
GPU-Friendly Marching Cubes

XIE, Yongming

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Master of Philosophy
in

Computer Science and Engineering

� T h e Chinese University of Hong Kong
April 2008

The Chinese University of Hong Kong holds the copyright of this thesis. Any
person(s) intending to use a part or whole of the materials in the thesis in
a proposed publication must seek copyright release from the Dean of the
Graduate School.

Iff » I

泣宏：:々空％ U j i

Thesis/Assessment Committee
Professor LEUNG Kwong Sak(Chair)
Professor HENG Pheng Ann (Thesis Supervisor)
Professor WONG Tien Tsin (Committee Member)
Professor Wu En Hua(External Examiner)

Abstract of thesis entitled:
GPU-Friendly Marching Cubes

. Submitted by XIE, Yongming
for the degree of Master of Philosophy
at The Chinese University of Hong Kong in February 2008

Marching cubes has long been employed as a standard indi-
rect volume rendering approach to extract isosurfaces from 3D
volumetric data. This thesis presents a GPU-friendly MC im-
plementation. Besides the cell indexing, we propose to calculate
vertex and normal interpolations by precomputing the expensive
equations and looking up these values during runtime. Upon a
commodity Graphics processing unit (GPU), our implementa-
tion can rapidly extract isosurfaces from a high-resolution vol-
ume and render the result. With the proposed parallel march-
ing cubes algorithm, we can naturally generate layer-structured
triangles, which facilitate the visibility-correct visualization of
multiple-layer translucent isosurfaces without performing com-
putational expensive sorting. The algorithm extracts and draws
triangles, in a layer by layer fashion, from back to front. With
the painters algorithm, the visibility of multi-layer translucent
isosurfaces is resolved naturally.

i

論文摘要

Marching cubes (MC)作爲一種間接的標準體總製途徑，長

期以來被用于三維的體數據表面抽取。在這篇論文中，我們

報告了一種利用圖像硬件加速MC表面抽取與繪製。首先我

們對費時的計算預先處理，在MC單元索引的時，根據預先

處理結果對所需要的點位置與法綫進行錢性的插値進行查

値計算。在一個通用的圖像處理上，我們提升了從高分辨率

的體數據中表面抽取的速度與渲染的結果。在我們報告的

方法中，我們可以隨意的獲取層狀結構的三角形，不需要對

這些三角形進行排序就可以得到一個正確的透明的結果，同

時還可以進行多層次的透明繪製。這個方法采用了從後面到

前面一層一層的繪製，這樣就可以得到正確的透明總製結

果，通過這樣總畫的方法，多層次的表面透明可以得到自然

的解决。

Acknowledgement

First, I would like to thank my supervisor Dr. HENG Pheng
Ann，who has patiently guided me through three years of my
M.Phil. study. Without his encouragement and guidance I could
not finish my research. I would also like to thank my thesis com-
mittee, Dr. WONG Tien Tsin, Dr. LEUNG Kwong Sak and Dr.
WU En Hua. Dr. LEUNG Kwong Sak and Dr.WONG Tien Tsin
have been my markers many times and given me many useful ad-
vices on my research work. I want to thank my colleague,WANG
Guangyu，who always gave me valuable advise and encourage
when I felt frustrated with my research. I would like to thank
my dear friends in CUHK. The life with you will be part of my
memory. Finally, I would like to express my deepest gratitude
to my family, your love is the most importance for me. The
work described in the thesis was substantially supported by a
grant from the Research Grant Council of the Hongkong Special
Administrative Region, China. (Project No.CUHK 4461/05M)

ii

Contents

Abstract i

Acknowledgement ii

1 Introduction 1
1.1 Isosurfaces 1
1.2 Graphics Processing Unit 2
1.3 Objective 3
1.4 Contribution 3
1.5 Thesis Organization 4

2 Marching Cubes 5
2.1 Introduction 5
2.2 Marching Cubes Algorithm 7
2.3 Triangulated Cube Configuration Table 12
2.4 Summary 16

3 Graphics Processing Unit 18
3.1 Introduction 18
3.2 History of Graphics Processing Unit 19

3.2.1 First Generation GPU 20
3.2.2 Second Generation GPU 20
3.2.3 Third Generation GPU 20
3.2.4 Fourth Generation GPU 21

3.3 The Graphics Pipelining 21

iii

3.3.1 Standard Graphics Pipeline 21
3.3.2 Programmable Graphics Pipeline 23
3.3.3 Vertex Processors 25
3.3.4 Fragment Processors 26
3.3.5 Frame Buffer Operations 28

3.4 GPU CPU Analogy 31
3.4.1 Memory Architecture 31
3.4.2 Processing Model 32
3.4.3 Limitation of GPU 33
3.4.4 Input and Output 34
3.4.5 Data Readback 34
3.4.6 FramebufFer 34

3.5 Summary 35

4 Volume Rendering 37
4.1 Introduction 37
4.2 History of Volume Rendering 38
4.3 Hardware Accelerated Volume Rendering 40

4.3.1 Hardware Acceleration Volume Rendering
Methods 41

4.3.2 Proxy Geometry 42
4.3.3 Object-Aligned Slicing 43
4.3.4 View-Aligned Slicing 45

4.4 Summary 48

5 GPU-Friendly Marching Cubes 49
5.1 Introduction 49
5.2 Previous Work 50
5.3 Traditional Method 52

5.3.1 Scalar Volume Data 53
5.3.2 Isosurface Extraction 53
5.3.3 Flow Chart 54
5.3.4 Transparent Isosurfaces 56

iv

5.4 Our Method 56
5.4.1 Cell Selection 59
5.4.2 Vertex Labeling 61
5.4.3 Cell Indexing 62
5.4.4 Interpolation 65

5.5 Rendering Translucent Isosurfaces 67
5.6 Implementation and Results 69

5.7 Summary 74

6 Conclusion 76

Bibliography 77

V

List of Figures

2.1 Some basic conceptions of Marching Cubes algo-
rithm 5

2.2 Each vertex is inside or outside the surface. Ver-
tex is 0 when it is outside the surface; and 1 when
it is inside the surface 6

2.3 Each vertex is inside or outside the surface. Ver-
tex is 0 when it is outside the surface; and 1 when
it is inside the surface 8

2.4 Vertex Index k Edge Index 8
2.5 Four Slices 9
2.6 Creates a cube from four neighbors 9
2.7 Calculate an index for the cube 9
2.8 Look up the list of edges from a table 10
2.9 Triangle table 10
2.10 Interpolation vertex position 11
2.11 Interpolation normal 11
2.12 Pattern 0 12
2.13 Pattern 1 12
2.14 Pattern 2 13
2.15 Pattern 3 13
2.16 Pattern 4 13
2.17 Pattern 5 13
2.18 Pattern 6 14
2.19 Pattern 7 14
2.20 Pattern 8 14

vi

2.21 Pattern 9 14
2.22 Pattern 10 15
2.23 Pattern 11 15
2.24 Pattern 12 15
2.25 Pattern 13 15
2.26 Pattern 14 16

3.1 Graphics Pipeline 22
3.2 Programmable Graphics Pipeline 24
3.3 Procedure of fragment processor 27
3.4 Fragment Shading 29

4.1 Object-Aligned Slicing 44
4.2 Choose the stack with slices most parallel to the

screen plane 45
4.3 Visible artifacts caused by switching of the stacks 45
4.4 View-Aligned Slicing 46
4.5 Parallel projection and perspective projection . . 47

5.1 CPU Flow Chart 55
5.2 Artifacts from the rendering 57
5.3 GPU Flow Chart 58
5.4 Cell Selection 60
5.5 Cell Selection Hash Table 61
5.6 Labeling 62
5.7 Lookup 63
5.8 Index 64
5.9 Interpolation 65
5.10 Interpolation 65
5.11 Interpolation lookup table 67
5.12 Rendering 68
5.13 Translucency 70
5.14 Translucent isosurfaces 71

vii

5.15 Rendering results of multi-layer translucent iso-
surfaces 72

5.16 Rendering results of multi-layer translucent iso-
surfaces 72

5.17 rendered result of "sphere" with 3 isosurfaces. . . 72
5.18 The top viewing directions of the data "head". . . 73
5.19 The front viewing directions of the data "head" . 73
5.20 The top view of "fuel" 74
5.21 The front view of "engine" 74

viii

List of Tables

5.1 Statistics including all processes 70
5.2 Statistics of rendering translucent isosurfaces . . . 75

ix

Chapter 1

Introduction

Our research aims at proposing algorithm that can rapidly ex-
tract and render isosurfaces from high-resolution 3D volume
data as well as correctly visualize multiple layers of translucent
isosurfaces, without sorting

1.1 Isosurfaces

Isosurfaces are normally displayed by computer graphics, and
are usually used as data visualization methods to allow us to
study features of a volume object. Isosurfaces tend to be a pop-
ular form of visualization for volume datasets since they can be
rendered by a simple triangular model, which can be drawn on
the screen very quickly. In medical imaging, isosurfaces may be
used to represent regions of a particular density in a three di-
mensional CT scan, allowing the visualization of internal organs,
tissue, or other structures. Isosurfaces also have been widely
adopted to reveal the complex structures in medical and scien-
tific volume data because of its fine visual quality. Visualizing
multiple layers of translucent isosurfaces (normally represented
as triangles) not just generates high-quality rendering results,
but also allows viewers to better understand the relationship
among internal structures . However, visibility-correct visualiza-

1

CHAPTER 1. INTRODUCTION 2

tion of multiple translucent isosurfaces imposes a lot of difficul-
ties. For example, standard depth-buffering alone cannot resolve
the visibility of overlapped translucent triangles. On the other
hand, extracted triangles can be sorted by depth sorting or bi-
nary space partitioning (BSP) based visibility sorting in order to
generate a correct drawing order. In other words, computational
expensive sorting has to be performed whenever the viewpoint
changes. In this thesis, we propose a GPU-friendly isosurface
extraction method that facilitates the visibility-correct visual-
ization of multiple layers of translucent isosurfaces. Instead of
performing visibility sorting, triangles are drawn from the back
to front in a layer-by-layer fashion, i.e. the painter's algorithm.

1.2 Graphics Processing Unit

As technology advances, graphics cards become fully programmable,
which support rendering and computing. With the rapid progress
in Graphics processing unit (GPU), various applications associ-
ated with computer graphics advance greatly. At the same time,
the processing power, parallelism and programmability avail-
able on the current GPU provide an ideal platform for general-
purpose computation such as algebraic computation, Nowadays,
while a 3.0 GHz Pentium IV can perform 6 Gflops in theory, a
GeForce 7800 GPU by NVIDIA gives a performance up to 313
Gflops. In this thesis, we will demonstrate that GPU can do
more than just rendering, our approach will exploits OpenGL
framebuffer object [62] to store the rendered texture and/or
transfer it from GPU framebuffer to CPU memory. The par-
allelism makes it be a fast platform for many computer graphic
problems as well as other general computational questions. How-
ever, there are limitations on GPU for its stream programming
model. This motivates us to rethink how we solve certain prob-
lems. As GPUs continue to grow at a rapid pace, it is likely

CHAPTER 1. INTRODUCTION 3

that GPU is becoming a mainstream for general-purpose com-
putation.

1.3 Objective

The objective of this thesis is to propose a GPU-friendly MC
algorithm to speedup the extraction and rendering of isosur-
faces. The proposed algorithm can rapidly extract and render
isosurfaces from high-resolution volume data. In addition, this
algorithm can correctly visualize multiple layers of translucent
isosurfaces, without sorting.

1.4 Contribution

In this thesis, we proposed a algorithm that can rapidly extract
and render isosurfaces from high-resolution 3D volume data.
Our framework can be trivially modified to implement a wide
range of MC variants. With this framework, we can correctly
visualize multiple layers of translucent isosurfaces, without sort-
ing. The proposed framework ensures the extracted triangles
are drawn in a correct order, from back to front, according to
the viewing direction. The extracted geometry is stored in GPU
memory and they can be transferred to main memory for further
processing. Given the geometry, many other interesting applica-
tions can be developed. In addition, this approach allows us to
visualize the complex translucent isosurfaces in real time. The
layer-structured triangles are directly generated by the proposed
GPU-based isosurface extractor according to the user-specified
isovalues.

CHAPTER 1. INTRODUCTION 4

1.5 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, the
theory and general framework of MC algorithm are described.
Chapter 3 depicts the history of GPUs, the processing pipeline
of GPUs, and their limitations. In Chapter 4, we give a detailed
introduction of existing volume rendering techniques. In Chap-
ter 5,we present the general framework to allow MC algorithm
to be executed on GPU. In addition, an advanced algorithm for
GPU implementation of visualizing multiple layers of translu-
cent isosurfaces is described in detail. Finally, conclusions are
given in Chapter 6.

• End of chapter.

Chapter 2

Marching Cubes

2.1 Introduction

The Marching Cubes algorithm [44] is a famous technique for
extracting isosurface from 3D volumetric data. It was originally
developed by Lorensen and Cline in 1987. Before applying the
Marching Cubes algorithm (MC)to extract and reconstruct 3D
surface, the volume data should to be partitioned into cubes.
Before introducing the algorithm, we list some basic conceptions
in Figure 2.1.

Cube The volume defined by eight neighboring
points

Vertex The pixel values at the eight comer points
of the cube

Face One of the six sides of a cube
Edge One of the four rims of a face
Isosurface All points within the cube with equal

property
Isovalue The value of the material property

Figure 2.1: Some basic conceptions of Marching Cubes algorithm.

The basic principle is as follows. We can define a cube by
eight voxels volume elements at the corner of cube and sub-
divide the whole volume into a series of small cubes [69]. If

5

CHAPTER 2. MARCHING CUBES 6

one or more voxels of a cube have values less than the isovalue,
which is user-specified and represents the interesting material
property. And one or more have values greater than this value;
the voxel must contribute some components of the isosurface.
By determining which edges of the cube are intersected by the
isosurface, a surface of up to four triangles is placed inside the
cube. Then the algorithm "marches" on to the small cube in
next scan line order. The Marching Cubes algorithm identifies
256 configurations for the cube, depending on whether the eight
vertices are inside or outside the object. As shown Figure 2.2,
the blue points are inside the object, and red points are outside
the object. Three triangles are inserted into the current cube to
separate the blue ones and the red ones.

