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Abstract 

Abstract of thesis entitled: 

A Quaternary Current Mode Bus Driver and Receiver Circuits 

Submitted by CHEUNG Cheuk Kit 

for the degree of Master of Philosophy in Electronic Engineering 

at The Chinese University of Hong Kong in June 2009 

This thesis presents a new current-mode low-swing interconnect driver and receiver 

circuits which consist of a gated cascode current mirror as a transmitter and a custom 

design sense-amplifier as a receiver. The new sense-amplifier uses gated transistors to 

isolate the cross-coupled inverter from the differential pair to reduce the parasitic 

capacitance at the drain terminals of the input differential pair. As a result of this 

improvement, the new sense-amplifier has smaller kick-back noise, power consumption 

and delay than conventional designs. 

We have designed and fabricated two test systems to verify the new design, one is the 

new quaternary current mode driver and receiver circuits and the other one is a 

conventional inverter chain driver and receiver circuits. Both test systems drive a 500 jam 

long and 1 \im wide metal wire. The measurement results indicate that the new design 

operates faster and has smaller power consumption and area at high speed. However, the 
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new design loses the power consumption advantage at low speed operation because of the 

added circuit complexity of the new design. 

摘要 

本論文展示了一種新型的電流模數位信號互連。此新型的信號互連有別於傳統的二 

位元•可在一條連接電路中進行四位元的信號傳輸。這信號互連甶一個閘控堆疊電 

流鏡作為傳送器，而接收端則由等效二極管電晶體與感測放大器所組成。 

為了減低由感測放大器顆合至互連電路上的突波回授雜訊•我們捨棄了傳統的感測 

放大器 I並以之為參考•在差動對電晶體之上加上一對電晶體以收阻隔電壓急速改 

變之效》此改動能有效減低感測放大器的突波回授雜訊、信號延遲與功耗。 

我們分別設計了兩種信號互連• 一是上述的電流模信號互連’另一個是傳統的鏈狀 

電型模信號互連。它們均連接著長500微朱•闊1微朱的連接電路。從仿真及而 

實驗數據得知•本論文所展示的電流模信號互連於高數據率的情況下比傳統的電壓 

模信號互連更省電。但在低數據連中會失掉此優勢。 
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1. Introduction 

1.1. Research Motivation 

1.1.1. Global and Intermediate Interconnects 

As advance in technology, the feature size of transistor is shrinking. However, wire 

interconnects do not scale as the same rate of transistor because of current density, metal 

migration and propagation delay [1，2]. Specially, long global routing wires are becoming 

a speed bottle neck for advanced submicron technologies. 

As early as 1977，ACM Turing Award winner John Backus has predicated this 

phenomenon called Von Neumann bottleneck, which indicates that the major limitation 

of performance is the transmission speed of the buses between processor and memory. 

The processor must wait until the data to be transferred. Caches memory has been used to 

relief this bottleneck; however, from 1986, the improvement in memory access time has 

lagged significantly compared to the advancement of the operating speed of processor. 

This phenomenon is known as Memory Wall, which is a major limitation to the overall 

system performance and can be more significant in multi-core and SOC design [3]. 
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1.1.2. Constraints of Repeater Insertion Techniques 

In the lumped model of a wire, the RwireCwire time delay increases 4 times if the wire 

length doubles. Since the increase of delay and power consumption with respect to the 

wire length is quadratic, typically designers insert repeaters in between the interconnects 

to improve the latency and power consumption. There have been different repeater 

insertion optimization schemes, which focus on different aspects of the design parameters 

such as delay, power and area optimization. 

However, using the repeater technique to drive long interconnects requires very large 

driver transistor size, transistor sizes range from 40x to 200x of the minimum inverter 

size are reported [4]. These large drives consume large area and power. Moreover, 

placing these large drivers is becoming a difficult design issue especially in large design, 

because designers usually cannot place the repeaters at the optimal locations due to other 

design constrains. Therefore, special floor-planning software is usually required to place 

and route the repeaters [3]. 

1.2. Research Objective 

The objective of this research is to develop an on-chip or off-chip transmission system 

which can improve the power efficiency in long wire transmission. 
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The remaining part of this thesis is organized as follows. Chapter 2 discusses the 

differences between voltage mode circuit and current mode circuit. The design of the 

new transmitter is explained in chapter 3. Chapter 4 shows the design and working 

principle of the receiver. Chapter 5 analyzes the behavior of inverter chain based 

interconnect. The layout consideration is discussed in chapter 6. The simulation and 

measurement results are reported in chapter 7 and 8，respectively. Finally, chapter 9 is the 

conclusion. 

1.3. Reference 

[1] Sylvester, D. and Keutzer, K., "A global wiring paradigm for deep submicron 

design," IEEE Trans. Computer-Aided Design Integr. Circuits Syst.，vol. 19，no. 2, 

pp. 242-252, Feb. 2000. 

[2] Ho, R. Mai, K.W. and Horowitz, M.A., "The future of wires," Proc. IEEE，vol. 89， 

no. 4，pp. 490-504, Apr. 2001. 

