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Abstract of thesis entitled: 
GPU-Friendly Marching Cubes 

. Submitted by XIE, Yongming 
for the degree of Master of Philosophy 
at The Chinese University of Hong Kong in February 2008 

Marching cubes has long been employed as a standard indi-
rect volume rendering approach to extract isosurfaces from 3D 
volumetric data. This thesis presents a GPU-friendly MC im-
plementation. Besides the cell indexing, we propose to calculate 
vertex and normal interpolations by precomputing the expensive 
equations and looking up these values during runtime. Upon a 
commodity Graphics processing unit (GPU), our implementa-
tion can rapidly extract isosurfaces from a high-resolution vol-
ume and render the result. With the proposed parallel march-
ing cubes algorithm, we can naturally generate layer-structured 
triangles, which facilitate the visibility-correct visualization of 
multiple-layer translucent isosurfaces without performing com-
putational expensive sorting. The algorithm extracts and draws 
triangles, in a layer by layer fashion, from back to front. With 
the painters algorithm, the visibility of multi-layer translucent 
isosurfaces is resolved naturally. 
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論文摘要 

Marching cubes (MC)作爲一種間接的標準體總製途徑，長 

期以來被用于三維的體數據表面抽取。在這篇論文中，我們 

報告了一種利用圖像硬件加速MC表面抽取與繪製。首先我 

們對費時的計算預先處理，在MC單元索引的時，根據預先 

處理結果對所需要的點位置與法綫進行錢性的插値進行查 

値計算。在一個通用的圖像處理上，我們提升了從高分辨率 

的體數據中表面抽取的速度與渲染的結果。在我們報告的 

方法中，我們可以隨意的獲取層狀結構的三角形，不需要對 

這些三角形進行排序就可以得到一個正確的透明的結果，同 

時還可以進行多層次的透明繪製。這個方法采用了從後面到 

前面一層一層的繪製，這樣就可以得到正確的透明總製結 

果，通過這樣總畫的方法，多層次的表面透明可以得到自然 

的解决。 
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Chapter 1 

Introduction 

Our research aims at proposing algorithm that can rapidly ex-
tract and render isosurfaces from high-resolution 3D volume 
data as well as correctly visualize multiple layers of translucent 
isosurfaces, without sorting 

1.1 Isosurfaces 

Isosurfaces are normally displayed by computer graphics, and 
are usually used as data visualization methods to allow us to 
study features of a volume object. Isosurfaces tend to be a pop-
ular form of visualization for volume datasets since they can be 
rendered by a simple triangular model, which can be drawn on 
the screen very quickly. In medical imaging, isosurfaces may be 
used to represent regions of a particular density in a three di-
mensional CT scan, allowing the visualization of internal organs, 
tissue, or other structures. Isosurfaces also have been widely 
adopted to reveal the complex structures in medical and scien-
tific volume data because of its fine visual quality. Visualizing 
multiple layers of translucent isosurfaces (normally represented 
as triangles) not just generates high-quality rendering results, 
but also allows viewers to better understand the relationship 
among internal structures . However, visibility-correct visualiza-

1 



CHAPTER 1. INTRODUCTION 2 

tion of multiple translucent isosurfaces imposes a lot of difficul-
ties. For example, standard depth-buffering alone cannot resolve 
the visibility of overlapped translucent triangles. On the other 
hand, extracted triangles can be sorted by depth sorting or bi-
nary space partitioning (BSP) based visibility sorting in order to 
generate a correct drawing order. In other words, computational 
expensive sorting has to be performed whenever the viewpoint 
changes. In this thesis, we propose a GPU-friendly isosurface 
extraction method that facilitates the visibility-correct visual-
ization of multiple layers of translucent isosurfaces. Instead of 
performing visibility sorting, triangles are drawn from the back 
to front in a layer-by-layer fashion, i.e. the painter's algorithm. 

1.2 Graphics Processing Unit 

As technology advances, graphics cards become fully programmable, 
which support rendering and computing. With the rapid progress 
in Graphics processing unit (GPU), various applications associ-
ated with computer graphics advance greatly. At the same time, 
the processing power, parallelism and programmability avail-
able on the current GPU provide an ideal platform for general-
purpose computation such as algebraic computation, Nowadays, 
while a 3.0 GHz Pentium IV can perform 6 Gflops in theory, a 
GeForce 7800 GPU by NVIDIA gives a performance up to 313 
Gflops. In this thesis, we will demonstrate that GPU can do 
more than just rendering, our approach will exploits OpenGL 
framebuffer object [62] to store the rendered texture and/or 
transfer it from GPU framebuffer to CPU memory. The par-
allelism makes it be a fast platform for many computer graphic 
problems as well as other general computational questions. How-
ever, there are limitations on GPU for its stream programming 
model. This motivates us to rethink how we solve certain prob-
lems. As GPUs continue to grow at a rapid pace, it is likely 
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that GPU is becoming a mainstream for general-purpose com-
putation. 

1.3 Objective 

The objective of this thesis is to propose a GPU-friendly MC 
algorithm to speedup the extraction and rendering of isosur-
faces. The proposed algorithm can rapidly extract and render 
isosurfaces from high-resolution volume data. In addition, this 
algorithm can correctly visualize multiple layers of translucent 
isosurfaces, without sorting. 

1.4 Contribution 

In this thesis, we proposed a algorithm that can rapidly extract 
and render isosurfaces from high-resolution 3D volume data. 
Our framework can be trivially modified to implement a wide 
range of MC variants. With this framework, we can correctly 
visualize multiple layers of translucent isosurfaces, without sort-
ing. The proposed framework ensures the extracted triangles 
are drawn in a correct order, from back to front, according to 
the viewing direction. The extracted geometry is stored in GPU 
memory and they can be transferred to main memory for further 
processing. Given the geometry, many other interesting applica-
tions can be developed. In addition, this approach allows us to 
visualize the complex translucent isosurfaces in real time. The 
layer-structured triangles are directly generated by the proposed 
GPU-based isosurface extractor according to the user-specified 
isovalues. 
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1.5 Thesis Organization 

The rest of this thesis is organized as follows. In Chapter 2, the 
theory and general framework of MC algorithm are described. 
Chapter 3 depicts the history of GPUs, the processing pipeline 
of GPUs, and their limitations. In Chapter 4, we give a detailed 
introduction of existing volume rendering techniques. In Chap-
ter 5,we present the general framework to allow MC algorithm 
to be executed on GPU. In addition, an advanced algorithm for 
GPU implementation of visualizing multiple layers of translu-
cent isosurfaces is described in detail. Finally, conclusions are 
given in Chapter 6. 

• End of chapter. 



Chapter 2 

Marching Cubes 

2.1 Introduction 

The Marching Cubes algorithm [44] is a famous technique for 
extracting isosurface from 3D volumetric data. It was originally 
developed by Lorensen and Cline in 1987. Before applying the 
Marching Cubes algorithm (MC)to extract and reconstruct 3D 
surface, the volume data should to be partitioned into cubes. 
Before introducing the algorithm, we list some basic conceptions 
in Figure 2.1. 

Cube The volume defined by eight neighboring 
points 

Vertex The pixel values at the eight comer points 
of the cube 

Face One of the six sides of a cube 
Edge One of the four rims of a face 
Isosurface All points within the cube with equal 

property 
Isovalue The value of the material property 

Figure 2.1: Some basic conceptions of Marching Cubes algorithm. 

The basic principle is as follows. We can define a cube by 
eight voxels volume elements at the corner of cube and sub-
divide the whole volume into a series of small cubes [69]. If 

5 



CHAPTER 2. MARCHING CUBES 6 

one or more voxels of a cube have values less than the isovalue, 
which is user-specified and represents the interesting material 
property. And one or more have values greater than this value; 
the voxel must contribute some components of the isosurface. 
By determining which edges of the cube are intersected by the 
isosurface, a surface of up to four triangles is placed inside the 
cube. Then the algorithm "marches" on to the small cube in 
next scan line order. The Marching Cubes algorithm identifies 
256 configurations for the cube, depending on whether the eight 
vertices are inside or outside the object. As shown Figure 2.2, 
the blue points are inside the object, and red points are outside 
the object. Three triangles are inserted into the current cube to 
separate the blue ones and the red ones. 

Cube 
Vertex 

^ ' 
l ^ W p l — — i s o s u r f a c e 

� _ i | i i l _ ——Face 

Figure 2.2: Each vertex is inside or outside the surface. Vertex is 0 when it 
is outside the surface; and 1 when it is inside the surface.. 

Marching Cubes algorithm uses linear interpolation between 
voxel values to compute the location of the triangle's vertices. 
The result of all cubes in this way is a collection of surface, which 
approximate the shape of the isosurface. Based on its original 
conception, the Marching Cubes algorithm has been the subject 
of much further research to improve the quality of its surface 
representation and performance on large data sets. The advan-
tage of the Marching Cubes algorithm is that the resulting tri-
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angle model can be displayed by standard rendering algorithms 
on the traditional graphics card. It uses information from the 
original 3D volume data to derive inter-voxel connectivity, sur-
face location, and surface gradient. In addition, because the 
algorithm uses a case table of the edge intersections to describe 
how a surface cuts through each cube, the time performance of 
this algorithm is well, which is an important factor for realtime 
applications. 

2.2 Marching Cubes Algorithm 

Volumetric datasets are generally organized as 3D rectilinear 
grids with a scalar value stored at each grid point. The algorithm 
uses a divide-and-conquer approach to locate the surface in a 
logical cube created from eight pixels [44]; four each from two 
adjacent slices as shown in Figure 2.3. The algorithm marches 
each of the cubes in the volumetric datasets. The algorithm 
determines how the surface intersects this cube, then marches 
to the next cube. The pixel is assigned to a cube's vertex if the 
data value at that vertex exceeds (or equals) the value of the 
surface are constructed. These vertices are in or on the surface. 
Cube vertices with values below the surface and are outside 
the surface. The surface intersects those cube edges where one 
vertex is outside the surface. To test the corner points, and to 
replace the cube with appropriate set of polygons, the set of 
polygons of this algorithm are decided how to define the edge 
configuration and triangle configuration. 

Vertex index of 0-7 vertices and Edge index of 0-11 edges of 
each cube are indexed as shown in Figure 2.4. 

The algorithm proceeds as follows: 
Inputs are the threshold value and structured volumetric data 

set. Output is a triangle mesh which is an approximation of iso-
surface. Main steps: Cell construction from given volume data; 
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^ ^ 

Slice -

Slice K ^ ^ v o "̂；；：：̂ 

vO (i,j,K) v l (i+l,j,K) v2 (i+l,j+l,K) v3(i+l,j,K) 

v4 (i,j,K+l) v5 (i+l,j,K+l) v6 (i+l,j+l,K+l) v7 (i+l,j,K+l) 

Figure 2.3: Each vertex is inside or outside the surface. Vertex is 0 when it 
is outside the surface; and 1 when it is inside the surface.. 

I leu elO 
I I 

e8 e9 

Z Z 
vO vl eO 

Vertex Index Edge Index 

Figure 2.4: Vertex Index k Edge Index. 