Cube
Vertex

^ '
l ^ W p l — — i s o s u r f a c e

� _ i | i i l _ ——Face

Figure 2.2: Each vertex is inside or outside the surface. Vertex is 0 when it
is outside the surface; and 1 when it is inside the surface..

Marching Cubes algorithm uses linear interpolation between
voxel values to compute the location of the triangle's vertices.
The result of all cubes in this way is a collection of surface, which
approximate the shape of the isosurface. Based on its original
conception, the Marching Cubes algorithm has been the subject
of much further research to improve the quality of its surface
representation and performance on large data sets. The advan-
tage of the Marching Cubes algorithm is that the resulting tri-

CHAPTER 2. MARCHING CUBES 7

angle model can be displayed by standard rendering algorithms
on the traditional graphics card. It uses information from the
original 3D volume data to derive inter-voxel connectivity, sur-
face location, and surface gradient. In addition, because the
algorithm uses a case table of the edge intersections to describe
how a surface cuts through each cube, the time performance of
this algorithm is well, which is an important factor for realtime
applications.

2.2 Marching Cubes Algorithm

Volumetric datasets are generally organized as 3D rectilinear
grids with a scalar value stored at each grid point. The algorithm
uses a divide-and-conquer approach to locate the surface in a
logical cube created from eight pixels [44]; four each from two
adjacent slices as shown in Figure 2.3. The algorithm marches
each of the cubes in the volumetric datasets. The algorithm
determines how the surface intersects this cube, then marches
to the next cube. The pixel is assigned to a cube's vertex if the
data value at that vertex exceeds (or equals) the value of the
surface are constructed. These vertices are in or on the surface.
Cube vertices with values below the surface and are outside
the surface. The surface intersects those cube edges where one
vertex is outside the surface. To test the corner points, and to
replace the cube with appropriate set of polygons, the set of
polygons of this algorithm are decided how to define the edge
configuration and triangle configuration.

Vertex index of 0-7 vertices and Edge index of 0-11 edges of
each cube are indexed as shown in Figure 2.4.

The algorithm proceeds as follows:
Inputs are the threshold value and structured volumetric data

set. Output is a triangle mesh which is an approximation of iso-
surface. Main steps: Cell construction from given volume data;

CHAPTER 2. MARCHING CUBES 8

^ ^

Slice -

Slice K ^ ^ v o "̂；；：：̂

vO (i,j,K) v l (i+l,j,K) v2 (i+l,j+l,K) v3(i+l,j,K)

v4 (i,j,K+l) v5 (i+l,j,K+l) v6 (i+l,j+l,K+l) v7 (i+l,j,K+l)

Figure 2.3: Each vertex is inside or outside the surface. Vertex is 0 when it
is outside the surface; and 1 when it is inside the surface..

I leu elO
I I

e8 e9

Z Z
vO vl eO

Vertex Index Edge Index

Figure 2.4: Vertex Index k Edge Index.

Comparison of 8 cube's vertices with threshold value; Index into
triangle table creation (0-255); Normal vectors approximation
in cube's vertices; Use of index to find all intersected edges of
actual cube; Triangle vertices approximation at all intersected
edges; Normal vectors approximation in triangle vertices.

Here we introduce the details of method.
1. Read four neighboring slices into memory as shown in

Figure 2.5
2. The algorithm subdivides the whole volume into a series

of cubes, and creates a cube from four neighbors on one slice
and four neighbors on the next slice as shown in Figure 2.6.

3. The cube's vertices are classified surface value (1 for inside

CHAPTER 2. MARCHING CUBES 9

y z z z

y y y y

Figure 2.5: Four Slices.

^^
Z

Slice - - 7 T ~ ~

Slice ^ v o Z

Figure 2.6: Creates a cube from four neighbors.

and 0 for outside vertices). By grouping these bits together in
a specific order, the cube's index is calculated by the grouping
these bits, we obtain a configuration type index (a value between
0 and 255) as shown in Figure 2.7.

vO vl

Configuration type index: 1 0 1 1 0 0 1 1 = 179

Figure 2.7: Calculate an index for the cube.

4. Use the index as a pointer into a 256-entry edge table,
we look up the list of edges from a table, which is used to tell

CHAPTER 2. MARCHING CUBES 10

which edges of the cube intersect the surface. Here, 1 means
there is an intersection on the corresponding edge as shown in
Figure 2.8.

5.The triangles of each configuration is stored in a 256 entry
triangle table. For example, the triple's index (0, 3, 6) means
that the vertices of this triangle lie on the cube edges eO, e3 and
e6 in this order. Figure 2.9.

lell elO
e8 e9

• io
•0 鲁 1 鲁2 鲁3 _4 _ 5 _ 6 書7 •9 鲁 1 0 _ 1 1

Edge table (entry 179): | i | i | o | o | o | i | o | i | i | o | o | o

Figure 2.8: Look up the list of edges from a table.

麵
vO eO VI

Triangle table (entry 179): 0 ,1 ,7 ,1 ,5 ,7 ,0 ,7 ,8
Figure 2.9: Triangle table.

6. For each edge in the edge table, find vertex intersection
position by linear interpolation as shown in Figure 2.10.

CHAPTER 2. MARCHING CUBES 11

W - f 叫
！ u 丨 1 - U ！

‘ I I
Interpolate surface intersection along each edge:

VO - Vi u =
VO - VI

Vi = VO*(l-u)+Vl*u
Figure 2.10: Interpol妳on vertex positi<^|i.

卞 叫
I U ！ 1-U ：

‘ I I
Calculate normal for each cube vertex:

Gx(i,W = DO�l,j'l<) - DQ-lj-k)
Ax

D(iJ+l,k) - D(i,j-l,k)
Gyo']'k) = ^

Gz(i.W = D(UMl)

Interpolate the normals at the vertices of the triangles:

nl = gO*{l-u)+gl*u

Figure 2.11: Interpolation normal.

CHAPTER 2. MARCHING CUBES 12

7. Calculate a normal at each cube's vertex and interpolate a
normal to each triangle's vertex. For each vertex, find the vertex
normal from the gradient of the data values by interpolation as
shown in Figure 2.11.

2.3 Triangulated Cube Configuration Table

To simplify the algorithm, these 256 cases can be reduced to 15
patterns by rotation, mirroring, and inversion shows. Because
there are eight vertices and two states (inside and outside of the
isosurface), in each cube there are only 2® = 256 possibilities of
triangulated cube configuration that the isosurface can intersect
the cube. The triangulation for the 15 patterns are listed, as
follows:

Pattern 0

z p v

n 4.1. 1 Figure 2.12:
Pattern 1 ^

y Rotation ： Cl, C2, C4, C8, C16, C32, C64, C128

Inverse： C127, C223, C239, C191, C247, C251, C253, C254

Figure 2.13:

CHAPTER 2. MARCHING CUBES 13

Pattern 2

/I 71 Rotation： C12, C9, C3,C6, C192, C144, C48, C96, C17, C34,
Z / C68, C136

Inverse: C63, c m , C119, C187, C159, C207, C22I, C238,
^ \ C243, C246, C249, C252

n � Figure 2.14:
Pattern 3 ^
/ ~y\ 3(a)Rotation： C72, C36, C18, C129, C132, C66, C33, C24, C5,

/ CIO, C80, C160

\ 3 (b) R 0 t a t i 0 n ： C95, C126, C175, C183, C189, C219, C222, C231,
V \ C123, C237, C245, C250

^ ^ . Figure 2.15:
Pattern 4 ^

Inverse : ci90, C2i5, C235, C125

“ r- Figure 2.16:

Pattern 5
y 1 Rotation： C164, ess, Ciei, C82, C26, C37, C74, C133

Inverse : ci73, cisi, C2i8, C229, C9i, C94, C122, cie?

Figure 2.17:

CHAPTER 2. MARCHING CUBES 14

Pattern 6

/ 71 Rotation ： Zl, Cll, C14, C13, c m , C176, C224, C208, C98,
/ / C196, C152, C49, C19, C25, C35, C38, C50, C70, C76, ClOO,
: r C137, C140, C145, C200

/ Inverse ： C31, C47, ess, C59, C79, C103, C115, Clio, C118,
/ J S ^ C143, C155, C157, C179, C185, C205, C206, C217, C220, C230,

-9 C236, C241, C242, C244, C248

Pattern 7 Figure 2.18:

/ ^ ^ ^ ^ 7(a)Rotation： C44, C73, C131, C22, C194, C148, C56, C97, C81,
/ J><A C162, C84, C168, C52, C67, C69, C104, C134, C138, C146, C193

7(b)Rotation： C61, C62, C87, C93, C107, C109, C117, C121,
r V C124, C151, C158, C171, C174, C182, C186, C188, C199, C203,
\ y C211, C233, C234, C213, C214, C227

Pattern 8 Pigure 2.19：

y / Rotation: C15, C102, C51

Inverse : C153, C204, C240

. . ^ Figure 2.20:
Pattern 9 ^

>/| Rotation: C90, C165

\ J /7 Inverse :

Figure 2.17:

CHAPTER 2. MARCHING CUBES 15

Pattern 10

A^'-'yW A Rotation: C27, C39, C78, C141

l / / y/\ Inverse ： C114, C177, C216, C228

n LL “ Figure 2.22:
Pattern 11

/I Rotation: C170, C60, C105

I

/ j Inverse : ess, ci95, ciso

LL - , Figure 2.23:

Pattern 12 ^
y] 71 Rotation： C135, C75, C30, C45, C120, C180,

/ T M / C225, C210, C53, C58, C83, C86, C89, 92, C lO l , C106, C149,
Y / 〉 { C154, C163, C166, C169, C172, C197, C202
1 / ~7 Inverse :

� L L - � Figure 2.24:
Pattern 13 ^

71 Rotation ： C23, C46, C29, C54, C57, C71, C77, C99, C108,
Z ^ ^ ^ ^ ^ C116, C113, C43

\ / y I nve rse ： CC232, C209, C226, C201, C198, C184, C178, C156,
\ / / C147, C142, C139, C212

Uw
Figure 2.25:

CHAPTER 2. MARCHING CUBES 16

Pattern 14

Z T V '

Figure 2.26:

2.4 Summary

Although MC algorithm has achieved great success in isosurface
extraction and reconstruction, but has many problems: The one
is the hole problem. This problem is caused by ambiguities in
approximate the surface. This has been solved by Wilhelms and
Van Gelder [72]. The second problem is about it's performance:
the MC's performance has been improved by using octree to
reduce the number of cubes traversed in Wilhelms and Van
Gelder [73]. Other shortcomings of the original Marching Cubes
algorithm include triangle quality, and large number of triangles
generated. However, many basic MC smoothing techniques fail
to eliminate terracing because their local neighborhood does not
encompass the width of the terrace; and smoothing a mesh with-
out consideration of the original data may smooth away crucial
fine details as well as mesh generation artifacts.

However, the MC algorithm is still not adequate for inter-
active manipulation of 3D surfaces reconstructed from high-
resolution data sets. Nowadays, in favor of the programmable
function pipeline on the current GPUs, fully programmable par-
allel geometry and fragment units are available, via high level
shading languages. In addition to computational functionality,
fragment units also provide an effective memory interface to
server-side data, i.e. texture buffer. In this work, we propose a

CHAPTER 2. MARCHING CUBES 17

GPU-based Marching Cubes algorithm, which can speedup the
time performance as well as avoid some disadvantages.

• End of chapter.

Chapter 3

Graphics Processing Unit

3.1 Introduction

With the rapid progress in Graphics processing unit (GPU),
various applications associated with computer graphics advance
greatly. At the same time, the processing power, parallelism
and programmability available on the current GPU provide an
ideal platform for general-purpose computation such as alge-
braic computation, database operations and spectrum analysis.
Starting from an introduction to the development history and
the architecture of GPU, the technical fundamentals of GPU
are described in this section. Some limitations of current GPU
are also discussed. Many companies designed specialized and
expensive graphics accelerator for transformation, rotation, il-
lumination, rendering and texture mapping which are compu-
tationally intensive but necessary for almost all applications
of computer graphics. In addition, these hardware are tailor
made for ordinary fixed graphics pipeline. Therefore, they can
only provide limited programming flexibility. Nowadays, the de-
mand of graphics power is increasing. The primeval concept of
graphics acceleration no longer meets the requirements. Conse-
quently, programmable Graphics Processing Unit (GPU) is in-
troduced. The key difference between such GPU and traditional
graphic accelerator is the graphics hardware pipeline is broken

18

CHAPTER 3. GRAPHICS PROCESSING UNIT 19

from its hardwired elements into programmable pipelined pro-
cessors [20]. The first impact of GPU is the realtime detailed and
realistic cinematic graphics rendering. However, the user-level
accessible parallel computation is the most important advantage
we can perceive from programmable GPU. We can foresee that
the power of parallel processing of GPU should be helpful for
many complicated computational problem.

3.2 History of Graphics Processing Unit

Modern GPUs were designed from the monolithic graphics chips
of the late 1970s and 1980s. At that time, a lot of chips are
integrated together to handle complex computer graphics sys-
tem. With the development of technology, these chips had lim-
ited BitBLT support in the form of sprites, and usually had no
shape-drawing support. While, as we know, current GPUs can
run several operations in a display list, and could use DMA to
reduce the load on the host processor. Subsequently, hardware
engineers integrated complicated multi chip design into a single
graphics chip to enhance parallelism. For example, IBM intro-
duced Video Graphics Array controller in 1987. At that time,
VGA controller was only a simple hardware that dumps the out-
put from CPU to the screen. In early 1990s, high-speed, general-
purpose microprocessors became popular for implementing high-
end GPUs. Several high-end graphics boards for PCs and com-
puter workstations used TPs TMS340 series (a 32-bit CPU op-
timized for graphics applications, with a frame buffer controller
on chip) to implement fast drawing functions. These were es-
pecially popular for CAD applications. In 1993, SSGraphics
introduced the first single chip 2D accelerator, S3 86C911. Af-
ter while, NVIDIA introduced "GPU", in late 1990s, as a term
for VGA controller or 3D graphics accelerator to describe the
graphics hardware. Contemporary GPUs include basic 2D ac-

CHAPTER 3. GRAPHICS PROCESSING UNIT 20

celeration and VGA frame buffer compatibility mode and most
of the CPUs produced after 2000 support MPEG primitives,
such as motion compensation and iDCT (inverse discrete cosine
transform) [20 .