[3] P.G. Emma and E. Kursun, "Is 3D chip technology the next growth engine for 

performance improvement?，，，IBM Journal of Research and Development, vol. 52, 

no. 6，Nov. 2008. 

14 



[4] Song Chen, "Floorplanning with Consideration of White Space Resource 

Distribution for Repeater Planning," Sixth International Symposium on Quality of 

Electronic Design, pp. 628-633, Mar. 2005. 
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2. Voltage Mode and Current Mode Circuits 

2.1. Introduction 

This chapter discusses the differences between voltage mode and current mode circuits. 

First of all, their characteristics will be introduced. Then the power consumption and 

latency will be compared. 

2.2. Voltage Mode Circuit 

A typical voltage mode transmitter is shown in Fig. 2.1, where and rp model the on-

resistance of the channel of the NMOS and PMOS transistors respectively, nnt is the 

interconnect resistance, Cint is the interconnect capacitance and C L O A D is the load 

capacitance at the receiver side. In this work, we are using a "L" model to model the wire. 

7 . ... J：-,,......... 
O «n 「mt 广 jh 【P 'int ^ • 

Rising p ^ A i U ^ 卜 t Vout Falling ’ Vput 
Edge Edge •• 

^ f / - .. I ^ ^ L o a d X 圣 e L o a d ’ 

Fig. 2.1 Models of voltage mode transmitter 
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To minimize the loading effect in voltage mode circuit, the input impedance should be 

large (CLoad, which refers to the gate capacitors of the receiver side inverter) and the 

output impedance (rn and rp) should be small. 

The information carrier of voltage mode signaling is the nodal voltage. The transmitter 

(inverter) works as a switch to connect the load Cint and CLoad to Vdd or Vss so that the 

power supply can charge up the capacitors or the ground can discharge the capacitors. 

Equation (2.1) and (2.2) show the transient response corresponding to a rising edge input 

and a falling edge input, respectively and the voltage swing of Vout is from Vdd to Vss. 

Equation (2.1) describes the output discharging state. 

ygutit) (广丄广、巩ut⑴ ⑴ 、 
； ^ ^ = - ( 。 + 〔 ( 2 . 1 ) 

Equation (2.2) describes the output charging state. 

+ = + Qoa.) (2.2) 
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2.3. Current Mode Circuit 

Fig. 2.2 shows one of the models of a current mode transmitter, where r。represents the 

channel resistance of the switching transistor, Ibias and loare two current sources, which 

are equivalent to Vdd and Vss in voltage mode design. 

' " i a . ^ ； jro N Ibias^ •• k \ 

(T) • 拳 V ® • 拳 V 
Y T r,„. I, \ Y z " 干 

(t) i ? (pi 圣 

IT •=• 

Fig. 2.2 Models of current mode transmitter 

The information carrier of current mode signaling is the branch current, the output DC 

current is determined by equations (2.3) and (2.4). 

I。ut'i = r。+ (r:+rL。ad) Ibias (2.3) 

I。ut'2 = r。+ (rJ:+rL。ad)Gbias + Is) (2.4) 

The output DC voltage is given by equations (2.5) and (2.6). 

V。uu = rL。a4r。+ (rint + r j H ( ' . ” 

V。ut,2 = rL。adL + (r:rL。ad) (Ibias + Is)] (2.6) 
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The voltage swing is given by equation (2.7), it can be kept low. 

^Vout = Vout,2 - Vout.i (2.7) 

The transient response of a current mode circuit is given by equation (2.8). 

, Vout(t).,广 dVout(t) 
lout = + (Cint + Ctoad) ； ^ ( 2 - 8 ) 

Î Load at 

2.4. Power Consumption 

The major difference in power consumption between voltage mode circuit and current 

mode circuit is that the former mainly consume dynamic power and the latter mainly 

consume static power. In a voltage mode circuit as shown in Fig. 2.1, power is required to 

charge up the interconnect capacitor and load capacitor to Vdd so the power consumption 

can be estimated as: 

p « (Qnt + C,oad)Vad^f (2-9) 

This well-known equation reveals that the power consumption of a voltage mode circuit 

is proportional to the operating frequency. 

However, the major power consumption of a current mode circuit is static power, which 

is independent of the operating frequency so the power consumption is equal to: 

P « lavgVaa (2.10) 
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2.5. Latency 

The latency can be simplified as the time needs to charge or discharge a capacitor to 

certain voltage level. It is determined by equation (2.10), 

C^V 
= - ( 2 . 1 0 ) 

^avg 

where AV is the voltage swing of the output node and lavg is the average current charging 

or discharging the node. In voltage mode circuit like an inverter, the voltage swing is 

determined by the power supply rail. Comparing to a voltage mode circuit, the voltage 

swing of a current mode circuit is flexible. As shown in equation (2.5) - (2.7), the voltage 

swing of a current mode circuit can be kept very low, while the current swing can be kept 

at a large level. This can be accomplished by reducing the loading impedance. The small 

voltage swing of a current mode circuit reduces the charging and discharging time. 

