 

bearing, will float on the surface. This makes it hard for the machine to locate the 

correct position for the ruby bearings when assembling them onto the main plate, 

and usually results in assembly failure. 

The foregoing discussion demonstrates that there are no existing force types wholly 

suitable for our micro assembly machine. We have thus developed a new method, that 

of liquid adhesive force, for our particular assembly application, although it should 

also be applicable for use in other applications. The liquid used is SYNT-A-LUBE 

9010，which is a kind of oil used in watches. The technical data of the liquid is given 

in Table 2-1 [25]. 
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Technical Data SYNT-A丄UBE 9010 
viscosity at Q Ĉ 625 cSt 
viscosity at 20'C 150 cSt 
viscosity at C 31 cSt 
surface tension at 2 5 � C 33.8 dyn cm 
contact angle on ruby 22-25*^ 
contact angle on steel 15-IS� 

density at 2 0 � C 0.907 — 
evaporation loss after 5 days at 100�C 0j50�o 
temperature range for usage 70®0"29�C 

Table 2-1 Properties of SYNT-A-LUBE 9010[25] 

This oil was chosen because it is one of the oils used in mechanical movements. It is 

easy to control the quantity because of the oil's low volatility and the environmental 

requirements are not onerous. Experiment results show that with the oil, the gripper 

can pick up objects whose mass is less than lOg. 

During the pick up operation, the gripper head first dips into the oil pool to acquire 

some oil, which usually form a thin cover over the gripper head. Next, the gripper will 

move to the designed position to pick up the ruby bearing. The, the oil on the gripper 

head sticks the ruby bearing and picks it up. Based on our experiments, it is found that 

this method performs very well. 

2.2.3.2. The three axes 

The machine has three axes. The x axis and y axis are driven by Hiwin linear motors 

(Manufacturer: Hiwin: http://www.hiwin.com/, Model: LMS27), as shown in Figure 
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2-8，and have a resolution of 1 micron. The z axis is driven by a servomotor 

(Manufacturer: Mitsubishi: http://www.mitsubishi-motors.com/, Model: HF-KP43B), 

as shown in Figure 2-9. All three motors are driven by a Mitsubishi amplifier (Model: 

MR-J3-20A), which is also shown in Figure 2-9. 

Figure 2-7 Linear motor driving the XY table made by Hiwin 
(http://www.hiwin.com/) 
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Figure 2-8 Servomotor and its amplifier made by Mitsubishi 
(http://www.mitsubishi-motors.com/) 

The linear motion of the z axis is realized by a conventional ball-screw and linear 

guide combination. The linear guide has a pair of HIWIN HGN20 linear rails, each of 

which has two sliding blocks. The FSV model ball-screw, which is also manufactured 

by HIWIN, is directly coupled to the servomotor via a DKN-series flexible coupling. 

The servomotor used for the z axis is equipped with a high-resolution 18-bit serial 

encoder that is configured to output 100,000 counts per revolution. As the pitch of the 

ball-screw is 1 cm, the resolution of the motion in the z axis direction is 0.1 )J.m. The 

ball-screw is properly preloaded so that backlash is guaranteed to be within 5 jam 

along the entire range. 

The whole system is set up as a semi-closed loop system, which means that it is 

controlled based on feedback from the motor encoders. 
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2.2.3.3. The workbench 

- — - ^ y ^ m r n m m B ^ m 

SYNT-A-LUBE 9010 oil 

Figure 2-9 Materials mounted on the workbench 

The ruby bearings and watch main plates are mounted on a workbench, which is set 

up on the x and y axes. As shown in Figure 2-10, the workbench carries the oil, ruby 

bearings, and four main plates. After assembly, the human operator must replace the 

• assembled main plates with unassembled plates and add more ruby bearings if needed. 

Figure 2-11 shows the workbench, which is connected to the x and y axis through a 

pincer structure. 
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Figure 2-10 Workbench 

2.2.4. The complete structure of the micro assembly machine 
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Figure 2-11 Micro assembly machine 

The complete structure of the micro assembly machine is shown in Figure 2-12 to 

give a clear overview of the system. The structure consists of preprocessing work, 

data transfer to the industrial PC, and assembly commands that are sent to the 

actuating system and vision system. The vision system, commanded by the industrial 

computer, captures data on the position of the ruby bearings and main plate bearing 

holes, which are then transferred to the industrial computer. 
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The key point of this micro assembly machine is that the next motion step is always 

based on data captured in the previous step. If no data is transferred from the vision 

system, which means that the ruby bearings have run out or the main plate-bearing 

hole cannot be used, then the next motion will not be initiated. However, if data has 

been transferred back into the system, then the software module will absorb these data 

to plan the next motion of the actuating system. Basically, the next step motion is 

based on the previous motion and the feedback data. The next motion step is only 

known once the previous motion has been completed and the data on this motion has 

been fed back to the computer for planning the next motion. 

2.3. The main features of the micro assembly machine 

The main features of the micro assembly machine that distinguish it from other 

high-accuracy assembly machines can be listed as follows. 

1. Low environmental requirements (e.g., no need to enclose the whole system). 

2. High precision and accuracy (up to 1.9 |im). 

3. High speed (typically, 3.6 m/s and 1 m/s^). 
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3. Implementation 

The various hardware parts of the micro assembly machine are connected by software 

modules. The hardware components are individual pieces of equipment that cannot 

work collaboratively as a whole machine without software modules. This chapter 

presents the implementation of the system, and details the software modules used in 

the vision and control systems and the graphic user interface (GUI). 