3.2.1 First Generation GPU

In the first generation GPU were capable of rasterizing pre-
transformed triangles and applying one or two textures. Two
typical products of first generation of GPU were NVIDIA's TNT2
and ATI's Rage. The main problem of this type of GPUs is that
it lacks of capability of vector and vertices transformation. As
a result, the transformation of 3D object can solely be executed
on CPU. Moreover, the number of texture access is limited in
this generation GPUs.

3.2.2 Second Generation GPU

The second generation GPU appeared in late 1990s. Typical
products are NVIDIA's GeForce 256 and ATI's Radeon 7500.
The main feature of this type of GPUs is that it offers transfor-
mation and lighting. The fast hardware T&L transform offloads
the CPU, which allowing much faster rendering process. Al-
though a set of math operators for coloring pixels is supported,
the limitation of this GPU is not fully programmable. Thus,
users cannot design their own algorithm for special applications.

3.2.3 Third Generation GPU

In 2001, the third generation GPU included NVIDIA's GeForceS
and GeForce4 Ti, Microsoft's Xbox, and ATI's Radeon 8500.
These types of GPUs can provide full vertex programmability
rather than merely offering more configurability. But this gener-
ation of GPUs provides more pixel-level configurability but not

CHAPTER 3. GRAPHICS PROCESSING UNIT 21

programmability. The vertex-level programmability allows user
to specify a program (sequence of commands) on a vertex. This
is the main limitation of this type of GPUs. Many scientific
research and image-based rendering are developed based on this
type of GPUs.

3.2.4 Fourth Generation GPU

The fourth generation GPU included NVIDIA's GeForce FX
family with CineFX architecture and ATI's Radeon 9700/9800.
These GPUs support vertex-level and pixel-level programmabil-
ity. The GeForce FX family even provides unlimited number of
codes execute per rendering cycle. The fourth-generation GPUs
consist of 280 million transistors. Based on some experiments
and applications, this type of GPUs is able to draw about 540
million triangles per-second.

3.3 The Graphics Pipelining

3.3.1 Standard Graphics Pipeline

The graphics hardware processing is a fixed function pipeline to
process the vertices, geometry, primitives and fragments. OpenGL
is a graphics language that is designed as a streamlined, hardware-
independent interface for different platforms. Nowadays it is re-
ferred as a standard graphics rendering pipeline. It consists of
several different processing stages, including vertex transforma-
tion, assembly and rasterization, interpolation, texturing and
coloring, and the final raster operations as shown in Figure 3.1.

Vertex transformation is the first stage of the pipeline, which
is generating the position transform, texture coordinate genera-
tion and setting the lighting conditions. Then, the vertices will
be transferred to the primitive assembly stage. The processing
of this stage will assemble vertices into geometric primitives,

CHAPTER 3. GRAPHICS PROCESSING UNIT 22

3D API I
(OpenGL, DirectX) K

Vertices

Vertex Transformation _

•11.1,

Transformed Vertices 「

o
Primitive Assembly •

and Rasterization B

Fragments ^ ^

Fragment Texturing k
and Coloring -m

Colored Fragments

Raster Operators m

Pixel Data

Frame B u f f b r , 鳥 ：

'mmmmiiimKmmm

Figure 3.1: Graphics Pipeline

CHAPTER 3. GRAPHICS PROCESSING UNIT 23

the points, lines or triangles geometric primitives flow into the
rasterization steps, where the set of the pixels covered by the
primitives will be selected. The result is a set of pixel locations
on the screen. Those fragments will be processed at the stage of
interpolation, texture and color. It interpolates the fragment pa-
rameters, such as color and depth, with texture looking up and
math calculations to obtain the final color for each fragment.
The final stage performs per-fragment rasterization operations,
where the fragments will be killed through depths, scissor, alpha
and stencil test. The remaining fragments will be blended with
the corresponding pixels' alpha or color value and passed to the
frame buffer.

3.3.2 Programmable Graphics Pipeline

The traditional rendering pipeline was not assigned for pro-
gram inability; thus its design had to be extended, in order to
free up CPU time for other computations than graphics pro-
cessing. So the graphics hardware has evolved from a fixed or
configurable pipeline to a programmable pipeline. This pipeline
includes two distinct programmable processors, namely the pro-
grammable vertex processor and the programmable fragment
processor. The programmable vertex processor is used to per-
form vertex transformation, lighting calculations, manipulating
texture coordinates and normals. The transformed data will
be processed during the rasterization for the positions and col-
ors fragments. The programmable fragment processor is used to
calculate the final color. The vertex program controlling the ver-
tex processor is called vertex shader while the fragment shader
is used to program the fragment unit of GPU. In a normal pro-
grammable render pass, the graphics data will be processed in
the whole pipeline, including the vertex shader and fragment
shader as shown in Figure 3.2.

CHAPTER 3. GRAPHICS PROCESSING UNIT 24

3D API ^
(OpenGL, DirectX) ft

T & L k Vertices

Vertices Index [~1

Vertex

Processor

I V J
Fragments Primitive Assembly _

^ and Rasterization 1 f ro二ssed
.""^illliililiiiilHlilllll^ Vertices

Fragment

Processor J L Pixel Positions

^ V
Processed Raster Operators ||；
Fragments B

— I

Figure 3.2: Programmable Graphics Pipeline

With the programmability, the shader can perform the tex-
ture fetching by looking up a specified texel value through a
given texture coordinate. The texture coordinate can be ob-
tained by interpolating from the vertex interpolation or by math-
ematically calculated in the shader. If the fragment is not killed,
the results of the fragment shader are sent on for further process-
ing. The remainder of the OpenGL pipeline remains as defined
for fixed-function processing. Fragments are submitted to cov-
erage application, pixel ownership testing, scissor testing, alpha

CHAPTER 3. GRAPHICS PROCESSING UNIT 25

testing, stencil testing, depth testing, blending, dithering, logical
operations, and masking before ultimately being written into the
frame buffer. The back end of the processing pipeline remains
as fixed functionality because it is easy to implement in nonpro-
grammable hardware. Making these functions programmable is
more complex because read/modify/write operations can intro-
duce significant instruction scheduling issues and pipeline stalls.
Most of these fixed functionality operations can be disabled,
and alternative operations can be performed within a fragment
shader if desired. After finishing the final testing for each frag-
ment, the fragment shader will update the pixel in the frame
buffer [19].

The programmable fragment processors require many math
operations as vertex processors do [19]. Newer generation CPUs'
texture operators support full floating-point values. Consequently,
each fragment will be processed by running the fragment shader.
The fragment shader should also be SIMD in nature. Final pixel
value will be calculated by interpolating fragments color asso-
ciate with the pixel location. In the next two subsections, we
will introduce the basic concepts of the vertex processor and the
fragment processor in details. [66

3.3.3 Vertex Processors

The vertex processor is a programmable unit that offers the
ability to directly control the operations for each vertex in the
GPU. The vertex processor usually performs traditional graph-
ics operations such as vertex transformation, normal transforma-
tion and normalization, texture coordinate generation, texture
coordinate transformation, lighting and color material applica-
tion. It replaces the transform and lighting operations of the
fixed function pipelines for vertices in the traditional rendering
pipeline, the vertex processor operates on one vertex at a time

CHAPTER 3. GRAPHICS PROCESSING UNIT 26

(but an implementation may have multiple vertex processors
that operate in parallel). [66

The design of the vertex processor is focused on the function-
ality needed to transform and light a single vertex. Several regis-
ters are associated with the vertex shaders. They are the input
register, the output register, the constant register, temporary
registers and address registers. The per-vertex input register is
read-only for a vertex shader. The per-vert ex data, like model-
space vertex coordinates, vertex color and texture coordinates,
are usually stored in the input register. While some attributes
for the vertices which change per-frame or per-object, such as
the transform matrices, or material properties, are contained in
the constant register. The constant register is read-only also
to the vertex shader. The temporal register assists the compu-
tation of the vertex shader. It is used to read and write the
temporal result of the execution. A special temporal register,
addressing register, is provided for the indirect addressing op-
erations Output from the vertex shader is accomplished partly
with special output variables. Vertex shaders must compute the
homogeneous position of the coordinate in clip space and store
the result in the special output variable "gLPosition". The re-
sult of the vertex shader execution is some predefined attributes,
such as texture coordinates, color, clip-space vertex coordinates.
These typical outputs are written to the output register. They
later flow into the next stage of the graphics pipeline. [66

3.3.4 Fragment Processors

The fragment processor is a programmable unit that capable of
directly manipulating for each fragment in the graphics pipeline.
The fragment processor usually performs traditional graphics
operations such as operations on interpolated values, texture
access, texture application, fog, and color sum. It replaces the

CHAPTER 3. GRAPHICS PROCESSING UNIT 27

texturing and coloring operations of the fixed function pipelines
for fragment in the traditional rendering pipeline. One of the
biggest advantages of the fragment processor is that it can ac-
cess texture memory an arbitrary number of times and combine
in arbitrary ways the values that it reads. A fragment shader
is free to read multiple values from a single texture or multiple
values from multiple textures. For each fragment, the fragment
shader may compute color, depth, and arbitrary values (writing
these values into the special output variables "gLFragColor",
"gLFragDepth", and "gLPragData") or completely discard the
fragment. Several registers are associated with the fragment
shader: the input register, output register, and temporal regis-
ters. The fragment shader can load texture as the input data. [66

The geometric primitive has been rasterized into a set of frag-
ments. It enters either the texture fetching stage or the fragment
shading stage. Since fragment processors run in parallel, GPU
has great speeding advantages over CPU. As native graphics ap-
plication requires large amount of floating-point calculation and
vector mathematics, GPU is specially designed for the vector
type floating point operations which can run much faster than
these of CPU. Figure 3.3 shows the basic procedure of fragment
processor. It includes two components: texture fetching and
fragment shading. [66

Fragments —

-^^"""PMiiPi iPl i i l i i i i i l i i l i i iMl i l i i i i ipMii l^^ '

Figure 3.3: procedure of fragment processor

CHAPTER 3. GRAPHICS PROCESSING UNIT 28

Texture Fetching Textures are ID or multi-dimensional
images that can be glued onto a 3D object. They are mapped
onto geometric primitives in correspondence to the texture co-
ordinates interpolated in the rasterization stage. This process
yields an interpolated color value fetched from the texture. The
order of interpolation is depending on the dimension of the tex-
ture target and the graphic hardware's capabilities. Current
generation GPUs support the simultaneous fetching of multi-
ple textures for each fragment without a hit in performance.
Furthermore, these GPUs allow for enhanced controlling of the
texture lookup itself. It is possible, for example, to use the color
value returned by the first texture fetch as texture coordinates
for consequent texture lookups. This is known as dependent
texturing. Dependent texturing is important to implement dif-
ferent sorts of transfer functions for volume rendering. Other
fragment attributes can be used as texture coordinates as well.

Fragment Shading The fragment shading stage applies
further color operations on a given fragment to compute its fi-
nal color. This stage is also capable of applying different math
operations on a fragment's values. It may choose to change
nearly every value of a fragment, e.g. the depth value, except
for its screen location. Even allowing for the possibility that this
stage may completely discard a fragment, it can thus prevent the
fragment's corresponding screen pixel from being updated. The
fragment shading stage emits one or more completely colored
fragments for each input fragment it receives.

3.3.5 Frame Buffer Operations

The frame buffer operations stage performs a set of per-fragment
operations right before the fragment is turned into an actual
pixel. The incoming fragment is at first checked based on num-
ber of different tests. If any of these tests fail the pixel operations

CHAPTER 3. GRAPHICS PROCESSING UNIT 29

stage immediately discards the specific fragment without updat-
ing its corresponding pixel's value stored in the frame buffer. All
tests can be enabled or disabled by the programmer, though it is
not possible to change neither their order of sequence nor their
functionality. If a fragment passes all the tests another set of
operations is performed to update the values stored in the asso-
ciated buffers. Thus the fragment has finally advanced to being
a pixel. The sequence of frame buffer operations is illustrated
in Figure ??.

^̂ î î̂ ililil̂ liiî î̂ î il̂ iiJl̂ L̂Ĵ — — — >
Blending | Dithering | logical |

J| A Operations M
•

Figure 3.4: Fragment Shading

Scissor Test The scissor test is used to restrict drawing of
pixels to a rectangular portion of the frame buffer. If a fragment
lies inside this rectangle it is further processed by the subsequent
operations.

Alpha Test The alpha test compares the incoming frag-
ment's opacity, i.e. its alpha value, with a reference value. The
fragment is accepted or rejected based on the outcome of this
comparison.

Stencil Test The stencil test is typically used to mask out an
irregularly shaped region of the frame buffer to prevent drawing
from occurring within it. The pixel locations drawing is allowed
or rejected on values stored in the stencil buffer that is part of
the actual frame buffer. Therefore it resemblances the frame

CHAPTER 3. GRAPHICS PROCESSING UNIT 30

buffer in width and height. The stencil buffer is essential to the
application of the stencil test, without it every fragment passes
the stencil test automatically. The stencil test itself involves a
comparison of the fragment's stencil value stored in the stencil
buffer with a reference value. Optionally this comparison can
also take the associated pixel's depth value into account. If
fragment passes the stencil test it may choose to update the
value stored in the stencil buffer as well.