2.6. Summary 

This chapter analyzes the difference between voltage mode circuit and current mode 

circuit. We have compared the transient response, power consumption and latency of 

these two different designs. The dynamic power consumption of a voltage mode circuit is 

controlled by frequency, loading and supply voltage which a designer has very little 

control. However, the static power consumption of a current mode circuit is a function of 

20 



the branch current, which a designer can changed to optimize the performance of the 

design. 
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3. Transmitter Design 

3.1. Introduction 

A multi-level current-mode transmitter is designed to replace a conventional inverter 

driver. This transmitter can convert two binary bit voltage inputs into 4 different level 

output currents. The new quaternary current mode transmitter reduces the number of 

wires by half, which will have a significant impact on area and power consumption on 

designs with a large bus. 

3.2. Multi-level Signaling 

In conventional binary signaling, 2 voltage levels, usually Vss and Vdd, are used to 

represent 0 and 1. One way of increasing the data rate without increasing the channel 

bandwidth is to use coding. 

The symbol rate in binary signal is equal to the data rate; however, it is possible to map 2 

data bits into one symbol to achieve 4-level signaling. Consequently, the symbol rate is 

less than the data rate, thus, we have doubled the data rate at the same channel bandwidth 
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3.3. Gated Current Mirror 

The driver is a gated current mirror as shown in Fig. 3.1. The driver consists of three 

current mirrors connected in parallel, which generates two separate Iref currents and a 2X 

Iref current. It sources static bias current Iref through M2 and M3 to keep the diode-

connected transistor at receiver side active. When bitO (bitl) is low, Vgi (Vg2) is driven to 

Vbias, M4 (M6) and M5 (M7) source Iref (2 Iref). While bitO (bitl) goes high, Vgi (Vg2) is 

connected to Vdd, no current flows through M4 (M6) and M5 (M7) [1]. The output 

current steps of lout are Iref, 2 Iref, 3 Iref and 4 Iref as shown in Fig. 3.2. The complete 

schematic diagram of the transmitter is shown in Fig. 10.1 in Appendix. 

^ ~ ! 1 
MO M2 JM8 M4 I • M6 

！II 广 1 l〈 b i ^ W ^ ^iiJ^Wl； 
L-| r M9 L-| Tmh 

‘M1 I M3 : 丨' M5厂 I M7 

gl-f-pHl!̂  l—IC Ĥ  

⑥ I - '丨 

Vss 

Fig. 3.1 Schematic of gated current mirror transmitter with self-cascode architecture 
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BitO 

B i t l 

4lref 

I 31,ef 

•。ut ~ [ z u 

I 丨 ref 

Fig. 3.2 Illustration of the input and output of the quaternary current more transmitter 

3.4. Power Consumption 

The major power consumption of this current mode transmitter is static power rather than 

dynamic power as in voltage mode transmitter according to the discussion in chapter 2. 

Therefore, when the operating frequency is low, the voltage mode transmitter consumes 

less power than the current mode circuit. However, since the static power consumption of 

the current mode circuit is independent of frequency, thus, the current mode transmitter 

becomes power efficient at high operating frequency [2]. 

3.5. Summary 

This chapter has presented the schematic design and operation principle of the proposed 

gated current mirror, which will be used as a transmitter. The major advantages of the 
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new design are the quaternary output and power consumption is independent of 

frequency [2]. 

3.6. Reference 

[1] W. J. Dally and J. W. Poulton, Digital System Engineering. Cambridge University 

Press, 1998. 

[2] Akira Tanabe, “0.18-)im CMOS 10-Gb/s multiplexer/demultiplexer ICs using 

currentmode logic with tolerance to threshold voltage fluctuation", IEEE J. Solid-

State Circuits, vol. 36，issue 6，pp. 988 - 996，Jun. 2001. 
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4. Receiver Design 

4.1. Introduction 

This chapter proposes a new current mode receiver design as shown in Fig. 4.1. This 

receiver is composed by 4 diode-connected NMOS transistors as current-to-voltage 

converters and three sense amplifiers (comparators). The sense amplifiers are responsible 

for distinguishing the 4 different current levels and convert the quaternary current signal 

back into voltage signal. This chapter will explain the operation principles of the sense 

amplifier and compare the differences between a conventional design and the design of 

this work which uses an isolated differential pair. 

— M e t a l routing | • 

JH 
士 ^ 

VDD VDD VDD A l T i p . — � 

(f Qp ^;;;；7~"一。2一 
ref1 ref2 ref3 _ r e f 2 _ A m p . _ ~ o 2 一 

t T J Su Sense —。3— 

一 J r j r i - i n p u t - ^ m p . 一 一 

丄 丄 丄 一 r e f 3 -
vss vss vss 

Fig. 4.1 Receiver circuit 
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4.2. Conventional Latched-typed Sense Amplifier 

Besides memory applications and logic designs [1]，[2], sense amplifiers are also widely 

used in Flash ADC designs [3]. Fig. 4.2 illustrates the operation principle of a sense 

amplifier. This type of sense amplifier has two phases. In the RESET phase, differential 

outputs are reset to Vdd. In the SET phase, differential output is evaluated. 

When the clock is LOW the comparator is off, and the differential outputs are charged to 

Vdd by M7 and M8. This is the RESET phase of the sense amplifier. The SET phase 

occurs when the clock is HIGH. As both outputs are charged to Vdd, both M3 and M4 are 

on. The two input transistors (M5, M6) act as two voltage control current sources, which 

start to discharge the two output nodes. The difference between INPUT and Ref voltages 

causes different discharging currents. Thus, one of the outputs will discharge at a higher 

rate than the other. 