Comparison of 8 cube's vertices with threshold value; Index into 
triangle table creation (0-255); Normal vectors approximation 
in cube's vertices; Use of index to find all intersected edges of 
actual cube; Triangle vertices approximation at all intersected 
edges; Normal vectors approximation in triangle vertices. 

Here we introduce the details of method. 
1. Read four neighboring slices into memory as shown in 

Figure 2.5 
2. The algorithm subdivides the whole volume into a series 

of cubes, and creates a cube from four neighbors on one slice 
and four neighbors on the next slice as shown in Figure 2.6. 

3. The cube's vertices are classified surface value (1 for inside 



CHAPTER 2. MARCHING CUBES 9 

y z z z 

y y y y 

Figure 2.5: Four Slices. 

^^ 
Z 

Slice - - 7 T ~ ~ 

Slice ^ v o Z 

Figure 2.6: Creates a cube from four neighbors. 

and 0 for outside vertices). By grouping these bits together in 
a specific order, the cube's index is calculated by the grouping 
these bits, we obtain a configuration type index (a value between 
0 and 255) as shown in Figure 2.7. 

vO vl 

Configuration type index: 1 0 1 1 0 0 1 1 = 179 

Figure 2.7: Calculate an index for the cube. 

4. Use the index as a pointer into a 256-entry edge table, 
we look up the list of edges from a table, which is used to tell 
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which edges of the cube intersect the surface. Here, 1 means 
there is an intersection on the corresponding edge as shown in 
Figure 2.8. 

5.The triangles of each configuration is stored in a 256 entry 
triangle table. For example, the triple's index (0, 3, 6) means 
that the vertices of this triangle lie on the cube edges eO, e3 and 
e6 in this order. Figure 2.9. 

lell elO 
e8 e9 

• io 
•0 鲁 1 鲁2 鲁3 _4 _ 5 _ 6 書7 •9 鲁 1 0 _ 1 1 

Edge table (entry 179): | i | i | o | o | o | i | o | i | i | o | o | o 

Figure 2.8: Look up the list of edges from a table. 

麵 
vO eO VI 

Triangle table (entry 179): 0 ,1 ,7 ,1 ,5 ,7 ,0 ,7 ,8 
Figure 2.9: Triangle table. 

6. For each edge in the edge table, find vertex intersection 
position by linear interpolation as shown in Figure 2.10. 
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W - f 叫 
！ u 丨 1 - U ！ 

‘ I I 
Interpolate surface intersection along each edge: 

VO - Vi u = 
VO - VI 

Vi = VO*(l-u)+Vl*u 
Figure 2.10: Interpol妳on vertex positi<^|i. 

卞 叫 
I U ！ 1-U ： 

‘ I I 
Calculate normal for each cube vertex: 

Gx(i,W = DO�l,j'l<) - DQ-lj-k) 
Ax 

D(iJ+l,k) - D(i,j-l,k) 
Gyo']'k) = ^ 

Gz(i.W = D(UMl) 

Interpolate the normals at the vertices of the triangles: 

nl = gO*{l-u)+gl*u 

Figure 2.11: Interpolation normal. 
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7. Calculate a normal at each cube's vertex and interpolate a 
normal to each triangle's vertex. For each vertex, find the vertex 
normal from the gradient of the data values by interpolation as 
shown in Figure 2.11. 

2.3 Triangulated Cube Configuration Table 

To simplify the algorithm, these 256 cases can be reduced to 15 
patterns by rotation, mirroring, and inversion shows. Because 
there are eight vertices and two states (inside and outside of the 
isosurface), in each cube there are only 2® = 256 possibilities of 
triangulated cube configuration that the isosurface can intersect 
the cube. The triangulation for the 15 patterns are listed, as 
follows: 

Pattern 0 

z p v 

n 4.1. 1 Figure 2.12: 
Pattern 1 ^ 

y Rotation ： Cl, C2, C4, C8, C16, C32, C64, C128 

Inverse： C127, C223, C239, C191, C247, C251, C253, C254 

Figure 2.13: 
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Pattern 2 

/I 71 Rotation： C12, C9, C3,C6, C192, C144, C48, C96, C17, C34, 
Z / C68, C136 

Inverse: C63, c m , C119, C187, C159, C207, C22I, C238, 
^ \ C243, C246, C249, C252 

n � Figure 2.14: 
Pattern 3 ^ 
/ ~y\ 3(a)Rotation： C72, C36, C18, C129, C132, C66, C33, C24, C5, 

/ CIO, C80, C160 

\ 3 ( b ) R 0 t a t i 0 n ： C95, C126, C175, C183, C189, C219, C222, C231, 
V \ C123, C237, C245, C250 

^ ^ . Figure 2.15: 
Pattern 4 ^ 

Inverse : ci90, C2i5, C235, C125 

“ r- Figure 2.16: 

Pattern 5 
y 1 Rotation： C164, ess, Ciei, C82, C26, C37, C74, C133 

Inverse : ci73, cisi, C2i8, C229, C9i, C94, C122, cie? 

Figure 2.17: 
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Pattern 6 

/ 71 Rotation ： Zl, Cll, C14, C13, c m , C176, C224, C208, C98, 
/ / C196, C152, C49, C19, C25, C35, C38, C50, C70, C76, ClOO, 
: r C137, C140, C145, C200 

/ Inverse ： C31, C47, ess, C59, C79, C103, C115, Clio, C118, 
/ J S ^ C143, C155, C157, C179, C185, C205, C206, C217, C220, C230, 

-9 C236, C241, C242, C244, C248 

Pattern 7 Figure 2.18: 

/ ^ ^ ^ ^ 7(a)Rotation： C44, C73, C131, C22, C194, C148, C56, C97, C81, 
/ J><A C162, C84, C168, C52, C67, C69, C104, C134, C138, C146, C193 

7(b)Rotation： C61, C62, C87, C93, C107, C109, C117, C121, 
r V C124, C151, C158, C171, C174, C182, C186, C188, C199, C203, 
\ y C211, C233, C234, C213, C214, C227 

Pattern 8 Pigure 2.19： 

y / Rotation: C15, C102, C51 

Inverse : C153, C204, C240 

. . ^ Figure 2.20: 
Pattern 9 ^ 

>/| Rotation: C90, C165 

\ J /7 Inverse : 

Figure 2.17: 
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Pattern 10 

A^'-'yW A Rotation: C27, C39, C78, C141 

l / / y/\ Inverse ： C114, C177, C216, C228 

n LL “ Figure 2.22: 
Pattern 11 

/I Rotation: C170, C60, C105 

I 

/ j Inverse : ess, ci95, ciso 

LL - , Figure 2.23: 

Pattern 12 ^ 
y ] 71 Rotation： C135, C75, C30, C45, C120, C180, 

/ T M / C225, C210, C53, C58, C83, C86, C89, 92, C lO l , C106, C149, 
Y / 〉 { C154, C163, C166, C169, C172, C197, C202 
1 / ~7 Inverse : 

� L L - � Figure 2.24: 
Pattern 13 ^ 

71 Rotation ： C23, C46, C29, C54, C57, C71, C77, C99, C108, 
Z ^ ^ ^ ^ ^ C116, C113, C43 

\ / y I nve rse ： CC232, C209, C226, C201, C198, C184, C178, C156, 
\ / / C147, C142, C139, C212 

Uw 
Figure 2.25: 
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Pattern 14 

Z T V ' 

Figure 2.26: 

2.4 Summary 

Although MC algorithm has achieved great success in isosurface 
extraction and reconstruction, but has many problems: The one 
is the hole problem. This problem is caused by ambiguities in 
approximate the surface. This has been solved by Wilhelms and 
Van Gelder [72]. The second problem is about it's performance: 
the MC's performance has been improved by using octree to 
reduce the number of cubes traversed in Wilhelms and Van 
Gelder [73]. Other shortcomings of the original Marching Cubes 
algorithm include triangle quality, and large number of triangles 
generated. However, many basic MC smoothing techniques fail 
to eliminate terracing because their local neighborhood does not 
encompass the width of the terrace; and smoothing a mesh with-
out consideration of the original data may smooth away crucial 
fine details as well as mesh generation artifacts. 

However, the MC algorithm is still not adequate for inter-
active manipulation of 3D surfaces reconstructed from high-
resolution data sets. Nowadays, in favor of the programmable 
function pipeline on the current GPUs, fully programmable par-
allel geometry and fragment units are available, via high level 
shading languages. In addition to computational functionality, 
fragment units also provide an effective memory interface to 
server-side data, i.e. texture buffer. In this work, we propose a 
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GPU-based Marching Cubes algorithm, which can speedup the 
time performance as well as avoid some disadvantages. 

• End of chapter. 



Chapter 3 

Graphics Processing Unit 

3.1 Introduction 

With the rapid progress in Graphics processing unit (GPU), 
various applications associated with computer graphics advance 
greatly. At the same time, the processing power, parallelism 
and programmability available on the current GPU provide an 
ideal platform for general-purpose computation such as alge-
braic computation, database operations and spectrum analysis. 
Starting from an introduction to the development history and 
the architecture of GPU, the technical fundamentals of GPU 
are described in this section. Some limitations of current GPU 
are also discussed. Many companies designed specialized and 
expensive graphics accelerator for transformation, rotation, il-
lumination, rendering and texture mapping which are compu-
tationally intensive but necessary for almost all applications 
of computer graphics. In addition, these hardware are tailor 
made for ordinary fixed graphics pipeline. Therefore, they can 
only provide limited programming flexibility. Nowadays, the de-
mand of graphics power is increasing. The primeval concept of 
graphics acceleration no longer meets the requirements. Conse-
quently, programmable Graphics Processing Unit (GPU) is in-
troduced. The key difference between such GPU and traditional 
graphic accelerator is the graphics hardware pipeline is broken 
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from its hardwired elements into programmable pipelined pro-
cessors [20]. The first impact of GPU is the realtime detailed and 
realistic cinematic graphics rendering. However, the user-level 
accessible parallel computation is the most important advantage 
we can perceive from programmable GPU. We can foresee that 
the power of parallel processing of GPU should be helpful for 
many complicated computational problem. 

3.2 History of Graphics Processing Unit 

Modern GPUs were designed from the monolithic graphics chips 
of the late 1970s and 1980s. At that time, a lot of chips are 
integrated together to handle complex computer graphics sys-
tem. With the development of technology, these chips had lim-
ited BitBLT support in the form of sprites, and usually had no 
shape-drawing support. While, as we know, current GPUs can 
run several operations in a display list, and could use DMA to 
reduce the load on the host processor. Subsequently, hardware 
engineers integrated complicated multi chip design into a single 
graphics chip to enhance parallelism. For example, IBM intro-
duced Video Graphics Array controller in 1987. At that time, 
VGA controller was only a simple hardware that dumps the out-
put from CPU to the screen. In early 1990s, high-speed, general-
purpose microprocessors became popular for implementing high-
end GPUs. Several high-end graphics boards for PCs and com-
puter workstations used TPs TMS340 series (a 32-bit CPU op-
timized for graphics applications, with a frame buffer controller 
on chip) to implement fast drawing functions. These were es-
pecially popular for CAD applications. In 1993, SSGraphics 
introduced the first single chip 2D accelerator, S3 86C911. Af-
ter while, NVIDIA introduced "GPU", in late 1990s, as a term 
for VGA controller or 3D graphics accelerator to describe the 
graphics hardware. Contemporary GPUs include basic 2D ac-
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celeration and VGA frame buffer compatibility mode and most 
of the CPUs produced after 2000 support MPEG primitives, 
such as motion compensation and iDCT (inverse discrete cosine 
transform) [20 . 