Depth Test The distance between the camera origin and an
object, i.e. the z-coordinate inside the view volume of an object,
currently occupying a pixel location is stored in a specific buffer,
namely the depth buffer. The depth buffer is also part of the
frame buffer and extends to the same dimensions as the frame
buffer. The depth test decides whether an incoming fragment
is occluded by a previously drawn pixel, by comparing the in-
coming fragment's depth value to the associated pixel location's
depth value already stored in the depth buffer. If a fragment
passes the depth test it may choose to update the depth buffer
value with its own. The depth buffer together with the depth
test therefore provide a convenient mechanism for depth order-
ing either partially or fully occluded objects on a per-fragment
level.

Blending After a fragment has passed all the pixel tests
its color values are then combined with the color values already
stored in the frame buffer at the corresponding location. This
combination is referred to as blending. Different blending opera-
tions can be applied, such as replacing or modulating depending
on the stored alpha values, thus allowing for semi-transparent
objects.

Dithering By dithering, color resolution can be improved
at the expense of spatial resolution, on systems with only a
small number of color bit-planes. If the hardware already has a
high color resolution the enabling of dithering will end up doing

CHAPTER 3. GRAPHICS PROCESSING UNIT 31

nothing at all.
Logical Operations The final operation on a fragment is a

logical operation, such as OR, XOR, and NEGATE. This op-
eration is applied before the fragment is written to the frame
buffer, thus becoming a pixel, to the incoming fragment's values
and/or the values currently stored in frame buffer. [46

3.4 GPU CPU Analogy

The CPU in a modern computer system communicates with the
GPU through a graphics connector such as a PCI Express or
AGP slot on the motherboard. Because the graphics connec-
tor is responsible for transferring all commands, textures, and
vertex data from the CPU to the GPU, the bus technology has
evolved alongside GPUs over the past few years. The original
AGP slot ran at 66 MHz and was 32 bits wide, providing a
transfer rate of 264 MB/sec. AGP 2, 4, and 8 followed, each
doubling the available bandwidth, until finally the PCI Express
standard was introduced in 2004, with a maximum theoretical
bandwidth of 4 GB/sec simultaneously available to and from
the GPU. GPU is a stream processor while CPU is a serial von
Neumann architecture. Therefore, the underlying methods of
processing of GPU and CPU are totally different. There are
some constraints should be applied to GPUs, thus not every
program can be mapped onto the GPUs. In this section, we
will discuss the two fundamental conceptual differences between
GPU and CPU: memory architecture and processing model.

3.4.1 Memory Architecture

GPUs use standard DRAM modules rather than custom RAM
technologies to take advantage of market economies and thereby
reduce cost. Having smaller, independent memory partitions al-

CHAPTER 3. GRAPHICS PROCESSING UNIT 32

lows the memory subsystem to operate efficiently regardless of
whether large or small blocks of data are transferred. All ren-
dered surfaces are stored in the DRAMs, while textures and in-
put data can be stored in the DRAMs or in system memory. The
four independent memory partitions give the GPU a wide (256
bits), flexible memory subsystem, allowing for streaming of rel-
atively small (32-byte) memory accesses at near the 35 GB/sec
physical limit. The memory on GPU is textures. A texture can
be considered as a 2D array of memory texels with limited size
constraint, and each texel can have either 1, 3 or 4 channels.
Like main memory, each texel has a texture coordinate, and the
value in case of 3 or 4 channels stored can be accessed directly. It
is not as flexible as arrays; however, the three or four color chan-
nels design makes it is a perfect data structure for storing vector
components of scientific computation. Operations on memory
are specially designed for multi-channel architecture. The cost
for operations on multi-component is approximately same as the
operations on single component. Because the memory accessing
speed of GPU is generally faster than main memory, fetching
data stored in GPU memory is considerably much faster.

3.4.2 Processing Model

The processing model of GPUs is totally different from CPU.
The former is stream processor while the latter is serial pro-
cessor. The most essential difference between stream processor
and serial processor is that every object in the stream processor
is processed by the same function. The texture and fragment-
processing unit operates on squares of four pixels (called quads)
at a time, allowing for direct computation of derivatives for cal-
culating texture level of detail. Furthermore, the fragment pro-
cessor works on groups of hundreds of pixels at a time in single-
instruction, multiple-data (SIMD) fashion (with each fragment

CHAPTER 3. GRAPHICS PROCESSING UNIT 33

processor engine working on one fragment concurrently), hiding
the latency of texture fetch from the computational performance
of the fragment processor. Each fragment executes the identity
fragment program simultaneously and independently. Another
important difference is that the program in stream processor is
limited to undetermined looping or branching.

3.4.3 Limitation of GPU

Programmable GPUs have a higher computational power than
CPUs, because they are explicitly designed for the simultaneous
processing of multiple data-parallel primitives. However, com-
pared to CPUs they offer only a limited instruction set consist-
ing primarily of mathematics operations which are often graph-
ics specific and in general accept as input a limited number of
32-bit floating point 4-vectors. The vertex stage can output a
limited number of these floating point vectors, which are inter-
polated by the rasteriser and passed as input vectors to the frag-
ment stage. Currently the fragment processor can output only 4
floating point 4-vectors, usually representing colors. Each pro-
grammable stage has access to global constants and local tempo-
rary registers. Since the write position of a processed fragment
is determined in advance by the vertex-parameters and cannot
be changed within a fragment program, fragment processors are
incapable of performing memory scatter. It is possible to per-
form memory scatter operations via vertex programs through
the recently emerged vertex-texture-fetch capability of current
GPUs and the vertex processors' ability to change the target
memory address of the colored fragments. This, however, can
lead to memory and rasterisation coherence issues and lower
performance.

CHAPTER 3. GRAPHICS PROCESSING UNIT 34

3.4.4 Input and Output

With GPU, we mainly use fragment program to perform calcu-
lations. Normally, textures are used as input. There is a size
limitation on the textures, GeForceFX series support maximal
size of 4096 X 4096 texture data or 512 X 512 X 512 volume
data. The total number of textures being accessed simultane-
ously is limited. Moreover, the input textures cannot be used
as output. The output of a fragment is limited to a single out-
put vector. As a result, shader programs can only have a single
output stream. For the problems with large input and output,
several rendering passes are usually needed.

3.4.5 Data Readback

Readback is one of the biggest limitations for computation on
GPU. Today the data transfer from the GPU to the CPU be-
comes a bottleneck. The transferring rate from GPU to CPU
is very slow compared with the GPU memory accessing speed.
For sequential processing, data readback from GPU to CPU is
unavoidable. To avoid this penalty, computation must be per-
formed on GPU as much as possible to avoid readback.

3.4.6 Framebuffer

The framebuffer is a video output device that drives a video
display from a memory buffer containing a complete frame of
data. The information in the buffer typically consists of color
values for every pixel (point that can be displayed) on the screen.
Color values are commonly stored in 1-bit monochrome, 4-bit
palletized, 8-bit palletized, 16-bit highcolor and 24-bit truecolor
formats. An additional alpha channel is sometimes used to re-
tain information about pixel transparency. The total amount of
the memory required to drive the framebuffer is dependent on

CHAPTER 3. GRAPHICS PROCESSING UNIT 35

the resolution of the output signal, as well as the color depth
and palette size.

This framebuffer extension defines a new OpenGL object
type, called a "renderbuffer", which encapsulates a single 2D
pixel image. The image of renderbuffer can be used as a framebuffer-
attachable image for generalized offscreen rendering and it also
provides a means to support rendering to GL logical buffer types
which have no corresponding texture format (stencil, accum,
etc). A renderbuffer is similar to a texture in that both render-
buffers and textures can be independently allocated and shared
among multiple contexts. The framework defined by this exten-
sion is general enough that support for attaching images from
GL objects other than textures and renderbuffers could be added
by layered extensions. [60

3.5 Summary

The power of programmable GPUs enables efficient computation
of a wide variety of applications. It used to enhance the visual
appearance of interactive 3D rendering and accelerate the ren-
dering process. But exploiting the efficient parallel performance
of GPU, it also has the ability to perform varieties of general
purpose computation.The general purpose applications include
data set operations [62] [14] [4] [53] [49] [13] ,collision detec-
tion [30] [51], computational geometry [7] [51] [29] [52] [68] [1],
scientific computing such like fluid simulation [75], cluster [18],
matrix multiplication [42] [28] [31], physical simulation [45] [50] [35] and
FFT [47].

In this thesis, we will demonstrate that GPU can do more
than just rendering.Our approach will exploits OpenGL frame-
buffer object [62] to store the rendered texture and/or transfer it
from GPU framebuffer to CPU memory. The parallelism makes
it a fast platform to handle many computer graphic problems as

CHAPTER 3. GRAPHICS PROCESSING UNIT 36

well as other general computational problems. However, there
are limitations on GPU for its stream programming model. This
motivates us to rethink how we solve certain problems. As GPUs
continue to grow at a rapid pace, it is likely that GPU is be-
coming a mainstream for general-purpose computation.

• End of chapter.

Chapter 4

Volume Rendering

4.1 Introduction

Volume rendering has become a large part of scientific visual-
ization during the last twenty years. It is a technique used to
display a 2D projection of a 3D volumetric data set. 3D scalar
fields are generated within a wide range of scientific areas and
visualization of data is important to quickly and accurately gain
insight to large amounts of information. This type of data can-
not be rendered with conventional rendering techniques, which
is the reason that volume rendering has created its own field
within scientific visualization. Rendering a volume is a compu-
tationally intensive task due to the large amount of data that
need to be processed, and it is only recently, with the advent of
commodity 3D hardware accelerator cards, that interactive ren-
dering of volumes has become possible. So this field has a num-
ber of applications, especially within medical imaging, where the
output of CT and MRI scanners is a volume data set, as well
as geology where seismic surveys are visualized as an aid when
searching for oil or gas.

The three basic principles of volume rendering are forming
of an RGBA volume from the volume data, reconstruction of a
function from this discrete volume data set, and projecting it
onto the 2D viewing plane (the output rendered image) from

37

CHAPTER 4. VOLUME RENDERING 38

the point of view, so volume rendering is the process of trans-
forming a set of 3D discrete sample color points to a 2D image
which can be displayed on a screen, as a color volume is a 3D
four components RGB A volume data set, where the first three
components R, G, and B color components and the last A com-
ponents opacity. 0 is opacity value that means totally translu-
cent, 1 is opacity value means totally opaque, the background
color is placed, Behind the color volume is an opaque. The clas-
sification of the data as opacity values is mapped by the alpha
table. The appearance of isosurfaces can be improved by using
shading techniques to form the Raycasting, The size of a volume
data is increased by the lengths of the volume elements. Even
relatively small volumes usually contain a significant number
of samples, more commonly called voxel for volume elements.
For the implementation of a volume renderer, several methods
are utilized, mostly depending on the available hardware. If
the hardware is recent enough to support 3D texture mapping,
which, while slightly more computationally intensive, requires
less texture memory, interactive performance can be achieved.
Further more, it can generate better visual quality.

In this chapter, after a brief introduction of the development
of volume rendering techniques, we focus on various hardware-
accelerated volume rendering techniques. The principles of some
key techniques are explained in detail. Finally, we will give a
short summary.

4.2 History of Volume Rendering

In the 1970's, volume rendering techniques have been developed
to enable more direct visualization of the volumetric data. With
appropriate preprocessing, volume rendering can be used to vi-
sualize surfaces, interior structure, and objects that do not have
well defined surfaces. In 1990, Kaufman et al. developed many

CHAPTER 4. VOLUME RENDERING 39

effective volume editing tools, volume rendering algorithms and
data compression schemes [33]. Although the process needs large
memory, faster algorithms and special-purpose hardware are en-
abling realtime volume rendering of data of significant size and
resolution.

In 1993, Kaufman et al. have introduced the field of vol-
ume graphics, where a voxel-based data format is used to rep-
resent graphical objects, which are customarily represented by
surface-based models [34]. They have demonstrated that many
of the graphical effects, such as shading and reflectance that
are available in surface-based graphics representation are also
possible using volume graphics. Assuming that memory needs
and processing requirements can be met effectively, Kaufman et
al. asserted that volume graphics has the potential to supersede
surface-based graphics just as 2D raster graphics superseded vec-
tor graphics [34]. Whether or not this potential is realized will
depend on many factors. However, some objects will be more
accurately modeled using a voxel based volume graphics format
than conventional graphics formats.

Cullip and Neumann [12] discussed the necessary sampling
schemes as well as object-aligned and view-aligned sampling
planes in 1993. Based on this idea, as well as the extension
to more advanced medical imaging, a novel technique was de-
scribed by Cabral et al. [8]. They demonstrated that both inter-
active volume reconstruction and interactive volume rendering
was possible with hardware providing 3D texture acceleration.

In 2001, K. Engel et al.implemented the high-quality pre-
integrated volume rendering using hardware-accelerated pixel
shading. Then the authors also described the interactive high-
quality volume rendering based on flexible consumer graphics
hardware [16]. In 2003, Roettger et al. described a GPU-based
pre-integrated texture-slicing including advanced lighting. In
the same year Krger and Westermann proposed a method to

CHAPTER 4. VOLUME RENDERING 40

accelerate volume rendering based on early ray termination and
space-skipping in a GPU-based raycasting approach [41]. The
space-skipping addresses the rasterization bottleneck, using a
single octree level only.

Today, by exploiting the capabilities of current hardware, vol-
ume rendering approaches using textures have become more and
more popular. Based on these hardware accelerated algorithms,
manipulations of volumes can be performed in real time.

4.3 Hardware Accelerated Volume Render-
ing

Volume rendering techniques based on graphics hardware utilize
texture memory to store a 3D data set. Current graphics cards
have become programmable with high-level shading languages
which allow them to execute small programs for each pixel in
the final image. Their architecture is highly parallel with 16 or
even 24 pixel pipelines working concurrently. The volume to be
displayed is restricted by the available amount of texture mem-
ory and the transfer rate between main and graphic memory.
Volume rendering techniques based on texture memory include
two types of texture-based techniques, 2D texturing and 3D tex-
turing.