The two PMOS transistors (Ml, M2) are initially off because of the HIGH outputs. When 

one of the output nodes is discharged to Vdd-Vthp so that Vgsp>Vthp, the corresponding 

PMOS transistor will be switched on. For example, if INPUT is larger than Ref, 

OUTPUT will reach Vdd-Vthp before -OUTPUT, which causes M2 to switch on. The 
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positive feedback across couple inverters latches the outputs [1,2]. In the example above, 

OUTPUT is LOW and �OUTPUT is HIGH. 

, . ^ • • 一 VDD 一 • • “^ . 
z • . ““ 丁 R E S E T P h a s e • . 、 

.• Current Flow •. 

/CLOCK 1 |̂ M7 M 》 h |M2 M ^ | CLOCK \ 

、 • > O U T P U T I , r ^ * j L — * - O U T P U T < • 一 

！ INPUT 1 [m5 w h I Ref . 

\ t S E T P h a s e 

I | J Current Flow for 

、 、 C L O C K 1 [ M 9 INPUT>Ref....z" 

、•••••••> ！1 
vss 

Fig. 4.2 Conventional sense amplifier 

VDD 

mĴL J 1̂2 
Equivalent Model of dk H h j ^ J ^ t J 卜 dk 

preceeding o u t S i j T ^ o u t 
^ . C j r c u i t ^ -• Vdd-Vthn Vdd-Vthn 

I VDD I I \ 、， y j 

； 1 m I i A V z z ： [ r j i i i y 

I ( ^ T J ^ p ^ ~ ^ ^ 叫 

I ( ^ T H ^ I 
Fig. 4.3 Kick-back noise from conventional sense amplifier 
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4.3. Sense Amplifier with Isolated Differential Pair 

Fig. 4.3 illustrates how the kick-back noise is generated in a conventional sense amplifier 

[4] and reflected to the preceding circuit [5]. In a conventional design, a clock transistor 

is placed at the source of the differential pair to stop static current flow during the RESET 

phase. However, this design generates very large kick-back noise as shown in Fig. 4.3. 

We have modified the design by placing the clock transistor at the drain of the 

differential pair as shown in Fig. 4.4. The advantage of this design is smaller kick-back 

noise because the input differential pair is isolated from the large drain voltage swing at a 

cost of one extra clock transistor. 

VDD 

Equivalent Model of elk [ j j 、 H I ^ J 卜 dk 

preceeding o u t ^ i j " f ^ o u t 

----..--.J i 'CFi i i l--•• . . . . . Jr elk ^ Isolation clock 
r VDD ； r K V " 1 I ' F l transistors 
I I ^ T I Clk I J I I L j Clk 

I 广"N 9 I I feedthough - feedthough 

i Jihh i ^ 
i 工 t ^ l h i ^ 

I t r ^ — — 
Fig. 4.4 Sense amplifier with isolated differential pair 

29 



4.4. Power Consumption, Latency and Kick-back Noise Comparison 

between Different Designs 

Fig. 4.5 illustrates the parasitic capacitors of a conventional sense amplifier and the new 

design with isolated differential pair. Only half of the circuit is shown in Fig. 4.5 for 

simplicity because the other half is an exact mirror image of the other half. 

VDD VDD 

clk-J f J 卜 I k 
CLOAD CLOAD I 

output—L| I ^ J —output 

I Cdnln.ln Cgik | 
input H f J h i k 

I CcHc CdTilnjn I 

c i H ^ ^ t J H — t 

vss vss 

(a) (b) 

Fig. 4.5 Comparison of conventional sense amplifier and the one with isolated differential pair 

4.4.1. Comparison on Power Consumption 

We are using a dynamic sense amplifier design which does not consume any static power, 

the only power consumption is dynamic power [6] which is a function of parasitic 

capacitance. The new design has a smaller parasitic capacitance because the differential 

pair transistors are isolated from the cross-coupled inverter by the clock transistor. As 

illustrated in Fig. 4.5，the isolation clock transistor shields the parasitic capacitors Cdrainjn 

30 



of the differential pair from being charged up during the RESET phase. The total 

capacitance of a conventional design in RESET phase is shown in equation 4.3, and the 

total capacitance of the new design is shown in equation 4.4. The new design has less 

capacitance than a conventional design. 

Ctota l = 2 (CLoad + Cdra in . in ) + Q l k ( 4 . 3 ) 

Ctotal = 2 ( C L o a d + C d k ) ( “ ） 

Moreover, since equation (4.4) does not contain Cdrain.in term, the power consumption of 

the new design is less dependent on the aspect ratio of the differential pair. 

Fig. 10.4 shows the waveforms of drain of differential pair of the conventional sense 

amplifier (dotted line) and the new one (solid line) respectively. From this figure, it is 

showed that the voltage variation at the drain is isolated in the new design. On the other 

hand, from Fig. 10.5, the voltage variation at the drain of the isolation clock transistor is 

significantly larger than that of the conventional design. It can be concluded that the 

small-sized isolation clock transistor isolates the large voltage variation so that the power 

consumption required to pre-charge the circuit is significantly reduced. 