3.2.1 First Generation GPU 

In the first generation GPU were capable of rasterizing pre-
transformed triangles and applying one or two textures. Two 
typical products of first generation of GPU were NVIDIA's TNT2 
and ATI's Rage. The main problem of this type of GPUs is that 
it lacks of capability of vector and vertices transformation. As 
a result, the transformation of 3D object can solely be executed 
on CPU. Moreover, the number of texture access is limited in 
this generation GPUs. 

3.2.2 Second Generation GPU 

The second generation GPU appeared in late 1990s. Typical 
products are NVIDIA's GeForce 256 and ATI's Radeon 7500. 
The main feature of this type of GPUs is that it offers transfor-
mation and lighting. The fast hardware T&L transform offloads 
the CPU, which allowing much faster rendering process. Al-
though a set of math operators for coloring pixels is supported, 
the limitation of this GPU is not fully programmable. Thus, 
users cannot design their own algorithm for special applications. 

3.2.3 Third Generation GPU 

In 2001, the third generation GPU included NVIDIA's GeForceS 
and GeForce4 Ti, Microsoft's Xbox, and ATI's Radeon 8500. 
These types of GPUs can provide full vertex programmability 
rather than merely offering more configurability. But this gener-
ation of GPUs provides more pixel-level configurability but not 
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programmability. The vertex-level programmability allows user 
to specify a program (sequence of commands) on a vertex. This 
is the main limitation of this type of GPUs. Many scientific 
research and image-based rendering are developed based on this 
type of GPUs. 

3.2.4 Fourth Generation GPU 

The fourth generation GPU included NVIDIA's GeForce FX 
family with CineFX architecture and ATI's Radeon 9700/9800. 
These GPUs support vertex-level and pixel-level programmabil-
ity. The GeForce FX family even provides unlimited number of 
codes execute per rendering cycle. The fourth-generation GPUs 
consist of 280 million transistors. Based on some experiments 
and applications, this type of GPUs is able to draw about 540 
million triangles per-second. 

3.3 The Graphics Pipelining 

3.3.1 Standard Graphics Pipeline 

The graphics hardware processing is a fixed function pipeline to 
process the vertices, geometry, primitives and fragments. OpenGL 
is a graphics language that is designed as a streamlined, hardware-
independent interface for different platforms. Nowadays it is re-
ferred as a standard graphics rendering pipeline. It consists of 
several different processing stages, including vertex transforma-
tion, assembly and rasterization, interpolation, texturing and 
coloring, and the final raster operations as shown in Figure 3.1. 

Vertex transformation is the first stage of the pipeline, which 
is generating the position transform, texture coordinate genera-
tion and setting the lighting conditions. Then, the vertices will 
be transferred to the primitive assembly stage. The processing 
of this stage will assemble vertices into geometric primitives, 
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Figure 3.1: Graphics Pipeline 
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the points, lines or triangles geometric primitives flow into the 
rasterization steps, where the set of the pixels covered by the 
primitives will be selected. The result is a set of pixel locations 
on the screen. Those fragments will be processed at the stage of 
interpolation, texture and color. It interpolates the fragment pa-
rameters, such as color and depth, with texture looking up and 
math calculations to obtain the final color for each fragment. 
The final stage performs per-fragment rasterization operations, 
where the fragments will be killed through depths, scissor, alpha 
and stencil test. The remaining fragments will be blended with 
the corresponding pixels' alpha or color value and passed to the 
frame buffer. 

3.3.2 Programmable Graphics Pipeline 

The traditional rendering pipeline was not assigned for pro-
gram inability; thus its design had to be extended, in order to 
free up CPU time for other computations than graphics pro-
cessing. So the graphics hardware has evolved from a fixed or 
configurable pipeline to a programmable pipeline. This pipeline 
includes two distinct programmable processors, namely the pro-
grammable vertex processor and the programmable fragment 
processor. The programmable vertex processor is used to per-
form vertex transformation, lighting calculations, manipulating 
texture coordinates and normals. The transformed data will 
be processed during the rasterization for the positions and col-
ors fragments. The programmable fragment processor is used to 
calculate the final color. The vertex program controlling the ver-
tex processor is called vertex shader while the fragment shader 
is used to program the fragment unit of GPU. In a normal pro-
grammable render pass, the graphics data will be processed in 
the whole pipeline, including the vertex shader and fragment 
shader as shown in Figure 3.2. 
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Figure 3.2: Programmable Graphics Pipeline 

With the programmability, the shader can perform the tex-
ture fetching by looking up a specified texel value through a 
given texture coordinate. The texture coordinate can be ob-
tained by interpolating from the vertex interpolation or by math-
ematically calculated in the shader. If the fragment is not killed, 
the results of the fragment shader are sent on for further process-
ing. The remainder of the OpenGL pipeline remains as defined 
for fixed-function processing. Fragments are submitted to cov-
erage application, pixel ownership testing, scissor testing, alpha 
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testing, stencil testing, depth testing, blending, dithering, logical 
operations, and masking before ultimately being written into the 
frame buffer. The back end of the processing pipeline remains 
as fixed functionality because it is easy to implement in nonpro-
grammable hardware. Making these functions programmable is 
more complex because read/modify/write operations can intro-
duce significant instruction scheduling issues and pipeline stalls. 
Most of these fixed functionality operations can be disabled, 
and alternative operations can be performed within a fragment 
shader if desired. After finishing the final testing for each frag-
ment, the fragment shader will update the pixel in the frame 
buffer [19]. 

The programmable fragment processors require many math 
operations as vertex processors do [19]. Newer generation CPUs' 
texture operators support full floating-point values. Consequently, 
each fragment will be processed by running the fragment shader. 
The fragment shader should also be SIMD in nature. Final pixel 
value will be calculated by interpolating fragments color asso-
ciate with the pixel location. In the next two subsections, we 
will introduce the basic concepts of the vertex processor and the 
fragment processor in details. [66 

3.3.3 Vertex Processors 

The vertex processor is a programmable unit that offers the 
ability to directly control the operations for each vertex in the 
GPU. The vertex processor usually performs traditional graph-
ics operations such as vertex transformation, normal transforma-
tion and normalization, texture coordinate generation, texture 
coordinate transformation, lighting and color material applica-
tion. It replaces the transform and lighting operations of the 
fixed function pipelines for vertices in the traditional rendering 
pipeline, the vertex processor operates on one vertex at a time 
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(but an implementation may have multiple vertex processors 
that operate in parallel). [66 

The design of the vertex processor is focused on the function-
ality needed to transform and light a single vertex. Several regis-
ters are associated with the vertex shaders. They are the input 
register, the output register, the constant register, temporary 
registers and address registers. The per-vertex input register is 
read-only for a vertex shader. The per-vert ex data, like model-
space vertex coordinates, vertex color and texture coordinates, 
are usually stored in the input register. While some attributes 
for the vertices which change per-frame or per-object, such as 
the transform matrices, or material properties, are contained in 
the constant register. The constant register is read-only also 
to the vertex shader. The temporal register assists the compu-
tation of the vertex shader. It is used to read and write the 
temporal result of the execution. A special temporal register, 
addressing register, is provided for the indirect addressing op-
erations Output from the vertex shader is accomplished partly 
with special output variables. Vertex shaders must compute the 
homogeneous position of the coordinate in clip space and store 
the result in the special output variable "gLPosition". The re-
sult of the vertex shader execution is some predefined attributes, 
such as texture coordinates, color, clip-space vertex coordinates. 
These typical outputs are written to the output register. They 
later flow into the next stage of the graphics pipeline. [66 

3.3.4 Fragment Processors 

The fragment processor is a programmable unit that capable of 
directly manipulating for each fragment in the graphics pipeline. 
The fragment processor usually performs traditional graphics 
operations such as operations on interpolated values, texture 
access, texture application, fog, and color sum. It replaces the 
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texturing and coloring operations of the fixed function pipelines 
for fragment in the traditional rendering pipeline. One of the 
biggest advantages of the fragment processor is that it can ac-
cess texture memory an arbitrary number of times and combine 
in arbitrary ways the values that it reads. A fragment shader 
is free to read multiple values from a single texture or multiple 
values from multiple textures. For each fragment, the fragment 
shader may compute color, depth, and arbitrary values (writing 
these values into the special output variables "gLFragColor", 
"gLFragDepth", and "gLPragData") or completely discard the 
fragment. Several registers are associated with the fragment 
shader: the input register, output register, and temporal regis-
ters. The fragment shader can load texture as the input data. [66 

The geometric primitive has been rasterized into a set of frag-
ments. It enters either the texture fetching stage or the fragment 
shading stage. Since fragment processors run in parallel, GPU 
has great speeding advantages over CPU. As native graphics ap-
plication requires large amount of floating-point calculation and 
vector mathematics, GPU is specially designed for the vector 
type floating point operations which can run much faster than 
these of CPU. Figure 3.3 shows the basic procedure of fragment 
processor. It includes two components: texture fetching and 
fragment shading. [66 

Fragments — 
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Figure 3.3: procedure of fragment processor 
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Texture Fetching Textures are ID or multi-dimensional 
images that can be glued onto a 3D object. They are mapped 
onto geometric primitives in correspondence to the texture co-
ordinates interpolated in the rasterization stage. This process 
yields an interpolated color value fetched from the texture. The 
order of interpolation is depending on the dimension of the tex-
ture target and the graphic hardware's capabilities. Current 
generation GPUs support the simultaneous fetching of multi-
ple textures for each fragment without a hit in performance. 
Furthermore, these GPUs allow for enhanced controlling of the 
texture lookup itself. It is possible, for example, to use the color 
value returned by the first texture fetch as texture coordinates 
for consequent texture lookups. This is known as dependent 
texturing. Dependent texturing is important to implement dif-
ferent sorts of transfer functions for volume rendering. Other 
fragment attributes can be used as texture coordinates as well. 

Fragment Shading The fragment shading stage applies 
further color operations on a given fragment to compute its fi-
nal color. This stage is also capable of applying different math 
operations on a fragment's values. It may choose to change 
nearly every value of a fragment, e.g. the depth value, except 
for its screen location. Even allowing for the possibility that this 
stage may completely discard a fragment, it can thus prevent the 
fragment's corresponding screen pixel from being updated. The 
fragment shading stage emits one or more completely colored 
fragments for each input fragment it receives. 

3.3.5 Frame Buffer Operations 

The frame buffer operations stage performs a set of per-fragment 
operations right before the fragment is turned into an actual 
pixel. The incoming fragment is at first checked based on num-
ber of different tests. If any of these tests fail the pixel operations 



CHAPTER 3. GRAPHICS PROCESSING UNIT 29 

stage immediately discards the specific fragment without updat-
ing its corresponding pixel's value stored in the frame buffer. All 
tests can be enabled or disabled by the programmer, though it is 
not possible to change neither their order of sequence nor their 
functionality. If a fragment passes all the tests another set of 
operations is performed to update the values stored in the asso-
ciated buffers. Thus the fragment has finally advanced to being 
a pixel. The sequence of frame buffer operations is illustrated 
in Figure ??. 