3.1. Vision system 

The vision system is used to improve the efficiency and accuracy of the machine. It is 

very hard for a micro assembly machine to detect ruby bearings and bearing holes, the 

dimensions of which are usually in millimeters (Table 1-1). However, this problem is 

easily solved with the use of a vision system (see Figure 3-1). The vision system 

contains a camera (Model: CV-200C), a monitor, a twenty-four volt power supply 

(Model: CA-U2), a controller unit (Model: CV-3502), and a set of operation 

equipment (used to determine the appropriate settings). The vision system can 

simulate its settings before putting them into practice using a PC that is connected to 

the system through an Ethernet, USB, or RS-232 connection. The vision system 
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works under the best settings that make it most efficient after several simulations. The 

vision system is connected to the industrial PC through the computer's RS232 port, 

and feeds it data on the position of the ruby bearings and bearing holes. 

： ； -

Communicalion link 

爆 
24V0C power suppV | / / y w 

« Camera 1 
CV-200C 

Figure 3-1 Vision system 

3.2. Setting up the vision system 

Because the vision system supplies positional data on the ruby bearings and bearing 

holes to the control system, the settings of the system are very important. If the data 

supplied are not accurate due to the use of unsuitable settings, then the accuracy of the 
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whole system will be affected. It is necessary to follow a stepwise procedure to obtain 

the right settings for the vision system, as shown in Figure 3-2. 

Preparing for measurement 
/ Connect the camera and the monitor to the CV. 
/ Prepare the suitable lens and illumination for the target. 

� L 
Specifying camera setting and register an 

prototype image. 

^ ~ ~ J L • 
Creating an inspection window 
z Specify an inspection tool. 
《Specify the measurement window, result 

calculation and 冗put method. 

Test Run 
/ Check whether the intended judgment can Output the measurement result 

be performed with the specified conditions. ^ Measurement results can or NG 
images can be output via ports 

I -L ^ ^ on the CV and to memory card. 

Operations mode 二 

Figure 3-2 Setting procedure for the vision system 

In Step 1, the CV-3502 is connected to the camera and monitor. The camera obtains 

images, and the monitor shows in real time the images captured by the camera. The 

camera should be appropriately tuned to obtain a clear monitor picture. 

In Step 2，the operator specifies the camera settings in CV-3502, The prototype 

images of five kinds of ruby bearings and their five corresponding plate bearing holes 

are input into the vision system. These prototype images are then used as benchmarks 

to distinguish the targets set by the system. 

In Step 3，the operator specifies which part of the prototype image contains the target. 
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This makes the target easy to specify by enhancing the contrast between the target and 

the environment around it. 

In Step 4，the operator runs simulations to determine whether the vision system can 

specify the targets based on the saved prototypes. This step usually involves several 

trials to find out the best setting. 

In Step 5, the operator connects the vision system to the industrial PC, which then 

commands the vision system to capture targets according to the respective prototypes. 

In Step 6, the vision system transfers the required data to the industrial PC for further 

motion control. These data contain messages about the number of targets and the 

respective x position and y position of every target. The kind of data that will be 

transferred is set up by the operator in step 2. 

3.3. Efficiency and form of the transferred data 

To maximize the transfer efficiency, the Baud rate of the RS232, which connects the 

vision system and the industrial PC, is set to 9600 bps. The parameters passed to the 

computer from the vision system are in the form of "Tl,xx,xxx.xxxx,xxx.xxxx." The 

transfer time can be calculated as 24*4/9600 seconds ^ 0.01 second at a Baud rate 

of 9600 bps. "Tl" is the command that triggers the vision system to transfer the 

required parameters. The parameters after "Tl" refer to the number of targets, the 

target's x position, and the target's y position, in that order. 
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As these data are in ASCII form, they must be transformed into numerical form before 

they can be used by the program. The transformation program is best described using 

the example of a message transferred from the vision system: 

"T 1,01,012.3456,123.4567." There are twenty-four ASCII characters in this message: 

the first one is "T," the second one is “1，” the third one is ‘‘,，，，the fourth one is "0," 

the fifth one is "1," and so on. As the position of these data is fixed, the first two 

characters are always the trigger command, the third one is always a comma, the 

fourth and fifth are the number of targets, and the seventh to fourteenth are the x 

position. Thus, in this example, 10X0+1 X 1 is the number of targets, and the x 

position of the target is 100 X 0+10 X 1+1 X 2+0.1 X 3+0.01 X 4+0.001 X 5+0.0001 X 6 

=12.3456. The y position is transformed to numerical form in the same way. The 

ASCII characters “01，，，“012.3456，，，and "123.4567" are also transformed into 

numerical form through this process. The control system, which is detailed in the next 

section, then commands the micro assembly machine to fetch the target at position 

(12.3456, 123.4567) after these values have been transferred to the control system. 

3.4. Control system 

This section explains how the control system uses the data obtained from the vision 

system and the industrial PC and commands the motion of the machine. 
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3.4.1. Structure of the control system 

The structure of the control system is shown in Figure 3-3. Each part of the control 

system is modularized, which means that each part can be replaced with other similar 

equipment with little change in programming being required. 
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Figure 3-3 Control system and its relationship with the other equipment 

The "Control card function" file is the file that "talks" to the controller. It transfers the 

commands from the "Motion function" to the controllers and also transfers the motor 

status back to the “Motion function" as positional data. The “Vision function" is a 
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modularized function that "talks" to the vision system. It commands the vision system 

to work and record the target positions and feeds them back to the "Motion function." 