4.4.2. Comparison on Latency 

When the sense amplifier is at SET phase, the sensing delay is determined by the current 

difference between the left and the right half of the differential pair. Since the transistors 
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of the differential pair are operating in the saturation region during the SET phase and 

longer channel transistors are used to reduce short channel effect. Therefore, we can 

model the drain current with a simple square law as shown in equation 4.5 

1 W 
^ = 2^nCoxY(ygs-Vtkny (4.5) 

From equation (4.5)，we can reduce the latency by using larger differential pair. However, 

large differential pair will increase the parasitic capacitance, which will compensate the 

effect. We have solved this design paradox problem by placing the clock transistors 

between the cross-coupled inverter and the drains of the differential pair. As stated 

earlier, the clock transistors shield the parasitic capacitance of the differential pair during 

the RESET phase. Therefore, increasing the size of the differential pair will increase the 

drain current and reduce the latency. We can further demonstrate this point by calculating 

the total charges store at these two circuits at the end of RESET phase. The total charge 

accumulated in the conventional sense amplifier illustrated in Fig. 4.5a is shown in 

equation 4.6 

Qtota l = 2CLoadVdd + 2Cdra i n , i n (Vdd 一 V t hn ) + Q l k V c l k ( 4 . 6 ) 

,where Vdk is the voltage at the drain of the clock transistor Cdk. 
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The total charges stored in the sense amplifier with isolated differential pair shown in Fig. 

4.5b is shown in equation 4.7, which is smaller than the conventional design and 

independent of the size of the differential pair. 

Qtotal = 2CLoadVdd + 2Ccik(Vdd 一 Vthn) (4.7) 

Fig. 10.6 verifies the above analysis that the latency of the new sense amplifier (solid line) 

is shorter than that of the conventional one (dotted line). 

4.4.3. Comparison on Kick-back Noise 

Fig. 4.3 illustrates the origin of the kick-back noise in a conventional sense amplifier. In 

the RESET phase, two reset switch transistors Ml and M2 precharge the two outputs to 

Vdd and the drain of the two input transistors to Vdd 一 Vthn. In the SET phase, one of 

outputs discharges to Vss. The large voltage swing at the output node will be coupled 

back to the input though the parasitic capacitor. This disturbance will reduce the accuracy 

of sense amplifier. 

The new design isolates the load and driver of the differential pair. There is no large 

voltage swing at the drains of the differential pair so that the kick-back noise is reduced. 

The only kick-back noise is the clock feed-through appeared at the drain terminals, which 
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couples to the input as shown in Fig. 4.4. The clock feed-through signal is voltage 

divided by the parasitic capacitors and is much smaller than Vdd. 

The kickback noise transient waveform of the conventional sense amplifier is shown in 

Fig. 10.7 and that of the new design is shown in Fig. 10.8. They verify that the kickback 

noise generated from the new sense amplifier is much less than that generated from the 

conventional design. 

4.5. Summary 

This chapter introduces the design and the operation principles of the receiver and the 

sense amplifiers. We have also analyzed the performance difference between a 

conventional sense amplifier and the new design with isolated differential pair. The 

isolation clock transistors act as shields for the differential pair, which prevents the 

differential pair from charging at the RESET phase to reduce kick-back noise. The new 

design also solved the paradox problem between driver size, parasitic capacitance and 

speed of the sense amplifier. 
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5. Inverter Chain 

5.1. Introduction 

In order to compare the performance of the new design, we have built a commonly used 

bus driver circuits as a reference. We will discuss the pros and cons of the inverter chain 

circuits in the following sections. In this chapter, lumped approximation of distributed 

RC wire proposed by [1] is used to model an interconnect. 

5.2. Inverter Chain Based 

A reference circuit which is based on cascading inverter chain is shown in Fig. 5.1. In 

this design, the interconnect is modeled by distributed model, where n is the number of 

stage and k is the scaling factor. The principle of inverter chain based interconnect driver 

is that the size of inverter gradually increases with the same scaling factor until the last 

inverter is capable of driving the long wire load at certain rise and fall time. 

Vin IW Ro/k Ro/k^ K . Ro/k" Rint Vout 

I X k C g k C . X X k ' C g •Ck-'Ca X Gint C。 

Fig. 5.1 Inverter chain based interconnect 
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From [1] and [2], the propagation delay of a wire driven by an inverter can be 

approximately calculated as: 

To = 0.4Ri„tCint + 0.7(RoCint + RQCL + RintCL) (5.1) 

where Rjnt and Cint are the resistance and capacitance of whole length of interconnect. Rq 

and Cl are the output resistance an inverter and loading capacitance respectively. 

