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Abstract 

We address the problem of how a camera-embedding device, and in turn the 
person or vehicle that is holding it, can have its position and orientation de-
termined automatically from the image data it captures. The work is aimed 
for the application that a remote service provider can inform a person of 
his current location and orientation, once the person takes an image of his 
surroundings using a PDA or cellular phone and sends the image over. The 
problem is particularly meaningful in the urban environment in which the 
GPS signal could be blocked by crowded buildings. The problem is related 
to how the 2D scene image can be registered with the 3D database of the 
buildings that the service provider owns about the target environment. We 
propose a solution mechanism that makes use of certain corner features we 
refer to as junctions, which are generally amply available among buildings 
in the urban environment. It can be shown that three trihedral junctions, if 
matched between the 2D scene image and the 3D database, already represent 
an adequate set for solving the localization problem. An effective hypothesis-
and-confirmation mechanism implemented in a hashing scheme is proposed 
to find such a triplet of junction matches between the 2D and 3D spaces. Ex-
perimental results on real image data of both laboratory scenes and outdoor 
scenes are shown to illustrate the performance of the solution mechanism. 
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歴 

本文提出了一個處理照相機自定位問題的方案，使它能 

利用拍攝到的一張照片來自動找出自己的位置和方向， 

繼而解決載有此照相機的使用者或車輛的定位問題。此 

項研究的目的，是要開發一個這樣的應用：使用者以電 

子手帳或手提電話來拍攝他四周的境物，之後將拍得 

的照片發給網絡服務供應商，再由網絡服務供應商計算 

出使用者現時的位置和方向，並將此資料發回給使用 

者。 

在擠滿高樓大廈的大城市裏，全球位置測定系統的訊號 

會被大廈阻擋而使其服務受影響，我們的應用方案就可 

以派上用場。此應用方案的問題在於怎樣把二維映像與 

網絡服務供應商提供的三維境物模型對應起來。我們提 

出的方案使用一種被稱為‘接合點，的大廈角落特徵。 

我們很容易就能在大城市裏的大廈上面找到這些特徵。 

從三個二維映像與三維模型之間的接合點配對中，我們 

可以提取足夠資料來解決自定位問題。一個以散列表形 

式來執行的‘假設與確定，機制能有效地找出以三個接 

合點爲一組的配對。我們在户內和户外進行了實驗。其 

中的實驗結果展示了此系統的性能。 
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Chapter 1 

Introduction 

1.1 Objectives 

Self-localization of a camera is an important problem in computer vision. It 
is about determining the position and orientation of a camera in the 3D world 
—together known as the camera pose - using image data of the surroundings 
it captures. Should the image data be about an urban scene, the camera 
poso can be expressed with reference to a fixed reference coordinate frame 
attached to a certain landmark of the scene, say a corner of a building. Then 
the position and orientation of the camera is expressed as a 3-vector t and a 
3x3 matrix R with respect to the fixed reference frame. 

1.2 Motivations 

Though GPS can offer 3D location for user anywhere in the world, the local-
ization accuracy is limited and could achieve a precision of no better than 5m 
[19]. It also offers only position not orientation information. Most important 
of all, in crowded urban areas the GPS signal can be blocked by buildings. 
A localization mechanism that operates differently from GPS, that takes ad-
vantage of the existence rather than the absence of buildings, would come 
handy in augmenting GPS especially in the urban city environment. As fore-
casted by [46]，200-storey skyscrapers and fully automated vehicles are going 
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CHAPTER 1. INTRODUCTION 2 

to come true in the near future. Our proposed system, together with GPS, 
can help human users or automated vehicles to navigate in a cyber urban 
city environment. 

A library of building models 
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Figure 1.1: The proposed system. One possible application of the system 
is to give user direction information in a city scene. 

1.3 Problem Statement 

This thesis describes a solution to the self-localization problem, in the sce-
nario that a 3D database of the environment, assumed to be an urban scene 
cluttered with buildings, is available for reference. The key step of the pro-
cess is then 2D-to-3D registration - how a 2D image of some buildings can 
be registered with the correct 3D features in the precise 3D structure of the 
buildings themselves. Since some 2D image features may be occluded and 
the 1-to-l correspondence between each 2D and 3D feature is unknown, the 
registration can be quite complex and require a lot of computations. The 
2D-to-3D registration problem has been extensively studied in the litera-
ture. A number of works that use point or line features have been proposed 
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22, 41]. Yet, a nature of buildings, that many of them are polyhedral, has 
not been fully exploited. The emphasis of this work is how that nature can 
be exploited so that a reliable and fast solution can be attained. In this work 
we assume that at least some of the buildings visible in the image data are 
polyhedral, and we aim at making good use of such a nature. 

1.4 Camera Self-Localization Approaches 

The problem of camera self-localization can be tackled in a few different ap-
proaches. Some require a still image of a calibration pattern, while some 
require the tracking of features in an image sequence of the scene. The 
approach proposed in this thesis uses junctions as features to provide infor-
mation for solving the problem. 

1.4.1 Based on Calibration Patterns 

Classical camera self-localization approaches are performed by observing 
some known positions of points in 3D space or calibration pattern [47，55, 3 . 
Unfortunately, such information relies on some specific calibration objects 
and an elaborate setup. Thus it is seldom available in general situations. 

1.4.2 Based on Self-calibration 

Techniques in this category do not need any calibration object. A camera 
is moved in a static scene, the rigidity of the scene provides constraints [31 
on the camera's internal parameters from one camera displacement by using 
image information alone. Therefore, if images are taken by the same camera 
with fixed internal parameters, correspondences between three images are 
sufficient to recover both the internal and external parameters of the camera 
18，28]. To get stable results for self-calibration, a large number of images 

is usually necessary. 



CHAPTER 1. INTRODUCTION 4 

1.4.3 Based on Shape and Motion 

For this approach, the scene is stationary and it is captured by a moving 
camera. There is a relative motion between the camera and the scene. An 
image sequence is used as input as it can give richer information than a still 
image. Figure 1.2 gives the idea. By studying the densely sampled image 
sequence, we can recover the 3-D geometry of the scene and the motion of 
the camera. This approach is known as Shape and Motion [30, 36, 43, 45，48]. 
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Figure 1.2: Camera in motion (i.e. moving camera and stationary objects). 

One advantage of this approach is that, features correspondence problem 
across image frames ^ is relatively easy to solve. Distinct features can be 
tracked as they do not move far from one image frame to the next one inside 
the same image sequence. However, this approach has a drawback. It requires 
a long image sequence to obtain accurate result. Features are tracked over 
image frames that are far apart enough. Same reason as for triangulation 
in which wider baseline^ usually gives better result. 

1 Correspondence problem requires image features corresponds to the same entities in 

3-D to be matched across the image frames. 

2 A surveying method that determines a location on a map by using two or more ob-

servers through which lines of known directions are drawn, the intersection of these lines 

is the desired location. 

3The distance between two observers in triangulation. 
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1.4.4 The Proposed Approach - Based on Junctions 

The 2D-to-3D registration between a single image and a scene is a diffi-
cult problem and has been the subject of intense research for many years 
29]. However, a few assumptions about the buildings can simplify the task 

for this application. We assume the buildings are of trihedral structures, 
meaning that each corner is built from no more than three planes in 3D. As 
such, the junctions that can show up in the image space and that are real 
(meaning that their structures are viewpoint-invariant) can only be either 
"Y"-junctions (junctions with three component branches spanning a total 
angle of more than 180° in the image space), "A"-junctions (junctions with 
three component branches spanning a total angle of no more than 180°), 
and "L"-junctions (junctions with only two component branches). The "Y"-
and “A，，- junctions are often referred to as the trihedral junctions. With the 
above, the input to the problem is a 2D still image of some polyhedral build-
ings, plus a 3D database that contains all the major corners of the buildings 
as a priori information. We propose to use such corners, or trihedral junc-
tions as we call them, as the features for registering the 2D image with the 
3D database. This is for three reasons. 

1. Junctions are information-rich as each of them contains not only posi-
tion inforinatiori as reflected by the corner position, but also direction 
information as reflected by its component edges. As we shall put for-
ward in this thesis, just a few of them are enough to allow the localiza-
tion solution to be pinpointed. 

2. Junctions are higher level features than plain points and lines, and are 
rarer in the image. Their use could thus reduce the number of features 
that need to be considered, and in turn the computational demand of 
the solution mechanism. 

3. Junctions are features which are not so sensitive of the lighting. The 
use of junctions could help handling different lighting conditions as well 
as shadows. 
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In this thesis we describe how junctions can be extracted efficiently from 
an image, and how a small number of them matched between the 2D image 
and the 3D database can help determine the camera pose. To acquires these 
few initial matches, we use a hashing scheme that facilitates their establish-
ment in an efficient manner. The proposed approach for pose estimation is 
validated by experiments on images of laboratory scenes and outdoor scenes. 

1.5 Thesis Organization 

The structure of the thesis is as follows. Chapter 2 gives a brief review of 
the previous work on camera self-localization and feature correspondences 
establishment. In chapter 3, some preliminaries including the camera model 
used in this work and the knowledge of camera pose estimation are outlined. 
Chapter 4 describes our solution mechanism that registers the input image 
with the 3D database. A novel junction-based approach is proposed. We 
show that a junction triplet correspondence between the 2D image and the 
3D space can provide enough information that allows the camera pose to be 
determined. A comparsion of attractiveness between junction features and 
point or line features are given. Chapter 5 shows some experimental results 
to test the accuracy and feasibility of the proposed system. Chapter 6 gives 
our conclusion and puts forward possible future work. 