^̂ î î̂ ililil̂ liiî  î̂ î il̂ iiJl̂ L̂Ĵ  — — — > 
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J| A Operations M 
• 

Figure 3.4: Fragment Shading 

Scissor Test The scissor test is used to restrict drawing of 
pixels to a rectangular portion of the frame buffer. If a fragment 
lies inside this rectangle it is further processed by the subsequent 
operations. 

Alpha Test The alpha test compares the incoming frag-
ment's opacity, i.e. its alpha value, with a reference value. The 
fragment is accepted or rejected based on the outcome of this 
comparison. 

Stencil Test The stencil test is typically used to mask out an 
irregularly shaped region of the frame buffer to prevent drawing 
from occurring within it. The pixel locations drawing is allowed 
or rejected on values stored in the stencil buffer that is part of 
the actual frame buffer. Therefore it resemblances the frame 



CHAPTER 3. GRAPHICS PROCESSING UNIT 30 

buffer in width and height. The stencil buffer is essential to the 
application of the stencil test, without it every fragment passes 
the stencil test automatically. The stencil test itself involves a 
comparison of the fragment's stencil value stored in the stencil 
buffer with a reference value. Optionally this comparison can 
also take the associated pixel's depth value into account. If 
fragment passes the stencil test it may choose to update the 
value stored in the stencil buffer as well. 

Depth Test The distance between the camera origin and an 
object, i.e. the z-coordinate inside the view volume of an object, 
currently occupying a pixel location is stored in a specific buffer, 
namely the depth buffer. The depth buffer is also part of the 
frame buffer and extends to the same dimensions as the frame 
buffer. The depth test decides whether an incoming fragment 
is occluded by a previously drawn pixel, by comparing the in-
coming fragment's depth value to the associated pixel location's 
depth value already stored in the depth buffer. If a fragment 
passes the depth test it may choose to update the depth buffer 
value with its own. The depth buffer together with the depth 
test therefore provide a convenient mechanism for depth order-
ing either partially or fully occluded objects on a per-fragment 
level. 

Blending After a fragment has passed all the pixel tests 
its color values are then combined with the color values already 
stored in the frame buffer at the corresponding location. This 
combination is referred to as blending. Different blending opera-
tions can be applied, such as replacing or modulating depending 
on the stored alpha values, thus allowing for semi-transparent 
objects. 

Dithering By dithering, color resolution can be improved 
at the expense of spatial resolution, on systems with only a 
small number of color bit-planes. If the hardware already has a 
high color resolution the enabling of dithering will end up doing 
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nothing at all. 
Logical Operations The final operation on a fragment is a 

logical operation, such as OR, XOR, and NEGATE. This op-
eration is applied before the fragment is written to the frame 
buffer, thus becoming a pixel, to the incoming fragment's values 
and/or the values currently stored in frame buffer. [46 

3.4 GPU CPU Analogy 

The CPU in a modern computer system communicates with the 
GPU through a graphics connector such as a PCI Express or 
AGP slot on the motherboard. Because the graphics connec-
tor is responsible for transferring all commands, textures, and 
vertex data from the CPU to the GPU, the bus technology has 
evolved alongside GPUs over the past few years. The original 
AGP slot ran at 66 MHz and was 32 bits wide, providing a 
transfer rate of 264 MB/sec. AGP 2, 4, and 8 followed, each 
doubling the available bandwidth, until finally the PCI Express 
standard was introduced in 2004, with a maximum theoretical 
bandwidth of 4 GB/sec simultaneously available to and from 
the GPU. GPU is a stream processor while CPU is a serial von 
Neumann architecture. Therefore, the underlying methods of 
processing of GPU and CPU are totally different. There are 
some constraints should be applied to GPUs, thus not every 
program can be mapped onto the GPUs. In this section, we 
will discuss the two fundamental conceptual differences between 
GPU and CPU: memory architecture and processing model. 

3.4.1 Memory Architecture 

GPUs use standard DRAM modules rather than custom RAM 
technologies to take advantage of market economies and thereby 
reduce cost. Having smaller, independent memory partitions al-
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lows the memory subsystem to operate efficiently regardless of 
whether large or small blocks of data are transferred. All ren-
dered surfaces are stored in the DRAMs, while textures and in-
put data can be stored in the DRAMs or in system memory. The 
four independent memory partitions give the GPU a wide (256 
bits), flexible memory subsystem, allowing for streaming of rel-
atively small (32-byte) memory accesses at near the 35 GB/sec 
physical limit. The memory on GPU is textures. A texture can 
be considered as a 2D array of memory texels with limited size 
constraint, and each texel can have either 1, 3 or 4 channels. 
Like main memory, each texel has a texture coordinate, and the 
value in case of 3 or 4 channels stored can be accessed directly. It 
is not as flexible as arrays; however, the three or four color chan-
nels design makes it is a perfect data structure for storing vector 
components of scientific computation. Operations on memory 
are specially designed for multi-channel architecture. The cost 
for operations on multi-component is approximately same as the 
operations on single component. Because the memory accessing 
speed of GPU is generally faster than main memory, fetching 
data stored in GPU memory is considerably much faster. 

3.4.2 Processing Model 

The processing model of GPUs is totally different from CPU. 
The former is stream processor while the latter is serial pro-
cessor. The most essential difference between stream processor 
and serial processor is that every object in the stream processor 
is processed by the same function. The texture and fragment-
processing unit operates on squares of four pixels (called quads) 
at a time, allowing for direct computation of derivatives for cal-
culating texture level of detail. Furthermore, the fragment pro-
cessor works on groups of hundreds of pixels at a time in single-
instruction, multiple-data (SIMD) fashion (with each fragment 
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processor engine working on one fragment concurrently), hiding 
the latency of texture fetch from the computational performance 
of the fragment processor. Each fragment executes the identity 
fragment program simultaneously and independently. Another 
important difference is that the program in stream processor is 
limited to undetermined looping or branching. 

3.4.3 Limitation of GPU 

Programmable GPUs have a higher computational power than 
CPUs, because they are explicitly designed for the simultaneous 
processing of multiple data-parallel primitives. However, com-
pared to CPUs they offer only a limited instruction set consist-
ing primarily of mathematics operations which are often graph-
ics specific and in general accept as input a limited number of 
32-bit floating point 4-vectors. The vertex stage can output a 
limited number of these floating point vectors, which are inter-
polated by the rasteriser and passed as input vectors to the frag-
ment stage. Currently the fragment processor can output only 4 
floating point 4-vectors, usually representing colors. Each pro-
grammable stage has access to global constants and local tempo-
rary registers. Since the write position of a processed fragment 
is determined in advance by the vertex-parameters and cannot 
be changed within a fragment program, fragment processors are 
incapable of performing memory scatter. It is possible to per-
form memory scatter operations via vertex programs through 
the recently emerged vertex-texture-fetch capability of current 
GPUs and the vertex processors' ability to change the target 
memory address of the colored fragments. This, however, can 
lead to memory and rasterisation coherence issues and lower 
performance. 
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3.4.4 Input and Output 

With GPU, we mainly use fragment program to perform calcu-
lations. Normally, textures are used as input. There is a size 
limitation on the textures, GeForceFX series support maximal 
size of 4096 X 4096 texture data or 512 X 512 X 512 volume 
data. The total number of textures being accessed simultane-
ously is limited. Moreover, the input textures cannot be used 
as output. The output of a fragment is limited to a single out-
put vector. As a result, shader programs can only have a single 
output stream. For the problems with large input and output, 
several rendering passes are usually needed. 

3.4.5 Data Readback 

Readback is one of the biggest limitations for computation on 
GPU. Today the data transfer from the GPU to the CPU be-
comes a bottleneck. The transferring rate from GPU to CPU 
is very slow compared with the GPU memory accessing speed. 
For sequential processing, data readback from GPU to CPU is 
unavoidable. To avoid this penalty, computation must be per-
formed on GPU as much as possible to avoid readback. 

3.4.6 Framebuffer 

The framebuffer is a video output device that drives a video 
display from a memory buffer containing a complete frame of 
data. The information in the buffer typically consists of color 
values for every pixel (point that can be displayed) on the screen. 
Color values are commonly stored in 1-bit monochrome, 4-bit 
palletized, 8-bit palletized, 16-bit highcolor and 24-bit truecolor 
formats. An additional alpha channel is sometimes used to re-
tain information about pixel transparency. The total amount of 
the memory required to drive the framebuffer is dependent on 
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the resolution of the output signal, as well as the color depth 
and palette size. 

This framebuffer extension defines a new OpenGL object 
type, called a "renderbuffer", which encapsulates a single 2D 
pixel image. The image of renderbuffer can be used as a framebuffer-
attachable image for generalized offscreen rendering and it also 
provides a means to support rendering to GL logical buffer types 
which have no corresponding texture format (stencil, accum, 
etc). A renderbuffer is similar to a texture in that both render-
buffers and textures can be independently allocated and shared 
among multiple contexts. The framework defined by this exten-
sion is general enough that support for attaching images from 
GL objects other than textures and renderbuffers could be added 
by layered extensions. [60 

3.5 Summary 

The power of programmable GPUs enables efficient computation 
of a wide variety of applications. It used to enhance the visual 
appearance of interactive 3D rendering and accelerate the ren-
dering process. But exploiting the efficient parallel performance 
of GPU, it also has the ability to perform varieties of general 
purpose computation.The general purpose applications include 
data set operations [62] [14] [4] [53] [49] [13] ,collision detec-
tion [30] [51], computational geometry [7] [51] [29] [52] [68] [1], 
scientific computing such like fluid simulation [75], cluster [18], 
matrix multiplication [42] [28] [31], physical simulation [45] [50] [35] and 
FFT [47]. 

In this thesis, we will demonstrate that GPU can do more 
than just rendering.Our approach will exploits OpenGL frame-
buffer object [62] to store the rendered texture and/or transfer it 
from GPU framebuffer to CPU memory. The parallelism makes 
it a fast platform to handle many computer graphic problems as 
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well as other general computational problems. However, there 
are limitations on GPU for its stream programming model. This 
motivates us to rethink how we solve certain problems. As GPUs 
continue to grow at a rapid pace, it is likely that GPU is be-
coming a mainstream for general-purpose computation. 

• End of chapter. 



Chapter 4 

Volume Rendering 

4.1 Introduction 

Volume rendering has become a large part of scientific visual-
ization during the last twenty years. It is a technique used to 
display a 2D projection of a 3D volumetric data set. 3D scalar 
fields are generated within a wide range of scientific areas and 
visualization of data is important to quickly and accurately gain 
insight to large amounts of information. This type of data can-
not be rendered with conventional rendering techniques, which 
is the reason that volume rendering has created its own field 
within scientific visualization. Rendering a volume is a compu-
tationally intensive task due to the large amount of data that 
need to be processed, and it is only recently, with the advent of 
commodity 3D hardware accelerator cards, that interactive ren-
dering of volumes has become possible. So this field has a num-
ber of applications, especially within medical imaging, where the 
output of CT and MRI scanners is a volume data set, as well 
as geology where seismic surveys are visualized as an aid when 
searching for oil or gas. 