The data that is fed back from the "Vision function" and "Control card function" is 

processed in the "Motion function," which also sends commands to the vision system 

and motors. There is also a "check" module that verifies whether the motion 

commands given to the motors will make the motors run out of region before the 

commands are sent to the motors to make the machine work more safely. Every 

command sent to the actuating system is checked to determine whether it will result in 

the motors running over. If it will not, then the command is transferred to the motors 

normally, but if it will result in over run then the control system will shut down the 

motors to make them safe. At the upper level, "the main function," which includes the 

"Motion function" and the "GUI," shows the GUI to the human operator. The GUI is 

where the operator monitors the machine and sends real-time commands. 
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Figure 3-4 Communication between the computer and the motion controller 

The communication between the computer and the motion controller is shown in 

Figure 3-4，which illustrates that the motion controller executes each command from 

the computer line by line. The motion controller's normal status is "waiting for 

instruction." The instruction comes from the computer. If the computer response 

request is interrupted, then the instruction will be sent to the motion controller and the 

motion controller will carry on executing the instruction. The "instruction start 

location at IR" status and "no IR loaded" status result in the motion controller 

returning to normal status. 
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There are several features of the control system that that must be emphasized. The 

first is that all of the function boxes listed in the picture are modularized, which 

means that changes in one function do not affect the other functions. For example, if 

the micro assembly machine uses controller cards other than the GT-400-SV 

controller card, which means that the function library will be different, then only the 

"Control card function" needs to change to accommodate the new library, whereas the 

other functions will remain the same. This makes the system flexible and easy to 

upgrade. 

The second feature is that after the power has been switched on, the machine reads 

some data from a data file that is saved in the industrial computer to allow it to load 

some mechanical data about the system, such as the initial height of the gripper heads, 

the initial position of the workbench, and so on. Keeping these data and loading them 

at start-up makes setting the machine up for work after a mechanical change 

convenient and automatic. Taking the initialization of the gripper heads as an example, 

as has been mentioned, the depth of the ruby bearing is very important and is 

controlled by the height and motion of the gripper head. If one of the gripper heads 

has run out after working for a long time and needs to be replaced by a new one, then 

the operator simply needs to measure the height difference between the old head and 

the new head and replace the old data with the new data in the data file. The machine 

will then change the related parameters in the program automatically, rather than the 

operator having to change each parameter in the program manually. 
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The third feature is the log file that logs all the status information, which is very 

useful when there is something wrong with the system. 

The fourth feature is that the program is written as a multiple-thread system to make 

the machine work fluently. For example, the GUI can send commands to the motion 

controller card while monitoring the position of the motors. 

3.4.2. System control process 
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Figure 3-5 Work process 

Figure 3-5 shows the flow of the control system process in command flow form. After 
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"Power on," the system automatically carries out some background preparatory work, 

such as reading data from a data file, mechanical realignment, serial connection 

checking, homing, and so on. The monitor shows the GUI once all of these tasks have 

been completed. The system then goes into real-time control status, and is ready to 

execute tasks under the user's command as soon as the GUI shows up. 

Once the system is in real-time control status, the operator gives the machine a 

command to start the assembly motion through the GUI and sets some parameters, 

such as the number of watch main plates to be assembled, the motion velocity, 

acceleration, and so on. As shown in Figure 3-5, this micro assembly machine has 

three work modes: the main plate ruby bearing hole check mode, assembly mode 

(default mode), and after assembly check mode. The "check holes" module is run to 

make sure that the main plate is in good condition. If the bearing hole is deformed, 

then the machine will abandon the assembly of it; if it is sound then the micro 

assembly machine will step into the "assembly" module and assemble the bearing 

hole. The machine will then check whether the assembly has been successful or not. If 

the assembly has failed, then the micro assembly machine will rerun the “assembly” 

module to assemble the corresponding bearing hole. The flow of the machine is 

normally check bearing holes -�assemble -> check assembled bearing holes. 

3.4.3. The GUI 
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This micro assembly machine has a central computer (industrial computer) that acts as 

decision-making center. The human operator inputs commands to this computer 

through the GUI, which is shown in Figure 3-6. 
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Figure 3-6 GUI 

In the GUI, the operator can choose from the "Watch Unit," "Flexible Choice," and 

"Ruby Bearing Unit" work modes. "Watch Unit" means completing a task at the 

whole watch level, "Flexible Choice" means that the task will only be performed on 

the selected main plate bearing holes, and "Ruby Bearing Unit" means that the task 

will be performed on the same kind of watch main plate bearing hole. 

As has been stated, the “check main plate ruby bearing hole" mode is used to check 

whether the watch main plate is in good condition. Once this mode has been chosen, 
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pressing the "Watch Unit," "Flexible Choice," and “Ruby Bearing Unit" buttons only 

results in the machine checking the corresponding state of the watch main plate. If the 

main plate is not in good condition, then the GUI will change the color of the relevant 

bearing hole button in the ‘‘Watch Unit" function to tell the operator to replace the bad 

watch main plate with a sound plate. 

The "assembly mode" is the default mode, which means that when the "Watch Unit," 

"Flexible Choice," or "Ruby Bearing Unit" buttons are pressed, the micro assembly 

machine will complete assembling of the ruby bearings in the relevant main plate 

bearing holes. 