Chapter 2 

Previous Work 

2.1 Camera Self-Localization 

Self-localization using computer vision approach has been extensively stud-
ied. It is particularly important in mobile robot navigation problem [12, 44 . 
A broad range of approaches using geometrical and topological models of 
space, using optical flows, and by recognition of specific objects in the en-
vironment have been developed to solved both indoor and outdoor naviga-
tion problems. The system proposed in this thesis tackle an outdoor self-
localization problem by considering the polyhedral buildings in the scene. 
An efficient correspondence establishment algorithm is proposed by consid-
ering the distinct corners (junctions) of the building. 

2.1.1 Parallel Plane Features 

Johansson and Cipolla [21] were among the first to propose a solution for 
tackling the camera self-localization problem. They use parallel planes as-
sociated with a building as features to register the scene image with the 3D 
model. Upon establishing the best match of the features, the system can 
determine the pose of the camera accordingly. Parallel planes are however 
very high level features. In this work we provide an alternative solution that 
makes use of junctions as the features for establishing correspondences, which 
are lower level features and are generally more accessible. 

7 
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2.1.2 Parallelepiped Features 

Wilczkowiak, Sturm and Boyer [51, 52] used the geometric constraints of 
parallelepipeds, such as parallelism and orthogonality, to calibrate a camera 
and build a scene model from a single uncalibrated image. Similar to their 
approach, this work uses junctions of polyhedral buildings as features for 
camera pose estimation. Even though some part of the building is occluded 
by other objects in the image, a number of junctions are still available for 
the proposed system. Therefore junctions are more local and robust than 
parallelepipeds in general. 

2.1.3 Single View Geometric Features 

Criminisi and Zisserman [9] showed how to make 3D measurments of a scene 
by using a single perspective image. The approach uses geometric relation-
ships between planes parallel to the reference plane to compute distance, 
area and length ratios on those planes. Liebowitz and Zisserman [23] also 
make use of geometry constraints for metric rectification of planes in a single 
perspective image. In this thesis, single view geometry is studied in another 
perspective by considering the projection of building junctions from 3D space 
to 2D space. Camera position and orientation can be determined by using 
this geometric property. 

2.1.4 Shape and Motion 

Another category of approaches allows the simultaneous recovery of cameras 
and 3D models via the factorization of a measurement matrix of image points. 
An image sequence is used as input as it can give richer information than 
a still image. Since there is a relative motion between the camera and the 
scene, by studying the densely sampled image sequence, the 3-D geometry of 
the scene and the motion of the camera can be recovered. This approach is 
known as shape and motion [30, 36，43，45, 48 . 
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2.1.5 Other Estimation Methods 

Low level features such as points or lines were used as information for camera 
pose estimation [10]. The proposed approach uses a kind of new features 
known as junctions which are information-richer and more robust. There 
were also previous work [47，55，3] that use a still image of a marked pattern 
to determine the intrinsic and extrinsic (i.e., pose) parameters of a camera. 
There were also systems [22, 31] that use a long image sequence from a 
hand-held camera to determine the cameras' positions. On the other hand, 
both linear [38, 10] and nonlinear methods [35] were proposed to solve the 
problem. In this work we assume neither marked pattern on the buildings 
nor the availability of video data, but only a single image of the buildings in 
their natural appearance. 

2.2 Feature Correspondences Establishment 

The feature matching part of the proposed system is a hybrid from a model-
based object recognition approach and a feature-based object recognition 
approach. It is assumed that the knowledge of how certain buildings may 
appear is given as a model database. On the other hand, the system extracts 
distinct features from an image of a scene possibly containing those build-
ings. Finally the system finds a match between the model database and the 
extracted features and estimate the camera pose of the current image. 

2.2.1 Feature-based Object Recognition 

Scale-invariant feature transform (SIFT) [26, 27] is a recently developed 
feature-based vision technique which extracts distinctive local features from 
images. The features are invariant to image scaling, translation and rotation. 
SIFT is used in the matching of different views of a scene and object recog-
nition. This algorithm performs well under the presence of noise and poorly 
illuminated environment. While SIFT finds features according to the image 
intensity changes, which result in many of them in an image, our proposed 
method finds structural features (junctions) by finding two to three lines co-
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intersecting at one point in the image domain. Our proposed method gives 
a small number of distinct features that eases the 2D-to-3D correspondence 
establishment by reducing the number of unnecessary trials. 

2.2.2 Model-based Object Recognition 

The study on model-based vision [6，33, 37] was started some twenty years 
ago. It helped the development of 3D object recognition [1，24’ 25, 11, 7, 49 
which originally aims at recognizing the identity, position, and orientation of 
randomly oriented industrial parts. Together with the study on robotics, 3D 
object recognition helped automating the manufacturing process in modern 
industry. An example of model-based object recognition known as geomet-
ric hashing that uses geometric invariants has been addressed in [53, 54 . 
It handles the case when the imaged models have rotated and translated 
relative to their initial database position and the scene has undergone a 
sensor-dependent transformation, such as the projective transformation of a 
camera. All possible views of the models imaged on a viewing sphere are 
hashed offline for recognizing the models in the scene. Our work simplifies 
the idea by establishing just a small number of direct 2D-to-3D junction 
correspondences, and by so doing dumping the redundant model views. 



Chapter 3 

Preliminaries 

This chapter reviews single view geometry and defines the notations needed in 
this thesis. First, the adopted camera model and the definition of a camera 
pose are reviewed. Then the method of camera pose estimation by using 
point and direction correspondences are introduced. Please refer to chapter 
6 of [17] and [13，2，5，20’ 39] for more detailed information. 

3.1 Perspective Camera Model 

The effect of taking a picture can be described by a camera projection model. 
A camera captures 3D points from a scene and forms 2D image points on an 
image plane. 

In Euclidean space, a 3D point is denoted by X = [X, y , Z]^ and a 2D 
image point is denoted by x = [it, t;]"̂ . With homogeneous coordinates, the 
point vectors are augmented by adding 1 as the last element. The points are 
then expressed as X = [X, Y, Z�1]丁 and x = [u, v, 1]丁 respectively. 

The projection is a transformation 

入 = (3.1) 

where P is a 3 x 4 camera projection matrix and A is an arbitrary scale factor. 
The sophistication of the camera projection model depends on the matrix P. 
Different versions of matrix P are proposed and each of them has its own 

11 
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properties. 

The perspective (pinhole) camera model is the most general camera pro-
jection model. In terms of geometry, it is explained in figure 3.1. A right-hand 
coordinate system is used as it matches with the image coordinate system 
used in MATLAB. The camera centre is regarded as the origin of the camera 
frame. All 3D points are observed with respect to this frame. Light from a 
3D point travels along a straight line to the camera centre. It passes through 
the image plane to form a 2D image point. This line is known as the line 
of sight. The 3D point coordinates and the 2D image point coordinates are 
related by similar triangle as: 

u = ^― and V = (3.2) 
'Zj /J 

image origin 

f principal point = {uq, vq) 

！ \ 
Figure 3.1: A pinhole camera model. 

In terms of algebra, the projection model is expressed in matrix multipli-
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cation as: 

u fX/Z 1 fX / 0 0 0 X 

Ax = A V = Z fX/Z = fY = 0 / 0 0 = PX 

1 Z/Z Z 0 0 1 0 1 

(3.3) 
Taken into account the intrinsic parameters, equation 3.3 is modified to be-
come: 

Ax = K[l3|0]X (3.4) 
�^^V^‘ 

p 

where I3 is a 3 x 3 identity matrix, 0 is a 3 x 1 zero column vector, and K is 
the camera intrinsic matrix, given by: 

Oiu s Uq 

K = 0 A； 

0 0 1 

with (uo, vq) the coordinates of the principal point, a^ and (3y the scale factors 
in the image u and v axes, and s the parameter describing the skew of the 
two image axes. 

For the extrinsic parameters of the camera (also known as the camera 
pose which includes the orientation arid position of a camera frame specified 
with respect to the world frame), the relationship between the camera frame 
and the world frame can be formulated by a coordinate transformation. 

The coordinates of a 3D point X in the world frame are first represented 
by Xu；. Given the camera frame and the world frame, the orientation of the 
camera frame with respect to the world frame is denoted by a 3 x 3 rotation 
matrix R. The position of the camera frame origin (i.e. the camera centre) 
with respect to the world frame origin is denoted by a 3 x 1 vector t. Then 
we can obtain the coordinates of X in the camera frame denoted as Xc by 
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the coordinate transformation: 

Xe = 一 t) (3.5) 

We can obtain a mapping that maps 3D points in the world frame to 2D 
points on the image plane by combining equations 3.4 and 3.5 together which 
is: 

Ax = KR[l3| - t]X (3.6) 

P 
The arrangement of a 3D point, the world frame and the camera frame in a 
3D space is shown in figure 3.2. The orientation R and position t together 
specify the camera pose. Determination of camera pose is thus much about 
determination of the camera projection matrix P. 