The first one is 2D texture-based slicing technique, which is
along the major axes of the data and takes advantage of hard-
ware bilinear interpolation within the slice. These methods re-
quire three copies of the volume to reside in texture memory, one
per axis, and they often suffer from artifacts caused by under-
sampling along the slice axis. Trilinear interpolation can be at-
tained using 2D textures with specialized hardware extensions
available on some commodity graphics cards. This technique
allows intermediate slices along the slice axis to be computed in
hardware. These hardware extensions also permit diffuse shaded

CHAPTER 4. VOLUME RENDERING 41

volumes to be rendered at interactive performance [9].
The other one is 3D texture-based techniques, which typi-

cally samples view-aligned slices through the volume, leveraging
hardware trilinear interpolation. Other proxy geometry, such
as spherical shells, may be used with 3D texture methods to
eliminate artifacts caused by perspective projection. The pixel
texture OpenGL extension has been used with 3D texture tech-
niques to encode both data value and a diffuse illumination pa-
rameter which allows shading and classification to occur in the
same lookup. Engel et al [16]. showed how to significantly re-
duce the number of slices needed to adequately sample a scalar
volume, while maintaining a high quality rendering.

4.3.1 Hardware Acceleration Volume Rendering Meth-
ods

The OpenGL application programming interface provides access
to the advanced per pixel operations that can be applied at the
rasterization stage of the graphics pipeline, and in the frame
buffer hardware of modern graphics workstations. During this
process the volume data set is then sampled, classified, rendered
to proxy geometry, and composited. Classification typically oc-
curs in hardware as a ID table lookup.

In particular, they provide sufficient power to render high-
resolution volume data sets with interactive frame rates using
2D or 3D texture mapping. When using texture hardware to
render volumes, volume is sliced in one of two ways. The first
mode of slicing is object-aligned slicing. With object-aligned
slicing, the slices are fixed to the volume, much like in shear-
warp factorization. Because the slices are fixed with respect to
the volume, the data for each slice may be stored in a 2D tex-
ture. Of course, slices will not be visible if they are parallel to
the viewing direction. For object-aligned-slices, there must be

CHAPTER 4. VOLUME RENDERING 42

at least three copies of the slices where each set is perpendicular
to a principle axis of the volume. The second mode of slicing
is view-aligned slicing. With view-aligned slicing, the slices are
always perpendicular to the view plane and the renderer trilin-
early interpolates the volume data to map onto the slice.

4.3.2 Proxy Geometry

The first step of GPU-accelerated volume rendering is to place
geometry inside the three-dimensional scalar field that consti-
tutes the volume. A set of texture coordinates are interpolated
along the surface of the geometric primitive as well as other at-
tributes when this geometry is rendered. Each generated frag-
ment is assigned its corresponding set of texture coordinates in
the rasterization stage. This set of texture coordinates can later
be used to sample one or several texture maps at the associated
location. Subsequently, to sample the volume at arbitrary lo-
cations, the scalar field constituting the volume must be stored
in one or several textures while the texture coordinates must be
assigned to correspond to locations inside this scalar field. The
geometry does not have any relations to the data contained in
the volume. That is why it is called "proxy geometry".

The proxy geometry characterization step in the graphical
pipeline can be specified by two methods. The first one is enclos-
ing rectangles of intersections while the other is enclosing poly-
gons of intersections. The former is a straightforward method
of texture mapping cut-planes. The latter requires finding the
polygon of intersection between a given cut-plane and the cube
of data. This approach is relatively faster for processing frag-
ments because one visits only those fragments that are inside
the cube of data. It is proposed by Kniss et al [39]. includ-
ing the following key steps: (1) transform the volume bounding
box vertices into view coordinates; (2) find the minimum and

CHAPTER 4. VOLUME RENDERING 43

maximum z coordinates of the transformed vertices; (3)for each
plane, in back-to-front order test for intersections with the edges
of the bounding box and add each intersection point (up to six)
to a fixed-size temporary vertex list; (4)compute the centre of
the proxy polygon by averaging the intersection points and sort
the polygon vertices clockwise; (5) tessellate the proxy polygon
into triangles and add the resulting vertices to the output vertex
array.

4.3.3 Object-Aligned Slicing

2D texture mapping is well suitable for implementing object-
aligned slicing. It involves storing a set of three rectilinear vol-
ume data sets, and using them as three perpendicular stacks
of object aligned texture slices (Figure 4.1). Slices are taken
through the volume orthogonal to each of the principal axes.
The resulting information for each slice is represented as a 2D
texture that is then pasted onto a square polygon of the same
size. The rendering is performed by projecting the textured
quads and blending them back-to-front into the frame buffer.
During the process of texture mapping the volume data is bilin-
ear interpolated onto a slice polygon.Figure 4.1 shows an exam-
ple using 2D texture mapping to render a volume human head
dataset.

As mentioned above, a single stack of 2D slices is not enough
for visualization of the volume. It would be possible to see
through the individual slices when the point of view is rotated
around the textured proxy geometry during rendering. This
problem cannot be accounted for with just a single stack of
slices. This is why three stacks of slices must be stored. In
general, the stack with slices most parallel to the screen plane
is chosen for rendering the volume as illustrated in Figure 4.2.

The main limitation of using object-aligned slices for volume

CHAPTER 4. VOLUME RENDERING 44

奪
Figure 4.1: Object-Aligned Slicing.

visualization is the space performance since the requirement for
three slice stacks that allocate three times the memory than the
actual volume. Another drawback is that the switching of the
stack currently used for rendering yields visible artifacts and a
sudden drop in rendering performance. Also, when one stack
is switched to another, artifacts can become visible. This is
because that the actual locations of re-sampling points change
abruptly with the change in stacks as illustrated in Figure 4.3.

Another limitation of object-aligned slice is that using this
method leads to inconsistent sampling rates for different viewing
directions. This is because alpha blending is used to accumulate
the re-sampled values and performing a numerical integration of
the volume rendering integral. The same effect is achieved using
this method as composting samples along a ray in ray-casting.
The sampling distance is dependent on distance between adja-

CHAPTER 4. VOLUME RENDERING 45

A B C D E

Figure 4.2: Choose the stack with slices most parallel to the screen plane.

A • • • • A A A A B • • • • • • • • C • • • • • • • •

•t疆疆
Figure 4.3: Visible artifacts caused by switching of the stacks .

cent object-aligned slices.
4.3.4 View-Aligned Slicing
Recent years, 3D texture mapping hardware has become a pow-
erful visualization option for interactive volume rendering. This
method is usually executed in the following steps: (1) convert
volume data to a 3D texture; (2) a number of planes perpen-
dicular to the viewer's direction of sight are clipped against the
volume bounding box; (3) the texture coordinates in parametric
object space are assigned to each vertex of the clipped polygons.
The main difference between view-aligned slicing and object-
aligned slicing is that during rasterization, fragments in the slice
are trilinearly interpolated from 3D texture and projected onto
the screen plane using adequate blending operations. Figure 4.4
shows the basic principle of this approach.

CHAPTER 4. VOLUME RENDERING 46

The volume is stored in a single 3D texture. View-aligned
slices are used to generate re-sampling locations for reconstruct-
ing the volume. In this case, 3D texture coordinates are inter-
polated over the interior of the view-aligned slices. Then it is
used for addressing the volume. This approach takes advantage
of spatial coherence inside the volume.

Q ；

I
I ’

"“.j

Figure 4.4: View-Aligned Slicing.

One of the major advantages of using 3D texture is that slices
can be oriented arbitrarily with respect to the volume. This al-
lows arbitrary orientation of slices to be used for re-sampling
the volume. View-aligned slices are rendered as proxy geome-
try so that ray-casting can be mimicked as close as possible to
the image plane. Especially, this approach offers an equidistant
sampling rate for all viewing directions for orthogonal projec-
tion, mimicking ray casting perfectly for each "ray", i.e. for
each final pixel (Figure 4.5 (1)). However, in case of perspec-

CHAPTER 4. VOLUME RENDERING 47

tive projection, the distance between successive re-sampling lo-
cations is not equal to adjacent "rays", i.e. for adjacent pixels
(Figure 4.5(2)). Although this approach offers a good approxi-
mation of the final result, it is possible to render spherical shells
as proxy geometry. This offers an equidistant sampling distance
for perspective projection at the expense of more vertices that
need to be processed.

A.Parallel Projection B. Perspective projection

^ ^ ！ 狐 ^ ^ M -

oeye �
石eye

Figure 4.5: Parallel projection and perspective projection.

In view-aligned slicing, the number of slices can be chosen
arbitrarily on-the-fly without the need for setting up inter-slice
interpolation manually because the graphics hardware performs
general trilinear interpolation for each fragment during the re-
sampling process. This is a major advantage of using 3D tex-
tured view-aligned slices, as it results in an image of higher qual-
ity. In addition, it is also possible to render slices with arbitrary
orientation with respect to the volumetric data which allows
maintaining a constant distance between sampling points for all
pixels and viewing directions. Furthermore, a single 3D tex-
ture allocates only a third of the memory that the three object-
aligned 2D textures stacks do. The major disadvantage is that
trilinear interpolation is significantly slower than bilinear inter-
polation, due to the requirement for using eight as opposed to
four texels for each computed sample. Another drawback of this
approach is it requires texture fetch patterns that decrease the

CHAPTER 4. VOLUME RENDERING 48

efficiency of texture caches on graphics memory.

4.4 Summary

In this chapter, we give a detailed introduction of existing vol-
ume rendering techniques. Developed from the 1970s, volume
rendering technique had becoming a large part of computer
graphics, especially in scientific visualization. Several hardware-
accelerated volume rendering techniques, including proxy geom-
etry, object-aligned slicing and view-aligned slicing are intro-
duced. Based on object-aligned slicing, we propose a framework
which ensures the extracted triangles are drawn in a correct or-
der, from back to front, according to the viewing direction as
well as correctly visualize multiple layers of translucent isosur-
faces, without computationally expensive sorting.

• End of chapter.

Chapter 5

GPU-Friendly Marching Cubes

5.1 Introduction

Isosurfaces have been widely adopted to reveal the complex
structures in medical and scientific volume data. In SIGGRAPH
1987, Marching Cubes (MC) was presented by Lorensen and
Cline. From then on Marching Cubes is the most commonly-
used algorithm for finding polygonal representations of isosur-
faces in 3D volumetric data. Isosurfaces extraction is a common
analysis and visualization technique for three-dimensional scalar
data due to its fine visual quality. Visualizing multiple layers of
translucent isosurfaces (normally represented as triangles) not
only just generates high-quality rendering results, but also al-
lows viewers to better understand the relationship among inter-
nal structures. However, visibility-correct visualization of multi-
ple translucent isosurfaces imposes a lot of difficulties. Standard
depth-buffering alone cannot resolve the visibility of overlapped
translucent triangles. Extracted triangles can be sorted by depth
sorting or binary space partitioning (BSP) based visibility sort-
ing in order to generate a correct drawing order. In other words,
computational expensive sorting has to be performed whenever
the viewpoint changes.

The Marching Cubes algorithm have two basic parts : the
triangulation module and rendering module. In the current MC

49

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 50

algorithm, the triangulation module, which needs more arith-
metic and logical operations, is run on the CPU. The rendering
module sends the vertices' positions and normal to GPU for dis-
play. Nowadays, in favor of the programmable function pipeline
on the current GPUs, fully programmable parallel geometry and
fragment units are available, via high level shading languages.
In addition to computational functionality, fragment units also
provide an effective memory interface to server-side data, i.e.
texture buffer.

So we present a GPU-friendly MC implementation. Besides
the cell indexing, we propose to calculate vertex and normal in-
terpolations by precomputing the expensive equations and look-
ing up these values during runtime. Upon a commodity GPU,
our implementation can rapidly extract isosurfaces from a high
resolution volume and render the result. With the proposed
GPU based Marching Cubes algorithm, we can naturally gen-
erate layer structured triangles, which facilitate the visibility-
correct visualization of multiple-layer translucent isosurfaces with-
out performing computational expensive sorting. The algorithm
extracts and draws triangles, in a layer by layer fashion, from
back to front. With the proposed algorithm, the visibility of
multi- layer translucent isosurfaces is resolved naturally.

5.2 Previous Work

Surface reconstruction is widely applied for volume rendering [32 .
In [74], Xie et al. presented an algorithm that recovers surfaces
from noisy and defective data, by fitting surface in each octree
cell. Nilsson et al. [59] reconstructed 3D closed surfaces from
parallel contours. Isosurface is important for visualizing complex
structures, especially for 3D medical data, such as ultrasound,
CT, and MRI scans. Marching Cubes is one of the most famous
techniques for extracting isosurfaces, first developed by Loren-

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 51

son and Cline [44]. Later its variants [10, 43’ 54，55，56, 57, 58"
were proposed to solve some problems, such as ambiguity, ac-
curacy, efficiency, and so on. Instead of cubes, some extensions
employ various substitopes [3], such as tetrahedra [15, 24] and
diamonds [2 .

Bertram [5] proposed a technique for volume refinement by
fairing isosurfaces. In [23], Gregorski et al. presented an al-
gorithm for interactively extracting and rendering isosurfaces of
large volume data set in a view-dependent fashion. Gerstner and
Pajarola [21] described a technique of multiresolution isosurface
visualization. In [25], Guo presented a method of isosurface ex-
traction by interval set. ISOSLIDER [11] interactively displays
the updated isosurfaces as the isovalue is slightly changed. The
fast update exploits the coherence of isosurfaces with similar
isovalues.

To take advantage of the new programmable graphics chips,
many techniques are developed to speed up algorithms previ-
ously run on the central processing unit (CPU). The intrinsic
parallelism computation and memory communication on a GPU
have been exploited to accelerate the general-purpose computa-
tion [63], for example FFT [48]. Moreover, simulations of com-
puter graphics techniques can be accelerated by graphics hard-
ware, including particle systems [36, 40], collision detection [22],
fluid dynamics [27], global illumination [65], ray tracing [70],
and so on.