If the micro assembly machine is in the "after assembly check mode," then pressing 

the function buttons will only result in the machine checking whether the assembly 

has been successful or not. If it has failed, then the GUI will change the color of 

relevant button in the "Watch Unit" to tell the operator to reassemble. 

The GUI also has other functions. For example, the "Position, required position and 

difference" function shows the real-time position of the workbench, the command 

position, and the difference between them, and the "Function Button" activates 

additional functions, such as servo off and handy pulse mode switch. 
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3.4.4. Data processing 

The GUI was written using Fast Light Tool Kit (FLTK) in the Visual C++ 6.0 

environment, and serves as the communication bridge between the operator and the 

micro assembly machine. The data that are fed back from the vision system and the 

status of the motors are processed by Matlab in the background. 

Matlab DLL is used because it simplifies the data process, improves the program 

efficiency (by 33%), and strengthens the program's privacy. Matlab is good at matrix 

process and picture functions, whereas c and C++ are good at logic flow and logic 

efficiency (in contrast to Matlab, which, like BASIC, is "one side explain and one 

side execute") and GUI development. The combination of the two languages gives the 

advantages of each, which allows the machine to run at a more efficient level. 

There are two ways in which visual C++ can cite Matlab. The first is through the 

Matlab engine, and the second is through Matlab C functions. As the Matlab engine 

must be used in a Matlab environment but Matlab C does not have this requirement, 

the Matlab C function is used to build DLL files in our system. 

Although the programming of the system is designed to register the positions of all of 

the eligible ruby bearings and bearing holes in one window, it is restricted to 

registering them one at a time. If the system registered several different positions of 
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ruby bearings and bearing holes at the same time, then it will not take into account 

any positional change that would result after motion (especially for the ruby bearings 

because they are very light), which could result in assembly failure. 

The data recorded during the motion is transfer to a Matlab DLL, which handles the 

data and presents the motion curve to the operator in a Matlab figure window. The 

DLL can also work on a computer that does not have Matlab installed, but an MCR 

must be built in the original Matlab settings and set up in the target computer. 

3.5. Cooperation between the vision system and the control system 

The XY linear-driving system drives the workbench to the view domain of the camera 

once the assembly motion has been started. The vision system then transfers the 

number of identified ruby bearings and their respective coordinates to the industrial 

computer through the RS232 port. The software module in the industrial computer 

converts these ASCII data into numbers that can be calculated in c language. The data 

are then used to plan the next motion. Once the workbench has reached the next target 

position, the cycle is run again. 

The commands from the central computer are further processed at a lower control 

level by the control card and vision system, and are resolved into a defined command 
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sequence to activate the system components by the industrial computer. The 

movements between the motors are controlled by the industrial PC. 
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4. Experimental results 

A large number of experiments have been performed to evaluate the performance of 

the developed micro assembly machine, and results on the positional accuracy of the 

x-y table and the ruby bearing assembly accuracy (depth and gradient of the 

assembled ruby bearings) have been obtained. 

The ruby bearings function to keep the neighboring pinions meshed. To achieve this 

target, at least three types of accuracy need to be guaranteed: the position in the x and 

y directions, the depth of the assembled ruby bearings in the corresponding bearing 

holes, and the gradient of the assembled ruby bearings. The experimental results 

regarding these measures of accuracy are detailed in the following sections, and 

together determine whether the assembly of the watch ruby bearings using the 

machine is successful. The experimental results were obtained with an x and y motor 

velocity of 3.6 m/s. 

4.1 Accuracy in the x and y directions 

A Renishaw XL-80 Laser Calibration System (shown in Figure 4-1) was used to 

51 



Chapter 4 Experimental results 

measure the accuracy of the two HIWIN linear motors that drive the watch 

workbench in the x and y directions. The results are shown in Figure 4-3 and Figure 

4-4. 

A 
Figure 4-1 Renishaw XL-80 Laser Calibration System 
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Figure 4-2 Setup of the Renishaw system 
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Figure 4-3 Renishaw analysis results for the x axis 
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Figure 4-4 Renishaw analysis results for the y axis 

Figures 4-3 and 4-4 give the results for the accuracy of the two linear motors with the 

earth as the frame of reference. The measured accuracy for the x and y axes is 

presented in Table 4-1. 

Axis X Y 

Pos-Dir Rep 0.4 pm 0.1 jam 

Rev-Dir Rep 2.8 pm 0.1 pm 

Bi-Dir Rep 2.0 |im 0.3 pm 

Accuracy 55.1 |am 3.9 jam 

Table 4-1 Renishaw analysis results 
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As the position error in the y axis is small, compensation is only needed for the x axis. 

The compensation is carried out based on the following equation, the parameters of 

which are obtained from Figure 4-3 with the linear interpolation method. 