The three basic principles of volume rendering are forming 
of an RGBA volume from the volume data, reconstruction of a 
function from this discrete volume data set, and projecting it 
onto the 2D viewing plane (the output rendered image) from 

37 
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the point of view, so volume rendering is the process of trans-
forming a set of 3D discrete sample color points to a 2D image 
which can be displayed on a screen, as a color volume is a 3D 
four components RGB A volume data set, where the first three 
components R, G, and B color components and the last A com-
ponents opacity. 0 is opacity value that means totally translu-
cent, 1 is opacity value means totally opaque, the background 
color is placed, Behind the color volume is an opaque. The clas-
sification of the data as opacity values is mapped by the alpha 
table. The appearance of isosurfaces can be improved by using 
shading techniques to form the Raycasting, The size of a volume 
data is increased by the lengths of the volume elements. Even 
relatively small volumes usually contain a significant number 
of samples, more commonly called voxel for volume elements. 
For the implementation of a volume renderer, several methods 
are utilized, mostly depending on the available hardware. If 
the hardware is recent enough to support 3D texture mapping, 
which, while slightly more computationally intensive, requires 
less texture memory, interactive performance can be achieved. 
Further more, it can generate better visual quality. 

In this chapter, after a brief introduction of the development 
of volume rendering techniques, we focus on various hardware-
accelerated volume rendering techniques. The principles of some 
key techniques are explained in detail. Finally, we will give a 
short summary. 

4.2 History of Volume Rendering 

In the 1970's, volume rendering techniques have been developed 
to enable more direct visualization of the volumetric data. With 
appropriate preprocessing, volume rendering can be used to vi-
sualize surfaces, interior structure, and objects that do not have 
well defined surfaces. In 1990, Kaufman et al. developed many 



CHAPTER 4. VOLUME RENDERING 39 

effective volume editing tools, volume rendering algorithms and 
data compression schemes [33]. Although the process needs large 
memory, faster algorithms and special-purpose hardware are en-
abling realtime volume rendering of data of significant size and 
resolution. 

In 1993, Kaufman et al. have introduced the field of vol-
ume graphics, where a voxel-based data format is used to rep-
resent graphical objects, which are customarily represented by 
surface-based models [34]. They have demonstrated that many 
of the graphical effects, such as shading and reflectance that 
are available in surface-based graphics representation are also 
possible using volume graphics. Assuming that memory needs 
and processing requirements can be met effectively, Kaufman et 
al. asserted that volume graphics has the potential to supersede 
surface-based graphics just as 2D raster graphics superseded vec-
tor graphics [34]. Whether or not this potential is realized will 
depend on many factors. However, some objects will be more 
accurately modeled using a voxel based volume graphics format 
than conventional graphics formats. 

Cullip and Neumann [12] discussed the necessary sampling 
schemes as well as object-aligned and view-aligned sampling 
planes in 1993. Based on this idea, as well as the extension 
to more advanced medical imaging, a novel technique was de-
scribed by Cabral et al. [8]. They demonstrated that both inter-
active volume reconstruction and interactive volume rendering 
was possible with hardware providing 3D texture acceleration. 

In 2001, K. Engel et al.implemented the high-quality pre-
integrated volume rendering using hardware-accelerated pixel 
shading. Then the authors also described the interactive high-
quality volume rendering based on flexible consumer graphics 
hardware [16]. In 2003, Roettger et al. described a GPU-based 
pre-integrated texture-slicing including advanced lighting. In 
the same year Krger and Westermann proposed a method to 
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accelerate volume rendering based on early ray termination and 
space-skipping in a GPU-based raycasting approach [41]. The 
space-skipping addresses the rasterization bottleneck, using a 
single octree level only. 

Today, by exploiting the capabilities of current hardware, vol-
ume rendering approaches using textures have become more and 
more popular. Based on these hardware accelerated algorithms, 
manipulations of volumes can be performed in real time. 

4.3 Hardware Accelerated Volume Render-
ing 

Volume rendering techniques based on graphics hardware utilize 
texture memory to store a 3D data set. Current graphics cards 
have become programmable with high-level shading languages 
which allow them to execute small programs for each pixel in 
the final image. Their architecture is highly parallel with 16 or 
even 24 pixel pipelines working concurrently. The volume to be 
displayed is restricted by the available amount of texture mem-
ory and the transfer rate between main and graphic memory. 
Volume rendering techniques based on texture memory include 
two types of texture-based techniques, 2D texturing and 3D tex-
turing. 

The first one is 2D texture-based slicing technique, which is 
along the major axes of the data and takes advantage of hard-
ware bilinear interpolation within the slice. These methods re-
quire three copies of the volume to reside in texture memory, one 
per axis, and they often suffer from artifacts caused by under-
sampling along the slice axis. Trilinear interpolation can be at-
tained using 2D textures with specialized hardware extensions 
available on some commodity graphics cards. This technique 
allows intermediate slices along the slice axis to be computed in 
hardware. These hardware extensions also permit diffuse shaded 
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volumes to be rendered at interactive performance [9]. 
The other one is 3D texture-based techniques, which typi-

cally samples view-aligned slices through the volume, leveraging 
hardware trilinear interpolation. Other proxy geometry, such 
as spherical shells, may be used with 3D texture methods to 
eliminate artifacts caused by perspective projection. The pixel 
texture OpenGL extension has been used with 3D texture tech-
niques to encode both data value and a diffuse illumination pa-
rameter which allows shading and classification to occur in the 
same lookup. Engel et al [16]. showed how to significantly re-
duce the number of slices needed to adequately sample a scalar 
volume, while maintaining a high quality rendering. 

4.3.1 Hardware Acceleration Volume Rendering Meth-
ods 

The OpenGL application programming interface provides access 
to the advanced per pixel operations that can be applied at the 
rasterization stage of the graphics pipeline, and in the frame 
buffer hardware of modern graphics workstations. During this 
process the volume data set is then sampled, classified, rendered 
to proxy geometry, and composited. Classification typically oc-
curs in hardware as a ID table lookup. 

In particular, they provide sufficient power to render high-
resolution volume data sets with interactive frame rates using 
2D or 3D texture mapping. When using texture hardware to 
render volumes, volume is sliced in one of two ways. The first 
mode of slicing is object-aligned slicing. With object-aligned 
slicing, the slices are fixed to the volume, much like in shear-
warp factorization. Because the slices are fixed with respect to 
the volume, the data for each slice may be stored in a 2D tex-
ture. Of course, slices will not be visible if they are parallel to 
the viewing direction. For object-aligned-slices, there must be 
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at least three copies of the slices where each set is perpendicular 
to a principle axis of the volume. The second mode of slicing 
is view-aligned slicing. With view-aligned slicing, the slices are 
always perpendicular to the view plane and the renderer trilin-
early interpolates the volume data to map onto the slice. 

4.3.2 Proxy Geometry 

The first step of GPU-accelerated volume rendering is to place 
geometry inside the three-dimensional scalar field that consti-
tutes the volume. A set of texture coordinates are interpolated 
along the surface of the geometric primitive as well as other at-
tributes when this geometry is rendered. Each generated frag-
ment is assigned its corresponding set of texture coordinates in 
the rasterization stage. This set of texture coordinates can later 
be used to sample one or several texture maps at the associated 
location. Subsequently, to sample the volume at arbitrary lo-
cations, the scalar field constituting the volume must be stored 
in one or several textures while the texture coordinates must be 
assigned to correspond to locations inside this scalar field. The 
geometry does not have any relations to the data contained in 
the volume. That is why it is called "proxy geometry". 

The proxy geometry characterization step in the graphical 
pipeline can be specified by two methods. The first one is enclos-
ing rectangles of intersections while the other is enclosing poly-
gons of intersections. The former is a straightforward method 
of texture mapping cut-planes. The latter requires finding the 
polygon of intersection between a given cut-plane and the cube 
of data. This approach is relatively faster for processing frag-
ments because one visits only those fragments that are inside 
the cube of data. It is proposed by Kniss et al [39]. includ-
ing the following key steps: (1) transform the volume bounding 
box vertices into view coordinates; (2) find the minimum and 
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maximum z coordinates of the transformed vertices; (3)for each 
plane, in back-to-front order test for intersections with the edges 
of the bounding box and add each intersection point (up to six) 
to a fixed-size temporary vertex list; (4)compute the centre of 
the proxy polygon by averaging the intersection points and sort 
the polygon vertices clockwise; (5) tessellate the proxy polygon 
into triangles and add the resulting vertices to the output vertex 
array. 

4.3.3 Object-Aligned Slicing 

2D texture mapping is well suitable for implementing object-
aligned slicing. It involves storing a set of three rectilinear vol-
ume data sets, and using them as three perpendicular stacks 
of object aligned texture slices (Figure 4.1). Slices are taken 
through the volume orthogonal to each of the principal axes. 
The resulting information for each slice is represented as a 2D 
texture that is then pasted onto a square polygon of the same 
size. The rendering is performed by projecting the textured 
quads and blending them back-to-front into the frame buffer. 
During the process of texture mapping the volume data is bilin-
ear interpolated onto a slice polygon.Figure 4.1 shows an exam-
ple using 2D texture mapping to render a volume human head 
dataset. 

As mentioned above, a single stack of 2D slices is not enough 
for visualization of the volume. It would be possible to see 
through the individual slices when the point of view is rotated 
around the textured proxy geometry during rendering. This 
problem cannot be accounted for with just a single stack of 
slices. This is why three stacks of slices must be stored. In 
general, the stack with slices most parallel to the screen plane 
is chosen for rendering the volume as illustrated in Figure 4.2. 

The main limitation of using object-aligned slices for volume 



CHAPTER 4. VOLUME RENDERING 44 

奪 
Figure 4.1: Object-Aligned Slicing. 

visualization is the space performance since the requirement for 
three slice stacks that allocate three times the memory than the 
actual volume. Another drawback is that the switching of the 
stack currently used for rendering yields visible artifacts and a 
sudden drop in rendering performance. Also, when one stack 
is switched to another, artifacts can become visible. This is 
because that the actual locations of re-sampling points change 
abruptly with the change in stacks as illustrated in Figure 4.3. 

Another limitation of object-aligned slice is that using this 
method leads to inconsistent sampling rates for different viewing 
directions. This is because alpha blending is used to accumulate 
the re-sampled values and performing a numerical integration of 
the volume rendering integral. The same effect is achieved using 
this method as composting samples along a ray in ray-casting. 
The sampling distance is dependent on distance between adja-
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Figure 4.2: Choose the stack with slices most parallel to the screen plane. 
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Figure 4.3: Visible artifacts caused by switching of the stacks . 

cent object-aligned slices. 
4.3.4 View-Aligned Slicing 
Recent years, 3D texture mapping hardware has become a pow-
erful visualization option for interactive volume rendering. This 
method is usually executed in the following steps: (1) convert 
volume data to a 3D texture; (2) a number of planes perpen-
dicular to the viewer's direction of sight are clipped against the 
volume bounding box; (3) the texture coordinates in parametric 
object space are assigned to each vertex of the clipped polygons. 
The main difference between view-aligned slicing and object-
aligned slicing is that during rasterization, fragments in the slice 
are trilinearly interpolated from 3D texture and projected onto 
the screen plane using adequate blending operations. Figure 4.4 
shows the basic principle of this approach. 
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The volume is stored in a single 3D texture. View-aligned 
slices are used to generate re-sampling locations for reconstruct-
ing the volume. In this case, 3D texture coordinates are inter-
polated over the interior of the view-aligned slices. Then it is 
used for addressing the volume. This approach takes advantage 
of spatial coherence inside the volume. 