I 
R 

Figure 3.2: The arrangement of a camera frame, a world frame, and 
a 3D point in space. 

Under a perspective camera model, perspective effect takes place so that 
the image of groups of 3D parallel lines meet at a few vanishing points. This 
happens when the camera is placed near to the object. The shorter the 
distance between the camera and the object, the stronger the perspective 
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effcct will be. On the other hand, if the distance between camera and object 
is much longer than the object depth (i.e. the camera is placed far away 
from the object), the images of the parallel lines would appear to be nearly 
parallel. And the orthographic camera model can be used instead. 

To reduce the perspective effect, we have to stand far away from the 
object and zoom-in the object (i.e. use thinner camera lens). In this way, 
the distance between the camera and the object will become much larger 
than the object depth, and at the same time, the object will not appear to 
be too small in the image. As a result, parallel lines in 3D space will appear 
to be nearly parallel in the image. However, we have to pay the price that 
the image depth of field will become narrow. An example is given in figure 
3.3. The parallel lines of the cube shown in the first row images converge 
to a vanishing point. However, the parallel lines of the cube shown in the 
second row images look parallel (They are not extractly parallel. They do 
have a vanishing point, but the vanishing points are far out of the image). 

B B ^ ^ w t f y i 

Q Q Q Q 
Figure 3.3: Perspective effect. Images on the first row are captured by 
camcras placcd close to object without zoom (strong perspective cffect). Im-
ages on the second row are captured by cameras placed far away from the 
object with 6x zoom (weak perspective effect). 

3.2 Camera Pose from Point Correspondences 

As is evident from equation 3.1, each position correspondence between x in 
the image space and X in the 3D space, which physically refers to a match 
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cube in 3D space -ff 

X 
ima^Q plaftQ 

丨、.x / 
t 

_ _ y 

Figure 3.4: A vanishing point example.Camera projection of a direction 
AB in 3D space will define a vanishing point vab in the image plane. 

between an image point and a 3D point, actually offer 2 scalar constraints for 
the camera projection matrix P (for the reason that the scalar A is arbitrary). 
Since P is a 3 x 4 matrix defined up to arbitrary nonzero norm, meaning that 
it has a total of 11 degrees of freedom, if it is to be determined from such 
position correspondences using linear method, at least�11/2"| = 6 point 
correspondences are required. 

Once the camera projection matrix P is made known, the camera pose in 
terms of R and t can be obtained by RQ decomposition of P. Readers can 
refer to appendix B for the details of RQ decomposition. 

3.3 Camera Pose from Direction Correspon-
dences 

Consider a 3D straight line AB which starts from a point X = 
on one face of a cube in 3D space shown on figure 3.4. A unit vector 
E = [Ex, Ey^ EzY represents the direction of the line AB. Any point 
L = [Lx.Ly, Lz] on the line AB can be parameterized as L = X + KE, so 
that the point L moves along the line AB starting from the point X in the 
direction E as K increases. Let 1 = [lu, /J^, x = [u, i;]"'", and e = be 
the image projections of L, X and E, respectively. We can similarly obtain 
the parameterization of 1 on the image plane along a 2D line as 1 = x + /ce, 
where k is analogous to K. 
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Under the camera projection stated in equation 3.1，we have A1 = PL. 
We can write this expression in terms of X , E, x and e as: 

x + Zce 1 r X + K E 
A = P . (3.7) 

1 J [ 1 

By the perspective effect explanied in section 3.1, we observe that the pro-
jection of a 3D world onto a 2D image results in the convergence of parallel 
world lines at a vanishing point in an image. Let point vab be the vanish-
ing point of the straight line AB on the image plane. By equation 3.7，as 
K oo, E dominates, and only the first three left columns of P act together 
with E to give the image position vab of the vanishing point. To conclude, 
the vanishing point vab in homogeneous coordinates is related to the 3D 
direction E by: 

� X 1 _ � d 11 [ , � 
V 贴二 A + k = P . (3.8) 

[ 1 J [ 0 J J [ 0 

Note that in the above k takes a certain value k, since the vanishing point 
Vab is along the line ab. 

As is evident from equation 3.8, each direction correspondence between e 
in the image space and E in the 3D space, which physically refers to a match 
between an image line and a 3D line, actually offers one scalar constraint for 
what are inside the camera projection matrix P (as the scalar A is arbitrary 
and k is generally unknown). If P is to be determined from such direction 
correspondences using a linear method, since P has 11 degrees of freedom, 
it will require minimally�11/1"! = 11 line correspondences to remove all 
uncertainty in P. 



Chapter 4 

A Junction-based Approach 

This chapter gives the details of the junction-based approach we used. The 
first section describes our method that use 2D and 3D trihedral junctions 
as information to calculate camera projection matrix P. The camera pose 
is then obtained from P by RQ decomposition. Please refer to appendix 
B for the details of the RQ decomposition. The second section is about 
extracting 2D trihedral junctions from the image. A junction triplet is then 
formed by combining three 2D trihedral junctions together. It is used as the 
input for the later correspondence establishment algorithm. The third section 
is about junction triplet correspondence establishment. A novel junction 
hashing scheme is used to find the match between the 2D and 3D trihedral 
junctions. Finally, a point-based correspondence establishment algorithm is 
given in the last section to give a more complete discussion on correspondence 
establishment. 

4.1 Use of Junction Correspondences for De-
termining Camera Pose 

Our novel approach uses junctions to estimate the camera projection matrix. 
We assume that the imaged objects are of trihedral structures, meaning that 
each corner or as we call it junction is built from no more than three planes 
in 3D. As such, the junctions that can show up in the image space and that 

18 
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are real (meaning that their structures are viewpoint-invariant) can only be 
either "Y"-junctions (junctions with three component branches spanning a 
total angle of more than 180° in the image space), "A"-junctions (junctions 
with three component branches spanning a total angle of no more than 180°), 
and "L"-junctions (junctions with only two component branches). In terms 
of information content, a junction thus consists of a position (of the junction 
point) plus two to three directions (of the junction's component branches). 
The "Y"- and "A" - junctions are often referred to as the trihedral junctions. 
A 2D trihedral junction is the image projection of a 3D trihedral junction 
from the world space. In the rest of this thesis, we shall restrict our discussion 
on junctions to solely those on trihedral junctions because they are those of 
the richest information content. However, all the described concepts and 
mechanisms apply just as well to non-trihedral junctions. 

We give the details of using 2D and 3D trihedral junctions to form a 
system of linear equations. The camera projection matrix P is calculated by 
solving these equations. The method is known as Direct Linear Transforma-
tion (DLT). Then we decompose P to get the position vector t and orientation 
matrix R of the camera by RQ decomposition. 

Assume the corner point of a 3D trihedral junction to be the 3D world 
point X and one of its lines, line 1，with direction E^, be the straight line AB 
in section 3.3. This trihedral junction introduces two types of constrainsts 
to estimate matrix P: point constaints and line direction constrainsts. 

4.1.1 Constraints from Point Information 

Given a set of 2D to 3D point correspondences, x^ <->• X^. We model the 
camera projection of a 3D world point to a 2D image point by the transfor-
mation Axj = PXi. Note that this equation involves homogeneous vectors. 
Thus vector x,； and ?Xi are equal only up to a scale factor. We can expressed 
this equation by vector cross product asXiX PXj = 0. This form will enable 
a simple linear solution for P to be derived. Let the j-th row of the matrix 
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be denoted by P-̂ "̂ , then we will have 

(piTXi \ 

PX, = p 2 T x , . 

V P3TX, I 

Writing Xj =(入Wi，入!；“ 入)丁，the cross product can then be given as 

(XviP^^Xi - XF^^Xi� 

Xi X PXi = 入piTXi - XuiF'^'^Xi . 

� X u i F ^ ^ X i - XviP^'^Xi I 

Since P厂X,: = X^P^ for j = 1，•. •，3, this gives a set of three equations in 
the entries of P, which can be written in the form 

•T -XXJ XviXj pi 

XXJ 0丁 -XuiXj P2 = 0 . (4.1) 

- X v i X j \ u i X j 0丁 p3 

Writing equation 4.1 in a more compact form, we obtain Ap = 0，where A is 
a 3 X 12 matrix and p is a 12 x 1 vector. We note that only the first two 
rows of A are significant because the third row of A can be obtained from the 
linear combination of the first two rows of A. Therefore, we can take away the 
third row of A, and it now becomes a 2 x 12 matrix. For each correspondence 
between an image point and a 3D point, Xi ^ Xj , the above 2 x 12 matrix 
Aj can be obtained. We can stack the matrices together to form a system 
of linear equations. If there are n set of correspondences, we can obtain a 
2n X 12 system of linear equations and it should has rank 11. Ideally, p can 
be obtained as the nullspace of this system of linear equations. This solves 
the problem as p gives entries in P up to scale. 

Since there are eleven degrees of freedom in P and each 2D-to-3D corre-
spondence gives two equations (constraints), we need six correspondences to 
estimate P. (i.e. 2 x 6 = 12 constraints, one constraint more than enough.) In 
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this way, a 12 x 12 matrix A is formed, and p is obtained as the 1-dimensional 
nullspace of matrix A. 