'1 .25x730 0 < jc < 30mm 

( 5 . 5 - 1 . 2 5 ) { x - 3 0 ) / 3 0 +1 .25 3 0 < ; c < 60mm 

(13.3 -5 .5) (a： 一 60) / 30 + 5.5 6 0 < ; c < 90mm 

f i x ) = \ ( 2 1 . 4 - 1 3 . 3 ) ( ; c - 9 0 ) / 3 0 + 13.3 90<x< 120mm 

( 3 3 . 6 - 21.4)(义一 1 2 0 ) / 3 0 + 21.4 1 2 0 < ; c < 150mm 

(44.5 - 33.6)(jc - 1 5 0 ) / 30 + 33.6 150 < ; c < 180mm 

( 5 3 . 6 - 4 4 . 5 ) 0 - 1 8 0 ) / 3 0 + 44.5 1 8 0 < x < 2 1 0 m m 

where, x is the distance in the X-axis from the end. Since the home position of the 

work bench is set to be 1091491 counts and the resolution for X-axis is 0.1 |am / 

counts, the home position is 109.1491 mm from the end. So, the above equation 

becomes: 

‘ 1.25(x +109.1491) / 30 -109.1491 < x<-79 .149 \mm 
(5.5-1.25)(a: + 109.1491-30)/30 + 1.25 -79.1491 < x<-49.1491mm 

(13.3 -5.5Xx+109.1491 - 60) / 30 + 5.5 -49.1491 <A -< -10 .1491mm 

f i x ) = \ ( 2 1 . 4 - 1 3 . 3 ) 0 + 1 0 9 . 1 4 9卜 9 0 ) / 3 0 + 13.3 - 1 0 . 1 4 9 1<A - < 10.8509mm > 

(33.6-21.4)(x+109.1491-120)/30 + 21.4 10.8509 < a: < 40.8509mm 

(44.5-33.6)(;c + 109.1491-150)/30 + 33.6 40.8509 < x < 70.8509mm 

(53.6-44.5)(X+109.1491-180)/30 + 44.5 70.8509 <;C< 100.8509mm 

where, x is for the distance from the home position of the X-axis. The compensation 

is built into the control software. For example, if the position in the x direction is 35 

mm, then the actual position will be compensated by the section of 10.8509 ~ 40.8509 
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mm in the equation, that is: 

(33.6 - 21.4)(35 + 109.1491 - 120) / 30 + 21.4 = 31.2206 

The measured results for the x axis after compensation are shown in Figure 4-5 and 

Table 4-2. 
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Figure 4-5 Renishaw results after compensation 

Axis X Y 

Pos-Dir Rep 0.4 |im 0.1 jam 

Rev-Dir Rep 0.4 |im 0.1 |im 

Bi-Dir Rep 0.7 |im 0.3 |im 

Accuracy 24.5 pm 3.9 |jm 

Table 4-2 Renishaw results after compensation 
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4.2 Effect of the vision system on accuracy 

Although the machine would achieve a very high degree of accuracy after 

compensation (24.5 pm in the x direction and 3.9 |jm in the y direction) without the 

vision system, the inclusion of the system produces an even greater degree of 

accuracy. 

S B 
Figure 4-6 Workbench 

There are several reasons for this. First, it is necessary to know what kind of data is 
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needed. Figure 4-6 shows the machine's workbench. There are several parameters of 

the workbench that need to be gathered and transferred by the vision system to the 

computer program, namely, the vision domain of each ruby bearing hole and each 

ruby bearing. Domain refers to the position at which the targets are seen in the vision 

system monitor. 

The domain data are obtained from the electrical geared axes encoders of the handy 

pulse, or the encoders of the linear motors. However, the Renishaw measure results 

indicate that these data are not the real data because of the original error in the linear 

motors (24.5 |im in the x direction and 3.9 |jm in the y direction). The Renishaw 

equipment is a absolute reference for the system. 

Once these domain data from the handy pulse have been transferred to the computer, 

the control system commands the linear motors to go to the referenced domains to 

detect the targets. This process counteracts the original error using the reverse method. 

Figure 4-7 shows the algorithm for this process. 
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3. The operator 
2. Until the stops driving 

1. Workbench desired domain the workbench 
is driven by ^ is shown in the ^ and records 
handy pulse. vision window. the position 

data. 

Conclusion: the error (in this condition ” 
24.5 urn in the x direction and 3.9 |im in ‘ 

4. The operator 
the y direction) will be counteracted, 

inputs these 
because step 3 and step 4 have the , 

data into a 
same data and same error. Using the 

program to 
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command the 
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machine to go 
to the target 
position for 
real assembly. 

Figure 4-7 Error correction algorithm 

The only remaining error is produced by the position of the targets in the single vision 

window of the vision system. The following paragraphs explain how it can be 

determined whether this error is the final error of the machine. 
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Figure 4-9 Vision window 

The worst position accuracy condition between the x and y axes is taken from the 

Renishaw results curve to make the estimation: 1.1 |im /20mm = 0.055 |im/mm (the 

60 



Chapter 4 Experimental results 

red curve domain in Figure 4-8). In the vision window (shown in Figure 4-8), the 

worst condition is also taken, for example, the machine going over the cater corner 

line, although this could not actually happen. Two million pixels is almost equal to 

1600 X 1200, and the view is amplified 438.6 times. The cater corner line is 2,000 

pixels, or 4.56 mm. Thus, the largest error is 0.055 |im/mm * 4.56 mm = 0.2508 |im. 

Other error sources for the X-Y platform in this system include the table position error 

and the ruby bearing position error. The former can be compensated using the method 

presented in Page 59. The latter occurs as the position of the ruby bearing may not be 

at the center of the gripper. However, since the gripper head has a little pillar whose 

diameter is 0.05 mm smaller than the inner diameter of ruby bearings and the oil will 

push the ruby bearing moving towards the center, this error will be less than 0.025 

mm. In conclusion, it is expected the total error will be about 0.025 mm in both X and 

Y directions. 