Especially, there are some hardware-accelerated techniques
for volume rendering. The technique proposed in [71] utilizes
programmable graphics hardware to accelerate volume visual-
ization, by per-pixel operations available in the rasterization
stage and in the frame buffer hardware. Binotto et al. [6] pro-
posed a volume rendering technique using a fragment-shader
compression. In [26], Hadwiger et al. presented a GPU-based
ray casting and advanced shading of isosurfaces. However, their

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 52

work loses one important property of isosurfaces: the geometry.
They just visualize the isosurfaces without actually construct-
ing the geometric structure. Based on the Marching Tetrahe-
dra (MT) algorithm, [64] and [67] utilize vertex shader to look
up tetrahedra and finally render the extracted surfaces. These
two methods only reconstruct triangles temporarily and can-
not completely store isosurfaces (triangular mesh). Recently, in
favor of the more powerful fragment shader, several methods,
which can store the geometry of isosurfaces, were proposed.
Klein et al. [38] proposed a method explicitly extracting the
isosurfaces. The extracted geometry is directly written to an
onboard graphics memory object allowing for direct rendering
without further bus transfers. The extracted geometry can be
manipulated by shader programs and read back to the appli-
cation for further processing. In [37], Kipfer and Westermann
proposed an isosurface extractor that reduces both numerical
computations and memory access operations. Given this pro-
cess, interactive smooth shading and transparent rendering by
GPU-based sorting are achieved. However, we have to men-
tion that, most of these methods are based on MT algorithm.
In general, MT generates much more triangles than MC. In this
paper, we present a GPU-friendly MC algorithm. Moreover, our
system can correctly visualize multiple translucent isosurfaces,
without sorting.

5.3 Traditional Method

In order to describe the proposed method precisely, we will first
introduce some basic concepts of isosurface extraction and as-
sociated notations. In our paper, extraction includes two parts:
reconstruction and rendering. Reconstruction means computing
the surface geometry from the volume data. Rendering means
displaying the current view on the screen based on the given

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 53

geometry.

5.3.1 Scalar Volume Data

For each scalar volume data, there is a pair {V, W) to specify
it. V is a finite set of 3D points spanning a domain Q C R^, in
that V = Vi G ; i = 1 , n . W is a finite set of scalar values,
sampled at the points of V, and W = Wi G R,i = 1,n.The
correspondence between W and V can be described by a scalar
field / (p) , when p = (x, 2/, z) Q, and f{V) = W. A mesh E
subdivides Q into polyhedral cells, crj, j = 1,...., m. All vertices
of E are at the points of V.E can be made of hexahedra (i.e.
cubes), tetrahedra, and etc. For example, in MC algorithm, the
mesh E is a rectilinear grid. The cells are axis-aligned, and grid
spacings along the axes are equal. The constructive cells are
cubes. Each vertex can be indexed by a coordinate (z, j , /c), and
vertex Vi,j,k has the value Wiĵ k.

5.3.2 Isosurface Extraction

Given an isovalue a e R, there are a set of sampled positions Sa
within the 3D volume with the same value a, that is Sa = {p e
Q I f(p) = a}. Here, Sa is called the isosurface of field f at value
a. The isosurface Sa can be approximated by a triangular mesh.
The mesh is constructed cell by cell. A cell aj E E has vertices

with value Wj�,….,Wjh, where h is the number of vertices
for each cell. If m,ini=i’_.j{Wji < a < maxi=i’…,hWji, the cell s j is
called active cell at isovalue a. This selection can be completed
by labeling. If the value at the vertex exceeds or equals the
isovalue, we label the vertex with one. If the value is below the
isovalue, we label it with zero. If all vertex values of a cell are
I's or 0，s, this cell is not active. An active cell contributes to the
approximated isosurface for a patch made for triangles. A non-
active cell does not produce triangles. Triangles are obtained

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 54

by intersection points between the edges of active cells and the
isosurface. The edges with intersection are called active edges.
The intersections are linear interpolations of two end-points of
the active edges. The intersection points are called isosurface
vertices. The normal at each isosurface vertex is also estimated
by linear interpolation, in order to render the isosurface with
smooth shading.

5.3.3 Flow Chart

The isosurface extraction flow chart of program is shown in Fig-
ure 5.1. shows the flow chart for isosurface extraction.

1. Vertex labeling label each vertex according to the com-
parison between its value and the given isovalue.

2. Cell selection locate all active cells s in the mesh S, given
the labels of cell's vertices.

3. Cell indexing according to the vertices' labels of the ac-
tive cell, index the cell in a lookup table, and determine
its active edges and how corresponding isosurface vertices
must be connected to form triangles .

4. Normal calculation for each vertex v of the active cells
(all cells or only active cells), computing its corresponding
surface normal by its neighboring vertices in the 3D volume
space.

5. Interpolation for each active edges, computing the 3D
coordinates and normal direction of its surface vertex by
linear interpolation..

6. Rendering given the extracted geometry (a set of trian-
gles), render the surface and display it on the screen.

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 55

CPU
Marching Cubes algorithm

(V o l u m e ^ Vertex labeling

I indexing J

Interpolation

(N o r m a l ^
calculation J

+ Graphics Bus

GPU

RENDERING

.一 」

Figure 5.1: CPU Flow Chart.

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 56

5.3.4 Transparent Isosurfaces

We use alpha and opengl function glBlend to control transparent
surface to support hardware rendering for OpenGL. To render
the transparent surface and display it on the screen, we will
see artifacts from the rendering as Figure 5.2, processing when
a portion of a transparent surface is viewed through another
portion of the same surface. When a relatively smooth isosurface
is viewed from above, it will look pretty good. But if it has a
significant wave in it and it is viewed obliquely so that one side
of the wave is viewed through another side, the artifacts will
appear. These artifacts will also occur with a transparent blobby
isosurface since this type of isosurface is closed and will almost
always have a side view through another. These artifacts seem
to only occur when viewing a transparent isosurface through
itself, but not appear when viewing one transparent isosurface
through another. Consequently, the amount of blotchiness will
be a function of the parameter whose isosurface is viewed and the
value of the isosurface. After this, good transparent isosurface
should be generated.

In the following section, we will introduce how to solve these
problems by programmable graphics hardware.

5.4 Our Method

The framework of the proposed method is shown in Figure 5.3.
There are two parts: extraction and rendering. Extraction is
completed by our GPU-friendly MC algorithm. In the render-
ing part, the extracted geometry is rendered layer by layer, from
back to front, just like the painter's algorithm. Our rendering
process guarantees correct visibility of multiple translucent iso-
surfaces, without computational expensive sorting. As shown
in Figure 5.3，the proposed algorithm consists of the following

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 57

§
Figure 5.2: Artifacts from the rendering.

main steps:

1. Cell selection Active cells are determined in the 3D vol-
ume data..

2. Vertex labeling Each vertex of the active cell is marked
by comparison with the given isovalue a.

3. Cell indexing According to the labels, the active cell
is indexed in lookup tables, the active edges are deter-
mined and how corresponding isosurface vertices must be
connected to form triangles is decided .

4. Normal calculation Vertex normal is computed by neigh-
boring vertices in this step.

5. Interpolation For each active edges, it computes the po-
sition and gradient of the corresponding isosurface vertex

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 58

CPU

(V o l u m e ^ Vertex labeling
V data J

+ Graphics Bus

GPU
wmmmm~

Marching Cubes algorithm

/ ^ C e l l ^ N
I indexing J

Interpolation

C N o r m a l �

calculation J

RENDERING

Figure 5.3: GPU Flow Chart.

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 59

by linear interpolation..
6. Rendering Given the extracted geometry, it draws tri-

angles from back to front, with the painter's algorithm.

In the proposed method, the vertex labeling is executed on
CPU. Cell selection and indexing, normal calculation, interpo-
lation, and rendering are completed by GPU.

5.4.1 Cell Selection

The process of selecting active cells within a 3D volume is im-
plemented on CPU, as shown in Figure 5.4. It generates a set
of active cells to be passed to graphics hardware pipeline. This
process plays a very important role to list all active cells and
avoid redundant computations for following processes.

In the 3D volumetric data, we first index the cells between
two neighboring slabs. For each cell between this pair, we find
the maximum and minimum values of its vertices, max and
min, respectively. Then the current cell is mapped to a 2D
hash table (Figure 5.5) according to the pair {max, min). Each
entry in this table holds the 3D index (z, j , k) of the mapped
cube. An example is given in Figure 5.5. In this cell, max = 0.7
and min = 0.2. So the position of this cell in the 2D hash
table is (0.7,0.2), with a dot marker. All cells within the 3D
volume have a position in this hash table. Given this table,
we can efficiently locate active cells for any isovalue a. When
the isovalue is a, we can locate a square, which is specified by
two lines min = a and max = a. All hashed cells inside the
square are active. For example, when a = 0.5, we locate a
square as shown in Figure 5.5. The example cell locates in this
square, so it is an active cell at the isovalue 0.5. To manage this
hash table, max and min, which are in floating point [0，1], are
mapped to integers [0,2" — 1]. Here, x 2" is the resolution of
this table. The larger the table is, the higher precision we can

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 60

A
I

.wo
consecutive

slabs / Z /

3D data

\

cells between y t ^ B f l l i i l h l h l j i ^ ^ z

slabs 舰 _ _ 爹

/ 二 : ; f - ;， /

determine J 吞 C 、 / ^
• • •• / I —ri } I

active cells /J)) J >* / / /

等
(i.J.k)

coordinate
list

Figure 5.4: Selecting the active cells.

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 61

achieve. Since, max and min are two coordinates of this table
and max is always larger or equal to min, so only half of the
table is occupied and only entries in the upper triangular region
may have records.

max „ n c > a=0.5

min̂ «
(0.7.0.2)

min=0.2
max=Q.7p~~

——rj a=0.5

Figure 5.5: Cell selection hash table.

After the cell selection, we set up a list, called coordinate list,
and each entry stores a coordinate (i, j , k) of an active cell, in
the 3D volume.

5.4.2 Vertex Labeling

Given the coordinate list generated by the cell selection process,
we know which cells are active. We label the vertices of active
cells according to the isovalue a. This process is implemented in
a fragment shader, as illustrated in Figure 5.6. In the coordinate
list, each entry records the 3D coordinate of active cell. The
volume is loaded as a 3D texture, so that the fragment shader
can access the vertex value with the coordinate if the
value of vertex is larger or equal to the isovalue, this vertex is
labeled by 1. Otherwise, it is labeled by 0. The labeling results
are rendered to a texture, case texture. The entry of this texture
has four components. The first three store (z, j , k), and the last
component contains the 8-bit lookup index. The format of the
case index is shown in Figure 5.7. Each bit contains the label
(1 or 0) of corresponding vertex. For example in Figure 5.6, the

4

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 62

cell with the coordinate k) is labeled by the isovalue and
the case index is 10010000.

i f f f f
： ^ ^

； (i . j . k)

, , / iy*
L V ^ case=10010000

3D texture
(i. j .k) I i (i . j .k.case)l ...

~̂I
！ fragment!

^ ^ shader J

— i �
coordinate list isovalue a case texture

Figure 5.6: Labeling vertices of active cells.

Given the case texture, we can march active cells in the orig-
inal lookup tables of MC algorithm. Our approach exploits
OpenGL framebufTer object [62] to store the rendered texture
and/or transfer it from GPU framebuffer to CPU memory.

5.4.3 Cell Indexing

The process of cell indexing is completed by CPU. In MC algo-
rithm, there are two lookup tables: edgetable and triangletable.
By indexing an active cell in these two tables, we can determine
its active edges and how corresponding isosurface vertices are
connected to form triangles. The formats of case index, entries
of edgetable and triangletable are shown in Figure 5.7. An 8-bit
case index is formed as each bit corresponds to a vertex, from
vi to t>o. By looking up the edgetable, we get a 12-bit number,
each bit corresponding to an edge, from en to cq. Value 1 means
that the corresponding edge is intersected and active. Value 0
means no intersection. The triangletable involves forming the

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 63

correct facets from the positions that the isosurfaces intersect
the active edges. The lookup table utilizes the same index and
gets the vertex sequence for all triangles that are necessary to
represent the isosurfaces within the active cell. As defined in
MC algorithm, there are at most 5 triangles generated in one
cube, so that the entry of triangletable is 15 bytes.

1O fVa
eoQ <» 69

6110 ； O 6io

‘ 6o
V o i 0-- J 丨 V'

630''' e. • vertex
v ， k _ S — — K o edge

case index: v? ve | v» "^v，| V2 vi ^ 8 bits

edgetable entry: e,i|ei。|e»|ei|er e.|e，|e—ea —eileT] 12 bits

triangletable entry: po pi p̂ p» P4 ps p. p? pio pn pi2 pn pi4 15 bytes

Figure 5.7: Formats of case index, entries of edgetable and tiangletable.

Given the case texture rendered by the labeling process, for
each active cell, we can look up the active edges and corre-
sponding triangle vertices in this cell, as shown in Figure 5.8.
All active edges are stored in the edge list. Each entry in the
list has three components (x, y, n), where (x, y) is the coordinate
of current active cell in the case texture and n is the sequence
number of the edge in this cell. The vertex sequence is stored in
the vertex list. The entry of this list only has one component m,
which is an index of active edge in the edge list. The active edge
with the index m is the edge containing the current isosurface
vertex. Here the vertex index is interchangeable to active edge
index, because each active edge has only one isosurface vertex.
An example is illustrated in Figure 5.8. An active cell is with
case 10010000. By looking up edgetable, we get 100101010000.
This number means edges 4,6,8,11 are active. These four edges
are stored in order in the edge list. By looking up triangletable,

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 64

何 I ^ I m ^
丄 m (x,y.4) y • m

^ 100101010000 ‘ m+1 (x,y,6) ：

• ‘ (x,y,8) 4 1
(i j ,k)case=10010000 j m+3 (x.y.11) i r

承 i i 4 active
(i,j.k.case)| ••• j I edges

edgetable edge list
lookup

i i ^ ^ f t
6.8.4.11.8.6..1.....-1 ^ ^ 1

m " “ m
2 triangles

triangletable vertex list

Figure 5.8: Marching the active cells by looking up two tables to obtain
active edges and isosurface vertex sequence.

we get {6,8，4,11,8,6, —1，…，—1}. That means there are 2 tri-
angles in this case. “一1” means null. The vertices sequences of
two triangles are {6 ,8 ,4} and {11,8,6}, respectively. Actually,
there are 15 numbers in this entry. After vertex 6, they are all
—1. We will not render vertices with the null value —1. After
this process, the edge list is passed to the interpolation process.
The vertex list is prepared for rendering process.