Q ； 
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Figure 4.4: View-Aligned Slicing. 

One of the major advantages of using 3D texture is that slices 
can be oriented arbitrarily with respect to the volume. This al-
lows arbitrary orientation of slices to be used for re-sampling 
the volume. View-aligned slices are rendered as proxy geome-
try so that ray-casting can be mimicked as close as possible to 
the image plane. Especially, this approach offers an equidistant 
sampling rate for all viewing directions for orthogonal projec-
tion, mimicking ray casting perfectly for each "ray", i.e. for 
each final pixel (Figure 4.5 (1)). However, in case of perspec-
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tive projection, the distance between successive re-sampling lo-
cations is not equal to adjacent "rays", i.e. for adjacent pixels 
(Figure 4.5(2)). Although this approach offers a good approxi-
mation of the final result, it is possible to render spherical shells 
as proxy geometry. This offers an equidistant sampling distance 
for perspective projection at the expense of more vertices that 
need to be processed. 

A.Parallel Projection B. Perspective projection 
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Figure 4.5: Parallel projection and perspective projection. 

In view-aligned slicing, the number of slices can be chosen 
arbitrarily on-the-fly without the need for setting up inter-slice 
interpolation manually because the graphics hardware performs 
general trilinear interpolation for each fragment during the re-
sampling process. This is a major advantage of using 3D tex-
tured view-aligned slices, as it results in an image of higher qual-
ity. In addition, it is also possible to render slices with arbitrary 
orientation with respect to the volumetric data which allows 
maintaining a constant distance between sampling points for all 
pixels and viewing directions. Furthermore, a single 3D tex-
ture allocates only a third of the memory that the three object-
aligned 2D textures stacks do. The major disadvantage is that 
trilinear interpolation is significantly slower than bilinear inter-
polation, due to the requirement for using eight as opposed to 
four texels for each computed sample. Another drawback of this 
approach is it requires texture fetch patterns that decrease the 
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efficiency of texture caches on graphics memory. 

4.4 Summary 

In this chapter, we give a detailed introduction of existing vol-
ume rendering techniques. Developed from the 1970s, volume 
rendering technique had becoming a large part of computer 
graphics, especially in scientific visualization. Several hardware-
accelerated volume rendering techniques, including proxy geom-
etry, object-aligned slicing and view-aligned slicing are intro-
duced. Based on object-aligned slicing, we propose a framework 
which ensures the extracted triangles are drawn in a correct or-
der, from back to front, according to the viewing direction as 
well as correctly visualize multiple layers of translucent isosur-
faces, without computationally expensive sorting. 

• End of chapter. 



Chapter 5 

GPU-Friendly Marching Cubes 

5.1 Introduction 

Isosurfaces have been widely adopted to reveal the complex 
structures in medical and scientific volume data. In SIGGRAPH 
1987, Marching Cubes (MC) was presented by Lorensen and 
Cline. From then on Marching Cubes is the most commonly-
used algorithm for finding polygonal representations of isosur-
faces in 3D volumetric data. Isosurfaces extraction is a common 
analysis and visualization technique for three-dimensional scalar 
data due to its fine visual quality. Visualizing multiple layers of 
translucent isosurfaces (normally represented as triangles) not 
only just generates high-quality rendering results, but also al-
lows viewers to better understand the relationship among inter-
nal structures. However, visibility-correct visualization of multi-
ple translucent isosurfaces imposes a lot of difficulties. Standard 
depth-buffering alone cannot resolve the visibility of overlapped 
translucent triangles. Extracted triangles can be sorted by depth 
sorting or binary space partitioning (BSP) based visibility sort-
ing in order to generate a correct drawing order. In other words, 
computational expensive sorting has to be performed whenever 
the viewpoint changes. 

The Marching Cubes algorithm have two basic parts : the 
triangulation module and rendering module. In the current MC 

49 
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algorithm, the triangulation module, which needs more arith-
metic and logical operations, is run on the CPU. The rendering 
module sends the vertices' positions and normal to GPU for dis-
play. Nowadays, in favor of the programmable function pipeline 
on the current GPUs, fully programmable parallel geometry and 
fragment units are available, via high level shading languages. 
In addition to computational functionality, fragment units also 
provide an effective memory interface to server-side data, i.e. 
texture buffer. 

So we present a GPU-friendly MC implementation. Besides 
the cell indexing, we propose to calculate vertex and normal in-
terpolations by precomputing the expensive equations and look-
ing up these values during runtime. Upon a commodity GPU, 
our implementation can rapidly extract isosurfaces from a high 
resolution volume and render the result. With the proposed 
GPU based Marching Cubes algorithm, we can naturally gen-
erate layer structured triangles, which facilitate the visibility-
correct visualization of multiple-layer translucent isosurfaces with-
out performing computational expensive sorting. The algorithm 
extracts and draws triangles, in a layer by layer fashion, from 
back to front. With the proposed algorithm, the visibility of 
multi- layer translucent isosurfaces is resolved naturally. 

5.2 Previous Work 

Surface reconstruction is widely applied for volume rendering [32 . 
In [74], Xie et al. presented an algorithm that recovers surfaces 
from noisy and defective data, by fitting surface in each octree 
cell. Nilsson et al. [59] reconstructed 3D closed surfaces from 
parallel contours. Isosurface is important for visualizing complex 
structures, especially for 3D medical data, such as ultrasound, 
CT, and MRI scans. Marching Cubes is one of the most famous 
techniques for extracting isosurfaces, first developed by Loren-
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son and Cline [44]. Later its variants [10, 43’ 54，55，56, 57, 58" 
were proposed to solve some problems, such as ambiguity, ac-
curacy, efficiency, and so on. Instead of cubes, some extensions 
employ various substitopes [3], such as tetrahedra [15, 24] and 
diamonds [2 . 

Bertram [5] proposed a technique for volume refinement by 
fairing isosurfaces. In [23], Gregorski et al. presented an al-
gorithm for interactively extracting and rendering isosurfaces of 
large volume data set in a view-dependent fashion. Gerstner and 
Pajarola [21] described a technique of multiresolution isosurface 
visualization. In [25], Guo presented a method of isosurface ex-
traction by interval set. ISOSLIDER [11] interactively displays 
the updated isosurfaces as the isovalue is slightly changed. The 
fast update exploits the coherence of isosurfaces with similar 
isovalues. 

To take advantage of the new programmable graphics chips, 
many techniques are developed to speed up algorithms previ-
ously run on the central processing unit (CPU). The intrinsic 
parallelism computation and memory communication on a GPU 
have been exploited to accelerate the general-purpose computa-
tion [63], for example FFT [48]. Moreover, simulations of com-
puter graphics techniques can be accelerated by graphics hard-
ware, including particle systems [36, 40], collision detection [22], 
fluid dynamics [27], global illumination [65], ray tracing [70], 
and so on. 

Especially, there are some hardware-accelerated techniques 
for volume rendering. The technique proposed in [71] utilizes 
programmable graphics hardware to accelerate volume visual-
ization, by per-pixel operations available in the rasterization 
stage and in the frame buffer hardware. Binotto et al. [6] pro-
posed a volume rendering technique using a fragment-shader 
compression. In [26], Hadwiger et al. presented a GPU-based 
ray casting and advanced shading of isosurfaces. However, their 
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work loses one important property of isosurfaces: the geometry. 
They just visualize the isosurfaces without actually construct-
ing the geometric structure. Based on the Marching Tetrahe-
dra (MT) algorithm, [64] and [67] utilize vertex shader to look 
up tetrahedra and finally render the extracted surfaces. These 
two methods only reconstruct triangles temporarily and can-
not completely store isosurfaces (triangular mesh). Recently, in 
favor of the more powerful fragment shader, several methods, 
which can store the geometry of isosurfaces, were proposed. 
Klein et al. [38] proposed a method explicitly extracting the 
isosurfaces. The extracted geometry is directly written to an 
onboard graphics memory object allowing for direct rendering 
without further bus transfers. The extracted geometry can be 
manipulated by shader programs and read back to the appli-
cation for further processing. In [37], Kipfer and Westermann 
proposed an isosurface extractor that reduces both numerical 
computations and memory access operations. Given this pro-
cess, interactive smooth shading and transparent rendering by 
GPU-based sorting are achieved. However, we have to men-
tion that, most of these methods are based on MT algorithm. 
In general, MT generates much more triangles than MC. In this 
paper, we present a GPU-friendly MC algorithm. Moreover, our 
system can correctly visualize multiple translucent isosurfaces, 
without sorting. 

5.3 Traditional Method 

In order to describe the proposed method precisely, we will first 
introduce some basic concepts of isosurface extraction and as-
sociated notations. In our paper, extraction includes two parts: 
reconstruction and rendering. Reconstruction means computing 
the surface geometry from the volume data. Rendering means 
displaying the current view on the screen based on the given 
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geometry. 

5.3.1 Scalar Volume Data 

For each scalar volume data, there is a pair {V, W) to specify 
it. V is a finite set of 3D points spanning a domain Q C R^, in 
that V = Vi G ; i = 1 , n . W is a finite set of scalar values, 
sampled at the points of V, and W = Wi G R,i = 1,n.The 
correspondence between W and V can be described by a scalar 
field / (p ) , when p = (x, 2/, z) Q, and f{V) = W. A mesh E 
subdivides Q into polyhedral cells, crj, j = 1,...., m. All vertices 
of E are at the points of V.E can be made of hexahedra (i.e. 
cubes), tetrahedra, and etc. For example, in MC algorithm, the 
mesh E is a rectilinear grid. The cells are axis-aligned, and grid 
spacings along the axes are equal. The constructive cells are 
cubes. Each vertex can be indexed by a coordinate (z, j , /c), and 
vertex Vi,j,k has the value Wiĵ k. 

5.3.2 Isosurface Extraction 

Given an isovalue a e R, there are a set of sampled positions Sa 
within the 3D volume with the same value a, that is Sa = {p e 
Q I f(p) = a}. Here, Sa is called the isosurface of field f at value 
a. The isosurface Sa can be approximated by a triangular mesh. 
The mesh is constructed cell by cell. A cell aj E E has vertices 

with value Wj�,….,Wjh, where h is the number of vertices 
for each cell. If m,ini=i’_.j{Wji < a < maxi=i’…,hWji, the cell s j is 
called active cell at isovalue a. This selection can be completed 
by labeling. If the value at the vertex exceeds or equals the 
isovalue, we label the vertex with one. If the value is below the 
isovalue, we label it with zero. If all vertex values of a cell are 
I's or 0，s, this cell is not active. An active cell contributes to the 
approximated isosurface for a patch made for triangles. A non-
active cell does not produce triangles. Triangles are obtained 
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by intersection points between the edges of active cells and the 
isosurface. The edges with intersection are called active edges. 
The intersections are linear interpolations of two end-points of 
the active edges. The intersection points are called isosurface 
vertices. The normal at each isosurface vertex is also estimated 
by linear interpolation, in order to render the isosurface with 
smooth shading. 