However, if there are more than six correspondences, the system of equa-
tions become over-determined, (i.e. A now becomes a 2n x 12 matrix with 
n > 6.) Even worse, in the presence of noise, for example, the measurements 
of the image coordinates are inexact, Ap = 0 will have no exact solution ex-
cept the zero solution. Therefore, we try to minimize the norm ||Ap|| subject 
to IIpII = 1 instead. The solution of this problem is the unit singular vector 
corresponding to the smallest singular value of A. Please refer to appendix A 
or [42] for more details. 

4.1.2 Constraint from Direction Information 

Let el be the direction vector of line 1 projected on the image. From equa-
tion 3.8, we take cross product of both sides with x. This gives 

X 1 [ 各 1 1 「 X 1 「 
X 兰 X P ， 

1 0 1 J [ 0 

where = means equality up to a scale factor and the scalar k is removed from 
the equation. Note that the vector formed by the cross product of [x, 1]丁 

and [各i，0]T only differ from that of [x，1]丁 and by a scale factor. 
In other words, the two vectors are the same. Thus, we observe that [x, 1]丁， 

ei,0]T，and P[E\ 0]^ are coplanar. Through scalar triple product, we can 
obtain 

r r i n T r r n r i i X e^ � 
P X = 0 . (4.2) 

0 1 0 J 

Recall that x = [u, 1；]丁’ e^ = e\Y and let A^ = uel — ve^, we have 

r- 1 I- -I 一 p i — p i 

X e^ 
1 X 0 = ei … i . 

L � L � 狀 J - vel 
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Similar to equation 4.1, again let the j-th row of the camera projection matrix 
be denoted by Pj, we can write equation 4.2 into 

「 「 "|T r "|T r -, T n P i 
E El 'E 

- e l ei Ai P2 = 0. (4.3) 
0 0 0 

^ V ‘ Ps 
1 x 1 2 

1 2 x 1 

This equation gives one linear equation in terms of the entries of P. Therefore, 
if a junction (trihedral junction) contains 3 branches, its correspondence 
between the image space and the 3D space has direction information offering 
a total of 3 linear constraints for P. 

4.1.3 Junction Triplet Correspondences 

Combine the results of equation 4.1 and equation 4.3，we can observe that in 
one 2D trihedral junction-tO"3D trihedral junction correspondence, one point-
point correspondence gives two linear equations and three line direction-line 
direction correspondence gives three linear equations. We would like to ask 
how more distinct are junction correspondences in comparison with plain 
point correspondences or line correspondences in determining the camera 
pose. We observe that the correspondence over a trihedral junction offers a 
total of 2 + 3 = 5 linear constraints for determining the camera projection 
matrix. If the matrix is to be determined using linear method, as few as 

11/5"! = 3 junction correspondences only are needed. This, in comparison 
with the minimally 6 point correspondences and minimally 11 line corre-
spondences, are rather attractive. In fact merely 3 junction correspondences 
already constitute an over-determining case for determining the camera ma-
trix (because there are already at least 15 linear constraints for the matrix), 
while 6 point correspondences or 11 line correspondences each represents 
only a just-determining case. It goes without saying that given an over-
determining system like 3 or more than 3 junction correspondences, we can 
determine the camera projection matrix using the least-squares method. The 
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details of the method can be found from chapter 7 of [17]. 
Furthermore, while there can be many point and line features in any image 

of crowded buildings, junctions as a number of lines co-intersecting at the 
same point require very unlikely accidental alignment to come to existence 
by chance and are therefore much less in number, and they often correspond 
to structural features of buildings rather than leaves on the ground or trunks 
of trees. In other words, the use of junctions has less to consider, and what 
is considered has high chance to be related to real structure. 

For all these attractive properties of junctions we have chosen to use 
junctions as the registration features in the solution mechanism. 

We refer to the minimally required set - a set of three junctions - as a 
junction triplet, and the collection of correspondences (between the image 
space and the 3D space) over such a set as a junction triplet correspondence. 
As concluded above, a single junction triplet correspondence is enough to let 
the camera pose be determined. As we need only one to initiate the solution 
mechanism, there is a notion of which junction triplet in the image if there 
are choices, is to be picked and matched with the candidates in the 3D space. 
Among all junction triplets extractable from the image, we prefer to pick one 
that: 

1. consists of more and ideally all trihedral junctions, as trihedral junc-
tions are information-wise richer; 

2. has less of the component branches of the three junctions collinear, so 
that more direction information is contained by the junction triplet; 

3. spans a larger area in the image space, so that the resolution error in 
the junction positions is of less influence in proportion. 

Hereafter in this article we shall assume that there are enough trihedral 
junctions in the image to allow us to consider junction triplets made of only 
trihedral junctions, though the same mechanisms can be applied to junction 
triplets that are not. 
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4.2 Extraction of Junctions and Junction Triplets 
from Image 

The procedures of getting 2D junctions are presented in this section. We 
first filter the image noise away. Then we bridge connected and parallel 
lines to give long and strong lines. "L"-junctions are then found from the 
image. The "L"-junctions are combined to give trihedral junctions which 
are known as the "Y"- and "A"-junctions. The 2D trihedral junctions that 
satisfy the criteria stated in the last paragraph of section 4.1.3 are grouped 
to form junction triplets as input for the later correspondence establishment 
algorithm. 

The thresholds used in the following procedures shall be changed accord-
ing to the characteristic of the image. This is because the details of the 
image may become finer when we move from far to near in a scene. This will 
affect the properties of the lines detected. Therefore, we have to tune the 
thresholds from time to time. 

4.2.1 Handling Image Data 

A software package for linear feature extraction described in [34] is used to 
find lines from the input image. The software is known as "LINEAR". We 
use the methods described in the following sections to further process the 
result from "LINEAR" in order to extract 2D trihedral junctions from the 
image. 

"LINEAR" detects lines in an image and gives a text file that records the 
properties of all the lines appeared in the image. The properties of the lines 
include their start point and end point coordinates, length and strength. 
We read all the line entries in the text file and filter away lines that are 
shorter than a length threshold or weaker than a strength threshold. We 
set the length threshold at 10 pixels and the strength threshold at 10 units 
respectively. In case the lines cannot pass the thresholds, they are regarded 
as image noise and will be taken away from the image. An example of a 
"LINEAR" processed image is shown in figure 4.1 
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Figure 4.1: An example of a "LINEAR" processed image, (a) The 
original image of a building in a 3D scene, (b) The line detection result. 

4.2.2 Bridging Lines 

Two lines are bridged if they are connected and parallel. For every two lines 
Li and Lj in the image, the above two properties are checked by performing 
the following steps. 

Firstly, two lines are considered to be connected if the shortest end-point 
distance between them (i.e. distance between point b and c in figure 4.2) is 
smaller than a distance threshold equals to, say, 10 pixels. We first consider 
the four end points of the two lines. For example, points a, b, c and d in the 
figure. We measure the distances dac, dad, and d̂ d- If the shortest one 
(i.e. dbc) is smaller than the distance threshold, the lines are considered to 
be connected. 

r d 

e 

Li 
a 

Figure 4,2: An example of line bridging. The dotted line represents the 
imaginary line. 
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Secondly, we check whether the two lines are parallel. We first construct 
an imaginary line between the two closest end points. The imaginary line 
is constructed between point b and c in the figure. We then measure the 
angles 6 and (f) illustrated in the figure. If both 6 and (f) are smaller than five 
degrees, the lines are considered to be parallel. 

After checking the two properties, the two lines are bridged to form a new 
line. In our example, point a and d are regarded as the end points of the new 
bridged line ad. The old lines ab and cd are cancelled. After bridging, we 
remove the short lines again. We raise the length threshold to, say, 15 pixels 
and perform another filtering. More advanced method such as orthogonal 
regression of the line end points explained in [16] can be used to bridge the 
line segments. 

4.2.3 "L"-junctions 

Two lines intersect at a point to form a "L"-junction if the angle between 
the two lines falls within a pre-defined range. Figure 4.3 gives an example 
of a "L"-junction. For every two lines Li and Lj, we check the presence of a 
"L"-junction by the following steps. 

V > < 
V ' c 

Figure 4.3: A "L"-junction. 

First, we check if the two lines intersect at a point. We perform steps 
similar to those for checking connectivity in line bridging. We set the distance 
threshold again at 10 pixels. If the distance between the two closest end-
points of the two lines is smaller than this threshold, we suppose the two 
lines intersect at a point. 
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Then we measure the included angle of the two lines Li and Lj. If the 
included angle ranges between the minimum and maximum angle threshold, 
we conclude that a "L"-junction is found. We set the minimum and maximum 
angle threshold at 30° and 150° respectively. Therefore, we can prevent the 
case that we take two connected parallel lines as a "L"-junction. 

4.2.4 " Y " and “A，’-junctions 

Two types of 2D trihedral junctions can be found at the corners of a poly-
hedral object. They are known as the "Y"- and "A"-junctions. An example 
is given in figure 4.4. 

I 

Figure 4.4: A "Y"-junction and an "A"-junction. The dashed lines give 
a "Y"-junction and the dotted lines give an "A"-junction. 