As for the Z axis, the demand for high accuracy is stringent. This is because the height 

of the ruby bearing is in line with the surface of the mainplate. In other words, upon 

placing the ruby bearing to the designed height, the surface of the mainplate will 

generate a large force stopping the motion of the gripper. Currently, the control of the 

Z axis is open-loop control without force feedback. As mentioned in Section ？, the 

maximum force is about 17.5 N. The experiment results indicate that the assembly 

quality is satisfactory. 
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4.3 Depth of the assembled ruby bearings 

As the ruby bearings are used to hold the watch pillars, which hold the pinions, and 

the pinions transfer the mechanical movements of a watch, the pinions must be well 

meshed or the watch will not work properly or may even not work at all. 

To achieve full meshing, some of the mechanical structures of the workbench have 

been improved, such as the inclusion of a supporter under every main plate and covers 

to hold every main plate. 

Experimental data on bearing depth are shown in Table 4-3’ where the depth data 

stand for the distance between a ruby's center and the upper surface of the main plate 

surface. 

1st 2nd 3rd 4 th 3 th 6th 7th 8(h 91h 10th l l lh 
n i d 0.00 丨 - 0 . 0 0 2 -0.009 0.000 -0.00 丨 0.001 0.008 -0.024 -0.022 0.00 丨 0.006 
F-scapc 0.008 0.006 -0.006 0.005 0.003 -0.012 0.006 0.001 0.003 0.002 0.009 
Pallet 0.012 0.021 -0.009 -0.012 0.007 0.008 0.005 -0.008 0.014 0.004 
Qancl 0.007 0.005 -0.002 0.003 0.006 0.008 0.004 -0.003 0.011 -0.005 -0.004 
Center -0.023 -0.025 -0.022 -0.019 0.011 0.013 0.006 -0.008 0.026 0.029 -0.013 

12th 13th 14 th 15th 16th 17th 18lh 19th 20lh 21 si 
Third -0.003 -0.002 0.001 -0.009 -0.001 -0.001 0.001 0.008 -0.024 -0.022 
lixapo 0.003 0.005 0.006 -0.006 0.005 0.003 -0.012 0.006 0.001 0.003 
PaBct -0.016 -0.012 -0.028 0.003 -0.019 -0.003 0.01 丨 0.012 -0.017 0.026 
Barrel 0.004 -0.003 0.002 0.013 0.009 0.007 -0.004 -0.008 -0.002 0.005 
Center 0.019 0.012 0.023 0.014 0.017 -0.021 0.018 0.021 0.019 -0.027 

Table 4-3 Depth of assembled ruby bearings (mm) 

Following figures are the depth data of every ruby bearing. 
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Depth of third ruby bearing 
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Figure 4-10 Depth of third ruby bearing 
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Figure 4-11 Depth of escape ruby bearing 
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Depth of pallet ruby bearing 
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Figure 4-12 Depth of pallet ruby bearing 
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Figure 4-13 Depth of barrel ruby bearing 
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Depth of center ruby bearing 
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Figure 4-14 Depth of center ruby bearing 

The acceptable tolerance is shown in Table 4-4 

Ruby Third Escape Pallet Barrel Center 

Depth bound - 0 . 0 3 ~ 0 . 0 1 - 0 . 0 1 5 - 0 . 0 1 5 - 0 . 0 4 � 0 . 0 3 - 0 . 0 1 - 0 . 0 1 5 - 0 . 0 3 � 0 . 0 4 

Table 4-4 Depth domain requirements (mm) 

4.4 Gradient of the rubies 

As the ruby bearings are used to hold pillars, they must be set at the correct gradient. 

If the ruby bearings do not lie flat, then the pinions assembled on the pillars will not 

mesh with each other. The gradient results are shown in Table 4-5. 
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1st 2nd 3id 4lh 5 th 6th 7th 8 th 9th 10th lllfa 
TKid 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 
Escape 0.009 0.006 0.003 0.005 0.003 0.008 0.006 0.001 0.003 0.002 0.009 
PaM 0.007 0.003 0.002 0.004 0.003 0.001 —— 0.006 0.002 0.003 0.005 
Barrel 0.002 0.003 0.001 0.004 0.002 0.002 0.003 0.004 0.006 0.003 0.002 
Center 0.003 0.001 0.002 0.004 0.003 0.005 0.001 0.001 0.002 0.004 0.003 

12th 13lh 14lh 151h 16lh 171b |18th 19(h 20lh 21st 
llrad 0.001 0.001 0.001 0.001 0.001 0.00 f 0.001 0.001 0.002 0.002 
liscape 0.003 0.005 0.006 0.006 0.005 0.003 0.008 0.006 0.001 0.003 
PaM 0.003 0.001 0.002 0.003 0.007 0.006 0.004 0.003 0.002 0.004 
Band 0.004 0.003 0.003 0.002 0.001 0.002 0.004 0.003 0.003 0.001 
Center 0.002 0.001 0.003 0.002 0.002 O.OOll 0.005 0.003 0.003 0.004 

Table 4-5 Gradient of ruby bearings (radian) 

Following figures are the gradient data of every ruby bearing. 