From equation (5.1), the total delay can be written as: 

R R 

Ttotai = [o.7Ro(Cd + kCg) + 0.7"j^(kCd + k^Cg) + 0 . 7 ^ ( k 2 C d + k^Cg) + … 

(5.2) 

+ {o.4RintCint 

+ 0-7 + ^ (k "Cd + Co) + R in t (k"Cd + Co)]| 

Since the loading capacitance Co is usually approximately equal to Cg, and is much less 

than k"Cd, it can be ignored. And hence, equation (6.4) can be simplified to: 

Ttotai = [0.7(n - l ) R o ( C d + kCg)； 

rR R (5-3) 
+ |0.4RintCint + 0.7 + + R in t (k "Cd) J 

The optimum scaling factor for standard CMOS technologies is between 3-4. 
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5.3. Summary 

Inverter chain based interconnect method is introduced. From equations (5.2) and (5.3), it 

is found that the inverter chain based technique does not reduce the time constant. 

Therefore, both latency and power consumption increase quadratically with the length of 

the wire. We will use the inverter chain driver circuit as a reference circuit to gage the 

performance of the new design, because it is much easier to emulate a long bus driver and 

receiver system with this technique. 
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6. Layout Techniques 

6.1. Introduction 

Layout is a critical step in the design because it will affect the performance of the circuit. 

We use many modified sense amplifiers in this design, proper matching of the left and 

right half of the differential amplifier is required to reduce the offset error. 

6.2. Two-Dimensional Common Centroid Layout Technique 

In order to reduce the effect of thermal and process linear gradients to the critical circuit 

such as differential pair, common centroid layout technique is widely applied. 

There are four rules of common centroid layout [1]: 

1. Coincidence 

The centroids of the matched devices should coincide at least approximately. 

2. Symmetry 

The array should be symmetric around both X- and Y-axes. 

3. Dispersion 

The segments of each device should be distributed throughout the array uniformly. 

4. Compactness 

The array should be as compact as possible. 
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In the case of a differential pair shown in Fig. 6.1，the two transistors A and B need to be 

matched very well. Each transistor is divided into two halves and they are placed 

diagonally across a central point. 

A and B need 
I 

to match 、、̂ y 
very well \ 八1 B1 y 

: … 牙 … M K\ 
I I , B2| |A2 ’ J 

Fig. 6.1 Illustration of two-dimensional common centroid layout 

Fig. 6.3 shows the layout of Fig. 6.1. The source terminals of transistor A and B are 

connected together, which are routed through the centre of the layout. In order to reduce 

the overlap parasitic capacitance, tilting routings are used in the gate and drain 

connections. 

6.3. Dummy Devices 

To reduce the over-etching effect during fabrication, it is recommended to place dummy 

devices around the transistors [2]. Fig. 6.2 shows the schematic of a differential pair with 

both two-dimensional common centroid technique and dummy devices. There are eight 
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dummy transistors required in a common centroid layout as illustrated in Fig. 6.1. Each 

quarter requires two dummy transistors, one at each end. 

i 
Fig. 6.2 Schematic of a differential pair with dummy devices 

In the layout shown in Fig. 6.3，there are two dummy transistors connected to the two 

ends of each transistor. Since the gates of these dummy transistors are all grounded, they 

do not affect the overall aspect ratio. However, the dummy transistors do increase the 

total parasitic capacitance. 

By extraction, the additional parasitic capacitance of each sense amplifier is 2.58 fF. This 

causes 40 ps additional latency for the new sense amplifier. 
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Fig. 6.3 Example of two-dimensional common centroid layout 

6.4. Summary 

By using common centroid layout technique and dummy devices, the effects of thermal, 

process gradient and over etching are reduced. 

6.5. References 
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7. Simulation Results 

7.1. Introduction 

We have performed a number of different simulations to verify the design. All the 

simulations were simulated with a 3.3V 0.35-|xm CMOS at 1.8V power supply. We will 

present three groups of simulation results. The first group looks at the performance of the 

sense-amplifier. The second group is a whole system simulation of quaternary current 

mode system with conventional and new sense-amplifier designs. The third group is a 

whole system simulation which compares the performance of the new quaternary current 

mode interconnect against the invert chain based interconnect. 

7.2. Simulation of Different Aspect Ratios of Differential Pair 

In this section, we will present the power, delay and kick-back noise simulations of the 

sense amplifier under 100 MHz clock frequency. A conventional design shown in Fig. 

4.2 is used as a reference to gage the performance of the new sense-amplifier with 

isolated differential pair. A simplified schematic diagram of the new sense amplifier is 

shown in Fig. 4.3 and a complete schematic diagram with all the aspect ratio of the 

transistors is shown in Fig. 10.2 in Appendix. 
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Fig. 7.1 is the power simulation at different aspect ratios. As we have discussed in 

Chapter 4，the new design isolates the parasitic capacitance, which reduces the power 

consumption at large aspect ratio. The simulation results demonstrate that the power 

consumption of the new design has a very small dependence on the aspect ratio, while the 

conventional design is linearly dependent to the aspect ratio. 