We combine three neighboring "L"-junctions to form one 2D trihedral 
junction. Let there be n "L"-junctions. We first pick one of them for consid-
eration. Around that chosen "L"-junction, we set a search disc with radius 
equals to, say, five pixels. Then we check the remaining (n — 1) "L"-junctions 
to see if there are two of them that fall within the search disc. If this is the 
case, among the three member "L"-junctions that fall within the search disc, 
we check if the sum of the three "L"-junction included angles is equal to 360 
degrees, or if two smaller included angles add together to give the remaining 
bigger included angle. The two situations are illustrated in figure 4.5 (a) and 
(b), respectively. A 2D trihedral junction is spotted if the above condition is 
satisfied. 
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Figure 4.5: An example of a 2D trihedral junction detection, (a) and 
(b) "LINEAR" detects lines in the image. The thick lines show three of them. 
They form three "L"-junctions. Each of the "L"-junctions is illustrated by a 
pair of thin lines and a dot. A search disc with radius equal to five pixels is 
located at one of the "L"-junctions. The three "L"-junctions are combined 
to give one 2D trihedral junction. 

In practice, the three lines of a 2D trihedral junction do not intersect 
exactly at one point (see figure 4.5), so we need to find a good location 
for the intersection point. We take the mean position of the "L"-junction 
vertices to give the center point of the 2D trihedral junction [8 . 

After we spot all the 2D trihedral junctions in the image, the remaining 
junctions are all "L"-junctions. We assume there are adequate 2D trihedral 
junctions in the image in the following discussion. In case there are not 
enough 2D trihedral junctions, we can consider the "L"-junctions as supple-
ments. 

4.2.5 Junction Triplets 

After we find all the trihedral junctions in the image, junction triplets can 
be formed from the image. Using the preference criteria on junction triplets 
as outlined in the last paragraph of section 4.1.3, only the most preferred 
junction triplet is chosen to find a match in the 3D database, as one junction 
triplet correspondence is enough to suggest the camera projection matrix 
and in turn the basis of registration between the image space and the 3D 
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space. Such a hypothesis of junction triplet correspondence and in turn a 
registration basis then goes through a confirmation process, which makes 
use of other image features for confirming the correctness of the registration 
basis. Only if this first junction triplet fails to find any match in the 3D 
database or none of its possible matches passes the confirmation process, 
would we proceed with the less preferred junction triplets one by one, and 
this goes on until a registration basis that can be confirmed is attained. 

To find the most preferred junction triplet, let there be n 2D trihedral 
junctions in the image, we form all possible nPs junction triplets and we 
calculate the included area of the trihedral junctions of every member in this 
sets. We sort the junction triplets in a descending order of the calculated 
area. We take the set with the maximum included area as the most preferred 
2D junction triplet. An example of a 2D junction triplet is shown in figure 
4.6. 

RM ‘ 

Figure 4.6: A real image with detected 2D trihedral junctions. The 
2D junction triplet (1,4,6) is selected by our approach as the non-coplanar 
junction triplets in the image. 
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4.3 Establishment of the First Junction Triplet 
Correspondence 

Solving the correspondence problem is easy for human being but it can be 
difficult for computers as explained by [29]. Our proposed system has an 
advantage that we only need one junction triplet correspondence between 
the input image and the model 3D database to let the solution mechanism 
take off. On this we adopt, a hypothesis-and-confirmation framework. The 
concept of the mechanism is inspired by the hashing scheme described in [53 . 

4.3.1 Ordered Junction Triplets from Model 

Assume one junction triplet Jf has been obtained from the image side. The 
image junction triplet is chosen according to the preference criteria outlined 
in the last paragraph of section 4.1.3. We are now finding a match to this 
triplet in the 3D database. On the 3D database side, we form all possible 
junction triplets that are to be matched with the chosen junction triplet Jf 
in the image. Suppose there are m trihedral junctions in the 3D database. 
Any three of them that have branches all non-collinear and that are far apart 
enough can be employed to form a junction triplet. For each of such junction 
triplets in 3D, say the one since we do not know which component 
junction of J^j is to be matched which component junction of Jf, taking all 
the possible permutations of the three component junctions into account we 
have 3! = 6 sets of triplet-to-triplet correspondences possibly resulted from 
J If. In other words, for each set of three junctions on the model side that 
can together form a junction triplet J^f, we should treat different ordering 
of the junctions in the set as constituting a different junction triplet. This 
we assume in our implementation. Notice that the formation of such ordered 
junction triplets on the database side can be carried out offline ahead of time. 
In the subsequent discussion, we assume that the 3D model gives M such 
ordered junction triplets. 

Similarly, if we look into any particular possible correspondence of a model 
junction and an image junction, since we do not know in what order the 
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component branches of the junction on the model side are to be matched with 
those on the image side, taking all possible permutations of the branches into 
consideration we have 3! = 6 possible sets of branch correspondences. With 
all the three junctions of the junction triplet J^ considered together, the 
permutations of their component branches together form = 216 possible 
sets of branch correspondences. 

4.3.2 A Junction Hashing Scheme 

To summarize, there are (M x 216) matching possibilities in total between 
Jf of the image space and all possible of the 3D space. Any one of these 
will represent an over-determining case for the determination of the camera 
projection matrix P. The question is, among all these possibilities, how do 
we efficiently identify the right triplet correspondence? Our answer to the 
question consists of the use of a hashing scheme. 

Hypothesis of Registration Bases 

Given Jf of the image space, and for each possible Jfj of the 3D space, 
{Jf, J l f } forms a registration basis B = {J / , Jm} that allows the camera 
projection matrix P to be determined, and such a P in turn allows all other 
trihedral junctions in the 3D database to be projected to the image space. 
The projection includes projection of both position as well as branch direc-
tions of each of the junctions. The important thing is, should the registration 
basis B be indeed a correct one, such projected position and branch direc-
tions in the image space should in their neighborhood find image evidence of 
real junctions, and this can serve to confirm the correctness of B. 

The 5D Junction Hash Space 

In other words, we can proceed with the following hashing scheme to identify 
the first correct junction triplet correspondence between the image space and 
the 3D space. Given Jf, and for each possible J^, we form registration basis 
B = { J / , JIj) and determine the corresponding P. We then use this P to 
project all the trihedral junctions in the 3D database to the image space. 
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The projection of each junction consists of a 2D position (w, v) and three 2D 
directions 0i，02,没3’ and we record them as an entry h = (u, 没1，02’ 没3) to a 
5D space H : U -V -61-62-63 we call the hash space. To each of such h's 
in the //-space we attach the accompanying basis B. Then the real junctions 
in the image space are brought in and they represent isolated points in the 
//-space. 

Notice that for each h = (u,v, 01,02,^3) submitted from the model side, 
since we do not know how the associated junction branch directions on the 
image side are actually ordered in the //-space, we have to represent it not 
as one entry to the i^-space but as six entries, as illustrated by figure 4.7. 
The split is about all the possible permutations of the three Oi's. 

U / 

X («’ Ml , 03,02) 

/ 

������� ； f {u,V, 61,62,93) 

/ I 

O2 9s 

Figure 4.7: Each trihedral junction in the 3D database, under a particular 
registration basis B, becomes 6 entries in a 5D hash space. Specifically, each 
projection of the junction, as a position (u, v) and three branch orientations 
{(^1,^2,^3}, is represented by six points in the U 

— V " — B\ — O2 — 以 3 space 
marked as ‘+ ’s . One of them is confirmed by an image trihedral junction 
marked as a 'X ’ in its immediate neighborhood. 
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Confirmation of a Registration Basis by Voting 

Each of the real image junctions inserts one vote to each of the projected 
model junctions in their immediate neighborhood within the i/-space, and 
the vote goes to the registration basis B that those projected model junctions 
carry. On this the Approximate Nearest Neighbor Search (ANN) [32] is used. 
Then whichever registration basis B that receives the highest and adequate 
number of votes must then be the correct registration basis between the 
image space and the 3D space. 

The hashing scheme thus serves two purposes: identifying the registration 
basis that is the most likely correct (according to whether it has the highest 
count of votes), and confirming if it is indeed correct (by the adequacy of 
votes from the image evidence of the real junctions). 

4.4 Establishment of Points Correspondence 

This section describes a recognition algorithm that use points as features. It 
is known as geometric hashing. There are two major phases in this approach: 
offline hashing and online recognition. For the offline hashing phase, we 
encode the geometric information of a model into a hash table. Since depth 
information is lost when a camera captures a 2D image of a 3D model, we 
need to encode the model information from 3D to 2D in advance. This is 
implemented by taking pictures of the model at all possible viewing angles 
and store the geometric information of the views in the computer memory. 
Then we recognize the model from a scene in the online recognition phase. 
We recover the identity, basis and viewing angles of the model in the scene by 
voting in the hash table. Finally, we find the best correspondence between 
the views and the scene by hypotheses and confirmations. 

4.4.1 Viewing Sphere Tessellation 

A staircase model is placed at the centre of a viewing sphere as shown in 
figure 4.8. Both the staircase model and the viewing sphere are built virtual 
in a computer. We use a staircase model to simulate a building as both 
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of them have regular shape and parallel edges. After we build the virtual 
staircase model in MATLAB, we use its dimensions to build a real one for 
image taking. In practice, there shall be more than one model, but we use 
only one model here to ease the explanation. For cases that have more 
than one model in the model library, we carry out the same offline hashing 
procedures described in this section for each one of them. 

z 

longitude line 

_ / latitude line , 

急 
Figure 4.8: A tessellated viewing sphere and a model. An affine camera 
is pointed towards the model centre as indicated by the hollow-headed arrow. 