This CPU-based process is crucial in selecting active edges
in each active cell and list the isosurface vertices one by one.
With this process, the performance of interpolation and render-
ing is significantly improved. In fact, we have tested to move
the marching process from CPU to GPU. However, due to com-
putation overhead. The GPU version is slower than that of the
current CPU version.

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 65

5.4.4 Interpolation

The edge list is processed into a series of fragments and then
passed into a fragment shader. With the access of 3D volume
data (loaded as 3D texture) and case texture, the positions and
normals of two end vertices of the active edge can be achieved.
The computation of the interpolation is carried by a fragment
shader (Figure 5.9).

./I 7 _ _
i |(I.J.t.case)|

ioj.k) ...
.b^U__1

3D texture case texture Vp … ；

rj^ ^ (x.y.4) j / \ X y Y"1 fx V 6) i ‘ fragment I w • 一 . • 丨 丨 」 - - ^
： jx'y's) I 毕 L shader J 申 position texture w

< ^ jjP^ (x.y.1l) t Hp I …

edge list ' = — ^ ^
‘ 2 normal texture

ftable

Figure 5.9: Interpolating position and normal of isosurface vertex by a frag-
ment shader.

Vij.k P Vi+1 J.k

Figure 5.10: Interpolation on each active edge.

As shown in Figure 5.10, there is an intersection point p on
the active edge with two end points Vi’j,k and Vi+ij,k' Given an

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 66

isovalue a, the position Vp and the normal Up can be computed
by interpolation. The values of ut丄k and Vi+]j’k are Wiĵ k and
Wi+iĵ k^ respectively. In the object coordinate, the positions of
Vi,j,k, and Vp are (i + l,j, /c), and (x,j, k). The
linearly interpolated value x between i and (z + 1) is

工 = (l - t) ' i - h t ' (i - h l)

=i-ht
where t 二 (以 _ 切 …)

So, in this case Vp = {i + 力’ j , k).
The computation of normal is a little bit complex. The nor-

mals of Vij^k,灼+i’j’/c，and Vp are ny’fc, ni+i，j,k, and rip. The
linearly interpolated normal rip is

n{x, j, k) = (1 — t) . riij^k + 1 . ni+i,j,k

几 = n j x j , k)
P ||n(a;，

The computation of t is time consuming. To accelerate it, t
can be achieved by looking up a 2D table (Figure 5.11(a) t table),
which is pre-computed whenever a new isovalue is provided. The
2D table is indexed by {wi^w2), and here w is converted from a
float [0,1], to an integer [0 ,2^-1] . Similar to the table utilized
in cell selection (Figure 5.5), the precision is controlled by n. A
larger table will give a higher precision. Two examples a = 0.5
and a = 0.7 (Figures 5.11(b) and (c)) are given. Since all cells
looked up are active, the value of a must be between wi and W2-
In this table, two rectangles are valid, while the other regions are
useless. Figures 5.11(b) and (c) show the t values when a = 0.5
and a = 0.7, respectively.

As shown in Figure 5.9, the interpolated positions Vp and
normals v^ are rendered into two textures, position texture and
normal texture, respectively. These two textures are directly
accessed by vertex shader in the following rendering process.

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 67

r f — — 1 1 M\]
…2 J h I

m m i ^ H T 邏

W I P
(a) t table (b) a = 0.5 (c) a = 0.7

Figure 5.11: Interpolation lookup table (a) to accelerate the computation of
t. Different isovalues determine different tables, such as (b) a — 0.5 and (c)
a = 0.7.

Before interpolating the normal, the normals at two end points
of the active edge are first calculated. Obviously, normals may
be repeatedly computed, but this mechanism is suitable for
SIMD-based parallel GPU. In the proposed algorithm, we calcu-
late the normals in the same way as in the traditional methods.

5.5 Rendering Translucent Isosurfaces

The vertex list contains the indices of vertices, forming the
triangles. The list is prepared as a sequence of vertices, and they
are sent to a vertex shader. Since positions and normals are gen-
erated in the same order as in edge list, the indices in vertex list
can trivially look up the corresponding values in the position and
normal texture. In the current GPU, textures can be accessed
by vertex shader directly, by GL_NV_vertex_prograin3 [61]. The
vertex shader renders triangles according to the accessed posi-
tions and normals, without transferring the data from CPU to
GPU.

We are rendering translucent isosurfaces,however traditional
depth-buffering cannot correctly resolve visibility. Although
depth sorting and BSP-visibility sorting can handle the visi-

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 68

Vp … Hp …
• • I
• •
• •

position texture normal texture 、

, shader ^ 二

I ^ ^ A
i -V、 \

丨’一」; . \
vertex list
Figure 5.12: Given the vertex list, rendering the isosurfaces triangle by tri-
angle.

bility, they are relatively computational expensive. We use a
painter's algorithm that draws the triangles from back to front.
To do so, we need to arrange all triangles in a layer data struc-
ture. This can be naturally done as we select active cells in a
layer by layer fashion. Furthermore, the order of cells specifies
the order of extracted triangles. Inspired by [17],

we use Object-Aligned Slicing algorithm to render multiple
transparent isosurfaces. In this method, the isosurface compo-
nents must be sorted in a back-to-front or front-to-back order
according to depth from the view-point or viewing plane. We
employ a fast yet simple back-to-front sorting method. It es-
sentially exploits a loophole for depth-sorting: the isosurface
components in a scene do not have to be truly sorted according
to depth from viewing plane, as long as the rendering algorithm
guarantees that no isosurface component is drawn after another
isosurface component which occludes it.

Therefore three stacks of slices isosurfaces must be stored,

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 69

with each stack of slices isosurfaces aligned to one of the major
axes. Then, the stack with slices isosurfaces most parallel to the
screen plane is chosen for rendering the volume.

We run the basic algorithm three times, for x, y, z direction
respectively, once along the x direction, once for y direction,
and once along z direction. For each direction, we generate a
copy of vertex list, position texture, and normal texture, as de-
scribed in the previous section. For example, in the copy of x
direction, triangles are arranged in a layer structure, increas-
ing along the x direction. The copies for y and z are similarly
generated. We keep three copies altogether. When the viewing
direction changes, our method automatically selects a proper
copy to resolve the visibility. For the example in the first row
of Figure 5.13, the view point is within the shadowed region.
For simplicity, we take the 2D diagram in Figure 5.13 as an
example, in this case, the back-to-front direction is the inverse
X direction. So, we select the copy of x direction, and draw
triangles by inversely visiting the vertex list of this copy. This
order guarantees that all triangles are drawn layer by layer, in-
versely along the x direction. So that the visibility is resolved
naturally. For the second example, the back-to-front direction
is along the y direction. So we select the copy of y direction,
and draw triangles in the order of vertex list of this copy. The
translucent isosurfaces are correctly visualized. The second and
third columns of Figure 5.13 show intermediate rendering results
when 50% and 80% of layers are drawn, respectively. The upper
and lower rows show to different viewing orientations.

5.6 Implementation and Results

To evaluate the proposed algorithm, we test it with a variety
of 3D volume data, as listed in Table 5.1. All experiments are
conducted on a PC equipped with AMD A3800 and GeForce

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 70

Front ^ ^ ^ ^

广 * Back \ -一

Figure 5.13: The painter's algorithm of rendering multiple translucent iso-
surfaces.

7800. Statistics are shown in Table 5.1. The statistics includes
all processes. In Table 5.1, all isovalues are 0.5. The statistics
show that the speed mainly depends on the the number of tri-
angles extracted and rendered. For a high-resolution data set,
we can get an interactive isosurfaces extraction and rendering.
For low-resolution data, real time performance can be achieved.

Data Resolution # Triangles fps

Sphere 64 x 64 x 64 35,960 — 27.9
Blood 256 X 256 x ^132 ,603 ^
Head 256 x 256 x 651,195 2.2
Inner Ear 128 x 128 x 30 “ 128,291 9.1
Foot 256 X 256 x 256 513,783 2.5
Engine Block 256 x 256 x 128 645,213 2.0
Fuel 64 X 64 X 64 2,242 85.5

Table 5.1: Statistics including all processes.

we will see artifacts from the traditional method rendering as
shown in Figure 5.14(left), We have proposed a GPU-friendly al-

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 71

編 _

Figure 5.14: Translucent isosurfaces

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 72

急碧 _
Foot Head Sphere

Figure 5.15: Rendering results of multi-layer translucent isosurfaces.

Fuel Engine

Figure 5.16: Rendering results of multi-layer translucent isosurfaces.

-.-.vTifT：̂,

Figure 5.17: Rendered result of "sphere" with 3 isosurfaces.

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 73

_ 9眷
Figure 5.18: The top viewing directions of the data "head".

t i i
Figure 5.19: The front viewing directions of the data "head"

gorithm,which extracts and renders triangles, in a layer by layer
fashion, from back to front, like the painter's algorithm. So we
can correctly visualize multiple layers of translucent isosurfaces
without performing sorting Figure 5.14(right). We run the basic
algorithm three times, along the x direction, y direction, and z
direction, respectively. When the isovalue is fixed and the view-
ing direction changes, the orientation of the slice normal must
be changed, by just selecting a proper copy of list and textures.

If the isovalue does not change, the rendering of multiple
translucent surfaces is real time in most cases. Because all we
need to do is to select the right copy of slices (hence triangles) for
display, according the current viewpoint. The rendering timing
statistics are shown in Table 5.2. Figure 5.16 shows the corre-

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 74

^ JPT iPP
Figure 5.20: The top view of "fuel".

； 1 ^
Figure 5.21: The front view of "engine"

spending rendering results.
In Figure 5.17 Figure 5.21, we show how our system renders

the isosurfaces layer by layer, from back to front. Figure 5.17 is
the rendered result of "sphere" with 3 isosurfaces. Figure 5.18
and Figure 5.19 are two viewing directions of the data "head".
Figure 5.18 is the top view, and Figure 5.19 is the front view.
Figure 5.20 is the top view of "fuel" and Figure 5.21 is the front
view of "engine". Since our system draws triangles, from back
to front, we can correctly resolve the visibility of translucent
isosurfaces, without sorting.

5.7 Summary

In this chapter, we present a GPU-friendly MC algorithm. The
proposed algorithm can rapidly extract and render isosurfaces
from high-resolution 3D volume data. Our framework can be
trivially modified to implement a wide range of MC variants.

CHAPTER 5. GPU-FRIENDLY MARCHING CUBES 75

Data # Layers Isovalue # Triangles fps

0 I 4 29,288
Sphere 3 0.58 30,224 170.3

0.64 21,272
^ 131,423

胸 d 2 0 73 105,669 73.0
659,202

彻 ad ^ 0.44 746,339

0.38 126,193
I 酬 r E a r 2 ^ qq 140,462 70.4

708,201
Foot 2 0 55 433,468

o S 564,477
Engine Block 2 o.79 137,736 22.9

002 11,951
Fuel 2 0.07 8,852 |

Table 5.2: Statistics of rendering translucent isosurfaces.

With this framework, we can correctly visualize multiple layers
of translucent isosurfaces, without sorting. The proposed frame-
work ensures that the extracted triangles are drawn in a correct
order, from back to front, according to the viewing direction.
The extracted geometry is stored in GPU memory and ready
for post-processing. Given the geometry, many other interest-
ing applications can be developed.

• End of chapter.

Chapter 6

Conclusion

In this thesis, we propose a set of GPU-friendly the volume ren-
dering techniques, including texture-based volume visualization
and the famous marching cubes algorithm.

In the technique, we utilize GPU to accelerate the traditional
texture-based volume rendering algorithm. A set of slices (2D
textures) are indexed from a 3D volume. These slices are aligned
with object space. During the rendering process, they are drawn
one by one, from back to front. The rendered results show that
our method is both efficient and effective.

Then we propose a framework to extract and render iso-
surfaces in real time from high-resolution 3D volume data. This
framework can be trivially modified to implement a wide range
of MC variants. With this technique, we can correctly visualize
multiple layers of translucent iso-surfaces without sorting. The
proposed framework ensures the extracted triangles are drawn
in a correct order, according to the viewing direction.

Within these years, GPU becomes more and more power-
ful and its programmability also becomes more and more flexi-
ble. We can implement more complex algorithms on GPU and
lighten the burden of CPU.

• End of chapter.

76

Bibliography

1] M. A. 0 . A. Slid and D. M. Difi. Fast 3d distance field
computation using graphics hardware. In In Proceedings of
Eurographics, pages 117-124, 2004.

2] J. C. Anderson, J. C. Bennett, and K. 1. Joy. Marching
diamonds for unstructured meshes. In Proc. IEEE Visual-
ization, pages 423-429, 2005.

3] D. C. Banks, S. A. Linton, and P. K. Stockmeyer. Counting
cases in substitope algorithms. IEEE Trans. Vis. Comput.
Graph., 10(4):371-384, 2004.

4] F. Banterle and R. Giacobazzi. A fast implementation of the
octagon abstract domain on graphics hardware. In Proceed-
ing of The 14th International Static Analysis Symposium
(SAS), pages 315-332, 2007.

5] M. Bertram. Volume refinement fairing isosurfaces. In Proc.
IEEE Visualization, pages 449-456，2004.