Gradient of third ruby bearing 
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Figure 4-15 Gradient of third ruby bearing 
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Gradient of escape ruby bearings 
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Figure 4-16 Gradient of escape ruby bearing 

Gradient of pallet ruby bearing 

0.008 ; 

2 0.007 -yi — ^ 

I 0.006 1-8 i - W f 

1 0.005 士—h\ ” I + Gradient"^ 
- 0.004 — \ — ^ — — W A \i-8-f-2±— pallet ruby 

I 0.003 G \/l\l2P 15 bearing 
I 0. 002 V 3 \ » 9 W ^ ^ e — — 

占 0 . 0 0 1 - r — — - V e - r — ~ ~ ： 
Q I I • '' t ‘ , I I 

0 5 10 15 20 25 

Groups 

Figure 4-17 Gradient of pallet ruby bearing 
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Gradient of barrel ruby bearing 
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Figure 4-18 Gradient of barrel ruby bearing 

Gradient of center ruby bearing 
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Figure 4-19 Gradient of center ruby bearing 

4.5 Analysis of the experimental data 

Based on the experimental data, the average depths of the center wheel ruby bearing, 

third wheel ruby bearing, escape wheel ruby bearing, pallet wheel ruby bearing, and 
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barrel wheel ruby bearing are -0.00842 mm, -0.00828 mm, -0.00931 mm, -0.00272 

mm, and 0.00275 mm, with a variance of 0.00423，0.00013, 0.00005, 0.00005，and 

0.00003. The average gradient values for the center wheel ruby bearing, escape wheel 

ruby bearing, pallet wheel ruby bearing, and barrel wheel ruby bearing are 0.01728, 

0.00461，0.01179, and 0.00202, with a variance of 7.897E-05, 2.440E-05, 3.903E-05, 

and 7.396E-07. 

These experimental data show that the machine can successfully assemble ruby 

bearings in watches. 
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5 Conclusion and Future Work 

This thesis presents the development of a micro assembly machine for the assembly 

of the components of a mechanical watch. The micro assembly machine consists of 

several subsystems, including a gripper that uses using adhesive force to pick up the 

ruby bearings, a flexible force regulator, and a high-precision and high-speed XY 

table. 

The gripper works through liquid adhesive force, a newly developed micro assembly 

force that has the advantages of being suitable for many applications and having a low 

environmental requirement and a low cost. This workbench and gripper of the micro 

assembly machine both have a flexible structure, and the gripper heads can be 

changed to assemble miniature parts of different sizes. 

The performance of the micro assembly machine has been measured, and the position 

accuracy of the micro assembly workstation is found to be 土 1.9 |im. The time 

required to assemble five ruby bearings on one main plate is one minute, which is 

about twenty times faster than manual operation. 

Based on experimental data, the average depths of the center wheel ruby bearing, 

70 



Chapter 5 Conclusion and future work 

third wheel ruby bearing, escape wheel ruby bearing, pallet wheel ruby bearing, and 

barrel wheel ruby bearing compared with the average acceptable tolerance are 

-0.00842 mm, -0.00828 mm, -0.00931 mm, -0.00272 mm, and 0.00275 mm, with a 

variance of 0.00423, 0.00013, 0.00005, 0.00005’ and 0.00003. The average gradient 

values for the center wheel ruby bearing, escape wheel ruby bearing, pallet wheel 

ruby bearing, and barrel wheel ruby bearing are 0.01728, 0.00461, 0.01179，and 

0.00202, with a variance of 7.897E-05, 2.440E-05, 3.903E-05, and 7.396E-07. These 

data show that the machine can successfully assemble ruby bearings in watches. 

P•售 I 
Main Plate"""^ ^ 

Figure 5-1 Pinion assembly 
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The machine has successfully assembled the five ruby bearings onto the mainplates of 

mechanical movements at the speed of 3.6 m/s. The success rate is 99%. It is believed 

that the high success rate is attributed to several techniques, including the high 

accuracy of the linear motor drive the X-Y table; the use of the liquid (oil) adhesive 

force; and the vision based position feedback control system. 

At the time of writing this thesis, a new and product-quality application of the micro 

assembly machine was being designed in which the machine is commanded to 

assemble the pinions of a watch onto the main plate. Figure 5-1 shows the pinions and 

the main plate. To achieve this new application, a new kind of gripper head and 

workbench will be developed and some changes will be made to the programming of 

the system. 

72 



References 

References 

[1] Bohringer K.，Fearing K.’ Goldberg K. (1998). Chapter on Micro-assembly, The 

Handbook of Industrial Robotics, Second edition. 

[2] Gassier C.，Ferreia A., Hirai S. (2002). "Combination of Vision Servoing 

Techniques and VR-based Simulation for Semi-Autonomous Micro-assembly 

Workstation" Proceedings of the 2002 IEEE International Conference on Robotics & 

Automation, 1501-1506. 

[3] Kasaya T.’ Miyazaki H.’ Saito S.’ Sato T. (1999). "Micro object handling under 

SEM by vision-based automatic control" Proceedings of the 2002 IEEE International 

Conference on Robotics & Automation, 2189-2196. 

[4] Zhou Y.’ Nelson B. J. (2000). "The Effect of Material Properties and Gripping 

Force on Micro-grasping" Proceedings of the 2000 IEEE National Conference on 

Robotics & Automation, 1115-1120. 

[5] Carrozza M. C.，Eisinberg A., Menciassi A., Campolo D.’ Micera S.’ Dario P. 

(2000). "Towards a force-controlled micro-gripper for assembling biomedical 

microdevices." Journal of Micromechanics and Microengineering, 10,2,271-276. 

73 



References 

[6] Nelson B.’ Papanikolopoulos N.’ Khosla P. (1993). "Visual Servoing for Robotics 

Assembly." The Robotics Institute, Carnegie Melon University. Retrieved July 23, 

2003，from http://citcseer.ni.nec.com/nelson93visula.html. 