75 
•^Conventional Sense 

^ 70 . ... Amplifier 

65 - ^ S e n s e Amplifier-with — 
.2 Isolated Differential Pair 
I 60 -
3 5 5 ^ ^ ^ ^ ^ ^ ^ 

I 50 众 QT "Or — 
o 

14/0.7 21/0.7 28/0.7 42/0.7 56/0.7 

Aspect Ratio of Differential Pairs 

Fig. 7.1 Power consumption simulation of different aspect ratios 

From the latency simulation results shown in Fig. 7.2, it is found that the latency of both 

sense amplifiers decrease as the aspect ratio of the differential pair increase. The 

simulation result also shows that the latency of the new sense amplifier is shorter than the 

conventional one because of the smaller parasitic capacitance. 
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Fig. 7.2 Latency simulation of different aspect ratios 

Fig. 7.3 is the kick-back noise simulation at different aspect ratios, which shows the kick-

back noise of the new design has a smaller dependence on the aspect ratio as we have 

discussed in Chapter 4. On the contrary, the conventional design has a linear dependence 

on the aspect ratio. 
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Fig. 7.3 Kick-back noise level simulation of different aspect ratio 

The above simulations results verify the theoretical analysis in section 4.4 that the 

isolation clock transistors effectively shield the differential pair from charging at the 

RESET phase and prevent a large voltage variation at the drain terminals of the 

differential pair. 

7.3. System Level Simulation with Different Sense-amplifiers 

We have preformed system level simulation of the quaternary current mode bus driver 

and receiver system. This simulation is to verify the performance and maximum 

operating speed of the design. Two different systems are simulated, one with 

conventional sense-amplifier and one with the new sense amplifier design. A 500 

)j.m long wire is used as the bus, which is modeled with a distributed Ti-model. The 
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complete schematic diagrams of these two systems are shown in Fig. 10.9 in Appendix. 

Fig. 7.4 shows the power simulation results of these two systems, both systems have 

shown power consumption which increases linearly as a function of the data rate. 

However, the new sense-amplifier system consumes less power and operates under 

higher data rate because of the shielding effect of the isolation transistors, which we have 

discussed in Chapter 4. 

一 300 n 
I ^ 
I f 250 
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Data Rate (Mb/s) 
^ H F i s t Design: Receiver Using Conventional Sense Amplifier 

• ^ S e n c o n d Design: Receiver Using Sense Amplifier wi th Isolated Differential Pair 

Fig. 7.4 Power consumption simulation result of system with different sense amplifier under different data rate 

7.4. System Level Simulation at Different Data Rate 

Two different systems are simulated: one is a conventional inverter chain driver system 

which is used as a reference and the other one is the new quaternary current mode system. 
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The schematic diagram of the inverter chain test system is shown in Fig. 10.10 in 

Appendix and the quaternary current mode system is the same as the one with isolated 

differential pair sense amplifier. Since the inverter chain driver system is binary, we have 

to multiply the simulated power consumption by 2 to match the data rate of the 

quaternary current mode system. 
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一 450 - q — — 

400 ^ ^ 

I 350 Jgr^ 
Q, 鏖 . ^ ^ 

I 300 ； ^ ^ 
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0 4 - 1 1 1 1 ； 1 1 1 1 
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" O ' S i m u l a t i o n of Proposed Design (Driver + Receiver) S imulat ion of Inverter Chain 

Fig. 7.5 Power consumption simulation result of two interconnect system under different data rate 

The simulation results shown in Fig. 7.5 indicate that the new design is more power 

efficient at high data rate as we have predicated in Chapter 4. At 200 Mb/s, the new 

design consumes around 40% less power than the conventional inverter chain system. 
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7.5. Summary 

The simulation results have demonstrated that the new sense-amplifier design has a 

significant improvement on power consumption, speed and kick-back noise compared to 

the conventional design. Moreover, system level simulation results indicate that the new 

quaternary current mode system is more power efficient when operating at high data rate. 
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8. Measurement Results 

8.1. Introduction 

We have designed and fabricated three test chips to verify the new design. The simulation 

results of the three test chips are presented in Chapter 7 and the schematic diagrams are 

listed in Appendix. All the test chips were fabricated with a 3.3V 0.35-|Lim CMOS 

process at Austria Microsystems. 

8.2. Experimental Setup 

8.2.1. Testing Chips 

The three test chips are: quaternary current mode using conventional sense -amplifier, 

quaternary current mode using isolated differential pair sense-amplifier, and conventional 

inverter chain driver. The microphotographs of these three test chips are shown in Fig. 

8.1-8.3. All three test chips have a Metal 1, 1 fxm wide and 500 nm long wire connected 

the driver and receiver. The two quaternary test chips have identical transmitter, which 

occupies an area of 50 |im x 40|xm. The receiver of first chip，which uses conventional 

sense amplifier as comparator has an area off 155 |im x 155 fjrn and the receiver of 

second chip, which uses the new sense amplifier has an area of 160 x 155 |Lim. 
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Fig. 8.1 Interconnect using conventional sense amplifier as comparator 
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Fig. 8.2 Interconnect using sense amplifier with isolated differential pair as comparator 
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Fig. 8.3 Interconnect using inverter chain 

8.2.2. Equipments Setup 

Agilent Technologies 16720A Pattern Generator was used to generate binary inputs to the 

test circuits and LeCroy Waverunner 6100A IGHz Oscilloscope was used to monitor the 

outputs of the receiver. Fig. 8.4 illustrates the block diagram of the measurement setup. 

iJifirLTLiSl n jTT /CTN • • 

B g v vQgg 
Pattern Generator Oscilloscope 

Fig. 8.4 Block diagram of measurement setup 
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All the measurements were performed at a 1.8V voltage supply. The reference current 

Iref is 12 ̂ A and the four internally generated current steps are 12 [lA, 24 j^A, 36 |xA, and 

48 |xA. 