The viewing sphere is tessellated into patches with sides of 10 degrees 
each. This design strikes a balance between accuracy and computational 
cost. A fine tessellation can increase recognition accuracy. However, it will 
increase the number of considerations at the same time. This tessellation 
keeps the amount of computation and storage needed for the preprocessing 
steps low and gives a sufficiently accurate system. 

The tessellation is based on spherical coordinates [50] to give lines of 
latitude and longitude. Define Q to be the azimuthal angle (or the degree of 
longitude) in the xy-plane from the a;-axis with 0 < 9 < 360 degrees, • to be 
the polar angle (or the degree of latitude) from the z-axis with 0 < (f) < 180 
degrees, and r to be the distance (or the radius) from a point to the origin. 
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The azimuthal and polar angles together are called a set of viewing angles. 
The definitions of these parameters are illustrated in figure 4.8. 

At each set of viewing angles, a model view of the object is captured by 
an affine camera. There will be 36 views taken from left to right along a 
latitude line and 18 views from top to bottom along a longitude line. As 
a result, there will be a total of 36x18 views taken on the viewing sphere 
surface. 

4.4.2 Model Views Synthesizing 
] 

The model views are synthesized by the MATLAB camera. A sample of ； 

these different views is shown in figure 4.9. As MATLAB specifies a camera . 
position as a three-element vector in Cartesian space, we need to transform 
the spherical coordinates (0,r) from the tessellated viewing sphere required 
by the geometric hashing algorithm to the Cartesian coordinates (x, y, z) 
required by MATLAB. The following conversion is used: 

X = rcosO sin 小 

y = r sin 6 sin 0 (4.4) 

z = rcos 6 

4.4.3 Affine Coordinates Computation 

In each model view, all visible corners of the model are regarded as feature 
points. They are the input for the affine coordinate computation. Affine 
coordinates are specified with respect to an affine ordered basis. Let there be 
m feature points in one model view, any three of them are chosen to form an 
affine ordered basis. Figure 4.10 gives an example of an affine ordered basis 
formed by points Pq, Pi and 尸2. Two basis vectors are generated from point 
pairs PqPi and P0P2 respectively. Pq is taken as the basis origin. The order 
of points in a point pair is significant as a basis vector that starts from Pq 
and ends at f\ is different from a basis vector that starts from Pi and ends 
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Figure 4.9: Affiiie model views taken at nine different sets of viewing 
angles. 

at Pq. AS a result, there will be a permutation of rnPs affine ordered bases 
developed from a model view. 

The image coordinates of all feature points are first scaled so that the 
magnitude of the basis vector formed by point pair PqPi (or PqP^) is equal 
to 1. This improves the numerical condition of the targeted affine coordi-
nates (details of affine coordinates will be given in the next paragraph). The 
magnitude of the remaining basis vector formed by point pair P0P2 (or PqPi) 
is then scaled to 1 by dividing itself with its norm. This standardizes the 
basis vectors as shown by the two bold arrows in figure 4.10 and prepare for 
the calculations of affine coordinates described in the following paragraph. 
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RYI 
P2 = {x2,y2)t / / VJ 

Po = (a:o,2/o) Y^"、 

Figure 4.10: Scaled image coordinates and a standardized ordered 
basis. Feature points Po； -Pi, P2 and Pi are first scaled so that the magni-
tude of the basis vector formed by PqPi is equal to 1. Then the magnitude 
of the basis vector formed by 尸。尸2 is scaled to 1 to give the standardized 
ordered basis represented by the two bold arrows. The hollow-headed arrow 
represents a vector from the standardized ordered basis to Pi. 

For each ordered basis of an affine view, the affine coordinates of the 
remaining (m — 3) feature points are computed with respect to its two stan-
dardized basis vectors according to the parallelogram law for vector addition 
as shown in figure 4.10. For instance, the affine coordinate (a, jd) of a feature 
point Pi can be written as: 

厂 1 r 1 / � 1 � 1\ / � "I � 
Xi Xo Xi xo \ „ / X2 Xo 

- = a — + p — （4.5) 
Vi J [ yo J 2/1 J [？/o J / \[ 2/2 J [yo \ J 

Given points Pq, Pi and P2, unknowns can be solved by equation 4.5. 
From above, we obtain the affine coordinates of feature points in all pos-

sible three-point bases at any given set of viewing angles. These coordinates 
(a, P) will not change under affine transformation. They serve as transfor-
mation invariant information for object recognition. 
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4.4.4 Hash Table Filling 

We hash the affine coordinates defined in section 4.4.3 which are computed 
according to the different bases and viewing angle sets. For each such coor-
dinate, we record in the hash table the label (Model, Basis, Viewing angles) 
as shown in figure 4.11. The field Model tells which object is now present 
in the view; Basis states which ordered basis is chosen; and Viewing angles 
records the azimuthal angle and polar angle of the current view. Note that 
for a given ordered basis, the coordinates of the feature points may vary as 
the viewing angle set changes. 

P axis 

(Model, Basis, Viewing angles) ^ ^ 

a axis 

Figure 4.11: A hash table with a tagged label. 

4.4.5 Hash Table Voting 

For a scene that contains s feature points, we take similar steps stated in 
section 4.4.3. We choose three feature points from the scene to form an affine 
ordered basis. We then calculate the affine coordinates for the remaining s—3 
feature points. 

With those scene coordinates, we access the hash table constructed in 
section 4.4.4. We perform fixed radius search at each scene coordinate and 
cast one vote for each label (Model, Basis, Viewing angles) that falls within 
the scene coordinate search disc. The search method is illustrated in figure 
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4.12. The figure shows an enlarged portion of a hash table. There are three 
model coordinates lying within the search disc of a scene coordinate. Each 
of the model labels receives one vote. 

+ Model coordinate 

X Scene coordinate 
、-、 

z 一 、\ 
Z N ^ � / \ * V , I N 

/ + \ 
‘ \ 

‘ \ 

‘ \ 
‘ \ 

！ X \ + ： 

\ V 
、 、 、 、 … 一 

Figure 4.12: Fixed radius search of a scene coordinate. The circle in 
dotted line marks the scene coordinate search disc. 

The fixed radius search in 2D hash table can be defined as below: given 
a set of data points S in stored in a data structure and a query point q 
in IR2，we are to find the neighbors that lay within a fixed radius disc to q 
in S. The hash table coordinates from all affine model views are regarded as 
data points, while the affine coordinates from a particular scene are regarded 
as query points. ANN [32] is a library written in the C + + programming 
language that we used to carry out this search. 

After voting the model labels that fall within the search discs of the scene 
coordinates, we pick model labels that score more than a threshold of votes. 
We take those (Model, Basis, Viewing angles) triplets as possible candidates 
for the verification stated in the next section. 

4.4.6 Hypothesis and Confirmation 

We histogram all (Model, Basis, Viewing angles) labels that received more 
than a threshold of votes. This generates a number of candidate hypotheses 
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for the verification step. For each hypothesized match, we find a transforma-
tion T that results in the least square error between the model view feature 
points and the scene feature points. 

Confirmation is then carried out by transforming the model view feature 
points according to the recovered transformation T. The transformed model 
view feature points are verified against the scene feature points. If the verifi-
cation fails, we choose a different affine ordered basis in the scene and repeat 
the procedures stated in section 4.4.5 and this section. 

4.4.7 An Example of Geometric Hashing 

An example of how the geometric hashing algorithm works is given here. 
A sample which consists of three synthesized views of a model taken at 
different viewing angle sets is hashed in the offline phase. Then we capture 
an image of the model at the same viewing angle set of one of the synthesized 
views. Results show that the hash table coordinates of the image and the 
corresponding synthesized view closely match with each other. Together with 
the voting mechanism, the corresponding synthesized view can successfully 
be recovered. We check the correctness of our recognition algorithm by back-
projecting the synthesized views onto the scene by least square error. 

First, we preprocess the model, within the 36x18 views of the model 
defined in section 4.4.1, a subset of three views are synthesized in figure 4.13. 
Their viewing angle sets are listed at the top of the figure. These views are 
hashed offline and a hash table is built. 

Azim. = 40 deg.’ Polar = 60 deg. Azim. = 50 deg., Polar = 60 deg. Azim. = 60 deg.’ Polar = 60 deg. 

L L 
0̂40 50 50 Ho 50 

Figure 4.13: Three MATLAB synthesized views. 

Then we take an image showed in figure 4.14, we are to recover the ordered 
basis and the viewing angle set of this scene. In the scene, there are 19 
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[ K f l l 
Figure 4.14: A scene with 19 feature points and an ordered basis. 

feature points and three of them are taken to form an affine ordered basis. 
We choose feature points 8，7 and 9 as they are evenly distributed in the 
scene. We let them be Po, Pi and 尸2 respectively as defined in section 4.4.3. 
The remaining 16 feature points are used for hash table voting as described 
in section 4.4.5. This scene is intentionally taken at the same viewing angle 
set as the middle synthesized view showed in figure 4.13. Therefore, the 
azimuthal angle and polar angle of this scene is approximately 50 degree and 
60 degree, respectively. 