[7] Monferrer A., Bonyuet D. (2002). "Cooperative Robot Teleoperation through 

Virtual Reality Interfaces" Universitat Politecnia de Catalunya, Delta Research Labs. 

Retrieved July 25,2003, from 

http://vw.indiana.edu/cive02/036 monferre CoopRobot.pdf. 

[8] Fung C. K. M.，Elhajj I.，Li J. W.，Xi N. (2002). "A 2-D PVDF Force Sensing 

System for Micro-manipulation and Micro-assembly" Proceedings of the 2002 IEEE 

International Conference on Robotics & Automation, 1489-1494. 

[9] Thompson J., Fearing R. (2001). "Automating Micro-assembly with 

Ortho-tweezers and Force sensing" Department of EE and CS University of 

Califamia, Berkley. Retrieved August 7, 2003, from 

http'7/robotics.eecs.berkeley.edu/~ronf/PAPERS/j atO 1 .pdf. 

[10] Ge Yang, James A. Gaines, Bradley J. Nelson. "A Flexible Experimental 

Worked 1 for Efficient and Reliable Wafer-Level 3D Microassembly" Proceedings of 

74 

http://citcseer.ni.nec.com/nelson93visula.html
http://vw.indiana.edu/cive02/036


References 

the 2001 IEEE International Conference on Robotics & Automation, pp. 133-138. 

[11] Xinhan Huang, Jianhua Cai, Min Wang, Xiadong Lv. "A Piezoelectric Bimorph 

Micro-Gripper with Micro-Force Sensing" Proceedings of the 2005 IEEE 

International Conference on Information Acquisition, pp. 145-149. 

[12] Scott S. Boettner, J. Cecil, Y. Jiao. “An Advanced Collaborative Framework for 

Micro Assembly" Proceedings of the 3'�Annual IEEE Conference on Automation 

Science and Engineering, pp.806-81L 

[13] Tushar Udeshi, Kenneth Tsui. "Assembly Sequence Planning for Automated 

Micro Assembly" 2005 IEEE. 

[14] Christian Robl, Georg Farber. "Control of a Micro Positioning System Using 

Sensor Fusion" Proceedings of the 2000 IEEE International Conference on Control 

Applications, pp.576-581. 

[15] S. H. Ryu, B. J. Choi, T. C. Phung, J. C. Koo, S. D. Park, S. M. Lee, H. R. Choi. 

"Design and control of a dexterous micro manipulator for the accurate miniature 

electron device assembly" SICE-ICASE International Joint Conference 2006, 

pp. 1376-1379. 

75 



References 

[16] R. J. Chang, Y. C. Lin, C. C. Shiu, Y. T. Hsieh, "Development of SMA-Actuated 

Micro-gripper in Micro Assembly Applications" The Annual Conference of the 

IEEE Industrial Electronics Society, pp.2886-2891. 

[17] Cheng-Chi Yeh, Junwei Chung, Chun-Wei Chang, Wensyang Hsu. "Micro 

Assembly by Micro Resistance Welding with Electro Thermal Actuators" Proceedings 

of the 2'�d IEEE International Conference on Nano/Micro Engineering and Molecular 

Systems, pp.333-336. 

[18] Tamio TANIKAWA, Yoshiyuki HASHIMOTO, Tatsuo ARAL "Micro Drops for 

Adhesive Bonding of Micro Assemblies and Making a 3-D Structure "Micro 

Scarecrow"" Proceedings of the 1998 lEEE/RSJ Intl. Conference on Intelligent 

Robots and Systems, pp. 776-781. 

[19] Young-bong Bang, Kyung-min Lee, Juho Kook, Wonseok Lee In-su Kim. "Micro 

Parts Assembly System With Micro Gripper and RCC Unit" IEEE Transactions on 

Robotics, VOL. 21, NO.3, pp,465-470. 

[20] Seok Joo Lee, Kyunghwan Kim, Deok-Ho Kim, Jong-Oh Park, Gwi Tae park. 

"Multiple Magnification Images Based Micropositioning for 3D Micro Assembly" 

Seventh International Conference on Control, Automation, Robotics and Vision, pp. 

914-919. 

76 



References 

[21] Chen Guoliang, Huang Xinhan. "Research on Vacuum Micro-Gripper of 

Intelligent Micromanipulation Robots" Proceedings of the 2004 IEEE International 

Conference on Robotics and Biomimetics, pp. 279-283. 

[22] C. J. van Strijp, H. H. Langen, M. Onosato. "The Application of a Haptic 

Interface on Microassembly" Symposium on Haptic Interfaces for Virtual 

Environment and Teleoperator System 2006, pp. 289-293. 

[23] N. Gobinath, J. Cecil, A. Trivedi. “The Creation of an Information Based 

Manufacturing Framework for micro devices assembly: A discussion of the path 

planning and virtual assembly modules" Proceedings of the 2006 IEEE, International 

Conference on Automation Science and Engineering, pp. 490-495. 

[24] E. J. Bos, J. E. Bullema, F. L. M. Delbressine, P. H. J. Schellekens, A. Dietzel 

(2007) “ A lightweight suction gripper for micro assembly ” 

[25] Manual of SYNT-A-LUBE 9010. 

77 





CUHK L i b r a r i e s 

隱_11_111 
0 0 4 5 8 5 2 3 5 