5.3.3 Flow Chart 

The isosurface extraction flow chart of program is shown in Fig-
ure 5.1. shows the flow chart for isosurface extraction. 

1. Vertex labeling label each vertex according to the com-
parison between its value and the given isovalue. 

2. Cell selection locate all active cells s in the mesh S, given 
the labels of cell's vertices. 

3. Cell indexing according to the vertices' labels of the ac-
tive cell, index the cell in a lookup table, and determine 
its active edges and how corresponding isosurface vertices 
must be connected to form triangles . 

4. Normal calculation for each vertex v of the active cells 
(all cells or only active cells), computing its corresponding 
surface normal by its neighboring vertices in the 3D volume 
space. 

5. Interpolation for each active edges, computing the 3D 
coordinates and normal direction of its surface vertex by 
linear interpolation.. 

6. Rendering given the extracted geometry (a set of trian-
gles), render the surface and display it on the screen. 
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Figure 5.1: CPU Flow Chart. 
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5.3.4 Transparent Isosurfaces 

We use alpha and opengl function glBlend to control transparent 
surface to support hardware rendering for OpenGL. To render 
the transparent surface and display it on the screen, we will 
see artifacts from the rendering as Figure 5.2, processing when 
a portion of a transparent surface is viewed through another 
portion of the same surface. When a relatively smooth isosurface 
is viewed from above, it will look pretty good. But if it has a 
significant wave in it and it is viewed obliquely so that one side 
of the wave is viewed through another side, the artifacts will 
appear. These artifacts will also occur with a transparent blobby 
isosurface since this type of isosurface is closed and will almost 
always have a side view through another. These artifacts seem 
to only occur when viewing a transparent isosurface through 
itself, but not appear when viewing one transparent isosurface 
through another. Consequently, the amount of blotchiness will 
be a function of the parameter whose isosurface is viewed and the 
value of the isosurface. After this, good transparent isosurface 
should be generated. 

In the following section, we will introduce how to solve these 
problems by programmable graphics hardware. 

5.4 Our Method 

The framework of the proposed method is shown in Figure 5.3. 
There are two parts: extraction and rendering. Extraction is 
completed by our GPU-friendly MC algorithm. In the render-
ing part, the extracted geometry is rendered layer by layer, from 
back to front, just like the painter's algorithm. Our rendering 
process guarantees correct visibility of multiple translucent iso-
surfaces, without computational expensive sorting. As shown 
in Figure 5.3，the proposed algorithm consists of the following 
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§ 
Figure 5.2: Artifacts from the rendering. 

main steps: 

1. Cell selection Active cells are determined in the 3D vol-
ume data.. 

2. Vertex labeling Each vertex of the active cell is marked 
by comparison with the given isovalue a. 

3. Cell indexing According to the labels, the active cell 
is indexed in lookup tables, the active edges are deter-
mined and how corresponding isosurface vertices must be 
connected to form triangles is decided . 

4. Normal calculation Vertex normal is computed by neigh-
boring vertices in this step. 

5. Interpolation For each active edges, it computes the po-
sition and gradient of the corresponding isosurface vertex 
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Figure 5.3: GPU Flow Chart. 
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by linear interpolation.. 
6. Rendering Given the extracted geometry, it draws tri-

angles from back to front, with the painter's algorithm. 

In the proposed method, the vertex labeling is executed on 
CPU. Cell selection and indexing, normal calculation, interpo-
lation, and rendering are completed by GPU. 

5.4.1 Cell Selection 

The process of selecting active cells within a 3D volume is im-
plemented on CPU, as shown in Figure 5.4. It generates a set 
of active cells to be passed to graphics hardware pipeline. This 
process plays a very important role to list all active cells and 
avoid redundant computations for following processes. 

In the 3D volumetric data, we first index the cells between 
two neighboring slabs. For each cell between this pair, we find 
the maximum and minimum values of its vertices, max and 
min, respectively. Then the current cell is mapped to a 2D 
hash table (Figure 5.5) according to the pair {max, min). Each 
entry in this table holds the 3D index (z, j , k) of the mapped 
cube. An example is given in Figure 5.5. In this cell, max = 0.7 
and min = 0.2. So the position of this cell in the 2D hash 
table is (0.7,0.2), with a dot marker. All cells within the 3D 
volume have a position in this hash table. Given this table, 
we can efficiently locate active cells for any isovalue a. When 
the isovalue is a, we can locate a square, which is specified by 
two lines min = a and max = a. All hashed cells inside the 
square are active. For example, when a = 0.5, we locate a 
square as shown in Figure 5.5. The example cell locates in this 
square, so it is an active cell at the isovalue 0.5. To manage this 
hash table, max and min, which are in floating point [0，1], are 
mapped to integers [0,2" — 1]. Here, x 2" is the resolution of 
this table. The larger the table is, the higher precision we can 
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Figure 5.4: Selecting the active cells. 
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achieve. Since, max and min are two coordinates of this table 
and max is always larger or equal to min, so only half of the 
table is occupied and only entries in the upper triangular region 
may have records. 

max „ n c > a=0.5 

min̂  « 
(0.7.0.2) 

min=0.2 
max=Q.7p~~ 

——rj a=0.5 

Figure 5.5: Cell selection hash table. 

After the cell selection, we set up a list, called coordinate list, 
and each entry stores a coordinate (i, j , k) of an active cell, in 
the 3D volume. 

5.4.2 Vertex Labeling 

Given the coordinate list generated by the cell selection process, 
we know which cells are active. We label the vertices of active 
cells according to the isovalue a. This process is implemented in 
a fragment shader, as illustrated in Figure 5.6. In the coordinate 
list, each entry records the 3D coordinate of active cell. The 
volume is loaded as a 3D texture, so that the fragment shader 
can access the vertex value with the coordinate if the 
value of vertex is larger or equal to the isovalue, this vertex is 
labeled by 1. Otherwise, it is labeled by 0. The labeling results 
are rendered to a texture, case texture. The entry of this texture 
has four components. The first three store (z, j , k), and the last 
component contains the 8-bit lookup index. The format of the 
case index is shown in Figure 5.7. Each bit contains the label 
(1 or 0) of corresponding vertex. For example in Figure 5.6, the 
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cell with the coordinate k) is labeled by the isovalue and 
the case index is 10010000. 

i f f f f 
： ^ ^ 

； ( i . j . k ) 

, , / iy* 
L V ^ case=10010000 

3D texture 
(i. j .k) I i ( i . j .k.case)l ... 

~̂I 
！ fragment! 

^ ^ shader J 

— i � 
coordinate list isovalue a case texture 

Figure 5.6: Labeling vertices of active cells. 

Given the case texture, we can march active cells in the orig-
inal lookup tables of MC algorithm. Our approach exploits 
OpenGL framebufTer object [62] to store the rendered texture 
and/or transfer it from GPU framebuffer to CPU memory. 

5.4.3 Cell Indexing 

The process of cell indexing is completed by CPU. In MC algo-
rithm, there are two lookup tables: edgetable and triangletable. 
By indexing an active cell in these two tables, we can determine 
its active edges and how corresponding isosurface vertices are 
connected to form triangles. The formats of case index, entries 
of edgetable and triangletable are shown in Figure 5.7. An 8-bit 
case index is formed as each bit corresponds to a vertex, from 
vi to t>o. By looking up the edgetable, we get a 12-bit number, 
each bit corresponding to an edge, from en to cq. Value 1 means 
that the corresponding edge is intersected and active. Value 0 
means no intersection. The triangletable involves forming the 
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correct facets from the positions that the isosurfaces intersect 
the active edges. The lookup table utilizes the same index and 
gets the vertex sequence for all triangles that are necessary to 
represent the isosurfaces within the active cell. As defined in 
MC algorithm, there are at most 5 triangles generated in one 
cube, so that the entry of triangletable is 15 bytes. 

1O fVa 
eoQ <» 69 

6110 ； O 6io 

‘ 6o 
V o i 0-- J 丨 V' 

630''' e. • vertex 
v ， k _ S — — K o edge 

case index: v? ve | v» "^v，| V2 vi ^ 8 bits 

edgetable entry: e,i|ei。|e»|ei|er e.|e，|e—ea —eileT] 12 bits 

triangletable entry: po pi p̂  p» P4 ps p. p? pio pn pi2 pn pi4 15 bytes 

Figure 5.7: Formats of case index, entries of edgetable and tiangletable. 

Given the case texture rendered by the labeling process, for 
each active cell, we can look up the active edges and corre-
sponding triangle vertices in this cell, as shown in Figure 5.8. 
All active edges are stored in the edge list. Each entry in the 
list has three components (x, y, n), where (x, y) is the coordinate 
of current active cell in the case texture and n is the sequence 
number of the edge in this cell. The vertex sequence is stored in 
the vertex list. The entry of this list only has one component m, 
which is an index of active edge in the edge list. The active edge 
with the index m is the edge containing the current isosurface 
vertex. Here the vertex index is interchangeable to active edge 
index, because each active edge has only one isosurface vertex. 
An example is illustrated in Figure 5.8. An active cell is with 
case 10010000. By looking up edgetable, we get 100101010000. 
This number means edges 4,6,8,11 are active. These four edges 
are stored in order in the edge list. By looking up triangletable, 
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Figure 5.8: Marching the active cells by looking up two tables to obtain 
active edges and isosurface vertex sequence. 

we get {6,8，4,11,8,6, —1，…，—1}. That means there are 2 tri-
angles in this case. “一1” means null. The vertices sequences of 
two triangles are {6 ,8 ,4} and {11,8,6}, respectively. Actually, 
there are 15 numbers in this entry. After vertex 6, they are all 
—1. We will not render vertices with the null value —1. After 
this process, the edge list is passed to the interpolation process. 
The vertex list is prepared for rendering process. 

This CPU-based process is crucial in selecting active edges 
in each active cell and list the isosurface vertices one by one. 
With this process, the performance of interpolation and render-
ing is significantly improved. In fact, we have tested to move 
the marching process from CPU to GPU. However, due to com-
putation overhead. The GPU version is slower than that of the 
current CPU version. 
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5.4.4 Interpolation 

The edge list is processed into a series of fragments and then 
passed into a fragment shader. With the access of 3D volume 
data (loaded as 3D texture) and case texture, the positions and 
normals of two end vertices of the active edge can be achieved. 
The computation of the interpolation is carried by a fragment 
shader (Figure 5.9). 

./I 7 _ _ 
i |(I.J.t.case)| 

ioj.k) ... 
.b^U__1 

3D texture case texture Vp … ； 

rj^ ^ (x.y.4) j / \ X y Y"1 fx V 6) i ‘ fragment I w • 一 . • 丨 丨 」 - - ^ 
： jx'y's) I 毕 L shader J 申 position texture w 

< ^ jjP^ (x.y.1l) t Hp I … 

edge list ' = — ^ ^ 
‘ 2 normal texture 

ftable 

Figure 5.9: Interpolating position and normal of isosurface vertex by a frag-
ment shader. 