Voting mechanism described in section 4.4.5 is performed to recover the 
ordered basis and viewing angle set of the scene. The hash table coordinates 
of the scene and the three synthesized views with ordered basis 8-7-9 are 
shown in figure 4.15. 

Among the three synthesized views, the view with azimuthal angle = 
50 degree and polar angle = 60 degree has coordinates closest to the scene 
coordinates. Hence, this view will receive the highest number of votes. And 
so, ordered basis 8-7-9 and the viewing angle set are reported. 

With the recovered ordered basis and viewing angle set, we can find the 
correspondence between the points in the synthesized view and in the scene. 
Since the points in the synthesized view and in the scene are related by an 
affine transformation, we can estimate the transformation by least square 
error. 

To illustrate the result of our algorithm, we estimate the transformation 
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Figure 4.15: Hash table coordinates. 

between each of the three synthesized views and the scene. We use all the 
19 point correspondences between each synthesized view and the scene. The 
three synthesized views are back-projected onto the scene on figure 4.16 and 
we see that the one that conforms to the recovered ordered basis and viewing 
angle set fits well with the scene. 

^ ^ ^ ^ j j j ^ l 

Figure 4.16: Three back-projected synthesized views. 



Chapter 5 

Experimental Results 

5.1 Results from Synthetic Image Data 

An experiment on synthetic image data is used to show the performance of 
the point-based self-localization algorithm. At least six point features are 
needed to calculate the camera pose as explained in section 4.1.1. 

Two virtual objects (a rectangular box and a cube) were constructed in 
the 3D space. A synthetic camera placed at position (20, -20,20)"^ took a 
picture of the models under perspective projection. We adopted the picture 
as a 'photo’ taken by the synthetic camera. The resolution of the picture was 
560 X 420. See figure 5.1 for how the scene was arranged. We estimated the 

15 0 

Figure 5.1: A perspective image of the synthetic scene. 

43 
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camera projection matrix P by using the correspondences between the image 
coordinates from the 'photo' and the spatial coordinates from the 3D model. 
We took the correspondence as the point constraints for estimating the 3 x 4 
matrix P. First, we picked six corners of the rectangular box from the 'photo' 
by hand (more robust method such as Harris corner detector could be used). 
They were given as follow: 

(163,255); (278，291); (278,256); (157,223); (307，220); (197,193) 

The corresponding corners in 3D model were given as follow: 1 
！i 

(0,0,0); (10,0,0); (10’ 0，3); (0，0，3); (10’ 5’ 3); (0,5’ 3) •j 

The estimated camera matrix P: 
r 1 -0.0289 -0.0404 0.0145 -0.5368 I 

I 
P = -0.0023 0.0034 0.0473 -0.8408 j 

0.0000 -0.0001 0.0001 -0.0033 
. J 

We verified the answer by checking the properties of the camera matrix. We 
found the camera centre as the nullspace of matrix P. It was given as follow: 

(20 .1399 \ I' 

t = -20.4033 

� 2 0 . 2 3 0 0 ^ 

It was very close to the defined synthetic camera position (20, -20,20)^. 
Then we decomposed the camera matrix into P = KR[I| - t], K and R were 
obtained as follow: 

一 — 

-425.4291 -4.7289 302.5402 

K = 0.0000 427.9302 213.4769 
0.0000 0.0000 1.0000 • -
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0.9198 0.3920 0.0165 

R = -0.2171 0.4734 0.8537 

0.3268 -0.7888 0.5206 

The principal point of the estimated camera was (302.5402，213.4769)丁, which 
was reasonably close to the ground truth (280’210)T.We projected the se-
lected corners of the 3D model onto the image by using the estimated camera 
matrix through PXi. The selected corners and the projected corners matched 
well as shown in figure 5.2. The difference between the two are within one 

>j I 

pixel. I； 

\ f ^ 睡 m 5 j j 

丨 
15 0 . • 

(a) (b) 

Figure 5.2: Reprojection result of the synthetic image.(a) The 'o' and 
the on the corners of the rectangular box are the selected image points 
and the projection of the 3D model points, respectively, (b) A close-up of a 
corner of a model box. The ' x ' is a selected image point, while the ‘+ ’ is a 
projection of a 3D model point. 

5.2 Results from Real Image Data 

Two qualities of our system are tested in this section. Firstly, we tested 
the accuracy of our system by two sets of laboratory experiments. The 
first experiment compared numerically the results between our system and 
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the MATLAB camera calibration toolbox. The second one showed that our 
approach do give reasonable camera orientations by using pictures of a 3D 
model placed on a rotation table. Then we showed that our system can be 
applied to real situations by giving two outdoor examples. The resolution of 
the images used in this chapter are 640 x 480. 

5.2.1 Results on Laboratory Scenes 

The aim of the first experiment is to compare the localization result of our 
proposed self-localization system with that of an existing system (available 
online from [3]). We used the same camera pose to take two images of a 
laboratory scene. They are shown in figure 5.3 (a) and (b), respectively. A 
staircase model was put on top of a checker board in the scene in figure 5.3 
(a), while the scene in figure 5.3 (b) contained a checker board only. 

H H H H H I H I ^ I H h I ^ ^ ^ E ^ 
(a) (b) 

Figure 5.3: Experimental results from MATLAB toolbox and our 
proposed system, (a) The image with staircase model inside, with the 
world coordinate frame and the model's wireframe as determined by the pro-
posed method overlaying on top. (b) The image without the staircase model 
inside, with the world coordinate frame as determined by the MATLAB tool-
box method overlaying on top. 

Our algorithm took the staircase model in figure 5.3 (a) as the subject 
to estimate the camera pose. We measured the dimensions of the staircase 
model in advance and took a bottom corner of the model as the origin of the 
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world frame. We then calculated the camera pose with respect to this world 
frame. The staircase model was used to represent a real building as both of 
them have regular shapes and parallel edges. 

Then we took away the staircase model and used the checker board as the 
subject in figure 5.3 (b). The same 3D point now on the checker board was 
used again as the origin of the world frame. The camera pose was estimated 
again by the MATLAB camera calibration toolbox. 

The estimated camera positions and orientations of both methods are 
listed in the following table. The estimated camera position is expressed as a 
3-vector with respect to the origin of the world frame, while the orientation 
is represented in the form of a rotation axis and a rotation angle. 

Table 1: Camera pose determination results of the junction-based method 
to a laboratory scene, in comparison with those of a widely used 

pattern-based method available as a MATLAB system. 

Junction-based Method MATLAB Toolbox Method 

Position (in mm) (-165，-116，157) ( -223, -152，184) 

Orient, axis (0.86’ -0.43,0.28) (0.85, -0.44,0.27) 

Orient, angle (in rad) 2.02 2.12 

We compared numerically the results from our approach and from the 
toolbox. The difference on camera position was 73.4mm. As for the camera 
orientation, the difference on the rotation axes was 0.9 degree and the dif-
ference on rotation angle was 5.7 degrees. The results show that the camera 
pose parameters as determined from the proposed method were close to those 
from a well-established method. 

In the second experiment, we test the validity of the estimated camera 
orientations. The staircase model was put on a rotation table with its cen-
troid aligned with the table's rotation axis. The model was rotated about 
the table's rotation axis and three different views of the model were captured 
under a fixed camera pose. Each view was different from the previous one by 
a 20° rotation. Though the model was rotated while the camera was fixed, 
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we took the relative rotation the other way round. We took the situation 
as the model was fixed and the camera was rotated about the rotation table 
axis. 

The proposed system determined the three camera poses and we evaluated 
the quality of the camera pose result by examining the reprojection error 
induced from it: the camera pose determined by the proposed method, plus 
the known 3D structure of the imaged object, would allow the entire imaged 
object to be projected back to the input image, and should features of the 
projection overlap well with the real features in the image we can say the 
camera pose is determined with precision. The three different views and their 
reprojected wireframe models are shown in figure 5.4. 

(a) (b) (c) 

Figure 5.4: Experimental results on the rotated staircase model. The 
images with staircase model and the model's wireframe as determined by the 
proposed method overlaying on top. 

The staircase model and the three estimated camera poses are placed in 
3D as shown in Fig. 5.5. 

The three prisms represent the reconstructed camera perspectives. They 
faced the staircase model reasonably well and formed a trajectory that matched 
with the staircase model's rotation. The results show that the proposed sys-
tem can find valid camera orientations. 

5.2.2 Results on Outdoor Scenes 

We applied our algorithm on two real images of a building to show that 
our system could be used in live applications. The two real images were 
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i||F 

\ 7 
Figure 5.5: The reconstructed 3D scene of the rotated staircase 彳 

model. The relative placement of the staircase model and the three cameras ；] 

as reconstructed from the estimated camera poses. 
if 

I丨 
taken at two different camera positions and orientations. Image 1 shown in 
figure 5.6 (a) was taken on the left hand side of the building while image I 
2 shown in figure 5.6 (b) was taken on the right hand side. Figure 5.6 (c) 
and (d) show the wireframe model of the building projected back onto the 
original image. Much of the rims of the wireframe model matches well with 
the observed features of the building, except those on the glass door where 
trihedral junctions could not be found. 