6] A. P. D. Binotto, J. L. D. Comba, and C. M. D. Fre-
itas. Real-time volume rendering of time-varying data using
a fragment-shader compression approach. In Proc. IEEE
Symposium on Parallel and Large-Data Visualization and
Graphics, pages 69-76, 2003.

7] S. Boubekeur. Generic mesh refinement on gpu. tamy
boubekeur and christophe schlick. In Proceedings of Graph-
ics Hardware, pages 99-104, 2006.

77

BIBLIOGRAPHY 78

8] B. Cabral, N. Cam, and J. Foran. Accelerated volume ren-
dering and tomographic reconstruction using texture map-
ping hardware. In VVS '94： Proceedings of the 1994 sym-
posium on Volume visualization, pages 91-98, New York,
NY, USA, 1994. ACM.

9] C. R. J. Charles D. Hansen. The visualization handbook.
In The Visualization Handbook, pages 888-898, America,
2005. ACADEMIC PRESS.

10] E. V. Chernyaev. Marching cubes 33: Construction of topo-
logically correct isosurfaces. Technical Report CN/95-17,
CERN, 1995.

11] J. Chhugani, S. Vishwanath, J. Cohen, and S. Kumar.
ISOSLIDER: A system for interactive exploration of iso-
surfaces. In Proc. of the symposium on Data visualisation,
pages 259-266, 2003.

12] T. J. Cullip and U. Neumann. Accelerating volume re-
construction with 3d texture hardware. Technical report,
Chapel Hill, NC, USA, 1994.

13] D. A. C.Y. Sun and A. E. Abbadi. Hardware acceleration for
spatial selections and joins. In In Proceedings of SIGMOD,
2003.

14] J.-Y. P. S. B. M. G. D.Gdeke, R.Strzodka and S. Turek.
Exploring weak scalability for fern calculations on a gpu-
enhanced cluster. In In Proceedings of Parallel Computing,
2007.

.15] A. Doi and A. Koide. An efficient method of triangulating
equivalued surfaces by using tetrahedral cells. lEICE Trans.
Communication, Elec. Info. Syst, E74(l):214-224, 1991.

BIBLIOGRAPHY 79

16] K. Engel and T. Ertl. Interactive high-quality volume ren-
dering with flexible consumer graphics hardware. In Pro-
ceedings of EUROGRAPHICS 2002, 2002.

17] K. Engel, M. Kraus, and T. Ertl. High-quality
pre-integrated volume rendering using hardware-
accelerated pixel shading. In Proc. ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics
hardware, pages 9-16, 2001.

18] A. K. F. Qiu Z. Fan and S. Yoakum-Stover. Gpu cluster
for high performance computing. In In Proceedings of the
ACM/IEEE Super Computing, 2004.

19] R. Fernando. Programming techniques, tips and tricks for
real-time graphics. In Addison Wesley Professional, GPU
Gems, 2004.

20] R. Fernando and M. J. Kilgard. The definitive guide to
programmable real-time graphics. In Addison Wesley Pro-
fessional， Cg Tutorial, 2003.

21] T. Gerstner and R. Pajarola. Topology preserving and con-
trolled topology simplifying multiresolution isosurface ex-
traction. In Proc. IEEE Visualization, pages 259-266, 2000.

22] N. K. Govindaraju, D. Knott, N. Jain, 1. Kabul, R. Tam-
storf, R. Gayle, M. C. Lin, and D. Manocha. Interactive
collision detection between deformable models using chro-
matic decomposition. Proc. of SIGGRAPH, 24(3):991-999,
2005.

23] B. F. Gregorski, M. A. Duchaineau, P. Lindstrom, V. Pas-
cucci, and K. 1. Joy. Interactive view-dependent rendering
of large isosurfaces. In Proc. IEEE Visualization, pages
475-484, 2002.

BIBLIOGRAPHY 80

24] A. Gueziec and R. A. Hummel. Exploiting triangulated
surface extraction using tetrahedral decomposition. IEEE
Trans. Vis. Comput Graph., l(4):328-342, 1995.

25] B. Guo. Interval set: A volume rendering technique gener-
alizing isosurface extraction. In Proc. IEEE Visualization,
pages 3-10, 1995.

26] M. Hadwiger, C. Sigg, H. Scharsach, K. Biihler, and
M. Gross. Real-time ray-casting and advanced shading
of discrete isosurfaces. In Proc. EUROGRAPHICS, pages
303-312, 2005.

27] M. J. Harris, W. V. B. Ill, T. Scheuermann, and A. Lastra.
Simulation of cloud dynamics on graphics hardware. In
Proc. ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, pages 92-101, 2003.

28] E. G. J. Bolz, 1. Farmer and P. Schroer. Sparse matrix
solvers on the gpu : Conjugate gradients and multigrid. In
In Proceedings of SIGGRAPH, 2003.

29] S. L. Junfeng Ji, Enhua Wu and X. Liu. Dynamic lod on
gpu. In Proceedings of Computer Graphics International,
2005.

30] M. L. K. E. Hoff, A. Zaferakis and D. Manocha. Fast and
simple 2d geometric proximity queries using graphics hard-
ware. In In Proceedings of the 2001 Symposium on Interac-
tive 3D Graphics, 2001.

31] J. S. K. Fatahalian and P. Hanrahan. Understanding the ef-
ficiency of gpu algorithms for matrix-matrix multiplication.
In In Proceedings of Graphics Hardware, 2004.

BIBLIOGRAPHY 81

32] A. Kaufman and K. Mueller. Overview of Volume Render-
ing. The Visualization Handbook. Academic Press, Inc.,
2005.

33] A. E. Kaufman. 3d volume visualization. In Advances in
Computer Graphics, 1990.

34] A. E. Kaufman. Rendering, visualization and rasterization
hardware. In Eurographics, 1993.

35] T. Kim and M. Lin. Visual simulation of ice crystal growth.
In In proceedings of ACM SIGGRAPH / Eurographics Sym-
posium on Computer Animation, 2003.

36] P. Kipfer, M. Segal, and R. Westermann. UberFlow:
A GPU-based particle engine. In Proc. ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hard-
ware, pages 115-122, 2004.

37] P. Kipfer and R. Westermann. GPU construction and trans-
parent rendering of iso-surfaces. In Proc. Vision, Modeling
and Visualization, pages 241-248, 2005.

38] T. Klein, S. Stegmaier, and T. Ertl. Hardware-accelerated
reconstruction of polygonal isosurface representations on
unstructured grids. In Proc. of Pacific Graphics, pages
186-195, 2004.

39] K. G. H. C. Kniss, J. Interactive volume rendering using
multidimensional transfer functions and direct manipula-
tion widgets. In Visualization, 2001.

40] A. Kolb, L. Latta, and C. Rezk-Salama. Hardware-based
simulation and collision detection for large particle systems.
In Proc. ACM SIGGRAPH/EUROGRAPHICS conference
on Graphics hardware, pages 123-131, 2004.

BIBLIOGRAPHY 82

41] J. Kruger and R. Westermann. Acceleration techniques for
gpu-based volume rendering. In VIS，03: Proceedings of the
14th IEEE Visualization, page 38，Washington, DC, USA,
2003. IEEE Computer Society.

42] E. S. Larsen and D. K. McAllister. Fast matrix multiplies
using graphics hardware. In In Proceedings of Supercom-
puting, 2001.

43] A. Lopes and K. Brodlie. Improving the robustness and
accuracy of the marching cubes algorithm for isosurfacing.
IEEE Trans. Vis. Comput. Graph,, 9(l):16-29, 2003.

44] W. E. Lorensen and H. E. Cline. Marching cubes: A high
resolution 3D surface construction algorithm. Computer
Graphics (Proc. of SIGGRAPH), 21:163-169, 1987.

45] T. S. M. J. Harris, W. V. Baxter III and A. Lastra. Simu-
lation of cloud dynamics on graphics hardware. In In Pro-
ceedings of Graphics Hardware, 2003.

46] Mason Woo, Jackie Neider, OpenGL Architecture Review
Board, Tom Davis, Dave Shreiner. Opengl. Addison-
Wesley, 2001.

47] K. Moreland and E. Angel. The fft on a gpu. In In Pro-
ceedings of Graphics Hardware, 2003.

48] K. Moreland and E. Angel. The FFT on a GPU. In
Proc. ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, pages 112-119, 2003.

49] D. A. N. Bandi, C.Y. Sun and A. E. Abbadi. Hardware ac-
celeration in commercial databases: A case study of spatial
operations. In In Proceedings of VLDB, 2004.

BIBLIOGRAPHY 83

50] G. L. D. L. N. Goodnight, C. Woolley and G. Humphreys.
A multigrid solver for boundary value problems using pro-
grammable graphics hardware. In In Proceedings of Graph-
ics Hardware, 2003.

51] M. C. L. N. Govindaraju, S. Redon and D. M. Cullide.
Interactive collision detection between complex models in
large environments using graphics hardware. In In Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS confer-
ence on Graphics hardware, 2003.

52] S. K. N. H. Mustafa, E. Koutsofios and S. Venkatasubra-
manian. Hardware assisted view dependent map simplifica-
tion. In In Proceedings of the 17th Annual Symposium on
Computational Geometry, 2001.

53] W. W. M. C. L. N. K. Govindaraju, B. Lloyd and
D. Manocha. Fast database operations using graphics pro-
cessors. In In Proceedings of SIGMOD, June, 2004.

54] G. M. Nielson. MC*: Star functions for marching cubes. In
Proc. IEEE Visualization, pages 59-66, 2003.

55] G. M. Nielson. On marching cubes. IEEE Trans. Vis. Corn-
put Graph., 9(3):283-297, 2003.

56] G. M. Nielson. Dual marching cubes. In Proc. IEEE Visu-
alization, pages 489-496，2004.

57] G. M. Nielson and B. Hamann. The asymptotic decider:
Removing the ambiguity in marching cubes. In Proc. IEEE
Visualization, pages 83-91, 1991.

58] G. M. Nielson, A. Huang, and S. Sylvester. Approximating
normals for marching cubes applied to locally supported
isosurfaces. In Proc. IEEE Visualization, pages 459—466,
2002.

BIBLIOGRAPHY 84

59] 0 . Nilsson, D. E. Breen, and K. Museth. Surface reconstruc-
tion via contour metamorphosis: An eulerian approach with
lagrangian particle tracking. In Proc. IEEE Visualization,
pages 407-414，2005.

60] nVidia Coorperation. GL_EXT_framebuffer_object.
http: / / www. nvidia. com / dev .content/nvopenglspecs /
GL_EXT_framebufFer_obj ect, txt.

61] nVidia Coorperation. GL_NV_vertex_program3.
http: / / www. nvidia. com / dev_content / nvopenglspecs /
GL_NV_vertex_program3. txt.

62] nVidia Coorperation. The opengl framebuffer object exten-
sion, 2005.

63] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Kriiger, A. E. Lefohn, and T. J. PurcelL A survey of
general-purpose computation on graphics hardware. In EU-
ROGRAPHICS, State of the Art Report, pages 21—51, 2005.

64] V. Pascucci. Isosurface computation made simple: Hard-
ware acceleration, adaptive refinement and tetrahedral
stripping. In Joint EUROGRAPHICS/IEEE TCVG Sym-
posium on Visualization, pages 293-300, 2004.

65] T. J. Purcell, C. Dormer, M. Cammarano, H. W.
Jensen, and P. Hanrahan. Photon mapping on pro-
grammable graphics hardware. In Proc. ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hard-
ware, pages 41-50, 2003.

66] Randi J. Rost, John M. Kessenich, Barthold Lichtenbelt.
Opengl Shading Language . Addison-Wesley, 2006.

67] F. Reck, C. Dachsbacher, R. Gross� , G. Greiner, and
M. Stamminger. Realtime isosurface extraction with graph-

BIBLIOGRAPHY 85

ics hardware. In EUROGRAPHICS Short Presentations,
2004.

68] N. H. M. S. Krishnan and S. Venkatasubramanian. Hard-
ware assisted computation of depth contours. In In Pro-
ceedings of the thirteenth annual A CM-SI AM symposium
on Discrete algorithms, 2002.

69] Web. The Marching Cubes Algorithm.
http://www.exaflop.org/docs/marchcubes/index.html.

70] D. Weiskopf, T. Schafhitzel, and T. Ertl. GPU-based non-
linear ray tracing. In Proc. EUROGRAPHICS, pages 625-
633, 2004.

71] R. Westermann and T. Ertl. Efficiently using graphics
hardware in volume rendering applications. In Proc. the
25th annual conference on Computer graphics and interac-
tive techniques, pages 169-177, 1998.

72] J. Wilhelms and A. V. Gelder. Topological considerations
in isosurface generation extended abstract. In VVS ,90:
Proceedings of the workshop on Volume visualization^ pages
79-86, New York, NY, USA, 1990. ACM.

73] J. Wilhelms and A. V. Gelder. Octrees for faster isosurface
generation. ACM Trans. Graph., ll(3):201-227, 1992.

.74] H. Xie, K. T. McDonnell, and H. Qin. Surface reconstruc-
tion of noisy and defective data sets. In Proc. IEEE Visu-
alization, pages 259-266, 2004.

75] X. L. Y.Q. Liu and E. Wu. Real-time 3d fluid simulation
on gpu with complex obstacles. In In Proceedings of Pacific
Graphics, 2005.

http://www.exaflop.org/docs/marchcubes/index.html

•

 .

 •

•
 ..

-
,
 •

•

 .

 .

 .

.

.

.

.

.

.

•

 •.
.

•
 ‘

•

..

 .

.

.

.
 .
.
.
〔.
.
.

 -

 •

 -

 •

 I

 •

 .

 ,

 .

 •

 .

«
；
 •

 •

I
I

-

-

.

、
•

-

.

•

-

•

、
•

•

.

 ,

.
 •

 :.

 ...

 ...

 “
：

 .

 ；
乂
.

 /

 ...

 V
.
,
、.
；
.
、.

 rv,..

 .、、•
_
.
-
:
,
‘
.
-
.
,
:
•
.

 •

 •

 -

 .
 V

 •

_ _ _