8.3. Measurement Results 

The measured power consumption (transmitter and receiver) of the two quaternary 

current mode test chips are shown in Fig. 8.5. The measured results agree quite well with 

the simulation results presented in Chapter 7. Table 8.1 summarized the measurement 

results of these two test chips. 
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Fig. 8.5 Power consumption measurement of quaternary current mode interconnect 
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TABLE 8.1 Measurement Results 

First Design Second Design 

Process 3.3V 0.35 urn 3.3V 0.35 urn 

Power Supply U V i T v 

Maximum Data Rate 150 Mb/s 200 Mb/s 

Transmitter Power Consumption at 150 Mb/s 78 75 ^W 

Receiver Power Consumption at 150 Mb/s 195 |aW 167 |iW 

Total Power Consumption at 150 Mb/s 273 |aW 242 ^W 

Delay (Including Output Buffer by measurement) 6 ns 5.3 ns 

Delay (Excluding Output Buffer by Subtraction) 1.8 ns 1.1 ns 

The first test chip with conventional sense amplifier has a maximum data rate of 150 

Mb/s and the second test chip with the new sense-amplifier has a maximum data rate of 

200 Mb/s. The 25% increase in data rate is a result of the new isolated differential pair 

sense-amplifier, which reduces the kick-back noise and latency. This is because the sense 

amplifier with isolated differential pair in the second chip provides better kick-back noise 

isolation that that in the first chip. Moreover, the test chip with the new sense-amplifier 

also has lower power consumption and delay. 
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The second measurement compares the power consumption of the new quaternary current 

system with an inverter chain reference circuits. The measured propagation delay of the 

new quaternary current system is 1.1ns and that of the inverter chain based one is 1.3ns. 

The measured results shown in Fig. 8.6 agree with the simulation shown in Fig. 7.5. The 

new quaternary current mode system is more power efficient at high data rate than the 

reference system. 
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Fig. 8.6 Measurement result of relationship between power consumption and data rate 
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8.4. Summary 

The measurement results agree quite well with the simulation results presented in Chapter 

7. We can conclude that the new quaternary current mode system using the new sense -

amplifier design is more power efficient to drive long interconnect at high data rate. 
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9. Conclusion 

9.1. Author's Contributions 

This thesis presents the design of a new quaternary current mode bus driver and receiver 

circuits. One of the main features of this design is to reduce number of interconnection 

wires by half using quaternary logic. 

We have designed and fabricated three test systems to verify the new design. The 

measurement results indicated that the new sense amplifier is more efficient than 

conventional sense-amplifier. It generates less kick-back noise and consumes less power 

than the old design. Moreover, the new sense-amplifier design has increased the data rate 

from 150Mb/s to 200 Mb/s. 

We have also designed and built a conventional inverter chain driver and receiver 

circuits as a reference to benchmark the performance of the new design. The 

measurement results indicate that the new design consumes less power at high speed. 

However, the new design loses the power consumption advantage at low speed operation 

because of the added circuit complexity of the new design. 
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9.2. Future Works 

We have demonstrated in this work that there are significant advantages of using 

quaternary logic in bus driver and receiver circuits. It will be interesting to carry this 

research to a higher multi-level logic such as six or eight levels. 
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10. Appendix 
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Fip. 10.1 Complete schematic of the current mode transmitter 
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Fig. 10.2 Complete schematic of the conventional sense amplifier (A) and sense amplifier with isolated differential pair (B) 
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Fig. 10.4 Transient Waveforms of the Drain of Differential Pairs 
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Fig. 10.5 Transient Waveforms of the Drain of Clock Transistors 
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IĵT̂lgonventfonal Sonsa Amptlfler | 

0 .06 - -

0.04 - • 

I 

i j I i 

: r r r r r r r n 
•0.061 1 , I _ 

i _ I r 
^ 

Time ⑷ 2.4 i l ^g 

X10.' 

0 0251 

� ——•——. 
。《 — I — 

o.ots - “ 

I o.oi I I I I -

uitttty 
〜， “ ^ ^ 1 

*，o•， 

62 



500 \im meta l Rou t i ng 

入 
广 l̂ m ^ ^ 

A 
ISOmn , ISOmn 、 150mn ISOmO 

in"V\Ar3rV\Arir nrAAArzrAAArin-

Ti40«F 丁260aF 玉260»F 玉280«F T z S O i F 否 40.F 

^ v 
• Metal routing | | | 

#'。.7 L 一 " I ^ 1 一 
^ VDD VDD VDD .. Amplifier —oi— 

^！^ Current Mode ib^aT jo^aT 42̂ A;r 1 
Tra_i"er ( | ) (^1) ® sense 

X I r X -ref2-| Amplifier | _ 0 2 — 

^ ^ ^ Sense — 

i L i L # 7 ~ Amplifier — 

vss vss vss 

Fig. 10.9 Complete schematic of the proposed current mode interconnect 
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