^ M M ^ i 哪 pipi i 

mkm •纖 liffl Ml 
(a) (b) (c) (d) 

Figure 5.6: Experimental results on two outdoor scenes, (a) and (b) 
The original images 1 and 2. (c) and (d) The wireframe model of the building 
as determined by the junction-based method, overlaying on top of the original 
images. 

After we obtain the camera poses of the two images, the camera perspec-
tives and the building are reconstructed in the 3D space as shown in figure 
5.7. The prisms represent the camera perspectives and they match well with 
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the truth. 

The accuracy in determining the camera pose depends upon the image 
resolution of the camera and the accuracy of line detection. It can be im-
proved by using a higher resolution camera. For the matching algorithm, in 
an image that contained 42 3D ordered junction triplets, our system took 48 
seconds to calculate all the possible P and project the 3D trihedral junctions 
to the image domain on a computer equipped with a Pentium 4 CPU and 
1GB of RAM. 

⑷ 丨 

i! 
V 
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> 

(b) 

Figure 5.7: The reconstructed 3D outdoor scene, (a) The front view 
and (b) the top view of a reconstructed 3D outdoor scene which contain the 
building and the two estimated camera poses. 



Chapter 6 

Conclusion 

6.1 Contributions 

A junction-based approach is proposed, which is superior than approaches 
that use point or line features. In terms of information content, a junction 
consists of a position (of the junction point) and two to three directions (of the 
junction's component branches). Therefore, it is more preferred than other 
low level image feature such as point [15] and line segment [4]. Furthermore, 
a junction requires a number of lines co-intersecting at the same point. It is 
very unlikely that the accidental alignmnet of the lines will exist by chance. 
On the other hand, approaches that use points or lines as features only can 
be heavily affected by image noise introduced by the natural environment 
features such as leaves on the ground or trunks of trees. Therefore, the 
junction-based system is more robust. This nice property eases the matching 
procedures by reducing the number of unnecessary trials. 

To establish a right match of a triplet of junctions between the 2D and 
3D spaces, a hashing scheme is described. The scheme combines the position 
and direction information of the junctions together and put the combined 
information into a 5D junction hash space. This approach integrates hy-
pothesis and confirmation of the triplet correspondences into a single step 
and generalizes the geometric hashing of points to that of junctions. Exper-
imental results show that even with suboptimal implementation the scheme 
could recover camera pose in under Imin. 

51 
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6.2 Advantages 

Our system requires a simple input. All it needs is only a still image of the 
subject. Moreover, the time complexity of the matching process is reasonable. 
For an ideal situation that the first image junction triplet is a valid one, 
and the model contains M ordered junction triplets, the complexity of the 
matching algorithm is of the order of 0(M x 216) x T, where T is the time 
required to project all the 3D junctions into the image space, and the three 
component branches in each junction together give the 216 possible sets of 
branch correspondences. The use of junctions is suitable for building images 
as junctions are easily available on man-made architecture. It exploits the 
building's structural characteristic and facilitate its feature matching. The 
proposed method is efficient in the sense that it only needs to solve a system 
of linear equations to recover a possible camera projection matrix P. The 
pose of the camera (position and orientation) can then be obtained by the 
RQ decomposition of P. 

6.3 Summary and Future Work 

We have presented a mechanism of automatically determining camera pose 
from a single image. The mechanism seizes the fact that urban scenes are 
generally occupied by buildings, and exploits the nature of the buildings that 
they are generally loaded with corner features. Specifically, it makes use of 
the corners or what we call junctions, that are both information-rich and 
distinct, for its operation. It is shown that three junctions matched between 
the captured image and the 3D database about the urban scene would already 
constitute an over-determining case for the recovery of the camera pose. To 
establish such a match of triplet of junctions, a hashing scheme is described. 

Experiments showed that our approach worked well in real images. The 
camera's heading was reasonably determined. The proposed system aids 
GPS in the sense that it provides not only position, but also orientation 
information. It works in crowded urban areas where GPS may fail due to 
severe signal blocking. 
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The proposed algorithm has various applications. In assisted or au-
tonomous navigation, a vehicle equipped with an imaging device can localize 
itself any time in the urban areas. In more mundane applications, a user 
with any portable device that can grab image can ask for directions in a city 
scene. 

Possible future work will be an extension of the solution framework to a 
probabilistic one [40] so as to enhance the efficiency of the matching scheme 
further. We can discard the hypothesized 3D junction triplets that have low 
probability to match with the 2D junction triplets from the image. Con-
firmation is carried out only for the possible triplet correspondences. We 
can also extend the capability of our system to handle buildings with curved 
surfaces [14]. 



Appendix A 

Least-Squares Method 

• F O R HOMOGENEOUS SYSTEM A X = 0 

Consider a system of equations of the form Ax=0. Let A be an m x n 
matrix. We consider the case m > n and assume for the present that 
A is of rank n. This gives a over-determined system. The solution 
x = 0 is of no interest at all. So we try to find a non-zero solution by a 
constraint ||x|| 二 1. If A does not have full rank, an exact solution can 
be obtained by the nullspace of A. If we cannot get an exact solution, 
we can use SVD to solve the problem. 

We try to minimize ||Ax|| subject to ||x|| = 1. By SVD, we minimize 
||UDV̂ x||. Since, HUDV̂ xH = ||DV'̂ x||, and ||x|| = ||V"̂ x||, the problem 
becomes minimizing ||DV"̂ x|| subject to ||V̂ x|| = 1. Let y be V'^x, we 
minimize ||Dy|| subject to ||y|| 二 1. As D is a diagonal matrix with 
descending entries, the solution of the problem is y = ( 0 , 0 , . . . , 0 ’ 1 )丁 

with the last entry being 1. Finally, x=Vy and x is just the last column 
of V. 

• F O R NONHOMOGENEOUS SYSTEM A x = b 

We consider the over-determined set of equations Ax=b. If a solution 
does not exits, it makes sense for us to find a vector x that is closest 
to providing a solution to the system. In other words, we seek x such 
that 11 Ax - b|| is minimized. Such a vector x is known as the least-
squares solution to the system. It can be found by using singular value 

54 
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decomposition (SVD) as follows. 

We want to find x that minimizes ||Ax — b||. By using SVD, we have 
||Ax- b|| = ||UDV x̂ — b||. Because of the norm-preserving property of 
orthogonal transforms, ||UDV̂ x - b|| = ||DV'̂ x - U^bH, and this is the 
quantity that we want to minimize. Writing y = V^x and b' = U^b, 
the problem becomes one of minimizing ||Dy - b'|| where D is diagonal. 

The system can be written in the form: 

1 r b[ 

cr2 「 1 的 
yi 
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Prom above, the nearest Dy can approach b' is the vector (6'” 6'2，...’ 6“, 0’..., 0)丁. 

It is achieved by setting yi = b'Jai for i = 1, ...,n. Finally, we can get 
X from X = Vy. 



Appendix B 

RQ Decomposition 

By the RQ decomposition of a matrix is usually meant the decomposition 
of the matrix A into a product A = RQ, where Q is orthogonal, and R is an 
upper-triangular matrix. The letter R stands for 'Right', meaning upper-
triangular. For this thesis, the most important case is the decomposition of 
a 3 X 3 matrix. 

A 3-dimensional Givens rotation is a rotation about one of the three 
coordinate axes. The three Givens rotations are 

1 c s c —s 

Qx = c - 5 Qy = 1 Q̂  = 5 c (B.l) 

s c -s c 1 

where c = cos(没）and s = sin(没）for some angle 6 and blank entries represent 
zeros. 

Multiplying a 3 x 3 matrix A on the right by (for instance) Q之 has the 
effect of leaving the last coluinii of A unchanged, and replacing the first two 
columns by linear combinations of the original two columns. The angle 9 may 
be chosen so that any given entry in the first two columns becomes zero. 

For instance, to set the entry A21 to zero we need to solve the equation 
ca2i + sa22 = 0. The solution to this is c = -022/(122 + (^liY^^ and s -
^21/(^22 + It is required that ĉ  + ŝ  = 1. 

The strategy of the RQ algorithm is to clear out the lower half of the 
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matrix one entry at a time by multiplication by Givens rotations. Consider 
the decomposition of a 3 x 3 matrix A as A = RQ where R is upper-triangluar 
and Q is a rotation matrix. This may take place in three steps. Each steps 
consists of a mulitplication on the right by a Givens rotation to set a chosen 
entry of the matrix A to zero. The sequence of multiplications must be chosen 
in such a way as not to disturb the entries that have already been set to zero. 
An implementation of the RQ decomposition is given here: 

Objective 
Carry out the RQ decomposition of a 3 x 3 matrix A using Givens rota-

tions. 
Algorithm 

1. Multiply by Q.̂  so as to set A32 to zero. 

2. Multiply by Qy so as to set A31 to zero. This multiplication does not 
change the second column of A, hence A32 remains zero. 

3. Multiply by Q: so as to set A21 to zero. The first two columns are 
replaced by linear combinations of themselves. Thus A31 and A32 remain 
zero. 

As a result of these operations, we find that AQ̂ -Q̂ Q̂  = R where R is upper-
triangular. Consequently, A = RQJqJqJ, and so A = RQ where Q = QJqJqJ 

is a rotation. In addition, the angles ŷ and 9z associated with the three 
Givens rotations provide a parametrization of the rotation by three Euler 
angles, otherwise known as roll, pitch and yaw angles. 
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