Vij.k P Vi+1 J.k 

Figure 5.10: Interpolation on each active edge. 

As shown in Figure 5.10, there is an intersection point p on 
the active edge with two end points Vi’j,k and Vi+ij,k' Given an 
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isovalue a, the position Vp and the normal Up can be computed 
by interpolation. The values of ut丄k and Vi+]j’k are Wiĵ k and 
Wi+iĵ k^ respectively. In the object coordinate, the positions of 
Vi,j,k, and Vp are (i + l,j, /c), and (x,j, k). The 
linearly interpolated value x between i and (z + 1) is 

工 = ( l - t ) ' i - h t ' ( i - h l ) 

=i-ht 
where t 二 ( 以 _ 切 … ) 

So, in this case Vp = {i + 力’ j , k). 
The computation of normal is a little bit complex. The nor-

mals of Vij^k,灼+i’j’/c，and Vp are ny’fc, ni+i，j,k, and rip. The 
linearly interpolated normal rip is 

n{x, j, k) = (1 — t ) . riij^k + 1 . ni+i,j,k 

几 = n j x j , k) 
P ||n(a;， 

The computation of t is time consuming. To accelerate it, t 
can be achieved by looking up a 2D table (Figure 5.11(a) t table), 
which is pre-computed whenever a new isovalue is provided. The 
2D table is indexed by {wi^w2), and here w is converted from a 
float [0,1], to an integer [0 ,2^-1] . Similar to the table utilized 
in cell selection (Figure 5.5), the precision is controlled by n. A 
larger table will give a higher precision. Two examples a = 0.5 
and a = 0.7 (Figures 5.11(b) and (c)) are given. Since all cells 
looked up are active, the value of a must be between wi and W2-
In this table, two rectangles are valid, while the other regions are 
useless. Figures 5.11(b) and (c) show the t values when a = 0.5 
and a = 0.7, respectively. 

As shown in Figure 5.9, the interpolated positions Vp and 
normals v^ are rendered into two textures, position texture and 
normal texture, respectively. These two textures are directly 
accessed by vertex shader in the following rendering process. 
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Figure 5.11: Interpolation lookup table (a) to accelerate the computation of 
t. Different isovalues determine different tables, such as (b) a — 0.5 and (c) 
a = 0.7. 

Before interpolating the normal, the normals at two end points 
of the active edge are first calculated. Obviously, normals may 
be repeatedly computed, but this mechanism is suitable for 
SIMD-based parallel GPU. In the proposed algorithm, we calcu-
late the normals in the same way as in the traditional methods. 

5.5 Rendering Translucent Isosurfaces 

The vertex list contains the indices of vertices, forming the 
triangles. The list is prepared as a sequence of vertices, and they 
are sent to a vertex shader. Since positions and normals are gen-
erated in the same order as in edge list, the indices in vertex list 
can trivially look up the corresponding values in the position and 
normal texture. In the current GPU, textures can be accessed 
by vertex shader directly, by GL_NV_vertex_prograin3 [61]. The 
vertex shader renders triangles according to the accessed posi-
tions and normals, without transferring the data from CPU to 
GPU. 

We are rendering translucent isosurfaces,however traditional 
depth-buffering cannot correctly resolve visibility. Although 
depth sorting and BSP-visibility sorting can handle the visi-
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Figure 5.12: Given the vertex list, rendering the isosurfaces triangle by tri-
angle. 

bility, they are relatively computational expensive. We use a 
painter's algorithm that draws the triangles from back to front. 
To do so, we need to arrange all triangles in a layer data struc-
ture. This can be naturally done as we select active cells in a 
layer by layer fashion. Furthermore, the order of cells specifies 
the order of extracted triangles. Inspired by [17], 

we use Object-Aligned Slicing algorithm to render multiple 
transparent isosurfaces. In this method, the isosurface compo-
nents must be sorted in a back-to-front or front-to-back order 
according to depth from the view-point or viewing plane. We 
employ a fast yet simple back-to-front sorting method. It es-
sentially exploits a loophole for depth-sorting: the isosurface 
components in a scene do not have to be truly sorted according 
to depth from viewing plane, as long as the rendering algorithm 
guarantees that no isosurface component is drawn after another 
isosurface component which occludes it. 

Therefore three stacks of slices isosurfaces must be stored, 
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with each stack of slices isosurfaces aligned to one of the major 
axes. Then, the stack with slices isosurfaces most parallel to the 
screen plane is chosen for rendering the volume. 

We run the basic algorithm three times, for x, y, z direction 
respectively, once along the x direction, once for y direction, 
and once along z direction. For each direction, we generate a 
copy of vertex list, position texture, and normal texture, as de-
scribed in the previous section. For example, in the copy of x 
direction, triangles are arranged in a layer structure, increas-
ing along the x direction. The copies for y and z are similarly 
generated. We keep three copies altogether. When the viewing 
direction changes, our method automatically selects a proper 
copy to resolve the visibility. For the example in the first row 
of Figure 5.13, the view point is within the shadowed region. 
For simplicity, we take the 2D diagram in Figure 5.13 as an 
example, in this case, the back-to-front direction is the inverse 
X direction. So, we select the copy of x direction, and draw 
triangles by inversely visiting the vertex list of this copy. This 
order guarantees that all triangles are drawn layer by layer, in-
versely along the x direction. So that the visibility is resolved 
naturally. For the second example, the back-to-front direction 
is along the y direction. So we select the copy of y direction, 
and draw triangles in the order of vertex list of this copy. The 
translucent isosurfaces are correctly visualized. The second and 
third columns of Figure 5.13 show intermediate rendering results 
when 50% and 80% of layers are drawn, respectively. The upper 
and lower rows show to different viewing orientations. 

5.6 Implementation and Results 

To evaluate the proposed algorithm, we test it with a variety 
of 3D volume data, as listed in Table 5.1. All experiments are 
conducted on a PC equipped with AMD A3800 and GeForce 
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Figure 5.13: The painter's algorithm of rendering multiple translucent iso-
surfaces. 

7800. Statistics are shown in Table 5.1. The statistics includes 
all processes. In Table 5.1, all isovalues are 0.5. The statistics 
show that the speed mainly depends on the the number of tri-
angles extracted and rendered. For a high-resolution data set, 
we can get an interactive isosurfaces extraction and rendering. 
For low-resolution data, real time performance can be achieved. 

Data Resolution # Triangles fps 

Sphere 64 x 64 x 64 35,960 — 27.9 
Blood 256 X 256 x ^132 ,603 ^ 
Head 256 x 256 x 651,195 2.2 
Inner Ear 128 x 128 x 30 “ 128,291 9.1 
Foot 256 X 256 x 256 513,783 2.5 
Engine Block 256 x 256 x 128 645,213 2.0 
Fuel 64 X 64 X 64 2,242 85.5 

Table 5.1: Statistics including all processes. 

we will see artifacts from the traditional method rendering as 
shown in Figure 5.14(left), We have proposed a GPU-friendly al-
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編 _ 

Figure 5.14: Translucent isosurfaces 
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急碧 _ 
Foot Head Sphere 

Figure 5.15: Rendering results of multi-layer translucent isosurfaces. 

Fuel Engine 

Figure 5.16: Rendering results of multi-layer translucent isosurfaces. 

-.-.vTifT：̂, 

Figure 5.17: Rendered result of "sphere" with 3 isosurfaces. 
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_ 9眷 
Figure 5.18: The top viewing directions of the data "head". 

t i i 
Figure 5.19: The front viewing directions of the data "head" 

gorithm,which extracts and renders triangles, in a layer by layer 
fashion, from back to front, like the painter's algorithm. So we 
can correctly visualize multiple layers of translucent isosurfaces 
without performing sorting Figure 5.14(right). We run the basic 
algorithm three times, along the x direction, y direction, and z 
direction, respectively. When the isovalue is fixed and the view-
ing direction changes, the orientation of the slice normal must 
be changed, by just selecting a proper copy of list and textures. 

If the isovalue does not change, the rendering of multiple 
translucent surfaces is real time in most cases. Because all we 
need to do is to select the right copy of slices (hence triangles) for 
display, according the current viewpoint. The rendering timing 
statistics are shown in Table 5.2. Figure 5.16 shows the corre-
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^ JPT iPP 
Figure 5.20: The top view of "fuel". 

； 1 ^ 
Figure 5.21: The front view of "engine" 

spending rendering results. 
In Figure 5.17 Figure 5.21, we show how our system renders 

the isosurfaces layer by layer, from back to front. Figure 5.17 is 
the rendered result of "sphere" with 3 isosurfaces. Figure 5.18 
and Figure 5.19 are two viewing directions of the data "head". 
Figure 5.18 is the top view, and Figure 5.19 is the front view. 
Figure 5.20 is the top view of "fuel" and Figure 5.21 is the front 
view of "engine". Since our system draws triangles, from back 
to front, we can correctly resolve the visibility of translucent 
isosurfaces, without sorting. 

5.7 Summary 

In this chapter, we present a GPU-friendly MC algorithm. The 
proposed algorithm can rapidly extract and render isosurfaces 
from high-resolution 3D volume data. Our framework can be 
trivially modified to implement a wide range of MC variants. 
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Data # Layers Isovalue # Triangles fps 

0 I 4 29,288 
Sphere 3 0.58 30,224 170.3 

0.64 21,272 
^ 131,423 

胸 d 2 0 73 105,669 73.0 
659,202 

彻 ad ^ 0.44 746,339 

0.38 126,193 
I 酬 r E a r 2 ^ qq 140,462 70.4 

708,201 
Foot 2 0 55 433,468 

o S 564,477 
Engine Block 2 o.79 137,736 22.9 

002 11,951 
Fuel 2 0.07 8,852 | 

Table 5.2: Statistics of rendering translucent isosurfaces. 

With this framework, we can correctly visualize multiple layers 
of translucent isosurfaces, without sorting. The proposed frame-
work ensures that the extracted triangles are drawn in a correct 
order, from back to front, according to the viewing direction. 
The extracted geometry is stored in GPU memory and ready 
for post-processing. Given the geometry, many other interest-
ing applications can be developed. 

• End of chapter. 



Chapter 6 

Conclusion 

In this thesis, we propose a set of GPU-friendly the volume ren-
dering techniques, including texture-based volume visualization 
and the famous marching cubes algorithm. 

In the technique, we utilize GPU to accelerate the traditional 
texture-based volume rendering algorithm. A set of slices (2D 
textures) are indexed from a 3D volume. These slices are aligned 
with object space. During the rendering process, they are drawn 
one by one, from back to front. The rendered results show that 
our method is both efficient and effective. 

Then we propose a framework to extract and render iso-
surfaces in real time from high-resolution 3D volume data. This 
framework can be trivially modified to implement a wide range 
of MC variants. With this technique, we can correctly visualize 
multiple layers of translucent iso-surfaces without sorting. The 
proposed framework ensures the extracted triangles are drawn 
in a correct order, according to the viewing direction. 

Within these years, GPU becomes more and more power-
ful and its programmability also becomes more and more flexi-
ble. We can implement more complex algorithms on GPU and 
lighten the burden of CPU. 

• End of chapter. 
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